Science.gov

Sample records for morphology enhances escape

  1. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  2. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics

    PubMed Central

    Lönn, Peter; Kacsinta, Apollo D.; Cui, Xian-Shu; Hamil, Alexander S.; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F.

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  3. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    PubMed

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-09-08

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.

  4. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    PubMed

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-03-22

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  5. Escape paths for biogenic methane gas in lake sediments: morphology and dynamics

    NASA Astrophysics Data System (ADS)

    Scandella, B. P.; Hemond, H.; Ruppel, C. D.; Juanes, R.

    2011-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles grow in saturated pore water and escape more readily as the absolute pressure (due to changes in water level or atmospheric pressure) falls, but neither the morphology of gas flow paths nor the dynamics controlling them have been well-constrained. We present laboratory experiments in which methanogens are incubated in lacustrine sediments and the subsequent gas release is triggered by hydrostatic unloading. Image analysis shows the morphology and persistence of the network of gas release paths, and records of the pressures and stresses help to identify the dynamics that control ebullition from gassy sediments. This work is fundamental to constraining the parameterization of large-scale models of methane venting from submerged, organic-rich sediments.

  6. Edge enhanced morphology for infrared image analysis

    NASA Astrophysics Data System (ADS)

    Bai, Xiangzhi; Liu, Haonan

    2017-01-01

    Edge information is one of the critical information for infrared images. Morphological operators have been widely used for infrared image analysis. However, the edge information in infrared image is weak and the morphological operators could not well utilize the edge information of infrared images. To strengthen the edge information in morphological operators, the edge enhanced morphology is proposed in this paper. Firstly, the edge enhanced dilation and erosion operators are given and analyzed. Secondly, the pseudo operators which are derived from the edge enhanced dilation and erosion operators are defined. Finally, the applications for infrared image analysis are shown to verify the effectiveness of the proposed edge enhanced morphological operators. The proposed edge enhanced morphological operators are useful for the applications related to edge features, which could be extended to wide area of applications.

  7. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    PubMed Central

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  8. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    PubMed Central

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  9. Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape.

    PubMed

    Tu, Jing; Wang, Tianxiao; Shi, Wei; Wu, Guisen; Tian, Xinhua; Wang, Yuhua; Ge, Dongtao; Ren, Lei

    2012-11-01

    The cellular uptake and localization of photosensitizer-loaded nanoparticles have significant impact on photodynamic therapy (PDT) efficacy due to short lifetime and limited action radius of singlet oxygen. Herein, we develop poly(ethylene glycol) (PEG)- and polyethylenimine (PEI)-functionalized zinc(II) phthalocyanine (ZnPc)-loaded mesoporous silica nanoparticles (MSNs), which are able to distribute in the cytosol by endolysosomal escape. In this photosensitizer-carrier system (PEG-PEI-MSNs/ZnPc), ZnPc is a PDT agent; MSNs are the nanocarrier for encapsulating ZnPc; PEI facilitates endosomal escape; and PEG enhances biocompatibility. The as-synthesized PEG-PEI-MSNs/ZnPc have a high escape efficiency from the lysosome to the cytosol due to the "proton sponge" effect of PEI. Compared with the ZnPc-loaded MSNs, the phototoxicity of the PEG-PEI-MSNs/ZnPc is greatly enhanced in vitro. By measuring the mitochondrial membrane potential, a significant loss of >80% Δψm after treatment with PEG-PEI-MSNs/ZnPc-PDT is observed. It is further demonstrated that the ultra-efficient passive tumor targeting and excellent PDT efficacy are achieved in tumor-bearing mice upon intravenous injection of PEG-PEI-MSNs/ZnPc and the followed light exposure. We present here a strategy for enhancement of PDT efficacy by endolysosomal escape and highlight the promise of using multifunctional MSNs for cancer therapy.

  10. Loss of immune escape mutations during persistent HCV infection in pregnancy enhances replication of vertically transmitted viruses.

    PubMed

    Honegger, Jonathan R; Kim, Seungtaek; Price, Aryn A; Kohout, Jennifer A; McKnight, Kevin L; Prasad, Mona R; Lemon, Stanley M; Grakoui, Arash; Walker, Christopher M

    2013-11-01

    Globally, about 1% of pregnant women are persistently infected with the hepatitis C virus (HCV). Mother-to-child transmission of HCV occurs in 3-5% of pregnancies and accounts for most new childhood infections. HCV-specific CD8(+) cytotoxic T lymphocytes (CTLs) are vital in the clearance of acute HCV infections, but in the 60-80% of infections that persist, these cells become functionally exhausted or select for mutant viruses that escape T cell recognition. Increased HCV replication during pregnancy suggests that maternofetal immune tolerance mechanisms may further impair HCV-specific CTLs, limiting their selective pressure on persistent viruses. To assess this possibility, we characterized circulating viral quasispecies during and after consecutive pregnancies in two women. This revealed a loss of some escape mutations in HLA class I epitopes during pregnancy that was associated with emergence of more fit viruses. CTL selective pressure was reimposed after childbirth, at which point escape mutations in these epitopes again predominated in the quasispecies and viral load dropped sharply. Importantly, the viruses transmitted perinatally were those with enhanced fitness due to reversion of escape mutations. Our findings indicate that the immunoregulatory changes of pregnancy reduce CTL selective pressure on HCV class I epitopes, thereby facilitating vertical transmission of viruses with optimized replicative fitness.

  11. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.

    PubMed

    McFarlane, Laura; Altringham, John D; Askew, Graham N

    2016-05-01

    Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass.

  12. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights

    PubMed Central

    McFarlane, Laura; Altringham, John D.; Askew, Graham N.

    2016-01-01

    ABSTRACT Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175

  13. mPGES-1 deletion impairs aldosterone escape and enhances sodium appetite.

    PubMed

    Jia, Zhanjun; Aoyagi, Toshinori; Kohan, Donald E; Yang, Tianxin

    2010-07-01

    Aldosterone (Aldo) is a major sodium-retaining hormone that reduces renal sodium excretion and also stimulates sodium appetite. In the face of excess Aldo, the sodium-retaining action of this steroid is overridden by an adaptive regulatory mechanism, a phenomenon termed Aldo escape. The underlying mechanism of this phenomenon is not well defined but appeared to involve a number of natriuretic factors such prostaglandins (PGs). Here, we investigated the role of microsomal prostaglandin E synthase-1 (mPGES-1) in the response to excess Aldo. A 14-day Aldo infusion at 0.35 mg x kg(-1) x day(-1) via an osmotic minipump in conjunction with normal salt intake did not produce obvious disturbances in fluid metabolism in WT mice as suggested by normal sodium and water balance, plasma sodium concentration, hematocrit, and body weight, despite the evidence of a transient sodium accumulation on days 1 or 2. In a sharp contrast, the 14-day Aldo treatment in mPGES-1 knockoute (KO) mice led to increased sodium and water balance, persistent reduction of hematocrit, hypernatremia, and body weight gain, all evidence of fluid retention. The escaped wild-type (WT) mice displayed a remarkable increase in urinary PGE(2) excretion in parallel with coinduction of mPGES-1 in the proximal tubules, accompanied by a remarkable, widespread downregulation of renal sodium and water transporters. The increase in urinary PGE(2) excretion together with the downregulation of renal sodium and water transporters were all significantly blocked in the KO mice. Interestingly, compared with WT controls, the KO mice exhibited consistent increases in sodium and water intake during Aldo infusion. Together, these results suggest an important role of mPGES-1 in antagonizing the sodium-retaining action of Aldo at the levels of both the central nervous system and the kidney.

  14. Multiscale Micro-Nano Nested Structures: Engineered Surface Morphology for Efficient Light Escaping in Organic Light-Emitting Diodes.

    PubMed

    Zhou, Lei; Dong, Xiaoxuan; Zhou, Yun; Su, Wenming; Chen, Xiaolian; Zhu, Yufu; Shen, Su

    2015-12-09

    Various micro-to-nanometer scale structures are extremely attractive for light escaping in organic light-emitting diodes. To develop and optimize such structures, an innovative approach was demonstrated for the first time to fabricate multiscale micro-nano nested structures by photolithography with a well-designed mask pattern followed by a controllable thermal reflow process. The experimental and theoretical characterizations verify that these unique nested structures hold the capability of light concentration, noticeable low haze, and efficient antireflection. As a proof-of-concept, the incorporation of this pattern onto the glass substrate efficiently facilitates light escaping from the device, resulting in current efficiency 1.60 times and external quantum efficiency 1.63 times that of a control flat device, respectively. Moreover, compared to a hexagonally arranged microlens array and quasi-random biomimetic moth eye nanostructures, the nested structures proposed here can magically tune the spatial emission profile to comply with the Lambertian radiation pattern. Hence, this novel structure is expected to be of great potential in related ubiquitous optoelectronic applications and provide scientific inspiration to other novel multiscale micro-nanostructure research.

