Sample records for morphing method cmorph

  1. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    PubMed Central

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  2. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  3. Application of satellite estimates of rainfall distribution to simulate the potential for malaria transmission in Africa

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Eltahir, E. A.

    2009-12-01

    The Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS) is a mechanistic model developed to assess malaria risk in areas where the disease is water-limited. This model relies on precipitation inputs as its primary forcing. Until now, applications of the model have used ground-based precipitation observations. However, rain gauge networks in the areas most affected by malaria are often sparse. The increasing availability of satellite based rainfall estimates could greatly extend the range of the model. The minimum temporal resolution of precipitation data needed was determined to be one hour. The CPC Morphing technique (CMORPH ) distributed by NOAA fits this criteria, as it provides 30-minute estimates at 8km resolution. CMORPH data were compared to ground observations in four West African villages, and calibrated to reduce overestimation and false alarm biases. The calibrated CMORPH data were used to force HYDREMATS, resulting in outputs for mosquito populations, vectorial capacity and malaria transmission.

  4. Demonstrating Improvements from a NWP-based Satellite Precipitation Adjustment Technique in Tropical Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anagnostou, E. N.

    2016-12-01

    This research contributes to the improvement of high resolution satellite applications in tropical regions with mountainous topography. Such mountainous regions are usually covered by sparse networks of in-situ observations while quantitative precipitation estimation from satellite sensors exhibits strong underestimation of heavy orographically enhanced storm events. To address this issue, our research applies a satellite error correction technique based solely on high-resolution numerical weather predictions (NWP). Our previous work has demonstrated the accuracy of this method in two mid-latitude mountainous regions (Zhang et al. 2013*1, Zhang et al. 2016*2), while the current research focuses on a comprehensive evaluation in three topical mountainous regions: Colombia, Peru and Taiwan. In addition, two different satellite precipitation products, NOAA Climate Prediction Center morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), are considered. The study includes a large number of heavy precipitation events (68 events over the three regions) in the period 2004 to 2012. The NWP-based adjustments of the two satellite products are contrasted to their corresponding gauge-adjusted post-processing products. Preliminary results show that the NWP-based adjusted CMORPH product is consistently improved relative to both original and gauge-adjusted precipitation products for all regions and storms examined. The improvement of PERSIANN-CCS product is less significant and less consistent relative to the CMORPH performance improvements from the NWP-based adjustment. *1Zhang, Xinxuan, Emmanouil N. Anagnostou, Maria Frediani, Stavros Solomos, and George Kallos. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14, no. 6 (2013): 1844-1858.*2 Zhang, Xinxuan, Emmanouil N. Anagnostou, and Humberto Vergara. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099.

  5. On the use of satellite-based estimates of rainfall temporal distribution to simulate the potential for malaria transmission in rural Africa

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Eltahir, Elfatih A. B.

    2011-02-01

    This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.

  6. Adjusting Satellite Rainfall Error in Mountainous Areas for Flood Modeling Applications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anagnostou, E. N.; Astitha, M.; Vergara, H. J.; Gourley, J. J.; Hong, Y.

    2014-12-01

    This study aims to investigate the use of high-resolution Numerical Weather Prediction (NWP) for evaluating biases of satellite rainfall estimates of flood-inducing storms in mountainous areas and associated improvements in flood modeling. Satellite-retrieved precipitation has been considered as a feasible data source for global-scale flood modeling, given that satellite has the spatial coverage advantage over in situ (rain gauges and radar) observations particularly over mountainous areas. However, orographically induced heavy precipitation events tend to be underestimated and spatially smoothed by satellite products, which error propagates non-linearly in flood simulations.We apply a recently developed retrieval error and resolution effect correction method (Zhang et al. 2013*) on the NOAA Climate Prediction Center morphing technique (CMORPH) product based on NWP analysis (or forecasting in the case of real-time satellite products). The NWP rainfall is derived from the Weather Research and Forecasting Model (WRF) set up with high spatial resolution (1-2 km) and explicit treatment of precipitation microphysics.In this study we will show results on NWP-adjusted CMORPH rain rates based on tropical cyclones and a convective precipitation event measured during NASA's IPHEX experiment in the South Appalachian region. We will use hydrologic simulations over different basins in the region to evaluate propagation of bias correction in flood simulations. We show that the adjustment reduced the underestimation of high rain rates thus moderating the strong rainfall magnitude dependence of CMORPH rainfall bias, which results in significant improvement in flood peak simulations. Further study over Blue Nile Basin (western Ethiopia) will be investigated and included in the presentation. *Zhang, X. et al. 2013: Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas. J. Hydrometeor, 14, 1844-1858.

  7. Statistical evaluation of the performance of gridded monthly precipitation products from reanalysis data, satellite estimates, and merged analyses over China

    NASA Astrophysics Data System (ADS)

    Deng, Xueliang; Nie, Suping; Deng, Weitao; Cao, Weihua

    2018-04-01

    In this study, we compared the following four different gridded monthly precipitation products: the National Centers for Environmental Prediction version 2 (NCEP-2) reanalysis data, the satellite-based Climate Prediction Center Morphing technique (CMORPH) data, the merged satellite-gauge Global Precipitation Climatology Project (GPCP) data, and the merged satellite-gauge-model data from the Beijing Climate Center Merged Estimation of Precipitation (BMEP). We evaluated the performances of these products using monthly precipitation observations spanning the period of January 2003 to December 2013 from a dense, national, rain gauge network in China. Our assessment involved several statistical techniques, including spatial pattern, temporal variation, bias, root-mean-square error (RMSE), and correlation coefficient (CC) analysis. The results show that NCEP-2, GPCP, and BMEP generally overestimate monthly precipitation at the national scale and CMORPH underestimates it. However, all of the datasets successfully characterized the northwest to southeast increase in the monthly precipitation over China. Because they include precipitation gauge information from the Global Telecommunication System (GTS) network, GPCP and BMEP have much smaller biases, lower RMSEs, and higher CCs than NCEP-2 and CMORPH. When the seasonal and regional variations are considered, NCEP-2 has a larger error over southern China during the summer. CMORPH poorly reproduces the magnitude of the precipitation over southeastern China and the temporal correlation over western and northwestern China during all seasons. BMEP has a lower RMSE and higher CC than GPCP over eastern and southern China, where the station network is dense. In contrast, BMEP has a lower CC than GPCP over western and northwestern China, where the gauge network is relatively sparse.

  8. Assessment of Satellite Precipitation Products in the Philippine Archipelago

    NASA Astrophysics Data System (ADS)

    Ramos, M. D.; Tendencia, E.; Espana, K.; Sabido, J.; Bagtasa, G.

    2016-06-01

    Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1) the Tropical Rainfall Measuring Mission (TRMM), (2) the CPC Morphing technique (CMORPH) of NOAA and (3) the Global Satellite Mapping of Precipitation (GSMAP) and (4) Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN). Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC) for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN) values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  9. Geographically weighted regression based methods for merging satellite and gauge precipitation

    NASA Astrophysics Data System (ADS)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  10. Evaluation of high resolution global satellite precipitation products using daily raingauge data over the Upper Blue Nile Basin

    NASA Astrophysics Data System (ADS)

    Sahlu, Dejene; Moges, Semu; Anagnostou, Emmanouil; Nikolopoulos, Efthymios; Hailu, Dereje; Mei, Yiwen

    2017-04-01

    Water resources assessment, planning and management in Africa is often constrained by the lack of reliable spatio-temporal rainfall data. Satellite products are steadily growing and offering useful alternative datasets of rainfall globally. The aim of this paper is to examine the error characteristics of the main available global satellite precipitation products with the view of improving the reliability of wet season (June to September) and small rainy season rainfall datasets over the Upper Blue Nile Basin. The study utilized six satellite derived precipitation datasets at 0.25-deg spatial grid size and daily temporal resolution:1) the near real-time (3B42_RT) and gauge adjusted (3B42_V7) products of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), 2) gauge adjusted and unadjusted Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products and 3) the gauge adjusted and un-adjusted product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center Morphing technique (CMORPH) over the period of 2000 to 2013.The error analysis utilized statistical techniques using bias ratio (Bias), correlation coefficient (CC) and root-mean-square-error (RMSE). Mean relative error (MRE), CC and RMSE metrics are further examined for six categories of 10th, 25th, 50th, 75th, 90thand 95th percentile rainfall thresholds. The skill of the satellite estimates is evaluated using categorical error metrics of missed rainfall volume fraction (MRV), falsely detected rainfall volume fraction (FRV), probability of detection (POD) and False Alarm Ratio (FAR). Results showed that six satellite based rainfall products underestimated wet season (June to September) gauge precipitation, with the exception of non-adjusted PERSIANN that overestimated the initial part of the rainy season (March to May). During the wet season, adjusted CMORPH has relatively better bias ratio (89 %) followed by 3B42_V7 (88%), adjusted-PERSIANN (81%), and non-adjusted products have relatively lower bias ratio. The results from CC statistic range from 0.34 to 0.43 for the wet season with adjusted products having slightly higher values. The initial rainy season has relatively higher CC than the wet season. Results from the categorical error metrics showed that CMORPH products have higher POD (91%), which are better in avoiding detecting false rainfall events in the wet season. For the initial rainy season PERSIANN (<50%), TMPA and CMORPH products are nearly equivalent (63-67%). On the other hand, FAR is below 0.1% for all products while in the wet season is higher (10-25%). In terms of rainfall volume of missed and false detected rainfall, CMORPH exhibited lower MRV ( 4.5%) than the TMPA and PERSIANN products (11-19%.) in the wet season. MRV for the initial rainy season was 20% for TMPA and CMORPH products and above 30% for PERSIANN products. All products are nearly equivalent in the wet season in terms of FRV (< 0.2%). The magnitude of MRE increases with gauge rainfall threshold categories with 3B42-V7 and adjusted CMORPH having lower magnitude, showing that underestimation of rainfall increases with increasing rainfall magnitude. CC also decreases with gauge rainfall threshold categories with CMORPH products having slightly higher values. Overall, all satellite products underestimated (overestimated) lower (higher) quantiles quantiles. We have observed that among the six satellite rainfall products the adjusted CMORPH has relatively better potential to improve wet season rainfall estimate and 3B42-V7 that initial rainy season in the Upper Blue Nile Basin.

  11. Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

    NASA Astrophysics Data System (ADS)

    Wolters, E. L. A.; van den Hurk, B. J. J. M.; Roebeling, R. A.

    2011-02-01

    This paper describes the evaluation of the KNMI Cloud Physical Properties - Precipitation Properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR) as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM), using Climate Prediction Center Morphing Technique (CMORPH) rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/-10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h-1. However, at higher rain rates (5-16 mm h-1) CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair correspondence between CPP-PP and CMORPH was found, which is reflected by high correlation coefficients (~0.7) for both rain rate and rain occurrence frequency. The daytime cycle of rainfall from CPP-PP shows distinctly different patterns for three different regions in West Africa throughout the WAM, with a decrease in dynamical range of rainfall near the Inter Tropical Convergence Zone (ITCZ). The dynamical range as retrieved from CPP-PP is larger than that from CMORPH. It is suggested that this results from both the better spatio-temporal resolution of SEVIRI, as well as from thermal infrared radiances being partly used by CMORPH, which likely smoothes the daytime precipitation signal, especially in case of cold anvils from convective systems. The promising results show that the CPP-PP algorithm, taking advantage of the high spatio-temporal resolution of SEVIRI, is of added value for monitoring daytime precipitation patterns in tropical areas.

  12. Evaluation of NWP-based Satellite Precipitation Error Correction with Near-Real-Time Model Products and Flood-inducing Storms

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anagnostou, E. N.; Schwartz, C. S.

    2017-12-01

    Satellite precipitation products tend to have significant biases over complex terrain. Our research investigates a statistical approach for satellite precipitation adjustment based solely on numerical weather simulations. This approach has been evaluated in two mid-latitude (Zhang et al. 2013*1, Zhang et al. 2016*2) and three topical mountainous regions by using the WRF model to adjust two high-resolution satellite products i) National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and ii) Global Satellite Mapping of Precipitation (GSMaP). Results show the adjustment effectively reduces the satellite underestimation of high rain rates, which provides a solid proof-of-concept for continuing research of NWP-based satellite correction. In this study we investigate the feasibility of using NCAR Real-time Ensemble Forecasts*3 for adjusting near-real-time satellite precipitation datasets over complex terrain areas in the Continental United States (CONUS) such as Olympic Peninsula, California coastal mountain ranges, Rocky Mountains and South Appalachians. The research will focus on flood-inducing storms occurred from May 2015 to December 2016 and four satellite precipitation products (CMORPH, GSMaP, PERSIANN-CCS and IMERG). The error correction performance evaluation will be based on comparisons against the gauge-adjusted Stage IV precipitation data. *1 Zhang, Xinxuan, et al. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14.6 (2013): 1844-1858. *2 Zhang, Xinxuan, et al. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099. *3 Schwartz, Craig S., et al. "NCAR's experimental real-time convection-allowing ensemble prediction system." Weather and Forecasting 30.6 (2015): 1645-1654.

  13. Assessment of satellite rainfall products over the Andean plateau

    NASA Astrophysics Data System (ADS)

    Satgé, Frédéric; Bonnet, Marie-Paule; Gosset, Marielle; Molina, Jorge; Hernan Yuque Lima, Wilson; Pillco Zolá, Ramiro; Timouk, Franck; Garnier, Jérémie

    2016-01-01

    Nine satellite rainfall estimations (SREs) were evaluated for the first time over the South American Andean plateau watershed by comparison with rain gauge data acquired between 2005 and 2007. The comparisons were carried out at the annual, monthly and daily time steps. All SREs reproduce the salient pattern of the annual rain field, with a marked north-south gradient and a lighter east-west gradient. However, the intensity of the gradient differs among SREs: it is well marked in the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 (TMPA-3B42), Precipitation Estimation from remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products, and it is smoothed out in the Climate prediction center MORPHing (CMORPH) products. Another interesting difference among products is the contrast in rainfall amounts between the water surfaces (Lake Titicaca) and the surrounding land. Some products (TMPA-3B42, PERSIANN and GSMaP) show a contradictory rainfall deficit over Lake Titicaca, which may be due to the emissivity contrast between the lake and the surrounding lands and warm rain cloud processes. An analysis differentiating coastal Lake Titicaca from inland pixels confirmed this trend. The raw or Real Time (RT) products have strong biases over the study region. These biases are strongly positive for PERSIANN (above 90%), moderately positive for TMPA-3B42 (28%), strongly negative for CMORPH (- 42%) and moderately negative for GSMaP (- 18%). The biases are associated with a deformation of the rain rate frequency distribution: GSMaP underestimates the proportion of rainfall events for all rain rates; CMORPH overestimates the proportion of rain rates below 2 mm day- 1; and the other products tend to overestimate the proportion of moderate to high rain rates. These biases are greatly reduced by the gauge adjustment in the TMPA-3B42, PERSIANN and CMORPH products, whereas a negative bias becomes positive for GSMaP. TMPA-3B42 Adjusted (Adj) version 7 demonstrates the best overall agreement with gauges in terms of correlation, rain rate distribution and bias. However, PERSIANN-Adj's bias in the southern part of the domain is very low.

  14. Assessment of satellite-based precipitation estimates over Paraguay

    NASA Astrophysics Data System (ADS)

    Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián

    2018-04-01

    Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.

  15. A Preliminary Examination of the Second Generation CMORPH Real-time Production

    NASA Astrophysics Data System (ADS)

    Joyce, R.; Xie, P.; Wu, S.

    2017-12-01

    The second generation CMORPH (CMORPH2) has started test real-time production of 30-minute precipitation estimates on a 0.05olat/lon grid over the entire globe, from pole-to-pole. The CMORPH2 is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) and LEO platforms, and precipitation simulations from the NCEP operational global forecast system (GFS). Inputs from the various sources are first inter-calibrated to ensure quantitative consistencies in representing precipitation events of different intensities through PDF calibration against a common reference standard. The inter-calibrated PMW retrievals and IR-based precipitation estimates are then propagated from their respective observation times to the target analysis time along the motion vectors of the precipitating clouds. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the GFS precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. The propagated PMW and IR based precipitation estimates are finally integrated into a single field of global precipitation through the Kalman Filter framework. A set of procedures have been established to examine the performance of the CMORPH2 real-time production. CMORPH2 satellite precipitation estimates are compared against the CPC daily gauge analysis, Stage IV radar precipitation over the CONUS, and numerical model forecasts to discover potential shortcomings and quantify improvements against the first generation CMORPH. Special attention has been focused on the CMORPH behavior over high-latitude areas beyond the coverage of the first generation CMORPH. Detailed results will be reported at the AGU.

  16. Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Rahmawati, Novi; Lubczynski, Maciek W.

    2017-11-01

    Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.

  17. Evaluation of sub daily satellite rainfall estimates through flash flood modelling in the Lower Middle Zambezi Basin

    NASA Astrophysics Data System (ADS)

    Matingo, Thomas; Gumindoga, Webster; Makurira, Hodson

    2018-05-01

    Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff) and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs) for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013-2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD) of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC) was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System) daily model calibration Nash Sutcliffe efficiency (NSE) for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015-2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized hydrological processes such as flash floods for sub-daily rainfall, because of improved spatial and temporal resolution.

  18. Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations

    PubMed Central

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358

  19. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations.

    PubMed

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.

  20. Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China

    NASA Astrophysics Data System (ADS)

    Zhu, Honglei; Li, Ying; Huang, Yanwei; Li, Yingchen; Hou, Cuicui; Shi, Xiaoliang

    2018-07-01

    Satellite-based precipitation estimates with high spatial and temporal resolution and large areal coverage have provided hydrologists a potential alternative source for hydrological applications since the last few years, especially for ungauged regions. This study evaluates five satellite-based precipitation datasets, namely, Fengyun, TRMM 3B42, TRMM 3B42RT, CMORPH_BLD and CMORPH_RAW, against gauge observations for streamflow simulation with a distributed hydrological model (SWAT) over the Huifa river basin, Northeast China. Results show that, by comparing the statistical indices (MA, M5P, STDE, ME, BIAS and CC) and inter-annual precipitation, it is demonstrated that Fengyun TRMM 3B42 and CMORPH_BLD show better agreement with gauge precipitation data than CMORPH_RAW and TRMM 3B42RT. When the SWAT model for each dataset calibrated and validated individually, satisfactory model performances (defined as: NS > 0.5) are achieved at daily scale for Fengyun, TRMM 3B42 and gauge-driven model, and very good performances (defined as: NS > 0.75) are achieved at monthly scale for Fengyun and gauge-driven model, respectively. The CMORPH_BLD forced daily simulations also yield higher values of NS and R2 than CMORPH_RAW and TRMM 3B42RT at daily and monthly step. From the uncertainty results, variations of P-factor values and frequency distribution curves of NS suggest that the simulation uncertainty increase when operating the Fengyun, 3B42RT, CMORPH_BLD and CMORPH_RAW-driven model with best fitted parameters for rain gauge SWAT model. The results also indicate that the influence of parameter uncertainty on model simulation results may be greater than the effect of input data accuracy. It is noted that uncertainty analysis is necessary to evaluate the hydrological applications of satellite-based precipitation datasets.

  1. Daily rainfall statistics of TRMM and CMORPH: A case for trans-boundary Gandak River basin

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Patra, Kanhu Charan; Lakshmi, Venkat

    2016-07-01

    Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June-September or JJAS) from 2005-2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall. The detection of precipitation amount is strongly dependent on the topography. In the plains areas, TRMM product is capable of capturing high-intensity rain events but in the hilly regions, it underestimates the amount of high-intensity rain events. On the other hand, CMORPH entirely fails to capture the high-intensity rain events but does well with low-intensity rain events in both hilly regions as well as the plain region. The continuous variable verification method shows better agreement of TRMM rainfall products with rain gauge data. TRMM fares better in the prediction of probability of occurrence of high-intensity rainfall events, but it underestimates intensity at high altitudes. This implies that TRMM precipitation estimates can be used for flood-related studies only after bias adjustment for the topography.

  2. Performance of near real-time Global Satellite Mapping of Precipitation estimates during heavy precipitation events over northern China

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Hu, Junjun; Zhang, Asi; Min, Chao; Huang, Chaoying; Liang, Zhenqing

    2018-02-01

    This study assesses the performance of near real-time Global Satellite Mapping of Precipitation (GSMaP_NRT) estimates over northern China, including Beijing and its adjacent regions, during three heavy precipitation events from 21 July 2012 to 2 August 2012. Two additional near real-time satellite-based products, the Climate Prediction Center morphing method (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), were used for parallel comparison with GSMaP_NRT. Gridded gauge observations were used as reference for a performance evaluation with respect to spatiotemporal variability, probability distribution of precipitation rate and volume, and contingency scores. Overall, GSMaP_NRT generally captures the spatiotemporal variability of precipitation and shows promising potential in near real-time mapping applications. GSMaP_NRT misplaced storm centers in all three storms. GSMaP_NRT demonstrated higher skill scores in the first high-impact storm event on 21 July 2015. GSMaP_NRT passive microwave only precipitation can generally capture the pattern of heavy precipitation distributions over flat areas but failed to capture the intensive rain belt over complicated mountainous terrain. The results of this study can be useful to both algorithm developers and the scientific end users, providing a better understanding of strengths and weaknesses to hydrologists using satellite precipitation products.

  3. Recent Progress on the Second Generation CMORPH: A Prototype Operational Processing System

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2016-04-01

    As reported at the EGU General Assembly of 2015, a conceptual test system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05deg lat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include both rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Sub-systems were developed and refined to derive precipitation estimates from the GEO and LEO IR observations and to compute precipitating cloud motion vectors. The results were reported at the EGU of 2014 and the AGU 2015 Fall Meetings. In this presentation, we report our recent work on the construction of a prototype operational processing system for the second generation CMORPH. The second generation CMORPH prototype operational processing system takes in the passive microwave (PMW) retrievals of instantaneous precipitation rates from all available sensors, the full-resolution GEO and LEO IR data, as well as the hourly precipitation fields generated by the NOAA/NCEP Climate Forecast System (CFS) Reanalysis (CFS). First, a combined field of PMW based precipitation retrievals (MWCOMB) is created on a 0.05deg lat/lon grid over the entire globe through inter-calibrating retrievals from various sensors against a common reference. For this experiment, the reference field is the GMI based retrievals with climatological adjustment against the TMI retrievals using data over the overlapping period. Precipitation estimation is then derived from the GEO and LEO IR data through calibration against the global MWCOMB and the CloudSat CPR based estimates. At the meantime, precipitating cloud motion vectors are derived through the combination of vectors computed from the GEO IR based precipitation estimates and the CFSR precipitation with a 2DVAR technique. A prototype system is applied to generate integrated global precipitation estimates over the entire globe for a three-month period from June 1 to August 31 of 2015. Preliminary tests are conducted to optimize the performance of the system. Specific efforts are made to improve the computational efficiency of the system. The second generation CMORPH test products are compared to the first generation CMORPH and ground observations. Detailed results will be reported at the EGU.

  4. Performance of high-resolution satellite precipitation products over China

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Xiong, A.; Wang, Y.; Xie, P.; Precipitation Merge Team

    2010-12-01

    A gauge-based analysis of hourly precipitation is constructed on a 0.25°latitude/ longitude grid over China for a 3 year period from 2005 to 2007 by interpolating gauge reports from ~2000 stations (fig.1) collected and quality controlled by the National Meteorological Information Center of the China Meteorological Administration. Gauge-based precipitation analysis is applied to examine the performance of six high-resolution satellite precipitation estimates, including Joyce et al.’s (2004) Climate Prediction Center Morphing Technique (CMORPH) and the arithmetic mean of the microwave estimates used in CMORPH; Huffman et al.’s (2007) Tropical Rainfall Measuring Mission (TRMM) precipitation product 3B42 and its real-time version 3B42RT; Turk et al.’s (2004) Naval Research Laboratory blended product; and Hsu et al.’s (1997) Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Network (PERSIANN). Our results showed the following: (1) all six satellite products are capable of capturing the overall spatial distribution and temporal variations of precipitation reasonably well; (2) performance of the satellite products varies for different regions and different precipitation regimes, with better comparison statistics observed over wet regions and for warm seasons; (3) products based solely on satellite observations present regionally and seasonally varying biases, while the gauge-adjustment procedures applied in TRMM 3B42 remove the large-scale bias almost completely; (4) CMORPH exhibits the best performance in depicting the spatial pattern and temporal variations of precipitation; and (5) both the relative magnitude and the phase of the warm season precipitation over China are estimated quite well, but the early morning peak associated with the Mei-Yu rainfall over central eastern China is substantially under-estimated by all satellite products. The work reported in this paper is an integral part of our efforts to construct an analysis of hourly merged precipitation analysis in the future (Shen et al., 2010). Further work is to extend its temporal coverage and to improve the quality of the CPAP. The dataset for the period of 1900-1952 with only ~100 gauge reports available over mainland China is under consideration for development. Gauge network is an important element to determine the quality of the dataset, while the gauge distribution is very sparse over the northwestern China and the Tibetan Plateau, the effective tool to improve the quality of the dataset over these areas is to merge the gauge observations with the satellite precipitation products which is under way. Figure 1 Number of Chinese stations reporting hourly precipitation over a three-year period from January 2005 to December 2007

  5. Application of satellite products and hydrological modelling for flood early warning

    NASA Astrophysics Data System (ADS)

    Koriche, Sifan A.; Rientjes, Tom H. M.

    2016-06-01

    Floods have caused devastating impacts to the environment and society in Awash River Basin, Ethiopia. Since flooding events are frequent, this marks the need to develop tools for flood early warning. In this study, we propose a satellite based flood index to identify the runoff source areas that largely contribute to extreme runoff production and floods in the basin. Satellite based products used for development of the flood index are CMORPH (Climate Prediction Center MORPHing technique: 0.25° by 0.25°, daily) product for calculation of the Standard Precipitation Index (SPI) and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) for calculation of the Topographic Wetness Index (TWI). Other satellite products used in this study are for rainfall-runoff modelling to represent rainfall, potential evapotranspiration, vegetation cover and topography. Results of the study show that assessment of spatial and temporal rainfall variability by satellite products may well serve in flood early warning. Preliminary findings on effectiveness of the flood index developed in this study indicate that the index is well suited for flood early warning. The index combines SPI and TWI, and preliminary results illustrate the spatial distribution of likely runoff source areas that cause floods in flood prone areas.

  6. Development of Sub-Daily Intensity Duration Frequency (IDF) Curves for Major Urban Areas in India

    NASA Astrophysics Data System (ADS)

    Ali, H.; Mishra, V.

    2014-12-01

    Extreme precipitation events disrupt urban transportation and cause enormous damage to infrastructure. Urban areas are fast responding catchments due to significant impervious surface. Stormwater designs based on daily rainfall data provide inadequate information. We, therefore, develop intensity-duration-frequency curves using sub-daily (1 hour to 12 hour) rainfall data for 57 major urban areas in India. While rain gage stations data from urban areas are most suitable, but stations are unevenly distributed and their data have gaps and inconsistencies. Therefore, we used hourly rainfall data from the Modern Era Retrospective-analysis for Research and Applications (MERRA), which provides a long term data (1979 onwards). Since reanalysis products have uncertainty associated with them we need to enhance their accuracy before their application. We compared daily rain gage station data obtained from Global Surface Summary of Day Data (GSOD) available for 65 stations for the period of 2000-2010 with gridded daily rainfall data provided by Indian Meteorological Department (IMD). 3-hourly data from NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) were aggregated to daily for comparison with GSOD station data . TMPA is found to be best correlated with GSOD data. We used TMPA data to correct MERRA's hourly precipitation, which were applied to develop IDF curves. We compared results with IDF curves from empirical methods and found substantial disparities in the existing stormwater designs in India.

  7. MorphDB: Prioritizing Genes for Specialized Metabolism Pathways and Gene Ontology Categories in Plants.

    PubMed

    Zwaenepoel, Arthur; Diels, Tim; Amar, David; Van Parys, Thomas; Shamir, Ron; Van de Peer, Yves; Tzfadia, Oren

    2018-01-01

    Recent times have seen an enormous growth of "omics" data, of which high-throughput gene expression data are arguably the most important from a functional perspective. Despite huge improvements in computational techniques for the functional classification of gene sequences, common similarity-based methods often fall short of providing full and reliable functional information. Recently, the combination of comparative genomics with approaches in functional genomics has received considerable interest for gene function analysis, leveraging both gene expression based guilt-by-association methods and annotation efforts in closely related model organisms. Besides the identification of missing genes in pathways, these methods also typically enable the discovery of biological regulators (i.e., transcription factors or signaling genes). A previously built guilt-by-association method is MORPH, which was proven to be an efficient algorithm that performs particularly well in identifying and prioritizing missing genes in plant metabolic pathways. Here, we present MorphDB, a resource where MORPH-based candidate genes for large-scale functional annotations (Gene Ontology, MapMan bins) are integrated across multiple plant species. Besides a gene centric query utility, we present a comparative network approach that enables researchers to efficiently browse MORPH predictions across functional gene sets and species, facilitating efficient gene discovery and candidate gene prioritization. MorphDB is available at http://bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/index/. We also provide a toolkit, named "MORPH bulk" (https://github.com/arzwa/morph-bulk), for running MORPH in bulk mode on novel data sets, enabling researchers to apply MORPH to their own species of interest.

  8. Modeling and Optimization for Morphing Wing Concept Generation

    NASA Technical Reports Server (NTRS)

    Skillen, Michael D.; Crossley, William A.

    2007-01-01

    This report consists of two major parts: 1) the approach to develop morphing wing weight equations, and 2) the approach to size morphing aircraft. Combined, these techniques allow the morphing aircraft to be sized with estimates of the morphing wing weight that are more credible than estimates currently available; aircraft sizing results prior to this study incorporated morphing wing weight estimates based on general heuristics for fixed-wing flaps (a comparable "morphing" component) but, in general, these results were unsubstantiated. This report will show that the method of morphing wing weight prediction does, in fact, drive the aircraft sizing code to different results and that accurate morphing wing weight estimates are essential to credible aircraft sizing results.

  9. Mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the Philippines: First comparison of ensemble analysis with in situ observations

    NASA Astrophysics Data System (ADS)

    Ge, Cui; Wang, Jun; Reid, Jeffrey S.; Posselt, Derek J.; Xian, Peng; Hyer, Edward

    2017-05-01

    Atmospheric transport of smoke from equatorial Southeast Asian Maritime Continent (Indonesia, Singapore, and Malaysia) to the Philippines was recently verified by the first-ever measurement of aerosol composition in the region of the Sulu Sea from a research vessel named Vasco. However, numerical modeling of such transport can have large uncertainties due to the lack of observations for parameterization schemes and for describing fire emission and meteorology in this region. These uncertainties are analyzed here, for the first time, with an ensemble of 24 Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations. The ensemble reproduces the time series of observed surface nonsea-salt PM2.5 concentrations observed from the Vasco vessel during 17-30 September 2011 and overall agrees with satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Moderate Resolution Imaging Spectroradiometer (MODIS)) and Aerosol Robotic Network (AERONET) data. The difference of meteorology between National Centers for Environmental Prediction (NCEP's) Final (FNL) and European Center for Medium range Weather Forecasting (ECMWF's) ERA renders the biggest spread in the ensemble (up to 20 μg m-3 or 200% in surface PM2.5), with FNL showing systematically superior results. The second biggest uncertainty is from fire emissions; the 2 day maximum Fire Locating and Modelling of Burning Emissions (FLAMBE) emission is superior than the instantaneous one. While Grell-Devenyi (G3) and Betts-Miller-Janjić cumulus schemes only produce a difference of 3 μg m-3 of surface PM2.5 over the Sulu Sea, the ensemble mean agrees best with Climate Prediction Center (CPC) MORPHing (CMORPH)'s spatial distribution of precipitation. Simulation with FNL-G3, 2 day maximum FLAMBE, and 800 m injection height outperforms other ensemble members. Finally, the global transport model (Navy Aerosol Analysis and Prediction System (NAAPS)) outperforms all WRF-Chem simulations in describing smoke transport on 20 September 2011, suggesting the challenges to model tropical meteorology at mesoscale and finer scale.

  10. Performance of Optimally Merged Multisatellite Precipitation Products Using the Dynamic Bayesian Model Averaging Scheme Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Yingzhao; Hong, Yang; Chen, Yang; Yang, Yuan; Tang, Guoqiang; Yao, Yunjun; Long, Di; Li, Changmin; Han, Zhongying; Liu, Ronghua

    2018-01-01

    Accurate estimation of precipitation from satellites at high spatiotemporal scales over the Tibetan Plateau (TP) remains a challenge. In this study, we proposed a general framework for blending multiple satellite precipitation data using the dynamic Bayesian model averaging (BMA) algorithm. The blended experiment was performed at a daily 0.25° grid scale for 2007-2012 among Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT and 3B42V7, Climate Prediction Center MORPHing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). First, the BMA weights were optimized using the expectation-maximization (EM) method for each member on each day at 200 calibrated sites and then interpolated to the entire plateau using the ordinary kriging (OK) approach. Thus, the merging data were produced by weighted sums of the individuals over the plateau. The dynamic BMA approach showed better performance with a smaller root-mean-square error (RMSE) of 6.77 mm/day, higher correlation coefficient of 0.592, and closer Euclid value of 0.833, compared to the individuals at 15 validated sites. Moreover, BMA has proven to be more robust in terms of seasonality, topography, and other parameters than traditional ensemble methods including simple model averaging (SMA) and one-outlier removed (OOR). Error analysis between BMA and the state-of-the-art IMERG in the summer of 2014 further proved that the performance of BMA was superior with respect to multisatellite precipitation data merging. This study demonstrates that BMA provides a new solution for blending multiple satellite data in regions with limited gauges.

  11. Improving Quantitative Precipitation Estimation via Data Fusion of High-Resolution Ground-based Radar Network and CMORPH Satellite-based Product

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.

    2015-12-01

    A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each individual product and demonstrate the precipitation data fusion performance, both individual and fused QPE products are evaluated using rainfall measurements from a disdrometer and gauge network.

  12. Evaluating the performance of real-time streamflow forecasting using multi-satellite precipitation products in the Upper Zambezi, Africa

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.

    2016-12-01

    In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.

  13. Inter-comparison of Rainfall Estimation from Radar and Satellite During 2016 June 23 Yancheng Tornado Event over Eastern China

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chen, S.; Liang, Z.; Hu, B.

    2017-12-01

    ABSTRACT: On the afternoon of June 23, 2016, Yancheng city in eastern China was hit by a severe thunderstorm that produced a devastating tornado. This tornado was ranked as an EF4 on the Enhanced Fujita scale by China Meteorological Administration, and killed at least 99 people and injured 846 others (152 seriously). This study evaluates rainfall estimates from ground radar network and four satellite algorithms with a relatively dense rain gauge network over eastern China including Jiangsu province and its adjacent regions for the Yancheng June 23 Tornado extreme convective storm in different spatiotemporal scales (from 0.04° to 0.1° and hourly to event total accumulation). The radar network is composed of about 6 S-band Doppler weather radars. Satellite precipitation products include Integrated Multi-satellitE Retrievals for GPM (IMERG), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), and Global Satellite Mapping of Precipitation (GSMap). Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of these precipitation products.

  14. Numerical and Experimental Validation of the Optimization Methodologies for a Wing-Tip Structure Equipped with Conventional and Morphing Ailerons =

    NASA Astrophysics Data System (ADS)

    Koreanschi, Andreea

    In order to answer the problem of 'how to reduce the aerospace industry's environment footprint?' new morphing technologies were developed. These technologies were aimed at reducing the aircraft's fuel consumption through reduction of the wing drag. The morphing concept used in the present research consists of replacing the conventional aluminium upper surface of the wing with a flexible composite skin for morphing abilities. For the ATR-42 'Morphing wing' project, the wing models were manufactured entirely from composite materials and the morphing region was optimized for flexibility. In this project two rigid wing models and an active morphing wing model were designed, manufactured and wind tunnel tested. For the CRIAQ MDO 505 project, a full scale wing-tip equipped with two types of ailerons, conventional and morphing, was designed, optimized, manufactured, bench and wind tunnel tested. The morphing concept was applied on a real wing internal structure and incorporated aerodynamic, structural and control constraints specific to a multidisciplinary approach. Numerical optimization, aerodynamic analysis and experimental validation were performed for both the CRIAQ MDO 505 full scale wing-tip demonstrator and the ATR-42 reduced scale wing models. In order to improve the aerodynamic performances of the ATR-42 and CRIAQ MDO 505 wing airfoils, three global optimization algorithms were developed, tested and compared. The three algorithms were: the genetic algorithm, the artificial bee colony and the gradient descent. The algorithms were coupled with the two-dimensional aerodynamic solver XFoil. XFoil is known for its rapid convergence, robustness and use of the semi-empirical e n method for determining the position of the flow transition from laminar to turbulent. Based on the performance comparison between the algorithms, the genetic algorithm was chosen for the optimization of the ATR-42 and CRIAQ MDO 505 wing airfoils. The optimization algorithm was improved during the CRIAQ MDO 505 project for convergence speed by introducing a two-step cross-over function. Structural constraints were introduced in the algorithm at each aero-structural optimization interaction, allowing a better manipulation of the algorithm and giving it more capabilities of morphing combinations. The CRIAQ MDO 505 project envisioned a morphing aileron concept for the morphing upper surface wing. For this morphing aileron concept, two optimization methods were developed. The methods used the already developed genetic algorithm and each method had a different design concept. The first method was based on the morphing upper surface concept, using actuation points to achieve the desired shape. The second method was based on the hinge rotation concept of the conventional aileron but applied at multiple nodes along the aileron camber to achieve the desired shape. Both methods were constrained by manufacturing and aerodynamic requirements. The purpose of the morphing aileron methods was to obtain an aileron shape with a smoother pressure distribution gradient during deflection than the conventional aileron. The aerodynamic optimization results were used for the structural optimization and design of the wing, particularly the flexible composite skin. Due to the structural changes performed on the initial wing-tip structure, an aeroelastic behaviour analysis, more specific on flutter phenomenon, was performed. The analyses were done to ensure the structural integrity of the wing-tip demonstrator during wind tunnel tests. Three wind tunnel tests were performed for the CRIAQ MDO 505 wing-tip demonstrator at the IAR-NRC subsonic wind tunnel facility in Ottawa. The first two tests were performed for the wing-tip equipped with conventional aileron. The purpose of these tests was to validate the control system designed for the morphing upper surface, the numerical optimization and aerodynamic analysis and to evaluate the optimization efficiency on the boundary layer behaviour and the wing drag. The third set of wind tunnel tests was performed on the wing-tip equipped with a morphing aileron. The purpose of this test was to evaluate the performances of the morphing aileron, in conjunction with the active morphing upper surface, and their effect on the lift, drag and boundary layer behaviour. Transition data, obtained from Infrared Thermography, and pressure data, extracted from Kulite and pressure taps recordings, were used to validate the numerical optimization and aerodynamic performances of the wing-tip demonstrator. A set of wind tunnel tests was performed on the ATR-42 rigid wing models at the Price-Paidoussis subsonic wind tunnel at Ecole de technologie Superieure. The results from the pressure taps recordings were used to validate the numerical optimization. A second derivative of the pressure distribution method was applied to evaluate the transition region on the upper surface of the wing models for comparison with the numerical transition values. (Abstract shortened by ProQuest.).

  15. Variation in style morph frequencies in tristylous Lythrum salicaria in the Iberian Peninsula: the role of geographical and demographic factors

    PubMed Central

    Costa, Joana; Castro, Sílvia; Loureiro, João; Barrett, Spencer C. H.

    2016-01-01

    Background and Aims The balance between stochastic forces and negative frequency-dependent selection largely determines style morph frequencies in heterostylous populations. Investigation of morph frequencies at geographical range limits can provide insights into the forces maintaining the floral polymorphism, and the factors causing biased morph ratios. Here, we investigate style morph frequencies in populations at the south-western European range limit of tristylous Lythrum salicaria, to explore the role of demographic and geographical factors influencing morph ratios in its native range. Methods We measured morph composition and evenness, and the size of 96 populations, along a north to south latitudinal transect from Galicia to Andalucia, Iberian Peninsula, traversing a steep climatic gradient. To examine the potential influence of morph-specific fitness components on morph ratios, we examined reproductive traits in 19 populations. Key Results Most populations of L. salicaria were trimorphic (94·79 %), the majority exhibiting 1 : 1 : 1 morph ratios (68·75 %). Populations with biased morph ratios had a deficiency of the short-styled morph. Population size and morph evenness were positively associated with latitude, with smaller populations and those with less even morph ratios occurring towards the south. Greater variance in morph evenness was evident at the southern range margin. There were no consistent differences in components of reproductive fitness among style morphs, but southern populations produced less fruit and seed than more northerly populations. Conclusions Our results demonstrate the influence of finite population size on morph frequencies in L. salicaria. However, they also illustrate the resilience of Iberian populations to the factors causing deviations from isoplethy and morph loss, especially at the southern range limit where populations are smaller. The maintenance of tristyly in small populations of L. salicaria may be aided by the genetic connectivity of populations in agricultural landscapes resulting from gene flow through pollen and seed dispersal. PMID:26658100

  16. Intensity-Duration-Frequency curves from remote sensing datasets: direct comparison of weather radar and CMORPH over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.

    2017-04-01

    Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)

  17. A bio-inspired, active morphing skin for camber morphing structures

    NASA Astrophysics Data System (ADS)

    Feng, Ning; Liu, Liwu; Liu, Yanju; Leng, Jinson

    2015-03-01

    In this study, one kind of developed morphing skin embedded with pneumatic muscle fibers (PMFs) was manufactured and was employed for camber morphing structures. The output force and contraction of PMF as well as the morphing skin were experimentally characterized at a series of discrete actuator pressures varying from 0.15 to 0.35 MPa. The active morphing skin test results show that the output force is 73.59 N and the contraction is 0.097 (9.7%) at 0.35 MPa. Due to these properties, this active morphing skin could be easily used for the morphing structures. Then the proper airfoil profile was chosen to manufacture the adaptive airfoil in this study. The chord-wise bending airfoil structure was achieved by employing this kind of active morphing skin. Finally the deformed shapes of this chord-wise bending airfoil structure were obtained by 3-dimensions scanning measurement. Meanwhile the camber morphing structures were analyzed through the finite element method (FEM) and the deformed shapes of the upper surface skins were obtained. The experimental result and FEM analysis result of deformed shapes of the upper surface skins were compared in this paper.

  18. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  19. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  20. Flutter suppression and stability analysis for a variable-span wing via morphing technology

    NASA Astrophysics Data System (ADS)

    Li, Wencheng; Jin, Dongping

    2018-01-01

    A morphing wing can enhance aerodynamic characteristics and control authority as an alternative to using ailerons. To use morphing technology for flutter suppression, the dynamical behavior and stability of a variable-span wing subjected to the supersonic aerodynamic loads are investigated numerically in this paper. An axially moving cantilever plate is employed to model the variable-span wing, in which the governing equations of motion are established via the Kane method and piston theory. A morphing strategy based on axially moving rates is proposed to suppress the flutter that occurs beyond the critical span length, and the flutter stability is verified by Floquet theory. Furthermore, the transient stability during the morphing motion is analyzed and the upper bound of the morphing rate is obtained. The simulation results indicate that the proposed morphing law, which is varying periodically with a proper amplitude, could accomplish the flutter suppression. Further, the upper bound of the morphing speed decreases rapidly once the span length is close to its critical span length.

  1. Comprehensive evaluation of multisatellite precipitation estimates over India using gridded rainfall data

    NASA Astrophysics Data System (ADS)

    Sunilkumar, K.; Narayana Rao, T.; Saikranthi, K.; Purnachandra Rao, M.

    2015-09-01

    This study presents a comprehensive evaluation of five widely used multisatellite precipitation estimates (MPEs) against 1° × 1° gridded rain gauge data set as ground truth over India. One decade observations are used to assess the performance of various MPEs (Climate Prediction Center (CPC)-South Asia data set, CPC Morphing Technique (CMORPH), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks, Tropical Rainfall Measuring Mission's Multisatellite Precipitation Analysis (TMPA-3B42), and Global Precipitation Climatology Project). All MPEs have high detection skills of rain with larger probability of detection (POD) and smaller "missing" values. However, the detection sensitivity differs from one product (and also one region) to the other. While the CMORPH has the lowest sensitivity of detecting rain, CPC shows highest sensitivity and often overdetects rain, as evidenced by large POD and false alarm ratio and small missing values. All MPEs show higher rain sensitivity over eastern India than western India. These differential sensitivities are found to alter the biases in rain amount differently. All MPEs show similar spatial patterns of seasonal rain bias and root-mean-square error, but their spatial variability across India is complex and pronounced. The MPEs overestimate the rainfall over the dry regions (northwest and southeast India) and severely underestimate over mountainous regions (west coast and northeast India), whereas the bias is relatively small over the core monsoon zone. Higher occurrence of virga rain due to subcloud evaporation and possible missing of small-scale convective events by gauges over the dry regions are the main reasons for the observed overestimation of rain by MPEs. The decomposed components of total bias show that the major part of overestimation is due to false precipitation. The severe underestimation of rain along the west coast is attributed to the predominant occurrence of shallow rain and underestimation of moderate to heavy rain by MPEs. The decomposed components suggest that the missed precipitation and hit bias are the leading error sources for the total bias along the west coast. All evaluation metrics are found to be nearly equal in two contrasting monsoon seasons (southwest and northeast), indicating that the performance of MPEs does not change with the season, at least over southeast India. Among various MPEs, the performance of TMPA is found to be better than others, as it reproduced most of the spatial variability exhibited by the reference.

  2. Performance of a non-tapered 3D morphing wing with integrated compliant ribs

    NASA Astrophysics Data System (ADS)

    Previtali, F.; Ermanni, P.

    2012-05-01

    Morphing wings have a high potential for improving the performance and reducing the fuel consumption of modern aircraft. Thanks to its simplicity, the compliant belt-rib concept is regarded by the authors as a promising solution. Using the compliant rib designed by Hasse and Campanile as a starting point, a compliant morphing wing made of composite materials is designed. Innovative methods for optimal placing of the actuation and for the quantification of the morphing are used. The performance of the compliant morphing wing in terms of three-dimensional (3D) structural behaviour and aerodynamic properties, both two- and three-dimensional, is presented and discussed. The fundamental importance of considering 3D coupling effects in the determination of the performance of morphing aerofoils is shown.

  3. Developing the Second Generation CMORPH: A Prototype

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert

    2014-05-01

    A prototype system of the second generation CMORPH is being developed at NOAA Climate Prediction Center (CPC) to produce global analyses of 30-min precipitation on a 0.05deg lat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. First, precipitation estimation / retrievals from various sources are mapped onto a global grid of 0.05deg lat/lon and calibrated against a common reference field to ensure consistency in their precipitation rate PDF structures. The motion vectors for the precipitating cloud systems are then defined using information from both satellite IR observations and precipitation fields generated by the NCEP Climate Forecast System Reanalysis (CFSR). To this end, motion vectors are first computed from CFSR hourly precipitation fields through cross-correlation analysis of consecutive hourly precipitation fields on the global T382 (~35 km) grid. In a similar manner, separate processing is also performed on satellite IR-based precipitation estimates to derive motion vectors from observations. A blended analysis of precipitating cloud motion vectors is then constructed through the combination of CFSR and satellite-derived vectors with an objective analysis technique. Fine resolution mapped PMW precipitation retrievals are then separately propagated along the motion vectors from their respective observation times to the target analysis time from both forward and backward directions. The CMORPH high resolution precipitation analyses are finally constructed through the combination of propagated PMW retrievals with the IR based estimates for the target analysis time. This Kalman Filter based CMORPH processing is performed for rainfall and snowfall fields separately with the same motion vectors. Experiments have been conducted for two periods of two months each, July - August 2009, and January - February 2010, to explore the development of an optimal algorithm that generates global precipitation for summer and winter situations. Preliminary results demonstrated technical feasibility to construct global rainfall and snowfall analyses through the integration of information from multiple sources. More work is underway to refine various technical components of the system for operational applications of the system. Detailed results will be reported at the EGU meeting.

  4. Assessing Hydrological and Energy Budgets in Amazonia through Regional Downscaling, and Comparisons with Global Reanalysis Products

    NASA Astrophysics Data System (ADS)

    Nunes, A.; Ivanov, V. Y.

    2014-12-01

    Although current global reanalyses provide reasonably accurate large-scale features of the atmosphere, systematic errors are still found in the hydrological and energy budgets of such products. In the tropics, precipitation is particularly challenging to model, which is also adversely affected by the scarcity of hydrometeorological datasets in the region. With the goal of producing downscaled analyses that are appropriate for a climate assessment at regional scales, a regional spectral model has used a combination of precipitation assimilation with scale-selective bias correction. The latter is similar to the spectral nudging technique, which prevents the departure of the regional model's internal states from the large-scale forcing. The target area in this study is the Amazon region, where large errors are detected in reanalysis precipitation. To generate the downscaled analysis, the regional climate model used NCEP/DOE R2 global reanalysis as the initial and lateral boundary conditions, and assimilated NOAA's Climate Prediction Center (CPC) MORPHed precipitation (CMORPH), available at 0.25-degree resolution, every 3 hours. The regional model's precipitation was successfully brought closer to the observations, in comparison to the NCEP global reanalysis products, as a result of the impact of a precipitation assimilation scheme on cumulus-convection parameterization, and improved boundary forcing achieved through a new version of scale-selective bias correction. Water and energy budget terms were also evaluated against global reanalyses and other datasets.

  5. Early Examples from the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    NASA Astrophysics Data System (ADS)

    Huffman, George; Bolvin, David; Braithwaite, Daniel; Hsu, Kuolin; Joyce, Robert; Kidd, Christopher; Sorooshian, Soroosh; Xie, Pingping

    2014-05-01

    The U.S. GPM Science Team's Day-1 algorithm for computing combined precipitation estimates as part of GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). The goal is to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG is being developed as a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design and development, plans for testing, and current status. Some of the lessons learned in running and reprocessing the previous data sets include the importance of quality-controlling input data sets, strategies for coping with transitions in the various input data sets, and practical approaches to retrospective analysis of multiple output products (namely the real- and post-real-time data streams). IMERG output will be illustrated using early test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. We end by considering recent changes in input data specifications, the transition from TRMM-based calibration to GPM-based, and further "Day 2" development.

  6. Experimental multiphysical characterization of an SMA driven, camber morphing owl wing section

    NASA Astrophysics Data System (ADS)

    Stroud, Hannah R.; Leal, Pedro B. C.; Hartl, Darren J.

    2018-03-01

    In the context of aerospace engineering, morphing structures are useful in their ability to change the outer mold line (OML) while improving or maintaining certain aerodynamic performance metrics. Skin-based morphing is of particular interest in that it minimizes installation volume. Shape memory alloys (SMAs) have a high force to volume ratio that makes them a suitable choice for skin-based morphing. Because the thermomechanical properties of SMAs are coupled, strain can be generated via a temperature variation; this phenomenon is used as the actuation method. Therefore, it is necessary to determine the interaction of the system not only with aerodynamic loads, but with thermal loads as well. This paper describes the wind tunnel testing and in situ thermomechanical analysis of an SMA actuated, avian inspired morphing wing. The morphing wing is embedded with two SMA composite actuators and consists of a foam core enveloped in a fiberglass-epoxy composite. As the SMA wire is heated, the actuator contracts, morphing the wing from the original owl OML to a highly cambered, high lift OML. Configuration characteristics are analyzed in situ using simultaneous three dimensional digital image correlation (DIC) and infrared thermography, thereby coupling strain and thermal measurements. This method of testing allows for the nonintrusive, multiphysical data acquisition of each actuator separately and the system as a whole.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    OWEN,STEVEN J.

    A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.

  8. Finding the optimal shape of the leading-and-trailing car of a high-speed train using design-by-morphing

    NASA Astrophysics Data System (ADS)

    Oh, Sahuck; Jiang, Chung-Hsiang; Jiang, Chiyu; Marcus, Philip S.

    2017-10-01

    We present a new, general design method, called design-by-morphing for an object whose performance is determined by its shape due to hydrodynamic, aerodynamic, structural, or thermal requirements. To illustrate the method, we design a new leading-and-trailing car of a train by morphing existing, baseline leading-and-trailing cars to minimize the drag. In design-by-morphing, the morphing is done by representing the shapes with polygonal meshes and spectrally with a truncated series of spherical harmonics. The optimal design is found by computing the optimal weights of each of the baseline shapes so that the morphed shape has minimum drag. As a result of optimization, we found that with only two baseline trains that mimic current high-speed trains with low drag that the drag of the optimal train is reduced by 8.04% with respect to the baseline train with the smaller drag. When we repeat the optimization by adding a third baseline train that under-performs compared to the other baseline train, the drag of the new optimal train is reduced by 13.46% . This finding shows that bad examples of design are as useful as good examples in determining an optimal design. We show that design-by-morphing can be extended to many engineering problems in which the performance of an object depends on its shape.

  9. Finding the optimal shape of the leading-and-trailing car of a high-speed train using design-by-morphing

    NASA Astrophysics Data System (ADS)

    Oh, Sahuck; Jiang, Chung-Hsiang; Jiang, Chiyu; Marcus, Philip S.

    2018-07-01

    We present a new, general design method, called design-by-morphing for an object whose performance is determined by its shape due to hydrodynamic, aerodynamic, structural, or thermal requirements. To illustrate the method, we design a new leading-and-trailing car of a train by morphing existing, baseline leading-and-trailing cars to minimize the drag. In design-by-morphing, the morphing is done by representing the shapes with polygonal meshes and spectrally with a truncated series of spherical harmonics. The optimal design is found by computing the optimal weights of each of the baseline shapes so that the morphed shape has minimum drag. As a result of optimization, we found that with only two baseline trains that mimic current high-speed trains with low drag that the drag of the optimal train is reduced by 8.04% with respect to the baseline train with the smaller drag. When we repeat the optimization by adding a third baseline train that under-performs compared to the other baseline train, the drag of the new optimal train is reduced by 13.46%. This finding shows that bad examples of design are as useful as good examples in determining an optimal design. We show that design-by-morphing can be extended to many engineering problems in which the performance of an object depends on its shape.

  10. Design Methods and Optimization for Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2005-01-01

    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  11. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.

    PubMed

    Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram

    2018-03-01

    Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.

  12. Floral variation and environmental heterogeneity in a tristylous clonal aquatic of the Pantanal wetlands of Brazil

    PubMed Central

    Leme da Cunha, Nicolay; Fischer, Erich; Lorenz-Lemke, Aline P.; Barrett, Spencer C. H.

    2014-01-01

    Background and Aims The balance between stochastic forces and frequency-dependent mating largely governs style morph frequencies in heterostylous populations. In clonal species, deviations from equal morph ratios often result from founder events and unfavourable conditions for sexual reproduction. The aim of this study was to investigate whether different flooding regimes, because of their influence on sexual vs. clonal reproduction, are associated with regional variation in morph frequencies and floral trait differentiation in populations of the clonal, tristylous, aquatic Eichhornia azurea (Pontederiaceae) in the Pantanal wetlands of Brazil. Methods Style morph frequencies were sampled from 73 populations distributed across four flooding regimes differing in depth and duration. Measurements of flower size, sex-organ dimension, pollen size and pollen production were made in selected populations, and pollinator assemblages and their functional traits were recorded. Key Results Most populations of E. azurea were tristylous (78 %), but the majority exhibited uneven morph ratios. The frequency of the mid-styled morph was significantly lower than that of the long- and short-styled morphs. Morph evenness was positively associated with population size but not with flooding regime. There were significant phenotypic differences among flooding regimes for all floral traits, including populations with reduced flower size, sex-organ length and smaller pollen. Pollinator assemblages varied with flood duration. Conclusions The similar morph structure and evenness of populations, regardless of flooding regime, suggest that sexual reproduction and clonal dispersal are sufficiently common to prevent the signature of founder events from dominating in a region. However, the pervasive occurrence of biased morph ratios in most populations suggests that many are in a non-equilibrium state. The reduced frequency of the mid-styled morph in trimorphic and dimorphic populations may be associated with the weak self-incompatibility of this morph resulting in selfing and inbreeding depression. Clonality in E. azurea and the weak self-incompatibility of the mid-styled morph may make it more vulnerable to geitonogamous selfing. PMID:25180289

  13. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    PubMed

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics.

    PubMed

    Han, Min-Woo; Ahn, Sung-Hoon

    2017-04-01

    A loop-linked structure, which is capable of morphing in various modes, including volumetric transformation, is developed based on knitting methods. Morphing flowers (a lily-like, a daffodil-like, gamopetalous, and a calla-like flower) are fabricated using loop patterning, and their blooming motion is demonstrated by controlling a current that selectively actuates the flowers petals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2018-02-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  16. New Insights on Insect's Silent Flight. Part I: Vortex Dynamics and Wing Morphing

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Liu, Geng; Dong, Haibo; Geng, Biao; Zheng, Xudong; Xue, Qian

    2016-11-01

    Insects are capable of conducting silent flights. This is attributed to its specially designed wing material properties for the control of vibration and surface morphing during the flapping flight. In current work, we focus on the roles of dynamic wing morphing on the unsteady vortex dynamics of a cicada in steady flight. A 3D image-based surface reconstruction method is used to obtain kinematical and morphological data of cicada wings from high-quality high-speed videos. The observed morphing wing kinematics is highly complex and a singular value decomposition method is used to decompose the wing motion to several dominant modes with distinct motion features. A high-fidelity immersed-boundary-based flow solver is then used to study the vortex dynamics in details. The results show that vortical structures closely relate to the morphing mode, which plays key role in the development and attachment of leading-edge vortex (LEV), thus helps the silent flapping of the cicada wings. This work is supported by AFOSR FA9550-12-1-0071 and NSF CBET-1313217.

  17. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    NASA Astrophysics Data System (ADS)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators, the spanwise number of actuation stations as well as the displacement limits were established. The performance improvements obtained and the limitations of the morphing wing concept were studied. To verify the optimization results, high-fidelity Computational Fluid Dynamics simulations were also performed, giving very accurate indications of the obtained gains. For the morphing model based on an aircraft wing tip, the skin shapes were optimized in order to control laminar flow on the upper surface. An automated structured mesh generation procedure was developed and implemented. To accurately capture the shape of the skin, a precision scanning procedure was done and its results were included in the numerical model. High-fidelity simulations were performed to determine the upper surface transition region and the numerical results were validated using experimental wind tunnel data.

  18. Verifying Diurnal Variations of Global Precipitation in Three New Global Reanalyses

    NASA Astrophysics Data System (ADS)

    Wu, S.; Xie, P.; Sun, F.; Joyce, R.

    2013-12-01

    Diurnal variations of global precipitation and their representation in three sets of new generation global reanalyses are examined using the reprocessed and bias corrected CMORPH satellite precipitation estimates. The CMORPH satellite precipitation estimates are produced on an 8km by 8km grid over the globe (60oS-60oN) and in a 30-min interval covering a 15-year period from 1998 to the present through combining information from IR and PMW observations from all available satellites. Bias correction is performed for the raw CMORPH precipitation estimates through calibration against an gauge-based analysis over land and against the pentad GPCP analysis over ocean. The reanalyses examined here include the NCEP CFS reanalysis (CFSR), NASA/GSFC MERRA, and ECMWF Interim. The bias-corrected CMORPH is integrated from its original resolution to the reanalyses grid systems to facilitate the verification. First, quantitative agreements between the reanalysis precipitation fields and the CMORPH satellite observation are examined over the global domain. Precipitation structures associated with the large-scale topography are well reproduced when compared against the observation. Evolution of precipitation patterns with the development of transient weather systems are captured by the CFSR and two other reanalyses. The reanalyses tend to generate precipitation fields with wider raining areas and reduced intensity for heavy rainfall cases compared the observations over both land and ocean. Seasonal migration of global precipitation depicted in the 15-year CMORPH satellite observations is very well captured by the three sets of new reanalyses, although magnitude of precipitation is larger, especially in the CFSR, compared to that in the observations. In general, the three sets of new reanalyses exhibit substantial improvements in their performance to represent global precipitation distributions and variations. In particular, the new reanalyses produced precipitation variations of fine time/space scales collated in the observations. The diurnal cycle of the precipitation is reasonably well reproduced by the reanalyses over many global oceanic and land areas. Diurnal amplitude of the reanalyses precipitation, defined as the standard deviation of the 24 hourly mean values, is smaller than that in the observations over most of the oceanic regions, attributable largely to the continuous weak precipitation throughout the diurnal cycle in all of the three reanalyses. Over ocean, the pattern of diurnal variations of precipitation in the reanalyses is quite similar to that in the observations, with the timing of maximum precipitation shifted by1-3 hours. Over land especially over Africa, the reanalyses tend to produce maximum precipitation around noon, much earlier than that in the observations. Particularly noticeable is the diurnal cycle of warm season precipitation over CONUS in association with the eastward propagation of meso-scale systems distinct in the observations. None of the three new reanalyses are capable of detecting this pattern of diurnal variations. A comprehensive description and diagnostic discussions will be given at the AGU meeting.

  19. Application of SMP composite in designing a morphing wing

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2008-11-01

    A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composite is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. In our design, the wing winded on the airframe can be deployed during heating, which provides main lift for a morphing aircraft to realize stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application.

  20. Design and analysis of morphing wing based on SMP composite

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yin, Weilong; Sun, Shouhua; Liu, Yanju; Leng, Jinsong

    2009-03-01

    A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composites is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. During heating, the wing curled on the aircraft can be deployed, providing main lift for a morphing aircraft to realize the stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application. Finally, preliminary testing is conducted to investigate the recovery performances of SMP and its reinforced composites. During the test, the deployment and the wind-resistant ability of the morphing wing are dramatically improved by adding reinforced phase to the SMP.

  1. Syzygies, Pluricanonical Maps, and the Birational Geometry of Varieties of Maximal Albanese Dimension

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, Kibrewossen B.

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products in mountainous regions. The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground-based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses a new ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar-gauge precipitation product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. In addition to biases, sometimes there is also spatial error between the radar and satellite precipitation estimates; one of them has to be geometrically corrected with reference to the other. A set of corresponding raining points between SPE and radar products are selected to apply linear registration using a regularized least square technique to minimize the dislocation error in SPEs with respect to available radar products. A weighted Successive Correction Method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial method for merging the rain gauges and climatological precipitation sources with radar and SPEs. We demonstrated the method using two satellite-based, CPC Morphing (CMORPH) and Hydro-Estimator (HE), two radar-gauge based, Stage-II and ST-IV, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over different geographical locations of the United States. Results show that: (a) the method of ensembles helped reduce biases in SPEs significantly; (b) the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements .The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the operational meteorology and hydrology community.

  2. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  3. Low Dimensional Analysis of Wing Surface Morphology in Hummingbird Free Flight

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Ren, Yan; Liu, Geng; Dong, Haibo; Tobalske, Bret

    2015-11-01

    Surface morphing in flapping wings is a hallmark of bird flight. In current work, the role of dynamic wing morphing of a free flying hummingbird is studied in detail. A 3D image-based surface reconstruction method is used to obtain the kinematics and deformation of hummingbird wings from high-quality high-speed videos. The observed wing surface morphing is highly complex and a number of modeling methods including singular value decomposition (SVD) are used to obtain the fundamental kinematical modes with distinct motion features. Their aerodynamic roles are investigated by conducting immersed-boundary-method based flow simulations. The results show that the chord-wise deformation modes play key roles in the attachment of leading-edge vortex, thus improve the performance of the flapping wings. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  4. SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, R; Qin, A; Yan, D

    Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated withmore » seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and rotation. It is superior to the daily-IGRT correction, and comparable to the online-IMRT planning for dose to the target and rectal-wall.« less

  5. Evaluation of Integrated Multi-satellitE Retrievals for GPM with All Weather Gauge Observations over CONUS

    NASA Astrophysics Data System (ADS)

    Chen, S.; Qi, Y.; Hu, B.; Hu, J.; Hong, Y.

    2015-12-01

    The Global Precipitation Measurement (GPM) mission is composed of an international network of satellites that provide the next-generation global observations of rain and snow. Integrated Multi-satellitE Retrievals for GPM (IMERG) is the state-of-art precipitation products with high spatio-temporal resolution of 0.1°/30min. IMERG unifies precipitation measurements from a constellation of research and operational satellites with the core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI) on board a "Core" satellite. Additionally, IMERG blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. In this study, the final run post real-time IMERG is evaluated with all-weather manual gauge observations over CONUS from June 2014 through May 2015. Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of IMERG. The performance of IMERG in estimating snowfall precipitation is highlighted in the study. This timely evaluation with all-weather gauge observations is expected to offer insights into performance of IMERG and thus provide useful feedback to the algorithm developers as well as the GPM data users.

  6. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae)

    PubMed Central

    Sobral, Mar; Veiga, Tania; Guitián, Pablo; Guitián, José M.

    2017-01-01

    Background The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea—which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)—is locally adapted to the pollinator community. Methods We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Results Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum, B. soroensis ancaricus and B. lapidarius decipiens) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris) consistently preferred the foreign morph. Discussion We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition. PMID:28194308

  7. Development of a morphing technique for predicting the position and size of an artificial ear in hemifacial microsomia patients.

    PubMed

    Coward, Trevor J; Richards, Robin; Scott, Brendan J J

    2014-01-01

    People with hemifacial microsomia may be missing an ear on the affected side of the face. The principal aim of the study was to develop a morphing technique and to determine whether it could be used to appropriately position an artificial ear, as well as to give an indication of prosthesis size in comparison with the natural ear. Comparisons also were made between the artificial ears being worn by the patients with their natural ears. Data from stereophotogrammetry images of the faces of 10 people were converted into stereolithographic format. Anthropometric points on the face and ear of the unaffected side were plotted. By a process of scaling, the distance between facial landmarks on the unaffected side was estimated for the affected side so as to identify where the morphed ear would be positioned once generated. Generally, the morphed ears appeared to be in acceptable positions. There was a statistically significant difference between the position of the morphed and natural ears (P = .011), as well as the artificial and natural ears (P = .001), but this was unlikely to have any clinical implications. There were no significant differences among the sizes of the natural, morphed, and artificial ears (P = .072). Morphing appears to offer a more precise way of planning the positioning and construction of an artificial ear on patients with hemifacial microsomia than traditional methods. Differences in facial shape on either side of the face may impact on the process. This requires further study.

  8. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  9. Life history differences between fat and lean morphs of lake charr (Salvelinus namaycush) in Great Slave Lake, Northwest Territories, Canada

    USGS Publications Warehouse

    Hansen, Michael J.; Nate, Nancy A.; Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Krueger, Charles C.

    2016-01-01

    Life history characteristics (size, age, plumpness, buoyancy, survival, growth, and maturity) were compared between fat and lean morphs of lake charr Salvelinus namaycush in Great Slave Lake, Canada, to determine if differences may reflect effects of resource polymorphism. Lake charr were sampled using graded-mesh gill nets set in three depth strata. Of 236 lake charr captured, 122 were a fat morph and 114 were a lean morph. Males and females did not differ from each other in any attributes for either fat or lean morphs. The fat morph averaged 15 mm longer, 481 g heavier, and 4.7 years older than the lean morph. The fat morph averaged 26% heavier and 48% more buoyant at length than the lean morph. Survival of the fat morph was 1.7% higher than that of the lean morph. The fat morph grew at a slower annual rate to a shorter asymptotic length than the lean morph. Fat and lean morphs matured at similar lengths and ages. We concluded that the connection between resource polymorphism and life histories in lean versus fat lake charr suggests that morph-specific restoration objectives may be needed in lakes where lake charr diversity is considered to be a restoration goal.

  10. Continuous Dynamic Simulation of Nonlinear Aerodynamics/Nonlinear Structure Interaction (NANSI) for Morphing Vehicles

    DTIC Science & Technology

    2010-03-31

    presented in the AFRL organized Aeroelastic Workshop in Sedona October 2008, and at the AVT-168 Symposium on Morphing Vehicles, Lisbon, Portugal April 2009...surface geometry. - Conventional deforming grid methods will fail at a point when the geometry change becomes large, no matter how good the method...Numb’ Martian Entry* Knudson number: Kn _ M.a GasKinetic parameter ASU . flttA TKHNOLOGY Overview • Ballute aeroelastic problem requires

  11. Adaptive Significance of Flexistyly in Alpinia blepharocalyx (Zingiberaceae): A Hand-pollination Experiment

    PubMed Central

    Sun, Shan; Gao, Jiang-Yun; Liao, Wan-Jin; Li, Qing-Jun; Zhang, Da-Yong

    2007-01-01

    Background and Aims Flexistyly is a sexual dimorphism where there are two morphs that differ in the temporal expression of sexual function and also involve reciprocal movement of the stigmatic surface through a vertical axis during the flowering period. The adaptive significance of flexistyly has been interpreted as a floral mechanism for outcrossing, but it may also function to reduce sexual interference in which styles and stigmas impede the pollen export. Here these two explanations of flexistyly were tested in Alpinia blepharocalyx through a hand-pollination experiment. Methods Hand-pollinations were performed in two temporal morphs and consisted of two sequential pollination treatments, namely self-pollination in the morning and inter-morph pollination in the afternoon (treatment 1) or conversely inter-morph pollination in the morning and self-pollination in the afternoon (treatment 2), and two simultaneous self- and inter-morph cross-pollination treatments either in the morning (treatment 3) or in the afternoon (treatment 4). Seed paternity was then determined to assess relative success of self- versus cross-pollen using allozyme markers. Key Results In the sequential pollination treatments, whether the stigmas of recipients are receptive in the morning is crucial to the success of the pollen deposited. When the cataflexistylous (protandrous) morph served as pollen recipient, early-arriving pollen in the morning can sire only a very small proportion (<15%) of seeds because the stigmas were then unreceptive. However, when the anaflexistylous (protogynous) morph served as pollen recipient, early pollen did gain a large competitive advantage over the late pollen, particularly when cross-pollen arrived first. Simultaneous self- and inter-morph cross-pollination indicated that outcross-pollen is more competitive than self-pollen on receptive stigmas. Conclusions Differential maturing of male and female organs in Alpinia blepharocalyx is sufficient for selfing avoidance, obviating the need for style movements. Instead, the upward style curvature of the cataflexistylous morph in the morning and the anaflexistylous morph in the afternoon most likely represents a means of reducing interference with pollen export. PMID:17237211

  12. Active control using control allocation for UAVs with seamless morphing wing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-jie; Sun, Yin-di; Yang, Da-qing; Guo, Shi-jun

    2012-04-01

    In this paper, a small seamless morphing wing aircraft of MTOW=51 kg is investigated. The leading edge (LE) and trailing edge (TE) control surfaces are positioned in the wing section in span wise. Based on the studying results of aeroelastic wing characteristics, the controller should be designed depending on the flight speed. Compared with a wing of rigid hinged aileron, the morphing wing produces the rolling moment by deflecting the flexible TE and LE surfaces. An iteration method of pseudo-inverse allocation and quadratic programming allocation within the constraints of actuators have be investigated to solve the nonlinear control allocation caused by the aerodynamics of the effectors. The simulation results will show that the control method based on control allocation can achieve the control target.

  13. Active control using control allocation for UAVs with seamless morphing wing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-jie; Sun, Yin-di; Yang, Da-qing; Guo, Shi-jun

    2011-11-01

    In this paper, a small seamless morphing wing aircraft of MTOW=51 kg is investigated. The leading edge (LE) and trailing edge (TE) control surfaces are positioned in the wing section in span wise. Based on the studying results of aeroelastic wing characteristics, the controller should be designed depending on the flight speed. Compared with a wing of rigid hinged aileron, the morphing wing produces the rolling moment by deflecting the flexible TE and LE surfaces. An iteration method of pseudo-inverse allocation and quadratic programming allocation within the constraints of actuators have be investigated to solve the nonlinear control allocation caused by the aerodynamics of the effectors. The simulation results will show that the control method based on control allocation can achieve the control target.

  14. Novel deployable morphing wing based on SMP composite

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Sun, Shouhua; Liu, Liwu; Zhang, Zhen; Liu, Yanju; Leng, Jinsong

    2009-07-01

    In this paper, a novel kind of deployable morphing wing base on shape memory polymer (SMP) composite is designed and tested. While the deployment of the morphing wing still relies on the mechanisms to ensure the recovery force and the stability performance, the deploying process tends to be more steady and accurate by the application of SMP composite, which overcomes the inherent drawbacks of the traditional one, such as harmful impact to the flight balance, less accuracy during the deployment and complex mechanical masses. On the other hand, SMP composite is also designed as the wing's filler. During its shape recovery process, SMP composite stuffed in the wing helps to form an aerofoil for the wing and withstand the aerodynamic loads, leading to the compressed aerofoil recovering its original shape. To demonstrate the feasibility and the controllability of the designed deployable morphing wing, primary tests are also conducted, including the deploying speed of the morphing wing and SMP filler as the main testing aspects. Finally, Wing's deformation under the air loads is also analyzed by using the finite element method to validate the flight stability.

  15. Demographic stochasticity in small remnant populations of the declining distylous plant Primula veris

    USGS Publications Warehouse

    Kery, M.; Matthies, D.; Schmid, B.

    2003-01-01

    We studied ecological consequences of distyly for the declining perennial plant Primula veris in the Swiss Jura. Distyly favours cross-fertilization and avoids inbreeding, but may lead to pollen limitation and reduced reproduction if morph frequencies deviate from 50 %. Disassortative mating is promoted by the reciprocal position of stigmas and anthers in the two morphs (pin and thrum) and by intramorph incompatibility and should result in equal frequencies of morphs at equilibrium. However, deviations could arise because of demographic stochasticity, the lower intra-morph incompatibility of the pin morph, and niche differentiation between morphs. Demographic stochasticity should result in symmetric deviations from an even morph frequency among populations and in increased deviations with decreasing population size. If crosses between pins occurred, these would only generate pins, and this could result in a pin-bias of morph frequencies in general and in small populations in particular. If the morphs have different niches, morph frequencies should be related to environmental factors, morphs might be spatially segregated, and morphological differences between morphs would be expected. We tested these hypotheses in the declining distylous P. veris. We studied morph frequencies in relation to environmental conditions and population size, spatial segregation in field populations, morphological differences between morphs, and growth responses to nutrient addition. Morph frequencies in 76 populations with 1 - 80000 flowering plants fluctuated symmetrically about 50 %. Deviations from 50 % were much larger in small populations, and sixof the smallest populations had lost one morph altogether. In contrast, morph frequencies were neither related to population size nor to 17 measures of environmental conditions. We found no spatial segregation or morphological differences in the field or in the common garden. The results suggest that demographic stochasticity caused deviations of the morph ratiofrom unity in small populations. Demographic stochasticity was probably caused by the random elimination of plants during the fragmentation of formerly large continuous populations. Biased morph frequencies may be one of the reasons for the strongly reduced reproduction in small populations of P. veris.

  16. Endocrine differences among colour morphs in a lizard with alternative behavioural strategies.

    PubMed

    Yewers, Madeleine St Clair; Jessop, Tim S; Stuart-Fox, Devi

    2017-07-01

    Alternative behavioural strategies of colour morphs are expected to associate with endocrine differences and to correspond to differences in physical performance (e.g. movement speed, bite force in lizards); yet the nature of correlated physiological and performance traits in colour polymorphic species varies widely. Colour morphs of male tawny dragon lizards Ctenophorus decresii have previously been found to differ in aggressive and anti-predator behaviours. We tested whether known behavioural differences correspond to differences in circulating baseline and post-capture stress levels of androgen and corticosterone, as well as bite force (an indicator of aggressive performance) and field body temperature. Immediately after capture, the aggressive orange morph had higher circulating androgen than the grey morph or the yellow morph. Furthermore, the orange morph maintained high androgen following acute stress (30min of capture); whereas androgen increased in the grey and yellow morphs. This may reflect the previously defined behavioural differences among morphs as the aggressive response of the yellow morph is conditional on the colour of the competitor and the grey morph shows consistently low aggression. In contrast, all morphs showed an increase in corticosterone concentration after capture stress and morphs did not differ in levels of corticosterone stress magnitude (CSM). Morphs did not differ in size- and temperature-corrected bite force but did in body temperature at capture. Differences in circulating androgen and body temperature are consistent with morph-specific behavioural strategies in C. decresii but our results indicate a complex relationship between hormones, behaviour, temperature and bite force within and between colour morphs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of cloud motion vectors from the GEO/LEO IR based precipitation estimates and the CFS Reanalysis (CFSR) precipitation fields. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the CFSR precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. Error function is experimented to best reflect the performance of the satellite IR based estimates and the CFSR in capturing the movements of precipitating cloud systems over different regions and for different seasons. Quantitative experiments are conducted to optimize the LEO IR based precipitation estimation technique and the 2D-VAR based motion vector analysis system. Detailed results will be reported at the EGU.

  18. The rock-paper-scissors game and the evolution of alternative male strategies

    NASA Astrophysics Data System (ADS)

    Sinervo, B.; Lively, C. M.

    1996-03-01

    MANY species exhibit colour polymorphisms associated with alternative male reproductive strategies, including territorial males and 'sneaker males' that behave and look like females1-3. The prevalence of multiple morphs is a challenge to evolutionary theory because a single strategy should prevail unless morphs have exactly equal fitness4,5 or a fitness advantage when rare6,7. We report here the application of an evolutionary stable strategy model to a three-morph mating system in the side-blotched lizard. Using parameter estimates from field data, the model predicted oscillations in morph frequency, and the frequencies of the three male morphs were found to oscillate over a six-year period in the field. The fitnesses of each morph relative to other morphs were non-transitive in that each morph could invade another morph when rare, but was itself invadable by another morph when common. Concordance between frequency-dependent selection and the among-year changes in morph fitnesses suggest that male interactions drive a dynamic 'rock-paper-scissors' game7.

  19. Radio-telemetric evidence of migration in the gregarious but not the solitary morph of the Mormon cricket (Anabrus simplex: Orthoptera: Tettigoniidae)

    NASA Astrophysics Data System (ADS)

    Lorch, Patrick D.; Gwynne, D. T.

    The Mormon cricket, Anabrus simplex, is one of just a few species of katydids (or bushcrickets, Orthoptera: Tettigoniidae) that, like migratory locusts, appear to have solitary and migratory morphs. Using radio telemetry we studied movements of individuals of two morphs of this flightless species. Individuals within each migratory band had similar rates of movements along similar directional headings whereas solitary individuals moved little and showed little evidence of directionality in movement. Our results also add to other recent radio-telemetry studies showing that flightless insects of 1-2g in mass can be tracked successfully using these methods.

  20. Divergence of water balance mechanisms and acclimation potential in body color morphs of Drosophila ananassae.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal; Lambhod, Chanderkala; Singh, Divya

    2014-01-01

    Drosophila ananassae is a desiccation sensitive species, but the physiological basis of its abundance in the drier subtropical areas is largely unknown. We tested the hypothesis whether body color morphs of D. ananassae differ in the mechanistic basis of water conservation as well as desiccation acclimation potential, consistent with their distribution under dry or wet habitats. We observed reduced rate of water loss consistent with the greater desiccation potential of dark morph as compared with light morph, despite lack of quantitative differences in cuticular lipid mass between them. Dark morph evidenced greater wet and dry mass (∼1.17-fold) as well as higher hemolymph content (∼1.70-fold) and (∼17%) dehydration tolerance to sustain longer survival under desiccation stress (LT50 17.5 hr) as compared with light morph (LT50 4.3 hr). We found significant differences in the storage of energy metabolites in the body color morphs of D. ananassae, that is, carbohydrate content was significantly higher (∼0.18 mg/mg dry mass) in the dark morph as compared to light morph, but greater (∼0.05 mg/mg dry mass) body lipid content was evident in the light morph. Under desiccation stress, dark and light morphs utilized mainly carbohydrates but also lipids to a lesser extent. However, the rate of utilization of energy metabolites did not vary between dark and light morphs. Further, the dark morph consumed higher energy content derived from carbohydrates under desiccation stress as compared with the light morph. Finally, we found contrasting patterns of acclimation to desiccation stress in the two body color morphs, that is, increase in desiccation survival (4.7 hr), as well as in dehydration tolerance (∼6%) due to acclimation of the dark morph but no such effects were observed in the light morph. Thus, divergence in water balance mechanisms as well as acclimation potential reflects evolved physiological adaptations of the dark morph under drier but of the light morph to wet climatic conditions. © 2013 Wiley Periodicals, Inc.

  1. The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Yang, Zhichun; Gu, Yingsong; Wang, Xiaochen

    2017-07-01

    This paper focuses on the nonlinear aeroelastic characteristics of a folding wing in the quasi-steady condition (namely at fixed folding angles) and during the morphing process. The structure model of the folding wing is formulated by the Lagrange equations, and the constraint equation is used to describe the morphing strategy. The aerodynamic influence coefficient matrices at several folding angles are calculated by the Doublet Lattice method, and described as rational functions in the Laplace domain by the rational function approximation, and then the Kriging agent model technique is adopted to interpolate the coefficient matrices of the rational functions, and the aerodynamics model of the folding wing during the morphing process is built. The aeroelastic responses of the folding wing with cubic stiffness are simulated, and the results show that the motion types of aeroelastic responses in the quasi-steady condition and during the morphing process are all sensitive to the initial condition and folding angle. During the morphing process, the transition of the motion types is observed. And apart from the period of transition, the aeroelastic response at some folding angles may exhibit different motion types, which can be found from the results in the quasi-steady condition.

  2. Analyses of Chinese Hourly Precipitation Using Gauge Observations and Satellite Estimates Products

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Yu, J.; Shen, Y.

    2010-12-01

    Highly spatial-temporal and accurate precipitation analyses are essential for monitoring the catastrophic mesoscale weather systems, examining numerical model outputs, and doing dynamic researches on mesoscale meteorology. In recent years, Chinese government has gradually developed a ground-based observational net of 30000 auto-weather-stations (AWS) all over the country, most of which are in the eastern and southern China. The real-time data of gauged rainfall is transported to National Meteorological Information of China (NMIC) every hour, and its quality has been strictly and effectually controlled. Taking advantage of these resources, an hourly Chinese Precipitation Analyses Products (CPAP) with fine resolution is developed. But on the Tibetan Plateau where the AWS is still sparse, the accuracy of precipitation can not satisfy the operational needs yet. Otherwise, CMORPH has a well performance on the space structure of rainfall over China in warm season, but loses on intensity. Thus, we make a merge test analysis at resolution of 0.1 ×0.1 degree , using Optimum Interpolation (OI) to combine hourly CPAP with CMORPH estimates precipitation products. Before OI,the systematic bias in CMORPH have been partly corrected by gauge data through PDF adjustments. The validation of the merge test from June to August 2009 shows that, the combined products can obviously reduce the bias to the gauge analyses CPAP, and also have highly coefficient with it. It is more important that, the combined products provide a reasonable and full-covered precipitation structure over Tibetan Plateau.

  3. Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil.

    PubMed

    Husband, Brian C; Barrett, Spencer C H

    1992-03-01

    The frequencies of floral morphs in populations of tristylous Eichhornia paniculata often deviate from the theoretical expectation of equality. This variation is associated with the breakdown of tristyly and the evolution of self-fertilization. Differences in morph frequencies could result from selection pressures due to variable levels of insect visitation to populations and contrasting foraging behavior among the floral morphs. We estimated pollinator densities in 16 populations and quantified visitation sequences to morphs in five populations of E. paniculata in northeastern Brazil. Foraging behavior among floral morphs was measured as the frequency of visits to morphs relative to their frequency in the population (preference) and number of flights between inflorescences of the same versus different morphs (constancy). Pollinator density (number/m 2 /minute) was not correlated with population size, plant density or morph diversity. Pollinator densities varied most among populations of less than 200 plants. Whether pollinators discriminated among the morphs, depended on whether they primarily collected nectar or pollen. In four populations, nectar-feeding bees (Ancyloscelis and Florilegus spp.) and butterflies showed no consistent preference or constancy among the morphs. In contrast, pollen-collecting bees (Trigona sp.) visited a lower proportion of longstyled inflorescences than expected and tended to visit more mid-and short-styled inflorescences in succession, once they were encountered. Pollinator constancy for morphs did not result from differences in inflorescence production or spatial patchiness among the morphs. Although non-random pollinator visitation to morphs in heterostylous populations could potentially affect mating and hence morph frequencies, the observed visitation patterns in this study do not provide evidence that pollinators play a major role in influencing floral morph frequencies.

  4. Quantifying deficits in the perception of fear and anger in morphed facial expressions after bilateral amygdala damage.

    PubMed

    Graham, Reiko; Devinsky, Orrin; Labar, Kevin S

    2007-01-07

    Amygdala damage has been associated with impairments in perceiving facial expressions of fear. However, deficits in perceiving other emotions, such as anger, and deficits in perceiving emotion blends have not been definitively established. One possibility is that methods used to index expression perception are susceptible to heuristic use, which may obscure impairments. To examine this, we adapted a task used to examine categorical perception of morphed facial expressions [Etcoff, N. L., & Magee, J. J. (1992). Categorical perception of facial expressions. Cognition, 44(3), 227-240]. In one version of the task, expressions were categorized with unlimited time constraints. In the other, expressions were presented with limited exposure durations to tap more automatic aspects of processing. Three morph progressions were employed: neutral to anger, neutral to fear, and fear to anger. Both tasks were administered to a participant with bilateral amygdala damage (S.P.), age- and education-matched controls, and young controls. The second task was also administered to unilateral temporal lobectomy patients. In the first version, S.P. showed impairments relative to normal controls on the neutral-to-anger and fear-to-anger morphs, but not on the neutral-to-fear morph. However, reaction times suggested that speed-accuracy tradeoffs could account for results. In the second version, S.P. showed impairments on all morph types relative to all other subject groups. A third experiment showed that this deficit did not extend to the perception of morphed identities. These results imply that when heuristics use is discouraged on tasks utilizing subtle emotion transitions, deficits in the perception of anger and anger/fear blends, as well as fear, are evident with bilateral amygdala damage.

  5. An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women.

    PubMed

    Zhang, Kai; Cao, Libo; Fanta, Abeselom; Reed, Matthew P; Neal, Mark; Wang, Jenne-Tai; Lin, Chin-Hsu; Hu, Jingwen

    2017-07-26

    Field data analyses have shown that small female, obese, and/or older occupants are at increased risks of death and serious injury in motor-vehicle crashes compared with mid-size young men. The current adult finite element (FE) human models represent occupants in the same three body sizes (large male, mid-size male, and small female) as those for the contemporary adult crash dummies. Further, the time needed to develop an FE human model using the traditional method is measured in months or even years. In the current study, an improved regional mesh morphing method based on landmark-based radial basis function (RBF) interpolation was developed to rapidly morph a mid-size male FE human model into different geometry targets. A total of 100 human models with a wide range of human attributes were generated. A pendulum chest impact condition was applied to each model as an initial assessment of the resulting variability in response. The morphed models demonstrated mesh quality similar to the baseline model. The peak impact forces and chest deflections in the chest pendulum impacts varied substantially with different models, supportive of consideration of population variation in evaluating the occupant injury risks. The method developed in this study will enable future safety design optimizations targeting at various vulnerable populations that cannot be considered with the current models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    PubMed

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere.

  7. Heading Toward Launch with the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric J.; Adler, Robert F.

    2012-01-01

    The Day-l algorithm for computing combined precipitation estimates in GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). We plan for the period of record to encompass both the TRMM and GPM eras, and the coverage to extend to fully global as experience is gained in the difficult high-latitude environment. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in the three groups that are contributing expertise: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; 2) the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following cloud motion; and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures. In this talk we summarize the major building blocks and important design issues driven by user needs and practical data issues. One concept being pioneered by the IMERG team is that the code system should produce estimates for the same time period but at different latencies to support the requirements of different groups of users. Another user requirement is that all these runs must be reprocessed as new IMERG versions are introduced. IMERG's status at meeting time will be summarized, and the processing scenario in the transition from TRMM to GPM will be laid out. Initially, IMERG will be run with TRMM-based calibration, and then a conversion to a GPM-based calibration will be employed after the GPM sensor products are validated. A complete reprocessing will be computed, which will complete the transition from TMPA.

  8. Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones

    NASA Astrophysics Data System (ADS)

    Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.

    2018-01-01

    The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.

  9. Remote sensing-based characterization of rainfall during atmospheric rivers over the central United States

    NASA Astrophysics Data System (ADS)

    Nayak, Munir A.; Villarini, Gabriele

    2018-01-01

    Atmospheric rivers (ARs) play a central role in the hydrology and hydroclimatology of the central United States. More than 25% of the annual rainfall is associated with ARs over much of this region, with many large flood events tied to their occurrence. Despite the relevance of these storms for flood hydrology and water budget, the characteristics of rainfall associated with ARs over the central United has not been investigated thus far. This study fills this major scientific gap by describing the rainfall during ARs over the central United States using five remote sensing-based precipitation products over a 12-year study period. The products we consider are: Stage IV, Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH). As part of the study, we evaluate these products against a rain gauge-based dataset using both graphical- and metrics-based diagnostics. Based on our analyses, Stage IV is found to better reproduce the reference data. Hence, we use it for the characterization of rainfall in ARs. Most of the AR-rainfall is located in a narrow region within ∼150 km on both sides of the AR major axis. In this region, rainfall has a pronounced positive relationship with the magnitude of the water vapor transport. Moreover, we have also identified a consistent increase in rainfall intensity with duration (or persistence) of AR conditions. However, there is not a strong indication of diurnal variability in AR rainfall. These results can be directly used in developing flood protection strategies during ARs. Further, weather prediction agencies can benefit from the results of this study to achieve higher skill of resolving precipitation processes in their models.

  10. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    NASA Astrophysics Data System (ADS)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  11. Morphing Wings: A Study Using High-Fidelity Aerodynamic Shape Optimization

    NASA Astrophysics Data System (ADS)

    Curiale, Nathanael J.

    With the aviation industry under pressure to reduce fuel consumption, morphing wings have the capacity to improve aircraft performance, thereby making a significant contribution to reversing climate change. Through high-fidelity aerodynamic shape optimization, various forms of morphing wings are assessed for a hypothetical regional-class aircraft. The framework used solves the Reynolds-averaged Navier-Stokes equations and utilizes a gradient-based optimization algorithm. Baseline geometries are developed through multipoint optimization, where the average drag coefficient is minimized over a range of flight conditions with additional dive constraints. Morphing optimizations are then performed, beginning with these baseline shapes. Five distinct types of morphing are investigated and compared. Overall, a theoretical fully adaptable wing produces roughly a 2% improvement in average performance, whereas trailing-edge morphing with a 27-point multipoint baseline results in just over a 1% improvement in average performance. Trailing-edge morphing proves to be more beneficial than leading-edge morphing, upper-surface morphing, and a conventional flap.

  12. Patient specific computerized phantoms to estimate dose in pediatric CT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.

    2009-02-01

    We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.

  13. Development of a Multiple Input Integrated Pole-to-Pole Global CMORPH

    NASA Astrophysics Data System (ADS)

    Joyce, R.; Xie, P.

    2013-12-01

    A test system is being developed at NOAA Climate Prediction Center (CPC) to produce a passive microwave (PMW), IR-based, and model integrated high-resolution precipitation estimation on a 0.05olat/lon grid covering the entire globe from pole to pole. Experiments have been conducted for a summer Test Bed period using data for July and August of 2009. The pole-to-pole global CMORPH system is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). First, retrievals of instantaneous precipitation rates from PMW observations aboard nine low earth orbit (LEO) satellites are decoded and pole-to-pole mapped onto a 0.05olat/lon grid over the globe. Also precipitation estimates from LEO AVHRR retrievals are derived using a PDF matching of LEO IR with calibrated microwave combined (MWCOMB) precipitation retrievals. The motion vectors for the precipitating cloud systems are defined using information from both satellite IR observations and precipitation fields generated by the NCEP Climate Forecast System Reanalysis (CFSR). To this end, motion vectors are first computed for the CFSR hourly precipitation fields through cross-correlation analysis of consecutive hourly precipitation fields on the global T382 (~35 km) grid. In a similar manner, separate processing is also performed on satellite IR-based precipitation estimates to derive motion vectors from observations. A blended analysis of precipitating cloud motion vectors is then constructed through the combination of CFSR and satellite-derived vectors utilizing a two-dimensional optimal interpolation (2D-OI) method, in which CFSR-derived motion vectors are used as the first guess and subsequently satellite derived vectors modify the first guess. Weights used to generate the combinations are defined under the OI framework as a function of error statistics for the CFSR and satellite IR based motion vectors. The screened and calibrated PMW and AVHRR derived precipitation estimates are then separately spatially propagated forward and backward in time, using precipitating cloud motion vectors, from their observation time to the next PMW observation. The PMW estimates propagated in both the forward and backward directions are then combined with propagated IR-based precipitation estimates under the Kalman Filter framework, with weights defined based on previously determined error statistics dependent on latitude, season, surface type, and temporal distance from observation time. Performance of the pole-to-pole global CMORPH and its key components, including combined PMW (MWCOMB), IR-based, and model precipitation, as well as model-derived, IR-based, and blended precipitation motion vectors, will be examined against NSSL Q2 radar observed precipitation estimates over CONUS, Finland FMI radar precipitation, and a daily gauge-based analysis including daily Canadian surface reports over global land. Also an initial investigation will be performed over a January - February 2010 winter Test Bed period. Detailed results will be reported at the Fall 2013 AGU Meeting.

  14. Distribution of Flower Morphs, Ploidy Level and Sexual Reproduction of the Invasive Weed Oxalis pes-caprae in the Western Area of the Mediterranean Region

    PubMed Central

    Castro, Sílvia; Loureiro, João; Santos, Conceição; Ater, Mohammed; Ayensa, Garbiñe; Navarro, Luis

    2007-01-01

    Background and Aims Oxalis pes-caprae is a widespread invasive weed in regions with a Mediterranean climate. In its native habitat (southern Africa) this species has been reported as heterostylous with trimorphic flowers and a self- and morph-incompatible reproductive system. In most of the areas invaded, only a pentaploid short-styled morphotype that reproduces mainly asexually by bulbils is reported, but this has only been confirmed empirically. This study aims to analyse the floral morph proportions in a wide distribution area, test the sexual female success, and explain the causes of low sexual reproduction of this species in the western area of the Mediterranean Basin. Methods Fifty-five populations of O. pes-caprae were sampled in the Iberian Peninsula and Morocco to evaluate the floral morph ratio and individual fruit set. In plants from a dimorphic population, hand-pollination experiments were performed to evaluate the effect of the pollen source on pollen tube growth through the style. The ploidy level and genome size of individuals of each floral morph were analysed using flow cytometry. Key Results From the populations studied 89·1 % were monomorphic, with most of them containing the short-styled (SS) floral morph, and 10·9 % were dimorphic containing long-styled (LS) and SS morphs. In some of these, isoplethy was verified but no fruit production was observed in any population. A sterile form was also recorded in several populations. Hand-pollination experiments revealed that pollen grains germinated over recipient stigmas. In intermorph crossings, pollen tubes were able to develop and fruit initiation was observed in some cases, while in intramorph pollinations, pollen tube development was sporadic and no fruit initiation was observed. All individuals within each floral form presented the same DNA ploidy level: SS plants were pentaploid and LS and the sterile form were tetraploid. Conclusions The low or null sexual reproduction success of this species in the area of invasion studied seems related with the high frequency of monomorphic populations, the unequal proportion of floral morphs in dimorphic populations and the presence of different ploidy levels between SS and LS morphs. The discovery of the occurrence of an LS floral morph and a sterile form, whose invading capacity in these areas is as yet unknown, will be valuable information for management programmes. PMID:17218342

  15. Evolutionary relationships among sympatric life history forms of Dolly Varden inhabiting the landlocked Kronotsky Lake, Kamchatka, and a neighboring anadromous population

    USGS Publications Warehouse

    Ostberg, C.O.; Pavlov, S.D.; Hauser, L.

    2009-01-01

    We investigated the evolutionary relationships among five sympatric morphs of Dolly Varden Salvelinus malma (white, Schmidti, longhead, river, and dwarf) inhabiting landlocked Kronotsky Lake on the Kamchatka Peninsula, Russia, and an anadromous population below the barrier waterfall on the outflowing Kronotsky River. Morphological analyses indicated phenotypic differentiation corresponding to preferred habitat, the longhead (a limnetic piscivorous morph) having a fusiform body, long jaw, and short fins and the Schmidti (a benthic morph) having a robust body, small jaw, and long fins. Analysis of molecular variance among the Kronotsky Lake morphs indicated that contemporary gene flow is restricted both among morphs within locations and among locations within morphs. Gene flow from Kronotsky Lake into the anadromous population also appears to be restricted. Our findings indicate that there are two divergent evolutionary lineages, one consisting of the white, Schmidti, river, and dwarf morphs and the other of the longhead morph and the anadromous population, which suggests that Kronotsky Lake was subject to separate waves of immigration. The Kronotsky Lake Dolly Varden morphs may represent an example of ecological speciation in progress, and we present a working hypothesis for the diversification of morphs within Kronotsky Lake.

  16. Shape-Morphing Nanocomposite Origami

    PubMed Central

    2015-01-01

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications. PMID:24689908

  17. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  18. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  19. Camouflage effects of various colour-marking morphs against different microhabitat backgrounds in a polymorphic pygmy grasshopper Tetrix japonica.

    PubMed

    Tsurui, Kaori; Honma, Atsushi; Nishida, Takayoshi

    2010-07-06

    Colour-marking polymorphism is widely distributed among cryptic species. To account for the adaptive significance of such polymorphisms, several hypotheses have been proposed to date. Although these hypotheses argue over the degree of camouflage effects of marking morphs (and the interactions between morphs and their microhabitat backgrounds), as far as we know, most empirical evidence has been provided under unnatural conditions (i.e., using artificial prey). Tetrix japonica, a pygmy grasshopper, is highly polymorphic in colour-markings and occurs in both sand and grass microhabitats. Even within a microhabitat, T. japonica is highly polymorphic. Using humans as dummy predators and printed photographs in which various morphs of grasshoppers were placed against different backgrounds, we addressed three questions to test the neutral, background heterogeneity, and differential crypsis hypotheses in four marking-type morphs: 1) do the morphs differ in the degree of crypsis in each microhabitat, 2) are different morphs most cryptic in specific backgrounds of the microhabitats, and 3) does the morph frequency reflect the degree of crypsis? The degree of camouflage differed among the four morphs; therefore, the neutral hypothesis was rejected. Furthermore, the order of camouflage advantage among morphs differed depending on the two types of backgrounds (sand and grass), although the grass background consistently provided greater camouflage effects. Thus, based on our results, we could not reject the background heterogeneity hypothesis. Under field conditions, the more cryptic morphs comprised a minority of the population. Overall, our results demonstrate that the different morphs were not equivalent in the degree of crypsis, but the degree of camouflage of the morphs was not consistent with the morph frequency. These findings suggest that trade-offs exist between the camouflage benefit of body colouration and other fitness components, providing a better understanding of the adaptive significance of colour-markings and presumably supporting the differential crypsis hypothesis.

  20. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Christina M. L.; Palmeri, Mark L.; Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710

    2013-04-15

    Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphingmore » technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the 'base' and 'target' for morphing. Several combinations of transformations were applied to morph between the 'base' and 'target' datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing three human subject datasets, were used in a preliminary observer evaluation where four board certified breast radiologists with varying amounts of experience ranked the level of realism (from 1 ='fake' to 10 ='real') of the simulated images. Results: The morphing technique was able to successfully generate new and unique morphed datasets from the original human subject data. The radiologists evaluated the realism of simulated mammograms generated from the morphed and unmorphed human subject datasets and scored the realism with an average ranking of 5.87 {+-} 1.99, confirming that overall the phantom image datasets appeared more 'real' than 'fake.' Moreover, there was not a significant difference (p > 0.1) between the realism of the unmorphed datasets (6.0 {+-} 1.95) compared to the morphed datasets (5.86 {+-} 1.99). Three of the four observers had overall average rankings of 6.89 {+-} 0.89, 6.9 {+-} 1.24, 6.76 {+-} 1.22, whereas the fourth observer ranked them noticeably lower at 2.94 {+-} 0.7. Conclusions: This work presents a technique that can be used to generate a suite of realistic computerized breast phantoms from a limited number of human subjects. This suite of flexible breast phantoms can be used for multimodality imaging research to provide a known truth while concurrently producing realistic simulated imaging data.« less

  1. Ball-morph: definition, implementation, and comparative evaluation.

    PubMed

    Whited, Brian; Rossignac, Jaroslaw Jarek

    2011-06-01

    We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.

  2. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  3. Differential foraging success across a light level spectrum explains the maintenance and spatial structure of colour morphs in a polymorphic bird.

    PubMed

    Tate, Gareth J; Bishop, Jacqueline M; Amar, Arjun

    2016-06-01

    Detectability of different colour morphs under varying light conditions has been proposed as an important driver in the maintenance of colour polymorphism via disruptive selection. To date, no studies have tested whether different morphs have selective advantages under differing light conditions. We tested this hypothesis in the black sparrowhawk, a polymorphic raptor exhibiting a discrete white and dark morph, and found that prey provisioning rates differ between the morphs depending on light condition. Dark morphs delivered more prey in lower light conditions, while white morphs provided more prey in brighter conditions. We found support for the role of breeding season light level in explaining the clinal pattern of variation in morph ratio across the species range throughout South Africa. Our results provide the first empirical evidence supporting the hypothesis that polymorphism in a species, and the spatial structuring of morphs across its distribution, may be driven by differential selective advantage via improved crypsis, under varying light conditions. © 2016 John Wiley & Sons Ltd/CNRS.

  4. Morphing Wing Weight Predictors and Their Application in a Template-Based Morphing Aircraft Sizing Environment II. Part 2; Morphing Aircraft Sizing via Multi-level Optimization

    NASA Technical Reports Server (NTRS)

    Skillen, Michael D.; Crossley, William A.

    2008-01-01

    This report presents an approach for sizing of a morphing aircraft based upon a multi-level design optimization approach. For this effort, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and/or increasing aspect ratio by as much as 200% from the lowest possible value. The top-level optimization problem seeks to minimize the gross weight of the aircraft by determining a set of "baseline" variables - these are common aircraft sizing variables, along with a set of "morphing limit" variables - these describe the maximum shape change for a particular morphing strategy. The sub-level optimization problems represent each segment in the morphing aircraft's design mission; here, each sub-level optimizer minimizes fuel consumed during each mission segment by changing the wing planform within the bounds set by the baseline and morphing limit variables from the top-level problem.

  5. Optimization of a tensegrity wing for biomimetic applications

    NASA Astrophysics Data System (ADS)

    Moored, Keith W., III; Taylor, Stuart A.; Bart-Smith, Hilary

    2006-03-01

    Current attempts to build fast, efficient, and maneuverable underwater vehicles have looked to nature for inspiration. However, they have all been based on traditional propulsive techniques, i.e. rotary motors. In the current study a promising and potentially revolutionary approach is taken that overcomes the limitations of these traditional methods-morphing structure concepts with integrated actuation and sensing. Inspiration for this work comes from the manta ray (Manta birostris) and other batoid fish. These creatures are highly maneuverable but are also able to cruise at high speeds over long distances. In this paper, the structural foundation for the biomimetic morphing wing is a tensegrity structure. A preliminary procedure is presented for developing morphing tensegrity structures that include actuating elements. A shape optimization method is used that determines actuator placement and actuation amount necessary to achieve the measured biological displacement field of a ray. Lastly, an experimental manta ray wing is presented that measures the static and dynamic pressure field acting on the ray's wings during a normal flapping cycle.

  6. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  7. Water temperature, not fish morph, determines parasite infections of sympatric Icelandic threespine sticklebacks (Gasterosteus aculeatus).

    PubMed

    Karvonen, Anssi; Kristjánsson, Bjarni K; Skúlason, Skúli; Lanki, Maiju; Rellstab, Christian; Jokela, Jukka

    2013-06-01

    Parasite communities of fishes are known to respond directly to the abiotic environment of the host, for example, to water quality and water temperature. Biotic factors are also important as they affect the exposure profile through heterogeneities in parasite distribution in the environment. Parasites in a particular environment may pose a strong selection on fish. For example, ecological differences in selection by parasites have been hypothesized to facilitate evolutionary differentiation of freshwater fish morphs specializing on different food types. However, as parasites may also respond directly to abiotic environment the parasite risk does not depend only on biotic features of the host environment. It is possible that different morphs experience specific selection gradients by parasites but it is not clear how consistent the selection is when abiotic factors change. We examined parasite pressure in sympatric morphs of threespine stickleback (Gasterosteus aculeatus) across a temperature gradient in two large Icelandic lakes, Myvatn and Thingvallavatn. Habitat-specific temperature gradients in these lakes are opposite. Myvatn lava rock morph lives in a warm environment, while the mud morph lives in the cold. In Thingvallavatn, the lava rock morph lives in a cold environment and the mud morph in a warm habitat. We found more parasites in fish living in higher temperature in both lakes, independent of the fish morph, and this pattern was similar for the two dominating parasite taxa, trematodes and cestodes. However, at the same time, we also found higher parasite abundance in a third morph living in deep cold-water habitat in Thingvallavatn compared to the cold-water lava morph, indicating strong effect of habitat-specific biotic factors. Our results suggest complex interactions between water temperature and biotic factors in determining the parasite community structure, a pattern that may have implications for differentiation of stickleback morphs.

  8. Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism.

    PubMed

    Li, Ai-Min; Wu, Xiao-Qin; Zhang, Dian-Xiang; Barrett, Spencer C H

    2010-10-01

    Evolutionary transitions from heterostyly to dioecy have been proposed in several angiosperm families, particularly in Rubiaceae. These transitions involve the spread of male and female sterility mutations resulting in modifications to the gender of ancestral hermaphrodites. Despite sustained interest in the gender strategies of plants, the structural and developmental bases for transitions in sexual systems are poorly understood. Here, floral morphology, patterns of fertility, pollen-tube growth and floral development are investigated in two populations of the scandent shrub Mussaenda pubescens (Rubiaceae), native to southern China, by means of experimental and open-pollinations, light microscopy, fluorescence microscopy and scanning electron microscopy combined with paraffin sectioning. Mussaenda pubescens has perfect (hermaphroditic) flowers and populations with two style-length morphs but only weak differentiation in anther position (stigma-height dimorphism). Experimental pollinations demonstrated that despite morphological hermaphroditism, the species is functionally dioecious. The long-styled (L) morph possesses sterile pollen and functions as a female, whereas the short-styled (S) morph is female sterile and functions as a male. Self- and intra-morph pollinations of the S-morph were consistent with those expected from dimorphic incompatibility. The two populations investigated were both S-morph (male) biased. Investigations of early stages of floral development indicated patterns typical of hermaphroditic flowers, with no significant differences in organ growth between the floral morphs. Meiosis of microspore mother cells was of the simultaneous type with tetrads isobilateral in shape. The tapetal cells in anther walls of the L-morph became vacuolized during meiosis I, ahead of the uninucleate microspore stage in the S-morph. In the L-morph, the microspore nucleus degenerated at the tetrad stage resulting in male sterility. Microsporogenesis and male gametophyte development was normal in the S-morph. Failure in the formation of megaspore mother cells and/or the development of megagametophytes resulted in female sterility in the S-morph, compared with normal megasporogenesis in the L-morph. In M. pubescens, cryptic dioecy has evolved from stigma-height dimorphism as a result of morph-specific sterility mutations.

  9. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  10. Molpher: a software framework for systematic chemical space exploration.

    PubMed

    Hoksza, David; Skoda, Petr; Voršilák, Milan; Svozil, Daniel

    2014-03-21

    Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the discovery of either novel drugs or new tools for chemical biology. In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical space. Through a process we term 'molecular morphing', Molpher produces a path of structurally-related compounds. This path is generated by the iterative application of so-called 'morphing operators' that represent simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug discovery pipelines. Molpher is an open-source software framework for the design of virtual chemical libraries focused on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible and can be easily incorporated into any existing computational drug design pipeline.

  11. Lipogenesis in a wing-polymorphic cricket: Canalization versus morph-specific plasticity as a function of nutritional heterogeneity.

    PubMed

    Zera, Anthony J; Clark, Rebecca; Behmer, Spence

    2016-12-01

    The influence of variable nutritional input on life history adaptation is a central, but incompletely understood aspect of life history physiology. The wing-polymorphic cricket, Gryllus firmus, has been extensively studied with respect to the biochemical basis of life history adaptation, in particular, modification of lipid metabolism that underlies the enhanced accumulation of lipid flight fuel in the dispersing morph [LW(f)=long wings with functional flight muscles] relative to the flightless (SW=short-winged) morph. To date, biochemical studies have been undertaken almost exclusively using a single laboratory diet. Thus, the extent to which nutritional heterogeneity, likely experienced in the field, influences this key morph adaptation is unknown. We used the experimental approach of the Geometric Framework for Nutrition and employed 13 diets that differed in the amounts and ratios of protein and carbohydrate to assess how nutrient amount and balance affects morph-specific lipid biosynthesis. Greater lipid biosynthesis and allocation to the soma in the LW(f) compared with the SW morph (1) occurred across the entire protein-carbohydrate landscape and (2) is likely an important contributor to elevated somatic lipid in the LW(f) morph across the entire protein-carbohydrate landscape. Nevertheless, dietary carbohydrate strongly affected lipid biosynthesis in a morph-specific manner (to a greater degree in the LW(f) morph). Lipogenesis in the SW morph may be constrained due to its more limited lipid storage capacity compared to the LW(f) morph. Elevated activity of NADP + -isocitrate dehydrogenase (NADP + -IDH), an enzyme that produces reducing equivalents for lipid biosynthesis, was correlated with and may be an important cause of the increased lipogenesis in the LW(f) morph across most, but not all regions of the protein-carbohydrate landscape. By contrast, ATP-citrate lyase (ACL), an enzyme that catalyzes the first step in the pathway of fatty acid biosynthesis, showed complex morph-specific patterns of activity that were strongly contingent upon diet. Morph-specific patterns of NADP + -IDH and ACL activities across the nutrient landscape were much more complex than expected from previous studies on a single diet. Collectively, our results indicate that the biochemical basis of an important life history adaptation, morph-specific lipogenesis, can be canalized in the face of substantial nutritional heterogeneity. However, in some regions of the protein-carbohydrate landscape, it is strongly modulated in a morph-specific manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Developmental decoupling of alternative phenotypes: insights from the transcriptomes of horn-polyphenic beetles

    PubMed Central

    Snell-Rood, Emilie C.; Cash, Amy; Han, Mira V.; Kijimoto, Teiya; Andrews, Justen; Moczek, Armin P.

    2010-01-01

    Developmental mechanisms play an important role in determining the costs, limits, and evolutionary consequences of phenotypic plasticity. One issue central to these claims is the hypothesis of developmental decoupling, where alternate morphs result from evolutionarily independent developmental pathways. We address this assumption through a microarray study that tests whether differences in gene expression between alternate morphs are as divergent as those between sexes, a classic example of developmental decoupling. We then examine whether genes with morph-biased expression are less conserved than genes with shared expression between morphs, as predicted if developmental decoupling relaxes pleiotropic constraints on divergence. We focus on the developing horns and brains of two species of horned beetles with spectacular sexual- and morph-dimorphism in the expression of horns and fighting behavior. We find that patterns of gene expression were as divergent between morphs as they were between sexes. However, overall patterns of gene expression were also highly correlated across morphs and sexes. Morph-biased genes were more evolutionarily divergent, suggesting a role of relaxed pleiotropic constraints or relaxed selection. Together these results suggest that alternate morphs are to some extent developmentally decoupled, and that this decoupling has significant evolutionary consequences. However, alternative morphs may not be as developmentally decoupled as sometimes assumed and such hypotheses of development should be revisited and refined. PMID:20731717

  13. If Arctic charr Salvelinus alpinus is “the most diverse vertebrate,” what is the lake charr Salvelinus namaycush?

    USGS Publications Warehouse

    Muir, Andrew M.; Hansen, Michael J.; Bronte, Charles R.; Krueger, Charles C.

    2016-01-01

    Teleost fishes are prominent vertebrate models of evolution, illustrated among old-world radiations by the Cichlidae of East African Great Lakes and new-world radiations by the circumpolar Arctic charr Salvelinus alpinus. Herein, we describe variation in lake charr S. namaycush morphology, life history, physiology, and ecology, as another example of radiation. The lake charr is restricted to northern North America, where it originated from glacial refugia and diversified in large lakes. Shallow and deepwater morphs arose in multiple lakes, with a large-bodied shallow-water ‘lean’ morph in shallow inshore depths, a small-bodied mid-water ‘humper’ morph on offshore shoals or banks, and a large-bodied deep-water ‘siscowet’ morph at depths > 100 m. Eye position, gape size, and gillraker length and spacing adapted for feeding on different-sized prey, with piscivorous morphs (leans and siscowets) reaching larger asymptotic size than invertivorous morphs (humpers). Lean morphs are light in color, whereas deepwater morphs are drab and dark, although the pattern is reversed in dark tannic lakes. Morphs shift from benthic to pelagic feeding at a length of 400–490-mm. Phenotypic differences in locomotion, buoyancy, and lipid metabolism evolved into different mechanisms for buoyancy regulation, with lean morphs relying on hydrodynamic lift and siscowet morphs relying on hydrostatic lift. We suggest that the Salvelinus genus, rather than the species S. alpinus, is a diverse genus that should be the subject of comparative studies of processes causing divergence and adaptation among member species that may lead to a more complete evolutionary conceptual model.

  14. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test.

    PubMed

    Temeles, Ethan J; Newman, Julia T; Newman, Jennifer H; Cho, Se Yeon; Mazzotta, Alexandra R; Kress, W John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.

  15. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test

    PubMed Central

    Temeles, Ethan J.; Newman, Julia T.; Newman, Jennifer H.; Cho, Se Yeon; Mazzotta, Alexandra R.; Kress, W. John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants. PMID:26814810

  16. Finite Element Analysis of Morphing Piezoelectric Structures Studied

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2002-01-01

    The development of morphing aerospace structures that optimize their shape offers the potential to significantly improve the performance of existing airplanes. These morphing vehicles will operate with new capabilities to reduce noise, damp vibrations, manipulate flow, and monitor damage. Piezoelectric materials represent one of the popular materials currently being investigated for applications in morphing structures.

  17. Cannibalistic-morph Tiger Salamanders in unexpected ecological contexts

    USGS Publications Warehouse

    McLean, Kyle I.; Stockwell, Craig A.; Mushet, David M.

    2016-01-01

    Barred tiger salamanders [Ambystoma mavortium (Baird, 1850)] exhibit two trophic morphologies; a typical and a cannibalistic morph. Cannibalistic morphs, distinguished by enlarged vomerine teeth, wide heads, slender bodies, and cannibalistic tendencies, are often found where conspecifics occur at high density. During 2012 and 2013, 162 North Dakota wetlands and lakes were sampled for salamanders. Fifty-one contained A. mavortium populations; four of these contained cannibalistic morph individuals. Two populations with cannibalistic morphs occurred at sites with high abundances of conspecifics. However, the other two populations occurred at sites with unexpectedly low conspecific but high fathead minnow [Pimephales promelas (Rafinesque, 1820)] abundances. Further, no typical morphs were observed in either of these later two populations, contrasting with earlier research suggesting cannibalistic morphs only occur at low frequencies in salamander populations. Another anomaly of all four populations was the occurrence of cannibalistic morphs in permanent water sites, suggesting their presence was due to factors other than faster growth allowing them to occupy ephemeral habitats. Therefore, our findings suggest environmental factors inducing the cannibalistic morphism may be more complex than previously thought.

  18. Morph-specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon.

    PubMed

    Friesen, Christopher R; Johansson, Rasmus; Olsson, Mats

    2017-08-01

    Polymorphism has fascinated biologists for over a century because morphs persist within populations through evolutionary time in spite of showing disparate behavioral and physiological phenotypes; any one morph should go to fixation with the slightest fitness advantage over the others. Surely there must be trade-offs that balance selection on them. The polychromatic morphs of the Australian painted dragon lizard, Ctenophorus pictus, are one such system. The male color morphs of painted dragons have different physiological and behavioral traits including reproductive tactics, hormone levels, and the rate of body condition loss through the reproductive season. Due to their differences in physiology and reproductive tactics, we tested the hypotheses that male morphs would differ in resting metabolic rates (RMRs) and that the morphs' RMR would decline at different rates through the mating season. We found that bib-morphs (yellow gular patch) differ in RMR with bibbed (more aggressive) males having consistently higher RMR than non-bibbed males. Furthermore, we show that male dragons experience a decline in RMR as they age from reproductively active to inactive. We also found that the RMR of bibbed males has higher repeatability than non-bibbed males. Our results reinforce previous hypotheses about the morph-specific costs of bearing a gular patch in painted dragons. © 2017 Wiley Periodicals, Inc.

  19. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral, Montipora capitata

    NASA Astrophysics Data System (ADS)

    Shore-Maggio, Amanda; Callahan, Sean M.; Aeby, Greta S.