  15. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth

    PubMed Central

    Chazaud, Bénédicte; Sonnet, Corinne; Lafuste, Peggy; Bassez, Guillaume; Rimaniol, Anne-Cécile; Poron, Françoise; Authier, François-Jérôme; Dreyfus, Patrick A.; Gherardi, Romain K.

    2003-01-01

    Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray–based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth. PMID:14662751

  16. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth.

    PubMed

    Chazaud, Bénédicte; Sonnet, Corinne; Lafuste, Peggy; Bassez, Guillaume; Rimaniol, Anne-Cécile; Poron, Françoise; Authier, François-Jerome; Dreyfus, Patrick A; Gherardi, Romain K

    2003-12-08

    Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray-based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth.

  17. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages

    NASA Astrophysics Data System (ADS)

    Ortega, Ryan A.; Barham, Whitney J.; Kumar, Bharat; Tikhomirov, Oleg; McFadden, Ian D.; Yull, Fiona E.; Giorgio, Todd D.

    2014-12-01

    Tumor associated macrophages (TAMs) can modify the tumor microenvironment to create a pro-tumor niche. Manipulation of the TAM phenotype is a novel, potential therapeutic approach to engage anti-cancer immunity. siRNA is a molecular tool for knockdown of specific mRNAs that is tunable in both strength and duration. The use of siRNA to reprogram TAMs to adopt an immunogenic, anti-tumor phenotype is an attractive alternative to ablation of this cell population. One current difficulty with this approach is that TAMs are difficult to specifically target and transfect. We report here successful utilization of novel mannosylated polymer nanoparticles (MnNP) that are capable of escaping the endosomal compartment to deliver siRNA to TAMs in vitro and in vivo. Transfection with MnNP-siRNA complexes did not significantly decrease TAM cell membrane integrity in culture, nor did it create adverse kidney or liver function in mice, even at repeated doses of 5 mg kg-1. Furthermore, MnNP effectively delivers labeled nucleotides to TAMs in mice with primary mammary tumors. We also confirmed TAM targeting in the solid tumors disseminated throughout the peritoneum of ovarian tumor bearing mice following injection of fluorescently labeled MnNP-nucleotide complexes into the peritoneum. Finally, we show enhanced uptake of MnNP in lung metastasis associated macrophages compared to untargeted particles when using an intubation delivery method. In summary, we have shown that MnNP specifically and effectively deliver siRNA to TAMs in vivo.

  18. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Jiangxin; Song, Haibin; Guan, Yongxian; Yang, Shengxiong; Pinheiro, Luis M.; Bai, Yang; Liu, Boran; Geng, Minghui

    2015-12-01

    Based on new high-resolution multi-beam bathymetry and multichannel seismic reflection data, two new groups of numerous pockmarks and mud volcanoes were discovered in the northern Zhongjiannan Basin at water depths between 600 and 1400 m. Individual pockmarks are circular, elliptical, crescent-shaped or elongated, with diameters ranging from several hundreds to thousands of meters and tens or hundreds of meters in depth, and they often form groups or strings. Crescent pockmarks, approximately 500-1500 m wide in cross-section and 50-150 m deep, occur widely in the southern study area, both as individual features and in groups or curvilinear chains, and they are more widespread and unique in this area than anywhere else in the world. Conical mud volcanoes, mostly with kilometer-wide diameters and ca. 100 m high, mainly develop in the northern study area as individual features or in groups. Seismic data show that the observed pockmarks are associated with different kinds of fluid escape structures and conduits, such as gas chimneys, diapirs, zones of acoustic blanking, acoustic turbidity and enhanced reflections, inclined faults, small fractures and polygonal faults. The mapped mud volcanoes appear to be fed from deep diapirs along two main conduit types: the conventional conduits with downward tapering cones and another other conduit type with a narrow conduit in the lower half and emanative leakage passages in the upper half. Various types of pockmarks are found and a comprehensive pockmark classification scheme is proposed, according to: (a) their shape in plan view, which includes circular, elliptical, crescent, comet-shape, elongated and irregular; (b) their magnitude, which includes small, normal, giant and mega-pockmarks; and (c) their composite pattern, which includes composite pockmarks, pockmark strings and pockmark groups. For the genesis of the crescent pockmark (strings), a 5-stage speculative formation model is proposed, implying possible controlling

  19. Trivalency of a Nanobody Specific for the Human Respiratory Syncytial Virus Fusion Glycoprotein Drastically Enhances Virus Neutralization and Impacts Escape Mutant Selection.

    PubMed

    Palomo, Concepción; Mas, Vicente; Detalle, Laurent; Depla, Erik; Cano, Olga; Vázquez, Mónica; Stortelers, Catelijne; Melero, José A

    2016-11-01

    ALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies. Resistant viruses emerged notably faster with Nb017 than with ALX-0171 and in both cases contained amino acid changes in antigenic site II of hRSV F. Detailed binding and neutralization analyses of these escape mutants as well as previously described mutants resistant to certain monoclonal antibodies (MAbs) offered a comprehensive description of site II mutations which are relevant for neutralization by MAbs and Nanobodies. Notably, ALX-0171 showed a sizeable neutralization potency with most escape mutants, even with some of those selected with the Nanobody, and these findings make ALX-0171 an attractive antiviral for treatment of hRSV infections.

  20. Morphology optimization for enhanced performance in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wodo, Olga; Zola, Jaroslaw; Ganapathysubramanian, Baskar

    2015-03-01

    Organic solar cells have the potential for widespread usage due to their low cost-per-watt and mechanical flexibility. Their wide spread use, however, is bottlenecked primarily by their low solar efficiencies. Experimental evidence suggests that a key property determining the solar efficiency of such devices is the final morphological distribution of the electron-donor and electron-acceptor constituents. By carefully designing the morphology of the device, one could potentially significantly enhance their performance. This is an area of intense experimental effort that is mostly trial-and-error based, and serves as a fertile area for introducing mechanics and computational thinking. In this work, we use optimization techniques coupled with computational modeling to identify the optimal structures for high efficiency solar cells. In particular, we use adaptive population-based incremental learning method linked to graph-based surrogate model to evaluate properties for given structure. We study several different criterions and find optimal structure that that improve the performance of currently hypothesized optimal structures by 29%.

  1. Wind-Induced Atmospheric Escape: Titan

    NASA Technical Reports Server (NTRS)

    Hartle, Richard; Johnson, Robert; Sittler, Edward, Jr.; Sarantos, Menelaos; Simpson, David

    2012-01-01

    Rapid thermospheric flows can significantly enhance the estimates of the atmospheric loss rate and the structure of the atmospheric corona of a planetary body. In particular, rapid horizontal flow at the exobase can increase the corresponding constituent escape rate. Here we show that such corrections, for both thermal and non-thermal escape, cannot be ignored when calculating the escape of methane from Titan, for which drastically different rates have been proposed. Such enhancements are also relevant to Pluto and exoplanets.

  2. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo.

    PubMed

    Nelson, Christopher E; Kintzing, James R; Hanna, Ann; Shannon, Joshua M; Gupta, Mukesh K; Duvall, Craig L

    2013-10-22

    A family of pH-responsive diblock polymers composed of poly[(ethylene glycol)-b-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)], PEG-(DMAEMA-co-BMA), was reversible addition-fragmentation chain transfer (RAFT) synthesized with 0-75 mol % BMA in the second polymer block. The relative mole % of DMAEMA and BMA was varied in order to identify a polymer that can be used to formulate PEGylated, siRNA-loaded polyplex nanoparticles (NPs) with an optimized balance of cationic and hydrophobic content in the NP core based on siRNA packaging, cytocompatibility, blood circulation half-life, endosomal escape, and in vivo bioactivity. The polymer with 50:50 mol % of DMAEMA:BMA (polymer "50 B") in the RAFT-polymerized block efficiently condensed siRNA into 100 nm NPs that displayed pH-dependent membrane disruptive behavior finely tuned for endosomal escape. In vitro delivery of siRNA with polymer 50 B produced up to 94% protein-level knockdown of the model gene luciferase. The PEG corona of the NPs blocked nonspecific interactions with constituents of human whole blood, and the relative hydrophobicity of polymer 50 B increased NP stability in the presence of human serum or the polyanion heparin. When injected intravenously, 50 B NPs enhanced blood circulation half-life 3-fold relative to more standard PEG-DMAEMA (0 B) NPs (p < 0.05), due to improved stability and a reduced rate of renal clearance. The 50 B NPs enhanced siRNA biodistribution to the liver and other organs and significantly increased gene silencing in the liver, kidneys, and spleen relative to the benchmark polymer 0 B (p < 0.05). These collective findings validate the functional significance of tuning the balance of cationic and hydrophobic content of polyplex NPs utilized for systemic siRNA delivery in vivo.