    2018-06-01

    Two threats impacting coral reefs are bleaching and disease, and differential susceptibility to both exists among and within coral taxa. Bleaching resistance is commonly linked to the clade of endosymbiotic Symbiodinium, but may come at a cost to other biological traits. Montipora capitata is an Indo-Pacific reef-building coral with two color morphs, red and orange, which harbor different clades of Symbiodinium. We explored whether these color morphs displayed differences in bleaching/disease susceptibility and other biological traits (growth rate, reproductive output, and lipid content). We found a trade-off between disease and bleaching susceptibility. The orange morph had significantly higher disease prevalence, whereas the red morph had significantly higher bleaching prevalence. Thermal stress experiments found that bleaching and loss of photochemical efficiency occurred significantly faster in the red morph, but at normal temperatures, the red morph had a significantly higher growth rate. Higher abundance of the red morph in the field suggests that disease resistance is a more successful strategy in the absence of thermal stress events. The orange morph may better tolerate increases in sea temperatures, but may not persist due to decreased growth rate and increased disease susceptibility. Trade-offs in response to stressors highlight the need to consider local and global threats to coral reefs.

  20. Evidence for ontogenetically and morphologically distinct alternative reproductive tactics in the invasive Round Goby Neogobius melanostomus.

    PubMed

    Bleeker, Katinka; de Jong, Karen; van Kessel, Nils; Hinde, Camilla A; Nagelkerke, Leopold A J

    2017-01-01

    Alternative reproductive tactics are characterized by the occurrence of discrete alternative morphs that differ in behavioural, morphological and physiological traits within the same sex. Although much effort has been made to describe the behaviour, morphology and physiology of such alternative morphs, less effort has been invested investigating how much overlap there is in the characteristics of such morphs in natural populations. We studied random population samples of the invasive Round Goby Neogobius melanostomus from five different localities in the river Rhine system in the Netherlands. We found two morphologically and physiologically distinct male morphs which likely represent alternative reproductive tactics. Almost all mature males under 9.35 cm total length had a gonadosomatic index > 3%, suggestive of a sneaker tactic, while nearly all males above 9.35 cm has a gonadosomatic index of < 3%, suggestive of a parental tactic. Cheek size and eye diameter alone were sufficient to distinguish the two morphs. Gonads had a different relationship with size in the two morphs, indicating separate growth trajectories. The gonad mass of sneaker morphs would be ca. 7.5 times as high as the gonad mass of parental morphs of the same total length after extrapolation. Few (9%) intermediates were found, suggesting that the expression of alternative reproductive tactics is determined before the first breeding season. This contrasts with studies on other goby species, which show evidence of plastic tactics that can be affected by social circumstances. We conclude that it is possible to distinguish two alternative male morphs in the Dutch Round Goby population using morphological measurements alone. Although behavioural observations are needed to provide conclusive evidence, the difference in GSI between these morphs indicates that these morphs reflect alternative reproductive tactics.

  1. Evidence for ontogenetically and morphologically distinct alternative reproductive tactics in the invasive Round Goby Neogobius melanostomus

    PubMed Central

    de Jong, Karen; van Kessel, Nils; Hinde, Camilla A.; Nagelkerke, Leopold A. J.

    2017-01-01

    Alternative reproductive tactics are characterized by the occurrence of discrete alternative morphs that differ in behavioural, morphological and physiological traits within the same sex. Although much effort has been made to describe the behaviour, morphology and physiology of such alternative morphs, less effort has been invested investigating how much overlap there is in the characteristics of such morphs in natural populations. We studied random population samples of the invasive Round Goby Neogobius melanostomus from five different localities in the river Rhine system in the Netherlands. We found two morphologically and physiologically distinct male morphs which likely represent alternative reproductive tactics. Almost all mature males under 9.35 cm total length had a gonadosomatic index > 3%, suggestive of a sneaker tactic, while nearly all males above 9.35 cm has a gonadosomatic index of < 3%, suggestive of a parental tactic. Cheek size and eye diameter alone were sufficient to distinguish the two morphs. Gonads had a different relationship with size in the two morphs, indicating separate growth trajectories. The gonad mass of sneaker morphs would be ca. 7.5 times as high as the gonad mass of parental morphs of the same total length after extrapolation. Few (9%) intermediates were found, suggesting that the expression of alternative reproductive tactics is determined before the first breeding season. This contrasts with studies on other goby species, which show evidence of plastic tactics that can be affected by social circumstances. We conclude that it is possible to distinguish two alternative male morphs in the Dutch Round Goby population using morphological measurements alone. Although behavioural observations are needed to provide conclusive evidence, the difference in GSI between these morphs indicates that these morphs reflect alternative reproductive tactics. PMID:28369128

  2. Negative frequency-dependent selection or alternative reproductive tactics: maintenance of female polymorphism in natural populations

    PubMed Central

    2013-01-01

    Background Sex-limited polymorphisms have long intrigued evolutionary biologists and have been the subject of long-standing debates. The coexistence of multiple male and/or female morphs is widely believed to be maintained through negative frequency-dependent selection imposed by social interactions. However, remarkably few empirical studies have evaluated how social interactions, morph frequencies and fitness parameters relate to one another under natural conditions. Here, we test two hypotheses proposed to explain the maintenance of a female polymorphism in a species with extreme geographical variation in morph frequencies. We first elucidate how fecundity traits of the morphs vary in relation to the frequencies and densities of males and female morphs in multiple sites over multiple years. Second, we evaluate whether the two female morphs differ in resource allocation among fecundity traits, indicating alternative tactics to maximize reproductive output. Results We present some of the first empirical evidence collected under natural conditions that egg number and clutch mass was higher in the rarer female morph. This morph-specific fecundity advantage gradually switched with the population morph frequency. Our results further indicate that all investigated fecundity traits are negatively affected by relative male density (i.e. operational sex ratio), which confirms male harassment as selective agent. Finally, we show a clear trade-off between qualitative (egg mass) and quantitative (egg number) fecundity traits. This trade-off, however, is not morph-specific. Conclusion Our reported frequency- and density-dependent fecundity patterns are consistent with the hypothesis that the polymorphism is driven by a conflict between sexes over optimal mating rate, with costly male sexual harassment driving negative frequency-dependent selection on morph fecundity. PMID:23822745

  3. Water temperature, not fish morph, determines parasite infections of sympatric Icelandic threespine sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Karvonen, Anssi; Kristjánsson, Bjarni K; Skúlason, Skúli; Lanki, Maiju; Rellstab, Christian; Jokela, Jukka

    2013-01-01

    Parasite communities of fishes are known to respond directly to the abiotic environment of the host, for example, to water quality and water temperature. Biotic factors are also important as they affect the exposure profile through heterogeneities in parasite distribution in the environment. Parasites in a particular environment may pose a strong selection on fish. For example, ecological differences in selection by parasites have been hypothesized to facilitate evolutionary differentiation of freshwater fish morphs specializing on different food types. However, as parasites may also respond directly to abiotic environment the parasite risk does not depend only on biotic features of the host environment. It is possible that different morphs experience specific selection gradients by parasites but it is not clear how consistent the selection is when abiotic factors change. We examined parasite pressure in sympatric morphs of threespine stickleback (Gasterosteus aculeatus) across a temperature gradient in two large Icelandic lakes, Myvatn and Thingvallavatn. Habitat-specific temperature gradients in these lakes are opposite. Myvatn lava rock morph lives in a warm environment, while the mud morph lives in the cold. In Thingvallavatn, the lava rock morph lives in a cold environment and the mud morph in a warm habitat. We found more parasites in fish living in higher temperature in both lakes, independent of the fish morph, and this pattern was similar for the two dominating parasite taxa, trematodes and cestodes. However, at the same time, we also found higher parasite abundance in a third morph living in deep cold–water habitat in Thingvallavatn compared to the cold-water lava morph, indicating strong effect of habitat-specific biotic factors. Our results suggest complex interactions between water temperature and biotic factors in determining the parasite community structure, a pattern that may have implications for differentiation of stickleback morphs. PMID:23789063

  4. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution.

    PubMed

    Zera, Anthony J; Vellichirammal, Neetha Nanoth; Brisson, Jennifer A

    2018-04-12

    The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing-polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity - in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight-capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The role of rare morph advantage and conspicuousness in the stable gold-dark colour polymorphism of a crater lake Midas cichlid fish.

    PubMed

    Torres-Dowdall, Julián; Golcher-Benavides, Jimena; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2017-09-01

    Genetically based stable colour polymorphisms provide a unique opportunity to study the evolutionary processes that preserve genetic variability in the wild. Different mechanisms are proposed to promote the stability of polymorphisms, but only few empirical examples have been documented, resulting in an incomplete understanding of these mechanisms. A remarkable genetically determined stable colour polymorphism is found in the Nicaraguan Midas cichlid species complex (Amphilophus cf. citrinellus). All Midas cichlids start their life with a dark-grey coloration (dark morph), but individuals carrying the dominant "gold" allele (c. 10%) lose their melanophores later in life, revealing the underlying orange coloration (gold morph). How this polymorphism is maintained remains unclear. Two main hypotheses have been proposed, both suggesting differential predation upon colour morphs as the proximate mechanism. One predicts that the conspicuous gold morph is more likely to be preyed upon, but this disadvantage is balanced by their competitive dominance over the dark morph. The second hypothesis suggests a rare morph advantage where the rarer gold morph experiences less predation. Empirical evidence for either of these mechanisms is still circumstantial and inconclusive. We conducted two field experiments in a Nicaraguan crater lake using wax models simulating both morphs to determine predation pressure upon Midas cichlid colour morphs. First, we tested the interaction of coloration and depth on attack rate. Second, we tested the interaction of fish size and coloration. We contrasted the pattern of attacks from these experiments to the predicted predation patterns from the hypotheses proposed to explain the colour polymorphism's stability. Large models imitating colour morphs were attacked at similar rates irrespectively of their position in the water column. Yet, attacks upon small models resembling juveniles were directed mainly towards dark models. This resulted in a significant size-by-colour interaction. We suggest that gold Midas cichlids experience a rare morph advantage as juveniles when individuals of this morph are extremely uncommon. But this effect is reduced or disappears among adults, where gold individuals are relatively more common. Thus, the interaction of rare morph advantage and conspicuousness, rather than either of those factors alone, is a likely mechanism resulting in the stability of the colour polymorphism in Midas cichlids. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. Plumage polymorphism and fitness in Swainson's hawks.

    PubMed

    Briggs, C W; Collopy, M W; Woodbridge, B

    2011-10-01

    We examine the maintenance of a plumage polymorphism, variation in plumages among the same age and sex class within a population, in a population of Swainson's Hawks. We take advantage of 32 years of data to examine two prevalent hypotheses used to explain the persistence of morphs: apostatic selection and heterozygous advantage. We investigate differences in fitness among three morph classes of a melanistic trait in Swainson's Hawks: light (7% of the local breeding population), intermediate (57%) and dark (36%). Specifically, we examined morph differences in adult apparent survival, breeding success, annual number of fledglings produced, probability of offspring recruitment into the breeding population and lifetime reproductive success (LRS). If apostatic selection were a factor in maintaining morphs, we would expect that individuals with the least frequent morph would perform best in one or more of these fitness categories. Alternatively, if heterozygous advantage played a role in the maintenance of this polymorphism, we would expect heterozygotes (i.e. intermediate morphs) to have one or more increased rates in these categories. We found no difference in adult apparent survival between morph classes. Similarly, there were no differences in breeding success, nest productivity, LRS or probability of recruitment of offspring between parental morph. We conclude that neither apostatic selection nor heterozygous advantage appear to play a role in maintaining morphs in this population. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  7. Energy-based aeroelastic analysis of a morphing wing

    NASA Astrophysics Data System (ADS)

    De Breuker, Roeland; Abdalla, Mostafa; Gürdal, Zafer; Lindner, Douglas

    2007-04-01

    Aircraft are often confronted with distinct circumstances during different parts of their mission. Ideally the aircraft should fly optimally in terms of aerodynamic performance and other criteria in each one of these mission requirements. This requires in principle as many different aircraft configurations as there are flight conditions, so therefore a morphing aircraft would be the ideal solution. A morphing aircraft is a flying vehicle that i) changes its state substantially, ii) provides superior system capability and iii) uses a design that integrates innovative technologies. It is important for such aircraft that the gains due to the adaptability to the flight condition are not nullified by the energy consumption to carry out the morphing manoeuvre. Therefore an aeroelastic numerical tool that takes into account the morphing energy is needed to analyse the net gain of the morphing. The code couples three-dimensional beam finite elements model in a co-rotational framework to a lifting-line aerodynamic code. The morphing energy is calculated by summing actuation moments, applied at the beam nodes, multiplied by the required angular rotations of the beam elements. The code is validated with NASTRAN Aeroelasticity Module and found to be in agreement. Finally the applicability of the code is tested for a sweep morphing manoeuvre and it has been demonstrated that sweep morphing can improve the aerodynamic performance of an aircraft and that the inclusion of aeroelastic effects is important.

  8. Development of Thermally Actuated, High-Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-05-11

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  9. Development of Thermally Actuated, High Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-03-31

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  10. The measure and mismeasure of reciprocity in heterostylous flowers.

    PubMed

    Armbruster, W Scott; Bolstad, Geir H; Hansen, Thomas F; Keller, Barbara; Conti, Elena; Pélabon, Christophe

    2017-07-01

    The goal of biological measurement is to capture underlying biological phenomena in numerical form. The reciprocity index applied to heterostylous flowers is meant to measure the degree of correspondence between fertile parts of opposite sex on complementary (inter-compatible) morphs, reflecting the correspondence of locations of pollen placement on, and stigma contact with, pollinators. Pollen of typical heterostylous flowers can achieve unimpeded fertilization only on opposite-morph flowers. Thus, the implicit goal of this measurement is to assess the likelihood of 'legitimate' pollinations between compatible morphs, and hence reproductive fitness. Previous reciprocity metrics fall short of this goal on both empirical and theoretical grounds. We propose a new measure of reciprocity based on theory that relates floral morphology to reproductive fitness. This method establishes a scale based on adaptive inaccuracy, a measure of the fitness cost of the deviation of phenotypes in a population from the optimal phenotype. Inaccuracy allows the estimation of independent contributions of maladaptive bias (mean departure from optimum) and imprecision (within-population variance) to the phenotypic mismatch (inaccuracy) of heterostylous morphs on a common scale. We illustrate this measure using data from three species of Primula (Primulaceae). © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Oxalis debilis in China: Distribution of Flower Morphs, Sterile Pollen and Polyploidy

    PubMed Central

    LUO, SHIXIAO; ZHANG, DIANXIANG; RENNER, SUSANNE S.

    2006-01-01

    • Background and Aims Oxalis debilis is a South American tristylous species that is currently naturalizing in China. Based on field observations and herbarium data a report is made on its pollination, morph frequencies, pollen viability, seed set and chromosome number. In addition, a new chromosome count for the species in Africa is provided. • Methods Field observations were conducted in six provinces in south-east China. Flower visitors were recorded and nectar sugar was measured with a refractometer. The species' compatibility system was determined by carrying out experimental self- and cross-pollinations on bagged inflorescences. Stigma receptivity and pollen viability was determined using the MTT test. • Key Results and Conclusions Populations of O. debilis in China contain either the mid-style-length morph or the short morph, but not both. Pollination is by nectar- and pollen-foraging bees; pollen viability is low; and seed set in natural and experimentally self- or cross-pollinated flowers is extremely low. Chromosome counts indicate that O. debilis contains diploid and tetraploid forms in its native as well as introduced range, which does not support a previous hypothesis that the predominant vegetative reproduction in this species is an escape from pentaploidy. PMID:16735406

  12. a New Efficient Control Method for Blended Wing Body

    NASA Astrophysics Data System (ADS)

    Wu, Wenhua; Chen, Dehua; Qin, Ning; Peng, Xin; Tang, Xinwu

    The blended wing body (BWB) is the hottest one of the aerodynamic shapes of next generation airliner because of its' high lift-drag ratio, but there are still some flaws that cut down its aerodynamical performance. One of the most harmful flaws is the low efficiency of elevator and direction rudder, this makes the BWB hard to be controlled. In this paper, we proposed a new control method to solve this problem by morphing wing—that is, to control the BWB only by changing its wing shape but without any rudder. The pitching moments, rolling moments and yawing moments are plotted versus the parameters section and the wing shape in figures and are discussed in the paper. The result shows that the morphing wing can control the moments of BWB more precisely and in wider range. The pitching moments, rolling moments and yawing moments increases or decreases linearly or almost linearly, with the value of the selected parameters. These results show that using morphing wing is an excellent aerodynamic control way for a BWB craft.

  13. Use of conserved key amino acid positions to morph protein folds.

    PubMed

    Reddy, Boojala V B; Li, Wilfred W; Bourne, Philip E

    2002-07-15

    By using three-dimensional (3D) structure alignments and a previously published method to determine Conserved Key Amino Acid Positions (CKAAPs) we propose a theoretical method to design mutations that can be used to morph the protein folds. The original Paracelsus challenge, met by several groups, called for the engineering of a stable but different structure by modifying less than 50% of the amino acid residues. We have used the sequences from the Protein Data Bank (PDB) identifiers 1ROP, and 2CRO, which were previously used in the Paracelsus challenge by those groups, and suggest mutation to CKAAPs to morph the protein fold. The total number of mutations suggested is less than 40% of the starting sequence theoretically improving the challenge results. From secondary structure prediction experiments of the proposed mutant sequence structures, we observe that each of the suggested mutant protein sequences likely folds to a different, non-native potentially stable target structure. These results are an early indicator that analyses using structure alignments leading to CKAAPs of a given structure are of value in protein engineering experiments. Copyright 2002 Wiley Periodicals, Inc.

  14. Ongoing niche differentiation under high gene flow in a polymorphic brackish water threespine stickleback (Gasterosteus aculeatus) population.

    PubMed

    Østbye, Kjartan; Taugbøl, Annette; Ravinet, Mark; Harrod, Chris; Pettersen, Ruben Alexander; Bernatchez, Louis; Vøllestad, Leif Asbjørn

    2018-02-05

    Marine threespine sticklebacks colonized and adapted to brackish and freshwater environments since the last Pleistocene glacial. Throughout the Holarctic, three lateral plate morphs are observed; the low, partial and completely plated morph. We test if the three plate morphs in the brackish water Lake Engervann, Norway, differ in body size, trophic morphology (gill raker number and length), niche (stable isotopes; δ 15 N, δ 13 C, and parasites (Theristina gasterostei, Trematoda spp.)), genetic structure (microsatellites) and the lateral-plate encoding Stn382 (Ectodysplasin) gene. We examine differences temporally (autumn 2006/spring 2007) and spatially (upper/lower sections of the lake - reflecting low versus high salinity). All morphs belonged to one gene pool. The complete morph was larger than the low plated, with the partial morph intermediate. The number of lateral plates ranged 8-71, with means of 64.2 for complete, 40.3 for partial, and 14.9 for low plated morph. Stickleback δ 15 N was higher in the lower lake section, while δ 13 C was higher in the upper section. Stickleback isotopic values were greater in autumn. The low plated morph had larger variances in δ 15 N and δ 13 C than the other morphs. Sticklebacks in the upper section had more T. gasterostei than in the lower section which had more Trematoda spp. Sticklebacks had less T. gasterostei, but more Trematoda spp. in autumn than spring. Sticklebacks with few and short rakers had more T. gasterostei, while sticklebacks with longer rakers had more Trematoda. spp. Stickleback with higher δ 15 N values had more T. gasterostei, while sticklebacks with higher δ 15 N and δ 13 C values had more Trematoda spp. The low plated morph had fewer Trematoda spp. than other morphs. Trait-ecology associations may imply that the three lateral plate morphs in the brackish water lagoon of Lake Engervann are experiencing ongoing divergent selection for niche and migratory life history strategies under high gene flow. As such, the brackish water zone may generally act as a generator of genomic diversity to be selected upon in the different environments where threespine sticklebacks can live.

  15. Automatic Tracking Of Remote Sensing Precipitation Data Using Genetic Algorithm Image Registration Based Automatic Morphing: September 1999 Storm Floyd Case Study

    NASA Astrophysics Data System (ADS)

    Chiu, L.; Vongsaard, J.; El-Ghazawi, T.; Weinman, J.; Yang, R.; Kafatos, M.

    U Due to the poor temporal sampling by satellites, data gaps exist in satellite derived time series of precipitation. This poses a challenge for assimilating rain- fall data into forecast models. To yield a continuous time series, the classic image processing technique of digital image morphing has been used. However, the digital morphing technique was applied manually and that is time consuming. In order to avoid human intervention in the process, an automatic procedure for image morphing is needed for real-time operations. For this purpose, Genetic Algorithm Based Image Registration Automatic Morphing (GRAM) model was developed and tested in this paper. Specifically, automatic morphing technique was integrated with Genetic Algo- rithm and Feature Based Image Metamorphosis technique to fill in data gaps between satellite coverage. The technique was tested using NOWRAD data which are gener- ated from the network of NEXRAD radars. Time series of NOWRAD data from storm Floyd that occurred at the US eastern region on September 16, 1999 for 00:00, 01:00, 02:00,03:00, and 04:00am were used. The GRAM technique was applied to data col- lected at 00:00 and 04:00am. These images were also manually morphed. Images at 01:00, 02:00 and 03:00am were interpolated from the GRAM and manual morphing and compared with the original NOWRAD rainrates. The results show that the GRAM technique outperforms manual morphing. The correlation coefficients between the im- ages generated using manual morphing are 0.905, 0.900, and 0.905 for the images at 01:00, 02:00,and 03:00 am, while the corresponding correlation coefficients are 0.946, 0.911, and 0.913, respectively, based on the GRAM technique. Index terms ­ Remote Sensing, Image Registration, Hydrology, Genetic Algorithm, Morphing, NEXRAD

  16. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang

    2018-03-01

    Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.

  17. Preference for Male Traits Differ in Two Female Morphs of the Tree Lizard, Urosaurus ornatus

    PubMed Central

    Lattanzio, Matthew S.; Metro, Kevin J.; Miles, Donald B.

    2014-01-01

    Non-random female mating preferences may contribute to the maintenance of phenotypic variation in color polymorphic species. However, the effect of female preference depends on the types of male traits used as signals by receptive females. If preference signals derive from discrete male traits (i.e., morph-specific), female preferences may rapidly fix to a morph. However, female preference signals may also include condition-dependent male traits. In this scenario, female preference may differ depending on the social context (i.e., male morph availability). Male tree lizards (Urosaurus ornatus) exhibit a dewlap color polymorphism that covaries with mating behavior. Blue morph males are aggressive and defend territories, yellow males are less aggressive and defend smaller territories, and orange males are typically nomadic. Female U. ornatus are also polymorphic in dewlap color, but the covariation between dewlap color and female behavior is unknown. We performed an experiment to determine how female mate choice depends on the visual and chemical signals produced by males. We also tested whether female morphs differ in their preferences for these signals. Female preferences involved both male dewlap color and size of the ventral color patch. However, the female morphs responded to these signals differently and depended on the choice between the types of male morphs. Our experiment revealed that females may be capable of distinguishing among the male morphs using chemical signals alone. Yellow females exhibit preferences based on both chemical and visual signals, which may be a strategy to avoid ultra-dominant males. In contrast, orange females may prefer dominant males. We conclude that female U. ornatus morphs differ in mating behavior. Our findings also provide evidence for a chemical polymorphism among male lizards in femoral pore secretions. PMID:25033282

  18. Design and aerodynamic characteristics of a span morphing wing

    NASA Astrophysics Data System (ADS)

    Yu, Yuemin; Liu, Yanju; Leng, Jinsong

    2009-03-01

    Flight vehicles are often designed to function around a primary operating point such as an efficient cruise or a high maneuverability mode. Performance and efficiency deteriorate rapidly as the airplane moves towards other portions of the flight envelope. One solution to this quandary is to radically change the shape of the aircraft. This yields both improved efficiency and a larger flight envelope. This global shape change is an example of morphing aircraft . One concept of morphing is the span morphing wing in which the wingspan is varied to accommodate multiple flight regimes. This type of design allows for at least two discreet modes of the aircraft. The original configuration, in which the extensible portion of the wing is fully retracted, yields a high speed dash mode. Fully extending the wing provides the aircraft with a low speed mode tailored for fine tracking and loiter tasks. This paper discusses the design of a span morphing wing that permits a change in the aspect ratio while simultaneously supporting structural wing loads. The wing cross section is maintained by NACA 4412 rib sections . The span morphing wing was investigated in different configurations. The wing area and the aspect ratio of the span morphing wing increase as the wings pan increases. Computational aerodynamics are used to estimate the performance and dynamic characteristics of each wing shape of this span morphing wing as its wingspan is changed. Results show that in order to obtain the same lift, the conventional wing requires a larger angle of attach(AOA) than that of the span morphing wing.The lift of the span morphing wing increases as the wing span ,Mach number and AOA increases.

  19. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho

    2014-07-01

    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.

  20. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    USGS Publications Warehouse

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  1. Fraudulent ID using face morphs: Experiments on human and automatic recognition

    PubMed Central

    Robertson, David J.; Kramer, Robin S. S.

    2017-01-01

    Matching unfamiliar faces is known to be difficult, and this can give an opportunity to those engaged in identity fraud. Here we examine a relatively new form of fraud, the use of photo-ID containing a graphical morph between two faces. Such a document may look sufficiently like two people to serve as ID for both. We present two experiments with human viewers, and a third with a smartphone face recognition system. In Experiment 1, viewers were asked to match pairs of faces, without being warned that one of the pair could be a morph. They very commonly accepted a morphed face as a match. However, in Experiment 2, following very short training on morph detection, their acceptance rate fell considerably. Nevertheless, there remained large individual differences in people’s ability to detect a morph. In Experiment 3 we show that a smartphone makes errors at a similar rate to ‘trained’ human viewers—i.e. accepting a small number of morphs as genuine ID. We discuss these results in reference to the use of face photos for security. PMID:28328928

  2. Fraudulent ID using face morphs: Experiments on human and automatic recognition.

    PubMed

    Robertson, David J; Kramer, Robin S S; Burton, A Mike

    2017-01-01

    Matching unfamiliar faces is known to be difficult, and this can give an opportunity to those engaged in identity fraud. Here we examine a relatively new form of fraud, the use of photo-ID containing a graphical morph between two faces. Such a document may look sufficiently like two people to serve as ID for both. We present two experiments with human viewers, and a third with a smartphone face recognition system. In Experiment 1, viewers were asked to match pairs of faces, without being warned that one of the pair could be a morph. They very commonly accepted a morphed face as a match. However, in Experiment 2, following very short training on morph detection, their acceptance rate fell considerably. Nevertheless, there remained large individual differences in people's ability to detect a morph. In Experiment 3 we show that a smartphone makes errors at a similar rate to 'trained' human viewers-i.e. accepting a small number of morphs as genuine ID. We discuss these results in reference to the use of face photos for security.

  3. Shape Sensing a Morphed Wing with an Optical Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2005-01-01

    We suggest using distributed fiber Bragg sensors systems which were developed locally at Langley Research Center carefully placed on the wing surface to collect strain component information at each location. Then we used the fact that the rate change of slope in the definition of linear strain is very small and can be treated as a constant. Thereby the strain distribution information of a morphed surface can be reduced into a distribution of local slope information of a flat surface. In other words a morphed curve surface is replaced by the collection of individual flat surface of different slope. By assembling the height of individual flat surface, the morphed curved surface can be approximated. A more sophisticated graphic routine can be utilized to restore the curved morphed surface. With this information, the morphed wing can be further adjusted and controlled. A numerical demonstration is presented.

  4. High-Fidelity Aerostructural Design Optimization of Transport Aircraft with Continuous Morphing Trailing Edge Technology

    NASA Astrophysics Data System (ADS)

    Burdette, David A., Jr.

    Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic commercial transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current configurations allow flap and aileron droop; however, this approach provides limited degrees of freedom and increased drag produced by gaps in the wing's surface. Leading members in the aeronautics community including NASA, AFRL, Boeing, and a number of academic institutions have extensively researched morphing technology for its potential to improve aircraft efficiency. With modern computational tools it is possible to accurately and efficiently model aircraft configurations in order to quantify the efficiency improvements offered by mor- phing technology. Coupled high-fidelity aerodynamic and structural solvers provide the capability to model and thoroughly understand the nuanced trade-offs involved in aircraft design. This capability is important for a detailed study of the capabilities of morphing trailing edge technology. Gradient-based multidisciplinary design opti- mization provides the ability to efficiently traverse design spaces and optimize the trade-offs associated with the design. This thesis presents a number of optimization studies comparing optimized config- urations with and without morphing trailing edge devices. The baseline configuration used throughout this work is the NASA Common Research Model. The first opti- mization comparison considers the optimal fuel burn predicted by the Breguet range equation at a single cruise point. This initial singlepoint optimization comparison demonstrated a limited fuel burn savings of less than 1%. Given the effectiveness of the passive aeroelastic tailoring in the optimized non-morphing wing, the singlepoint optimization offered limited potential for morphing technology to provide any bene- fit. To provide a more appropriate comparison, a number of multipoint optimizations were performed. With a 3-point stencil, the morphing wing burned 2.53% less fuel than its optimized non-morphing counterpart. Expanding further to a 7-point stencil, the morphing wing used 5.04% less fuel. Additional studies demonstrate that the size of the morphing device can be reduced without sizable performance reductions, and that as aircraft wings' aspect ratios increase, the effectiveness of morphing trailing edge devices increases. The final set of studies in this thesis consider mission analy- sis, including climb, multi-altitude cruise, and descent. These mission analyses were performed with a number of surrogate models, trained with O(100) optimizations. These optimizations demonstrated fuel burn reductions as large as 5% at off-design conditions. The fuel burn predicted by the mission analysis was up to 2.7% lower for the morphing wing compared to the conventional configuration.

  5. Acoustic characteristics used by Japanese macaques for individual discrimination.

    PubMed

    Furuyama, Takafumi; Kobayasi, Kohta I; Riquimaroux, Hiroshi

    2017-10-01

    The vocalizations of primates contain information about speaker individuality. Many primates, including humans, are able to distinguish conspecifics based solely on vocalizations. The purpose of this study was to investigate the acoustic characteristics used by Japanese macaques in individual vocal discrimination. Furthermore, we tested human subjects using monkey vocalizations to evaluate species specificity with respect to such discriminations. Two monkeys and five humans were trained to discriminate the coo calls of two unfamiliar monkeys. We created a stimulus continuum between the vocalizations of the two monkeys as a set of probe stimuli (whole morph). We also created two sets of continua in which only one acoustic parameter, fundamental frequency ( f 0 ) or vocal tract characteristic (VTC), was changed from the coo call of one monkey to that of another while the other acoustic feature remained the same ( f 0 morph and VTC morph, respectively). According to the results, the reaction times both of monkeys and humans were correlated with the morph proportion under the whole morph and f 0 morph conditions. The reaction time to the VTC morph was correlated with the morph proportion in both monkeys, whereas the reaction time in humans, on average, was not correlated with morph proportion. Japanese monkeys relied more consistently on VTC than did humans for discriminating monkey vocalizations. Our results support the idea that the auditory system of primates is specialized for processing conspecific vocalizations and suggest that VTC is a significant acoustic feature used by Japanese macaques to discriminate conspecific vocalizations. © 2017. Published by The Company of Biologists Ltd.

  6. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  7. Survival of timber rattlesnakes (Crotalus horridus) estimated by capture-recapture models in relation to age, sex, color morph, time, and birthplace

    USGS Publications Warehouse

    Brown, W.S.; Kery, M.; Hines, J.E.

    2007-01-01

    Juvenile survival is one of the least known elements of the life history of many species, in particular snakes. We conducted a mark–recapture study of Crotalus horridus from 1978–2002 in northeastern New York near the northern limits of the species' range. We marked 588 neonates and estimated annual age-, sex-, and morph-specific recapture and survival rates using the Cormack-Jolly-Seber (CJS) model. Wild-caught neonates (field-born, n  =  407) and neonates produced by captive-held gravid females (lab-born, n  =  181) allowed comparison of the birthplace, or lab treatment effect, in estimated survival. Recapture rates declined from about 10–20% over time while increasing from young to older age classes. Estimated survival rates (S ± 1 SE) in the first year were significantly higher among field-born (black morph: S  =  0.773 ± 0.203; yellow morph: S  =  0.531 ± 0.104) than among lab-born snakes (black morph: S  =  0.411 ± 0.131; yellow morph: S  =  0.301 ± 0.081). Lower birth weights combined with a lack of field exposure until release apparently contributed to the lower survival rate of lab-born snakes. Subsequent survival estimates for 2–4-yr-old snakes were S  =  0.845 ± 0.084 for the black morph and S  =  0.999 (SE not available) for the yellow morph, and for ≥5-yr-old snakes S  =  0.958 ± 0.039 (black morph) and S  =  0.822 ± 0.034 (yellow morph). The most parsimonious model overall contained an independent time trend for survival of each age, morph, and lab-treatment group. For snakes of the first two age groups (ages 1 yr and 2–4 yr), survival tended to decline over the years for both morphs, while for adult snakes (5 yr and older), survival was constant or even slightly increased. Our data on survival and recapture are among the first rigorous estimates of these parameters in a rattlesnake and among the few yet available for any viperid snake. These data are useful for analyses of the life-history strategy, population dynamics, and conservation of this long-lived snake.

  8. Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence?

    PubMed Central

    2010-01-01

    Background Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. Results Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. Conclusions Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations. PMID:20813033

  9. De novo Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species Lithospermum multiflorum

    PubMed Central

    Cohen, James I.

    2016-01-01

    Genes controlling the morphological, micromorphological, and physiological components of the breeding system distyly have been hypothesized, but many of the genes have not been investigated throughout development of the two floral morphs. To this end, the present study is an examination of comparative transcriptomes from three stages of development for the floral organs of the morphs of Lithospermum multiflorum. Transcriptomes of flowers of the two morphs, from various stages of development, were sequenced using an Illumina HiSeq 2000. The floral transcriptome of L. multiflorum was assembled, and differential gene expression (DE) was identified between morphs, throughout development. Additionally, Gene Ontology (GO) terms for DE genes were determined. Fewer genes were DE early in development compared to later in development, with more genes highly expressed in the gynoecium of the SS morph and the corolla and androecium of the LS morph. A reciprocal pattern was observed later in development, and many more genes were DE during this latter stage. During early development, DE genes appear to be involved in growth and floral development, and during later development, DE genes seem to affect physiological functions. Interestingly, many genes involved in response to stress were identified as DE between morphs. PMID:28066486

  10. De novo Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species Lithospermum multiflorum.

    PubMed

    Cohen, James I

    2016-01-01

    Genes controlling the morphological, micromorphological, and physiological components of the breeding system distyly have been hypothesized, but many of the genes have not been investigated throughout development of the two floral morphs. To this end, the present study is an examination of comparative transcriptomes from three stages of development for the floral organs of the morphs of Lithospermum multiflorum . Transcriptomes of flowers of the two morphs, from various stages of development, were sequenced using an Illumina HiSeq 2000. The floral transcriptome of L. multiflorum was assembled, and differential gene expression (DE) was identified between morphs, throughout development. Additionally, Gene Ontology (GO) terms for DE genes were determined. Fewer genes were DE early in development compared to later in development, with more genes highly expressed in the gynoecium of the SS morph and the corolla and androecium of the LS morph. A reciprocal pattern was observed later in development, and many more genes were DE during this latter stage. During early development, DE genes appear to be involved in growth and floral development, and during later development, DE genes seem to affect physiological functions. Interestingly, many genes involved in response to stress were identified as DE between morphs.

  11. Parasites and parallel divergence of the number of individual MHC alleles between sympatric three-spined stickleback Gasterosteus aculeatus morphs in Iceland.

    PubMed

    Natsopoulou, M E; Pálsson, S; Ólafsdóttir, G Á

    2012-10-01

    Two pairs of sympatric three-spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  12. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed over the upper and lower surfaces of a standard airfoil, proves to be an effective alternative to standard control surfaces by increasing the flight capability of bird-scale UAVs. The results obtained for this wing design under various flight and flap configurations provide insight into its aerodynamic behavior, which enhance the maneuverability and controllability. The overall method acts as an important tool to create an aerodynamic database to develop a distributed control system for autonomous operation of the multi-flap morphing wing, supporting the use of viscous-inviscid methods as a tool in rapid aerodynamic analysis.

  13. Recent Results from NASA's Morphing Project

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Washburn, Anthony E.; Horta, Lucas G.; Bryant, Robert G.; Cox, David E.; Siochi, Emilie J.; Padula, Sharon L.; Holloway, Nancy M.

    2002-01-01

    The NASA Morphing Project seeks to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include macro, micro, structural and/or fluidic approaches. The project includes research on smart materials, adaptive structures, micro flow control, biomimetic concepts, optimization and controls. This paper presents an updated overview of the content of the Morphing Project including highlights of recent research results.

  14. UNUSUAL PHENOLIC COMPOUNDS CONTRIBUTE TO ECOPHYSIOLOGICAL PERFORMANCE IN THE PURPLE-COLORED GREEN ALGA ZYGOGONIUM ERICETORUM (ZYGNEMATOPHYCEAE, STREPTOPHYTA) FROM A HIGH-ALPINE HABITAT

    PubMed Central

    Aigner, Siegfried; Remias, Daniel; Karsten, Ulf; Holzinger, Andreas

    2013-01-01

    The filamentous green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) was collected in a high-alpine rivulet in Tyrol, Austria. Two different morphotypes of this alga were found: a purple morph with a visible purple vacuolar content and a green morph lacking this coloration. These morphotypes were compared with respect to their secondary metabolites, ultrastructure, and ecophysiological properties. Colorimetric tests with aqueous extracts of the purple morph indicated the presence of soluble compounds such as phenolics and hydrolyzable tannins. High-performance liquid chromatography-screening showed that Z. ericetorum contained several large phenolic peaks with absorption maxima at ∼280 nm and sometimes with minor maxima at ∼380 nm. Such compounds are uncommon for freshwater green microalgae, and could contribute to protect the organism against increased UV and visible (VIS) irradiation. The purple Z. ericetorum contained larger amounts (per dry weight) of the putative phenolic substances than the green morph; exposure to irradiation may be a key factor for accumulation of these phenolic compounds. Transmission electron microscopy of the purple morph showed massive vacuolization with homogenous medium electron-dense content in the cell periphery, which possibly contains the secondary compounds. In contrast, the green morph had smaller, electron-translucent vacuoles. The ecophysiological data on photosynthesis and desiccation tolerance indicated that increasing photon fluence densities led to much higher relative electron transport rates (rETR) in the purple than in the green morph. These data suggest that the secondary metabolites in the purple morph are important for light acclimation in high-alpine habitats. However, the green morph recovered better after 4 d of rehydration following desiccation stress. PMID:25810559

  15. The colour of paternity: extra-pair paternity in the wild Gouldian finch does not appear to be driven by genetic incompatibility between morphs.

    PubMed

    Bolton, P E; Rollins, L A; Brazill-Boast, J; Kim, K-W; Burke, T; Griffith, S C

    2017-01-01

    In socially monogamous species, individuals can use extra-pair paternity and offspring sex allocation as adaptive strategies to ameliorate costs of genetic incompatibility with their partner. Previous studies on domesticated Gouldian finches (Erythrura gouldiae) demonstrated a genetic incompatibility between head colour morphs, the effects of which are more severe in female offspring. Domesticated females use differential sex allocation, and extra-pair paternity with males of compatible head colour, to reduce fitness costs associated with incompatibility in mixed-morph pairings. However, laboratory studies are an oversimplification of the complex ecological factors experienced in the wild and may only reflect the biology of a domesticated species. This study aimed to examine the patterns of parentage and sex ratio bias with respect to colour pairing combinations in a wild population of the Gouldian finch. We utilized a novel PCR assay that allowed us to genotype the morph of offspring before the morph phenotype develops and to explore bias in morph paternity and selection at the nest. Contrary to previous findings in the laboratory, we found no effect of pairing combinations on patterns of extra-pair paternity, offspring sex ratio or selection on morphs in nestlings. In the wild, the effect of morph incompatibility is likely much smaller, or absent, than was observed in the domesticated birds. Furthermore, the previously studied domesticated population is genetically differentiated from the wild population, consistent with the effects of domestication. It is possible that the domestication process fostered the emergence (or enhancement) of incompatibility between colour morphs previously demonstrated in the laboratory. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. The endocrine-genetic basis of life-history variation: the relationship between the ecdysteroid titer and morph-specific reproduction in the wing-polymorphic cricket Gryllus firmus.

    PubMed

    Zera, A J; Bottsford, J

    2001-03-01

    The hormonal basis of variation in life-history traits is a poorly studied topic in life-history evolution. An important step in identifying the endocrine-genetic causes of life-history variation is documenting statistical and functional associations between hormone titers and genotypes/phenotypes that vary in life-history traits. To this end, we compared the blood ecdysteroid titer and the mass of the ovaries during the first week of adulthood among a flight-capable morph and two flightless morphs of the wing-polymorphic cricket Gryllus firmus. Ecdysteroids are a group of structurally related hormones that regulate many important aspects of reproduction in insects. Both the ecdysteroid titer and ovarian mass were significantly higher in each of two flightless morphs compared with the flight-capable morph throughout the first week of adulthood. Genetically based differences in the ecdysteroid titer and ovarian mass between morphs from different selected lines were similar to phenotypically based differences among morphs from the same control (unselected) lines. By day 7 of adulthood, ovaries were typically 200-400% larger and the ecdysteroid titer was 60-300% higher in flightless versus the flight-capable morph. In addition, highly significant, positive, phenotypic correlations were observed between the ecdysteroid titer and ovarian mass in pooled samples of the two flightless and flight-capable crickets from control lines or from selected lines. The ecdysteroid titer was sufficiently elevated in the flightless morphs to account for their elevated ovarian growth. This is the first direct documentation that naturally occurring phenotypes/genotypes that differ in early fecundity, a key life-history trait, also differ phenotypically and genetically in the titer of a key reproductive hormone that potentially regulates that trait.

  17. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional. Then we will present some early examples of IMERG data products and compare them with existing products to illustrate how the design of IMERG affects the overall performance of the algorithm.

  18. Satellite precipitation estimation over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Porcu, F.; Gjoka, U.

    2012-04-01

    Precipitation characteristics over the Tibetan Plateau are very little known, given the scarcity of reliable and widely distributed ground observation, thus the satellite approach is a valuable choice for large scale precipitation analysis and hydrological cycle studies. However,the satellite perspective undergoes various shortcomings at the different wavelengths used in atmospheric remote sensing. In the microwave spectrum often the high soil emissivity masks or hides the atmospheric signal upwelling from light-moderate precipitation layers, while low and relatively thin precipitating clouds are not well detected in the visible-infrared, because of their low contrast with cold and bright (if snow covered) background. In this work an IR-based, statistical rainfall estimation technique is trained and applied over the Tibetan Plateau hydrological basin to retrive precipitation intensity at different spatial and temporal scales. The technique is based on a simple artificial neural network scheme trained with two supervised training sets assembled for monsoon season and for the rest of the year. For the monsoon season (estimated from June to September), the ground radar precipitation data for few case studies are used to build the training set: four days in summer 2009 are considered. For the rest of the year, CloudSat-CPR derived snowfall rate has been used as reference precipitation data, following the Kulie and Bennartz (2009) algorithm. METEOSAT-7 infrared channels radiance (at 6.7 and 11 micometers) and derived local variability features (such as local standard deviation and local average) are used as input and the actual rainrate is obtained as output for each satellite slot, every 30 minutes on the satellite grid. The satellite rainrate maps for three years (2008-2010) are computed and compared with available global precipitation products (such as C-MORPH and TMPA products) and with other techniques applied to the Plateau area: similarities and differences are discussed. Relevant characteristics of precipitation fields are derived and analyzed, such as diurnal cycle, precipitation frequency, maximum rainrate distribution and dry areas detection. Interannual variability of precipitation pattern and intensity is also discussed.

  19. Hydrologic Evaluation of Integrated Multi-satellite Retrivals for GPM over Nanliu River Basin in Southern China

    NASA Astrophysics Data System (ADS)

    Zhenqing, L.; Sheng, C.; Chaoying, H.

    2017-12-01

    The core satellite of Global Precipitation Measurement (GPM) mission was launched on 27 February2014 with two core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI). The algorithm of Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH) ADDIN EN.CITE ADDIN EN.CITE.DATA , Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS).Therefore, IMERG is deemed to be the state-of-art precipitation product with high spatio-temporal resolution of 0.1°/30min. The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. Early studies about assessment of IMERG with gauge observations or analysis products show that the current version GPM Day-1 product IMERG demonstrates promising performance over China [1], Europe [2], and United States [3]. However, few studies are found to study the IMERG' potentials of hydrologic utility.In this study, the real-time and final run post real-time IMERG products are hydrologically evaluated with gauge analysis product as reference over Nanliu River basin (Fig.1) in Southern China since March 2014 to February 2017 with Xinanjiang model. Statistics metrics Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), and Nash-Sutcliffe (NSCE) index will be used to compare the stream flow simulated with IMERG to the observed stream flow. This timely hydrologic evaluation is expected to offer insights into IMERG' potentials in hydrologic utility and thus provide useful feedback to the IMERG algorithm developers and the hydrologic users.

  20. Day 1 for the Integrated Multi-Satellite Retrievals for GPM (IMERG) Data Sets

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K. L.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2014-12-01

    The Integrated Multi-satellitE Retrievals for GPM (IMERG) is designed to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG was developed to use GPM Core Observatory data as a reference for the international constellation of satellites of opportunity that constitute the GPM virtual constellation. Computationally, IMERG is a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design, development, testing, and current status. IMERG provides 0.1°x0.1° half-hourly data, and will be run at multiple times, providing successively more accurate estimates: 4 hours, 8 hours, and 2 months after observation time. In Day 1 the spatial extent is 60°N-S, for the period March 2014 to the present. In subsequent reprocessing the data will extend to fully global, covering the period 1998 to the present. Both the set of input data set retrievals and the IMERG system are substantially different than those used in previous U.S. products. The input passive microwave data are all being produced with GPROF2014, which is substantially upgraded compared to previous versions. For the first time, this includes microwave sounders. Accordingly, there is a strong need to carefully check the initial test data sets for performance. IMERG output will be illustrated using pre-operational test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. Finally, we will summarize the expected release of various output products, and the subsequent reprocessing sequence.

  1. SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture

    NASA Astrophysics Data System (ADS)

    Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang

    2018-02-01

    Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value < 10.34 mm over 5 days) and bias (median value < -14.44 %) during the evaluation period. The validation has been carried out at original resolution (0.25°) over Europe, Australia and five other areas worldwide to test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.

  2. Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen.

    PubMed

    Painting, Christina J; Probert, Anna F; Townsend, Daniel J; Holwell, Gregory I

    2015-11-06

    Alternative reproductive tactics in animals are commonly associated with distinct male phenotypes resulting in polymorphism of sexually selected weapons such as horns and spines. Typically, morphs are divided between small (unarmed) and large (armed) males according to one or more developmental thresholds in association with body size. Here, we describe remarkable weapon trimorphism within a single species, where two exaggerated weapon morphs and a third morph with reduced weaponry are present. Male Pantopsalis cheliferoides harvestmen display exaggerated chelicerae (jaws) which are highly variable in length among individuals. Across the same body size spectrum, however, some males belong to a distinct second exaggerated morph which possesses short, broad chelicerae. Multiple weapon morphs in a single species is a previously unknown phenomenon and our findings have significant implications for understanding weapon diversity and maintenance of polymorphism. Specifically, this species will be a valuable model for testing how weapons diverge by being able to test directly for the circumstances under which a certain weapon type is favoured and how weapon shape relates to performance.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, R.H.

    A three-year field study was conducted in Illinois to investigate seasonal, annual and geographic variation in color morph proportions of the cricket frog, Acris crepitans. Life history information (i.e., time of overwintering, emergence of adults in spring, breeding, metamorphosis, emergence of juveniles in summer, and growth and survival) for A. crepitans color morphs was compared to evaluate the potential adaptive significance of this polymorphism. Although seasonal variations in color morph proportions were not significant, some annual and geographic differences were. No differences were found among morphs related to the timing of various life history events. Studies of individual movements, dispersal,more » growth and survivorship also revealed no differences among morphs. Comparison of these data, as well as physiological and behavioral data for A. crepitans from Illinois, with similar data from Texas and elsewhere suggests that different factors must operate throughout the species range to maintain this color polymorphism. Chance may be a major factor in determining color morph proportions in localized populations in Illinois. 22 references, 5 figures, 3 tables.« less

  4. Comparative proteomic analysis of eggplant (Solanum melongena L.) heterostylous pistil development

    PubMed Central

    Li, Wenjia; Jiang, Yaqing; Song, Shiwei; Li, Yan; Chen, Riyuan

    2017-01-01

    Heterostyly is a common floral polymorphism, but the proteomic basis of this trait is still largely unexplored. In this study, self- and cross-pollination of L-morph and S-morph flowers and comparison of embryo sac development in eggplant (Solanum melongena L.) suggested that lower fruit set from S-morph flowers results from stigma-pollen incompatibility. To explore the molecular mechanism underlying heterostyly development, we conducted isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis of eggplant pistils for L- and S-morph flowers. A total of 5,259 distinct proteins were identified during heterostyly development. Compared S-morph flowers with L-morph, we discovered 57 and 184 differentially expressed proteins (DEPs) during flower development and maturity, respectively. Quantitative real time polymerase chain reactions were used for nine genes to verify DEPs from the iTRAQ approach. During flower development, DEPs were mainly involved in morphogenesis, biosynthetic processes, and metabolic pathways. At flower maturity, DEPs primarily participated in biosynthetic processes, metabolic pathways, and the formation of ribosomes and proteasomes. Additionally, some proteins associated with senescence and programmed cell death were found to be upregulated in S-morph pistils, which may lead to the lower fruit set in S-morph flowers. Although the exact roles of these related proteins are not yet known, this was the first attempt to use an iTRAQ approach to analyze proteomes of heterostylous eggplant flowers, and these results will provide insights into biochemical events taking place during the development of heterostyly. PMID:28586360

  5. PROTECTED POLYMORPHISMS AND EVOLUTIONARY STABILITY OF PATCH-SELECTION STRATEGIES IN STOCHASTIC ENVIRONMENTS

    PubMed Central

    EVANS, STEVEN N.; HENING, ALEXANDRU; SCHREIBER, SEBASTIAN J.

    2015-01-01

    We consider a population living in a patchy environment that varies stochastically in space and time. The population is composed of two morphs (that is, individuals of the same species with different genotypes). In terms of survival and reproductive success, the associated phenotypes differ only in their habitat selection strategies. We compute invasion rates corresponding to the rates at which the abundance of an initially rare morph increases in the presence of the other morph established at equilibrium. If both morphs have positive invasion rates when rare, then there is an equilibrium distribution such that the two morphs coexist; that is, there is a protected polymorphism for habitat selection. Alternatively, if one morph has a negative invasion rate when rare, then it is asymptotically displaced by the other morph under all initial conditions where both morphs are present. We refine the characterization of an evolutionary stable strategy for habitat selection from [Schreiber, 2012] in a mathematically rigorous manner. We provide a necessary and sufficient condition for the existence of an ESS that uses all patches and determine when using a single patch is an ESS. We also provide an explicit formula for the ESS when there are two habitat types. We show that adding environmental stochasticity results in an ESS that, when compared to the ESS for the corresponding model without stochasticity, spends less time in patches with larger carrying capacities and possibly makes use of sink patches, thereby practicing a spatial form of bet hedging. PMID:25151369

  6. Morph-specific differences in reproductive success in the distylous Primula veris in a context of habitat fragmentation

    NASA Astrophysics Data System (ADS)

    Van Rossum, Fabienne; De Sousa, Sara Campos; Triest, Ludwig

    2006-11-01

    Heterostylous self-incompatible plant species are particularly sensitive to habitat fragmentation and to disruption of pollination processes because of the need of intermorph cross-pollination for producing seeds. Heterostyly is characterized by sexual polymorphism through the occurrence of two (distyly) or three (tristyly) morph types that differ in floral traits (style length and anther position). We examined whether the long-styled (pin) and short-styled (thrum) morph types show differences in reproductive components and responses to habitat fragmentation in the distylous, self-incompatible perennial herb Primula veris. We documented reproductive components for pin and thrum individuals and their relationships with population size, plant density and morph ratio (pin frequency), in nine populations from Flanders (northern Belgium) located in fragmented habitats of the intensively used agricultural landscape. Seed abortion increased in small populations as a result of inbreeding depression. Fruit set increased with plant density. Seed set was positively related to pin proportion. Seed set was higher for pin than thrum in small populations, but lower in large populations. Two hypotheses can be considered to explain these morph-specific differences: a pollen transfer asymmetry, and a reproductive advantage for the partially self-compatible pin morph. Morph types appear to respond differently to habitat fragmentation constraints. A floral morph type showing partial self-compatibility may be favored in populations under pollination failure, because it can increase reproductive success and mating opportunities through intramorph crosses.

  7. Evolutionary flight and enabling smart actuator devices

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  8. The effect of colour polymorphism on thermoregulation in an orb web spider.

    PubMed

    Rao, Dinesh; Mendoza-Cuenca, Luis

    2016-08-01

    Spiders that build aerial webs in open areas face the risk of overheating due to incident solar radiation. These spiders can counteract overheating by either moving the web to another site or by adopting behavioural thermoregulation within the web. Since moving can be costly, studies have suggested that a passive but effective method of reducing heat load is by light reflectance through body colouration. We explored the interaction between colour and thermoregulation in a colour polymorphic species, under both field and laboratory conditions. We show that in natural conditions, the spiders maintain their body temperature below that of the ambient, but with no difference in surface temperature between colour morphs. In laboratory experiments with internal temperature measurements, white morphs bore the risk of overheating better than the yellow morphs since they heated up slower and cooled faster. We suggest that the thermoregulatory properties of colour polymorphism in Verrucosa arenata have physiological consequences and may play an important role in the maintenance of colour polymorphism in this species.

  9. The effect of colour polymorphism on thermoregulation in an orb web spider

    NASA Astrophysics Data System (ADS)

    Rao, Dinesh; Mendoza-Cuenca, Luis

    2016-08-01

    Spiders that build aerial webs in open areas face the risk of overheating due to incident solar radiation. These spiders can counteract overheating by either moving the web to another site or by adopting behavioural thermoregulation within the web. Since moving can be costly, studies have suggested that a passive but effective method of reducing heat load is by light reflectance through body colouration. We explored the interaction between colour and thermoregulation in a colour polymorphic species, under both field and laboratory conditions. We show that in natural conditions, the spiders maintain their body temperature below that of the ambient, but with no difference in surface temperature between colour morphs. In laboratory experiments with internal temperature measurements, white morphs bore the risk of overheating better than the yellow morphs since they heated up slower and cooled faster. We suggest that the thermoregulatory properties of colour polymorphism in Verrucosa arenata have physiological consequences and may play an important role in the maintenance of colour polymorphism in this species.

  10. Evaluation of multiple precipitation products across Mainland China using the triple collocation method without ground truth

    NASA Astrophysics Data System (ADS)

    Tang, G.; Li, C.; Hong, Y.; Long, D.

    2017-12-01

    Proliferation of satellite and reanalysis precipitation products underscores the need to evaluate their reliability, particularly over ungauged or poorly gauged regions. However, it is really challenging to perform such evaluations over regions lacking ground truth data. Here, using the triple collocation (TC) method that is capable of evaluating relative uncertainties in different products without ground truth, we evaluate five satellite-based precipitation products and comparatively assess uncertainties in three types of independent precipitation products, e.g., satellite-based, ground-observed, and model reanalysis over Mainland China, including a ground-based precipitation dataset (the gauge based daily precipitation analysis, CGDPA), the latest version of the European reanalysis agency reanalysis (ERA-interim) product, and five satellite-based products (i.e., 3B42V7, 3B42RT of TMPA, IMERG, CMORPH-CRT, PERSIANN-CDR) on a regular 0.25° grid at the daily timescale from 2013 to 2015. First, the effectiveness of the TC method is evaluated by comparison with traditional methods based on ground observations in a densely gauged region. Results show that the TC method is reliable because the correlation coefficient (CC) and root mean square error (RMSE) are close to those based on the traditional method with a maximum difference only up to 0.08 and 0.71 (mm/day) for CC and RMSE, respectively. Then, the TC method is applied to Mainland China and the Tibetan Plateau (TP). Results indicate that: (1) the overall performance of IMERG is better than the other satellite products over Mainland China; (2) over grid cells without rain gauges in the TP, IMERG and ERA show better performance than CGDPA, indicating the potential of remote sensing and reanalysis data over these regions and the inherent uncertainty of CGDPA due to interpolation using sparsely gauged data; (3) both TMPA-3B42 and CMORPH-CRT have some unexpected CC values over certain grid cells that contain water bodies, reaffirming the overestimation of precipitation over inland water bodies. Overall, the TC method provides not only reliable cross-validation results of precipitation estimates over Mainland China but also a new perspective as to compressively assess multi-source precipitation products, particularly over poorly gauged regions.

  11. The application of thermally induced multistable composites to morphing aircraft structures

    NASA Astrophysics Data System (ADS)

    Mattioni, Filippo; Weaver, Paul M.; Potter, Kevin D.; Friswell, Michael I.

    2008-03-01

    One approach to morphing aircraft is to use bistable or multistable structures that have two or more stable equilibrium configurations to define a discrete set of shapes for the morphing structure. Moving between these stable states may be achieved using an actuation system or by aerodynamic loads. This paper considers three concepts for morphing aircraft based on multistable structures, namely a variable sweep wing, bistable blended winglets and a variable camber trailing edge. The philosophy behind these concepts is outlined, and simulated and experimental results are given.

  12. AVST Morphing Project Research Summaries in Fiscal Year 2001

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.

    2002-01-01

    The Morphing project at the National Aeronautics and Space Agency's Langley Research Center is part of the Aerospace Vehicle Systems Program Office that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing project are to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include micro or macro, structural or fluidic approaches. The current document on the Morphing project is a compilation of research summaries and other information on the project from fiscal year 2001. The focus of this document is to provide a brief overview of the project content, technical results and lessons learned from fiscal year 2001.

  13. Functional dissociation of the left and right fusiform gyrus in self-face recognition.

    PubMed

    Ma, Yina; Han, Shihui

    2012-10-01

    It is well known that the fusiform gyrus is engaged in face perception, such as the processes of face familiarity and identity. However, the functional role of the fusiform gyrus in face processing related to high-level social cognition remains unclear. The current study assessed the functional role of individually defined fusiform face area (FFA) in the processing of self-face physical properties and self-face identity. We used functional magnetic resonance imaging to monitor neural responses to rapidly presented face stimuli drawn from morph continua between self-face (Morph 100%) and a gender-matched friend's face (Morph 0%) in a face recognition task. Contrasting Morph 100% versus Morph 60% that differed in self-face physical properties but were both recognized as the self uncovered neural activity sensitive to self-face physical properties in the left FFA. Contrasting Morphs 50% that were recognized as the self versus a friend on different trials revealed neural modulations associated with self-face identity in the right FFA. Moreover, the right FFA activity correlated with the frequency of recognizing Morphs 50% as the self. Our results provide evidence for functional dissociations of the left and right FFAs in the representations of self-face physical properties and self-face identity. Copyright © 2011 Wiley Periodicals, Inc.

  14. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan systems, the aerodynamic effectiveness of blade morphing is demonstrated by the configurations analyzed. In particular, for the Advanced Ducted Propulsor fan it is demonstrated that the performance levels of the original variable-pitch baseline design can be achieved using blade morphing instead of variable pitch, and for the Source Diagnostic Test fan the performance at important off-design operating points is substantially increased with blade morphing.

  15. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    USGS Publications Warehouse

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.

  16. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.

  17. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed Central

    Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself. PMID:29566015

  18. Development and Validation of the Morphing Fear Questionnaire (MFQ).

    PubMed

    Zysk, Eva; Shafran, Roz; Williams, Tim I; Melli, Gabriele

    2016-11-01

    Morphing fears (also called transformation obsessions) involve concerns that a person may become contaminated by and acquire undesirable characteristics of others. These symptoms are found in patients with obsessive-compulsive disorder (OCD) and are thought to be related to mental contamination. Given the high levels of distress and interference morphing fears can cause, a reliable and valid assessment measure is needed. This article describes the development and evaluation of the Morphing Fear Questionnaire (MFQ), a 13-item measure designed to assess for the presence and severity of morphing fears. A sample of 900 participants took part in the research. Of these, 140 reported having a current diagnosis of OCD (SR-OCD) and 760 reported never having had OCD (N-OCD; of whom 24 reported a diagnosis of an anxiety disorder and 23 reported a diagnosis of depression). Factor structure, reliability and construct and criterion-related validity were investigated. Exploratory and confirmatory factor analyses supported a one-factor structure replicable across the N-OCD and SR-OCD group. The MFQ was found to have high internal consistency and good temporal stability and showed significantly greater associations with convergent measures (assessing obsessive-compulsive symptoms, mental contamination, thought-action fusion and magical thinking) than with divergent measures (assessing depression and anxiety). Moreover, the MFQ successfully discriminated between the SR-OCD sample and the N-OCD group, anxiety disorder sample and depression sample. These findings suggest that the MFQ has sound psychometric properties and that it can be used to assess morphing fear. Clinical implications are discussed. Copyright © 2015 John Wiley & Sons, Ltd. Little remains known about morphing fears, but it is an important area of investigation due to symptoms being highly distressing and often debilitating Because morphing fears commonly present as obscure symptoms, they may not be recognized as a type of OCD The MFQ is a robust measure with clinical utility; it can facilitate recognition and assessment of morphing fears The MFQ will allow for further investigations of the prevalence, correlates and treatment outcomes of morphing fears. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Impact of realistic soil moisture initialization on the representation of extreme events in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Helgert, Sebastian; Khodayar, Samiro

    2017-04-01

    In a warmer Mediterranean climate an increase in the intensity and frequency of extreme events like floods, droughts and extreme heat is expected. The ability to predict such events is still a great challenge and exhibits many uncertainties in the weather forecast and climate predictions. Thereby the missing knowledge about soil moisture-atmosphere interactions and their representation in models is identified as one of the main sources of uncertainty. In this context the soil moisture(SM) plays an important role in the partitioning of sensible and latent heat fluxes on the surface and consequently influences the boundary-layer stability and the precipitation formation. The aim of this research work is to assess the influence of soil moisture-atmosphere interactions on the initiation and development of extreme events in the western Mediterranean (WMED). In this respect the impact of realistic SM initialization on the model representation of extreme events is investigated. High-resolution simulations of different regions in the WMED, including various climate zones from moderate to arid climate, are conducted with the atmospheric COSMO (Consortium for Small-scale Modeling) model in the numerical weather prediction and climate mode. A multiscale temporal and spatial approach is used (days to years, 7km to 2.8km grid spacing). Observational data provided by the framework of the HYdrological cycle in the Mediterranean EXperiment (HyMeX) as well as satellite data such as precipitation from CMORPH (CPC MORPHing technique), evapotranspiration from Land Surface Analysis Satellite Applications Facility (LSA-SAF) and atmospheric moisture from MODIS (Moderate Resolution Imaging Spectroradiometer) are used for process understanding and model validation. To select extreme dry and wet periods the Effective Drought Index (EDI) is calculated. In these periods sensitivity studies of extreme SM initialization scenarios are performed to prove a possible impact of soil moisture on precipitation in the WMED. For the realistic SM initialization different state-of-art high-resolution SM products (25km up to 1km grid spacing) of the Soil Moisture Ocean Salinity mission (SMOS) are examined. A CDF-matching method is applied to reduce the bias between model and SMOS-satellite observation. Moreover, techniques to estimate the initial soil moisture profile from satellite data are tested.

  20. Odour-Mediated Orientation of Beetles Is Influenced by Age, Sex and Morph

    PubMed Central

    Arnold, Sarah E. J.; Stevenson, Philip C.; Belmain, Steven R.

    2012-01-01

    The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies. PMID:23145074

  1. Mutualists and antagonists drive among-population variation in selection and evolution of floral display in a perennial herb

    PubMed Central

    Ågren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan

    2013-01-01

    Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations. PMID:24145439

  2. Mutualists and antagonists drive among-population variation in selection and evolution of floral display in a perennial herb.

    PubMed

    Agren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan

    2013-11-05

    Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0-100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.

  3. Passive morphing of flying wing aircraft: Z-shaped configuration

    NASA Astrophysics Data System (ADS)

    Mardanpour, Pezhman; Hodges, Dewey H.

    2014-01-01

    High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel that increases the absorption of solar energy by decreasing the angle of incidence of the solar radiation at specific times of the day. In this paper solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft), a computer program that is based on geometrically exact, fully intrinsic beam equations and a finite-state induced flow model, was extended to include the ability to simulate morphing of the aircraft into a "Z" configuration. Because of the "long endurance" feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.

  4. Molpher: a software framework for systematic chemical space exploration

    PubMed Central

    2014-01-01

    Background Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the discovery of either novel drugs or new tools for chemical biology. Results In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical space. Through a process we term ‘molecular morphing’, Molpher produces a path of structurally-related compounds. This path is generated by the iterative application of so-called ‘morphing operators’ that represent simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug discovery pipelines. Conclusions Molpher is an open-source software framework for the design of virtual chemical libraries focused on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible and can be easily incorporated into any existing computational drug design pipeline. PMID:24655571

  5. The Perception of Prototypical Motion: Synchronization Is Enhanced with Quantitatively Morphed Gestures of Musical Conductors

    ERIC Educational Resources Information Center

    Wollner, Clemens; Deconinck, Frederik J. A.; Parkinson, Jim; Hove, Michael J.; Keller, Peter E.

    2012-01-01

    Aesthetic theories have long suggested perceptual advantages for prototypical exemplars of a given class of objects or events. Empirical evidence confirmed that morphed (quantitatively averaged) human faces, musical interpretations, and human voices are preferred over most individual ones. In this study, biological human motion was morphed and…

  6. Evolving and Combining Facial Composites: Between-Witness and Within-Witness Morphs Compared

    ERIC Educational Resources Information Center

    Valentine, Tim; Davis, Josh P.; Thorner, Kate; Solomon, Chris; Gibson, Stuart

    2010-01-01

    Student participant-witnesses produced 4 composites of unfamiliar faces with a system that uses a genetic algorithm to evolve appearance of artificial faces. Morphs of 4 composites produced by different witnesses (between-witness morphs) were judged better likenesses (Experiment 1) and were more frequently named (Experiment 2) by participants who…

  7. Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen

    PubMed Central

    Painting, Christina J.; Probert, Anna F.; Townsend, Daniel J.; Holwell, Gregory I.

    2015-01-01

    Alternative reproductive tactics in animals are commonly associated with distinct male phenotypes resulting in polymorphism of sexually selected weapons such as horns and spines. Typically, morphs are divided between small (unarmed) and large (armed) males according to one or more developmental thresholds in association with body size. Here, we describe remarkable weapon trimorphism within a single species, where two exaggerated weapon morphs and a third morph with reduced weaponry are present. Male Pantopsalis cheliferoides harvestmen display exaggerated chelicerae (jaws) which are highly variable in length among individuals. Across the same body size spectrum, however, some males belong to a distinct second exaggerated morph which possesses short, broad chelicerae. Multiple weapon morphs in a single species is a previously unknown phenomenon and our findings have significant implications for understanding weapon diversity and maintenance of polymorphism. Specifically, this species will be a valuable model for testing how weapons diverge by being able to test directly for the circumstances under which a certain weapon type is favoured and how weapon shape relates to performance. PMID:26542456

  8. Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae).

    PubMed

    Anderson, Bruce; Alexandersson, Ronny; Johnson, Steven D

    2010-04-01

    Pollinator-mediated selection has been suggested as a key driver of speciation in plants. We examined the potential role of hawkmoth pollinators in driving allopatric divergence and maintaining sympatric coexistence of morphotypes in the African iris Gladiolus longicollis. Floral tube length in this species varies from 35 mm to 130 mm across its geographic range and reflects the prevailing tongue lengths of local hawkmoth assemblages. The distribution of floral tube lengths is bimodal with two relatively discrete categories--long (about 90 mm) or short (about 50 mm)--that match the bimodal distribution of hawkmoth tongue lengths in eastern South Africa. At a contact site between these two floral morphs, we found few individuals of intermediate length, suggesting limited gene flow between morphs despite their interfertility. A difference in flowering phenology appears to be the main isolating barrier between morphs at this site. Long- and short-tubed morphs differed markedly in the chemical composition of their floral fragrance, a trait that could be used as a cue for morph-specific foraging by hawkmoths. Positive directional selection on tube length was found to occur in both morphs.

  9. Heterospecific aggression bias towards a rarer colour morph.

    PubMed

    Lehtonen, Topi K; Sowersby, Will; Wong, Bob B M

    2015-09-22

    Colour polymorphisms are a striking example of phenotypic diversity, yet the sources of selection that allow different morphs to persist within populations remain poorly understood. In particular, despite the importance of aggression in mediating social dominance, few studies have considered how heterospecific aggression might contribute to the maintenance or divergence of different colour morphs. To redress this gap, we carried out a field-based study in a Nicaraguan crater lake to investigate patterns of heterospecific aggression directed by the cichlid fish, Hypsophrys nicaraguensis, towards colour polymorphic cichlids in the genus Amphilophus. We found that H. nicaraguensis was the most frequent territorial neighbour of the colour polymorphic A. sagittae. Furthermore, when manipulating territorial intrusions using models, H. nicaraguensis were more aggressive towards the gold than dark colour morph of the sympatric Amphilophus species, including A. sagittae. Such a pattern of heterospecific aggression should be costly to the gold colour morph, potentially accounting for its lower than expected frequency and, more generally, highlighting the importance of considering heterospecific aggression in the context of morph frequencies and coexistence in the wild. © 2015 The Author(s).

  10. PhotoMorphs™: A Novel Light-Activated Reagent for Controlling Gene Expression in Zebrafish

    PubMed Central

    Tomasini, Amber J.; Schuler, Aaron D.; Zebala, John A.; Mayer, Alan N.

    2009-01-01

    Manipulating gene expression in zebrafish is critical for exploiting the full potential of this vertebrate model organism. Morpholino oligos are the most commonly employed antisense technology for knocking down gene expression. However, morpholinos suffer from a lack of control over the timing and location of knockdown. In this report, we describe a novel light-activatable knockdown reagent called PhotoMorph™. PhotoMorphs can be generated from existing morpholinos by hybridization with a complementary caging strand containing a photocleavable linkage. The caging strand neutralizes the morpholino activity until irradiation of the PhotoMorph with UV light releases the morpholino. We generated PhotoMorphs to target genes encoding enhanced green fluorescent protein (EGFP), No tail, and E-cadherin to illustrate the utility of this approach. Temporal control of gene expression with PhotoMorphs permitted us to circumvent the early lethal phenotype of E-cadherin knockdown. A splice-blocking PhotoMorph directed to the rheb gene showed light-dependent gene knockdown up to 72 hpf. PhotoMorphs thus offer a new class of laboratory reagents suitable for the spatiotemporal control of gene expression in the zebrafish. PMID:19644983

  11. Adaptive wing structures

    NASA Astrophysics Data System (ADS)

    Reed, John L., Jr.; Hemmelgarn, Christopher D.; Pelley, Bryan M.; Havens, Ernie

    2005-05-01

    Cornerstone Research Group, Inc. (CRG) is developing a unique adaptive wing structure intended to enhance the capability of loitering Unmanned Air Vehicles (UAVs). In order to tailor the wing design to a specific application, CRG has developed a wing structure capable of morphing in chord and increasing planform area by 80 percent. With these features, aircraft will be capable of optimizing their flight efficiency throughout the entire mission profile. The key benefit from this morphing design is increased maneuverability, resulting in improved effectiveness over the current design. During the development process CRG has overcome several challenges in the design of such a structure while incorporating advanced materials capable of maintaining aerodynamic shape and transferring aerodynamic loads while enabling crucial changes in planform shape. To overcome some of these challenges, CRG is working on integration of their shape memory polymer materials into the wing skin to enable seamless morphing. This paper will address the challenges associated with the development of a morphing aerospace structure capable of such large shape change, the materials necessary for enabling morphing capabilities, and the current status of the morphing program within CRG.

  12. A single mitochondrial haplotype and nuclear genetic differentiation in sympatric colour morphs of a riverine cichlid fish.

    PubMed

    Koblmüller, S; Sefc, K M; Duftner, N; Katongo, C; Tomljanovic, T; Sturmbauer, C

    2008-01-01

    Some of the diversity of lacustrine cichlid fishes has been ascribed to sympatric divergence, whereas diversification in rivers is generally driven by vicariance and geographic isolation. In the riverine Pseudocrenilabrus philander species complex, several morphologically highly distinct populations are restricted to particular river systems, sinkholes and springs in southern Africa. One of these populations consists of a prevalent yellow morph in sympatry with a less frequent blue morph, and no individuals bear intermediate phenotypes. Genetic variation in microsatellites and AFLP markers was very low in both morphs and one single mtDNA haplotype was fixed in all samples, indicating a very young evolutionary age and small effective population size. Nevertheless, the nuclear markers detected low but significant differentiation between the two morphs. The data suggest recent and perhaps sympatric divergence in the riverine habitat.

  13. Morphing hull implementation for unmanned underwater vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Timothy F.; Gandhi, Farhan; Rufino, Russell J.

    2013-11-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations).

  14. Baited lines: An active nondestructive collection method for burrowing crayfish

    USGS Publications Warehouse

    Loughman, Zachary J.; Foltz, David A.; Welsh, Stuart A.

    2013-01-01

    A new method (baited lines) is described for the collection of burrowing crayfishes, where fishing hooks baited with earthworms and tied to monofilament leaders are used to lure crayfishes from their burrow entrances. We estimated capture rates using baited lines at four locations across West Virginia for a total of four crayfish taxa; the taxa studied were orange, blue, and blue/orange morphs of Cambarus dubius (Upland Burrowing Catfish), and C. thomai (Little Brown Mudbug). Baited-line capture rates were lowest for C. thomai (81%; n = 21 attempts) and highest for the orange morph ofC. dubius (99%; n = 13 attempts). The pooled capture rate across all taxa was 91.5% (n = 50 attempts). Baited lines represent an environmentally nondestructive method to capture burrowing crayfishes without harm to individuals, and without disturbing burrows or the surrounding area. This novel method allows for repeat captures and long-term studies, providing a useful sampling method for ecological studies of burrowing crayfishes.

  15. Perspectives on Highly Adaptive or Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.

    2009-01-01

    The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.

  16. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  17. Life history variation among four lake trout morphs at Isle Royale, Lake Superior

    USGS Publications Warehouse

    Hansen, Michael J.; Nate, Nancy A.; Muir, Andrew M.; Bronte, Charles R.; Zimmerman, Mara S.; Krueger, Charles C.

    2016-01-01

    Life history traits were compared among four morphs of lake trout at Isle Royale, Lake Superior. Of 738 lake trout caught at Isle Royale, 701 were assigned to a morph (119 humpers, 160 leans, 85 redfins, and 337 siscowets) using a combination of statistical analysis of head and body shape and visual assignment. On average, redfins were longer (544 mm), heavier (1,481 g), heavier at length (Wr = 94), more buoyant, and older (22 years) than siscowets (519 mm; 1,221 g; 90; 19 years), leans (479 mm; 854 g; 82; 13 years), and humpers (443 mm; 697 g; 87; 17 years). On average, leans grew from a younger age at length = 0 and shorter length at age = 0, at a faster early growth rate to a longer asymptotic length than the other three morphs, while redfins grew at a slower instantaneous rate and humpers grew to a shorter asymptotic length than other morphs. On average, leans were longer (562 mm) and older (15 years) at 50% maturity than redfins (427 mm, 12 years), siscowets (401 mm, 11 years), or humpers (394 mm, 13 years). Life history parameters did not differ between males and females within each morph. We conclude that differences in life history attributes of lean, humper, redfin, and siscowet morphs of lake trout are consistent with differential habitat use in waters around Isle Royale, Lake Superior.

  18. Impact Response Comparison Between Parametric Human Models and Postmortem Human Subjects with a Wide Range of Obesity Levels.

    PubMed

    Zhang, Kai; Cao, Libo; Wang, Yulong; Hwang, Eunjoo; Reed, Matthew P; Forman, Jason; Hu, Jingwen

    2017-10-01

    Field data analyses have shown that obesity significantly increases the occupant injury risks in motor vehicle crashes, but the injury assessment tools for people with obesity are largely lacking. The objectives of this study were to use a mesh morphing method to rapidly generate parametric finite element models with a wide range of obesity levels and to evaluate their biofidelity against impact tests using postmortem human subjects (PMHS). Frontal crash tests using three PMHS seated in a vehicle rear seat compartment with body mass index (BMI) from 24 to 40 kg/m 2 were selected. To develop the human models matching the PMHS geometry, statistical models of external body shape, rib cage, pelvis, and femur were applied to predict the target geometry using age, sex, stature, and BMI. A mesh morphing method based on radial basis functions was used to rapidly morph a baseline human model into the target geometry. The model-predicted body excursions and injury measures were compared to the PMHS tests. Comparisons of occupant kinematics and injury measures between the tests and simulations showed reasonable correlations across the wide range of BMI levels. The parametric human models have the capability to account for the obesity effects on the occupant impact responses and injury risks. © 2017 The Obesity Society.

  19. Antioxidant Machinery Differs between Melanic and Light Nestlings of Two Polymorphic Raptors

    PubMed Central

    Galván, Ismael; Gangoso, Laura; Grande, Juan M.; Negro, Juan J.; Rodríguez, Airam; Figuerola, Jordi; Alonso-Alvarez, Carlos

    2010-01-01

    Colour polymorphism results from the expression of multiallelic genes generating phenotypes with very distinctive colourations. Most colour polymorphisms are due to differences in the type or amount of melanins present in each morph, which also differ in several behavioural, morphometric and physiological attributes. Melanin-based colour morphs could also differ in the levels of glutathione (GSH), a key intracellular antioxidant, because of the role of this molecule in melanogenesis. As GSH inhibits the synthesis of eumelanin (i.e. the darkest melanin form), individuals of darker morphs are expected to have lower GSH levels than those of lighter morphs. We tested this prediction in nestlings of two polymorphic raptors, the booted eagle Hieraaetus pennatus and the Eleonora's falcon Falco eleonorae, both of which occur in two morphs differing in the extent of eumelanic plumage. As expected, melanic booted eagle nestlings had lower blood GSH levels than light morph eagle nestlings. In the Eleonora's falcon, however, melanic nestlings only had lower GSH levels after controlling for the levels of other antioxidants. We also found that melanic female eagle nestlings had higher levels of antioxidants other than GSH and were in better body condition than light female eagle nestlings. These findings suggest an adaptive response of melanic nestlings to compensate for reduced GSH levels. Nevertheless, these associations were not found in falcons, indicating species-specific particularities in antioxidant machinery. Our results are consistent with previous work revealing the importance of GSH on the expression of melanic characters that show continuous variation, and suggest that this pathway also applies to discrete colour morphs. We suggest that the need to maintain low GSH levels for eumelanogenesis in dark morph individuals may represent a physiological constraint that helps regulate the evolution and maintenance of polymorphisms. PMID:20976228

  20. Antioxidant machinery differs between melanic and light nestlings of two polymorphic raptors.

    PubMed

    Galván, Ismael; Gangoso, Laura; Grande, Juan M; Negro, Juan J; Rodríguez, Airam; Figuerola, Jordi; Alonso-Alvarez, Carlos

    2010-10-14

    Colour polymorphism results from the expression of multiallelic genes generating phenotypes with very distinctive colourations. Most colour polymorphisms are due to differences in the type or amount of melanins present in each morph, which also differ in several behavioural, morphometric and physiological attributes. Melanin-based colour morphs could also differ in the levels of glutathione (GSH), a key intracellular antioxidant, because of the role of this molecule in melanogenesis. As GSH inhibits the synthesis of eumelanin (i.e. the darkest melanin form), individuals of darker morphs are expected to have lower GSH levels than those of lighter morphs. We tested this prediction in nestlings of two polymorphic raptors, the booted eagle Hieraaetus pennatus and the Eleonora's falcon Falco eleonorae, both of which occur in two morphs differing in the extent of eumelanic plumage. As expected, melanic booted eagle nestlings had lower blood GSH levels than light morph eagle nestlings. In the Eleonora's falcon, however, melanic nestlings only had lower GSH levels after controlling for the levels of other antioxidants. We also found that melanic female eagle nestlings had higher levels of antioxidants other than GSH and were in better body condition than light female eagle nestlings. These findings suggest an adaptive response of melanic nestlings to compensate for reduced GSH levels. Nevertheless, these associations were not found in falcons, indicating species-specific particularities in antioxidant machinery. Our results are consistent with previous work revealing the importance of GSH on the expression of melanic characters that show continuous variation, and suggest that this pathway also applies to discrete colour morphs. We suggest that the need to maintain low GSH levels for eumelanogenesis in dark morph individuals may represent a physiological constraint that helps regulate the evolution and maintenance of polymorphisms.

  1. Morphing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Gomez, Juan Carlos; Garcia, Ephrahim

    2011-10-01

    Research on aircraft morphing has exploded in recent years. The motivation and driving force behind this has been to find new and novel ways to increase the capabilities of aircraft. Materials advancements have helped to increase possibilities with respect to actuation and, hence, a diversity of concepts and unimagined capabilities. The expanded role of unmanned aerial vehicles (UAVs) has provided an ideal platform for exploring these emergent morphing concepts since at this scale a greater amount of risk can be taken, as well as having more manageable fabrication and cost requirements. This review focuses on presenting the role UAVs have in morphing research by giving an overview of the UAV morphing concepts, designs, and technologies described in the literature. A presentation of quantitative information as well as a discussion of technical issues is given where possible to begin gaining some insight into the overall assessment and performance of these technologies.

  2. Modeling and Optimization for Morphing Wing Concept Generation II. Part 1; Morphing Wing Modeling and Structural Sizing Techniques

    NASA Technical Reports Server (NTRS)

    Skillen, Michael D.; Crossley, William A.

    2008-01-01

    This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach.

  3. Lighting up Protons with MorphFl, a Fluorescein-Morpholine Dyad: An Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Miller, Tyson A.; Spangler, Michael; Burdette, Shawn C.

    2011-01-01

    A two-period organic laboratory experiment that includes fluorescence sensing is presented. The pH-sensitive sensor MorphFl is prepared using a Mannich reaction between a fluorescein derivative and the iminium ion of morpholine. During the first laboratory, students prepare MorphFl. The second session begins with characterizing the sensor using…

  4. On the Role of Individual Items in Recognition Memory and Metacognition: Challenges for Signal Detection Theory

    ERIC Educational Resources Information Center

    Busey, Thomas A.; Arici, Anne

    2009-01-01

    The authors tested the role of individual items in recognition memory using a forced-choice paradigm with face stimuli. They constructed distractor stimuli using morphing procedures that were similar to two parent faces and then compared a studied morph against an unstudied morph that was similar to two studied parents. The similarity of the…

  5. The evolutionary history of colour polymorphism in Ischnura damselflies.

    PubMed

    Sánchez-Guillén, Rosa A; Cordero-Rivera, Adolfo; Rivas-Torres, Anais; Wellenreuther, Maren; Bybee, Seth; Hansson, Bengt; Velasquez-Vélez, María I; Realpe, Emilio; Chávez-Ríos, Jesús R; Villalobos, Fabricio; Dumont, Henri

    2018-05-10

    A major challenge in evolutionary biology consists of understanding how genetic and phenotypic variation is created and maintained. In the present study, we investigated the origin(s) and evolutionary patterns of the female-limited colour polymorphism in ischnuran damselflies. These consist of the presence of one to three colour morphs: one androchrome morph with a colouration that is similar to the male, and two gynochrome morphs (infuscans and aurantiaca) with female-specific colouration. We (i) documented the colour and mating system of 44 of the 75 taxa within the genus Ischnura, (ii) reconstructed the evolutionary history of colour and mating system to identify the ancestral state, (iii) evaluated the stability of the colour morph status over time, and (iv) tested for a correlation between colour and mating system. We found that the ances tral female colour of Ischnura was monomorphic and aurantiaca and that colour morph status changed over time; characterised by many gains and losses across the species tree. Our results further showed that colour polymorphism is significantly more frequent among polyandric species, whereas monandric species tend to be monomorphic. Research on some Ischnura species has shown that colour morphs have evolved to reduce male mating harassment, and our finding that the same phenotypic morphs have evolved multiple times (convergent evolution) suggests that several species in this genus might be experiencing similar selective pressures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae).

    PubMed

    Guitián, Javier A; Sobral, Mar; Veiga, Tania; Losada, María; Guitián, Pablo; Guitián, José M

    2017-01-01

    The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea -which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)-is locally adapted to the pollinator community. We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum , B. soroensis ancaricus and B. lapidarius decipiens ) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris ) consistently preferred the foreign morph. We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition.

  7. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Boblenz, J.; Hühne, C.

    2014-10-01

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.

  8. Adaptive building skin structures

    NASA Astrophysics Data System (ADS)

    Del Grosso, A. E.; Basso, P.

    2010-12-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method.

  9. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex.

    PubMed

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  10. Genetically distinct colour morphs of European perch Perca fluviatilis in Lake Constance differ in susceptibility to macroparasites.

    PubMed

    Roch, S; Behrmann-Godel, J; Brinker, A

    2015-01-21

    The unusual yellow-finned morph of European perch Perca fluviatilis found in Lake Constance suffers more severely from macroparasite infections, including the tapeworm Triaenophorus nodulosus and the gill worm Ancyrocephalus percae, than conspecifics elsewhere. Microsatellite analysis of yellow-finned P. fluviatilis and red-finned variant recently discovered in Lake Constance revealed significant genetic differentiation. Red-finned P. fluviatilis and fish with mixed fin colour, suggested backcrosses between red and yellow-finned colour morphs, exhibit better resilience to parasite infection, suggesting that the inability of the yellow-finned morph to reject macroparasites may have a genetic basis. © 2015 The Fisheries Society of the British Isles.

  11. MORPH-II, a software package for the analysis of scanning-electron-micrograph images for the assessment of the fractal dimension of exposed stone surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf

    2000-01-01

    Turcotte, 1997, and Barton and La Pointe, 1995, have identified many potential uses for the fractal dimension in physicochemical models of surface properties. The image-analysis program described in this report is an extension of the program set MORPH-I (Mossotti and others, 1998), which provided the fractal analysis of electron-microscope images of pore profiles (Mossotti and Eldeeb, 1992). MORPH-II, an integration of the modified kernel of the program MORPH-I with image calibration and editing facilities, was designed to measure the fractal dimension of the exposed surfaces of stone specimens as imaged in cross section in an electron microscope.

  12. Carry-over of Differential Salt Tolerance in Plants Grown from Dimorphic Seeds of Suaeda splendens

    PubMed Central

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M. Enrique; Davy, Anthony J.

    2008-01-01

    Background and Aims Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Methods Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C4 shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Key Results Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m−3 NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, Fv/Fm and net rate of CO2 assimilation. Conclusions The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage. PMID:18463109

  13. Floral polymorphism in Chamaecrista flexuosa (Fabaceae-Caesalpinioideae): a possible case of atypical enantiostyly?

    PubMed Central

    Almeida, Natan Messias; Castro, Cibele Cardoso; Leite, Ana Virgínia; Novo, Reinaldo Rodrigo; Machado, Isabel Cristina

    2013-01-01

    Background and Aims Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil. Methods Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed. Key Results In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator's body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination. Conclusions The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture. PMID:24026440

  14. Aile adaptable : Design du systeme d'actionnement de l'aileron rigide, caracterisation des capteurs de pression et instrumentation pour des tests statiques =

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    This Master's thesis is part of a multidisciplinary optimisation project initiated by the Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ) ; this project is about designing and manufacturing a morphing wing demonstrator. The morphing design adopted in this project is based on airfoil thickness variation applied to the upper skin. This morphing generates a change in the laminar to turbulent boundary layer transition position on top of the wing. The position of this transition area leads to significant changes in the aerodynamic performance of the wing. The study presented here focuses on the design of the conventional aileron actuation system and on the characterization of the high sensitivity differential pressure sensors installed on the upper skin in order to determine the laminar to turbulent transition position. Furthermore, the study focuses on the data acquisition system for the morphing wing structural test validation. The aileron actuation system is based on a linear actuator actuated by a brushless motor. The component choice is presented as well as the command method. A static validation as well as wind tunnel validation is presented. The pressure sensor characterization is performed by installing three of those high sensitivity differential pressure sensors in a bi-dimensional known airfoil. This study goes through the process of determining the sensor position in order to observe the transition area by using a computational fluid dynamics (CFD) statistic approach. The validation of the laminar to turbulent transition position is carried out with a series of wind tunnel tests. A structural test has been executed in order to validate the wing structure. This Master's thesis shows the data acquisition system for the microstrain measurement installed inside the morphing wing. A hardware and software architecture description is developed and presented as well as the practical results.

  15. Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soò

    PubMed Central

    Gigord, Luc D. B.; Macnair, Mark R.; Smithson, Ann

    2001-01-01

    The orchid Dactylorhiza sambucina shows a stable and dramatic flower-color polymorphism, with both yellow- and purple-flowered individuals present in natural populations throughout the range of the species in Europe. The evolutionary significance of flower-color polymorphisms found in many rewardless orchid species has been discussed at length, but the mechanisms responsible for their maintenance remain unclear. Laboratory experiments have suggested that behavioral responses by pollinators to lack of reward availability might result in a reproductive advantage for rare-color morphs. Consequently, we performed an experiment varying the relative frequency of the two color morphs of D. sambucina to test whether rare morph advantage acted in the natural habitat of the species. We show here clear evidence from this manipulative experiment that rare-color morphs have reproductive advantage through male and female components. This is the first demonstration, to our knowledge, that negative frequency-dependent selection through pollinator preference for rare morphs can cause the maintenance of a flower-color polymorphism. PMID:11353863

  16. Separation of metadata and pixel data to speed DICOM tag morphing.

    PubMed

    Ismail, Mahmoud; Philbin, James

    2013-01-01

    The DICOM information model combines pixel data and metadata in single DICOM object. It is not possible to access the metadata separately from the pixel data. There are use cases where only metadata is accessed. The current DICOM object format increases the running time of those use cases. Tag morphing is one of those use cases. Tag morphing includes deletion, insertion or manipulation of one or more of the metadata attributes. It is typically used for order reconciliation on study acquisition or to localize the issuer of patient ID (IPID) and the patient ID attributes when data from one domain is transferred to a different domain. In this work, we propose using Multi-Series DICOM (MSD) objects, which separate metadata from pixel data and remove duplicate attributes, to reduce the time required for Tag Morphing. The time required to update a set of study attributes in each format is compared. The results show that the MSD format significantly reduces the time required for tag morphing.

  17. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    NASA Astrophysics Data System (ADS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-03-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions.

  18. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    NASA Astrophysics Data System (ADS)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  19. Colour assortative pairing in a colour polymorphic lizard is independent of population morph diversity

    NASA Astrophysics Data System (ADS)

    Pérez i de Lanuza, Guillem; Font, Enrique; Carretero, Miguel Ángel

    2016-10-01

    Previous work with a colour polymorphic population of Podarcis muralis (Lacertidae) revealed that lizards pair by ventral colour, favouring the same colour (i.e. homomorphic) pairs. Such assortative pairing, which probably results in colour assortative mating, can have consequences for the genetic structure of the population and potentially promote speciation. The population previously studied, located in the Pyrenees, encompasses white, yellow and orange animals, as well as intermediate white-orange and yellow-orange morphs. However, other Pyrenean populations of P. muralis have less ventral colour morphs. Our aim in this study is to test the generality of the assortative colour pairing system, extending our previous analyses to populations with different morph compositions and frequencies. The results show that the assortative pattern of pairing is similar in all the populations analysed and, hence, independent of morph composition and not restricted to pentamorphic populations. This suggests that assortative pairing by colour is a general phenomenon for colour polymorphic populations of P. muralis.

  20. The Altay falcon: Origin, morphology and distribution

    USGS Publications Warehouse

    Ellis, D.H.

    1995-01-01

    The systematic position of the Altay falcon (Falco altaicus lorenzi) is perhaps the most enigmatic question lingering in falcon taxonomy. First reported to science in 1811, it has been treated as a race of the gyrfalcon (F. rusticolus), as a race of the saker (F. cherrug), as two separate species (F. lorenzi and F. altaicus), and as one to three color morphs of either the saker or the gyrfalcon. Ironically, two or even more of these explanations may be correct. Of 53 specimens examined, at least two are misidentified gyrfalcons, a score I dismiss as typical sakers, but a sizeable group (N = 34) is retained as representing what I consider to be the true Altay falcon type. Three adult color morphs exist: red, brown and grey. The red-backed morph closely resembles some eastern sakers. The chocolate morph resembles the black gyrfalcon from Labrador. The grey morph resembles the grey morph of the gyrfalcon. Ecological, geographical and morphological information contribute to the conclusion that this core group represents a gyrfalcon-saker hybrid that is very likely being swamped into obscurity through back crosses with the saker. The breeding range reported herein (Altay-Sayan Mountains) is greatly contracted from that previously reported. The true identify of the Altay falcon will be resolved by molecular genetics.

  1. Composite corrugated structures for morphing wing skin applications

    NASA Astrophysics Data System (ADS)

    Thill, C.; Etches, J. A.; Bond, I. P.; Potter, K. D.; Weaver, P. M.

    2010-12-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles.

  2. Approaching morphing wing concepts on the basis of micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Boller, C.; Kuo, C.-M.; Qin, N.

    2007-04-01

    Morphing wings have been discussed since the early days of smart structures. Concepts and demonstrations started mainly in the context of real existing fixed wing aircraft. The complexity of existing aircraft and the limitations in terms of energy required and thus resulting cost made morphing wings mainly impossible to be successfully integrated into existing aircraft designs. Going however to smaller scaled aircraft where designs are less or possibly even not defined at all makes demonstration of morphing wings much more feasible. This paper will therefore discuss some morphing wing issues for micro aerial vehicle (MAV) designs where an MAV is considered to be an air vehicle of around 30 to 50 cm in span and a weight of less than 250 grams. At first the aerodynamics in terms of different wing shapes for such a small type of aircraft will be discussed followed by a design procedure on how to successfully design and analyse a morphing wing MAV. A more detailed description will then be given with regard to adaptively changing a wing's thickness where the actuation principles applied will be outlined in terms of conventional mechanical as well as smart structural solutions. Experimental results achieved in real flight tests will be described and discussed.

  3. Wing shape variation associated with mimicry in butterflies.

    PubMed

    Jones, Robert T; Le Poul, Yann; Whibley, Annabel C; Mérot, Claire; ffrench-Constant, Richard H; Joron, Mathieu

    2013-08-01

    Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color-pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark-based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing-shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  4. Potential Applications of Remote Sensing Precipitation Data on Urban Stormwater Modeling

    NASA Astrophysics Data System (ADS)

    Maggioni, V.; Tarantola, R.; Ferreira, C.

    2014-12-01

    Although stormwater modeling is widely used to plan, manage and operate stormwater systems in the urban environment, accuracy in model development and calibration is still problematic. Precipitation is the major forcing of stormwater modeling and one of the most important variables for accurate representation of the water cycle in urban areas. However, rainfall data availability in both temporal and spatial adequate scales is scarce. Here we investigate the potential to apply satellite precipitation products to small-scale urban watersheds with a focus on real-time data for operational use and historical data for model calibration and planning. We present a study case in Northern Virginia, part of the Washington, D.C. metropolitan region. We compare several rainfall datasets from satellites, radar and rain gauges during 2002-2008, using two multi-satellite precipitation products. The first one is the NASA TRMM TMPA at daily/0.25° time/space resolution, which is available in two forms: 3B42-Real Time and 3B42-Version 7, where the latter is a post-processed product, corrected with ground-based observations. The second one is the NOAA CMORPH at 3hrs/0.25° time/space resolution. The NOAA Climate Prediction Center (CPC) data and NCEP Stage IV radar-based product are used as reference datasets for TMPA and CMORPH, respectively. Statistical analyses are conducted to compare these datasets: correlation coefficient, RMSE, bias, probability of correct no-rain detection and of false alarm were computed with a focus on Fairfax, VA county. Preliminary results show that the TMPA products outperform CMORPH, when compared to rain gauges and radar data over the county. Moreover, no appreciable difference is detected between TMPA-V7 and TMPA-RT, which demonstrates that real-time data could be used over the urban watershed with results that are comparable to the adjusted product. Analyses are undergoing to investigate higher temporal resolution and to include a comparison with the Fairfax county rain gages data. Future work will also evaluate the impacts of different precipitation datasets on stormwater runoff for Fairfax county, using the EPA-SWMM5 storm water model.

  5. Shell colour, temperature, (micro)habitat structure and predator pressure affect the behaviour of Cepaea nemoralis

    NASA Astrophysics Data System (ADS)

    Rosin, Zuzanna M.; Kwieciński, Zbigniew; Lesicki, Andrzej; Skórka, Piotr; Kobak, Jarosław; Szymańska, Anna; Osiejuk, Tomasz S.; Kałuski, Tomasz; Jaskulska, Monika; Tryjanowski, Piotr

    2018-06-01

    Although shell colour polymorphism of the land snail Cepaea nemoralis is a well-known phenomenon, proximate and ultimate factors driving its evolution remain uncertain. Polymorphic species show variation in behavioural responses to selective forces. Therefore, we estimated effects of various environmental factors (temperature, humidity, food availability, (micro)habitat structure and predatory pressure) on behavioural response (frequency of locomotion, climbing and hiding) of C. nemoralis morphs, in experimental and natural conditions. In the experimental part of study, the frequency of locomotion was negatively affected by temperature and the presence of food and positively influenced by the presence of light. Morphs significantly differed in behavioural responses to environmental variability. Pink mid-banded and yellow five-banded morphs climbed less often and hide in shelter more often than yellow and pink unbanded individuals when temperature was low and food was absent. Snails fed most often at moderate temperature compared to low and high temperatures. Field investigations partially confirmed differences among morphs in frequency of climbing, but not in terms of probability of hiding in sheltered sites. In natural colonies, temperature and (micro)habitat structure significantly affected frequency of climbing as well as hiding in shelter. Snails more often hid in sheltered sites where thrushes preyed on Cepaea. Tendency of unbanded morphs to climb trees may have evolved under avian predatory pressure as thrushes forage on a ground. Tendency of banded morphs to hide in sheltered sites may reflect prey preferences for cryptic background. The results implicate that differential behaviour of C. nemoralis morphs compensate for their morphological and physiological limitations of adaptation to habitat.

  6. Is Beauty in the Face of the Beholder?

    PubMed Central

    Laeng, Bruno; Vermeer, Oddrun; Sulutvedt, Unni

    2013-01-01

    Opposing forces influence assortative mating so that one seeks a similar mate while at the same time avoiding inbreeding with close relatives. Thus, mate choice may be a balancing of phenotypic similarity and dissimilarity between partners. In the present study, we assessed the role of resemblance to Self’s facial traits in judgments of physical attractiveness. Participants chose the most attractive face image of their romantic partner among several variants, where the faces were morphed so as to include only 22% of another face. Participants distinctly preferred a “Self-based morph” (i.e., their partner’s face with a small amount of Self’s face blended into it) to other morphed images. The Self-based morph was also preferred to the morph of their partner’s face blended with the partner’s same-sex “prototype”, although the latter face was (“objectively”) judged more attractive by other individuals. When ranking morphs differing in level of amalgamation (i.e., 11% vs. 22% vs. 33%) of another face, the 22% was chosen consistently as the preferred morph and, in particular, when Self was blended in the partner’s face. A forced-choice signal-detection paradigm showed that the effect of self-resemblance operated at an unconscious level, since the same participants were unable to detect the presence of their own faces in the above morphs. We concluded that individuals, if given the opportunity, seek to promote “positive assortment” for Self’s phenotype, especially when the level of similarity approaches an optimal point that is similar to Self without causing a conscious acknowledgment of the similarity. PMID:23874608

  7. Shell colour, temperature, (micro)habitat structure and predator pressure affect the behaviour of Cepaea nemoralis.

    PubMed

    Rosin, Zuzanna M; Kwieciński, Zbigniew; Lesicki, Andrzej; Skórka, Piotr; Kobak, Jarosław; Szymańska, Anna; Osiejuk, Tomasz S; Kałuski, Tomasz; Jaskulska, Monika; Tryjanowski, Piotr

    2018-05-09

    Although shell colour polymorphism of the land snail Cepaea nemoralis is a well-known phenomenon, proximate and ultimate factors driving its evolution remain uncertain. Polymorphic species show variation in behavioural responses to selective forces. Therefore, we estimated effects of various environmental factors (temperature, humidity, food availability, (micro)habitat structure and predatory pressure) on behavioural response (frequency of locomotion, climbing and hiding) of C. nemoralis morphs, in experimental and natural conditions. In the experimental part of study, the frequency of locomotion was negatively affected by temperature and the presence of food and positively influenced by the presence of light. Morphs significantly differed in behavioural responses to environmental variability. Pink mid-banded and yellow five-banded morphs climbed less often and hide in shelter more often than yellow and pink unbanded individuals when temperature was low and food was absent. Snails fed most often at moderate temperature compared to low and high temperatures. Field investigations partially confirmed differences among morphs in frequency of climbing, but not in terms of probability of hiding in sheltered sites. In natural colonies, temperature and (micro)habitat structure significantly affected frequency of climbing as well as hiding in shelter. Snails more often hid in sheltered sites where thrushes preyed on Cepaea. Tendency of unbanded morphs to climb trees may have evolved under avian predatory pressure as thrushes forage on a ground. Tendency of banded morphs to hide in sheltered sites may reflect prey preferences for cryptic background. The results implicate that differential behaviour of C. nemoralis morphs compensate for their morphological and physiological limitations of adaptation to habitat.

  8. Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects.

    PubMed

    de Jager, Marinus L; Ellis, Allan G

    2014-01-01

    Floral polymorphism is frequently attributed to pollinator-mediated selection. Multiple studies, however, have revealed the importance of non-pollinating visitors in floral evolution. Using the polymorphic annual daisy Ursinia calenduliflora, this study investigated the importance of different insect visitors, and their effects on fitness, in the maintenance of floral polymorphism. The spatial structure of a discrete floral polymorphism was characterized based on the presence/absence of anthocyanin floret spots in U. calenduliflora. A 3-year observational study was then conducted in polymorphic populations to investigate differences in visitation rates of dominant visitors to floral morphs. Experiments were performed to explore the floral preference of male and female Megapalpus capensis (the dominant insect visitor) and their effectiveness as pollinators. Next, floral damage by antagonistic florivores and the reproductive success of the two floral morphs were surveyed in multiple populations and years. Floral polymorphism in U. calenduliflora was structured spatially, as were insect visitation patterns. Megapalpus capensis males were the dominant visitors and exhibited strong preference for the spotted morph in natural and experimental observations. While this may indicate potential fitness benefits for the spotted morph, female fitness did not differ between floral morphs. However, as M. capensis males are very efficient at exporting U. calenduliflora pollen, their preference may likely increase the reproductive fitness of the spotted morph through male fitness components. The spotted morph, however, also suffered significantly greater costs due to ovule predation by florivores than the spotless morph. The results suggest that pollinators and florivores may potentially exert antagonistic selection that could contribute to the maintenance of floral polymorphism across the range of U. calenduliflora. The relative strength of selection imposed by each agent is potentially determined by insect community composition and abundance at each site, highlighting the importance of community context in the evolution of floral phenotypes.

  9. Evidence for Sexual Dimorphism in the Plated Dinosaur Stegosaurus mjosi (Ornithischia, Stegosauria) from the Morrison Formation (Upper Jurassic) of Western USA.

    PubMed

    Saitta, Evan Thomas

    2015-01-01

    Conclusive evidence for sexual dimorphism in non-avian dinosaurs has been elusive. Here it is shown that dimorphism in the shape of the dermal plates of Stegosaurus mjosi (Upper Jurassic, western USA) does not result from non-sex-related individual, interspecific, or ontogenetic variation and is most likely a sexually dimorphic feature. One morph possessed wide, oval plates 45% larger in surface area than the tall, narrow plates of the other morph. Intermediate morphologies are lacking as principal component analysis supports marked size- and shape-based dimorphism. In contrast, many non-sex-related individual variations are expected to show intermediate morphologies. Taphonomy of a new quarry in Montana (JRDI 5ES Quarry) shows that at least five individuals were buried in a single horizon and were not brought together by water or scavenger transportation. This new site demonstrates co-existence, and possibly suggests sociality, between two morphs that only show dimorphism in their plates. Without evidence for niche partitioning, it is unlikely that the two morphs represent different species. Histology of the new specimens in combination with studies on previous specimens indicates that both morphs occur in fully-grown individuals. Therefore, the dimorphism is not a result of ontogenetic change. Furthermore, the two morphs of plates do not simply come from different positions on the back of a single individual. Plates from all positions on the body can be classified as one of the two morphs, and previously discovered, isolated specimens possess only one morph of plates. Based on the seemingly display-oriented morphology of plates, female mate choice was likely the driving evolutionary mechanism rather than male-male competition. Dinosaur ornamentation possibly served similar functions to the ornamentation of modern species. Comparisons to ornamentation involved in sexual selection of extant species, such as the horns of bovids, may be appropriate in predicting the function of some dinosaur ornamentation.

  10. Mechanisms and actuators for rotorcraft blade morphing

    NASA Astrophysics Data System (ADS)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in this work is a conformal variable diameter rotor system suitable for implementation on a modern tilt-rotor aircraft, which can reduce power requirements in both cruise and hover configurations. An initial prototype variable span airfoil was constructed using a silicone elastomer matrix composite skin and a plastic rapid prototyped morphing substructure. Benchtop and wind tunnel tests verified the ability of this system to increase active wing area by 100%. The prototype technology was then matured for use in the harsh rotor blade environment, with a much stiffer polyurethane skin and a titanium substructure. Coupon testing verified the efficacy of this approach, and a final conceptual design was completed using the stiffness-tuning characteristics of the morphing substructure to create a self-actuating morphing blade tip.

  11. Aerodynamic Analysis of Morphing Blades

    NASA Astrophysics Data System (ADS)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  12. The analysis of tensegrity structures for the design of a morphing wing

    NASA Astrophysics Data System (ADS)

    Moored, Keith W., III; Bart-Smith, Hilary

    2005-05-01

    Tensegrity structures have become of engineering interest in recent years, but very few have found practical use. This lack of integration is attributed to the lack of a well formulated design procedure. In this paper, a preliminary procedure is presented for developing morphing tensegrity structures that include actuating elements. To do this, the virtual work method has been modified to allow for individual actuation of struts and cables. A generalized connectivity matrix for a cantilever beam constructed from either a single 4-strut cell or multiple 4-strut cells has been developed. Global deflections resulting from actuation of specific elements have been calculated. Furthermore, the force density method is expanded to include a necessary upper bound condition such that a physically feasible structure can be designed. Finally, the importance of relative force density values on the overall shape of a structure comprising of multiple unit cells is discussed.

  13. Testosterone-Induced Expression of Male Colour Morphs in Females of the Polymorphic Tawny Dragon Lizard, Ctenophorus decresii.

    PubMed

    Rankin, Katrina; Stuart-Fox, Devi

    2015-01-01

    Many colour polymorphisms are present only in one sex, usually males, but proximate mechanisms controlling the expression of sex-limited colour polymorphisms have received little attention. Here, we test the hypothesis that artificial elevation of testosterone in females of the colour polymorphic tawny dragon lizard, Ctenophorus decresii, can induce them to express the same colour morphs, in similar frequencies, to those found in males. Male C. decresii, express four discrete throat colour morphs (orange, yellow, grey and an orange central patch surrounded by yellow). We used silastic implants to experimentally elevate testosterone levels in mature females to induce colour expression. Testosterone elevation resulted in a substantial increase in the proportion and intensity of orange but not yellow colouration, which was present in a subset of females prior to treatment. Consequently, females exhibited the same set of colour morphs as males, and we confirmed that these morphs are objectively classifiable, by using digital image analyses and spectral reflectance measurements, and occur in similar frequencies as in males. These results indicate that the influence of testosterone differs for different colours, suggesting that their expression may be governed by different proximate hormonal mechanisms. Thus, caution must be exercised when using artificial testosterone manipulation to induce female expression of sex-limited colour polymorphisms. Nevertheless, the ability to express sex-limited colours (in this case orange) to reveal the same, objectively classifiable morphs in similar frequencies to males suggests autosomal rather than sex-linked inheritance, and can facilitate further research on the genetic basis of colour polymorphism, including estimating heritability and selection on colour morphs from pedigree data.

  14. Testosterone-Induced Expression of Male Colour Morphs in Females of the Polymorphic Tawny Dragon Lizard, Ctenophorus decresii

    PubMed Central

    Rankin, Katrina; Stuart-Fox, Devi

    2015-01-01

    Many colour polymorphisms are present only in one sex, usually males, but proximate mechanisms controlling the expression of sex-limited colour polymorphisms have received little attention. Here, we test the hypothesis that artificial elevation of testosterone in females of the colour polymorphic tawny dragon lizard, Ctenophorus decresii, can induce them to express the same colour morphs, in similar frequencies, to those found in males. Male C. decresii, express four discrete throat colour morphs (orange, yellow, grey and an orange central patch surrounded by yellow). We used silastic implants to experimentally elevate testosterone levels in mature females to induce colour expression. Testosterone elevation resulted in a substantial increase in the proportion and intensity of orange but not yellow colouration, which was present in a subset of females prior to treatment. Consequently, females exhibited the same set of colour morphs as males, and we confirmed that these morphs are objectively classifiable, by using digital image analyses and spectral reflectance measurements, and occur in similar frequencies as in males. These results indicate that the influence of testosterone differs for different colours, suggesting that their expression may be governed by different proximate hormonal mechanisms. Thus, caution must be exercised when using artificial testosterone manipulation to induce female expression of sex-limited colour polymorphisms. Nevertheless, the ability to express sex-limited colours (in this case orange) to reveal the same, objectively classifiable morphs in similar frequencies to males suggests autosomal rather than sex-linked inheritance, and can facilitate further research on the genetic basis of colour polymorphism, including estimating heritability and selection on colour morphs from pedigree data. PMID:26485705

  15. Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp.

    PubMed

    Duarte, Rafael C; Stevens, Martin; Flores, Augusto A V

    2016-10-18

    Colour and shape polymorphisms are important features of many species and may allow individuals to exploit a wider array of habitats, including through behavioural differences among morphs. In addition, differences among individuals in behaviour and morphology may reflect different strategies, for example utilising different approaches to camouflage. Hippolyte obliquimanus is a small shrimp species inhabiting different shallow-water vegetated habitats. Populations comprise two main morphs: homogeneous shrimp of variable colour (H) and transparent individuals with coloured stripes (ST). These morphs follow different distribution patterns between their main algal habitats; the brown weed Sargassum furcatum and the pink-red weed Galaxaura marginata. In this study, we first investigated morph-specific colour change and habitat selection, as mechanisms underlying camouflage and spatial distribution patterns in nature. Then, we examined habitat fidelity, mobility, and morphological traits, further indicating patterns of habitat use. H shrimp are capable of changing colour in just a few days towards their algal background, achieving better concealment in the more marginal, and less preferred, red weed habitat. Furthermore, laboratory trials showed that habitat fidelity is higher for H shrimp, whereas swimming activity is higher for the ST morph, aligned to morphological evidence indicating these two morphs comprise a more benthic (H) and a more pelagic (ST) life-style, respectively. Results suggest that H shrimp utilise a camouflage strategy specialised to a limited number of backgrounds at any one time, whereas ST individuals comprise a phenotype with more generalist camouflage (transparency) linked to a more generalist background utilisation. The coexistence within a population of distinct morphotypes with apparently alternative strategies of habitat use and camouflage may reflect differential responses to substantial seasonal changes in macroalgal cover. Our findings also demonstrate how colour change, behaviour, morphology, and background use all interact in achieving camouflage.

  16. A tale of two tails: developing an avian inspired morphing actuator for yaw control and stability.

    PubMed

    Gamble, Lawren L; Inman, Daniel J

    2018-02-09

    Motivated by the lack of research in tailless morphing aircraft in addition to the current inability to measure the resultant aerodynamic forces and moments of bird control maneuvers, this work aims to develop and test a multi-functional morphing control surface based on the horizontal tail of birds for a low-radar-signature unmanned aerial vehicle. Customized macro fiber composite actuators were designed to achieve yaw control across a range of sideslip angles by inducing 3D curvature as a result of bending-twisting coupling, a well-known phenomenon in classical fiber composite theory. This allows for yaw control, pitch control, and limited air break control. The structural response of the customized actuators was determined numerically using both a piezoelectric and an equivalent thermal model in order to optimize the fiber direction to allow for maximized deflection in both the vertical and lateral directions. In total, three control configurations were tested experimentally: symmetric deflection for pitch control, single-sided deflection for yaw control, and antisymmetric deflection for air brake control. A Reynolds-averaged-Navier-Stokes fluid simulation was also developed to compare with the experimental results for the unactuated baseline configuration. The actuator was shown to provide better yaw control than traditional split aileron methods, remain effective in larger sideslip angles, and provide directional yaw stability when unactuated. Furthermore, it was shown to provide adequate pitch control in sideslip in addition to limited air brake capabilities. This design is proposed to provide complete aircraft control in concert with spanwise morphing wings.

  17. Quantitative Analysis of Endothelial Cell Loss in Preloaded Descemet Membrane Endothelial Keratoplasty Grafts.

    PubMed

    Wolle, Meraf A; DeMill, David L; Johnson, Lauren; Lentz, Stephen I; Woodward, Maria A; Mian, Shahzad I

    2017-11-01

    Availability of preloaded Descemet membrane endothelial keratoplasty (pDMEK) tissue may increase acceptance of DMEK in surgical management of endothelial disease. The goal of this study was to determine the safety of pDMEK grafts for 24 hours before surgery by analyzing endothelial cell loss (ECL) using 2 image analysis software programs. A total of 18 cadaveric corneas were prepared for DMEK using a standardized technique and loaded in a modified Jones tube injector. Nine of the corneas were injected into Calcein AM vital dye after 1 minute (controls), and the remaining 9 corneas were left preloaded for 24 hours before injection into vital dye for staining. The stained corneas were imaged using an inverted confocal microscope. ECL was then analyzed and quantified by 2 different graders using 2 image analysis software programs. The control DMEK tissue resulted in 22.0% ± 4.0% ECL compared with pDMEK tissue, which resulted in 19.2% ± 7.2% ECL (P = 0.31). Interobserver agreement was 0.93 for MetaMorph and 0.92 for Fiji. The average time required to process images with MetaMorph was 2 ± 1 minutes and with Fiji was 20 ± 10 minutes. Intraobserver agreement was 0.97 for MetaMorph and 0.93 for Fiji. Preloading DMEK tissue is safe and may provide an alternative technique for tissue distribution and surgery for DMEK. The use of MetaMorph software for quantifying ECL is a novel and accurate imaging method with increased efficiency and reproducibility compared with the previously validated Fiji.

  18. Sperm subpopulations in avian species: a comparative study between the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris).

    PubMed

    García-Herreros, Manuel

    2016-01-01

    The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus ) and Guinea fowl (Numida meleagris ) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species.

  19. Sperm subpopulations in avian species: a comparative study between the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris)

    PubMed Central

    García-Herreros, Manuel

    2016-01-01

    The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species. PMID:27751988

  20. Body size evolution of a shell-brooding cichlid fish from Lake Tanganyika.

    PubMed

    Takahashi, T; Ota, K

    2016-12-01

    The substrate-brooding cichlid fish Telmatochromis temporalis in Lake Tanganyika demonstrates a simple example of ecological speciation between normal and dwarf morphs through divergent natural selection on body size. The dwarf morph most likely evolved from the ancestral normal morph; therefore, elucidating the evolution of its small body size is a key to understanding this ecological speciation event. Previous studies suggest that the small body size of the dwarf morph is an adaptation to the use of empty snail shells as shelters (males) and spawning sites (females), but this idea has not been fully evaluated. Combining original and previously published information, this study compared likelihood values to determine the primary factor that would be responsible for regulating the body size of the dwarf morph. Male body size is most likely regulated by the ability to turn within shells, which may influence the predation avoidance of adult fish. Females are smaller than males, and their body size is most likely regulated by the ability to lay eggs in the small spaces within shells close to the shell apices where predation risk on eggs is lower. This study provides new evidence supporting the hypothesis that different natural selection factors affected body size of the different sexes of the dwarf morph, which has not been reported in other animal species. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  1. Planform, aero-structural, and flight control optimization for tailless morphing aircraft

    NASA Astrophysics Data System (ADS)

    Molinari, Giulio; Arrieta, Andres F.; Ermanni, Paolo

    2015-04-01

    Tailless airplanes with swept wings rely on variations of the spanwise lift distribution to provide controllability in roll, pitch and yaw. Conventionally, this is achieved utilizing multiple control surfaces, such as elevons, on the wing trailing edge. As every flight condition requires different control moments (e.g. to provide pitching moment equilibrium), these surfaces are practically permanently displaced. Due to their nature, causing discontinuities, corners and gaps, they bear aerodynamic penalties, mostly in terms of shape drag. Shape adaptation, by means of chordwise morphing, has the potential of varying the lift of a wing section by deforming its profile in a way that minimizes the resulting drag. Furthermore, as the shape can be varied differently along the wingspan, the lift distribution can be tailored to each specific flight condition. For this reason, tailless aircraft appear as a prime choice to apply morphing techniques, as the attainable benefits are potentially significant. In this work, we present a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by Macro Fiber Composite (MFC) piezoelectric elements. The multidisciplinary optimization is performed considering the static and dynamic aeroelastic behavior of the resulting structure. The goal is the maximization of the aerodynamic efficiency while guaranteeing the controllability of the plane, by means of morphing, in a set of flight conditions.