  3. Morphology-enhanced conductivity in dry ionic liquids.

    PubMed

    Erbaş, Aykut; de la Cruz, Monica Olvera

    2016-03-07

    Ionic liquids exhibit fascinating nanoscale morphological phases and are promising materials for energy storage applications. Liquid crystalline order emerges in ionic liquids with specific chemical structures. Here, we investigate the phase behaviour and related ionic conductivities of dry ionic liquids, using extensive molecular dynamics simulations. Temperature dependence, properties of polymeric tail and excluded volume symmetry of the amphiphilic ionic liquid molecules are investigated in large scale systems with both short and long-range Coulomb interactions. Our results suggest that by adjusting stiffness and steric interactions of the amphiphilic molecules, lamellar or 3D continuous phases result in these molecular salts. The resulting phases are composed of ion rich and ion pure domains. In 3D phases, ion rich clusters form ionic channels and have significant effects on the conductive properties of the observed nano-phases. If there is no excluded-volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the steric interactions become asymmetric, lamellar phases are replaced by complex 3D continuous phases. Within the temperature ranges for which morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments on ionic liquid crystals. Stiffer molecules increase the high-conductivity interval and strengthen temperature-resistance of morphological phases. Increasing the steric interactions of cation leads to higher conductivities. Moreover, at low monomeric volume fractions and at low temperatures, cavities are observed in the nano-phases of flexible ionic liquids. We also demonstrate that, in the absence of electrostatic interactions, the morphology is distorted. Our findings inspire new design principles for room temperature ionic liquids and help explain previously-reported experimental data.

  4. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L

    2010-12-01

    Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had

  5. Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation.

    PubMed

    Kuc, Roman

    2010-11-01

    A protruding noseleaf and concave pinna structures suggest that some bats may use these to enhance their echolocation capabilities. This paper considers two possible mechanisms that each exploit the combination of direct and delayed acoustic paths to achieve more complex emission or sensitivity echolocation patterns. The first is an emission mechanism, in which the protruding noseleaf vibrates to emit sound in both the forward and backward directions, and pinna structures reflect the backward emission to enhance the forward beam. The second is a reception mechanism, which has a direct echo path to the ear canal and a delayed path involving pinna structures reflecting onto the noseleaf and then into the ear canal. A model using Davis' Round-eared Bat illustrates that such direct and delayed acoustic paths provide target elevation cues. The model demonstrates the delayed pinna component can increase the on-axis emission strength, narrow the beam width, and sculpt frequency-dependent beam patterns useful for echolocation.

  6. Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.

    PubMed

    Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).

  7. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  8. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  9. Morphology-induced defects enhance lipid transfer rates

    DOE PAGES

    Xia, Yan; Charubin, Kamil; Marquardt, Drew; ...

    2016-08-25

    Molecular transfer between nanoparticles has been considered to have important implications regarding nanoparticle stability. Recently, the interparticle spontaneous lipid transfer rate constant for discoidal bicelles was found to be very different from spherical, unilamellar vesicles (ULVs). Here, we investigate the mechanism responsible for this discrepancy. Analysis of the data indicates that lipid transfer is entropically favorable, but enthalpically unfavorable with an activation energy that is independent of bicelle size and long- to short-chain lipid molar ratio. Moreover, molecular dynamics simulations reveal a lower lipid dissociation energy cost in the vicinity of interfaces (“defects”) induced by the segregation of the long-more » and short-chain lipids in bicelles; these defects are not present in ULVs. Taken together, these results suggest that the enhanced lipid transfer observed in bicelles arises from interfacial defects as a result of the hydrophobic mismatch between the long- and short-chain lipid species. In conclusion, the observed lipid transfer rate is found to be independent of nanoparticle stability.« less

  10. Morphology-induced defects enhance lipid transfer rates

    SciTech Connect

    Xia, Yan; Charubin, Kamil; Marquardt, Drew; Heberle, Frederick A.; Katsaras, John; Tian, Jianhui; Cheng, Xiaolin; Liu, Ying; Nieh, Mu -Ping

    2016-08-25

    Molecular transfer between nanoparticles has been considered to have important implications regarding nanoparticle stability. Recently, the interparticle spontaneous lipid transfer rate constant for discoidal bicelles was found to be very different from spherical, unilamellar vesicles (ULVs). Here, we investigate the mechanism responsible for this discrepancy. Analysis of the data indicates that lipid transfer is entropically favorable, but enthalpically unfavorable with an activation energy that is independent of bicelle size and long- to short-chain lipid molar ratio. Moreover, molecular dynamics simulations reveal a lower lipid dissociation energy cost in the vicinity of interfaces (“defects”) induced by the segregation of the long- and short-chain lipids in bicelles; these defects are not present in ULVs. Taken together, these results suggest that the enhanced lipid transfer observed in bicelles arises from interfacial defects as a result of the hydrophobic mismatch between the long- and short-chain lipid species. In conclusion, the observed lipid transfer rate is found to be independent of nanoparticle stability.

  11. Watershed segmentation of infrared target based on multiscale mathematical morphology and target enhancement

    NASA Astrophysics Data System (ADS)

    Bai, Xiang-zhi; Zhou, Fu-gen; Jin, Ting; Liu, Zhao-ying

    2009-07-01

    A new infrared target segmentation algorithm by using watershed transform based on multi-scale mathematical morphology and target enhancement is proposed in this paper. Firstly, the multi-scale mathematical morphological operator is used to pre-process the original infrared image, which suppresses the effect of noises and protects targets. Secondly, the property of the infrared image, non-parameter kernel method and linear extension are used to enhance dim target. Thirdly, some pixels of the enhanced target regions are binarized and then processed by morphological operators as the markers of the infrared targets. Finally, after the gradient of the pre-processed infrared image is calculated by using Sobel detector, the watershed is performed on the gradient image guided by the markers of target regions to segment the target regions. The proposed method can be widely used in different applications of target detection, target tracking, navigation system and so on. Experimental results verify that the proposed method is efficient.

  12. THERMALLY DRIVEN ATMOSPHERIC ESCAPE

    SciTech Connect

    Johnson, Robert E.

    2010-06-20

    Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

  13. Multispectral image fusion based on diffusion morphology for enhanced vision applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vygolov, Oleg V.; Vizilter, Yury V.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-05-01

    Existing image fusion methods based on morphological image analysis, that expresses the geometrical idea of image shape as a label image, are quite sensitive to the quality of image segmentation and, therefore, not sufficiently robust to noise and high frequency distortions. On the other hand, there are a number of methods in the field of dimensionality reduction and data comparison that give possibility of avoiding an image segmentation step by using diffusion maps techniques. The paper proposes a new approach for multispectral image fusion based on the combination of morphological image analysis and diffusion maps theory (i.e. Diffusion Morphology). A new image fusion algorithm is described that uses a matched diffusion filtering procedure instead of morphological projection. The algorithm is implemented for a three channels Enhanced Vision System prototype. The comparative results of image fusion are shown on real images acquired in flight experiments.

  14. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function. PMID:27683544

  15. Submarine tower escape decompression sickness risk estimation.

    PubMed

    Loveman, G A M; Seddon, E M; Thacker, J C; Stansfield, M R; Jurd, K M

    2014-01-01

    Actions to enhance survival in a distressed submarine (DISSUB) scenario may be guided in part by knowledge of the likely risk of decompression sickness (DCS) should the crew attempt tower escape. A mathematical model for DCS risk estimation has been calibrated against DCS outcome data from 3,738 exposures of either men or goats to raised pressure. Body mass was used to scale DCS risk. The calibration data included more than 1,000 actual or simulated submarine escape exposures and no exposures with substantial staged decompression. Cases of pulmonary barotrauma were removed from the calibration data. The calibrated model was used to estimate the likelihood of DCS occurrence following submarine escape from the United Kingdom Royal Navy tower escape system. Where internal DISSUB pressure remains at - 0.1 MPa, escape from DISSUB depths < 200 meters is estimated to have DCS risk < 6%. Saturation at raised DISSUB pressure markedly increases risk, with > 60% DCS risk predicted for a 200-meter escape from saturation at 0.21 MPa. Using the calibrated model to predict DCS for direct ascent from saturation gives similar risk estimates to other published models.

  16. Orientation and Morphology of Calcite Nucleated under Floating Monolayers: A Magnesium-ion-enhanced Nucleation Study

    SciTech Connect

    B Stripe; A Uysal; P Dutta

    2011-12-31

    We have studied the biomimetic growth of calcium carbonate crystals under floating monolayer templates, in the presence of Mg ions, using grazing incidence X-ray diffraction and SEM imaging. Crystals grown under sulfate monolayers nucleate from the (0 0 1) plane with and without Mg ions, while undergoing substantial changes in morphology. Crystals grown under alcohol monolayers nucleate from the (1 0 4) plane in the presence of Mg. X-ray data do not detect orientation in crystals grown under acid monolayers, but at higher Mg concentrations the resulting morphologies are indicative of template-nucleated growth. These results suggest that Mg provides living organisms a way to enhance the orientation and control the morphology of acid-templated crystals.