  2. morph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodall, John; Iannacone, Mike; Athalye, Anish

    2013-08-01

    Morph is a framework and domain-specific language (DSL) that helps parse and transform structured documents. It currently supports several file formats including XML, JSON, and CSV, and custom formats are usable as well.

  3. Structural design of morphing trailing edge actuated by SMA

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Zhiwei; Zhu, Qian

    2013-09-01

    In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4%and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.

  4. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    PubMed

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  5. Pressure-actuated cellular structures.

    PubMed

    Pagitz, M; Lamacchia, E; Hol, J M A M

    2012-03-01

    Shape changing structures will play an important role in future engineering designs since rigid structures are usually only optimal for a small range of service conditions. Hence, a concept for reliable and energy-efficient morphing structures that possess a large strength to self-weight ratio would be widely applicable. We propose a novel concept for morphing structures that is inspired by the nastic movement of plants. The idea is to connect prismatic cells with tailored pentagonal and/or hexagonal cross sections such that the resulting cellular structure morphs into given target shapes for certain cell pressures. An efficient algorithm for computing equilibrium shapes as well as cross-sectional geometries is presented. The potential of this novel concept is demonstrated by several examples that range from a flagellum like propulsion device to a morphing aircraft wing.

  6. The Influence of Social Comparison on Visual Representation of One's Face

    PubMed Central

    Zell, Ethan; Balcetis, Emily

    2012-01-01

    Can the effects of social comparison extend beyond explicit evaluation to visual self-representation—a perceptual stimulus that is objectively verifiable, unambiguous, and frequently updated? We morphed images of participants' faces with attractive and unattractive references. With access to a mirror, participants selected the morphed image they perceived as depicting their face. Participants who engaged in upward comparison with relevant attractive targets selected a less attractive morph compared to participants exposed to control images (Study 1). After downward comparison with relevant unattractive targets compared to control images, participants selected a more attractive morph (Study 2). Biased representations were not the products of cognitive accessibility of beauty constructs; comparisons did not influence representations of strangers' faces (Study 3). We discuss implications for vision, social comparison, and body image. PMID:22662124

  7. The role of calcium and predation on plate morph evolution in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Smith, Carl; Spence, Rowena; Barber, Iain; Przybylski, Mirosław; Wootton, Robert J

    2014-09-01

    While the genetic basis to plate morph evolution of the three-spined stickleback (Gasterosteus aculeatus) is well described, the environmental variables that select for different plate and spine morphs are incompletely understood. Using replicate populations of three-spined sticklebacks on North Uist, Scotland, we previously investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. While dissolved calcium proved a significant predictor of plate and spine morph, predator abundance did not. Ecol. Evol., xxx, 2014 and xxx performed a comparable analysis to our own to address the same question. They failed to detect a significant effect of dissolved calcium on morphological evolution, but did establish a significant effect of predation; albeit in the opposite direction to their prediction.

  8. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  9. A FSI Enabled Practical Rotorcraft Flow Simulator for Morphing Blade Innovation

    DTIC Science & Technology

    2015-05-08

    morphing surface at different azimuthal angles . It can be found that the morphing surfaces do not deform at 0º and 22.5º, because the shock is...Apparently, due to the superposition of two speeds, the position and strength of shock change at different azimuthal angles . As shown in Figure 30, the...meters. The observer is stationary and the blade rotates periodically. This set up follows what would essentially be a wind tunnel set up. The blade

  10. The role of calcium and predation on plate morph evolution in the three-spined stickleback (Gasterosteus aculeatus)

    PubMed Central

    Smith, Carl; Spence, Rowena; Barber, Iain; Przybylski, Mirosław; Wootton, Robert J

    2014-01-01

    While the genetic basis to plate morph evolution of the three-spined stickleback (Gasterosteus aculeatus) is well described, the environmental variables that select for different plate and spine morphs are incompletely understood. Using replicate populations of three-spined sticklebacks on North Uist, Scotland, we previously investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. While dissolved calcium proved a significant predictor of plate and spine morph, predator abundance did not. Ecol. Evol., xxx, 2014 and xxx performed a comparable analysis to our own to address the same question. They failed to detect a significant effect of dissolved calcium on morphological evolution, but did establish a significant effect of predation; albeit in the opposite direction to their prediction. PMID:25478147

  11. Preliminary aeroelastic assessment of a large aeroplane equipped with a camber-morphing aileron

    NASA Astrophysics Data System (ADS)

    Pecora, Rosario; Amoroso, Francesco; Palumbo, Rita; Arena, Maurizio; Amendola, Gianluca; Dimino, Ignazio

    2017-04-01

    The development of adaptive morphing wings has been individuated as one of the crucial topics in the greening of the next generation air transport. Research programs have been lunched and are still running worldwide to exploit the potentials of morphing concepts in the optimization of aircraft efficiency and in the consequent reduction of fuel burn. In the framework of CRIAQ MDO 505, a joint Canadian and Italian research project, an innovative camber morphing architecture was proposed for the aileron of a reference civil transportation aircraft; aileron shape adaptation was conceived to increase roll control effectiveness as well as to maximize overall wing efficiency along a typical flight mission. Implemented structural solutions and embedded systems were duly validated by means of ground tests carried out on a true scale prototype. Relying upon the experimental modes of the device in free-free conditions, a rational analysis was carried out in order to investigate the impacts of the morphing aileron on the aeroelastic stability of the reference aircraft. Flutter analyses were performed in compliance with EASA CS-25 airworthiness requirements and referring -at first- to nominal aileron functioning. In this way, safety values for aileron control harmonic and degree of mass-balance were defined to avoid instabilities within the flight envelope. Trade-off analyses were finally addressed to justify the robustness of the adopted massbalancing as well as the persistence of the flutter clearance in case of relevant failures/malfunctions of the morphing system components.

  12. Spatial Distribution of Flower Color Induced by Interspecific Sexual Interaction

    PubMed Central

    Takahashi, Yuma; Takakura, Koh-ichi; Kawata, Masakado

    2016-01-01

    Understanding the mechanisms shaping the spatiotemporal distribution of species has long been a central concern of ecology and evolutionary biology. Contemporary patterns of plant assemblies suggest that sexual interactions among species, i.e., reproductive interference, lead to the exclusive distributions of closely related species that share pollinators. However, the fitness consequences and the initial ecological/evolutionary responses to reproductive interference remain unclear in nature, since reproductive isolation or allopatric distribution has already been achieved in the natural community. In Japan, three species of blue-eyed grasses (Sisyrinchium) with incomplete reproductive isolation have recently colonized and occur sympatrically. Two of them are monomorphic with white flowers, whereas the other exhibits heritable color polymorphism (white and purple morphs). Here we investigated the effects of the presence of two monomorphic species on the distribution and reproductive success of color morphs. The frequency and reproductive success of white morphs decreased in area where monomorphic species were abundant, while those of purple morphs did not. The rate of hybridization between species was higher in white morphs than in the purple ones. Resource competition and habitat preference seemed not to contribute to the spatial distribution and reproductive success of two morphs. Our results supported that color-dependent reproductive interference determines the distribution of flower color polymorphism in a habitat, implying ecological sorting promoted by pollinator-mediated reproductive interference. Our study helps us to understand the evolution and spatial structure of flower color in a community. PMID:27723785

  13. Life-history trade-offs mediate 'personality' variation in two colour morphs of the pea aphid, Acyrthosiphon pisum.

    PubMed

    Schuett, Wiebke; Dall, Sasha R X; Kloesener, Michaela H; Baeumer, Jana; Beinlich, Felix; Eggers, Till

    2015-01-01

    Life-history trade-offs are considered a major driving force in the emergence of consistent behavioural differences (personality variation); but empirical tests are scarce. We investigated links between a personality trait (escape response), life-history and state variables (growth rate, size and age at first reproduction, age-dependent reproductive rates, lifetime reproductive success, life span) in red and green colour morphs of clonal pea aphids, Acyrthosiphon pisum. Escape response (dropping/non-dropping off a plant upon a predatory attack) was measured repeatedly to classify individuals as consistent droppers, consistent nondroppers or inconsistents. Red morphs experienced stronger trade-offs between early reproduction and life span than green morphs; and red consistent (non)droppers had highest lifetime reproductive success. Red droppers followed a risk-averse life-history strategy (high late reproduction), red nondroppers a risk-prone strategy (high early reproduction), while reproductive rates were equivalent for all green behavioural types and red inconsistents. This suggests that red morphs suffer the highest costs of dropping (they are most conspicuous to predators), which 'equivalates' fitness payoffs to both risk-takers (red non-droppers) and risk-averse red droppers. The strong trade-off also means that committing to a particular lifestyle (being consistent) maximises fitness. Our study suggests that life-history trade-offs likely mediate personality variation but effects might depend on interactions with other organismal characteristics (here: colour morph). © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  14. Cellular and ultrastructural characterization of the grey-morph phenotype in southern right whales (Eubalaena australis)

    PubMed Central

    Eroh, Guy D.; Clayton, Fred C.; Florell, Scott R.; Cassidy, Pamela B.; Chirife, Andrea; Marón, Carina F.; Valenzuela, Luciano O.; Campbell, Michael S.; Seger, Jon; Rowntree, Victoria J.; Leachman, Sancy A.

    2017-01-01

    Southern right whales (SRWs, Eubalena australis) are polymorphic for an X-linked pigmentation pattern known as grey morphism. Most SRWs have completely black skin with white patches on their bellies and occasionally on their backs; these patches remain white as the whale ages. Grey morphs (previously referred to as partial albinos) appear mostly white at birth, with a splattering of rounded black marks; but as the whales age, the white skin gradually changes to a brownish grey color. The cellular and developmental bases of grey morphism are not understood. Here we describe cellular and ultrastructural features of grey-morph skin in relation to that of normal, wild-type skin. Melanocytes were identified histologically and counted, and melanosomes were measured using transmission electron microscopy. Grey-morph skin had fewer melanocytes when compared to wild-type skin, suggesting reduced melanocyte survival, migration, or proliferation in these whales. Grey-morph melanocytes had smaller melanosomes relative to wild-type skin, normal transport of melanosomes to surrounding keratinocytes, and normal localization of melanin granules above the keratinocyte nuclei. These findings indicate that SRW grey-morph pigmentation patterns are caused by reduced numbers of melanocytes in the skin, as well as by reduced amounts of melanin production and/or reduced sizes of mature melanosomes. Grey morphism is distinct from piebaldism and albinism found in other species, which are genetic pigmentation conditions resulting from the local absence of melanocytes, or the inability to synthesize melanin, respectively. PMID:28170433

  15. Conceptual design and multidisciplinary optimization of in-plane morphing wing structures

    NASA Astrophysics Data System (ADS)

    Inoyama, Daisaku; Sanders, Brian P.; Joo, James J.

    2006-03-01

    In this paper, the topology optimization methodology for the synthesis of distributed actuation system with specific applications to the morphing air vehicle is discussed. The main emphasis is placed on the topology optimization problem formulations and the development of computational modeling concepts. For demonstration purposes, the inplane morphing wing model is presented. The analysis model is developed to meet several important criteria: It must allow large rigid-body displacements, as well as variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Preliminary work has indicated that addressed modeling concept meets the criteria and may be suitable for the purpose. Topology optimization is performed on the ground structure based on this modeling concept with design variables that control the system configuration. In other words, states of each element in the model are design variables and they are to be determined through optimization process. In effect, the optimization process assigns morphing members as 'soft' elements, non-morphing load-bearing members as 'stiff' elements, and non-existent members as 'voids.' In addition, the optimization process determines the location and relative force intensities of distributed actuators, which is represented computationally as equal and opposite nodal forces with soft axial stiffness. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of formulation itself. Sample in-plane morphing problems are solved to demonstrate the potential capability of the methodology introduced in this paper.

  16. Variation in the Visual Habitat May Mediate the Maintenance of Color Polymorphism in a Poeciliid Fish

    PubMed Central

    Hurtado-Gonzales, Jorge L.; Loew, Ellis R.; Uy, J. Albert C.

    2014-01-01

    The conspicuousness of animal signals is influenced by their contrast against the background. As such, signal conspicuousness will tend to vary in nature because habitats are composed of a mosaic of backgrounds. Variation in attractiveness could result in variation in conspecific mate choice and risk of predation, which, in turn, may create opportunities for balancing selection to maintain distinct polymorphisms. We quantified male coloration, the absorbance spectrum of visual pigments and the photic environment of Poecilia parae, a fish species with five distinct male color morphs: a drab (i.e., grey), a striped, and three colorful (i.e., blue, red and yellow) morphs. Then, using physiological models, we assessed how male color patterns can be perceived in their natural visual habitats by conspecific females and a common cichlid predator, Aequidens tetramerus. Our estimates of chromatic and luminance contrasts suggest that the three most colorful morphs were consistently the most conspicuous across all habitats. However, variation in the visual background resulted in variation in which morph was the most conspicuous to females at each locality. Likewise, the most colorful morphs were the most conspicuous morphs to cichlid predators. If females are able to discriminate between conspicuous prospective mates and those preferred males are also more vulnerable to predation, variable visual habitats could influence the direction and strength of natural and sexual selection, thereby allowing for the persistence of color polymorphisms in natural environments. PMID:24987856

  17. Context-dependent crypsis: a prey's perspective of a color polymorphic predator.

    PubMed

    Rodríguez-Morales, D; Rico-Gray, V; García-Franco, J G; Ajuria-Ibarra, H; Hernández-Salazar, L T; Robledo-Ospina, L E; Rao, D

    2018-05-12

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  18. Cellular and ultrastructural characterization of the grey-morph phenotype in southern right whales (Eubalaena australis).

    PubMed

    Eroh, Guy D; Clayton, Fred C; Florell, Scott R; Cassidy, Pamela B; Chirife, Andrea; Marón, Carina F; Valenzuela, Luciano O; Campbell, Michael S; Seger, Jon; Rowntree, Victoria J; Leachman, Sancy A

    2017-01-01

    Southern right whales (SRWs, Eubalena australis) are polymorphic for an X-linked pigmentation pattern known as grey morphism. Most SRWs have completely black skin with white patches on their bellies and occasionally on their backs; these patches remain white as the whale ages. Grey morphs (previously referred to as partial albinos) appear mostly white at birth, with a splattering of rounded black marks; but as the whales age, the white skin gradually changes to a brownish grey color. The cellular and developmental bases of grey morphism are not understood. Here we describe cellular and ultrastructural features of grey-morph skin in relation to that of normal, wild-type skin. Melanocytes were identified histologically and counted, and melanosomes were measured using transmission electron microscopy. Grey-morph skin had fewer melanocytes when compared to wild-type skin, suggesting reduced melanocyte survival, migration, or proliferation in these whales. Grey-morph melanocytes had smaller melanosomes relative to wild-type skin, normal transport of melanosomes to surrounding keratinocytes, and normal localization of melanin granules above the keratinocyte nuclei. These findings indicate that SRW grey-morph pigmentation patterns are caused by reduced numbers of melanocytes in the skin, as well as by reduced amounts of melanin production and/or reduced sizes of mature melanosomes. Grey morphism is distinct from piebaldism and albinism found in other species, which are genetic pigmentation conditions resulting from the local absence of melanocytes, or the inability to synthesize melanin, respectively.

  19. Context-dependent crypsis: a prey's perspective of a color polymorphic predator

    NASA Astrophysics Data System (ADS)

    Rodríguez-Morales, D.; Rico-Gray, V.; García-Franco, J. G.; Ajuria-Ibarra, H.; Hernández-Salazar, L. T.; Robledo-Ospina, L. E.; Rao, D.

    2018-06-01

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  20. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths.

    PubMed

    Nokelainen, Ossi; Valkonen, Janne; Lindstedt, Carita; Mappes, Johanna

    2014-05-01

    Polymorphism in warning coloration is puzzling because positive frequency-dependent selection by predators is expected to promote monomorphic warning signals in defended prey. We studied predation on the warning-coloured wood tiger moth (Parasemia plantaginis) by using artificial prey resembling white and yellow male colour morphs in five separate populations with different naturally occurring morph frequencies. We tested whether predation favours one of the colour morphs over the other and whether that is influenced either by local, natural colour morph frequencies or predator community composition. We found that yellow specimens were attacked less than white ones regardless of the local frequency of the morphs indicating frequency-independent selection, but predation did depend on predator community composition: yellows suffered less attacks when Paridae were abundant, whereas whites suffered less attacks when Prunellidae were abundant. Our results suggest that spatial heterogeneity in predator community composition can generate a geographical mosaic of selection facilitating the evolution of polymorphic warning signals. This is the first time this mechanism gains experimental support. Altogether, this study sheds light on the evolution of adaptive coloration in heterogeneous environments. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  1. Dynamics of colour polymorphism in a changing environment: fire melanism and then what?

    PubMed

    Karlsson, Magnus; Caesar, Sofia; Ahnesjö, Jonas; Forsman, Anders

    2008-01-01

    Studies of whether disturbance events are associated with the changing genetic compositions of natural populations may provide insights into the importance of local selection events in maintaining diversity, and might inform plans for the conservation and protection of that diversity. We examined the dynamics of a colour pattern polymorphism in a natural population of pygmy grasshoppers Tetrix subulata (Orthoptera: Tetrigidae) inhabiting a previously burnt clear-cut area. Data on morph frequencies for wild-caught and captive-reared individuals indicated that the initial dominance of black phenotypes following the fire event was followed by an increased diversity of the polymorphism. This was manifested as the appearance of a novel morph, a decreased incidence of the black morph, and a more even distribution of individuals across alternative morphs following the recurrence of vegetation. We also found that the colour patterns of captive-reared individuals resembled those of their parents and that the degree of within-clutch diversity increased between generations. Our comparisons of morph frequencies across generations and between environments within generations point to a genetic determination of colour pattern, and indicate that the polymorphism is influenced more strongly by selection than by plasticity or migration.

  2. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be otherwise possible. These developments have taken place in parallel with the growth of an increasingly interconnected scientific environment. Scientists from different disciplines can easily interact with each other via information and materials they encounter online, and collaborate remotely without ever meeting each other in person. Likewise, these precipitation datasets are quickly and easily available via various data portals and are widely used. Within the framework of the NASA/JAXA Global Precipitation Measurement (GPM mission, these applications will become increasingly interconnected. We emphasize that precipitation observations by themselves provide an incomplete picture of the state of the atmosphere. For example, it is unlikely that a richer understanding of the global water cycle will be possible by standalone missions and algorithms, but must also involve some component of data, where model analyses of the physical state are constrained alongside multiple observations (e.g., precipitation, evaporation, radiation). The next section provides examples extracted from the many applications that use various high-resolution precipitation products. The final section summarizes the future system for global precipitation processing.

  3. Development of emotional facial recognition in late childhood and adolescence.

    PubMed

    Thomas, Laura A; De Bellis, Michael D; Graham, Reiko; LaBar, Kevin S

    2007-09-01

    The ability to interpret emotions in facial expressions is crucial for social functioning across the lifespan. Facial expression recognition develops rapidly during infancy and improves with age during the preschool years. However, the developmental trajectory from late childhood to adulthood is less clear. We tested older children, adolescents and adults on a two-alternative forced-choice discrimination task using morphed faces that varied in emotional content. Actors appeared to pose expressions that changed incrementally along three progressions: neutral-to-fear, neutral-to-anger, and fear-to-anger. Across all three morph types, adults displayed more sensitivity to subtle changes in emotional expression than children and adolescents. Fear morphs and fear-to-anger blends showed a linear developmental trajectory, whereas anger morphs showed a quadratic trend, increasing sharply from adolescents to adults. The results provide evidence for late developmental changes in emotional expression recognition with some specificity in the time course for distinct emotions.

  4. A supergene determines highly divergent male reproductive morphs in the ruff

    PubMed Central

    dos Remedios, Natalie; Farrell, Lindsay L.; McRae, Susan B.; Morgan, Tawna C.; Karlionova, Natalia; Pinchuk, Pavel; Verkuil, Yvonne I.; Kitaysky, Alexander S.; Wingfield, John C.; Piersma, Theunis; Zeng, Kai; Slate, Jon; Blaxter, Mark; Lank, David B.; Burke, Terry

    2015-01-01

    Three strikingly different alternative male mating morphs (aggressive “Independents”, semi-cooperative “Satellites” and female mimic “Faeders”) coexist as a balanced polymorphism in the ruff, Philomachus pugnax, a lek-breeding wading bird1,2,3. Major differences in body size, ornamentation, and aggressive and mating behaviour are inherited as an autosomal polymorphism4,5. We show that development into Satellites and Faeders is determined by a supergene6,7,8 consisting of divergent alternative, dominant, non-recombining haplotypes of an inversion on chromosome 11, which contains 125 predicted genes. Independents are homozygous for the ancestral sequence. One breakpoint of the inversion disrupts the essential Centromere protein N (CENP-N) gene, and pedigree analysis confirms lethality of inversion homozygotes. We describe novel behavioural, testes size, and steroid metabolic differences among morphs, and identify polymorphic genes within the inversion that are likely to contribute to the differences among morphs in reproductive traits. PMID:26569125

  5. Development of SMA Actuated Morphing Airfoil for Wind Turbine Load Alleviation

    NASA Astrophysics Data System (ADS)

    Karakalas, A.; Machairas, T.; Solomou, A.; Riziotis, V.; Saravanos, D.

    Wind turbine rotor upscaling has entered a range of rotor diameters where the blade structure cannot sustain the increased aerodynamic loads without novel load alleviation concepts. Research on load alleviation using morphing blade sections is presented. Antagonistic shape memory alloy (SMA) actuators are implemented to deflect the section trailing edge (TE) to target shapes and target time-series relating TE movement with changes in lift coefficient. Challenges encountered by the complex thermomechanical response of morphing section and the enhancement of SMA transient response to achieve frequencies meaningful for aerodynamic load alleviation are addressed. Using a recently developed finite element for SMA actuators [1], actuator configurations are considered for fast cooling and heating cycles. Numerical results quantify the attained ranges of TE angle movement, the moving time period and the developed stresses. Estimations of the attained variations of lift coefficient vs. time are also presented to assess the performance of the morphing section.

  6. HRTEM low dose: the unfold of the morphed graphene, from amorphous carbon to morphed graphenes.

    PubMed

    Calderon, H A; Okonkwo, A; Estrada-Guel, I; Hadjiev, V G; Alvarez-Ramírez, F; Robles Hernández, F C

    We present experimental evidence under low-dose conditions transmission electron microscopy for the unfolding of the evolving changes in carbon soot during mechanical milling. The milled soot shows evolving changes as a function of the milling severity or time. Those changes are responsible for the transformation from amorphous carbon to graphenes, graphitic carbon, and highly ordered structures such as morphed graphenes, namely Rh6 and Rh6-II. The morphed graphenes are corrugated layers of carbon with cross-linked covalently nature and sp 2 - or sp 3 -type allotropes. Electron microscopy and numerical simulations are excellent complementary tools to identify those phases. Furthermore, the TEAM 05 microscope is an outstanding tool to resolve the microstructure and prevent any damage to the sample. Other characterization techniques such as XRD, Raman, and XPS fade to convey a true identification of those phases because the samples are usually blends or mixes of the mentioned phases.

  7. Four heads are better than one: combining face composites yields improvements in face likeness.

    PubMed

    Bruce, Vicki; Ness, Hayley; Hancock, Peter J B; Newman, Craig; Rarity, Jenny

    2002-10-01

    Four participants constructed face composites, of familiar and unfamiliar targets, using Pro-Fit, with reference images present or from memory. The "mean" of all 4 composites, created by morphing (4-morph) was rated as a better likeness than individual composites on average and was as good as the best individual likeness. When participants attempted to identify targets from line-ups, 4-morphs again performed as well as the best individual composite. In a second experiment, participants familiar with target women attempted to identify composites, and the trend showed better recognition from multiple composites, whether combined or shown together. In a line-up task with unfamiliar participants, 4-morphs produced most correct choices and fewest false positives from target-absent or target-present arrays. These results have practical implications for the way evidence from different witnesses is used in police investigations.

  8. Shape memory alloy-actuated bistable composites for morphing structures

    NASA Astrophysics Data System (ADS)

    Chillara, Venkata Siva C.; Dapino, Marcelo J.

    2018-03-01

    Laminated composites with orthogonally-applied mechanical prestress have been shown to exhibit two stable shapes where each shape is influenced by only one prestrained lamina. The application of mechanical prestress is associated with an irreversible non-zero stress state; when combined with smart materials with controllable stress-states, this results in multifunctionality in morphing composites. This study presents an experimental characterization of the shape transition or snap-through in mechanically-prestressed bistable laminates. Measurements, conducted using tensile testing and 3D motion capture, show that snap-through in these laminates is a multi-stage phenomenon. An active bistable morphing composite is demonstrated using NiTi shape memory wire actuators in push-pull configuration; activation of one wire resets the second wire as the composite morphs. The set of shape memory actuators not only actuate the composite in both directions, but also act as dampers that enable vibration-free shape transition.

  9. Mechanical vibrations from tadpoles' flapping tails transform salamander's carnivorous morphology.

    PubMed

    Michimae, Hirofumi; Nishimura, Kinya; Wakahara, Masami

    2005-03-22

    Some prey or predator organisms exhibit striking rapid morphological plastic changes with distinct morphology under the condition of predator or prey presence. Remote chemicals propagating from the inducing agents are the prevalent induction cues for most examples of induction of distinct morphs. Sonic and visual cues, as well as chemical cues, are known as triggers for induction of behavioural plasticity. Here we show that hydraulic vibration originating from flapping tails of anuran tadpoles is a key cue in relation to induction of a distinct carnivorous morphology, a broad-headed morph, in larval salamander Hynobius retardatus, which is able to efficiently capture and handle prey. This result was further supported by the fact that simple mechanical vibrations of tail-like vinyl fins were able to induce the morph without any biological cues. Induction of the morph triggered by hydraulic vibration provides a novel concept for understanding the proximate mechanisms of induction of morphological changes.

  10. NASA's Morphing Project Research Summaries in Fiscal Year 2002

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Waszak, Martin R.

    2005-01-01

    The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.

  11. What is Falco Altaicus Menzbier?

    USGS Publications Warehouse

    Ellis, D.H.

    1995-01-01

    The systematics of the Altay falcon (Falco altaicus/lorenzi) remains enigmatic. First reported in 1811, it has been treated as a gyrfalcon (F. rusticolus), a saker (F. cherrug), and two separate species (F. lorenzi and F. altaicus). Of 53 'altaicus' specimens examined, at least two are misidentified gyrfalcons, many are typical sakers, but 34 (the core group) are considered to be the true Altay falcon type. Adults have red, brown, and gray color morphs. The red (backed) morph closely resembles some eastern sakers; the chocolate and gray morphs resemble respective gyrfalcon morphs. While the true affinities of the Altay falcon will be resolved by molecular genetics, the ecological, geographical, and morphological information suggest that the core group represents a gyrfalcon-saker cross that is being swamped through back crosses with the saker. The breeding range of the core group (i.e., the Altay and Sayan Mountains) is much smaller than previously reported.

  12. Shape Optimization and Modular Discretization for the Development of a Morphing Wingtip

    NASA Astrophysics Data System (ADS)

    Morley, Joshua

    Better knowledge in the areas of aerodynamics and optimization has allowed designers to develop efficient wingtip structures in recent years. However, the requirements faced by wingtip devices can be considerably different amongst an aircraft's flight regimes. Traditional static wingtip devices are then a compromise between conflicting requirements, resulting in less than optimal performance within each regime. Alternatively, a morphing wingtip can reconfigure leading to improved performance over a range of dissimilar flight conditions. Developed within this thesis, is a modular morphing wingtip concept that centers on the use of variable geometry truss mechanisms to permit morphing. A conceptual design framework is established to aid in the development of the concept. The framework uses a metaheuristic optimization procedure to determine optimal continuous wingtip configurations. The configurations are then discretized for the modular concept. The functionality of the framework is demonstrated through a design study on a hypothetical wing/winglet within the thesis.

  13. Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa.

    PubMed

    Olson, Nathan D; Lesser, Michael P

    2013-12-01

    Previous research on the Caribbean coral Montastraea cavernosa reported the presence of cyanobacterial endosymbionts and nitrogen fixation in orange, but not brown, colonies. We compared the diversity of nifH gene sequences between these two color morphs at three locations in the Caribbean and found that the nifH sequences recovered from M. cavernosa were consistent with previous studies on corals where members of both the α-proteobacteria and cyanobacteria were recovered. A number of nifH operational taxonomic units (OTUs) were significantly more abundant in the orange compared to the brown morphs, and one specific OTU (OTU 17), a cyanobacterial nifH sequence similar to others from corals and sponges and related to the cyanobacterial genus Cyanothece, was found in all orange morphs of M. cavernosa at all locations. The nifH diversity reported here, from a community perspective, was not significantly different between orange and brown morphs of M. cavernosa.

  14. EDITORIAL Smart materials, multifunctional composites, and morphing structures: selected papers from the 20th International Conference on Adaptive Structures and Technologies (ICAST 2009) Smart materials, multifunctional composites, and morphing structures: selected papers from the 20th International Conference on Adaptive Structures and Technologies (ICAST 2009)

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Hsin

    2010-12-01

    The 20th International Conference on Adaptive Structures and Technologies (ICAST) was held on 20-22 October 2009 in Hong Kong. This special section of Smart Materials and Structures is derived from the research papers presented at the conference. Of the 106 papers presented at the conference, 11 papers were reviewed and accepted for this special section, following the regular review procedures of the journal. This special section is focused on smart materials, multifunctional composites, and applications on morphing structures. Smart materials. Smart materials are the foundation of adaptive structures and intelligent systems. The development of new materials will lead to significant improvement in various applications. Three articles are focused on the fabrication of new materials and investigation of their behaviors: Barium strontium zirconate titanate ((Ba1-xSrx)(ZrxTi1-x)O3; BSZT, x = 0.25 and 0.75) ceramics with a highly crystalline structure were fabricated using the combustion technique. The microstructure of BSZT powders exhibited an almost-spherical morphology and had a porous agglomerated form. Polyaniline (PANI)/clay nanoparticles with unique core-shell structure were synthesized via Pickering emulsion polymerization. By dispersing PANI/clay nanoparticles in silicone oil, the ER fluid was made. Magnetic field effects were investigated on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering for superior hardness, excellent wear and oxidation resistance. The surface morphology of chromium nitride films was also examined by a scanning electron microscope (SEM). Multifunctional composites. Composites are made from two or more constituent materials so they can combine the best properties of different materials. Five papers deal with fabrication, testing, and modeling of various multifunctional composites: A new active structural fiber (ASF) was fabricated by coating a single carbon fiber with a concentric PZT (PbZr0.52Ti0.48O3) shell using electrolytic deposition. This new ASF is expected to have broader applications due to the higher piezoelectric coupling effect with the use of carbon fiber and PZT. The sol-gel technique was employed to deposit lead zirconium titanium (PZT) and silica composite film onto a copper (Cu)/polyimide (PI) flexible structure. The fabricated PZT-silica composite films were then used for flexible actuator and sensor applications. Interfacial properties and hydrophobicity of multifunctional Ni-nanopowder/epoxy composites were evaluated for self-sensing and actuation. The effects of water content on the actuation performance of ionic polymer-metal composites (IPMCs) were investigated experimentally. Multiscale modelling of a composite electroactive polymer structure was developed, in particular for tubular actuators. The models were validated with experimental data. Morphing structures. Three papers relate to morphing skins and structures. Several issues including stiffness and energy consumption were explored: Composite corrugated structures were used as morphing skin panels (MSPs) in the trailing edge region of a scaled morphing aerofoil section. Wind tunnel testing was carried out to demonstrate the MSP concept. Optimization of a variable-stiffness skin was performed for morphing high-lift devices. The objective is to design the structure to have high enough stiffness to withstand aerodynamic loading and yet low enough stiffness to enable morphing. The aerodynamic and actuation loads were taken into consideration during the optimization. Two adaptive and morphing structures were proposed for low-energy consumption or even energy-harvesting green buildings with the use of an optimization process. Searching for optimal solutions was done by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope was ensured by the virtual force density method. We would like to thank all of the authors for their significant contributions to this special section for Smart Materials and Structures. We are also grateful to all of the reviewers and associate editors who handled the reviews for their time and effort. I would like to express my sincere appreciation to Professor E Garcia, Editor-in-Chief, for his encouragement by providing the opportunity to make this special section. I am indebted to IOP Publishing for their strong support and the staff, in particular publisher Natasha Leeper, for their special attention and excellent service.

  15. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements.

    PubMed

    Bah, Mamadou T; Nair, Prasanth B; Browne, Martin

    2009-12-01

    Finite element (FE) analysis of the effect of implant positioning on the performance of cementless total hip replacements (THRs) requires the generation of multiple meshes to account for positioning variability. This process can be labour intensive and time consuming as CAD operations are needed each time a specific orientation is to be analysed. In the present work, a mesh morphing technique is developed to automate the model generation process. The volume mesh of a baseline femur with the implant in a nominal position is deformed as the prosthesis location is varied. A virtual deformation field, obtained by solving a linear elasticity problem with appropriate boundary conditions, is applied. The effectiveness of the technique is evaluated using two metrics: the percentages of morphed elements exceeding an aspect ratio of 20 and an angle of 165 degrees between the adjacent edges of each tetrahedron. Results show that for 100 different implant positions, the first and second metrics never exceed 3% and 3.5%, respectively. To further validate the proposed technique, FE contact analyses are conducted using three selected morphed models to predict the strain distribution in the bone and the implant micromotion under joint and muscle loading. The entire bone strain distribution is well captured and both percentages of bone volume with strain exceeding 0.7% and bone average strains are accurately computed. The results generated from the morphed mesh models correlate well with those for models generated from scratch, increasing confidence in the methodology. This morphing technique forms an accurate and efficient basis for FE based implant orientation and stability analysis of cementless hip replacements.

  16. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Jerry M; Baskin, Carol C

    2014-01-01

    Seed morph, abiotic conditions and time of germination can affect plant fitness, but few studies have tested their combined effects on plasticity of plant life history traits. Thus, we tested the hypothesis that seed morph, germination season and watering regime influence phenotypic expression of post-germination life history traits in the diaspore-heteromorphic cold desert winter annual/spring ephemeral Diptychocarpus strictus. The two seed morphs were sown in watered and non-watered plots in late summer, and plants derived from them were watered or not-watered throughout the study. Seed morph did not affect phenology, growth and morphology, survival, dry mass accumulation and allocation or silique and seed production. Seeds in watered plots germinated in autumn (AW) and spring (SW) but only in spring for non-watered plots (SNW). A high percentage of AW, SW and SNW plants survived and reproduced, but flowering date and flowering period of autumn- vs. spring-germinated plants differed. Dry mass also differed with germination season/watering regime (AW > SW > SNW). Number of siliques and seeds increased with plant size (AW > SW > SNW), whereas percent dry mass allocated to reproduction was higher in small plants: SNW > SW > AW. Thus, although seed morph did not affect the expression of life history traits, germination season and watering regime significantly affected phenology, plant size and accumulation and allocation of biomass to reproduction. Flexibility throughout the life cycle of D. strictus is an adaptation to the variation in timing and amount of rainfall in its cold desert habitat.

  17. Localization and Divergent Profiles of Estrogen Receptors and Aromatase in the Vocal and Auditory Networks of a Fish with Alternative Mating Tactics

    PubMed Central

    Fergus, Daniel J.; Bass, Andrew H.

    2013-01-01

    Estrogens play a salient role in the development and maintenance of both male and female nervous systems and behaviors. The plainfin midshipman (Porichthys notatus), a teleost fish, has two male reproductive morphs that follow alternative mating tactics and diverge in multiple somatic, hormonal and neural traits, including the central control of morph-specific vocal behaviors. After we identified duplicate estrogen receptors (ERβ1 and ERβ2) in midshipman, we developed antibodies to localize protein expression in the central vocal-acoustic networks and saccule, the auditory division of the inner ear. As in other teleost species, ERβ1 and ERβ2 were robustly expressed in the telencephalon and hypothalamus in vocal-acoustic and other brain regions shown previously to exhibit strong expression of ERα and aromatase (estrogen synthetase, CYP19) in midshipman. Like aromatase, ERβ1 label co-localized with glial fibrillary acidic protein (GFAP) in telencephalic radial glial cells. Quantitative PCR revealed similar patterns of transcript abundance across reproductive morphs for ERβ1, ERβ2, ERα and aromatase in the forebrain and saccule. In contrast, transcript abundance for ERs and aromatase varied significantly between morphs in and around the sexually polymorphic vocal motor nucleus (VMN). Together, the results suggest that VMN is the major estrogen target within the estrogen-sensitive hindbrain vocal network that directly determines the duration, frequency and amplitude of morph-specific vocalizations. Comparable regional differences in steroid receptor abundances likely regulate morph-specific behaviors in males and females of other species exhibiting alternative reproductive tactics. PMID:23460422

  18. Colour polymorphic lures exploit innate preferences for spectral versus luminance cues in dipteran prey.

    PubMed

    White, Thomas E; Kemp, Darrell J

    2017-08-14

    Theory predicts that colour polymorphism may be favored by variation in the visual context under which signals are perceived. The context encompasses all environmental determinants of light availability and propagation, but also the dynamics of perception in receivers. Color vision involves the neural separation of information into spectral versus luminance channels, which often differentially guide specific tasks. Here we explicitly tested whether this discrete perceptual basis contributes to the maintenance of polymorphism in a prey-luring system. The orb-weaving spider Gasteracantha fornicata is known to attract a broad community of primarily dipteran prey due to their conspicuous banded dorsal signal. They occur in two morphs ("white" and "yellow") which should, respectively, generate greater luminance and color contrast in the dipteran eye. Given that arthropods often rely upon luminance-versus-spectral cues for relatively small-versus-large stimulus detection, we predicted a switch in relative attractiveness among morphs according to apparent spider size. Our experimental tests used colour-naïve individuals of two known prey species (Drosophila hydei and Musca domestica) in replicate Y-maze choice trials designed to manipulate the apparent size of spider models via the distance at which they are viewed. Initial trials confirmed that flies were attracted to each G. fornicata morph in single presentations. When given a simultaneous choice between morphs against a viewing background typical of those encountered in nature, flies exhibited no preference regardless of the visual angle subtended by models. However, when backgrounds were adjusted to nearer the extremes of those of each morph in the wild, flies were more attracted by white morphs when presented at longer range (consistent with a reliance on achromatic cues), yet were unbiased in their close-range choice. While not fully consistent with predictions (given the absence of a differential preference for stimuli at close range), our results demonstrate an effect of apparent stimulus size upon relative morph attractiveness in the direction anticipated from present knowledge of fly visual ecology. This implies the potential tuning of G. fornicata morph signal structure according to a perceptual feature that is likely common across their breadth of arthropod prey, and complements recent observational work in suggesting a candidate mechanism for the maintenance of deceptive polymorphism through the exploitation of different visual channels in prey.

  19. KOSMOS: a universal morph server for nucleic acids, proteins and their complexes.

    PubMed

    Seo, Sangjae; Kim, Moon Ki

    2012-07-01

    KOSMOS is the first online morph server to be able to address the structural dynamics of DNA/RNA, proteins and even their complexes, such as ribosomes. The key functions of KOSMOS are the harmonic and anharmonic analyses of macromolecules. In the harmonic analysis, normal mode analysis (NMA) based on an elastic network model (ENM) is performed, yielding vibrational modes and B-factor calculations, which provide insight into the potential biological functions of macromolecules based on their structural features. Anharmonic analysis involving elastic network interpolation (ENI) is used to generate plausible transition pathways between two given conformations by optimizing a topology-oriented cost function that guarantees a smooth transition without steric clashes. The quality of the computed pathways is evaluated based on their various facets, including topology, energy cost and compatibility with the NMA results. There are also two unique features of KOSMOS that distinguish it from other morph servers: (i) the versatility in the coarse-graining methods and (ii) the various connection rules in the ENM. The models enable us to analyze macromolecular dynamics with the maximum degrees of freedom by combining a variety of ENMs from full-atom to coarse-grained, backbone and hybrid models with one connection rule, such as distance-cutoff, number-cutoff or chemical-cutoff. KOSMOS is available at http://bioengineering.skku.ac.kr/kosmos.

  20. Morphing dynamics in light-triggered LC polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Broer, Dirk J.

    2017-02-01

    Polymers that can change shape or surface topography in response to a trigger have a wide application potential varying from micro-robotics to avionics. Preferably this morphing proceeds fast and reversibly. We developed new morphing principles based on in-situ photopolymerized liquid crystal networks and on hybrid low molecular weight liquid crystals and liquid crystal networks. Commonly the triggers are temperature, light, pH or the presence of chemicals or other moisture. In the lecture we will focus on UV actuation and demonstrate that by accurate positioning of molecules over all three dimensions of a thin film or coating, the deformation figures can be pre-engineered. They can vary from simple gratings to very complex such as fingerprints that can be switched between off (flat surface) and on (corrugated surface) by light. The underlying principles are based on photo-induced changes in the degree of order of liquid crystal polymer networks and the accompanying changes in density by the formation of free volume. The surfaces can be switched with frequencies of the order of 0.1 Hz. In the lecture we will discuss several methods to fabricate the responsive layers as well as some of the most eye-catching properties. Also the mechanism of free volume generation will be addressed in terms of molecular dynamics and resonance.

  1. Morphing of spatial objects in real time with interpolation by functions of radial and orthogonal basis

    NASA Astrophysics Data System (ADS)

    Kosnikov, Yu N.; Kuzmin, A. V.; Ho, Hoang Thai

    2018-05-01

    The article is devoted to visualization of spatial objects’ morphing described by the set of unordered reference points. A two-stage model construction is proposed to change object’s form in real time. The first (preliminary) stage is interpolation of the object’s surface by radial basis functions. Initial reference points are replaced by new spatially ordered ones. Reference points’ coordinates change patterns during the process of morphing are assigned. The second (real time) stage is surface reconstruction by blending functions of orthogonal basis. Finite differences formulas are applied to increase the productivity of calculations.

  2. Mechanical properties of shape memory polymers for morphing aircraft applications

    NASA Astrophysics Data System (ADS)

    Keihl, Michelle M.; Bortolin, Robert S.; Sanders, Brian; Joshi, Shiv; Tidwell, Zeb

    2005-05-01

    This investigation addresses basic characterization of a shape memory polymer (SMP) as a suitable structural material for morphing aircraft applications. Tests were performed for monotonic loading in high shear at constant temperature, well below, or just above the glass transition temperature. The SMP properties were time-and temperature-dependent. Recovery by the SMP to its original shape needed to be unfettered. Based on the testing SMPs appear to be an attractive and promising component in the solution for a skin material of a morphing aircraft. Their multiple state abilities allow them to easily change shape and, once cooled, resist large loads.

  3. Monitoring the bending and twist of morphing structures

    NASA Astrophysics Data System (ADS)

    Smoker, J.; Baz, A.

    2008-03-01

    This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.

  4. The melanocortin system regulates body pigmentation and social behaviour in a colour polymorphic cichlid fish†

    PubMed Central

    Maguire, Sean M.; Harris, Rayna M.; Rodriguez, Agosto A.; DeAngelis, Ross S.; Flores, Stephanie A.; Hofmann, Hans A.

    2017-01-01

    The melanocortin system is a neuroendocrine system that regulates a range of physiological and behavioural processes. We examined the extent to which the melanocortin system simultaneously regulates colour and behaviour in the cichlid fish Astatotilapia burtoni. We found that yellow males are more aggressive than blue males, in line with previous studies. We then found that exogenous α-melanocyte-stimulating hormone (α-MSH) increases yellowness of the body and dispersal of xanthophore pigments in both morphs. However, α-MSH had a morph-specific effect on aggression, with only blue males showing an increase in the rate of aggression. Exogenous agouti signalling peptide (ASIP), a melanocortin antagonist, did not affect coloration but reduced the rate of aggression in both colour morphs. Blue males had higher cortisol levels than yellow males. Neural gene expression of melanocortin receptors (mcr) and ligands was not differentially regulated between colour morphs. In the skin, however, mc1r and pro-opiomelanocortin (pomc) β were upregulated in blue males, while asip 1 was upregulated in yellow males. The effects of α-MSH on behaviour and body coloration, combined with morph-specific regulation of the stress response and the melanocortin system, suggest that the melanocortin system contributes to the polymorphism in behaviour and coloration in A. burtoni. PMID:28356453

  5. A genetic approach to the rock-paper-scissors game.

    PubMed

    Barreto, Wendell P; Marquitti, Flavia M D; de Aguiar, Marcus A M

    2017-05-21

    Polymorphisms are usually associated with defenses and mating strategies, affecting the individual's fitness. Coexistence of different morphs is, therefore, not expected, since the fittest morph should outcompete the others. Nevertheless, coexistence is observed in many natural systems. For instance, males of the side-blotched lizards (Uta stansburiana) present three morphs with throat colors orange, yellow and blue, which are associated with mating strategies and territorial behavior. The three male morphs compete for females in a system that is well described by the rock-paper-scissors dynamics of game theory. Previous studies have modeled the lizards as hermaphroditic populations whose individual's behavior were determined only by their phenotypes. Here we consider an extension of this dynamical system where diploidy and sexual reproduction are explicitly taken into account. Similarly to the lizards we represent the genetic system by a single locus with three alleles, o, y, and b in a diploid chromosome with dominance of o over y and of y over b. We show that this genotypic description of the dynamics results in the same equilibrium phenotype frequencies as the phenotypic models, but affects the stability of the system, changing the parameter region where coexistence of the three morphs is possible in a rock-paper-scissors game. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers

    NASA Technical Reports Server (NTRS)

    Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.

    2017-01-01

    Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.

  7. Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, A. B.; Chen, J.; Nguyen, T. B.

    2012-02-15

    Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymphmore » nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.« less

  8. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.

    PubMed

    Zera, Anthony J; Zhao, Zhangwu

    2003-03-01

    Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

  9. Balancing selection maintains cryptic colour morphs.

    PubMed

    Wellenreuther, Maren

    2017-11-01

    Animals display incredibly diverse colour patterns, a testament to evolution's endless innovation in shaping life. In many species, the interplay between males and females in the pursuit of mates has driven the evolution of a myriad of colour forms, from the flashy peacock tail feathers to the tiniest colour markings in damselflies. In others, colour provides crypsis by allowing to blend into the background and to escape the eyes of predators. While the obvious benefits of this dazzling diversity for reproduction and survival seem straightforward, its maintenance is not. Theory predicts that genetic drift and various forms of selection reduce variation over time, making the persistence of colour variants over generations a puzzle. In this issue of Molecular Ecology, Lindtke et al. () study the cryptic colour morphs of Timema cristinae walking sticks to shed light on the genetic architecture and mechanisms that allow colour polymorphism maintenance over long timescales. By combining genome-wide data with phenotyping information from natural populations, they were able to map the green and melanistic colour to one genomic region with highly reduced effective recombination rate between two main chromosomal variants, consistent with an inversion polymorphism. These two main chromosomal variants showed geographically widespread heterozygote excess, and genomic signatures consistent with long-term balancing selection. A younger chromosomal variant was detected for the third morph, the green-striped colour morphs, in the same genomic regions as the melanistic and the green-unstriped morphs. Together, these results suggest that the genetic architecture of cryptic T. cristinae morphs is caused by nonrecombining genomic blocks that have been maintained over extended time periods by balancing selection making this study one of the few available empirical examples documenting that balancing selection of various forms may play an important role in maintaining adaptive genetic variation in nature. © 2017 John Wiley & Sons Ltd.

  10. Genetic mapping of the female mimic morph locus in the ruff

    PubMed Central

    2013-01-01

    Background Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial ‘Independents’, (ii) non-territorial ‘Satellites’, and (iii) female-mimicking ‘Faeders’. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds. Results Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multi-generation families (N = 381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination. Conclusion Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs. PMID:24256185

  11. An allelic series at pax7a is associated with colour polymorphism diversity in Lake Malawi cichlid fish.

    PubMed

    Roberts, Reade B; Moore, Emily C; Kocher, Thomas D

    2017-05-01

    Despite long-standing interest in the evolution and maintenance of discrete phenotypic polymorphisms, the molecular genetic basis of such polymorphism in the wild is largely unknown. Female sex-associated blotched colour polymorphisms found in cichlids of Lake Malawi, East Africa, represent a highly successful polymorphic phenotype, found and maintained in four genera across the geographic expanse of the lake. Previously, we identified an association with an allelic variant of the paired-box transcription factor gene pax7a and blotched colour morphs in Lake Malawi cichlid fishes. Although a diverse range of blotched phenotypes are present in Lake Malawi cichlid species, they all appeared to result from an allele of pax7a that produces increased levels of transcript. Here, we examine the developmental and genetic basis of variation among blotched morphs. First, we confirm that pax7a-associated blotch morphs result primarily from modulation of melanophore development and survival. From laboratory crosses and natural population studies, we identify at least three alleles of pax7a associated with discrete subtypes of blotched morphs, in addition to the ancestral pax7a allele. Genotypes at pax7a support initial evolution of a novel pax7a allele to produce the blotched class of morphs, followed by subsequent evolution of that pax7a blotched allele to produce additional alleles associated with discrete colour morphs. Variant alleles of pax7a produce different levels of pax7a transcript, correlating with pigmentation phenotype at the cellular level. This naturally selected allelic series should serve as a case study for understanding the molecular genetic control of pax7a expression and the evolution of sex-associated alleles. © 2016 John Wiley & Sons Ltd.

  12. Evolutionary Technique for Automated Synthesis of Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2003-01-01

    A method for evolving a circuit comprising configuring a plurality of transistors using a plurality of reconfigurable switches so that each of the plurality of transistors has a terminal coupled to a terminal of another of the plurality of transistors that is controllable by a single reconfigurable switch. The plurality of reconfigurable switches being controlled in response to a chromosome pattern. The plurality of reconfigurable switches may be controlled using an annealing function. As such, the plurality of reconfigurable switches may be controlled by selecting qualitative values for the plurality of reconfigurable switches in response to the chromosomal pattern, selecting initial quantitative values for the selected qualitative values, and morphing the initial quantitative values. Typically, subsequent quantitative values will be selected more divergent than the initial quantitative values. The morphing process may continue to partially or to completely polarize the quantitative values.

  13. Evolving Attractive Faces Using Morphing Technology and a Genetic Algorithm: A New Approach to Determining Ideal Facial Aesthetics

    PubMed Central

    Wong, Brian J. F.; Karmi, Koohyar; Devcic, Zlatko; McLaren, Christine E.; Chen, Wen-Pin

    2013-01-01

    Objectives The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Study Design Basic research study incorporating focus group evaluations. Methods Digital images were acquired of 250 female volunteers (18–25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18–25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cosmetology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. Results The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (±0.73), 5.50 (±0.62), 6.23 (±0.31), and 6.39 (±0.24) for P and F1–F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness scores. Multivariate analysis identified a similar collection of morphometric measures. No correlation with more commonly accepted measures such as the length facial thirds or fifths were identified. When images are examined as a montage (by generation), clear distinct trends are identified: oval shaped faces, distinct arched eyebrows, and full lips predominate. Faces evolve to approximate the guidelines suggested by classical canon. F3 and F4 generation faces look profoundly similar. The statistical and qualitative analysis indicates that the algorithm and methodology succeeds in generating successively more attractive faces. Conclusions The use of genetic algorithms in combination with a morphing software and traditional focus-group derived attractiveness scores can be used to evolve attractive synthetic faces. We have demonstrated that the evolution of attractive faces can be mimicked in software. Genetic algorithms and morphing provide a robust alternative to traditional approaches rooted in comparing attractiveness scores with a series of morphometric measurements in human subjects. PMID:18401273

  14. Exploiting Formation Flying for Fuel Saving Supersonic Oblique Wing Aircraft

    DTIC Science & Technology

    2007-07-01

    used and developed during recent wing / winglet / morphing design programmes (Refs.13-14). By exploiting this method, we have assessed the aerodynamics...with winglets ”, AIAA-2006-3460. 25th Applied Aero Conference, San Francisco, June 2006. 15. NANGIA, R.K., PALMER, M.E., “Formation Flying of Commercial

  15. Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus.

    PubMed

    Varatharasan, Nirupa; Croll, Roger P; Franz-Odendaal, Tamara

    2009-12-01

    In the blind cave-dwelling morph of A. mexicanus, the eye degenerates while other sensory systems, such as gustation, are expanded compared to their sighted (surface-dwelling) ancestor. This study compares the development of taste buds along the jaws of each morph. To determine whether cavefish have an altered onset or rate of taste bud development, we fluorescently labeled basal and receptor cells within taste buds over a developmental series. Our results show that taste bud number increases during development in both morphs. The rate of development is, however, accelerated in cavefish; a small difference in taste bud number exists at 5 dpf reaching threefold by 22 dpf. The expansion of taste buds in cavefish is, therefore, detectable after the onset of eye degeneration. This study provides important insights into the timing of taste bud expansion in cavefish as well as enhances our understanding of taste bud development in teleosts in general. (c) 2009 Wiley-Liss, Inc.

  16. Topology synthesis and size optimization of morphing wing structures

    NASA Astrophysics Data System (ADS)

    Inoyama, Daisaku

    This research demonstrates a novel topology and size optimization methodology for synthesis of distributed actuation systems with specific applications to morphing air vehicle structures. The main emphasis is placed on the topology and size optimization problem formulations and the development of computational modeling concepts. The analysis model is developed to meet several important criteria: It must allow a rigid-body displacement, as well as a variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Topology optimization is performed on a semi-ground structure with design variables that control the system configuration. In effect, the optimization process assigns morphing members as "soft" elements, non-morphing load-bearing members as "stiff' elements, and non-existent members as "voids." The optimization process also determines the optimum actuator placement, where each actuator is represented computationally by equal and opposite nodal forces with soft axial stiffness. In addition, the configuration of attachments that connect the morphing structure to a non-morphing structure is determined simultaneously. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of the formulations. Extensions and enhancements to the initial concept and problem formulations are made to accommodate multiple-configuration definitions. In addition, the principal issues on the external-load dependency and the reversibility of a design, as well as the appropriate selection of a reference configuration, are addressed in the research. The methodology to control actuator distributions and concentrations is also discussed. Finally, the strategy to transfer the topology solution to the sizing optimization is developed and cross-sectional areas of existent structural members are optimized under applied aerodynamic loads. That is, the optimization process is implemented in sequential order: The actuation system layout is first determined through multi-disciplinary topology optimization process, and then the thickness or cross-sectional area of each existent member is optimized under given constraints and boundary conditions. Sample problems are solved to demonstrate the potential capabilities of the presented methodology. The research demonstrates an innovative structural design procedure from a computational perspective and opens new insights into the potential design requirements and characteristics of morphing structures.

  17. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

    PubMed

    Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut

    2014-01-01

    Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.

  18. Toward the bi-modal camber morphing of large aircraft wing flaps: the CleanSky experience

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Magnifico, M.

    2016-04-01

    The Green Regional Aircraft (GRA), one of the six CleanSky platforms, represents the largest European effort toward the greening of next generation air transportation through the implementation of advanced aircraft technologies. In this framework researches were carried out to develop an innovative wing flap enabling airfoil morphing according to two different modes depending on aircraft flight condition and flap setting: - Camber morphing mode. Morphing of the flap camber to enhance high-lift performances during take-off and landing (flap deployed); - Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed and consequent optimization of aerodynamic efficiency. A true-scale flap segment of a reference aircraft (EASA CS25 category) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation issues especially with reference to the tapered geometrical layout and 3D aerodynamic loads distributions. The investigation domain covered the flap region spanning 3.6 m from the wing kink and resulted characterized by a taper ratio equal to 0.75 with a root chord of 1.2 m. High TRL solutions for the adaptive structure, actuation and control system were duly analyzed and integrated while assuring overall device compliance with industrial standards and applicable airworthiness requirements.

  19. Aggressive mimicry coexists with mutualism in an aphid.

    PubMed

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-27

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation.

  20. Aggressive mimicry coexists with mutualism in an aphid

    PubMed Central

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-01

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  1. Three new combinations in Drepanopeziza for species on poplar

    USDA-ARS?s Scientific Manuscript database

    Three species of Drepanopeziza that cause diseases of poplars have been known using scientific names for their sexual and asexual morphs, which is no longer allowed with the change to one scientific name for fungi. For each species, the oldest epithet is provided by the asexual morph; however, neith...

  2. Preferred skin color enhancement for photographic color reproduction

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Luo, Ronnier

    2011-01-01

    Skin tones are the most important colors among the memory color category. Reproducing skin colors pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the color preference of skin color reproduction. Several methods to morph skin colors to a smaller preferred skin color region has been reported in the past. In this paper, a new approach is proposed to further improve the result of skin color enhancement. An ellipsoid skin color model is applied to compute skin color probabilities for skin color detection and to determine a weight for skin color adjustment. Preferred skin color centers determined through psychophysical experiments were applied for color adjustment. Preferred skin color centers for dark, medium, and light skin colors are applied to adjust skin colors differently. Skin colors are morphed toward their preferred color centers. A special processing is applied to avoid contrast loss in highlight. A 3-D interpolation method is applied to fix a potential contouring problem and to improve color processing efficiency. An psychophysical experiment validates that the method of preferred skin color enhancement effectively identifies skin colors, improves the skin color preference, and does not objectionably affect preferred skin colors in original images.

  3. KOSMOS: a universal morph server for nucleic acids, proteins and their complexes

    PubMed Central

    Seo, Sangjae; Kim, Moon Ki

    2012-01-01

    KOSMOS is the first online morph server to be able to address the structural dynamics of DNA/RNA, proteins and even their complexes, such as ribosomes. The key functions of KOSMOS are the harmonic and anharmonic analyses of macromolecules. In the harmonic analysis, normal mode analysis (NMA) based on an elastic network model (ENM) is performed, yielding vibrational modes and B-factor calculations, which provide insight into the potential biological functions of macromolecules based on their structural features. Anharmonic analysis involving elastic network interpolation (ENI) is used to generate plausible transition pathways between two given conformations by optimizing a topology-oriented cost function that guarantees a smooth transition without steric clashes. The quality of the computed pathways is evaluated based on their various facets, including topology, energy cost and compatibility with the NMA results. There are also two unique features of KOSMOS that distinguish it from other morph servers: (i) the versatility in the coarse-graining methods and (ii) the various connection rules in the ENM. The models enable us to analyze macromolecular dynamics with the maximum degrees of freedom by combining a variety of ENMs from full-atom to coarse-grained, backbone and hybrid models with one connection rule, such as distance-cutoff, number-cutoff or chemical-cutoff. KOSMOS is available at http://bioengineering.skku.ac.kr/kosmos. PMID:22669912

  4. Turning randomness into meaning at the molecular level using Muller's morphs.

    PubMed

    Henson, Kathleen; Cooper, Melanie M; Klymkowsky, Michael W

    2012-04-15

    While evolutionary theory follows from observable facts and logical inferences (Mayr, 1985), historically, the origin of novel inheritable variations was a major obstacle to acceptance of natural selection (Bowler, 1992; Bowler, 2005). While molecular mechanisms address this issue (Jablonka and Lamb, 2005), analysis of responses to the Biological Concept Inventory (BCI) (Klymkowsky et al., 2010), revealed that molecular biology majors rarely use molecular level ideas in their discourse, implying that they do not have an accessible framework within which to place evolutionary variation. We developed a "Socratic tutorial" focused on Muller's categorization of mutations' phenotypic effects (Muller, 1932). Using a novel vector-based method to analyzed students' essay responses, we found that a single interaction with this tutorial led to significant changes in thinking toward a clearer articulation of the effects of mutational change. We suggest that Muller's morphs provides an effective framework for facilitating student learning about mutational effects and evolutionary mechanisms.