  17. Trade-offs between performance and variability in the escape responses of bluegill sunfish (Lepomis macrochirus)

    PubMed Central

    Hitchcock, Amanda C.; Chen, Tiffany; Connolly, Erin; Darakananda, Karin; Jeong, Janet; Quist, Arbor; Robbins, Allison; Ellerby, David J.

    2015-01-01

    Successful predator evasion is essential to the fitness of many animals. Variation in escape behaviour may be adaptive as it reduces predictability, enhancing escape success. High escape velocities and accelerations also increase escape success, but biomechanical factors likely constrain the behavioural range over which performance can be maximized. There may therefore be a trade-off between variation and performance during escape responses. We have used bluegill sunfish (Lepomis macrochirus) escape responses to examine this potential trade-off, determining the full repertoire of escape behaviour for individual bluegill sunfish and linking this to performance as indicated by escape velocity and acceleration. Fish escapes involve an initial C-bend of the body axis, followed by variable steering movements. These generate thrust and establish the escape direction. Directional changes during the initial C-bend were less variable than the final escape angle, and the most frequent directions were associated with high escape velocity. Significant inter-individual differences in escape angles magnified the overall variation, maintaining unpredictability from a predator perspective. Steering in the latter stages of the escape to establish the final escape trajectory also affected performance, with turns away from the stimulus associated with reduced velocity. This suggests that modulation of escape behaviour by steering may also have an associated performance cost. This has important implications for understanding the scope and control of intra- and inter-individual variation in escape behaviour and the associated costs and benefits. PMID:25910940

  18. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme

    PubMed Central

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  19. Introducing kernel based morphology as an enhancement method for mass classification on mammography.

    PubMed

    Amirzadi, Azardokht; Azmi, Reza

    2013-04-01

    Since mammography images are in low-contrast, applying enhancement techniques as a pre-processing step are wisely recommended in the classification of the abnormal lesions into benign or malignant. A new kind of structural enhancement is proposed by morphological operator, which introduces an optimal Gaussian Kernel primitive, the kernel parameters are optimized the use of Genetic Algorithm. We also take the advantages of optical density (OD) images to promote the diagnosis rate. The proposed enhancement method is applied on both the gray level (GL) images and their OD values respectively, as a result morphological patterns get bolder on GL images; then, local binary patterns are extracted from this kind of images. Applying the enhancement method on OD images causes more differences between the values therefore a threshold method is applied toremove some background pixels. Those pixels that are more eligible to be mass are remained, and some statistical texture features are extracted from their equivalent GL images. Support vector machine is used for both approaches and the final decision is made by combining these two classifiers. The classification performance rate is evaluated by Az, under the receiver operating characteristic curve. The designed method yields Az = 0.9231, which demonstrates good results.

  20. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  1. Atmospheric escape from unmagnetized bodies

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Bagenal, F.; Ma, Y.-J.; Nilsson, H.; Stenberg Wieser, G.

    2016-12-01

    The upper atmospheres of unmagnetized solar system bodies interact more directly with their local plasma environment than their counterparts on magnetized bodies such as Earth. One consequence of this interaction is that atmospheric particles can gain energy from the flowing plasma, as well as solar photons, and escape to space. Escape proceeds through a number of different mechanisms that can remove neutral particles (Jeans escape, photochemical escape, and sputtering) and mechanisms that can remove ions (ion pickup, magnetic shear and tension-related escape, and pressure gradients). Here we discuss the plasma interactions and escape processes and rates from five solar system objects spanning 3 orders of magnitude in size: comets, Pluto, Titan, Mars, and Venus. We describe similarities and differences in escape for the different objects and provide four open questions that should be addressed in the coming years.

  2. MEMO: Mars Escape and Magnetic Orbiter

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Langlais, B.; Leblanc, F.; Sotin, C.; Barabash, S.; Dehant, V.; Dougherty, M.; Lammer, H.; Mandea, M.; Vennerstrom, S.

    There are several reasons to believe that Mars could have become an Earth like planet rather than the present dry and cold planet. In particular, many elements suggest the presence of liquid water at the Martian surface during a relatively short period at an early stage of its history. Since liquid water may have been the birthplace for life on Earth, the fate of Martian water is one of the major key and yet unanswered question to be solved. Mars Escape and Magnetic Orbiter (MEMO) is a low periapsis orbiter of Mars devoted to the measurement of present escape and the characterization of the fossil magnetic field of Mars. The use of a low periapsis altitude orbit (120-150 km) is required to detect and quantify all populations of atoms and molecules involved in escape. It is also required to measure the magnetic field of Mars with an unprecedented spatial resolution that would allow getting a more precise timing of the dynamo and its disappearance. Achieving a full characterization of atmospheric escape, and extrapolating it back to the past requires: (i) to measure escape fluxes of neutral and ion species, and characterize the dynamics and chemistry of the regions of the atmosphere where escape occurs (thermosphere, ionosphere, exosphere), as well as their responses to solar activity, and (ii) to characterize the lateral variations of the magnetic field of lithospheric origin, and by extension, the timing of the Martian dynamo. Of particular interest is the extinction of the dynamo that is thought to have enhanced the atmospheric escape processes still operating today. The proposed low-periapsis orbiter will consist of the following elements: • An "Escape Package" to characterize by both in-situ and remote measurements the thermosphere, ionosphere, exosphere and solar wind interaction regions (from one hundred to several thousand km), including thermal, suprathermal 1 and energetic particles. • A "Magnetic Field Package", to characterize the magnetization of the

  3. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  4. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze

    NASA Astrophysics Data System (ADS)

    Park, Hyeongsik; Shin, Myunghun; Kim, Hyeongseok; Kim, Sunbo; Le, Anh Huy Tuan; Kang, Junyoung; Kim, Yongjun; Pham, Duy Phong; Jung, Junhee; Yi, Junsin

    2017-04-01

    A comparative study of 3-dimensional textured glass morphologies with variable haze value and chemical texturing of the glass substrates was conducted to enhance light trapping in silicon (Si) thin film solar cells (TFSCs). The light trapping characteristics of periodic honeycomb structures show enhanced transmittance and haze ratio in numerical and experimental approaches. The periodic honeycomb structure of notched textures is better than a random or periodic carved structure. It has high transmittance of ∼95%, and haze ratio of ∼52.8%, and the haze property of the angular distribution function of transmittance shows wide scattering angles in the long wavelength region because of the wide spacing and aspect ratio of the texture. The numerical and experimental approaches of the 3-D texture structures in this work will be useful in developing high-performance Si TFSCs with light trapping.

  5. Self-assembled dendrite Ag arrays with tunable morphologies for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Huang, Pingping; Wang, Zhezhe; Lin, Lin; Feng, Zhuohong; Wen, Xin; Zheng, Zhiqiang

    2016-11-01

    Highly ordered dendrite Ag arrays are fabricated by using photosensitive sol-gel and electrochemical reaction self-assembly strategy to achieve large field enhancement for Surface-Enhanced Raman scattering (SERS) application. The effects of applied voltage, reaction time and KH550 have been investigated to tailor the growth of Ag dendrite. At an applied voltage of 25 V and reaction time of 30 min, orderly dendrite Ag arrays are obtained and show strong SERS effect. Meanwhile, the additive KH550 also shows a unique effect on the morphologies of Ag dendrite and contributes to increase the SERS. This kind of substrate can be used to detect R6G with the concentration of as low as 10-13 M obviously. Our results suggest that the dendrite Ag arrays as SERS substrate with strong SERS effect having vast potential applications in biosensors and nanodevices with molecule-level detection.

  6. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Adhikari, Nirmal; Khatiwada, Devendra; Dubey, Ashish; Qiao, Qiquan

    2015-01-01

    Conjugated polymers are potential materials for photovoltaic applications due to their high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost solar cells. A bulk heterojunction (BHJ) structure made of donor-acceptor composite can lead to high charge transfer and power conversion efficiency. Active layer morphology is a key factor for device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coating), post-treatment (e.g., annealing and UV ozone treatment), and use of additives are typically used to engineer the morphology, which optimizes physical properties, such as molecular configuration, miscibility, lateral and vertical phase separation. We will review electronic donor-acceptor interactions in conjugated polymer composites, the effect of processing parameters and morphology on solar cell performance, and charge carrier transport in polymer solar cells. This review provides the basis for selection of different processing conditions for optimized nanomorphology of active layers and reduced bimolecular recombination to enhance open-circuit voltage, short-circuit current density, and fill factor of BHJ solar cells.

  7. Infrared image enhancement based on the edge detection and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng

    2010-11-01

    The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.

  8. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    PubMed Central

    2011-01-01

    Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as

  9. Oxygen Escape from Venus During High Dynamic Pressure ICMEs

    NASA Astrophysics Data System (ADS)

    McEnulty, Tess; Luhmann, J. G.; Brain, D. A.; Fedorov, A.; Jian, L. K.; Russell, C. T.; Zhang, T.; Möstl, C.; Futaana, Y.; de Pater, I.

    2013-10-01

    Previous studies using data from Pioneer Venus suggested that oxygen ion escape flux may be enhanced by orders of magnitude during Interplanetary Coronal Mass Ejections. However, this large enhancement has been ambiguous in Venus Express ion data - with some analyses showing no flux enhancement or a small enhancement (within 2 times undisturbed cases). One possible explanation is that high escape flux may be due to high dynamic pressure in the solar wind, and the dynamic pressure has been lower during the VEX time period. So, we focus on ICMEs with the largest dynamic pressure and with VEX sampling of the escaping ions during the sheath of the ICMEs (during which the highest dynamic pressures in the solar wind occur). We will show the characteristics of these large events measured by VEX, and compare them to the largest ICMEs measured by PVO. We will then discuss estimates of the oxygen ion escape flux during these events.

  10. Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures.

    PubMed

    Zhou, Zhi; Sorensen, Staci; Zeng, Hongkui; Hawrylycz, Michael; Peng, Hanchuan

    2015-04-01

    It is important to digitally reconstruct the 3D morphology of neurons and brain vasculatures. A number of previous methods have been proposed to automate the reconstruction process. However, in many cases, noise and low signal contrast with respect to the image background still hamper our ability to use automation methods directly. Here, we propose an adaptive image enhancement method specifically designed to improve the signal-to-noise ratio of several types of individual neurons and brain vasculature images. Our method is based on detecting the salient features of fibrous structures, e.g. the axon and dendrites combined with adaptive estimation of the optimal context windows where such saliency would be detected. We tested this method for a range of brain image datasets and imaging modalities, including bright-field, confocal and multiphoton fluorescent images of neurons, and magnetic resonance angiograms. Applying our adaptive enhancement to these datasets led to improved accuracy and speed in automated tracing of complicated morphology of neurons and vasculatures.

  11. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl2 with controllable dimension and morphology

    NASA Astrophysics Data System (ADS)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren; Bai, Jintao

    2016-12-01

    One kind of ZnCl2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  12. Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows

    PubMed Central

    Matsui, Hiroshi; Hunt, Gavin R.; Oberhofer, Katja; Ogihara, Naomichi; McGowan, Kevin J.; Mithraratne, Kumar; Yamasaki, Takeshi; Gray, Russell D.; Izawa, Ei-Ichi

    2016-01-01

    Early increased sophistication of human tools is thought to be underpinned by adaptive morphology for efficient tool manipulation. Such adaptive specialisation is unknown in nonhuman primates but may have evolved in the New Caledonian crow, which has sophisticated tool manufacture. The straightness of its bill, for example, may be adaptive for enhanced visually-directed use of tools. Here, we examine in detail the shape and internal structure of the New Caledonian crow’s bill using Principal Components Analysis and Computed Tomography within a comparative framework. We found that the bill has a combination of interrelated shape and structural features unique within Corvus, and possibly birds generally. The upper mandible is relatively deep and short with a straight cutting edge, and the lower mandible is strengthened and upturned. These novel combined attributes would be functional for (i) counteracting the unique loading patterns acting on the bill when manipulating tools, (ii) a strong precision grip to hold tools securely, and (iii) enhanced visually-guided tool use. Our findings indicate that the New Caledonian crow’s innovative bill has been adapted for tool manipulation to at least some degree. Early increased sophistication of tools may require the co-evolution of morphology that provides improved manipulatory skills. PMID:26955788

  13. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-06-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H2O2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H2O2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  14. Martian Atmospheric and Ionospheric plasma Escape

    NASA Astrophysics Data System (ADS)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  15. Evolution of Shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder

    PubMed Central

    Sagai, Tomoko; Amano, Takanori; Maeno, Akiteru; Kimura, Tetsuaki; Nakamoto, Masatoshi; Takehana, Yusuke; Naruse, Kiyoshi; Okada, Norihiro; Kiyonari, Hiroshi; Shiroishi, Toshihiko

    2017-01-01

    Shh signalling plays a crucial role for endoderm development. A Shh endoderm enhancer, MACS1, is well conserved across terrestrial animals with lungs. Here, we first show that eliminating mouse MACS1 causes severe defects in laryngeal development, indicating that MACS1-directed Shh signalling is indispensable for respiratory organogenesis. Extensive phylogenetic analyses revealed that MACS1 emerged prior to the divergence of cartilaginous and bony fishes, and even euteleost fishes have a MACS1 orthologue. Meanwhile, ray-finned fishes evolved a novel conserved non-coding sequence in the neighbouring region. Transgenic assays showed that MACS1 drives reporter expression ventrally in laryngeal epithelium. This activity has been lost in the euteleost lineage, and instead, the conserved non-coding sequence of euteleosts acquired an enhancer activity to elicit dorsal epithelial expression in the posterior pharynx and oesophagus. These results implicate that evolution of these two enhancers is relevant to the morphological transition from ventral lungs to dorsal gas bladder. PMID:28155855

  16. Reconstructing the Alcatraz escape

    NASA Astrophysics Data System (ADS)

    Baart, F.; Hoes, O.; Hut, R.; Donchyts, G.; van Leeuwen, E.

    2014-12-01

    In the night of June 12, 1962 three inmates used a raft made of raincoatsto escaped the ultimate maximum security prison island Alcatraz in SanFrancisco, United States. History is unclear about what happened tothe escapees. At what time did they step into the water, did theysurvive, if so, where did they reach land? The fate of the escapees has been the subject of much debate: did theymake landfall on Angel Island, or did the current sweep them out ofthe bay and into the cold pacific ocean? In this presentation, we try to shed light on this historic case using avisualization of a high-resolution hydrodynamic simulation of the San Francisco Bay, combined with historical tidal records. By reconstructing the hydrodynamic conditions and using a particle based simulation of the escapees we show possible scenarios. The interactive model is visualized using both a 3D photorealistic and web based visualization. The "Escape from Alcatraz" scenario demonstrates the capabilities of the 3Di platform. This platform is normally used for overland flooding (1D/2D). The model engine uses a quad tree structure, resulting in an order of magnitude speedup. The subgrid approach takes detailed bathymetry information into account. The inter-model variability is tested by comparing the results with the DFlow Flexible Mesh (DFlowFM) San Francisco Bay model. Interactivity is implemented by converting the models from static programs to interactive libraries, adhering to the Basic ModelInterface (BMI). Interactive models are more suitable for answeringexploratory research questions such as this reconstruction effort. Although these hydrodynamic simulations only provide circumstantialevidence for solving the mystery of what happened during the foggy darknight of June 12, 1962, it can be used as a guidance and provides aninteresting testcase to apply interactive modelling.

  17. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fan, Zhenghua; Meng, Fanming; Zhang, Miao; Wu, Zhenyu; Sun, Zhaoqi; Li, Aixia

    2016-01-01

    This paper presents controllable growth and photocatalytic activity of TiO2 hierarchical nanostructures by solvothermal method at different temperatures. It is revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the morphology of TiO2 can be effectively controlled as rose-like, chrysanthemum-like and sea-urchin-like only changing solvothermal temperature. BET surface area analysis confirms the presence of a mesoporous network in all the nanostructures, and shows high surface area at relatively high temperature. The photocatalytic activities of the photocatalysts are evaluated by the photodegradation of RhB under UV light irradiation. The TiO2 samples exhibit high activity on the photodegradation of RhB, which is higher than that of the commercial P25. The enhancement in photocatalytic performance can be attributed to the synergetic effect of the surface area, crystallinity, band gap and crystalline size.

  18. Flow-Enhanced Crystallization and Morphology Development of Blends of Isotactic Polypropylene and Elastomeric Polyolefins

    NASA Astrophysics Data System (ADS)

    Fernandez-Ballester, Lucia; Thurman, Derek W.; Korfield, Julia A.

    2002-03-01

    Studies on flow-induced crystallization and morphology were conducted on impact polyolefin materials by in situ rheo-optical measurements and ex situ microscopic observations. An homologous series of materials consisting of an isotactic polypropylene base resin (PP), that resin with nucleant added (PPN), and the nucleated resin with elastomer blended as a minor component (PPNB) was examined. All materials were subjected to a short shear pulse, after which enhanced crystallization kinetics was observed. The influence on crystallization and structure of the heterogeneous nucleant on these samples was studied for different shear wall stresses and shearing times. Their effect decreased at higher shear stresses, which suggests that at such conditions the amount of homogeneous flow-induced nuclei dominates. Also, the role of melt rheology was investigated by shearing samples near the nominal melting point and allowing to relax before cooling to crystallization.