  5. Impairment of facial recognition in patients with right cerebral infarcts quantified by computer aided "morphing".

    PubMed Central

    Rösler, A; Lanquillon, S; Dippel, O; Braune, H J

    1997-01-01

    OBJECTIVE: To investigate where facial recognition is located anatomically and to establish whether there is a graded transition from unimpaired recognition of faces to complete prosopagnosia after infarctions in the territory of the middle cerebral artery. METHODS: A computerised morphing program was developed which shows 30 frames gradually changing from portrait photographs of unfamiliar persons to those of well known persons. With a standardised protocol, 31 patients with right and left sided infarctions in the territory of the middle cerebral artery and an age and sex matched control group were compared by non-parametric tests. RESULTS AND CONCLUSION: Facial recognition in patients with right sided lesions was significantly impaired compared with controls and with patients with left sided lesions. A graded impairment in facial recognition in patients with right sided ischaemic infarcts in the territory of the middle cerebral artery seems to exist. Images PMID:9069481

  6. Gender Categorization in Cochlear Implant Users

    ERIC Educational Resources Information Center

    Massida, Zoe; Marx, Mathieu; Belin, Pascal; James, Christopher; Fraysse, Bernard; Barone, Pascal; Deguine, Olivier

    2013-01-01

    Purpose: In this study, the authors examined the ability of subjects with cochlear implants (CIs) to discriminate voice gender and how this ability evolved as a function of CI experience. Method: The authors presented a continuum of voice samples created by voice morphing, with 9 intermediate acoustic parameter steps between a typical male and a…

  7. Morphing continuum theory for turbulence: Theory, computation, and visualization.

    PubMed

    Chen, James

    2017-10-01

    A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.

  8. Molecular phylogeny and larval morphological diversity of the lanternfish genus Hygophum (Teleostei: Myctophidae).

    PubMed

    Yamaguchi, M; Miya, M; Okiyama, M; Nishida, M

    2000-04-01

    Larvae of the deep-sea lanternfish genus Hygophum (Myctophidae) exhibit a remarkable morphological diversity that is quite unexpected, considering their homogeneous adult morphology. In an attempt to elucidate the evolutionary patterns of such larval morphological diversity, nucleotide sequences of a portion of the mitochondrially encoded 16S ribosomal RNA gene were determined for seven Hygophum species and three outgroup taxa. Secondary structure-based alignment resulted in a character matrix consisting of 1172 bp of unambiguously aligned sequences, which were subjected to phylogenetic analyses using maximum-parsimony, maximum-likelihood, and neighbor-joining methods. The resultant tree topologies from the three methods were congruent, with most nodes, including that of the genus Hygophum, being strongly supported by various tree statistics. The most parsimonious reconstruction of the three previously recognized, distinct larval morphs onto the molecular phylogeny revealed that one of the morphs had originated as the common ancestor of the genus, the other two having diversified separately in two subsequent major clades. The patterns of such diversification are discussed in terms of the unusual larval eye morphology and geographic distribution. Copyright 2000 Academic Press.

  9. Software and Algorithms for Biomedical Image Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Lambert, James; Lam, Raymond

    2004-01-01

    A new software equipped with novel image processing algorithms and graphical-user-interface (GUI) tools has been designed for automated analysis and processing of large amounts of biomedical image data. The software, called PlaqTrak, has been specifically used for analysis of plaque on teeth of patients. New algorithms have been developed and implemented to segment teeth of interest from surrounding gum, and a real-time image-based morphing procedure is used to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The PlaqTrak system integrates these components into a single software suite with an easy-to-use GUI (see Figure 1) that allows users to do an end-to-end run of a patient s record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image. The automated and accurate processing of the captured images to segment each tooth [see Figure 2(a)] and then detect plaque on a tooth-by-tooth basis is a critical component of the PlaqTrak system to do clinical trials and analysis with minimal human intervention. These features offer distinct advantages over other competing systems that analyze groups of teeth or synthetic teeth. PlaqTrak divides each segmented tooth into eight regions using an advanced graphics morphing procedure [see results on a chipped tooth in Figure 2(b)], and a pattern recognition classifier is then used to locate plaque [red regions in Figure 2(d)] and enamel regions. The morphing allows analysis within regions of teeth, thereby facilitating detailed statistical analysis such as the amount of plaque present on the biting surfaces on teeth. This software system is applicable to a host of biomedical applications, such as cell analysis and life detection, or robotic applications, such as product inspection or assembly of parts in space and industry.

  10. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  11. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    PubMed Central

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  12. Evaluation of Daily Extreme Precipitation Derived From Long-term Global Satellite Quantitative Precipitation Estimates (QPEs)

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.; Nickl, E.; Ferraro, R. R.

    2017-12-01

    This study evaluates the ability of different satellite-based precipitation products to capture daily precipitation extremes over the entire globe. The satellite products considered are the datasets belonging to the Reference Environmental Data Records (REDRs) program (PERSIANN-CDR, GPCP, CMORPH, AMSU-A,B, Hydrologic bundle). Those products provide long-term global records of daily adjusted Quantitative Precipitation Estimates (QPEs) that range from 20-year (CMORPH-CDR) to 35-year (PERSIANN-CDR, GPCP) record of daily adjusted global precipitation. The AMSU-A,B, Hydro-bundle is an 11-year record of daily rain rate over land and ocean, snow cover and surface temperature over land, and sea ice concentration, cloud liquid water, and total precipitable water over ocean among others. The aim of this work is to evaluate the ability of the different satellite QPE products to capture daily precipitation extremes. This evaluation will also include comparison with in-situ data sets at the daily scale from the Global Historical Climatology Network (GHCN-Daily), the Global Precipitation Climatology Centre (GPCC) gridded full data daily product, and the US Climate Reference Network (USCRN). In addition, while the products mentioned above only provide QPEs, the AMSU-A,B hydro-bundle provides additional hydrological information (precipitable water, cloud liquid water, snow cover, sea ice concentration). We will also present an analysis of those additional variables available from global satellite measurements and their relevance and complementarity in the context of long-term hydrological and climate studies.

  13. Missteps, Flaws and Morphings in Children's Musical Play: Snapshots from School Playgrounds

    ERIC Educational Resources Information Center

    Countryman, June

    2014-01-01

    This article, drawing upon fieldwork from a larger project investigating the nature of children's self-chosen musical play, explores instances of play that stumble and either morph into something else or are abandoned altogether. Four vignettes of musical play are described, documented during recess observations at several Canadian elementary…

  14. Design and Testing of a Morphing Wing for an Experimental UAV

    DTIC Science & Technology

    2007-11-01

    line through the use of conformal flaps [6]. Variable cant angle winglets [7] and variable span wing [8] research has also been made. RTO-MP-AVT...A.Gatto and M.I. Friswell, “The Application of Variable Cant Angle Winglets for Morphing Aircraft Control”, University of Bristol, AIAA2006-3660, 2006

  15. Identity-Specific Face Adaptation Effects: Evidence for Abstractive Face Representations

    ERIC Educational Resources Information Center

    Hole, Graham

    2011-01-01

    The effects of selective adaptation on familiar face perception were examined. After prolonged exposure to photographs of a celebrity, participants saw a series of ambiguous morphs that were varying mixtures between the face of that person and a different celebrity. Participants judged fewer of the morphs to resemble the celebrity to which they…

  16. Face and Object Discrimination in Autism, and Relationship to IQ and Age

    ERIC Educational Resources Information Center

    Pallett, Pamela M.; Cohen, Shereen J.; Dobkins, Karen R.

    2014-01-01

    The current study tested fine discrimination of upright and inverted faces and objects in adolescents with Autism Spectrum Disorder (ASD) as compared to age- and IQ-matched controls. Discrimination sensitivity was tested using morphed faces and morphed objects, and all stimuli were equated in low-level visual characteristics (luminance, contrast,…

  17. Spatial Variation in Body Size and Wing Dimorphism Correlates With Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae).

    PubMed

    Rosetti, Natalia; Remis, Maria I

    2018-06-06

    Wing dimorphism occurs widely in insects and involves discontinuous variation in a wide variety of traits involved in fight and reproduction. In the current study, we analyzed the spatial pattern of wing dimorphism and intraspecific morphometric variation in nine natural populations of the grasshopper Dichroplus vittatus (Bruner; Orthoptera: Acrididae) in Argentina. Considerable body size differences among populations, between sexes and wing morphs were detected. As a general trend, females were larger than males and macropterous individuals showed increased thorax length over brachypterous which can be explained by the morphological requirements for the development of flight muscles in the thoracic cavity favoring dispersal. Moreover, when comparing wing morphs, a higher phenotypic variability was detected in macropterous females. The frequency of macropterous individuals showed negative correlation with longitude and positive with precipitations, indicating that the macropterous morph is more frequent in the humid eastern part of the studied area. Our results provide valuable about spatial variation of fully winged morph and revealed geographic areas in which the species would experience greater dispersal capacity.

  18. Female Preference for Sympatric vs. Allopatric Male Throat Color Morphs in the Mesquite Lizard (Sceloporus grammicus) Species Complex

    PubMed Central

    Bastiaans, Elizabeth; Bastiaans, Mary Jane; Morinaga, Gen; Castañeda Gaytán, José Gamaliel; Marshall, Jonathon C.; Bane, Brendan; de la Cruz, Fausto Méndez; Sinervo, Barry

    2014-01-01

    Color polymorphic sexual signals are often associated with alternative reproductive behaviors within populations, and the number, frequency, or type of morphs present often vary among populations. When these differences lead to assortative mating by population, the study of such polymorphic taxa may shed light on speciation mechanisms. We studied two populations of a lizard with polymorphic throat color, an important sexual signal. Males in one population exhibit orange, yellow, or blue throats; whereas males in the other exhibit orange, yellow, or white throats. We assessed female behavior when choosing between allopatric and sympatric males. We asked whether females discriminated more when the allopatric male was of an unfamiliar morph than when the allopatric male was similar in coloration to the sympatric male. We found that female rejection of allopatric males relative to sympatric males was more pronounced when males in a pair were more different in throat color. Our findings may help illuminate how behavioral responses to color morph differences between populations with polymorphic sexual signals contribute to reproductive isolation. PMID:24718297

  19. Why morphology matters in birds and UAV's: How scale affects attitude wind sensitivity

    NASA Astrophysics Data System (ADS)

    Gamble, L. L.; Inman, D. J.

    2017-11-01

    Although natural fliers have been shown to morph their geometry to adapt to unfavorable wind loading, there exists heavy skepticism within the aviation community regarding the benefits and necessity of morphing aircraft technology. Here, we develop a vector derivation that characterizes how high winds affect the overall flight velocity and sideslip for both natural and manmade fliers. This derivation is formulated in such a way that only a single non-dimensional velocity parameter is needed to quantify the response. We show mathematically that in high winds, low-altitude fliers are more prone to substantial changes in the sideslip angle, struggle to maintain gliding velocity, and experience five times the peak sideslip sensitivity when compared to high-altitude fliers. In order to counteract these adverse changes, low-altitude fliers require a high degree of controllability which can be achieved through extreme morphological changes. The results presented here highlight the importance of integrating morphing concepts into future low-altitude aircraft designs and provide a formulation to help designers decide whether or not to pursue adaptive morphing technology based on a single readily determinable parameter.

  20. A Novel SMA-based Concept for Airfoil Structural Morphing

    NASA Astrophysics Data System (ADS)

    Barbarino, S.; Pecora, R.; Lecce, L.; Concilio, A.; Ameduri, S.; Calvi, E.

    2009-08-01

    The adaptive structures concept is of great interest in the aerospace field because of the several benefits which can be accomplished in the fields including noise reduction, load alleviation, weight reduction, etc., at a level in which they can be considered as compulsory in the design of future aircraft. Improvements in terms of the aerodynamic efficiency, aeroelastic behavior, stability, and manoeuvrability performance have already been proved through many international studies in the past. In the family of the Smart Materials, Shape Memory Alloys (SMA) seem to be a suitable solution for many static applications. Their high structural integrability in conjunction with actuation capabilities and a favorable performance per weight ratio, allows the development of original architectures. In this study, a morphing wing trailing edge concept is presented; morphing ability was introduced with the aim of replacing a conventional flap device. A compliant rib structure was designed, based on SMA actuators exhibiting structural potential (bearing external aerodynamic loads). Numerical results, achieved through a FE approach, are presented in terms of trailing edge induced displacement and morphed shape.

  1. Variation in wing pattern and palatability in a female-limited polymorphic mimicry system

    PubMed Central

    Long, Elizabeth C; Hahn, Thomas P; Shapiro, Arthur M

    2014-01-01

    Checkerspot butterflies in the genera Euphydryas and Chlosyne exhibit phenotypic polymorphisms along a well-defined latitudinal and elevational gradient in California. The patterns of phenotypic variation in Euphydryas chalcedona, Chlosyne palla, and Chlosyne hoffmanni suggest a mimetic relationship; in addition, the specific patterns of variation in C. palla suggest a female-limited polymorphic mimicry system (FPM). However, the existence of polymorphic models runs counter to predictions of mimicry theory. Palatability trials were undertaken to assess whether or not the different color morphs of each species were distasteful or toxic to a generalized avian predator, the European starling (Sturnus vulgaris). Results indicate that the black morph of E. chalcedona is distasteful, but not toxic, to predators, while the red morph is palatable. C . hoffmanni and both color morphs of C. palla are palatable to predators. Predators that learn to reject black E. chalcedona also reject black C. palla, suggesting that the latter is a FPM of the former. C. hoffmanni does not appear to be involved in this mimetic relationship. PMID:25512850

  2. Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation.

    PubMed

    Corl, Ammon; Davis, Alison R; Kuchta, Shawn R; Sinervo, Barry

    2010-03-02

    Polymorphism may play an important role in speciation because new species could originate from the distinctive morphs observed in polymorphic populations. However, much remains to be understood about the process by which morphs found new species. To detail the steps of this mode of speciation, we studied the geographic variation and evolutionary history of a throat color polymorphism that distinguishes the "rock-paper-scissors" mating strategies of the side-blotched lizard, Uta stansburiana. We found that the polymorphism is geographically widespread and has been maintained for millions of years. However, there are many populations with reduced numbers of throat color morphs. Phylogenetic reconstruction showed that the polymorphism is ancestral, but it has been independently lost eight times, often giving rise to morphologically distinct subspecies/species. Changes to the polymorphism likely involved selection because the allele for one particular male strategy, the "sneaker" morph, has been lost in all cases. Polymorphism loss was associated with accelerated evolution of male size, female size, and sexual dimorphism, which suggests that polymorphism loss can promote rapid divergence among populations and aid species formation.

  3. Pigment cell mechanism of postembryonic stripe pattern formation in the Japanese four-lined snake.

    PubMed

    Murakami, Arata; Hasegawa, Masami; Kuriyama, Takeo

    2016-02-01

    Postembryonic changes in the dermal and epidermal pigment cell architecture of the striped and nonstriped morph of the Japanese four-lined snake Elaphe quadrivirgata were examined to reveal stripe pattern formation after hatching. The striped and nonstriped morphs were distinguishable at the hatching, suggesting that the basis of stripe pattern was formed during embryonic development. In the striped morph, the color of stripes changed from red-brown in juveniles to vivid dark-brown in adults, and density of dermal melanophore increased much more in the stripe than background dorsal scales with growth. This increase in density of dermal melanophore was accompanied not only by the increased epidermal melanophore density but also by the change in vertical structures of dermal melanophore. By contrast, the density of epidermal and dermal melanophore evenly increased over the dorsal scales in the nonstriped morph. Thus, the increased vividness of the stripe pattern after hatching is achieved through localized increase of melanophore density particularly in the stripe region but not over the whole dorsal scales. © 2015 Wiley Periodicals, Inc.

  4. Polymorphic male color morphs visualized with steroids in monomorphic females: a tool for designing analysis of sex-limited trait inheritance.

    PubMed

    Olsson, Mats; Healey, Mo; Wilson, Mark; Tobler, Michael

    2012-02-15

    In diploid animals, males and females share most of the genome (except sex-specific elements, such as sex chromosome genes), yet despite sharing the underlying genes that hard-wire traits, males and females may differ in their phenotypes when traits are controlled by proximate mechanisms, such as hormones. In color polymorphic species where coloration is only expressed in one sex, the design of studies of the inheritance of color and coevolved morph-specific traits (e.g. territorial vs sneaker strategies, skewed energetic investment in territorial defense vs sperm production, etc.) is compromised as the expression of morph-coding genes is only visualized in one sex. Here, we circumvented this problem by first characterizing oxidative stress traits in both sexes and then using testosterone implants in females to expose their otherwise 'silent' coloration. Males of our model species are highly territorial and exhibit morph-specific levels of aggression, whereas females are non-territorial and display very low levels of aggression. Interestingly, reactive oxygen species levels were found to be morph specific regardless of sex, despite considerable differences in lifestyle. Males and females did differ remarkably, however, in superoxide levels depending on whether they sported a colored throat bib or not, a trait also used in male sexual signaling. Females with throat bibs had significantly lower levels of superoxide than females without a bib, which was not the case for males.

  5. Comparative floral development in Lithospermum (Boraginaceae) and implications for the evolution and development of heterostyly.

    PubMed

    Cohen, James I; Litt, Amy; Davis, Jerrold I

    2012-05-01

    The evolution and development of floral developmental patterns were investigated in three heterostylous and three homostylous species of Lithospermum to determine whether species that independently acquired the same floral form follow the same pattern of development or different patterns. Using light and scanning electron microscopy, we observed developmental patterns in flowers at different stages of maturity. These patterns were compared within individual species, between heterostylous morphs, and among heterostylous and homostylous species. Although heterostyly has been determined by phylogenetic analysis to have originated independently in each of the heterostylous species, flowers of the long-style morph of each species follow similar patterns of gross development, as do those of the short-style morph. In addition, the flowers of each morph develop in a manner similar to those of their respective homostylous, herkogamous relatives. However, the developmental patterns of the stylar epidermal cells differ among these species and between heterostylous and homostylous species. Floral developmental patterns in homostylous species provide evidence that modification of specific traits, such as patterns of stylar growth, can lead to the evolution of heterostyly. The developmental changes that affect the positions of the stigmas and anthers in each morph likely involve either temporal or spatial modifications of gene function. The floral developmental patterns described here and the occurrence of multiple types of herkogamy within some species of Lithospermum provide evidence that heterostylous species in the genus have originated via distinct evolutionary developmental pathways.

  6. The Effect of Diet Quality and Wing Morph on Male and Female Reproductive Investment in a Nuptial Feeding Ground Cricket

    PubMed Central

    Hall, Matthew D.; Bussière, Luc F.; Brooks, Robert

    2008-01-01

    A common approach in the study of life-history trade-off evolution is to manipulate the nutrient content of diets during the life of an individual in order observe how the acquisition of resources influences the relationship between reproduction, lifespan and other life-history parameters such as dispersal. Here, we manipulate the quality of diet that replicate laboratory populations received as a thorough test of how diet quality influences the life-history trade-offs associated with reproductive investment in a nuptial feeding Australian ground cricket (Pteronemobius sp.). In this species, both males and females make significant contributions to the production of offspring, as males provide a nuptial gift by allowing females to chew on a modified tibial spur during copulation and feed directing on their haemolymph. Individuals also have two distinct wing morphs, a short-winged flightless morph and a long-winged morph that has the ability to disperse. By manipulating the quality of diet over seven generations, we found that the reproductive investment of males and females were affected differently by the diet quality treatment and wing morph of the individual. We discuss the broader implications of these findings including the differences in how males and females balance current and future reproductive effort in nuptial feeding insects, the changing nature of sexual selection when diets vary, and how the life-history trade-offs associated with the ability to disperse are expected to differ among populations. PMID:18927614

  7. Transfer to intermediate forms following concept discrimination by pigeons: chimeras and morphs.

    PubMed Central

    Ghosh, Natasha; Lea, Stephen E G; Noury, Malia

    2004-01-01

    Two experiments examined pigeons' generalization to intermediate forms following training of concept discriminations. In Experiment 1, the training stimuli were sets of images of dogs and cats, and the transfer stimuli were head/body chimeras, which humans tend to categorize more readily in terms of the head part rather than the body part. In Experiment 2, the training stimuli were sets of images of heads of dogs and cats, and the intermediate stimuli were computer-generated morphs. In both experiments, pigeons learned the concept discrimination quickly and generalized with some decrement to novel instances of the categories. In both experiments, transfer tests were carried out with intermediate forms generated from both familiar and novel exemplars of the training sets. In Experiment 1, the pigeons' transfer performance, unlike that of human infants exposed to similar stimuli, was best predicted by the body part of the stimulus when the chimeras were formed from familiar exemplars. Spatial frequency analysis of the stimuli showed that the body parts were richer in high spatial frequencies than the head parts, so these data are consistent with the hypothesis that categorization is more dependent on local stimulus features in pigeons than in humans. There was no corresponding trend when the chimeras were formed from novel exemplars. In Experiment 2, when morphs of training stimuli were used, response rates declined smoothly as the proportion of the morph contributed by the positive stimulus fell, although results with morphs of novel stimuli were again less orderly. PMID:15540501

  8. Updating impairments and the failure to explore new hypotheses following right brain damage.

    PubMed

    Stöttinger, Elisabeth; Guay, Carolyn Louise; Danckert, James; Anderson, Britt

    2018-06-01

    We have shown recently that damage to the right hemisphere impairs the ability to update mental models when evidence suggests an old model is no longer appropriate. We argue that this deficit is generic in the sense that it crosses multiple cognitive and perceptual domains. Here, we examined the nature of this updating impairment to determine more precisely the underlying mechanisms. We had right (RBD, N = 12) and left brain damaged (LBD, N = 10) patients perform versions of our picture-morphing task in which pictures gradually morph from one object (e.g., shark) to another (e.g., plane). Performance was contrasted against two groups of healthy older controls, one matched on age (HCO-age-matched, N = 9) and another matched on general level of cognitive ability (HCO-cognitively-matched, N = 9). We replicated our earlier findings showing that RBD patients took longer than LBD patients and HCOs to report seeing the second object in a sequence of morphing images. The groups did not differ when exposed to a morphing sequence a second time, or when responding to ambiguous images outside the morphing context. This indicates that RBD patients have little difficulty alternating between known representations or labeling ambiguous images. Instead, the difficulty lies in generating alternate hypotheses for ambiguous information. Lesion overlay analyses, although speculative given the sample size, are consistent with our fMRI work in healthy individuals in implicating the anterior insular cortex as critical for updating mental models.

  9. Precipitation intercomparison of a set of satellite- and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic

    NASA Astrophysics Data System (ADS)

    Skok, Gregor; Žagar, Nedjeljka; Honzak, Luka; Žabkar, Rahela; Rakovec, Jože; Ceglar, Andrej

    2016-01-01

    The study presents a precipitation intercomparison based on two satellite-derived datasets (TRMM 3B42, CMORPH), four raingauge-based datasets (GPCC, E-OBS, Willmott & Matsuura, CRU), ERA Interim reanalysis (ERAInt), and a single climate simulation using the WRF model. The comparison was performed for a domain encompassing parts of Europe and the North Atlantic over the 11-year period of 2000-2010. The four raingauge-based datasets are similar to the TRMM dataset with biases over Europe ranging from -7 % to +4 %. The spread among the raingauge-based datasets is relatively small over most of Europe, although areas with greater uncertainty (more than 30 %) exist, especially near the Alps and other mountainous regions. There are distinct differences between the datasets over the European land area and the Atlantic Ocean in comparison to the TRMM dataset. ERAInt has a small dry bias over the land; the WRF simulation has a large wet bias (+30 %), whereas CMORPH is characterized by a large and spatially consistent dry bias (-21 %). Over the ocean, both ERAInt and CMORPH have a small wet bias (+8 %) while the wet bias in WRF is significantly larger (+47 %). ERAInt has the highest frequency of low-intensity precipitation while the frequency of high-intensity precipitation is the lowest due to its lower native resolution. Both satellite-derived datasets have more low-intensity precipitation over the ocean than over the land, while the frequency of higher-intensity precipitation is similar or larger over the land. This result is likely related to orography, which triggers more intense convective precipitation, while the Atlantic Ocean is characterized by more homogenous large-scale precipitation systems which are associated with larger areas of lower intensity precipitation. However, this is not observed in ERAInt and WRF, indicating the insufficient representation of convective processes in the models. Finally, the Fraction Skill Score confirmed that both models perform better over the Atlantic Ocean with ERAInt outperforming the WRF at low thresholds and WRF outperforming ERAInt at higher thresholds. The diurnal cycle is simulated better in the WRF simulation than in ERAInt, although WRF could not reproduce well the amplitude of the diurnal cycle. While the evaluation of the WRF model confirms earlier findings related to the model's wet bias over European land, the applied satellite-derived precipitation datasets revealed differences between the land and ocean areas along with uncertainties in the observation datasets.

  10. Evaluation of six satellite rainfall products over the Great Horn of Africa

    NASA Astrophysics Data System (ADS)

    Cattani, Elsa; Merino Suances, Andrés; Levizzani, Vincenzo

    2014-05-01

    Satellite precipitation products are used in various application fields, as extreme event monitoring (flood and drought), generation of time series for regional or global climatological studies, and assimilation in hydro-meteorological models. They are particularly necessary in regions with very sparse rain-gauge networks to augment the observational capabilities, such as in the Great Horn of Africa (GHA). GHA is characterized by a complex topography and highly varying climatic conditions ranging from the wetter mountainous and coastal regions to the arid lowlands, which can greatly affect the quality of satellite rainfall estimations. Moreover GHA is characterized by very frequent drought events, whose monitoring and forecast can benefit from satellite rainfall estimations. All that justifies the importance of satellite product validation and inter-comparisons in order to assess their reliability and application domain. The monthly accumulated precipitation from six satellite products, TAMSAT, GSMaP, CMORPH, PERSIANN, RFE, and TRMM-3B42, are analysed for the time period 2003 - 2009, by dividing the studied region (5°S - 20°N, 28°E - 52°E) in six sub-areas (clusters) characterized by a different annual cycle. The measurement uncertainties in satellite products are evaluated by computing the variance from the ensemble of the six satellite products at the resolution of 0.25°. The annual cycle characteristics of each cluster are correctly identified by each satellite product, whereas marked differences can be seen in the precipitations amount. GSMaP, PERSIANN and CMORPH provide larger amount of precipitation on South Sudan and West Ethiopia and North Uganda and the coastal region of North Somalia with respect to the other products. The regions with higher variability among satellite products are mountainous West Ethiopia, during summer (wet season) and for heavy precipitation (> 200 mm), South Sudan during summer and fall, and the Lake Victoria region. Comparisons (correlation coefficient, mean error, root mean square error, and efficiency coefficient) are carried out with respect to the GPCC Full Data Reanalysis at 0.5° resolution. From this analysis TRMM-3B42 stands out as the satellite product with the better performances, generally followed by TAMSAT and RFE. PERSIANN and GSMaP have the lowest efficiency coefficients. CMORPH provides good results for the central part of Ethiopia. Finally, monthly anomalies between the satellite products and the GPCC Climatology Version 2011 product at 0.25° are computed to evaluate the potential of satellite products for identifying drought periods.

  11. Coupled behavior of shape memory alloy-based morphing spacecraft radiators: experimental assessment and analysis

    NASA Astrophysics Data System (ADS)

    Bertagne, C.; Walgren, P.; Erickson, L.; Sheth, R.; Whitcomb, J.; Hartl, D.

    2018-06-01

    Thermal control is an important aspect of spacecraft design, particularly in the case of crewed vehicles, which must maintain a precise internal temperature at all times in spite of significant variations in the external thermal environment and internal heat loads. Future missions beyond low Earth orbit will require radiator systems with high turndown ratios, defined as the ratio between the maximum and minimum heat rejection rates achievable by the radiator system. Current radiators are only able to achieve turndown ratios of 3:1, far less than the 12:1 turndown ratio requirement expected for future missions. An innovative morphing radiator concept uses the temperature-induced phase transformation of shape memory alloy (SMA) materials to achieve turndown ratios that are predicted to exceed 12:1 via substantial geometric reconfiguration. Developing mathematical and computational models of these morphing radiators is challenging due to the strong two-way thermomechanical coupling not present in traditional fixed-geometry radiators and not widely considered in the literature. Although existing simulation tools are capable of analyzing the behavior of some thermomechanically coupled structures, general problems involving radiation and deformation cannot be modeled using publicly available codes due to the complexity of modeling spatially evolving boundary fields. This paper provides important insight into the operational response of SMA-based morphing radiators by employing computational tools developed to overcome previous shortcomings. Several example problems are used to demonstrate the novel radiator concept. Additionally, a prototype morphing radiator was designed, fabricated, and tested in a thermal environment compatible with mission operations. An associated finite element model of the prototype was developed and executed. Model predictions of radiator performance generally agree with the experimental data, giving confidence that the tools developed are able to accurately represent the thermomechanical coupling present in morphing radiators and that such tools will be useful in future designs.

  12. Aerostructural optimization of a morphing wing for airborne wind energy applications

    NASA Astrophysics Data System (ADS)

    Fasel, U.; Keidel, D.; Molinari, G.; Ermanni, P.

    2017-09-01

    Airborne wind energy (AWE) vehicles maximize energy production by constantly operating at extreme wing loading, permitted by high flight speeds. Additionally, the wide range of wind speeds and the presence of flow inhomogeneities and gusts create a complex and demanding flight environment for AWE systems. Adaptation to different flow conditions is normally achieved by conventional wing control surfaces and, in case of ground generator-based systems, by varying the reel-out speed. These control degrees of freedom enable to remain within the operational envelope, but cause significant penalties in terms of energy output. A significantly greater adaptability is offered by shape-morphing wings, which have the potential to achieve optimal performance at different flight conditions by tailoring their airfoil shape and lift distribution at different levels along the wingspan. Hence, the application of compliant structures for AWE wings is very promising. Furthermore, active gust load alleviation can be achieved through morphing, which leads to a lower weight and an expanded flight envelope, thus increasing the power production of the AWE system. This work presents a procedure to concurrently optimize the aerodynamic shape, compliant structure, and composite layup of a morphing wing for AWE applications. The morphing concept is based on distributed compliance ribs, actuated by electromechanical linear actuators, guiding the deformation of the flexible—yet load-carrying—composite skin. The goal of the aerostructural optimization is formulated as a high-level requirement, namely to maximize the average annual power production per wing area of an AWE system by tailoring the shape of the wing, and to extend the flight envelope of the wing by actively alleviating gust loads. The results of the concurrent multidisciplinary optimization show a 50.7% increase of extracted power with respect to a sequentially optimized design, highlighting the benefits of morphing and the potential of the proposed approach.

  13. Conception d'un controleur actif pour le retard de la transition de l'ecoulement laminaire au turbulent sur une aile a geometrie du profil variable dans le tunnel a vent

    NASA Astrophysics Data System (ADS)

    Popov, Andrei Vladimir

    The aerospace industry is motivated to reduce fuel consumption in large transport aircraft, mainly through drag reduction. The main objective of the global project is the development of an active control system of wing airfoil geometry during flight in order to allow drag reduction. Drag reduction on a wing can be achieved through modifications in the laminar-to-turbulent flow transition point position, which should be situated as close as possible to the trailing edge of the airfoil wing. As the transition point plays a crucial part in this project, this work focuses on the control of its position on the airfoil, as an effect of controlling the deflection of a morphing wing airfoil equipped with a flexible skin. The paper presents the modeling and the experimental testing of the aerodynamic performance of a morphing wing, starting from the design concept phase all the way to the bench and wind tunnel tests phases. Several wind tunnel test runs for various Mach numbers and angles of attack were performed in the 6 x 9 ft2 wind tunnel at the Institute for Aerospace Research at the National Research Council Canada. A rectangular finite aspect ratio wing, having a morphing airfoil cross-section due to a flexible skin installed on the upper surface of the wing, was instrumented with Kulite transducers. The Mach number varied from 0.2 to 0.3 and the angle of attack between -1° and 2°. Unsteady pressure signals were recorded and analyzed and a thorough comparison, in terms of mean pressure coefficients and their standard deviations, was performed against theoretical predictions, using the XFoil computational fluid dynamics code. The acquired pressure data was analyzed through custom-made software created with Matlab/Simulink in order to detect the noise magnitude in the surface airflow and to localize the transition point position on the wing upper surface. This signal processing was necessary in order to detect the Tollmien-Schlichting waves responsible for triggering the transition from laminar to turbulent flow. The flexible skin needed to morph its shape through two actuation points in order to obtain an optimized airfoil shape for several flow conditions in the wind tunnel. The two shape memory alloy actuators, having a non-linear behavior, drove the displacement of the two control points of the flexible skin towards the optimized airfoil shape. This thesis presents the methodology used and the results obtained from designing the controller of the two shape memory actuators as well as the methods used for morphing wing control in the wind tunnel tests designed to prove the concept and validity of the system in real time. Keywords: wing, morphing, laminar, turbulent, transition, control, wind tunnel

  14. Morphing Images: A Potential Tool for Teaching Word Recognition to Children with Severe Learning Difficulties

    ERIC Educational Resources Information Center

    Sheehy, Kieron

    2005-01-01

    Children with severe learning difficulties who fail to begin word recognition can learn to recognise pictures and symbols relatively easily. However, finding an effective means of using pictures to teach word recognition has proved problematic. This research explores the use of morphing software to support the transition from picture to word…

  15. The Other-Race Effect in Infancy: Evidence Using a Morphing Technique

    ERIC Educational Resources Information Center

    Hayden, Angela; Bhatt, Ramesh S.; Joseph, Jane E.; Tanaka, James W.

    2007-01-01

    Human adults are more accurate at discriminating faces from their own race than faces from another race. This "other-race effect" (ORE) has been characterized as a reflection of face processing specialization arising from differential experience with own-race faces. We examined whether 3.5-month-old infants exhibit ORE using morphed faces on which…

  16. Violent Media Consumption and the Recognition of Dynamic Facial Expressions

    ERIC Educational Resources Information Center

    Kirsh, Steven J.; Mounts, Jeffrey R. W.; Olczak, Paul V.

    2006-01-01

    This study assessed the speed of recognition of facial emotional expressions (happy and angry) as a function of violent media consumption. Color photos of calm facial expressions morphed to either an angry or a happy facial expression. Participants were asked to make a speeded identification of the emotion (happiness or anger) during the morph.…

  17. Active In-Flight Load Redistribution Utilizing Fiber-Optic Shape Sensing and Multiple Control Surfaces

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Martins, Benjamin L.; Richards, W. Lance

    2018-01-01

    Morphing wing technologies have gained research interest in recent years as technological advancements pave the way for such innovations. A key benefit of such a morphing wing concept is the ability of the wing to transition into an optimal configuration at multiple flight conditions. Such a morphing wing will have applications not only in drag reduction but also in flutter suppression and gust alleviation. By manipulating the wing geometry to match a given flight profile it is likely that the wing will yield increases in not just aerodynamic efficiency but also structural efficiency. These structurally efficient designs will likely rely on some type of structural sensing system which will ensure the wing maintains positive margins throughout its flight profile.

  18. MORPH-I (Ver 1.0) a software package for the analysis of scanning electron micrograph (binary formatted) images for the assessment of the fractal dimension of enclosed pore surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert

    1998-01-01

    MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.

  19. Flight Dynamics and Control of a Morphing UAV: Bio inspired by Natural Fliers

    DTIC Science & Technology

    2017-02-17

    Approved for public release: distribution unlimited. IV Modelling and Sizing Tornado Vortex Lattice Method (VLM) was used for aerodynamic prediction... Tornado is a Vortex Lattice Method software programmed in MATLAB; it was selected due to its fast solving time and ability to be controlled through...custom MATLAB scripts. Tornado VLM models the wing as thin sheet of discrete vortices and computes the pressure and force distributions around the

  20. From Lessons Learned the Hard Way to Lessons Learned the Harder Way

    ERIC Educational Resources Information Center

    Schwegler, Andria Foote

    2013-01-01

    My departure from traditional methods of teaching and assessment (i.e., lecture and close-ended exams) was prompted years ago by a "gut feeling" that has morphed into an explicit examination of my teaching practice and students' reactions to it. The scholarly approach and empirical evidence in "Teachers and Learning"…

  1. Student Perception of Social Media as a Course Tool

    ERIC Educational Resources Information Center

    McCarthy, Richard V.; McCarthy, Mary M.

    2014-01-01

    If a technology provides features that are useful then it will have a positive impact on performance. Social media has morphed into one of the preferred methods of communication for many people; much has been written to proclaim its benefits including its usefulness as a tool to help students achieve success within the classroom. But is it…

  2. Visual one-shot learning as an 'anti-camouflage device': a novel morphing paradigm.

    PubMed

    Ishikawa, Tetsuo; Mogi, Ken

    2011-09-01

    Once people perceive what is in the hidden figure such as Dallenbach's cow and Dalmatian, they seldom seem to come back to the previous state when they were ignorant of the answer. This special type of learning process can be accomplished in a short time, with the effect of learning lasting for a long time (visual one-shot learning). Although it is an intriguing cognitive phenomenon, the lack of the control of difficulty of stimuli presented has been a problem in research. Here we propose a novel paradigm to create new hidden figures systematically by using a morphing technique. Through gradual changes from a blurred and binarized two-tone image to a blurred grayscale image of the original photograph including objects in a natural scene, spontaneous one-shot learning can occur at a certain stage of morphing when a sufficient amount of information is restored to the degraded image. A negative correlation between confidence levels and reaction times is observed, giving support to the fluency theory of one-shot learning. The correlation between confidence ratings and correct recognition rates indicates that participants had an accurate introspective ability (metacognition). The learning effect could be tested later by verifying whether or not the target object was recognized quicker in the second exposure. The present method opens a way for a systematic production of "good" hidden figures, which can be used to demystify the nature of visual one-shot learning.

  3. A new genus and two new nematode species (Drilonematoidea: Ungellidae: Synoecneminae) parasitic in two morphs of Drawida ghilarovi Gates, endemic earthworm from the Russian Far East.

    PubMed

    Ivanova, Elena S; Ganin, Gennadiy N; Spiridonov, Sergei E

    2014-03-01

    Drasico n. g. is erected to accommodate two new species of nematode, Drasico nemoralis n. sp. and D. paludigenus n. sp., recovered from coelomic cavities of Drawida ghilarovi Gates, endemic earthworms of the Russian Far East. The new genus is characterised by the following unique for the Synoecneminae characters: apical portion of the head attenuated, cephalic hooks displaced to the base of attenuated portion, amphids displaced posterior to cephalic hooks, excretory duct short and weak, males possessing several genital papilliform sensilla. The new species are differentiated by the size, number and disposition of the male genital sensilla (larger and more numerous in D. nemoralis n. sp.); the body shape of females (with thinner neck and wider mid-body in D. paludigenus n. sp.) and the ovarian tube arranged in transversal folds in D. paludigenus (vs longitudinal folds in D. nemoralis n. sp.). Nucleotide sequences of D2-D3 expansion segment of 28S rDNA for the two new species differed at 13 positions. Phylogenetic analysis revealed close relationships of Drasico n. g. with species of Siconema Timm, 1966. The host species was represented by two morphs (blue-grey forest and tar-black meadow-swamp morph) with intraspecific divergence of 16-17% for cytochrome c oxidase subunit 1 (COI) gene, and each host morph was found infected by a different nematode species. A co-infection with the plectid nematode Creagrocercus drawidae Ivanova & Spiridonov, 2011 was recorded together with D. nemoralis n. sp. in the blue-grey forest morph.

  4. Ecological separation in a polymorphic terrestrial salamander.

    PubMed

    Anthony, Carl D; Venesky, Matthew D; Hickerson, Cari-Ann M

    2008-07-01

    1. When studying speciation, researchers commonly examine reproductive isolation in recently diverged populations. Polymorphic species provide an opportunity to examine the role of reproductive isolation in populations that may be in the process of divergence. 2. We examined a polymorphic population of Plethodon cinereus (red-backed salamanders) for evidence of sympatric ecological separation by colour morphology. Recent studies have correlated temperature and climate with colour morphology in this species, but no studies have looked at differences in diet or mate choice between colour morphs. We used artificial cover objects to assess salamander diet, mating preference and surface activity over a 2-year period at a field site in north-eastern Ohio. 3. We detected differences in diet between two colour morphs, striped and unstriped. The diets of striped individuals were significantly more diverse and were made up of more profitable prey than the diets of unstriped salamanders. 4. Opposite sex pairs were made up of individuals of the same colour morph and striped males were found more often with larger females than were unstriped males. 5. We corroborate findings of earlier studies suggesting that the unstriped form is adapted to warmer conditions. Unstriped individuals were the first to withdraw from the forest floor as temperatures fell in the late fall. We found no evidence that the colour morphs responded differently to abiotic factors such as soil moisture and relative humidity, and responses to surface temperatures were also equivocal. 6. We conclude that the two colour morphs exhibit some degree of ecological separation and tend to mate assortatively, but are unlikely to be undergoing divergence given the observed frequency of intermorph pairings.

  5. Design, realization and structural testing of a compliant adaptable wing

    NASA Astrophysics Data System (ADS)

    Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.

    2015-10-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.

  6. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  7. Processing of Fear and Anger Facial Expressions: The Role of Spatial Frequency

    PubMed Central

    Comfort, William E.; Wang, Meng; Benton, Christopher P.; Zana, Yossi

    2013-01-01

    Spatial frequency (SF) components encode a portion of the affective value expressed in face images. The aim of this study was to estimate the relative weight of specific frequency spectrum bandwidth on the discrimination of anger and fear facial expressions. The general paradigm was a classification of the expression of faces morphed at varying proportions between anger and fear images in which SF adaptation and SF subtraction are expected to shift classification of facial emotion. A series of three experiments was conducted. In Experiment 1 subjects classified morphed face images that were unfiltered or filtered to remove either low (<8 cycles/face), middle (12–28 cycles/face), or high (>32 cycles/face) SF components. In Experiment 2 subjects were adapted to unfiltered or filtered prototypical (non-morphed) fear face images and subsequently classified morphed face images. In Experiment 3 subjects were adapted to unfiltered or filtered prototypical fear face images with the phase component randomized before classifying morphed face images. Removing mid frequency components from the target images shifted classification toward fear. The same shift was observed under adaptation condition to unfiltered and low- and middle-range filtered fear images. However, when the phase spectrum of the same adaptation stimuli was randomized, no adaptation effect was observed. These results suggest that medium SF components support the perception of fear more than anger at both low and high level of processing. They also suggest that the effect at high-level processing stage is related more to high-level featural and/or configural information than to the low-level frequency spectrum. PMID:23637687

  8. Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns.

    PubMed

    Daniels, Emily V; Murad, Rabi; Mortazavi, Ali; Reed, Robert D

    2014-12-01

    In the eastern United States, the buckeye butterfly, Junonia coenia, shows seasonal wing colour plasticity where adults emerging in the spring are tan, while those emerging in the autumn are dark red. This variation can be artificially induced in laboratory colonies, thus making J. coenia a useful model system to examine the mechanistic basis of plasticity. To better understand the developmental basis of seasonal plasticity, we used RNA-seq to quantify transcription profiles associated with development of alternative seasonal wing morphs. Depending on the developmental stage, between 547 and 1420 transfrags were significantly differentially expressed between morphs. These extensive differences in gene expression stand in contrast to the much smaller numbers of differentially expressed transcripts identified in previous studies of genetic wing pattern variation in other species and suggest that environmentally induced phenotypic shifts arise from very broad systemic processes. Analyses of candidate endocrine and pigmentation transcripts revealed notable genes upregulated in the red morph, including several ecdysone-associated genes, and cinnabar, an ommochrome pigmentation gene implicated in colour pattern variation in other butterflies. We also found multiple melanin-related transcripts strongly upregulated in the red morph, including tan and yellow-family genes, leading us to speculate that dark red pigmentation in autumn J. coenia may involve nonommochrome pigments. While we identified several endocrine and pigmentation genes as obvious candidates for seasonal colour morph differentiation, we speculate that the majority of observed expression differences were due to thermal stress response. The buckeye transcriptome provides a basis for further developmental studies of phenotypic plasticity. © 2014 John Wiley & Sons Ltd.

  9. Thermal plasticity in life-history traits in the polymorphic blue-tailed damselfly, Ischnura elegans: no differences between female morphs.

    PubMed

    Bouton, Niels; Iserbyt, Arne; Van Gossum, Hans

    2011-01-01

    Female polymorphism is observed in various animal species, but is particularly common in damselflies. The maintenance of this polymorphism has traditionally been explained from frequency and density dependent sexual conflict, however, the role of abiotic factors has recently attracted more interest. Here, the role of ambient temperature in shaping life-history was investigated for the three female morphs of Ischnura elegans (Vander Linden) (Zygoptera: Coenagrionidae). Eggs were obtained from the three mature female morphs for two populations in the Netherlands. Using a split-brood design, eggs of both populations were divided between a cold and a warm treatment group in the laboratory, and egg survival and hatching time were measured. Significant thermal plasticity was found in both hatching time and egg survival between both temperature treatments. However, individuals born to mothers belonging to different colour morphs did not differ in their response to temperature treatment. Independent of colour morph, clear differences in both life-history traits between the populations were found, suggesting local adaptation. Specifically, individuals from one population hatched faster but had lower egg survival in both thermal regimes. The selection force establishing fast hatching could be (facultative) bivoltinism in one of the populations compared to univoltinism in the other. This would be in line with the more southern (and more coastal) location of the presumed bivoltine population and the inverse relation between voltinism and latitude known from earlier studies. However, other natural selection forces, e.g. deterioration of the aquatic habitat, may also drive fast hatching.

  10. Male courtship preferences demonstrate discrimination against allopatric colour morphs in a cichlid fish

    PubMed Central

    Zoppoth, P; Koblmüller, S; Sefc, K M

    2013-01-01

    Whether premating isolation is achieved by male-specific, female-specific or sex-independent assortative preferences often depends on the underlying evolutionary processes. Here we test mate preferences of males presented with females of different allopatric colour variants of the cichlid fish Tropheus sp., a Lake Tanganyika endemic with rich geographical colour pattern variation, in which the strength of sexual isolation varies between populations. We conducted two-way mate choice experiments to compare behaviour of males of a red-bodied morph (population Moliro) towards females from their own population with behaviour towards females from four allopatric populations at different stages of phylogenetic and phenotypic divergence. Males courted same-population females significantly more intensely than females of other populations, and reduced their heteromorphic courtship efforts both with increasing genetic and increasing phenotypic distinctness of the females. In particular, females of a closely related red-bodied population received significantly more courtship than either genetically distinct, similarly coloured females (‘Kirschfleck’ morph) or genetically related, differently coloured females (‘yellow-blotch’ morph), both of which were courted similarly. Genetically and phenotypically distinct females (Tropheus polli) were not courted at all. Consistent with previous female-choice experiments, female courtship activity also decreased with increasing genetic distance from the males’ population. Given successful experimental and natural introgression between colour morphs and the pervasive allopatry of related variants, we consider it unlikely that assortative preferences of both sexes were driven by direct selection during periods of secondary contact or, in turn, drove colour pattern differentiation in allopatry. Rather, we suggest that sexual isolation evolved as by-product of allopatric divergence. PMID:23405907

  11. Impact of GPS-Integrated Water Vapour assimilation on Regional Climate Model simulations of heavy precipitation events in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Caldas-Alvarez, Alberto; Khodayar, Samiro

    2017-04-01

    An accurate representation of the devastating heavy precipitation events, that typically strike the western Mediterranean regions by autumn, is still a challenge for current weather prediction models. The misrepresentation of the atmospheric moisture distribution and the convective processes where it plays a role have been pointed out as sources of error in their prediction. Provided the fast variability of water vapour in the atmosphere, an improved representation of its distribution is expected from the Data Assimilation (DA) of very frequent measurements, such is the case of Global Positioning System derived Integrated Water Vapour (GPS-IWV). Moreover, an improved representation of the model physics is expected from the application of the DA on fine-scale model grids. The presented research work aims at assessing the impact of the selective assimilation of GPS-IWV retrievals on the representation of the atmospheric moisture distribution in relation to heavy precipitation in seasonal simulations over the western Mediterranean. COSMO simulations in CLimate Mode (CCLM) are run with two different horizontal resolutions (2.8 km and 7 km) to reproduce the period September 2012 to March 2013, encompassing the Special Observation Period 1 (SOP1) of the Hydrological Cycle in the Mediterranean Experiment (HyMeX). A state-of-art GPS-IWV data set, specially homogenized for the western Mediterranean countries spanning the aforementioned seven month period is selectively assimilated into the model runs with a high frequency (10 minutes). The impact of such assimilation combined with the grid refinement of the model is assessed in the representation of the atmospheric moisture distribution and its influence in the processes leading to deep moist convection and heavy rain. Observational data sets of precipitation obtained with the Climate Prediction Centre MORPHing technique (CMORPH), from the HyMeX rain gauge network as well as the GPS-IWV retrievals are employed to validate our model results and support the process studies. Results show remarkable discrepancies in the representation of the temporal evolution of IWV by CCLM well corrected by the assimilation. This rectification of the amount of water vapour in the atmosphere influences the intensity and location of extreme precipitation, albeit the sign and extent of this influence was shown to be event-dependent.

  12. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Fisher, Brad L.

    2010-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25 terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSRE over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU-B, however, agreed well with GV when the matching data was analyzed on monthly scales. These results signal developers of global rainfall products, such as the TRMM Multi-Satellite Precipitation Analysis (TMPA), and the Climate Data Center s Morphing (CMORPH) technique, that care must be taken when incorporating data from these input satellite estimates in order to provide the highest quality estimates in their products. 3

  13. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Fisher, Brad L.

    2011-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25deg terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSR-E over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU-B, however, agreed well with GV when the matching data was analyzed on monthly scales. These results signal developers of global rainfall products, such as the TRMM Multi-Satellite Precipitation Analysis (TMPA), and the Climate Data Center s Morphing (CMORPH) technique, that care must be taken when incorporating data from these input satellite estimates in order to provide the highest quality estimates in their products.

  14. Assessing the Relative Performance of Microwave-based Satellite Rain Rate Retrievals using TRMM Ground Validation Data

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Fisher, Brad L.

    2008-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecast of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (AQUA) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparison with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellites is examined via comparisons with GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25 terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSRE over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm hr-1. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU-B, however, agreed well with GV when the matching data was analyzed on monthly scales. These results signal developers of global rainfall products, such as the TRMM Multi-Satellite Precipitation Analysis (TMPA), and the Climate Data Center s Morphing (CMORPH) technique, that care must be taken when incorporating data from these input satellite estimates in order to provide the highest quality estimates in their products.

  15. Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection

    Treesearch

    Amy Y. Rossman; Keith A. Seifert; Gary J. Samuels; Andrew M. Minnis; Hans-Josef Schroers; Lorenzo Lombard; PedroW Crous; Kadri Põldmaa; Paul F. Cannon; Richard C. Summerbell; David M. Geiser; Wen-ying Zhuang; Yuuri Hirooka; Cesar Herrera; Catalina Salgado-Salazar; Priscila Chaverri

    2013-01-01

    With the recent changes concerning pleomorphic fungi in the new International Code of Nomenclature for algae, fungi, and plants (ICN), it is necessary to propose the acceptance or protection of sexual morph-typified or asexual morph-typified generic names that do not have priority, or to propose the rejection or suppression1 of competing names. In addition, sexual...

  16. "Body Morph": Feasibility Testing of an Interactive CD-ROM to Teach Young Adolescents about Puberty

    ERIC Educational Resources Information Center

    Cousineau, Tara M.; Franko, Debra L.; Green, Traci C.; Watt, Meredith; Rancourt, Diana

    2006-01-01

    The aim of this pilot study was to examine the feasibility of an interactive computer program among 34 sixth and seventh grade children and to assess the potential for knowledge acquisition about puberty. Based on a developmental self-esteem approach to teach children about their bodies, the "Body Morph" program was designed to maximize the…

  17. Behavioral and physiological polymorphism in males of the austral lizard Liolaemus sarmientoi.

    PubMed

    Fernández, Jimena B; Bastiaans, Elizabeth; Medina, Marlin; Méndez De la Cruz, Fausto R; Sinervo, Barry R; Ibargüengoytía, Nora R

    2018-02-01

    Integrative behavioral studies show that the interplay between individual physiology and social behavior influences the ecology of the species, ultimately affecting individual fitness. Particularly in lizards, color polymorphism is associated with differential behaviors and reproductive strategies, which are evident in mature males during the mating season. Dominant males generally have greater endurance, higher body temperature, and larger bodies than submissive males, so they can acquire and defend larger territories and have greater access to females for mating. We studied whether the color morphs observed in males of one of the world's southernmost reptiles, Liolaemus sarmientoi, are related to behavioral variation during agonistic interactions, thermal physiology, morphology, and/or locomotor stamina. Liolaemus sarmientoi males exhibit three color morphs: red (RR), red-yellow (RY), and yellow (YY). These lizards exhibit subtle behavioral displays and we did not observe stamina differences among morphs. However, we found that RR males are more aggressive than YY males during agonistic encounters. In addition, greater body temperature change during trials, higher field body temperatures, and greater head sizes of RR males compared to RY or YY indicate that RR is a dominant morph, which may influence their ability to acquire and defend territory and tactics for achieving reproductive success.

  18. Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator

    NASA Astrophysics Data System (ADS)

    Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.

    2018-03-01

    Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.

  19. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae).

    PubMed

    Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C

    2014-04-01

    We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.

  20. Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.

    PubMed

    Cox, Christian L; Davis Rabosky, Alison R

    2013-08-01

    Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.

  1. Herbivore pressure by weevils associated with flower color polymorphism in Geranium thunbergii (Geraniaceae).

    PubMed

    Tsuchimatsu, Takashi; Yoshitake, Hiraku; Ito, Motomi

    2014-03-01

    Although floral herbivory has recently received increased attention as an important factor influencing plant reproduction, relatively little is known about how its frequency and intensity vary depending on traits of host plants. Here we report that herbivore pressure by a weevil, Zacladus geranii, is associated with a flower color polymorphism of Geranium thunbergii (Geraniaceae). Pink and white flower color morphs have been reported in G. thunbergii, and we found in a three-year field survey in multiple populations that, generally, adult weevils more preferentially visited white flowers than pink flowers. Consistently, we found more severe damage by weevil larvae in white flowers. Overall herbivore pressure for G. thunbergii varied strongly between populations, and the difference seems to be partly explained by the co-occurrence of a related plant species, Geranium yezoense, in a population, as weevils preferred it to both color morphs of G. thunbergii, thereby relaxing overall herbivore pressure for G. thunbergii. Nonetheless, despite such high variability, the preference of weevils for white morphs over pink morphs of G. thunbergii was found across multiple populations. We discuss possible mechanisms causing the association between flower color and herbivore preference as well as its evolutionary consequences.

  2. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim; Wickenheiser, Adam; Horner, Garnett C.

    2005-05-01

    As more alternative, lightweight actuators have become available, the conventional fixed-wing configuration seen on modern aircraft is under investigation for efficiency on a broad scale. If an aircraft could be designed with multiple functional equilibria of drastically varying aerodynamic parameters, one craft capable of 'morphing' its shape could be used to replace two or three designed with particular intentions. One proposed shape for large-scale (geometry change on the same order of magnitude as wingspan) morphing is the Hyper-Elliptical Cambered Span (HECS) wing, designed at NASA Langley to be implemented on an unmanned aerial vehicle (UAV). Proposed mechanisms to accomplish the spanwise curvature (in the y-z plane of the craft) that allow near-continuous bending of the wing are narrowed to a tendon-based DC motor actuated system, and a shape memory alloy-based (SMA) mechanism. At Cornell, simulations and wind tunnel experiments assess the validity of the HECS wing as a potential shape for a blended-wing body craft with the potential to effectively serve the needs of two conventional UAVs, and analyze the energetics of actuation associated with a morphing maneuver accomplished with both a DC motor and SMA wire.

  3. Genetic diversity analysis of Chrysopidae family (Insecta, Neuroptera) via molecular markers.

    PubMed

    Yari, Kheirollah; Mirmoayedi, Alinaghi; Marami, Marzieh; Kazemi, Elham; Kahrizi, Danial

    2014-09-01

    In entomology, improvement of molecular methods would be beneficial tools for accurate identification and detecting the genetic diversity of insect species to discover a corroborative evidence for the traditional classification based on morphology. The aim of this study was focused on RAPD-PCR method for distinguishing the genetic diversity between eight species of Chrysopidae family. In current research, many specimens were collected in different locations of Tehran province (Iran), between them 24 specimens were identified. The wing venation, male genitalia and other morphological characters were used for identification and also the sexing of species was recognized with study of external genitalia. Then, the DNA was extracted with CTAB method. The RAPD-PCR method was carried out with twenty random primers. The agarose gel electrophoresis was used for separation of the PCR products. Based on electrophoresis results, 133 bands were amplified and between them, 126 bands were poly-morph and others were mono-morph. Also, among the applied primers, the primers OPA02 with 19 bands and OPA03 with 8 bands were amplified the maximum and minimum of bands, respectively. The results showed that 80.35 and 73.21 % of genetic similarity existed between Chrysopa pallens-Chrysopa dubitans, and between the Chrysoperla kolthoffi and Chrysoperla carnea, respectively. The minimum (45.53 %) of genetic similarity was observed between C. kolthoffi and C. dubitans, and the maximum (0.80 %) was seen between C. pallens and C. dubitans.

  4. Quantifying the dynamic wing morphing of hovering hummingbird

    PubMed Central

    Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto

    2017-01-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird (Amazilia amazilia) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the ‘washout’ twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke. PMID:28989736

  5. Application of an artificial neural network and morphing techniques in the redesign of dysplastic trochlea.

    PubMed

    Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie

    2014-01-01

    Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.