  19. Antipsychotics Activate mTORC1-Dependent Translation to Enhance Neuronal Morphological Complexity

    PubMed Central

    Bowling, Heather; Zhang, Guoan; Bhattacharya, Aditi; Pérez-Cuesta, Luis M.; Deinhardt, Katrin; Hoeffer, Charles A.; Neubert, Thomas A.; Gan, Wen-biao; Klann, Eric; Chao, Moses V.

    2014-01-01

    Although antipsychotic drugs can reduce psychotic behavior within a few hours, full efficacy is not achieved for several weeks, implying that there may be rapid, short-term changes in neuronal function, which are consolidated into long-lasting changes. Here, we showed that the antipsychotic drug haloperidol, a dopamine receptor type 2 (D2R) antagonist, stimulated the kinase Akt to activate the mRNA translation pathway mediated by the mammalian target of rapamycin complex 1 (mTORC1). In primary striatal D2R-positive neurons, haloperidol-mediated activation of mTORC1 resulted in increased phosphorylation of ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4E-binding protein (4E-BP). Proteomic mass spectrometry revealed marked changes in the pattern of protein synthesis after acute exposure of cultured striatal neurons to haloperidol, including increased abundance of cytoskeletal proteins and proteins associated with translation machinery. These proteomic changes coincided with increased morphological complexity of neurons that was diminished by inhibition of downstream effectors of mTORC1, suggesting that mTORC1-dependent translation enhances neuronal complexity in response to haloperidol. In vivo, we observed rapid morphological changes with a concomitant increase in the abundance of cytoskeletal proteins in cortical neurons of haloperidol-injected mice. These results suggest a mechanism for both the acute and long-term actions of antipsychotics. PMID:24425786

  20. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals.

    PubMed

    Gadikota, Greeshma; Natali, Claudio; Boschi, Chiara; Park, Ah-Hyung Alissa

    2014-01-15

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe)3Si2O5(OH)4)) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO2 emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at PCO2 of 139atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO2 via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO3)2), whewellite (CaC2O4·H2O) and glushinskite (MgC2O4·2H2O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation.

  1. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Pu, Zuyin; Zong, Qiugang; Wan, Weixing; Ren, Zhipeng; Fraenz, Markus; Dubinin, Eduard; Tian, Feng; Shi, Quanqi; Fu, Suiyan; Hong, Minghua

    2014-05-01

    The evolution of life is affected by variations of atmospheric oxygen level and geomagnetic field intensity. Oxygen can escape into interplanetary space as ions after gaining momentum from solar wind, but Earth's strong dipole field reduces the momentum transfer efficiency and the ion outflow rate, except for the time of geomagnetic polarity reversals when the field is significantly weakened in strength and becomes Mars-like in morphology. The newest databases available for the Phanerozoic era illustrate that the reversal rate increased and the atmospheric oxygen level decreased when the marine diversity showed a gradual pattern of mass extinctions lasting millions of years. We propose that accumulated oxygen escape during an interval of increased reversal rate could have led to the catastrophic drop of oxygen level, which is known to be a cause of mass extinction. We simulated the oxygen ion escape rate for the Triassic-Jurassic event, using a modified Martian ion escape model with an input of quiet solar wind inferred from Sun-like stars. The results show that geomagnetic reversal could enhance the oxygen escape rate by 3-4 orders only if the magnetic field was extremely weak, even without consideration of space weather effects. This suggests that our hypothesis could be a possible explanation of a correlation between geomagnetic reversals and mass extinction. Therefore, if this causal relation indeed exists, it should be a "many-to-one" scenario rather the previously considered "one-to-one", and planetary magnetic field should be much more important than previously thought for planetary habitability.

  2. Evaluating some computer enhancement algorithms that improve the visibility of cometary morphology

    NASA Technical Reports Server (NTRS)

    Larson, S. M.; Slaughter, C. D.

    1991-01-01

    The observed morphology of cometary comae is determined by ejection circumstances and the interaction of the ejected material with the local environment. Anisotropic emission can provide useful information on such things as orientation of the nucleus, location of active areas on the nucleus, and the formation of ion structure near the nucleus. However, discrete coma features are usually diffuse, of low amplitude, and superimposed on a steep intensity gradient radial to the nucleus. To improve the visibility of these features, a variety of digital enhancement algorithms were employed with varying degrees of success. They usually produce some degree of spatial filtering, and are chosen to optimize visibility of certain detail. Since information in the image is altered, it is important to understand the effects of parameter selection and processing artifacts can have on subsequent interpretation. Using the criteria that the ideal algorithm must enhance low contrast features while not introducing misleading artifacts (or features that cannot be seen in the stretched, unprocessed image), the suitability of various algorithms that aid cometary studies were assessed. The strong and weak points of each are identified in the context of maintaining positional integrity of features at the expense of photometric information.

  3. Evolution and morphology of microenvironment-enhanced malignancy of three-dimensional invasive solid tumors

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Torquato, Salvatore

    2013-05-01

    The emergence of invasive and metastatic behavior in malignant tumors can often lead to fatal outcomes for patients. The collective malignant tumor behavior resulting from the complex tumor-host interactions and the interactions between the tumor cells is currently poorly understood. In this paper, we employ a cellular automaton (CA) model to investigate microenvironment-enhanced malignant behaviors and morphologies of in vitro avascular invasive solid tumors in three dimensions. Our CA model incorporates a variety of microscopic-scale tumor-host interactions, including the degradation of the extracellular matrix by the malignant cells, nutrient-driven cell migration, pressure buildup due to the deformation of the microenvironment by the growing tumor, and its effect on the local tumor-host interface stability. Moreover, the effects of cell-cell adhesion on tumor growth are explicitly taken into account. Specifically, we find that while strong cell-cell adhesion can suppress the invasive behavior of the tumors growing in soft microenvironments, cancer malignancy can be significantly enhanced by harsh microenvironmental conditions, such as exposure to high pressure levels. We infer from the simulation results a qualitative phase diagram that characterizes the expected malignant behavior of invasive solid tumors in terms of two competing malignancy effects: the rigidity of the microenvironment and cell-cell adhesion. This diagram exhibits phase transitions between noninvasive and invasive behaviors. We also discuss the implications of our results for the diagnosis, prognosis, and treatment of malignant tumors.

  4. Escape driven by α -stable white noises

    NASA Astrophysics Data System (ADS)

    Dybiec, B.; Gudowska-Nowak, E.; Hänggi, P.

    2007-02-01

    We explore the archetype problem of an escape dynamics occurring in a symmetric double well potential when the Brownian particle is driven by white Lévy noise in a dynamical regime where inertial effects can safely be neglected. The behavior of escaping trajectories from one well to another is investigated by pointing to the special character that underpins the noise-induced discontinuity which is caused by the generalized Brownian paths that jump beyond the barrier location without actually hitting it. This fact implies that the boundary conditions for the mean first passage time (MFPT) are no longer determined by the well-known local boundary conditions that characterize the case with normal diffusion. By numerically implementing properly the set up boundary conditions, we investigate the survival probability and the average escape time as a function of the corresponding Lévy white noise parameters. Depending on the value of the skewness β of the Lévy noise, the escape can either become enhanced or suppressed: a negative asymmetry parameter β typically yields a decrease for the escape rate while the rate itself depicts a non-monotonic behavior as a function of the stability index α that characterizes the jump length distribution of Lévy noise, exhibiting a marked discontinuity at α=1 . We find that the typical factor of 2 that characterizes for normal diffusion the ratio between the MFPT for well-bottom-to-well-bottom and well-bottom-to-barrier-top no longer holds true. For sufficiently high barriers the survival probabilities assume an exponential behavior versus time. Distinct non-exponential deviations occur, however, for low barrier heights.

  5. Escape from Vela X

    SciTech Connect

    Hinton, J.; Funk, S.; Parsons, R.D.; Ohm, S.; /Leicester U. /Leeds U.

    2012-02-15

    While the Vela pulsar and its associated nebula are often considered as the archetype of a system powered by a {approx} 10{sup 4} year old isolated neutron star, many features of the spectral energy distribution of this pulsar wind nebula are both puzzling and unusual. Here we develop a model that for the first time relates the main structures in the system, the extended radio nebula (ERN) and the X-ray cocoon through continuous injection of particles with a fixed spectral shape. We argue that diffusive escape of particles from the ERN can explain the steep Fermi-LAT spectrum. In this scenario Vela X should produce a distinct feature in the locally-measured cosmic ray electron spectrum at very high energies. This prediction can be tested in the future using the Cherenkov Telescope Array (CTA). If particles are indeed released early in the evolution of PWNe and can avoid severe adiabatic losses, PWN provide a natural explanation for the rising positron fraction in the local CR spectrum.

  6. Bursty Escape on Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Woch, J.; Lundin, R.; Wei, J.; Barabash, S.

    2011-10-01

    Bursty or filamentary structuring of plasma flows is a typical feature of the Martian space. This phenomenon is revealed during time periods when MEX-ASPERA- 3 is operating in the high temporal resolution mode. Frequency of oscillations is about 10-50 mHz. Amplitude of flux variations reaches a factor of 10-30. Bursty origin of fluxes of oxygen ions can be the important process for solar wind induced escape on Mars. There are several mechanisms which can be responsible for the observed periodic bursts. Large-amplitude coherent pressure pulses generated by ion beams upstream the bow shock impact the magnetosphere and produce periodic pulses in forces pushing planetary plasma. Pressure pulses can arise downstream the bow shock - in the magnetosheath, which becomes to be decomposed into a sequence of periodic compressive waves. A wavy dynamics can also appear due to a multi-ion origin of the interacting plasmas since such a medium behaves as a specific rotator. At last, not at least, K-H or other types of large-scale MHD instabilities probably excited in the interface region can generate surface waves which will also modulate the tension forces. We present the different observations which can be interpreted in a favor of all the above mechanisms implying a complex and diverse plasma wave environment at Mars.

  7. ESCAPE FROM VELA X

    SciTech Connect

    Hinton, J. A.; Ohm, S.; Funk, S.; Parsons, R. D.

    2011-12-10

    While the Vela pulsar and its associated nebula are often considered as the archetype of a system powered by a {approx}10{sup 4} year old isolated neutron star, many features of the spectral energy distribution of this pulsar wind nebula (PWN) are both puzzling and unusual. Here we develop a model that for the first time relates the main structures in the system, the extended radio nebula (ERN) and the X-ray cocoon through continuous injection of particles with a fixed spectral shape. We argue that diffusive escape of particles from the ERN can explain the steep Fermi-LAT spectrum. In this scenario Vela X should produce a distinct feature in the locally measured cosmic ray (CR) electron spectrum at very high energies. This prediction can be tested in the future using the Cherenkov Telescope Array. If particles are indeed released early in the evolution of PWNe and can avoid severe adiabatic losses, PWN provides a natural explanation for the rising positron fraction in the local CR spectrum.

  8. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  9. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition.

    PubMed

    Jeong, Sang Yun; Choi, Kyoung Soon; Shin, Hye-Min; Kim, Taemin Ludvic; Song, Jaesun; Yoon, Sejun; Jang, Ho Won; Yoon, Myung-Han; Jeon, Cheolho; Lee, Jouhahn; Lee, Sanghan

    2017-01-11

    We have fabricated high quality bismuth vanadate (BiVO4) polycrystalline thin films as photoanodes by pulsed laser deposition (PLD) without a postannealing process. The structure of the grown films is the photocatalytically active phase of scheelite-monoclinic BiVO4 which was obtained by X-ray diffraction (XRD) analysis. The change of surface morphology for the BIVO4 thin films depending on growth temperature during synthesis has been observed by scanning electron microscopy (SEM), and its influence on water splitting performance was investigated. The current density of the BiVO4 film grown on a glass substrate covered with fluorine-doped tin oxide (FTO) at 230 °C was as high as 3.0 mA/cm(2) at 1.23 V versus the potential of the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, which is the highest value so far in previously reported BiVO4 films grown by physical vapor deposition (PVD) methods. We expect that doping of transition metal or decoration of oxygen evolution catalyst (OEC) in our BiVO4 film might further enhance the performance.

  10. Intestine of dystrophic mice presents enhanced contractile resistance to stretching despite morphological impairment.

    PubMed

    Alves, Gabriel A; Silva, Luisa R; Rosa, Eloi F; Aboulafia, Jeannine; Freymüller-Haapalainen, Edna; Souccar, Caden; Nouailhetas, Viviane L A

    2014-02-01

    Protein dystrophin is a component of the dystrophin-associated protein complex, which links the contractile machinery to the plasma membrane and to the extracellular matrix. Its absence leads to a condition known as Duchenne muscular dystrophy (DMD), a disease characterized by progressive skeletal muscle degeneration, motor disability, and early death. In mdx mice, the most common DMD animal model, loss of muscle cells is observed, but the overall disease alterations are less intense than in DMD patients. Alterations in gastrointestinal tissues from DMD patients and mdx mice are not yet completely understood. Thus, we investigated the possible relationships between morphological (light and electron microscopy) and contractile function (by recording the isometric contractile response) with alterations in Ca²⁺ handling in the ileum of mdx mice. We evidenced a 27% reduction in the ileal muscular layer thickness, a partial damage to the mucosal layer, and a partial damage to mitochondria of the intestinal myocytes. Functionally, the ileum from mdx presented an enhanced responsiveness during stretch, a mild impairment in both the electromechanical and pharmacomechanical signaling associated with altered calcium influx-induced contraction, with no alterations in the sarcoplasmic reticulum Ca²⁺ storage (maintenance of the caffeine and thapsigargin-induced contraction) compared with control animals. Thus, it is evidenced that the protein dystrophin plays an important role in the preservation of both the microstructure and ultrastructure of mice intestine, while exerting a minor but important role concerning the intestinal contractile responsiveness and calcium handling.

  11. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    PubMed

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  12. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    PubMed

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  13. Case of escape in cassava, Manihot esculenta Crantz.

    PubMed

    Nassar, N M A; Mendonza, M

    2017-02-08

    Two cassava escapes where collected from cultivated fields near natural habitat in Bolivia. They are described morphologically and analyzed cytogenetically in this study. It is suggested that they are the product of backcrosses of cassava interspecific hybrids with the cultigen itself, and that selective conditions have developed in which certain forms of cassava segregates have adapted to grow wildly in natural habitats near cassava fields. These segregates may hybridize with cultivated cassava upon coming in contact with such varieties. Because these escapes have incorporated useful genes from the wild into their genetic structure, they could be used for cassava improvement since their genetic barriers with other forms of cassava are very weak.

  14. Enhancing evaluation of post-storm morphologic response using aerial orthoimagery from Hurricane Sandy

    USGS Publications Warehouse

    Smith, Jacquelyn Rose; Long, Joseph W.; Stockdon, Hilary F.; Birchler, Justin J.

    2015-01-01

    Improved identification of morphological responses to storms is necessary for developing and maintaining predictive models of coastal change. Morphological responses to Hurricane Sandy were measured using lidar and orthophotos taken before and after the storm. Changes to dune features measured from lidar were compared to the occurrence of overwash deposits measured using orthophotos. Thresholds on morphologic change (e.g. overwash volume and dune height change) were defined to optimize agreement between the classification of lidar and orthophoto-derived dune erosion and overwash. A linear regression showed that overwash volume can be calculated from orthophoto-derived overwash extent.

  15. Extreme hydrodynamic atmospheric loss near the critical thermal escape regime

    NASA Astrophysics Data System (ADS)

    Erkaev, N. V.; Lammer, H.; Odert, P.; Kulikov, Yu. N.; Kislyakova, K. G.

    2015-04-01

    By considering martian-like planetary embryos inside the habitable zone of solar-like stars we study the behaviour of the hydrodynamic atmospheric escape of hydrogen for small values of the Jeans escape parameter β < 3, near the base of the thermosphere, that is defined as a ratio of the gravitational and thermal energy. Our study is based on a 1D hydrodynamic upper atmosphere model that calculates the volume heating rate in a hydrogen-dominated thermosphere due to the absorption of the stellar soft X-ray and extreme ultraviolet (XUV) flux. In case of a monatomic gas, we find that when the β value near the mesopause/homopause level exceeds a critical value of ˜2.5, there exists a steady hydrodynamic solution with a smooth transition from subsonic to supersonic flow. For a fixed XUV flux, the escape rate of the upper atmosphere is an increasing function of the temperature at the lower boundary. Our model results indicate a crucial enhancement of the atmospheric escape rate, when the Jeans escape parameter β decreases to this critical value. When β becomes ≤2.5, there is no stationary hydrodynamic transition from subsonic to supersonic flow. This is the case of a fast non-stationary atmospheric expansion that results in extreme thermal atmospheric escape rates.

  16. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  17. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  18. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  19. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  20. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  1. Pioneer Venus Orbiter (PVO) Ionosphere Evidence for Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Hoegy, W. R.