  6. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.

    PubMed

    Shearer, Peter W; West, Jessica D; Walton, Vaughn M; Brown, Preston H; Svetec, Nicolas; Chiu, Joanna C

    2016-03-22

    As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. To date, D. suzukii cold resistance studies suggest that this species cannot overwinter in northern locations, e.g. Canada, even though they are established pests in these regions. Combining physiological investigations with RNA sequencing, we present potential mechanisms by which D. suzukii can overwinter in these regions. This work may contribute to more accurate population models that incorporate seasonal variation in physiological parameters, leading to development of better management strategies.

  7. Experimental validation of a true-scale morphing flap for large civil aircraft applications

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Arena, M.; Noviello, M. C.; Rea, F.

    2017-04-01

    Within the framework of the JTI-Clean Sky (CS) project, and during the first phase of the Low Noise Configuration Domain of the Green Regional Aircraft - Integrated Technological Demonstration (GRA-ITD, the preliminary design and technological demonstration of a novel wing flap architecture were addressed. Research activities were carried out to substantiate the feasibility of morphing concepts enabling flap camber variation in compliance with the demanding safety requirements applicable to the next generation green regional aircraft, 130- seats with open rotor configuration. The driving motivation for the investigation on such a technology was found in the opportunity to replace a conventional double slotted flap with a single slotted camber-morphing flap assuring similar high lift performances -in terms of maximum attainable lift coefficient and stall angle- while lowering emitted noise and system complexity. Studies and tests were limited to a portion of the flap element obtained by slicing the actual flap geometry with two cutting planes distant 0.8 meters along the wing span. Further activities were then addressed in order to increase the TRL of the validated architecture within the second phase of the CS-GRA. Relying upon the already assessed concept, an innovative and more advanced flap device was designed in order to enable two different morphing modes on the basis of the A/C flight condition / flap setting: Mode1, Overall camber morphing to enhance high-lift performances during take-off and landing (flap deployed); Mode2, Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed. A true-scale segment of the outer wing flap (4 meters span with a mean chord of 0.9 meters) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation. Advanced and innovative solutions for the adaptive structure, actuation and control systems were duly analyzed and experimentally validated thus proving the overall device compliance with industrial standards and applicable airworthiness requirements.

  8. Intrasexual competition facilitates the evolution of alternative mating strategies in a colour polymorphic fish.

    PubMed

    Hurtado-Gonzales, Jorge L; Uy, J Albert C

    2010-12-23

    Intense competition for access to females can lead to males exploiting different components of sexual selection, and result in the evolution of alternative mating strategies (AMSs). Males of Poecilia parae, a colour polymorphic fish, exhibit five distinct phenotypes: drab-coloured (immaculata), striped (parae), structural-coloured (blue) and carotenoid-based red and yellow morphs. Previous work indicates that immaculata males employ a sneaker strategy, whereas the red and yellow morphs exploit female preferences for carotenoid-based colours. Mating strategies favouring the maintenance of the other morphs remain to be determined. Here, we report the role of agonistic male-male interactions in influencing female mating preferences and male mating success, and in facilitating the evolution of AMSs. Our study reveals variation in aggressiveness among P. parae morphs during indirect and direct interactions with sexually receptive females. Two morphs, parae and yellow, use aggression to enhance their mating success (i.e., number of copulations) by 1) directly monopolizing access to females, and 2) modifying female preferences after winning agonistic encounters. Conversely, we found that the success of the drab-coloured immaculata morph, which specializes in a sneak copulation strategy, relies in its ability to circumvent both male aggression and female choice when facing all but yellow males. Strong directional selection is expected to deplete genetic variation, yet many species show striking genetically-based polymorphisms. Most studies evoke frequency dependent selection to explain the persistence of such variation. Consistent with a growing body of evidence, our findings suggest that a complex form of balancing selection may alternatively explain the evolution and maintenance of AMSs in a colour polymorphic fish. In particular, this study demonstrates that intrasexual competition results in phenotypically distinct males exhibiting clear differences in their levels of aggression to exclude potential sexual rivals. By being dominant, the more aggressive males are able to circumvent female mating preferences for attractive males, whereas another male type incorporates subordinate behaviours that allow them to circumvent male aggression and female mating preferences. Together, these and previous results indicate that exploiting different aspects of social interactions may allow males to evolve distinct mating strategies and thus the long term maintenance of polymorphisms within populations.

  9. Turning randomness into meaning at the molecular level using Muller's morphs

    PubMed Central

    Henson, Kathleen; Cooper, Melanie M.; Klymkowsky, Michael W.

    2012-01-01

    Summary While evolutionary theory follows from observable facts and logical inferences (Mayr, 1985), historically, the origin of novel inheritable variations was a major obstacle to acceptance of natural selection (Bowler, 1992; Bowler, 2005). While molecular mechanisms address this issue (Jablonka and Lamb, 2005), analysis of responses to the Biological Concept Inventory (BCI) (Klymkowsky et al., 2010), revealed that molecular biology majors rarely use molecular level ideas in their discourse, implying that they do not have an accessible framework within which to place evolutionary variation. We developed a “Socratic tutorial” focused on Muller's categorization of mutations' phenotypic effects (Muller, 1932). Using a novel vector-based method to analyzed students' essay responses, we found that a single interaction with this tutorial led to significant changes in thinking toward a clearer articulation of the effects of mutational change. We suggest that Muller's morphs provides an effective framework for facilitating student learning about mutational effects and evolutionary mechanisms. PMID:23213431

  10. Divergent expression of 11beta-hydroxysteroid dehydrogenase and 11beta-hydroxylase genes between male morphs in the central nervous system, sonic muscle and testis of a vocal fish.

    PubMed

    Arterbery, Adam S; Deitcher, David L; Bass, Andrew H

    2010-05-15

    The vocalizing midshipman fish, Porichthys notatus, has two male morphs that exhibit alternative mating tactics. Only territorial males acoustically court females with long duration (minutes to >1h) calls, whereas sneaker males attempt to steal fertilizations. During the breeding season, morph-specific tactics are paralleled by a divergence in relative testis and vocal muscle size, plasma levels of the androgen 11-ketotestosterone (11KT) and the glucocorticoid cortisol, and mRNA expression levels in the central nervous system (CNS) of the steroid-synthesizing enzyme aromatase (estrogen synthase). Here, we tested the hypothesis that the midshipman's two male morphs would further differ in the CNS, as well as in the testis and vocal muscle, in mRNA abundance for the enzymes 11beta-hydroxylase (11betaH) and 11beta-hydroxysteroid dehydrogenase (11betaHSD) that directly regulate both 11KT and cortisol synthesis. Quantitative real-time PCR demonstrated male morph-specific profiles for both enzymes. Territorial males had higher 11betaH and 11betaHSD mRNA levels in testis and vocal muscle. By contrast, sneaker males had the higher CNS expression, especially for 11betaHSD, in the region containing an expansive vocal pacemaker circuit that directly determines the temporal attributes of natural calls. We propose for territorial males that higher enzyme expression in testis underlies its greater plasma 11KT levels, which in vocal muscle provides both gluconeogenic and androgenic support for its long duration calling. We further propose for sneaker males that higher enzyme expression in the vocal CNS contributes to known cortisol-specific effects on its vocal physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichter, Brian; Steele, Adam; Loth, Eric

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degreesmore » at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.« less

  12. Pollen and stigma size changes during the transition from tristyly to distyly in Oxalis alpina (Oxalidaceae).

    PubMed

    Baena-Díaz, F; Fornoni, J; Sosenski, P; Weller, S G; Domínguez, C A

    2017-11-01

    Pollen and stigma size have the potential to influence male fitness of hermaphroditic plants, particularly in species presenting floral polymorphisms characterised by marked differences in these traits among floral morphs. In this study, we take advantage of the evolutionary transition from tristyly to distyly experienced by Oxalis alpina (Oxalidaceae), and examined whether modifications in the ancillary traits (pollen and stigma size) respond to allometric changes in other floral traits. Also, we tested whether these modifications are in accordance with what would be expected under the hypothesis that novel competitive scenarios (as in distylous-derived reproductive system) exert morph- and whorl-specific selective pressures to match the available stigmas. We measure pollen and stigma size in five populations of O. alpina representing the tristyly-distyly transition. A general reduction in pollen and stigma size occurred along the tristyly-distyly transition, and pollen size from the two anther levels within each morph converged to a similar size that was characterised by whorl-specific changes (increases or decreases) in pollen size of different anthers in each floral type. Overall, results from this study show that the evolution of distyly in this species is characterised not only by changes in sexual organ position and flower size, but also by morph-specific changes in pollen and stigma size. This evidence supports the importance of selection on pollen and stigma size, which increase fitness of remaining morphs following the evolution of distyly, and raises questions to explore on the functional value of pollen size in heterostylous systems under pollen competition. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  13. Molecular population genetics of the melanic plumage polymorphism in Arctic skuas (Stercorarius parasiticus): evidence for divergent selection on plumage colour.

    PubMed

    Janssen, Kirstin; Mundy, Nicholas I

    2013-09-01

    The Arctic skua (Stercorarius parasiticus) is a classic example of an avian plumage polymorphism, with variation in melanin-based ventral plumage coloration defining pale, intermediate and dark morphs in adults of both sexes. However, despite several decades of field research, there is an incomplete understanding of how the polymorphism in ventral plumage colour is maintained and the selective forces involved. Here, we investigate selection on a locus (MC1R) that is strongly associated with plumage colour variation in Arctic skuas using patterns of nucleotide variation and comparison to neutral loci (nuclear introns and mtDNA). We find that three linked nonsynonymous mutations in MC1R, including the single mutation described previously, are associated with plumage colour in the Arctic skua. The position of nonsynonymous mutations on a MC1R haplotype network implies that divergent selection drove the initial evolution of the colour morphs. Comparisons of F(ST)s of MC1R vs. nuclear introns among five skua populations differing in proportion of dark morphs along an approximate north-south cline reveal a signature of divergent selection on MC1R. In contrast, we find limited evidence for balancing selection on MC1R within populations, although the power is low. Our results provide strong evidence for both past and ongoing selection on MC1R, and, by implication, plumage colour in Arctic skuas. The results suggest that a fruitful avenue for future ecological studies will be analysis of selection on morphs in colonies at the extremes along the morph ratio cline. © 2013 John Wiley & Sons Ltd.

  14. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium.

    PubMed

    Sorek, Michal; Schnytzer, Yisrael; Ben-Asher, Hiba Waldman; Caspi, Vered Chalifa; Chen, Chii-Shiarng; Miller, David J; Levy, Oren

    2018-05-09

    All organisms employ biological clocks to anticipate physical changes in the environment; however, the integration of biological clocks in symbiotic systems has received limited attention. In corals, the interpretation of rhythmic behaviours is complicated by the daily oscillations in tissue oxygen tension resulting from the photosynthetic and respiratory activities of the associated algal endosymbiont Symbiodinium. In order to better understand the integration of biological clocks in cnidarian hosts of Symbiodinium, daily rhythms of behaviour and gene expression were studied in symbiotic and aposymbiotic morphs of the sea-anemone Aiptasia diaphana. The results showed that whereas circatidal (approx. 12-h) cycles of activity and gene expression predominated in aposymbiotic morphs, circadian (approx. 24-h) patterns were the more common in symbiotic morphs, where the expression of a significant number of genes shifted from a 12- to 24-h rhythm. The behavioural experiments on symbiotic A. diaphana displayed diel (24-h) rhythmicity in body and tentacle contraction under the light/dark cycles, whereas aposymbiotic morphs showed approximately 12-h (circatidal) rhythmicity. Reinfection experiments represent an important step in understanding the hierarchy of endogenous clocks in symbiotic associations, where the aposymbiotic Aiptasia morphs returned to a 24-h behavioural rhythm after repopulation with algae. Whilst some modification of host metabolism is to be expected, the extent to which the presence of the algae modified host endogenous behavioural and transcriptional rhythms implies that it is the symbionts that influence the pace. Our results clearly demonstrate the importance of the endosymbiotic algae in determining the timing and the duration of the extension and contraction of the body and tentacles and temporal gene expression.

  15. Relaxin-related gene expression differs between anadromous and stream-resident stickleback (Gasterosteus aculeatus) following seawater transfer.

    PubMed

    Kusakabe, Makoto; Ishikawa, Asano; Kitano, Jun

    2014-09-01

    Relaxin (RLN) is a hormone that was originally identified as a regulator of pregnancy and reproduction. However, recent mammalian studies have demonstrated that relaxins also have potent osmoregulatory actions. In mammals, six relaxin family peptides have been identified: RLN1/2, RLN3, insulin-like peptide (INSL) 3, INSL4, INSL5, and INSL6. Previous genome database searches have revealed that teleosts also possess multiple relaxin family genes. However, the functions of these relaxin family peptides in teleosts remain unclear. In order to gain insight into the osmoregulatory functions of teleost relaxins, we studied the relaxin family peptides in euryhaline three-spined sticklebacks (Gasterosteus aculeatus), which have diversified into a variety of ecotypes. Rln3a, rln3b, and rln transcripts were abundant in the stickleback brain, whereas insl5b transcript levels were highest in the intestine among tissues. Seawater challenge experiments showed that transcript levels of rln3a, rln3b, and rln in the brain changed significantly after seawater transfer. Particularly, rln3b showed different patterns of temporal changes between anadromous and stream-resident morphs. The transcript levels of relaxin family peptide receptors, rxfp1, rxfp2b, rxfp3-2a, and rxfp3-2b, did not exhibit substantial changes in the brain, although these were constantly higher in the anadromous morph than the stream-resident morph. These results suggest that stickleback relaxin systems are differentially regulated by salinity signals, at least at the transcriptional level, and anadromous and stream-resident morphs differ in relaxin signaling pathways. The differences in the expression of relaxin-related genes between these two morphs provide a foundation for further exploration of the osmoregulatory function of relaxins in teleosts. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. CaCO3 Precipitation in Multilayered Cyanobacterial Mats: Clues to Explain the Alternation of Micrite and Sparite Layers in Calcareous Stromatolites

    PubMed Central

    Kaźmierczak, Józef; Fenchel, Tom; Kühl, Michael; Kempe, Stephan; Kremer, Barbara; Łącka, Bożena; Małkowski, Krzysztof

    2015-01-01

    Marine cyanobacterial mats were cultured on coastal sediments (Nivå Bay, Øresund, Denmark) for over three years in a closed system. Carbonate particles formed in two different modes in the mat: (i) through precipitation of submicrometer-sized grains of Mg calcite within the mucilage near the base of living cyanobacterial layers, and (ii) through precipitation of a variety of mixed Mg calcite/aragonite morphs in layers of degraded cyanobacteria dominated by purple sulfur bacteria. The δ13C values were about 2‰ heavier in carbonates from the living cyanobacterial zones as compared to those generated in the purple bacterial zones. Saturation indices calculated with respect to calcite, aragonite, and dolomite inside the mats showed extremely high values across the mat profile. Such high values were caused by high pH and high carbonate alkalinity generated within the mats in conjunction with increased concentrations of calcium and magnesium that were presumably stored in sheaths and extracellular polymer substances (EPS) of the living cyanobacteria and liberated during their post-mortem degradation. The generated CaCO3 morphs were highly similar to morphs reported from heterotrophic bacterial cultures, and from bacterially decomposed cyanobacterial biomass emplaced in Ca-rich media. They are also similar to CaCO3 morphs precipitated from purely inorganic solutions. No metabolically (enzymatically) controlled formation of particular CaCO3 morphs by heterotrophic bacteria was observed in the studied mats. The apparent alternation of in vivo and post-mortem generated calcareous layers in the studied cyanobacterial mats may explain the alternation of fine-grained (micritic) and coarse-grained (sparitic) laminae observed in modern and fossil calcareous cyanobacterial microbialites as the result of a probably similar multilayered mat organization. PMID:25761263

  17. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    PubMed

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  18. Dynamics and Control of a Quadrotor with Active Geometric Morphing

    NASA Astrophysics Data System (ADS)

    Wallace, Dustin A.

    Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.

  19. Asexual-sexual morph connection in the type species of Berkleasmium.

    PubMed

    Tanney, Joey; Miller, Andrew N

    2017-06-01

    Berkleasmium is a polyphyletic genus comprising 37 dematiaceous hyphomycetous species. In this study, independent collections of the type species, B. concinnum , were made from Eastern North America. Nuclear internal transcribed spacer rDNA (ITS) and partial nuc 28S large subunit rDNA (LSU) sequences obtained from collections and subsequent cultures showed that Berkleasmium concinnum is the asexual morph of Neoacanthostigma septoconstrictum ( Tubeufiaceae , Tubeufiales ). Phylogenies inferred from Bayesian inference and maximum likelihood analyses of ITS-LSU sequence data confirmed this asexual-sexual morph connection and a re-examination of fungarium reference specimens also revealed the co-occurrence of N. septoconstrictum ascomata and B. concinnum sporodochia. Neoacanthostigma septoconstrictum is therefore synonymized under B. concinnum on the basis of priority. A specimen identified as N. septoconstrictum from Thailand is described as N. thailandicum sp. nov., based on morphological and genetic distinctiveness.

  20. Morphing Aircraft Structures: Research in AFRL/RB

    DTIC Science & Technology

    2008-09-01

    various iterative steps in the process, etc. The solver also internally controls the step size for integration, as this is independent of the step...Coupling of Substructures for Dynamic Analyses,” AIAA Journal , Vol. 6, No. 7, 1968, pp. 1313-1319. 2“Using the State-Dependent Modal Force (MFORCE),” AFL...an actuation system consisting of multiple internal actuators, centrally computer controlled to implement any commanded morphing configuration; and

  1. 4D printing of a self-morphing polymer driven by a swellable guest medium.

    PubMed

    Su, Jheng-Wun; Tao, Xiang; Deng, Heng; Zhang, Cheng; Jiang, Shan; Lin, Yuyi; Lin, Jian

    2018-01-31

    There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics. This need motivates an emerging four-dimensional (4D) printing technology, by which printed 3D structures consisting of active materials can transform their configurations over time in response to stimuli. Despite the ubiquity of active materials in performing self-morphing processes, their potential for 4D printing has not been fully explored to date. In this study, we demonstrate 4D printing of a commercial polymer, SU-8, which has not been reported to date in this field. The working principle is based on a self-morphing process of the printed SU-8 structures through spatial control of the swelling medium inside the polymer matrix by a modified process. To understand the self-morphing behavior, fundamental studies on the effect of the geometries including contours and filling patterns were carried out. A soft electronic device as an actuator was demonstrated to realize an application of this programmable polymer using the 3D printing technology. These studies provide a new paradigm for application of SU-8 in 4D printing, paving a new route to the exploration of more potential candidates by this demonstrated strategy.

  2. Pale and dark morphs of tawny owls show different patterns of telomere dynamics in relation to disease status.

    PubMed

    Karell, Patrik; Bensch, Staffan; Ahola, Kari; Asghar, Muhammad

    2017-07-26

    Parasites are expected to exert long-term costs on host fecundity and longevity. Understanding the consequences of heritable polymorphic variation in disease defence in wild populations is essential in order to predict evolutionary responses to changes in disease risk. Telomeres have been found to shorten faster in malaria-diseased individuals compared with healthy ones with negative effects on longevity and thereby fitness. Here, we study the impact of haemosporidian blood parasites on telomere dynamics in tawny owls, which display a highly heritable plumage colour polymorphism. Previously, it has been shown that blood parasites have morph-specific impact on body mass maintenance. Here, we show that telomeres shortened faster in individuals with shorter breeding lifespan. Telomere length was negatively associated with the degree of pheomelanic brown coloration and shorter in infected than uninfected individuals. The rate of telomere shortening between breeding seasons was faster in darker pheomelanic individuals and suppression of parasite intensity between seasons was associated with faster telomere shortening in the paler individuals but not in darker ones. We propose that morph-specific physiological profiles cause differential telomere shortening and that this is likely to be a mechanism involved in previously documented environment-driven survival selection against the pheomelanic morph in this population. © 2017 The Author(s).

  3. The mechanisms of morph determination in the amphipod Jassa: implications for the evolution of alternative male phenotypes.

    PubMed Central

    Kurdziel, Josepha P; Knowles, L Lacey

    2002-01-01

    The proximal basis for and the maintenance of alternative male reproductive strategies and tactics are generally not understood in most species, despite the occurrence of male polymorphism across many taxa. In the marine amphipod Jassa marmorata, males differ in morphology as well as behaviour. This dimorphism corresponds to two contrasting reproductive strategies: small sneaker males or 'minors', and large fighter males or 'majors'. This study uses quantitative genetic analyses in conjunction with experimental manipulations to assess the relative importance of genetic versus environmental factors in the determination and maintenance of these alternative mating strategies. Heritability analyses indicated the reproductive phenotypes do not reflect genetic differences between dimorphic males. By contrast, morph determination was significantly affected by diet quality. Majors essentially only developed on high-protein diets. Field studies also identified a strong correlation between seasonal shifts in the relative proportions of morphs and changes in food (i.e. phytoplankton) quantity and composition, corroborating that diet cues the switch between alternative reproductive tactics. Moreover, the comparison of major and minor growth trajectories identified a heterochronic shift in maturation times between morphs, indicating that ecological selective pressures, rather than just sexual selection, may be involved in the maintenance of this conditional strategy. PMID:12350261

  4. The mechanisms of morph determination in the amphipod Jassa: implications for the evolution of alternative male phenotypes.

    PubMed

    Kurdziel, Josepha P; Knowles, L Lacey

    2002-09-07

    The proximal basis for and the maintenance of alternative male reproductive strategies and tactics are generally not understood in most species, despite the occurrence of male polymorphism across many taxa. In the marine amphipod Jassa marmorata, males differ in morphology as well as behaviour. This dimorphism corresponds to two contrasting reproductive strategies: small sneaker males or 'minors', and large fighter males or 'majors'. This study uses quantitative genetic analyses in conjunction with experimental manipulations to assess the relative importance of genetic versus environmental factors in the determination and maintenance of these alternative mating strategies. Heritability analyses indicated the reproductive phenotypes do not reflect genetic differences between dimorphic males. By contrast, morph determination was significantly affected by diet quality. Majors essentially only developed on high-protein diets. Field studies also identified a strong correlation between seasonal shifts in the relative proportions of morphs and changes in food (i.e. phytoplankton) quantity and composition, corroborating that diet cues the switch between alternative reproductive tactics. Moreover, the comparison of major and minor growth trajectories identified a heterochronic shift in maturation times between morphs, indicating that ecological selective pressures, rather than just sexual selection, may be involved in the maintenance of this conditional strategy.

  5. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    NASA Astrophysics Data System (ADS)

    Klaassen van Oorschot, Brett

    Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing shape affected performance during flapping but not gliding flight. Extended wings outperformed swept wings by about a third in flapping flight. This finding contrasts previous work that showed wing shape didn't affect performance in flapping flight (Usherwood and Ellington, 2002a, 2002b). This work provided key insights that inspired the second and third chapters of my dissertation. The second chapter examines the significance of wing tip slots across 135 avian species, ranging from small passerines to large seabirds. This research was completed with the help of an undergraduate international researcher, Ho Kwan Tang, and is currently in press at the Journal of Morphology (Klaassen van Oorschot, in press). These slots are caused by asymmetric emarginations missing from the leading and trailing edge of the primary feathers. We used a novel metric of primary feather emargination that allowed us to show that wing tip slots are nearly ubiquitous across the avian clade. We also showed that emargination is segregated according to habitat and behavioral metrics like flight style. Finally, we showed that emargination scaled with mass. These findings illustrated that wing tip slots may be an adaptation for efficacy during vertical takeoff rather than efficiency during gliding flight. In the third chapter, I sought to better understand the function of these slotted primary feathers. In an effort to bridge biology and aeronautics, I collaborated with Richard Choroszucha, an aeronautical engineer from the University of Michigan, on this work. These feathers deflect under aerodynamic load, and it has been hypothesized that they reduce induced drag during gliding flight (Tucker, 1993, 1995). We exposed individual primary feathers to different speeds in the wind tunnel and measured deflection such as bend, twist, and sweep. We found that feather deflection reoriented force, resulting in increased lateral stability and delayed stall characteristics compared to a rigid airfoil. These findings lay the foundation for future biomimetic applications of passive morphing-wing aircraft. I aim to submit this chapter for publication at Bioinspiration & Biomimetics in the summer of 2017. The following dissertation represents my systematic discovery of avian aerodynamics and follows my progression as a scientist. Combined, the following chapters provide novel insight into the complex nature of morphing avian wings.

  6. Morphology of Nectaries and Biology of Nectar Production in the Distylous Species Fagopyrum esculentum

    PubMed Central

    Cawoy, Valerie; Kinet, Jean-Marie; Jacquemart, Anne-Laure

    2008-01-01

    Background and Aims The mechanisms of floral nectar production in buckwheat (Fagopyrum esculentum, Polygonaceae), a distylous pseudo-cereal, have received relatively little attention, prompting an investigation of the factors that regulate this process. The aim was to perform a refined study of the structures that secrete nectar and of the internal and external parameters influencing nectar volumes and sugar concentrations. Methods In order to control environmental parameters, plants were cultivated in growth rooms under controlled conditions. The structure of nectaries was studied based on histological sections from flowers and flower buds. Nectar was extracted using glass micropipettes and the sugar concentration was measured with a hand refractometer. Sugar concentration in the phloem sap was measured using the anthrone method. To test the influence of photosynthesis on nectar production, different light and defoliation treatments were applied. Key Results Unicellular trichomes were located in the epidermis at the ventral part of eight nectary glands situated on the flower receptacle alternately with stamens. Vascular bundles consisting of both phloem and xylem were identified at the boundary between a multilayered nectary parenchyma and a sub-nectary parenchyma with chloroplasts. A higher volume of nectar in thrum morphs was observed. No other difference was found in morphology or in sugar supply to inflorescences between morphs. Nectar secretion was strongly influenced by plant age and inflorescence position. Nectar volumes were higher in the upper inflorescences and during the flowering peak. Light had a dual role, (1) acting directly on reproductive structures to trigger flower opening, which conditions nectar secretion, and (2) stimulating photosynthetic activity, which regulates nectar accumulation in open flowers. Conclusions In buckwheat, nectar is secreted by trichomes and probably proceeds, at least in part, from phloem sap. Nectar secretion is strongly influenced by floral morph type, plant age, inflorescence position and light. PMID:18765442

  7. Inflorescence dimorphism, heterodichogamy and thrips pollination in Platycarya strobilacea (Juglandaceae)

    PubMed Central

    Fukuhara, Tatsundo; Tokumaru, Shin-ichiro

    2014-01-01

    Background and Aims Unlike other taxa in Juglandaceae or in closely related families, which are anemophilous, Platycarya strobilacea has been suggested to be entomophilous. In Juglandaceae, Juglans and Carya show heterodichogamy, a reproductive strategy in which two morphs coexist in a population and undergo synchronous reciprocal sex changes. However, there has been no study focusing on heterodichogamy in the other six or seven genera, including Platycarya. Methods Inflorescence architecture, sexual expression and pollination biology were examined in a P. strobilacea population in Japan. Flowering phenology was monitored daily for 24 trees in 2008 and 27 in 2009. Flower visitors and inhabitants were recorded or collected from different sexes and stages. Key results The population of P. strobilacea showed heterodichogamous phenology with protogynous and duodichogamous–protandrous morphs. This dimorphism in dichogamy was associated with distinct inflorescence morphologies. Thrips pollination was suggested by the frequent presence of thrips with attached pollen grains, the scarcity of other insect visitors, the synchronicity of thrips number in male spikes with the maturation of female flowers, and morphological characters shared with previously reported thrips-pollinated plants. Male spikes went through two consecutive stages: bright yellow and strong-scented M1 stage, and brownish and little-scented M2 stage. The latter contained more thrips, synchronized better with the receptive stage of female flowers of the reciprocal morph and is probably the main period of pollen export. Conclusions Platycarya strobilacea is heterodichogamous and thrips-pollinated, both of which are relatively rare conditions in angiosperms. In male spikes of P. strobilacea, there is probably a temporal decoupling of pollinator attraction and pollen export. PMID:24305967

  8. Burn Injury Assessment Tool with Morphable 3D Human Body Models

    DTIC Science & Technology

    2017-04-21

    waist, arms and legs measurements) as stored in most anthropometry databases . To improve on bum area estimations, the bum tool will allow the user to...different algorithm for morphing that relies on searching of an extensive anthropometric database , which is created from thousands of randomly...interpolation methods are required. Develop Patient Database : Patient data entered (name, gender, age, anthropometric measurements), collected (photographic

  9. Individualized Human CAD Models: Anthropmetric Morphing and Body Tissue Layering

    DTIC Science & Technology

    2014-07-31

    Part Flow Chart of the Interaction among VBA Macros, Excel® Spreadsheet, and SolidWorks Front View of the Male and Female Soldier CAD Model...yellow highlighting. The spreadsheet is linked to the CAD model by macros created with the Visual Basic for Application ( VBA ) editor in Microsoft Excel...basically three working parts to the anthropometric morphing that are all interconnected ( VBA macros, Excel spreadsheet, and SolidWorks). The flow

  10. Energy Based Topology Optimization of Morphing Wings a Multidisciplinary Global/Local Design Approach

    DTIC Science & Technology

    2006-12-01

    subsystem that drives the active materials to achieve the desired shape changes. As opposed to fixed wing structures in which the aerodynamic and...structures and aerodynamics occur in conjunction with the active material and electronic subsystem interactions that involve transfer of energy from a source...which the aerodynamic and structure integration for the entire wing is the most important interaction mechanism, in the case of a morphing wing

  11. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    PubMed

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  12. Variation in founder groups promotes establishment success in the wild

    PubMed Central

    Forsman, Anders; Wennersten, Lena; Karlsson, Magnus; Caesar, Sofia

    2012-01-01

    Environmental changes currently pose severe threats to biodiversity, and reintroductions and translocations are increasingly used to protect declining populations and species from extinction. Theory predicts that establishment success should be higher for more variable groups of dissimilar individuals. To test this ‘diversity promotes establishment’ hypothesis, we introduced colour polymorphic pygmy grasshoppers (Tetrix subulata) to different sites in the wild. The number of descendants found at the release sites the subsequent year increased with increasing number of colour morphs in the founder group, and variation in founder groups also positively affected colour morph diversity in the established populations. Since colour morphs differ in morphology, physiology, behaviour, reproductive life history and types of niche used, these findings demonstrate that variation among individuals in functionally important traits promotes establishment success under natural conditions, and further indicate that founder diversity may contribute to evolutionary rescue and increased population persistence. PMID:22456885

  13. Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo

    2017-11-01

    It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.

  14. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    NASA Astrophysics Data System (ADS)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty <1% and a precision of about 0.06° in the measuring range ±5° of the morphing wing deflection.

  15. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    PubMed Central

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  16. Repeated short presentations of morphed facial expressions change recognition and evaluation of facial expressions.

    PubMed

    Moriya, Jun; Tanno, Yoshihiko; Sugiura, Yoshinori

    2013-11-01

    This study investigated whether sensitivity to and evaluation of facial expressions varied with repeated exposure to non-prototypical facial expressions for a short presentation time. A morphed facial expression was presented for 500 ms repeatedly, and participants were required to indicate whether each facial expression was happy or angry. We manipulated the distribution of presentations of the morphed facial expressions for each facial stimulus. Some of the individuals depicted in the facial stimuli expressed anger frequently (i.e., anger-prone individuals), while the others expressed happiness frequently (i.e., happiness-prone individuals). After being exposed to the faces of anger-prone individuals, the participants became less sensitive to those individuals' angry faces. Further, after being exposed to the faces of happiness-prone individuals, the participants became less sensitive to those individuals' happy faces. We also found a relative increase in the social desirability of happiness-prone individuals after exposure to the facial stimuli.

  17. Inheritance of tristyly in Oxalis tuberosa (Oxalidaceae).

    PubMed

    Trognitz, B R; Hermann, M

    2001-05-01

    Frequencies of floral morphs in progenies obtained from a complete set of diallelic crosses among three accessions of tristylous, octoploid oca (Oxalis tuberosa) were used for a Mendelian analysis of floral morph inheritance. The frequencies observed had the best fit to a model of tetrasomic inheritance with two diallelic factors, S, s and M, m, with S being epistatic over M. No explanation could be found for the unexpected formation of a small percentage of short-styled individuals in crosses between the mid-styled and the long-styled parent. For the acceptance of models of disomic and octosomic inheritance several additional assumptions would have to be made and therefore these modes of inheritance are less likely. Dosage-dependent inheritance of floral morph was rejected. Only a small frequency (36%) of the cross progenies flowered, in contrast to the greater propensity for flowering of O. tuberosa accessions held at gene banks.

  18. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  19. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.

    PubMed

    Jeon, Seog-Jin; Hauser, Adam W; Hayward, Ryan C

    2017-02-21

    The formation of well-defined and functional three-dimensional (3D) structures by buckling of thin sheets subjected to spatially nonuniform stresses is common in biological morphogenesis and has become a subject of great interest in synthetic systems, as such programmable shape-morphing materials hold promise in areas including drug delivery, biomedical devices, soft robotics, and biomimetic systems. Given their ability to undergo large changes in swelling in response to a wide variety of stimuli, hydrogels have naturally emerged as a key type of material in this field. Of particular interest are hybrid systems containing rigid inclusions that can define both the anisotropy and spatial nonuniformity of swelling as well as nanoparticulate additives that can enhance the responsiveness and functionality of the material. In this Account, we discuss recent progress in approaches to achieve well-defined shape morphing in hydrogel hybrids. First, we provide an overview of materials and methods that facilitate fabrication of such systems and outline the geometry and mechanics behind shape morphing of thin sheets. We then discuss how patterning of stiff inclusions within soft responsive hydrogels can be used to program both bending and swelling, thereby providing access to a wide array of complex 3D forms. The use of discretely patterned stiff regions to provide an effective composite response offers distinct advantages in terms of scalability and ease of fabrication compared with approaches based on smooth gradients within a single layer of responsive material. We discuss a number of recent advances wherein control of the mechanical properties and geometric characteristics of patterned stiff elements enables the formation of 3D shapes, including origami-inspired structures, concatenated helical frameworks, and surfaces with nonzero Gaussian curvature. Next, we outline how the inclusion of functional elements such as nanoparticles can enable unique pathways to programmable and even reprogrammable shape-morphing materials. We focus to a large extent on photothermally reprogrammable systems that include one of a variety of additives that serve to efficiently absorb light and convert it into heat, thereby driving the response of a temperature-sensitive hydrogel. Such systems are advantageous in that patterns of light can be defined with very high spatial and temporal resolution in addition to offering the potential for wavelength-selective addressability of multiple different inclusions. We highlight recent advances in the preparation of light-responsive hybrid systems capable of undergoing reprogrammable bending and buckling into well-defined 3D shapes. In addition, we describe several examples where shape tuning of hybrid systems enables control over the motion of responsive hydrogel-based materials. Finally, we offer our perspective on open challenges and future areas of interest for the field.

  20. TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.

    PubMed

    Cordero, Pablo; Stuart, Joshua M

    2017-01-01

    The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.

  1. Obtaining manufactured geometries of deep-drawn components through a model updating procedure using geometric shape parameters

    NASA Astrophysics Data System (ADS)

    Balla, Vamsi Krishna; Coox, Laurens; Deckers, Elke; Plyumers, Bert; Desmet, Wim; Marudachalam, Kannan

    2018-01-01

    The vibration response of a component or system can be predicted using the finite element method after ensuring numerical models represent realistic behaviour of the actual system under study. One of the methods to build high-fidelity finite element models is through a model updating procedure. In this work, a novel model updating method of deep-drawn components is demonstrated. Since the component is manufactured with a high draw ratio, significant deviations in both profile and thickness distributions occurred in the manufacturing process. A conventional model updating, involving Young's modulus, density and damping ratios, does not lead to a satisfactory match between simulated and experimental results. Hence a new model updating process is proposed, where geometry shape variables are incorporated, by carrying out morphing of the finite element model. This morphing process imitates the changes that occurred during the deep drawing process. An optimization procedure that uses the Global Response Surface Method (GRSM) algorithm to maximize diagonal terms of the Modal Assurance Criterion (MAC) matrix is presented. This optimization results in a more accurate finite element model. The advantage of the proposed methodology is that the CAD surface of the updated finite element model can be readily obtained after optimization. This CAD model can be used for carrying out analysis, as it represents the manufactured part more accurately. Hence, simulations performed using this updated model with an accurate geometry, will therefore yield more reliable results.

  2. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  3. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    DTIC Science & Technology

    2007-06-01

    Yan Yang, Steven Haker , and Allen Tannenbaum Abstract—Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one...of Technology, Atlanta, GA 30332 USA (e-mail: zlzl@ece.gatech.edu; zhulei1976@hotmail.com; yan.yang@gatech.edu; tannenba@ece.gatech.edu). S. Haker is...with the Surgical Planning Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA (e-mail: haker @bwh.harvard.edu

  4. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet.

    PubMed

    Volkov, Alexander G; Xu, Kunning G; Kolobov, Vladimir I

    2017-12-01

    Low temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo. Application of an atmospheric pressure argon plasma jet to the inside or outside of a lobe, midrib, or cilia in Dionaea muscipula Ellis induces trap closing. Treatment of Mimosa pudica by plasma induces movements of pinnules and petioles similar to the effects of mechanical stimulation. We have conducted control experiments and simulations to illustrate that gas flow and UV radiation associated with plasma are not the primary reasons for the observed effects. Reactive oxygen and nitrogen species (RONS) produced by cold plasma in atmospheric air appear to be the primary reason of plasma-induced activation of phytoactuators in plants. Some of these RONS are known to be signaling molecules, which control plants' developmental processes. Understanding these mechanisms could promote plasma-based technology for plant developmental control and future use for plant protection from pathogens. Our work offers new insight into mechanisms which trigger plant morphing and movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The influence of inherited plumage colour morph on morphometric traits and breeding investment in zebra finches (Taeniopygia guttata).

    PubMed

    Krause, E Tobias; Krüger, Oliver; Hoffman, Joseph I

    2017-01-01

    Melanin-based plumage polymorphism occurs in many wild bird populations and has been linked to fitness variation in several species. These fitness differences often arise as a consequence of variation in traits such as behaviour, immune responsiveness, body size and reproductive investment. However, few studies have controlled for genetic differences between colour morphs that could potentially generate artefactual associations between plumage colouration and trait variation. Here, we used zebra finches (Taeniopygia guttata) as a model system in order to evaluate whether life-history traits such as adult body condition and reproductive investment could be influenced by plumage morph. To maximise any potential differences, we selected wild-type and white plumage morphs, which differ maximally in their extent of melanisation, while using a controlled three-generation breeding design to homogenise the genetic background. We found that F2 adults with white plumage colouration were on average lighter and had poorer body condition than wild-type F2 birds. However, they appeared to compensate for this by reproducing earlier and producing heavier eggs relative to their own body mass. Our study thus reveals differences in morphological and life history traits that could be relevant to fitness variation, although further studies will be required to evaluate fitness effects under natural conditions as well as to characterise any potential fitness costs of compensatory strategies in white zebra finches.

  6. Infants prefer the faces of strangers or mothers to morphed faces: an uncanny valley between social novelty and familiarity.

    PubMed

    Matsuda, Yoshi-Taka; Okamoto, Yoko; Ida, Misako; Okanoya, Kazuo; Myowa-Yamakoshi, Masako

    2012-10-23

    The 'uncanny valley' response is a phenomenon involving the elicitation of a negative feeling and subsequent avoidant behaviour in human adults and infants as a result of viewing very realistic human-like robots or computer avatars. It is hypothesized that this uncanny feeling occurs because the realistic synthetic characters elicit the concept of 'human' but fail to satisfy it. Such violations of our normal expectations regarding social signals generate a feeling of unease. This conflict-induced uncanny valley between mutually exclusive categories (human and synthetic agent) raises a new question: could an uncanny feeling be elicited by other mutually exclusive categories, such as familiarity and novelty? Given that infants prefer both familiarity and novelty in social objects, we address this question as well as the associated developmental profile. Using the morphing technique and a preferential-looking paradigm, we demonstrated uncanny valley responses of infants to faces of mothers (i.e. familiarity) and strangers (i.e. novelty). Furthermore, this effect strengthened with the infant's age. We excluded the possibility that infants detect and avoid traces of morphing. This conclusion follows from our finding that the infants equally preferred strangers' faces and the morphed faces of two strangers. These results indicate that an uncanny valley between familiarity and novelty may accentuate the categorical perception of familiar and novel objects.

  7. More than a colour change: insect melanism, disease resistance and fecundity.

    PubMed

    Dubovskiy, I M; Whitten, M M A; Kryukov, V Y; Yaroslavtseva, O N; Grizanova, E V; Greig, C; Mukherjee, K; Vilcinskas, A; Mitkovets, P V; Glupov, V V; Butt, T M

    2013-07-22

    A 'dark morph' melanic strain of the greater wax moth, Galleria mellonella, was studied for its atypical, heightened resistance to infection with the entomopathogenic fungus, Beauveria bassiana. We show that these insects exhibit multiple intraspecific immunity and physiological traits that distinguish them from a non-melanic, fungus-susceptible morph. The melanic and non-melanic morphs were geographical variants that had evolved different, independent defence strategies. Melanic morphs exhibit a thickened cuticle, higher basal expression of immunity- and stress-management-related genes, higher numbers of circulating haemocytes, upregulated cuticle phenoloxidase (PO) activity concomitant with conidial invasion, and an enhanced capacity to encapsulate fungal particles. These insects prioritize specific augmentations to those frontline defences that are most likely to encounter invading pathogens or to sustain damage. Other immune responses that target late-stage infection, such as haemolymph lysozyme and PO activities, do not contribute to fungal tolerance. The net effect is increased larval survival times, retarded cuticular fungal penetration and a lower propensity to develop haemolymph infections when challenged naturally (topically) and by injection. In the absence of fungal infection, however, the heavy defence investments made by melanic insects result in a lower biomass, decreased longevity and lower fecundity in comparison with their non-melanic counterparts. Although melanism is clearly correlated with increased fungal resistance, the costly mechanisms enabling this protective trait constitute more than just a colour change.

  8. The influence of inherited plumage colour morph on morphometric traits and breeding investment in zebra finches (Taeniopygia guttata)

    PubMed Central

    Krüger, Oliver

    2017-01-01

    Melanin-based plumage polymorphism occurs in many wild bird populations and has been linked to fitness variation in several species. These fitness differences often arise as a consequence of variation in traits such as behaviour, immune responsiveness, body size and reproductive investment. However, few studies have controlled for genetic differences between colour morphs that could potentially generate artefactual associations between plumage colouration and trait variation. Here, we used zebra finches (Taeniopygia guttata) as a model system in order to evaluate whether life-history traits such as adult body condition and reproductive investment could be influenced by plumage morph. To maximise any potential differences, we selected wild-type and white plumage morphs, which differ maximally in their extent of melanisation, while using a controlled three-generation breeding design to homogenise the genetic background. We found that F2 adults with white plumage colouration were on average lighter and had poorer body condition than wild-type F2 birds. However, they appeared to compensate for this by reproducing earlier and producing heavier eggs relative to their own body mass. Our study thus reveals differences in morphological and life history traits that could be relevant to fitness variation, although further studies will be required to evaluate fitness effects under natural conditions as well as to characterise any potential fitness costs of compensatory strategies in white zebra finches. PMID:29190647

  9. Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery

    PubMed Central

    Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.

    2016-01-01

    High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510

  10. Numerical design of an adaptive aileron

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Concilio, Antonio; Magnifico, Marco; Pecora, Rosario

    2016-04-01

    The study herein described is aimed at investigating the feasibility of an innovative full-scale camber morphing aileron device. In the framework of the "Adaptive Aileron" project, an international cooperation between Italy and Canada, this goal was carried out with the integration of different morphing concepts in a wing-tip prototype. As widely demonstrated in recent European projects such as Clean Sky JTI and SARISTU, wing trailing edge morphing may lead to significant drag reduction (up to 6%) in off-design flight points by adapting chord-wise camber variations in cruise to compensate A/C weight reduction following fuel consumption. Those researches focused on the flap region as the most immediate solution to implement structural adaptations. However, there is also a growing interest in extending morphing functionalities to the aileron region preserving its main functionality in controlling aircraft directional stability. In fact, the external region of the wing seems to be the most effective in producing "lift over drag" improvements by morphing. Thus, the objective of the presented research is to achieve a certain drag reduction in off-design flight points by adapting wing shape and lift distribution following static deflections. In perspective, the developed device could also be used as a load alleviation system to reduce gust effects, augmenting its frequency bandwidth. In this paper, the preliminary design of the adaptive aileron is first presented, assessed on the base of the external aerodynamic loads. The primary structure is made of 5 segmented ribs, distributed along 4 bays, each splitted into three consecutive parts, connected with spanwise stringers. The aileron shape modification is then implemented by means of an actuation system, based on a classical quick-return mechanism, opportunely suited for the presented application. Finite element analyses were assessed for properly sizing the load-bearing structure and actuation systems and for characterizing their dynamic behavior. Obtained results are reported and widely discussed.

  11. Folding in and out: passive morphing in flapping wings.

    PubMed

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover within a beat.

  12. Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.

    PubMed

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M Enrique; Davy, Anthony J

    2008-07-01

    Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C(4) shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m(-3) NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, F(v)/F(m) and net rate of CO(2) assimilation. The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage.

  13. The close relationship between estimated divergent selection and observed differentiation supports the selective origin of a marine snail hybrid zone.

    PubMed

    Cruz, R; Vilas, C; Mosquera, J; García, C

    2004-11-01

    To study the role of divergent selection in the differentiation of the two morphs in a hybrid zone of the intertidal snail Littorina saxatilis, we compared the strength of the divergent selection acting on a series of shell characters (as estimated by the viability of snails in a reciprocal transplant experiment) with the contribution of these characters to the phenotypic differences between the morphs. We found a close correlation between selection and differentiation, which suggests a cause-effect relationship, i.e. that all present differentiation is the result of past divergent selection. In addition, divergent selection was a very important component of the total natural selection acting on shell measures. These novel results support previous evidence, based on allozyme analysis, of a parapatric origin for this hybrid zone. We discuss possible limitations of this interpretation and the circumstances under which allopatric differentiation would produce the same results. Phenotypic analysis of divergent selection may be a useful method of investigating the evolutionary mechanisms involved in differentiation processes.

  14. A review on shape memory alloys with applications to morphing aircraft

    NASA Astrophysics Data System (ADS)

    Barbarino, S.; Saavedra Flores, E. I.; Ajaj, R. M.; Dayyani, I.; Friswell, M. I.

    2014-06-01

    Shape memory alloys (SMAs) are a unique class of metallic materials with the ability to recover their original shape at certain characteristic temperatures (shape memory effect), even under high applied loads and large inelastic deformations, or to undergo large strains without plastic deformation or failure (super-elasticity). In this review, we describe the main features of SMAs, their constitutive models and their properties. We also review the fatigue behavior of SMAs and some methods adopted to remove or reduce its undesirable effects. SMAs have been used in a wide variety of applications in different fields. In this review, we focus on the use of shape memory alloys in the context of morphing aircraft, with particular emphasis on variable twist and camber, and also on actuation bandwidth and reduction of power consumption. These applications prove particularly challenging because novel configurations are adopted to maximize integration and effectiveness of SMAs, which play the role of an actuator (using the shape memory effect), often combined with structural, load-carrying capabilities. Iterative and multi-disciplinary modeling is therefore necessary due to the fluid-structure interaction combined with the nonlinear behavior of SMAs.

  15. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens.

    PubMed

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-09-16

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November-December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896-1035 mg/100 g), potassium (779-816 mg/100 g) and phosphorus (652-685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217-220 mg/100 g), zinc (14.2-14.6 mg/100 g), manganese (7.4-8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes.

  16. Morphing wing structure with controllable twist based on adaptive bending-twist coupling

    NASA Astrophysics Data System (ADS)

    Raither, Wolfram; Heymanns, Matthias; Bergamini, Andrea; Ermanni, Paolo

    2013-06-01

    A novel semi-passive morphing airfoil concept based on variable bending-twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated.

  17. Evolving attractive faces using morphing technology and a genetic algorithm: a new approach to determining ideal facial aesthetics.

    PubMed

    Wong, Brian J F; Karimi, Koohyar; Devcic, Zlatko; McLaren, Christine E; Chen, Wen-Pin

    2008-06-01

    The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Basic research study incorporating focus group evaluations. Digital images were acquired of 250 female volunteers (18-25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18-25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cos-metology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (+/-0.73), 5.50 (+/-0.62), 6.23 (+/-0.31), and 6.39 (+/-0.24) for P and F1-F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness scores. Multivariate analysis identified a similar collection of morphometric measures. No correlation with more commonly accepted measures such as the length facial thirds or fifths were identified. When images are examined as a montage (by generation), clear distinct trends are identified: oval shaped faces, distinct arched eyebrows, and full lips predominate. Faces evolve to approximate the guidelines suggested by classical canons. F3 and F4 generation faces look profoundly similar. The statistical and qualitative analysis indicates that the algorithm and methodology succeeds in generating successively more attractive faces. The use of genetic algorithms in combination with a morphing software and traditional focus-group derived attractiveness scores can be used to evolve attractive synthetic faces. We have demonstrated that the evolution of attractive faces can be mimicked in software. Genetic algorithms and morphing provide a robust alternative to traditional approaches rooted in comparing attractiveness scores with a series of morphometric measurements in human subjects.

  18. Profiling the repertoire of phenotypes influenced by environmental cues that occur during asexual reproduction.

    PubMed

    Dombrovsky, Aviv; Arthaud, Laury; Ledger, Terence N; Tares, Sophie; Robichon, Alain

    2009-11-01

    The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment.

  19. Population stochasticity, random determination of handedness, and the genetic basis of antisymmetry.

    PubMed

    Kamimura, Yoshitaka

    2011-12-07

    Conspicuous lateral asymmetries of organisms are classified into two major categories: antisymmetry (AS), characterized by almost equal frequencies of dextral and sinistral morphs, and directional asymmetry (DA), in which one morph dominates. I compared and characterized two types of genes, both with existing examples, in their roles in the evolutionary transitions between AS and DA for the first time. Handedness genes (HGs) determine the chirality in a strict sense, while randomization genes (RGs) randomize the chirality. A theory predicts that, in an AS population maintained by HGs under negative frequency-dependent selection, RGs harness fluctuation of the morph frequencies as their driving force and thus increase their frequency until half of the population flips the phenotype. These predictions were confirmed by simulations. Consequently, RGs mask the genetic effects of HGs, which provides a possible explanation for the apparent lack of a genetic basis for AS in empirical AS studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Virtual Sensor for Failure Detection, Identification and Recovery in the Transition Phase of a Morphing Aircraft

    PubMed Central

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations. PMID:22294922

  1. Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft.

    PubMed

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations.

  2. The role of predators in maintaining the geographic organization of aposematic signals.

    PubMed

    Chouteau, Mathieu; Angers, Bernard

    2011-12-01

    Selective predation of aposematic signals is expected to promote phenotypic uniformity. But while these signals may be uniform within a population, numerous species display impressive variations in warning signals among adjacent populations. Predators from different localities who learn to avoid distinct signals while performing intense selection on others are thus expected to maintain such a geographic organization. We tested this assumption by placing clay frog models, representing distinct color morphs of the Peruvian poison dart frog Ranitomeya imitator and a nonconspicuous frog, reciprocally between adjacent localities. In each locality, avian predators were able to discriminate between warning signals; the adjacent exotic morph experienced up to four times more attacks than the local one and two times more than the nonconspicuous phenotype. Moreover, predation attempts on the exotic morph quickly decreased to almost nil, suggesting rapid learning. This experiment offers direct evidence for the existence of different predator communities performing localized homogenizing selection on distinct aposematic signals.

  3. Profiling the repertoire of phenotypes influenced by environmental cues that occur during asexual reproduction

    PubMed Central

    Dombrovsky, Aviv; Arthaud, Laury; Ledger, Terence N.; Tares, Sophie; Robichon, Alain

    2009-01-01

    The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment. PMID:19635846

  4. Spatial But Not Oculomotor Information Biases Perceptual Memory: Evidence From Face Perception and Cognitive Modeling.

    PubMed

    Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter

    2017-08-01

    Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.

  5. Diversity in shortjaw cisco (Coregonus zenithicus) in North America

    USGS Publications Warehouse

    Todd, T.N.; Steinhilber, M.

    2002-01-01

    Shortjaw cisco (Coregonus zenithicus) exhibit morphological variability across their geographic range in North America and could comprise more than one distinct morph or taxon. To investigate this, principal components analysis was applied to a data set that consisted of four variables from nine localities. All data were obtained from digital images of the specimens and the excised first gill arch. Confidence ellipses (95%) about the means of bivariate distributions of the principal components revealed that some populations were distinct from the others, but a continuity of overlap clouded understanding of pattern among the variation. Most populations had more and longer gillrakers than shortjaw cisco from George Lake (Manitoba) and Basswood Lake (Ontario) that had fewer and shorter gillrakers. This analysis supports the existence of a short- and few-rakered morph and a long- and many-rakered morph. However, most populations of shortjaw cisco from the Great Lakes across Canada to the Arctic share a similar morphology and likely represent a single, widespread species.

  6. Experimental characterization of an adaptive aileron: lab tests and FE correlation

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Amoroso, Francesco; Pecora, Rosario

    2016-04-01

    Like any other technology, morphing has to demonstrate system level performance benefits prior to implementation onto a real aircraft. The current status of morphing structures research efforts (as the ones, sponsored by the European Union) involves the design of several subsystems which have to be individually tested in order to consolidate their general performance in view of the final integration into a flyable device. This requires a fundamental understanding of the interaction between aerodynamic, structure and control systems. Important worldwide research collaborations were born in order to exchange acquired experience and better investigate innovative technologies devoted to morphing structures. The "Adaptive Aileron" project represents a joint cooperation between Canadian and Italian research centers and leading industries. In this framework, an overview of the design, manufacturing and testing of a variable camber aileron for a regional aircraft is presented. The key enabling technology for the presented morphing aileron is the actuation structural system, integrating a suitable motor and a load-bearing architecture. The paper describes the lab test campaign of the developed device. The implementation of a distributed actuation system fulfills the actual tendency of the aeronautical research to move toward the use of electrical power to supply non-propulsive systems. The aileron design features are validated by targeted experimental tests, demonstrating both its adaptive capability and robustness under operative loads and its dynamic behavior for further aeroelastic analyses. The experimental results show a satisfactory correlation with the numerical expectations thus validating the followed design approach.

  7. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-01-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.

  8. Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants

    PubMed Central

    Ferreira, Ronara Souza; Poteaux, Chantal; Delabie, Jacques Hubert Charles; Fresneau, Dominique; Rybak, Fanny

    2010-01-01

    The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists. PMID:21203529

  9. Spatial variation in colour morph, spotting and allozyme frequencies in the candy-stripe spider, Enoplognatha ovata (Theridiidae) on two Swedish archipelagos.

    PubMed

    Oxford, G S; Gunnarsson, B

    2006-01-01

    The selective significance, if any, of many invertebrate visible polymorphisms is still not fully understood. Here we examine colour- and black spotting-morph frequencies in the spider Enoplognatha ovata in populations on two Swedish archipelagos with respect to different spatial scales and, in one archipelago, against the background of variation at four putative neutral allozyme marker loci. Every population studied was polymorphic for colour and 28 out of 30 contained all three colour morphs--lineata, redimita and ovata. We found no evidence for a breakdown in the traditional colour morph designation previously suggested for other northern European populations of this species. For colour there is no significant heterogeneity at spatial scales greater than between local populations within islands. Black spotting frequencies show a similar lack of pattern over larger spatial scales except that there are significant differences between the Stockholm and Göteborg archipelagos. Measures of population differentiation (theta) within the Stockholm islands for the two visible systems show them to be significantly more differentiated than the neutral markers, suggesting local selection acting on them in a population-specific manner. On the basis of previous observations and the distribution of spotting phenotypes on a European scale, it is argued that thermal selection might operate on black spotting during the juvenile stages favouring more spots in continental climates. It is not clear what selective forces act on colour.

  10. Floral scent emitted by white and coloured morphs in orchids.

    PubMed

    Dormont, L; Delle-Vedove, R; Bessière, J-M; Schatz, B

    2014-04-01

    Polymorphism of floral signals, such as colour and odour, is widespread in flowering plants and often considered to be adaptive, reflecting various pollinator preferences for particular floral traits. Several authors have recently hypothesized that particular associations exist between floral colour and scent, which would result from shared biochemistry between these two floral traits. In this study, we compared the chemical composition of floral volatiles emitted by white- and purple-flowered morphs of three different orchid species, including two food-deceptive species (Orchis mascula and Orchis simia) and a food-rewarding species (Anacamptis coriophora fragrans). We found clear interspecific differences in floral odours. As expected from their pollination strategy, the two deceptive orchids showed high inter-individual variation of floral volatiles, whereas the food-rewarding A. c. fragrans showed low variation of floral scent. Floral volatiles did not differ overall between white- and coloured-flowered morphs in O. mascula and A. c. fragrans, while O. simia exhibited different volatile profiles between the two colour morphs. However, a detailed analysis restricted to benzenoid compounds (which are associated with the production of floral anthocyanin pigments) showed that white inflorescences emitted more volatiles of the shikimic pathway than coloured ones, both for O. mascula and O. simia. These results are consistent with the current hypothesis that shared biochemistry creates pleiotropic links between floral colour and scent. Whether intraspecific variation of floral signals actually affects pollinator attraction and influences the reproductive success of these orchids remains to be determined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hsp70 and lipid peroxide levels following heat stress in Xeropicta derbentina (Krynicki 1836) (Gastropoda, Pulmonata) with regard to different colour morphs.

    PubMed

    Dieterich, A; Troschinski, S; Schwarz, S; Di Lellis, M A; Henneberg, A; Fischbach, U; Ludwig, M; Gärtner, U; Triebskorn, R; Köhler, H-R

    2015-01-01

    Terrestrial snails which live under dry and hot conditions need efficient mechanisms of adaptation to counteract the problems of desiccation and over-heating. A profoundly heat tolerant snail species is the Mediterranean Xeropicta derbentina, exhibiting different shell colour morphs ranging from pale white to darkly banded. Considering that dark-pigmented snails are believed to have a disadvantage due to faster heating, we investigated possible differences in the stress markers Hsp70 and lipid peroxideation between four pre-defined colour morphs which were exposed to different temperatures for eight hours. The highest Hsp70 levels were observed in response to 38-40 °C. Levels decreased when this temperature was exceeded. Snails of a pre-defined colour category 3 (with a large black band at the umbilicus side of the shell) showed the most prominent Hsp70 response. Lipid peroxideation levels also showed a maximum at 38 °C but displayed a second peak at rather high temperatures at which the Hsp70 level already had decreased (45-48 °C). Particularly pure white snails (category 1) and the most pigmented ones (category 4) were found to have different levels of lipid peroxidation at 38 °C and 45 °C compared to the other morphs. A hypothesis involving a combined two-phase defence mechanism, to which both, the Hsp70 protection system and the antioxidant defence system, may contribute, is discussed.

  12. Commande en boucle fermee sur un profil d'aile deformable dans la soufflerie Price-Paidoussis

    NASA Astrophysics Data System (ADS)

    Brossard, Jeremy

    The purpose of the ATR-42 project is to apply the concept of morphing wings by fabricating a morphing composite wing model of the Regional Transport Aircraft-42 to reduce drag and improve the aerodynamic performance. A control-command system coupled to an actuator mechanism will morph the wing skin. However, for best results, the control of the deformation must be studied carefully to insure the precision. Thus, a dual digitalexperimental approach is required. The solution proposed in this paper focuses on the controlled deformation of the upper wing of the ATR-42. A composite wing model with morphing capabilities was built and tested in the wind tunnel to evaluate its aerodynamic performance and serve as reference. A deformation mechanism, consisting of two engines and two camshafts, was subsequently designed and integrated within this model to obtain the optimum wing shapes according to the different flight condition. A control loop position was modeled in Matlab / Simulink and implemented experimentally to control the mechanism. Two types of results have been obtained. The first set concerned regulation and the second concerned aerodynamics. The control loop has achieved the desired skin displacement with an accuracy of 5%. Deformations of the upper skin were performed by a actuation system driven by motors, limitations supply were assured by the regulation architecture. For several flight conditions, the pressure measurements, validated with simulation results, have confirmed a reduction of the induced drag, compared to the original ATR-42 airfoil drag reduction.

  13. Frequency-dependent variation in mimetic fidelity in an intraspecific mimicry system

    PubMed Central

    Iserbyt, Arne; Bots, Jessica; Van Dongen, Stefan; Ting, Janice J.; Van Gossum, Hans; Sherratt, Thomas N.

    2011-01-01

    Contemporary theory predicts that the degree of mimetic similarity of mimics towards their model should increase as the mimic/model ratio increases. Thus, when the mimic/model ratio is high, then the mimic has to resemble the model very closely to still gain protection from the signal receiver. To date, empirical evidence of this effect is limited to a single example where mimicry occurs between species. Here, for the first time, we test whether mimetic fidelity varies with mimic/model ratios in an intraspecific mimicry system, in which signal receivers are the same species as the mimics and models. To this end, we studied a polymorphic damselfly with a single male phenotype and two female morphs, in which one morph resembles the male phenotype while the other does not. Phenotypic similarity of males to both female morphs was quantified using morphometric data for multiple populations with varying mimic/model ratios repeated over a 3 year period. Our results demonstrate that male-like females were overall closer in size to males than the other female morph. Furthermore, the extent of morphological similarity between male-like females and males, measured as Mahalanobis distances, was frequency-dependent in the direction predicted. Hence, this study provides direct quantitative support for the prediction that the mimetic similarity of mimics to their models increases as the mimic/model ratio increases. We suggest that the phenomenon may be widespread in a range of mimicry systems. PMID:21367784

  14. Mandibular angle augmentation with the use of distraction and homologous lyophilized cartilage in a case of morphing to Michael Jackson surgery.

    PubMed

    Mommaerts, M Y; Abeloos, J S; Gropp, H

    2001-08-01

    Correction of an ill-defined mandibular angle is not an easy task, whether it is requested by the "congenital, orthognathic or cosmetic" patient. Deliberate over-correction has not been reported to our knowledge. This article presents a combination of distraction osteogenesis and lyophilized cartilage used to three-dimensionally over-augment the mandibular angle of a long-face prognathic patient who had the wish to be morphed to Michael Jackson or at least as far as current technique and his endogenic features allowed.

  15. An optimal merging technique for high-resolution precipitation products: OPTIMAL MERGING OF PRECIPITATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.

    2011-04-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutionsmore » and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.« less

  16. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  17. Pollinator-mediated selection in a specialized hummingbird-Heliconia system in the Eastern Caribbean.

    PubMed

    Temeles, E J; Rah, Y J; Andicoechea, J; Byanova, K L; Giller, G S J; Stolk, S B; Kress, W J

    2013-02-01

    Phenotypic matches between plants and their pollinators often are interpreted as examples of reciprocal selection and adaptation. For the two co-occurring plant species, Heliconia bihai and H. caribaea in the Eastern Caribbean, we evaluated for five populations over 2 years the strength and direction of natural selection on corolla length and number of bracts per inflorescence. These plant traits correspond closely to the bill lengths and body masses of their primary pollinators, female or male purple-throated carib hummingbirds (Eulampis jugularis). In H. bihai, directional selection for longer corollas was always significant with the exception of one population in 1 year, whereas selection on bract numbers was rare and found only in one population in 1 year. In contrast, significant directional selection for more bracts per inflorescence occurred in all three populations of the yellow morph and in two populations of the red morph of H. caribaea, whereas significant directional selection on corolla length occurred in only one population of the red morph and one population of the yellow morph. Selection for longer corollas in H. bihai may result from better mechanical fit, and hence pollination, by the long bills of female E. jugularis, their sole pollinator. In contrast, competition between males of E. jugularis for territories may drive selection for more bracts in H. caribaea. Competitive exclusion of female E. jugularis by territorial males also implicates pollinator competition as a possible ecological mechanism for trait diversification in these plants. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  18. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    PubMed

    Conrad, Taina; Paxton, Robert J; Assum, Günter; Ayasse, Manfred

    2018-01-01

    In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i) if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii) how odor bouquets of male O. bicornis vary within and between populations, and (iii) whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  19. Functional dimorphic enantiostyly in monomorphic enantiostylous species of the subtribe Cassiinae (Fabaceae-Caesalpinioideae).

    PubMed

    Almeida, N M; Souza, J T; Oliveira, C R S; Bezerra, T T; Novo, R R; Siqueira Filho, J A; Oliveira, P E; Castro, C C

    2018-03-23

    Monomorphic enantiostylous species produce flowers with a displacement of the style to the left (L) or right (R) on the same individual, and may exhibit different dynamics for the production of these floral types, which may influence levels of selfing. We investigated the production dynamics of L and R floral types in seven species and a variety of monomorphic enantiostylous species of the genera Senna and Chamaecrista. Our hypothesis was that most species present similar proportions of floral morphs each day. Individuals were classified daily over a period of 7 days according to the functional status, i.e. the proportion of floral morphs as functionally L, R or reciprocal (REC, i.e. similar proportions of the two floral morphs), and also according to the number of consecutive days in which they exhibited the same functional status. All species presented low daily flower production. Most species had individuals classified as functionally R, L and REC, and tend to repeat the same functional status over a few days, although they may change functional status during the flowering period. All species exhibited individuals that were classified as functionally reciprocal when both the daily and total number of flowers produced over 7 days was considered. The occurrence of different functional status has not yet been reported in the literature for enantiostylous species. The distinct strategies observed in the dynamics of floral morph production seemed likely to minimise geitonogamy and to favour cross-pollination between individuals (xenogamy). © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  20. Mnemonic discrimination of similar face stimuli and a potential mechanism for the “other race” effect

    PubMed Central

    Chang, Allen; Murray, Elizabeth; Yassa, Michael A.

    2016-01-01

    Face recognition is an important component of successful social interactions in humans. A large literature in social psychology has focused on the phenomenon termed “the other race” (ORE) effect, the tendency to be more proficient with face recognition within one’s own ethnic group, as compared to other ethnic groups. Several potential hypotheses have been proposed for this effect including perceptual expertise, social grouping, and holistic face processing. Recent work on mnemonic discrimination (i.e. the ability to resolve mnemonic interference among similar experiences) may provide a mechanistic account for the ORE. In the current study, we examined how discrimination and generalization in the presence of mnemonic interference may contribute to the ORE. We developed a database of computerized faces divided evenly among ethnic origins (Black, Caucasian, East Asian, South Asian), as well as morphed face stimuli that varied in the amount of similarity to the original stimuli (30%, 40%, 50%, and 60% morphs). Participants first examined the original unmorphed stimuli during study, then during test were asked to judge the prior occurrence of repetitions (targets), morphed stimuli (lures), and new stimuli (foils). We examined participants’ ability to correctly reject similar morphed lures and found that it increased linearly as a function of face dissimilarity. We additionally found that Caucasian participants’ mnemonic discrimination/generalization functions were sharply tuned for Caucasian faces but considerably less tuned for East Asian and Black faces. These results suggest that expertise plays an important role in resolving mnemonic interference, which may offer a mechanistic account for the ORE. PMID:26413724

  1. Identification of a heat shock protein 90 gene involved in resistance to temperature stress in two wing-morphs of Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-07-01

    The brown planthopper, Nilaparvata lugens, is one of the most destructive pests damaging rice in Asia and exhibits wing dimorphism, with brachypters possessing severely reduced wings and macropters bearing fully developed wings. Previous studies have shown that macropters are more heat resistant than brachypters. To understand the molecular mechanism underlying the differential thermotolerance abilities of these two morphs, a full-length Hsp gene, NlHsp90 was cloned from N. lugen. Our results showed that the relative expression levels of NlHsp90 in N. lugens females increased with the rise of temperature. Interestingly, NlHsp90 in macropters females could be induced at lower temperature (32°C) than that in brachypters (34°C), and the NlHsp90 mRNA levels in macropters were significantly higher than those in brachypters from 34 to 40°C. In addition, the maximum expression levels of NlHsp90 were achieved much earlier in macropters, and NlHsp90 mRNA levels in macropters were significantly higher than those in brachypters from 1 to 6h of recovery after temperature stress. Furthermore, knockdown of NlHsp90 by dsRNA injection reduced survival in both morphs with a greater reduction in the macropters relative to that of the brachyters. These results indicated that NlHsp90 plays an important role for thermotolerance in N. lugens, and there is difference on induction between two morphs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Spanwise morphing trailing edge on a finite wing

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Inman, Daniel J.

    2015-04-01

    Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge concept locally varies the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the spar box. Utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal compliant mechanisms and inactive sections of elastomeric honeycombs, the SMTE concept eliminates geometric discontinuities associated with shape change, increasing aerodynamic performance. Previous work investigated a representative section of the SMTE concept and investigated the effect of various skin designs on actuation authority. The current work experimentally evaluates the aerodynamic gains for the SMTE concept for a representative finite wing as compared with a conventional, articulated wing. The comparative performance for both wings is evaluated by measuring the drag penalty associated with achieving a design lift coefficient from an off-design angle of attack. To reduce experimental complexity, optimal control configurations are predicted with lifting line theory and experimentally measured control derivatives. Evaluated over a range of off-design flight conditions, this metric captures the comparative capability of both concepts to adapt or "morph" to changes in flight conditions. Even with this simplistic model, the SMTE concept is shown to reduce the drag penalty due to adaptation up to 20% at off-design conditions, justifying the increase in mass and complexity and motivating concepts capable of larger displacement ranges, higher fidelity modelling, and condition-sensing control.

  3. In Silico Comparative Transcriptome Analysis of Two Color Morphs of the Common Coral Trout (Plectropomus Leopardus)

    PubMed Central

    Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining

    2015-01-01

    The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species. PMID:26713756

  4. Territory Quality and Plumage Morph Predict Offspring Sex Ratio Variation in a Raptor

    PubMed Central

    Chakarov, Nayden; Pauli, Martina; Mueller, Anna-Katharina; Potiek, Astrid; Grünkorn, Thomas; Dijkstra, Cor; Krüger, Oliver

    2015-01-01

    Parents may adapt their offspring sex ratio in response to their own phenotype and environmental conditions. The most significant causes for adaptive sex-ratio variation might express themselves as different distributions of fitness components between sexes along a given variable. Several causes for differential sex allocation in raptors with reversed sexual size dimorphism have been suggested. We search for correlates of fledgling sex in an extensive dataset on common buzzards Buteo buteo, a long-lived bird of prey. Larger female offspring could be more resource-demanding and starvation-prone and thus the costly sex. Prominent factors such as brood size and laying date did not predict nestling sex. Nonetheless, lifetime sex ratio (LSR, potentially indicative of individual sex allocation constraints) and overall nestling sex were explained by territory quality with more females being produced in better territories. Additionally, parental plumage morphs and the interaction of morph and prey abundance tended to explain LSR and nestling sex, indicating local adaptation of sex allocation However, in a limited census of nestling mortality, not females but males tended to die more frequently in prey-rich years. Also, although females could have potentially longer reproductive careers, a subset of our data encompassing full individual life histories showed that longevity and lifetime reproductive success were similarly distributed between the sexes. Thus, a basis for adaptive sex allocation in this population remains elusive. Overall, in common buzzards most major determinants of reproductive success appeared to have no effect on sex ratio but sex allocation may be adapted to local conditions in morph-specific patterns. PMID:26445010

  5. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape

    PubMed Central

    Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri

    2013-01-01

    Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198

  6. Induction of diapause and seasonal morphs in butterflies and other insects: knowns, unknowns and the challenge of integration

    PubMed Central

    Nylin, Sören

    2013-01-01

    The ‘choice’ of whether to enter diapause or to develop directly has profound effects on the life histories of insects, and may thus have cascading consequences such as seasonal morphs and other less obvious forms of seasonal plasticity. Present knowledge of the control of diapause and seasonal morphs at the physiological and molecular levels is briefly reviewed. Examples, mainly derived from personal research (primarily on butterflies), are given as a starting point with the aim of outlining areas of research that are still poorly understood. These include: the role of the direction of change in photoperiod; the role of factors such as temperature and diet in modifying the photoperiodic responses; and the role of sex, parental effects and sex linkage on photoperiodic control. More generally, there is still a limited understanding of how external cues and physiological pathways regulating various traits are interconnected via gene action to form a co-adapted complete phenotype that is adaptive in the wild despite environmental fluctuation and change. PMID:23894219

  7. Differential expression of genes in the alate and apterous morphs of the brown citrus aphid, Toxoptera citricida

    PubMed Central

    Shang, Feng; Ding, Bi-Yue; Xiong, Ying; Dou, Wei; Wei, Dong; Jiang, Hong-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2016-01-01

    Winged and wingless morphs in insects represent a trade-off between dispersal ability and reproduction. We studied key genes associated with apterous and alate morphs in Toxoptera citricida (Kirkaldy) using RNAseq, digital gene expression (DGE) profiling, and RNA interference. The de novo assembly of the transcriptome was obtained through Illumina short-read sequencing technology. A total of 44,199 unigenes were generated and 27,640 were annotated. The transcriptomic differences between alate and apterous adults indicated that 279 unigenes were highly expressed in alate adults, whereas 5,470 were expressed at low levels. Expression patterns of the top 10 highly expressed genes in alate adults agreed with wing bud development trends. Silencing of the lipid synthesis and degradation gene (3-ketoacyl-CoA thiolase, mitochondrial-like) and glycogen genes (Phosphoenolpyruvate carboxykinase [GTP]-like and Glycogen phosphorylase-like isoform 2) resulted in underdeveloped wings. This suggests that both lipid and glycogen metabolism provide energy for aphid wing development. The large number of sequences and expression data produced from the transcriptome and DGE sequencing, respectively, increases our understanding of wing development mechanisms. PMID:27577531

  8. Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Mabe, James H.; Butler, George W.

    2006-03-01

    Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on the trailing edge of a jet engine in order to optimize acoustic and performance objectives at multiple flight conditions. We have demonstrated a technical readiness level of 7 by successfully flight testing the VGCs on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. Autonomous operation of the VGCs, which did not require a control system or aircraft power, was demonstrated. A parametric study was conducted showing the influence of VGC configurations on shockcell generated cabin noise reduction during cruise. The VGC system provided a robust test vehicle to explore chevron configurations for community and shockcell noise reduction. Most importantly, the VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions.

  9. A Chinese Character Teaching System Using Structure Theory and Morphing Technology

    PubMed Central

    Sun, Linjia; Liu, Min; Hu, Jiajia; Liang, Xiaohui

    2014-01-01

    This paper proposes a Chinese character teaching system by using the Chinese character structure theory and the 2D contour morphing technology. This system, including the offline phase and the online phase, automatically generates animation for the same Chinese character from different writing stages to intuitively show the evolution of shape and topology in the process of Chinese characters teaching. The offline phase builds the component models database for the same script and the components correspondence database for different scripts. Given two or several different scripts of the same Chinese character, the online phase firstly divides the Chinese characters into components by using the process of Chinese character parsing, and then generates the evolution animation by using the process of Chinese character morphing. Finally, two writing stages of Chinese characters, i.e., seal script and clerical script, are used in experiment to show the ability of the system. The result of the user experience study shows that the system can successfully guide students to improve the learning of Chinese characters. And the users agree that the system is interesting and can motivate them to learn. PMID:24978171

  10. Fish and robot dancing together: bluefin killifish females respond differently to the courtship of a robot with varying color morphs.

    PubMed

    Phamduy, P; Polverino, G; Fuller, R C; Porfiri, M

    2014-09-01

    The experimental integration of bioinspired robots in groups of social animals has become a valuable tool to understand the basis of social behavior and uncover the fundamental determinants of animal communication. In this study, we measured the preference of fertile female bluefin killifish (Lucania goodei) for robotic replicas whose aspect ratio, body size, motion pattern, and color morph were inspired by adult male killifish. The motion of the fish replica was controlled via a robotic platform, which simulated the typical courtship behavior observed in killifish males. The positional preferences of females were measured for three different color morphs (red, yellow, and blue). While variation in preference was high among females, females tend to spend more time in the vicinity of the yellow painted robot replicas. This preference may have emerged because the yellow robot replicas were very bright, particularly in the longer wavelengths (550–700 nm) compared to the red and blue replicas. These findings are in agreement with previous observations in mosquitofish and zebrafish on fish preference for artificially enhanced yellow pigmentation.

  11. Usefulness of image morphing techniques in cancer treatment by conformal radiotherapy

    NASA Astrophysics Data System (ADS)

    Atoui, Hussein; Sarrut, David; Miguet, Serge

    2004-05-01

    Conformal radiotherapy is a cancer treatment technique, that targets high-energy X-rays to tumors with minimal exposure to surrounding healthy tissues. Irradiation ballistics is calculated based on an initial 3D Computerized Tomography (CT) scan. At every treatment session, the random positioning of the patient, compared to the reference position defined by the initial 3D CT scan, can generate treatment inaccuracies. Positioning errors potentially predispose to dangerous exposure to healthy tissues as well as insufficient irradiation to the tumor. A proposed solution would be the use of portal images generated by Electronic Portal Imaging Devices (EPID). Portal images (PI) allow a comparison with reference images retained by physicians, namely Digitally Reconstructed Radiographs (DRRs). At present, physicians must estimate patient positional errors by visual inspection. However, this may be inaccurate and consumes time. The automation of this task has been the subject of many researches. Unfortunately, the intensive use of DRRs and the high computing time required have prevented real time implementation. We are currently investigating a new method for DRR generation that calculates intermediate DRRs by 2D deformation of previously computed DRRs. We approach this investigation with the use of a morphing-based technique named mesh warping.

  12. Emotion recognition and oxytocin in patients with schizophrenia

    PubMed Central

    Averbeck, B. B.; Bobin, T.; Evans, S.; Shergill, S. S.

    2012-01-01

    Background Studies have suggested that patients with schizophrenia are impaired at recognizing emotions. Recently, it has been shown that the neuropeptide oxytocin can have beneficial effects on social behaviors. Method To examine emotion recognition deficits in patients and see whether oxytocin could improve these deficits, we carried out two experiments. In the first experiment we recruited 30 patients with schizophrenia and 29 age- and IQ-matched control subjects, and gave them an emotion recognition task. Following this, we carried out a second experiment in which we recruited 21 patients with schizophrenia for a double-blind, placebo-controlled cross-over study of the effects of oxytocin on the same emotion recognition task. Results In the first experiment we found that patients with schizophrenia had a deficit relative to controls in recognizing emotions. In the second experiment we found that administration of oxytocin improved the ability of patients to recognize emotions. The improvement was consistent and occurred for most emotions, and was present whether patients were identifying morphed or non-morphed faces. Conclusions These data add to a growing literature showing beneficial effects of oxytocin on social–behavioral tasks, as well as clinical symptoms. PMID:21835090

  13. Species collapse via hybridization in Darwin's tree finches.

    PubMed

    Kleindorfer, Sonia; O'Connor, Jody A; Dudaniec, Rachael Y; Myers, Steven A; Robertson, Jeremy; Sulloway, Frank J

    2014-03-01

    Species hybridization can lead to fitness costs, species collapse, and novel evolutionary trajectories in changing environments. Hybridization is predicted to be more common when environmental conditions change rapidly. Here, we test patterns of hybridization in three sympatric tree finch species (small tree finch Camarhynchus parvulus, medium tree finch Camarhynchus pauper, and large tree finch: Camarhynchus psittacula) that are currently recognized on Floreana Island, Galápagos Archipelago. Genetic analysis of microsatellite data from contemporary samples showed two genetic populations and one hybrid cluster in both 2005 and 2010; hybrid individuals were derived from genetic population 1 (small morph) and genetic population 2 (large morph). Females of the large and rare species were more likely to pair with males of the small common species. Finch populations differed in morphology in 1852-1906 compared with 2005/2010. An unsupervised clustering method showed (a) support for three morphological clusters in the historical tree finch sample (1852-1906), which is consistent with current species recognition; (b) support for two or three morphological clusters in 2005 with some (19%) hybridization; and (c) support for just two morphological clusters in 2010 with frequent (41%) hybridization. We discuss these findings in relation to species demarcations of Camarhynchus tree finches on Floreana Island.

  14. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  15. Scaling a Human Body Finite Element Model with Radial Basis Function Interpolation

    DTIC Science & Technology

    Human body models are currently used to evaluate the body’s response to a variety of threats to the Soldier. The ability to adjust the size of human...body models is currently limited because of the complex shape changes that are required. Here, a radial basis function interpolation method is used to...morph the shape on an existing finite element mesh. Tools are developed and integrated into the Blender computer graphics software to assist with

  16. Violent media consumption and the recognition of dynamic facial expressions.

    PubMed

    Kirsh, Steven J; Mounts, Jeffrey R W; Olczak, Paul V

    2006-05-01

    This study assessed the speed of recognition of facial emotional expressions (happy and angry) as a function of violent media consumption. Color photos of calm facial expressions morphed to either an angry or a happy facial expression. Participants were asked to make a speeded identification of the emotion (happiness or anger) during the morph. Results indicated that, independent of trait aggressiveness, participants high in violent media consumption responded slower to depictions of happiness and faster to depictions of anger than participants low in violent media consumption. Implications of these findings are discussed with respect to current models of aggressive behavior.

  17. Innovative Materials for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  18. Migration and habitat preferences of Swainson's Hawks at an autumn stopover site in northwestern Texas

    USGS Publications Warehouse

    Littlefield, Carroll D.; Johnson, Douglas H.

    2013-01-01

    Unlike most raptors, the Swainson's Hawk (Buteo swainsoni) migrates long distances between breeding and wintering ranges, which elevates the importance of stopover sites for foraging. We conducted three years of fall surveys in the Southern High Plains of Texas. Migrant Swainson's Hawks moved through the area mostly between July and mid-October, peaking in September. Subadults tended to migrate earlier than adults, and light morphs before dark morphs. Favored foraging habitats included silage corn, green beans, and alfalfa, but the hawks foraged primarily where ongoing agricultural activities disturbed prey and made them more available.

  19. Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications

    NASA Astrophysics Data System (ADS)

    Aguirrebeitia, J.; Avilés, R.; Fernández, I.; Abasolo, M.

    2013-03-01

    This paper presents the kinematical features of an inversion of the double linked fourbar for morphing wing purposes. The structure of the mechanism is obtained using structural synthesis concepts, from an initial conceptual schematic. Then, kinematic characteristics as instant center of rotation, lock positions, dead point positions and uncertainty positions are derived for this mechanism in order to face the last step, the dimensional synthesis; in this sense, two kinds of dimensional synthesis are arranged to guide the wing along two positions, and to fulfill with the second one some aerodynamic and minimum actuation energy related issues.

  20. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  1. Web-based document image processing

    NASA Astrophysics Data System (ADS)

    Walker, Frank L.; Thoma, George R.

    1999-12-01

    Increasing numbers of research libraries are turning to the Internet for electron interlibrary loan and for document delivery to patrons. This has been made possible through the widespread adoption of software such as Ariel and DocView. Ariel, a product of the Research Libraries Group, converts paper-based documents to monochrome bitmapped images, and delivers them over the Internet. The National Library of Medicine's DocView is primarily designed for library patrons are beginning to reap the benefits of this new technology, barriers exist, e.g., differences in image file format, that lead to difficulties in the use of library document information. To research how to overcome such barriers, the Communications Engineering Branch of the Lister Hill National Center for Biomedical Communications, an R and D division of NLM, has developed a web site called the DocMorph Server. This is part of an ongoing intramural R and D program in document imaging that has spanned many aspects of electronic document conversion and preservation, Internet document transmission and document usage. The DocMorph Server Web site is designed to fill two roles. First, in a role that will benefit both libraries and their patrons, it allows Internet users to upload scanned image files for conversion to alternative formats, thereby enabling wider delivery and easier usage of library document information. Second, the DocMorph Server provides the design team an active test bed for evaluating the effectiveness and utility of new document image processing algorithms and functions, so that they may be evaluated for possible inclusion in other image processing software products being developed at NLM or elsewhere. This paper describes the design of the prototype DocMorph Server and the image processing functions being implemented on it.

  2. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Genes located in a chromosomal inversion are correlated with territorial song in white-throated sparrows

    PubMed Central

    Zinzow-Kramer, Wendy M.; Horton, Brent M.; McKee, Clifton D.; Michaud, Justin M.; Tharp, Gregory K.; Thomas, James W.; Tuttle, Elaina M.; Yi, Soojin; Maney, Donna L.

    2016-01-01

    The genome of the white-throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression, and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2m), are therefore of potential interest toward understanding the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified both behavior and brain gene expression in a population of free-living white-throated sparrows. We quantified behavioral responses to simulated territorial intrusions (STIs) early during the breeding season. In the same birds, we then performed a transcriptome-wide analysis of gene expression in two regions, the medial amygdala and hypothalamus. Both regions are part of a ‘social behavior network’, which is rich in steroid hormone receptors and previously linked with territorial behavior. Using network analyses, we identified modules of genes that were correlated with both morph and STI-induced singing behavior. The majority of these genes were located within the inversion, demonstrating the profound effect the inversion has on the expression of genes captured by the rearrangement. Gene pathway analyses revealed that in the medial amygdala, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor alpha). Our results thus suggest that ESR1 and related genes are important for behavioral differences between the morphs. PMID:26463687

  4. Physiological differences between female limited, alternative life history strategies: The Alba phenotype in the butterfly Colias croceus.

    PubMed

    Woronik, Alyssa; Stefanescu, Constanti; Käkelä, Reijo; Wheat, Christopher W; Lehmann, Philipp

    Across a wide range of taxa, individuals within populations exhibit alternative life history strategies (ALHS) where their phenotypes dramatically differ due to divergent investments in growth, reproduction and survivorship, with the resulting trade-offs directly impacting Darwinian fitness. Though the maintenance of ALHS within populations is fairly well understood, little is known regarding the physiological mechanisms that underlie ALHS and how environmental conditions can affect the evolution and expression of these phenotypes. One such ALHS, known as Alba, exists within females of many species in the butterfly genus Colias. Previous works in New World species not only found that female morphs differ in their wing color due to a reallocation of resources away from the synthesis of wing pigments to other areas of development, but also that temperature played an important role in these trade-offs. Here we build on previous work conducted in New World species by measuring life history traits and conducting lipidomics on individuals reared at hot and cold temperatures in the Old World species Colias croceus. Results suggest that the fitness of Alba and orange morphs likely varies with rearing temperature, where Alba females have higher fitness in cold conditions and orange in warm. Additionally shared traits between Old and New World species suggest the Alba mechanism is likely conserved across the genus. Finally, in the cold treatment we observe an intermediate yellow morph that may have decreased fitness due to slower larval development. This cost may manifest as disruptive selection in the field, thereby favoring the maintenance of the two discrete morphs. Taken together these results add insights into the evolution of, and the selection on, the Alba ALHS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua.

    PubMed

    Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel

    2013-02-01

    The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

  6. The ugliness-in-averageness effect: Tempering the warm glow of familiarity.

    PubMed

    Carr, Evan W; Huber, David E; Pecher, Diane; Zeelenberg, Rene; Halberstadt, Jamin; Winkielman, Piotr

    2017-06-01

    Mere exposure (i.e., stimulus repetition) and blending (i.e., stimulus averaging) are classic ways to increase social preferences, including facial attractiveness. In both effects, increases in preference involve enhanced familiarity. Prominent memory theories assume that familiarity depends on a match between the target and similar items in memory. These theories predict that when individual items are weakly learned, their blends (morphs) should be relatively familiar, and thus liked-a beauty-in-averageness effect ( BiA ). However, when individual items are strongly learned, they are also more distinguishable. This "differentiation" hypothesis predicts that with strongly encoded items, familiarity (and thus, preference) for the blend will be relatively lower than individual items-an ugliness-in-averageness effect ( UiA ). We tested this novel theoretical prediction in 5 experiments. Experiment 1 showed that with weak learning, facial morphs were more attractive than contributing individuals (BiA effect). Experiments 2A and 2B demonstrated that when participants first strongly learned a subset of individual faces (either in a face-name memory task or perceptual-tracking task), morphs of trained individuals were less attractive than the trained individuals (UiA effect). Experiment 3 showed that changes in familiarity for the trained morph (rather than interstimulus conflict) drove the UiA effect. Using a within-subjects design, Experiment 4 mapped out the transition from BiA to UiA solely as a function of memory training. Finally, computational modeling using a well-known memory framework (REM) illustrated the familiarity transition observed in Experiment 4. Overall, these results highlight how memory processes illuminate classic and modern social preference phenomena. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig

    2014-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.

  8. Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus.

    PubMed

    Lin, Susan M; Nieves-Puigdoller, Katherine; Brown, Alexandria C; McGraw, Kevin J; Clotfelter, Ethan D

    2010-01-01

    Many animals use carotenoid pigments derived from their diet for coloration and immunity. The carotenoid trade-off hypothesis predicts that, under conditions of carotenoid scarcity, individuals may be forced to allocate limited carotenoids to either coloration or immunity. In polychromatic species, the pattern of allocation may differ among individuals. We tested the carotenoid trade-off hypothesis in the Midas cichlid, Amphilophus citrinellus, a species with two ontogenetic color morphs, barred and gold, the latter of which is the result of carotenoid expression. We performed a diet-supplementation experiment in which cichlids of both color morphs were assigned to one of two diet treatments that differed only in carotenoid content (beta-carotene, lutein, and zeaxanthin). We measured integument color using spectrometry, quantified carotenoid concentrations in tissue and plasma, and assessed innate immunity using lysozyme activity and alternative complement pathway assays. In both color morphs, dietary carotenoid supplementation elevated plasma carotenoid circulation but failed to affect skin coloration. Consistent with observable differences in integument coloration, we found that gold fish sequestered more carotenoids in skin tissue than barred fish, but barred fish had higher concentrations of carotenoids in plasma than gold fish. Neither measure of innate immunity differed between gold and barred fish, or as a function of dietary carotenoid supplementation. Lysozyme activity, but not complement activity, was strongly affected by body condition. Our data show that a diet low in carotenoids is sufficient to maintain both coloration and innate immunity in Midas cichlids. Our data also suggest that the developmental transition from the barred to gold morph is not accompanied by a decrease in innate immunity in this species.

  9. Decrease of sexual organ reciprocity between heterostylous primrose species, with possible functional and evolutionary implications

    PubMed Central

    Keller, Barbara; de Vos, Jurriaan M.; Conti, Elena

    2012-01-01

    Background and Aims Heterostyly is a floral polymorphism that has fascinated evolutionary biologists since Darwin's seminal studies on primroses. The main morphological characteristic of heterostyly is the reciprocal placement of anthers and stigmas in two distinct (distyly) floral morphs. Variation in the degree of intermorph sexual reciprocity is relatively common and known to affect patterns of pollen transfer within species. However, the partitioning of sexual organ reciprocity within and between closely related species remains unknown. This study aimed at testing whether intermorph sexual reciprocity differs within vs. between primrose species that hybridize in nature and whether the positions of sexual organs are correlated with other floral traits. Methods Six floral traits were measured in both floral morphs of 15 allopatric populations of Primula elatior, P. veris and P. vulgaris, and anther–stigma reciprocity was estimated within and between species. A combination of univariate and multivariate approaches was used to test whether positions of reproductive organs were less reciprocal between than within species, to assess correlations between sexual organ positions and other corolla traits, and to quantify differences between morphs and species. Key Results The three species were morphologically well differentiated in most floral traits, except that P. veris and P. vulgaris did not differ significantly in sexual organ positions. Overall, lower interspecific than intraspecific sexual organ reciprocity was detected. This decrease was marked between P. elatior and P. vulgaris, intermediate and variable between P. elatior and P. veris, but negligible between P. veris and P. vulgaris. Conclusions Differences in anther and stigma heights between the analysed primrose species were of the same magnitude or larger than intraspecific differences that altered pollen flow within other heterostylous systems. Therefore, it is possible to suggest that considerable reductions of sexual organ reciprocity between species may lower interspecific pollen flow, with potential effects on reproductive isolation. PMID:23002269

  10. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens

    PubMed Central

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-01-01

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November–December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896–1035 mg/100 g), potassium (779–816 mg/100 g) and phosphorus (652–685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217–220 mg/100 g), zinc (14.2–14.6 mg/100 g), manganese (7.4–8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes. PMID:28926949

  11. An investigation of human body model morphing for the assessment of abdomen responses to impact against a population of test subjects.

    PubMed

    Beillas, Philippe; Berthet, Fabien

    2017-05-29

    Human body models have the potential to better describe the human anatomy and variability than dummies. However, data sets available to verify the human response to impact are typically limited in numbers, and they are not size or gender specific. The objective of this study was to investigate the use of model morphing methodologies within that context. In this study, a simple human model scaling methodology was developed to morph two detailed human models (Global Human Body Model Consortium models 50th male, M50, and 5th female, F05) to the dimensions of post mortem human surrogates (PMHS) used in published literature. The methodology was then successfully applied to 52 PMHS tested in 14 impact conditions loading the abdomen. The corresponding 104 simulations were compared to the responses of the PMHS and to the responses of the baseline models without scaling (28 simulations). The responses were analysed using the CORA method and peak values. The results suggest that model scaling leads to an improvement of the predicted force and deflection but has more marginal effects on the predicted abdominal compressions. M50 and F05 models scaled to the same PMHS were also found to have similar external responses, but large differences were found between the two sets of models for the strain energy densities in the liver and the spleen for mid-abdomen impact simulations. These differences, which were attributed to the anatomical differences in the abdomen of the baseline models, highlight the importance of the selection of the impact condition for simulation studies, especially if the organ location is not known in the test. While the methodology could be further improved, it shows the feasibility of using model scaling methodologies to compare human models of different sizes and to evaluate scaling approaches within the context of human model validation.

  12. Phylogenetic Reconstruction of the Calosphaeriales and Togniniales Using Five Genes and Predicted RNA Secondary Structures of ITS, and Flabellascus tenuirostris gen. et sp. nov.

    PubMed Central

    Réblová, Martina; Jaklitsch, Walter M.; Réblová, Kamila; Štěpánek, Václav

    2015-01-01

    The Calosphaeriales is revisited with new collection data, living cultures, morphological studies of ascoma centrum, secondary structures of the internal transcribed spacer (ITS) rDNA and phylogeny based on novel DNA sequences of five nuclear ribosomal and protein-coding loci. Morphological features, molecular evidence and information from predicted RNA secondary structures of ITS converged upon robust phylogenies of the Calosphaeriales and Togniniales. The current concept of the Calosphaeriales includes the Calosphaeriaceae and Pleurostomataceae encompassing five monophyletic genera, Calosphaeria, Flabellascus gen. nov., Jattaea, Pleurostoma and Togniniella, strongly supported by Bayesian and Maximum Likelihood methods. The structural elements of ITS1 form characteristic patterns that are phylogenetically conserved, corroborate observations based on morphology and have a high predictive value at the generic level. Three major clades containing 44 species of Phaeoacremonium were recovered in the closely related Togniniales based on ITS, actin and β-tubulin sequences. They are newly characterized by sexual and RNA structural characters and ecology. This approach is a first step towards understanding of the molecular systematics of Phaeoacremonium and possibly its new classification. In the Calosphaeriales, Jattaea aphanospora sp. nov. and J. ribicola sp. nov. are introduced, Calosphaeria taediosa is combined in Jattaea and epitypified. The sexual morph of Phaeoacremonium cinereum was encountered for the first time on decaying wood and obtained in vitro. In order to achieve a single nomenclature, the genera of asexual morphs linked with the Calosphaeriales are transferred to synonymy of their sexual morphs following the principle of priority, i.e. Calosphaeriophora to Calosphaeria, Phaeocrella to Togniniella and Pleurostomophora to Pleurostoma. Three new combinations are proposed, i.e. Pleurostoma ochraceum comb. nov., P. repens comb. nov. and P. richardsiae comb. nov. The morphology-based key is provided to facilitate identification of genera accepted in the Calosphaeriales. PMID:26699541

  13. Contour-based image warping

    NASA Astrophysics Data System (ADS)

    Chan, Kwai H.; Lau, Rynson W.

    1996-09-01

    Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.

  14. Quantifying facial expression signal and intensity use during development.

    PubMed

    Rodger, Helen; Lao, Junpeng; Caldara, Roberto

    2018-06-12

    Behavioral studies investigating facial expression recognition during development have applied various methods to establish by which age emotional expressions can be recognized. Most commonly, these methods employ static images of expressions at their highest intensity (apex) or morphed expressions of different intensities, but they have not previously been compared. Our aim was to (a) quantify the intensity and signal use for recognition of six emotional expressions from early childhood to adulthood and (b) compare both measures and assess their functional relationship to better understand the use of different measures across development. Using a psychophysical approach, we isolated the quantity of signal necessary to recognize an emotional expression at full intensity and the quantity of expression intensity (using neutral expression image morphs of varying intensities) necessary for each observer to recognize the six basic emotions while maintaining performance at 75%. Both measures revealed that fear and happiness were the most difficult and easiest expressions to recognize across age groups, respectively, a pattern already stable during early childhood. The quantity of signal and intensity needed to recognize sad, angry, disgust, and surprise expressions decreased with age. Using a Bayesian update procedure, we then reconstructed the response profiles for both measures. This analysis revealed that intensity and signal processing are similar only during adulthood and, therefore, cannot be straightforwardly compared during development. Altogether, our findings offer novel methodological and theoretical insights and tools for the investigation of the developing affective system. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  16. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  17. Experimental Characterization of a Composite Morphing Radiator Prototype in a Relevant Thermal Environment

    NASA Technical Reports Server (NTRS)

    Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.

    2017-01-01

    For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.

  18. The potential for floral mimicry in rewardless orchids: an experimental study.

    PubMed Central

    Gigord, Luc D B; Macnair, M R; Stritesky, M; Smithson, Ann

    2002-01-01

    More than one-third of orchid species do not provide their pollinators with either pollen or nectar rewards. Floral mimicry could explain the maintenance of these rewardless orchid species, but most rewardless orchids do not appear to have a rewarding plant that they mimic specifically. We tested the hypothesis that floral mimicry can occur through similarity based on corolla colour alone, using naive bumble-bees foraging on arrays of plants with one rewarding model species, and one rewardless putative mimic species (Dactylorhiza sambucina) which had two colour morphs. We found that when bees were inexperienced, they visited both rewardless morphs randomly. However, after bees had gained experience with the rewarding model, and it was removed from the experiment, bees resampled preferentially the rewardless morph most similar to it in corolla colour. This is the first clear evidence, to our knowledge, that pollinators could select for floral mimicry. We suggest that floral mimicry can be a selective force acting on rewardless orchids, but only under some ecological conditions. In particular, we argue that selection on early-flowering rewardless orchids that receive visits from a large pool of naive pollinators will be weakly influenced by mimicry. PMID:12079663

  19. Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus

    NASA Astrophysics Data System (ADS)

    Gorički, Špela; Stanković, David; Snoj, Aleš; Kuntner, Matjaž; Jeffery, William R.; Trontelj, Peter; Pavićević, Miloš; Grizelj, Zlatko; Năpăruş-Aljančič, Magdalena; Aljančič, Gregor

    2017-03-01

    Europe’s obligate cave-dwelling amphibian Proteus anguinus inhabits subterranean waters of the north-western Balkan Peninsula. Because only fragments of its habitat are accessible to humans, this endangered salamander’s exact distribution has been difficult to establish. Here we introduce a quantitative real time polymerase chain reaction-based environmental DNA (eDNA) approach to detect the presence of Proteus using water samples collected from karst springs, wells or caves. In a survey conducted along the southern limit of its known range, we established a likely presence of Proteus at seven new sites, extending its range to Montenegro. Next, using specific molecular probes to discriminate the rare black morph of Proteus from the closely related white morph, we detected its eDNA at five new sites, thus more than doubling the known number of sites. In one of these we found both black and white Proteus eDNA together. This finding suggests that the two morphs may live in contact with each other in the same body of groundwater and that they may be reproductively isolated species. Our results show that the eDNA approach is suitable and efficient in addressing questions in biogeography, evolution, taxonomy and conservation of the cryptic subterranean fauna.

  20. Aeroelastic performance evaluation of a flexure box morphing airfoil concept

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Inman, Daniel J.

    2014-04-01

    The flexure-box morphing aileron concept utilizes Macro-Fiber Composites (MFCs) and a compliant box to create a conformal morphing aileron. This work evaluates the impact of the number of MFCs on the performance, power and mass of the aileron by experimentally investigating two different actuator configurations: unimorph and bimorph. Implemented in a NACA 0012 airfoil with 304.8 mm chord, the unimorph and bimorph configurations are experimentally tested over a range of flow speeds from 5 to 20 m/s and angles of attack from -20 to 20 degrees under aerodynamic loads in a wind tunnel. An embedded flexible sensor is installed in the aileron to evaluate the effect of aerodynamic loading on tip position. For both design choices, the effect of actuation on lift, drag and pitching moment coefficients are measured. Finally, the impact on aileron mass and average power consumption due to the added MFCs is considered. The results showed the unimorph exhibiting superior ability to influence flow up to 15 m/s, with equivalent power consumption and lower overall mass. At 20 m/s, the bimorph exhibited superior control over aerodynamic forces and the unimorph experienced significant deformation due to aerodynamic loading.

  1. Static Structural Analysis of a Variable Span Morphing Wing for Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Rajendran, P.

    2018-05-01

    While the primary reason to develop an adaptive wing is the aerodynamic benefits, the primary hindrance is the structural and vibrational considerations due to the unsteady nature of the airflow during the flight. Hence this study forms an important part of the morphable wing technology. In this paper, the design of a moderate aspect ratio variable span wing will be performed. The morphing wing is modeled structurally to observe the effect of spanwise load distribution on the wing structure. For the structural design and analysis of the unmanned aerial vehicle (UAV) under this study, commercial software Solidworks and Ansys/Static Structural/Modal are used. The static structural analyses of the wing are performed under different load conditions. The results of these analyses show that the designed structure is safe within the flight envelope. It is observed that the wing-root bending moment increases drastically due to an increase in the wingspan. Thus, the bending moment along the wingspan of the morphing wing is much larger than that of the conventional wing which results in an increase in the deflection of the free-end. The maximum stress for the un-extended wing configuration increases for the extended wing configuration.

  2. Localization and seasonal variation of blue pigment (sandercyanin) in walleye (Sander vitreus)

    USGS Publications Warehouse

    Schaefer, Wayne; Schmitz, Mark; Blazer, Vicki S.; Ehlinger, Tim; Berges, John

    2015-01-01

    Several fish species, including the walleye (Sander vitreus), have “yellow” and “blue” color morphs. In S. vitreus, one source of the blue color has been identified as a bili-binding protein pigment (sandercyanin), found in surface mucus of the fish. Little is known about the production of the pigment or about its functions. We examined the anatomical localization and seasonal variation of sandercyanin in S. vitreus from a population in McKim Lake, northwestern Ontario, Canada. Skin sections were collected from 20 fish and examined histologically. Mucus was collected from 306 fish over 6 years, and the amount of sandercyanin was quantified spectrophotometrically. Sandercyanin was found solely on dorsal surfaces of the fish and was localized to novel cells in the epidermis, similar in appearance to secretory sacciform cells. Sandercyanin concentrations were significantly higher in fish collected in summer versus other seasons. Yellow and blue morphs did not differ in amounts of sandercyanin, suggesting that the observed blue color, in fact, arises from lack of yellow pigmentation in blue morphs. The function of the sandercyanin remains unclear, but roles in photoprotection and countershading are consistent with available data.

  3. The potential for floral mimicry in rewardless orchids: an experimental study.

    PubMed

    Gigord, Luc D B; Macnair, M R; Stritesky, M; Smithson, Ann

    2002-07-07

    More than one-third of orchid species do not provide their pollinators with either pollen or nectar rewards. Floral mimicry could explain the maintenance of these rewardless orchid species, but most rewardless orchids do not appear to have a rewarding plant that they mimic specifically. We tested the hypothesis that floral mimicry can occur through similarity based on corolla colour alone, using naive bumble-bees foraging on arrays of plants with one rewarding model species, and one rewardless putative mimic species (Dactylorhiza sambucina) which had two colour morphs. We found that when bees were inexperienced, they visited both rewardless morphs randomly. However, after bees had gained experience with the rewarding model, and it was removed from the experiment, bees resampled preferentially the rewardless morph most similar to it in corolla colour. This is the first clear evidence, to our knowledge, that pollinators could select for floral mimicry. We suggest that floral mimicry can be a selective force acting on rewardless orchids, but only under some ecological conditions. In particular, we argue that selection on early-flowering rewardless orchids that receive visits from a large pool of naive pollinators will be weakly influenced by mimicry.

  4. Development of Collaborative Research Initiatives to Advance the Aerospace Sciences-via the Communications, Electronics, Information Systems Focus Group

    NASA Technical Reports Server (NTRS)

    Knasel, T. Michael

    1996-01-01

    The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.

  5. Experimental Investigation of a Morphing Nacelle Ducted Fan

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne A.; Moore, Mark

    2005-01-01

    The application of Circulation Control to the nacelle of a shrouded fan is proposed as a means to enhance off-design performance of the shrouded fan. Typically, a fixed geometry shroud is efficient at a single operating condition. Modifying circulation about the fixed geometry is proposed as a means to virtually morph the shroud without moving surfaces. This approach will enhance off-design-point performance with minimal complexity, weight, and cost. Termed the Morphing Nacelle, this concept provides an attractive propulsion option for Vertical Take-off and Landing (VTOL) aircraft, such conceptual Personal Air Vehicle (PAV) configurations proposed by NASA. An experimental proof of concept investigation of the Morphing Nacelle is detailed in this paper. A powered model shrouded fan model was constructed with Circulation Control (CC) devices integrated in the inlet and exit of the nacelle. Both CC devices consisted of an annular jet slot directing a jet sheet tangent to a curved surface, generally described as a Coanda surface. The model shroud was tailored for axial flight, with a diffusing inlet, but was operated off-design condition as a static lifting fan. Thrust stand experiments were conducted to determine if the CC devices could effectively improve off-design performance of the shrouded fan. Additional tests were conducted to explore the effectiveness of the CC devices a means to reduce peak static pressure on the ground below a lifting fan. Experimental results showed that off-design static thrust performance of the model was improved when the CC devices were employed under certain conditions. The exhaust CC device alone, while effective in diffusing the fan exhaust and improving weight flow into shroud inlet, tended to diminish performance of the fan with increased CC jet momentum. The inlet CC device was effective at reattaching a normally stalled inlet flow condition, proving an effective means of enhancing performance. A more dramatic improvement in static thrust was obtained when the inlet and exit CC devices were operated in unison, but only over a limited range of CC jet momentum. Operating the nacelle inlet and exit CC devices together proved very effective in reducing peak ground plane static pressure, while maintaining static thrust. The Morphing Nacelle concept proved effective at enhancing off-design performance of the model; however, additional investigation is necessary to generalize the results.

  6. Idiosyncratic Patterns of Representational Similarity in Prefrontal Cortex Predict Attentional Performance.

    PubMed

    Lee, Jeongmi; Geng, Joy J

    2017-02-01

    The efficiency of finding an object in a crowded environment depends largely on the similarity of nontargets to the search target. Models of attention theorize that the similarity is determined by representations stored within an "attentional template" held in working memory. However, the degree to which the contents of the attentional template are individually unique and where those idiosyncratic representations are encoded in the brain are unknown. We investigated this problem using representational similarity analysis of human fMRI data to measure the common and idiosyncratic representations of famous face morphs during an identity categorization task; data from the categorization task were then used to predict performance on a separate identity search task. We hypothesized that the idiosyncratic categorical representations of the continuous face morphs would predict their distractability when searching for each target identity. The results identified that patterns of activation in the lateral prefrontal cortex (LPFC) as well as in face-selective areas in the ventral temporal cortex were highly correlated with the patterns of behavioral categorization of face morphs and search performance that were common across subjects. However, the individually unique components of the categorization behavior were reliably decoded only in right LPFC. Moreover, the neural pattern in right LPFC successfully predicted idiosyncratic variability in search performance, such that reaction times were longer when distractors had a higher probability of being categorized as the target identity. These results suggest that the prefrontal cortex encodes individually unique components of categorical representations that are also present in attentional templates for target search. Everyone's perception of the world is uniquely shaped by personal experiences and preferences. Using functional MRI, we show that individual differences in the categorization of face morphs between two identities could be decoded from the prefrontal cortex and the ventral temporal cortex. Moreover, the individually unique representations in prefrontal cortex predicted idiosyncratic variability in attentional performance when looking for each identity in the "crowd" of another morphed face in a separate search task. Our results reveal that the representation of task-related information in prefrontal cortex is individually unique and preserved across categorization and search performance. This demonstrates the possibility of predicting individual behaviors across tasks with patterns of brain activity. Copyright © 2017 the authors 0270-6474/17/371257-12$15.00/0.

  7. Foraging behaviour in Drosophila larvae: mushroom body ablation.

    PubMed

    Osborne, K A; de Belle, J S; Sokolowski, M B

    2001-02-01

    Drosophila larvae and adults exhibit a naturally occurring genetically based behavioural polymorphism in locomotor activity while foraging. Larvae of the rover morph exhibit longer foraging trails than sitters and forage between food patches, while sitters have shorter foraging trails and forage within patches. This behaviour is influenced by levels of cGMP-dependent protein kinase (PGK) encoded by the foraging (for) gene. Rover larvae have higher expression levels and higher PGK activities than do sitters. Here we discuss the importance of the for gene for studies of the mechanistic and evolutionary significance of individual differences in behaviour. We also show how structure-function analysis can be used to investigate a role for mushroom bodies in larval behaviour both in the presence and in the absence of food. Hydroxyurea fed to newly hatched larvae prevents the development of all post-embryonically derived mushroom body (MB) neuropil. This method was used to ablate MBs in rover and sitter genetic variants of foraging to test whether these structures mediate expression of the foraging behavioural polymorphism. We found that locomotor activity levels during foraging of both the rover and sitter larval morphs were not significantly influenced by MB ablation. Alternative hypotheses that may explain how variation in foraging behaviour is generated are discussed.

  8. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  9. Bio inspired Magnet-polymer (Magpol) actuators

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2014-03-01

    Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.

  10. Face adaptation aftereffects reveal anterior medial temporal cortex role in high level category representation.

    PubMed

    Furl, N; van Rijsbergen, N J; Treves, A; Dolan, R J

    2007-08-01

    Previous studies have shown reductions of the functional magnetic resonance imaging (fMRI) signal in response to repetition of specific visual stimuli. We examined how adaptation affects the neural responses associated with categorization behavior, using face adaptation aftereffects. Adaptation to a given facial category biases categorization towards non-adapted facial categories in response to presentation of ambiguous morphs. We explored a hypothesis, posed by recent psychophysical studies, that these adaptation-induced categorizations are mediated by activity in relatively advanced stages within the occipitotemporal visual processing stream. Replicating these studies, we find that adaptation to a facial expression heightens perception of non-adapted expressions. Using comparable behavioral methods, we also show that adaptation to a specific identity heightens perception of a second identity in morph faces. We show both expression and identity effects to be associated with heightened anterior medial temporal lobe activity, specifically when perceiving the non-adapted category. These regions, incorporating bilateral anterior ventral rhinal cortices, perirhinal cortex and left anterior hippocampus are regions previously implicated in high-level visual perception. These categorization effects were not evident in fusiform or occipital gyri, although activity in these regions was reduced to repeated faces. The findings suggest that adaptation-induced perception is mediated by activity in regions downstream to those showing reductions due to stimulus repetition.

  11. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing.

    PubMed

    Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang

    2016-02-01

    Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our method attained a higher prediction accuracy and better captured the spatiotemporal dynamic change of the highly folded cortical surface than the previous proposed prediction method. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Modeling bistable behaviors in morphing structures through finite element simulations.

    PubMed

    Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi

    2014-01-01

    Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.

  13. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

    NASA Astrophysics Data System (ADS)

    Spinello, Davide; Fattahi, Javad S.

    2017-08-01

    We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

  14. Design and analysis of biomimetic joints for morphing of micro air vehicles.

    PubMed

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-12-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  15. An online replanning method using warm start optimization and aperture morphing for flattening-filter-free beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahunbay, Ergun E., E-mail: eahunbay@mcw.edu; Ates,

    Purpose: In a situation where a couch shift for patient positioning is not preferred or prohibited (e.g., MR-linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening-filter-free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here the authors propose a new two-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online step. The offline step is to create a series of preshifted-plans (PSPs) obtained by a so-called “warm start”more » optimization (starting optimization from the original plan, rather than from scratch) at a series of isocenter shifts. The PSPs all have the same number of segments with very similar shapes, since the warm start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by picking the closest PSP or linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated and almost instantaneous (no optimization or dose calculation needed). The previously developed SAM algorithm is then applied for daily deformation. The authors tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. Plan interpolation method is effective in diminishing the unflat beam effect and may allow reducing the required number of PSPs. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusions: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation except the delineation of target contour required by the SAM process.« less

  16. Frequency-dependent and correlational selection pressures have conflicting consequences for assortative mating in a color-polymorphic lizard, Uta stansburiana.

    PubMed

    Lancaster, Lesley T; McAdam, Andrew G; Hipsley, Christy A; Sinervo, Barry R

    2014-08-01

    Genetically determined polymorphisms incorporating multiple traits can persist in nature under chronic, fluctuating, and sometimes conflicting selection pressures. Balancing selection among morphs preserves equilibrium frequencies, while correlational selection maintains favorable trait combinations within each morph. Under negative frequency-dependent selection, females should mate (often disassortatively) with rare male morphotypes to produce conditionally fit offspring. Conversely, under correlational selection, females should mate assortatively to preserve coadapted gene complexes and avoid ontogenetic conflict. Using controlled breeding designs, we evaluated consequences of assortative mating patterns in color-polymorphic side-blotched lizards (Uta stansburiana), to identify conflict between these sources of selection. Females who mated disassortatively, and to conditionally high-quality males in the context of frequency-dependent selection, experienced highest fertility rates. In contrast, assortatively mated females experienced higher fetal viability rates. The trade-off between fertility and egg viability resulted in no overall fitness benefit to either assortative or disassortative mating patterns. These results suggest that ongoing conflict between correlational and frequency dependent selection in polymorphic populations may generate a trade-off between rare-morph advantage and phenotypic integration and between assortative and disassortative mating decisions. More generally, interactions among multiple sources of diversity-promoting selection can alter adaptations and dynamics predicted to arise under any of these regimes alone.

  17. Color polymorphic lures target different visual channels in prey.

    PubMed

    White, Thomas E; Kemp, Darrell J

    2016-06-01

    Selection for signal efficacy in variable environments may favor color polymorphism, but little is known about this possibility outside of sexual systems. Here we used the color polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-banded dorsal signal attracts dipteran prey, to test the hypothesis that morphs may be tuned to optimize either chromatic or achromatic conspicuousness in their visually noisy forest environments. We used data from extensive observations of naturally existing spiders and precise assessments of visual environments to model signal conspicuousness according to dipteran vision. Modeling supported a distinct bias in the chromatic (yellow morph) or achromatic (white morph) contrast presented by spiders at the times when they caught prey, as opposed to all other times at which they may be viewed. Hence, yellow spiders were most successful when their signal produced maximum color contrast against viewing backgrounds, whereas white spiders were most successful when they presented relatively greatest luminance contrast. Further modeling across a hypothetical range of lure variation confirmed that yellow versus white signals should, respectively, enhance chromatic versus achromatic conspicuousness to flies, in G. fornicata's visual environments. These findings suggest that color polymorphism may be adaptively maintained by selection for conspicuousness within different visual channels in receivers. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.

    2016-04-01

    Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.

  19. Comparative genomics of the mimicry switch in Papilio dardanus.

    PubMed

    Timmermans, Martijn J T N; Baxter, Simon W; Clark, Rebecca; Heckel, David G; Vogel, Heiko; Collins, Steve; Papanicolaou, Alexie; Fukova, Iva; Joron, Mathieu; Thompson, Martin J; Jiggins, Chris D; ffrench-Constant, Richard H; Vogler, Alfried P

    2014-07-22

    The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus.

  20. Mapping attractor fields in face space: the atypicality bias in face recognition.

    PubMed

    Tanaka, J; Giles, M; Kremen, S; Simon, V

    1998-09-01

    A familiar face can be recognized across many changes in the stimulus input. In this research, the many-to-one mapping of face stimuli to a single face memory is referred to as a face memory's 'attractor field'. According to the attractor field approach, a face memory will be activated by any stimuli falling within the boundaries of its attractor field. It was predicted that by virtue of its location in a multi-dimensional face space, the attractor field of an atypical face will be larger than the attractor field of a typical face. To test this prediction, subjects make likeness judgments to morphed faces that contained a 50/50 contribution from an atypical and a typical parent face. The main result of four experiments was that the morph face was judged to bear a stronger resemblance to the atypical face parent than the typical face parent. The computational basis of the atypicality bias was demonstrated in a neural network simulation where morph inputs of atypical and typical representations elicited stronger activation of atypical output units than of typical output units. Together, the behavioral and simulation evidence supports the view that the attractor fields of atypical faces span over a broader region of face space that the attractor fields of typical faces.

Top