    2009-12-01

    An early estimate of escape of H2O from Venus [McElroy et al., 1982] using observed hot oxygen densities inferred by Nagy et al. [1981] from PVO OUVS 1304 Å dayglow and using ionization rates from photoionization and electron impact. This resulted in an estimated oxygen ionization rate planet-wide above the plasmapause of 3x1025 atoms/s. Based on the energetic O+ being swept up and removed by solar wind, McElroy et al. [1982] gave an estimate of a loss rate for O of 6x106 atoms/cm2/s. Using a different method of estimating escape based data in the ionotail of Venus, Brace et al. [1987] estimated a total planetary O+ escape rate of 5x1025 ions/s. Their estimate was based on PVO measurements of superthermal O+ (energy range 9-16 eV) in the tail ray plasma between 2000 and 3000 km. Their estimated global mean flux was 107 atoms/cm2/s. The two escape rates are remarkably close considering all the errors involved in such estimates of escape. A study of escape by Luhmann et al. [2008] using VEX observations at low solar activity finds modest escape rates, prompting the authors to reconsider the evidence from both PVO and VEX of the possibility of enhanced escape during extreme interplanetary conditions. We reexamine the variation of escape under different solar wind conditions using ion densities and plasma content in the dayside and nightside of Venus using PVO ionosphere density during times of high solar activity. Citations: Brace, L.H., W. T. Kasprzak, H.A. Taylor, R. F. Theis, C. T. Russess, A. Barnes, J. D. Mihalov, and D. M. Hunten, "The Ionotail of Venus: Its Configuration and Evidence for Ion Escape", J. Geophys. Res. 92, 15-26, 1987. Luhmann, J.G., A. Fedorov, S. Barabash, E. Carlsson, Y. Futaana, T.L. Zhang, C.T. Russell, J.G. Lyon, S.A. Ledvina, and D.A. Brain, “Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections”, J. Geophys. Res., 113, 2008. McElroy, M. B., M. J. Prather, J. M. Rodiquez, " Loss

  2. Lise Meitner's escape from Germany

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    1990-03-01

    Lise Meitner (1878-1968) achieved prominence as a nuclear physicist in Germany; although of Jewish origin, her Austrian citizenship exempted her from Nazi racial laws until the annexation of Austria in 1938 precipitated her dismissal. Forbidden to emigrate, she narrowly escaped to the Netherlands with the help of concerned friends in the international physics community.

  3. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  4. DYNAMICS OF THE ESCAPE RESPONSE.

    DTIC Science & Technology

    requirements. It has been shown that force is a lawful response measure under positive reinforcement (Notterman and Mintz, 1965). Subjects will adjust...concluded that response force in an escape situation is a lawful response measure, and that it operates in a manner similar to force under positive reinforcement .

  5. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-03-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.

  6. Silver nanocrystals of various morphologies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering

    SciTech Connect

    Chen, Limiao Jing, Qifeng; Chen, Jun; Wang, Bodong; Huang, Jianhan; Liu, Younian

    2013-11-15

    Silver nanostructures with dendritic, flower-like and irregular morphologies were controllably deposited on a silicon substrate in an aqueous hydrogen fluoride solution at room temperature. The morphology of the Ag nanostructures changed from dendritic to urchin-like, flowerlike and pinecone-like with increasing the concentration of polyvinyl pyrrolidone (MW = 55,000) from 2 to 10 mM. The Ag nanostructures were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Through a series of time-dependent morphological evolution studies, the growth processes of Ag nanostructures have been systematically investigated and the corresponding growth mechanisms have been discussed. In addition, the morphology-dependent surface-enhanced Raman scattering of as-synthesized Ag nanostructures were investigated. The results indicated that flower-like Ag nanostructure had the highest activity than the other Ag nanostructures for Rhodamine 6G probe molecules. Highlights: • A simple method was developed to prepare dendritic and flower-like Ag nanostructures. • The flower-like Ag nanoparticles exhibit highest SERS activity. • The SERS substrate based on flower-like Ag particles can be used to detect melamine.

  7. Enhancing L2 Students' Listening Transcription Ability through a Focus on Morphological Awareness

    ERIC Educational Resources Information Center

    Karimi, Mohammad Nabi

    2013-01-01

    Morphological awareness (MA), defined as the ability to understand the morphemic structure of the words, has been reported to affect various aspects of second language performance including reading comprehension ability, spelling performance, etc. But the concept has been far less treated with reference to l2 listening. Against this background,…

  8. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    PubMed

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach.

  9. Blue Origin Conducts Pad Escape Test

    NASA Video Gallery

    Blue Origin conducted a successful pad escape test Oct. 19 at the company's West Texas launch site, firing its pusher escape motor and launching a full-scale suborbital crew capsule from a simulate...

  10. Competing Contingencies for Escape Behavior: Effects of Negative Reinforcement Magnitude and Quality

    ERIC Educational Resources Information Center

    Hammond, Jennifer L.

    2009-01-01

    Previous research has shown that problem behavior maintained by social-negative reinforcement can be treated without escape extinction by enhancing the quality of positive reinforcement for an appropriate alternative response such as compliance. By contrast, negative reinforcement (escape) for compliance generally has been ineffective in the…

  11. Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees

    PubMed Central

    Wang, Junyang; Bai, Jing; Zhang, Yaqiong; Fang, Huagao; Wang, Zhigang

    2016-01-01

    The effects of long chain branching (LCB) degree on the shear-induced isothermal crystallization kinetics of a series of LCB polylactides (LCB PLAs) have been investigated by using rotational rheometer, polarized optical microscopy (POM) and scanning electron microscopy (SEM). Dynamic viscoelastic properties obtained by small-amplitude oscillatory shear (SAOS) tests indicate that LCB PLAs show more broadened relaxation time spectra with increasing LCB degree. Upon a pre-shear at the shear rate of 1 s−1 LCB PLAs show much faster crystallization kinetics than linear PLA and the crystallization kinetics is enhanced with increasing LCB degree. By modeling the system as a suspension the quantitative evaluation of nucleation density can be derived from rheological experiments. The nucleation density is greatly enhanced with increasing LCB degree and a saturation in shear time is observed. Crystalline morphologies for LCB PLAs observed by POM and SEM demonstrate the enhancement of nucleation density with increasing LCB degree and a transformation from spherulitic to orientated crystalline morphologies. The observation can be ascribed to longer relaxation time of the longest macromolecular chains and broadened, complex relaxation behaviors due to the introduction of LCB into PLA, which is essential in stabilizing the orientated crystal nuclei after pre-shear. PMID:27246803

  12. Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees

    NASA Astrophysics Data System (ADS)

    Wang, Junyang; Bai, Jing; Zhang, Yaqiong; Fang, Huagao; Wang, Zhigang

    2016-06-01

    The effects of long chain branching (LCB) degree on the shear-induced isothermal crystallization kinetics of a series of LCB polylactides (LCB PLAs) have been investigated by using rotational rheometer, polarized optical microscopy (POM) and scanning electron microscopy (SEM). Dynamic viscoelastic properties obtained by small-amplitude oscillatory shear (SAOS) tests indicate that LCB PLAs show more broadened relaxation time spectra with increasing LCB degree. Upon a pre-shear at the shear rate of 1 s‑1 LCB PLAs show much faster crystallization kinetics than linear PLA and the crystallization kinetics is enhanced with increasing LCB degree. By modeling the system as a suspension the quantitative evaluation of nucleation density can be derived from rheological experiments. The nucleation density is greatly enhanced with increasing LCB degree and a saturation in shear time is observed. Crystalline morphologies for LCB PLAs observed by POM and SEM demonstrate the enhancement of nucleation density with increasing LCB degree and a transformation from spherulitic to orientated crystalline morphologies. The observation can be ascribed to longer relaxation time of the longest macromolecular chains and broadened, complex relaxation behaviors due to the introduction of LCB into PLA, which is essential in stabilizing the orientated crystal nuclei after pre-shear.

  13. Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees.

    PubMed

    Wang, Junyang; Bai, Jing; Zhang, Yaqiong; Fang, Huagao; Wang, Zhigang

    2016-06-01

    The effects of long chain branching (LCB) degree on the shear-induced isothermal crystallization kinetics of a series of LCB polylactides (LCB PLAs) have been investigated by using rotational rheometer, polarized optical microscopy (POM) and scanning electron microscopy (SEM). Dynamic viscoelastic properties obtained by small-amplitude oscillatory shear (SAOS) tests indicate that LCB PLAs show more broadened relaxation time spectra with increasing LCB degree. Upon a pre-shear at the shear rate of 1 s(-1) LCB PLAs show much faster crystallization kinetics than linear PLA and the crystallization kinetics is enhanced with increasing LCB degree. By modeling the system as a suspension the quantitative evaluation of nucleation density can be derived from rheological experiments. The nucleation density is greatly enhanced with increasing LCB degree and a saturation in shear time is observed. Crystalline morphologies for LCB PLAs observed by POM and SEM demonstrate the enhancement of nucleation density with increasing LCB degree and a transformation from spherulitic to orientated crystalline morphologies. The observation can be ascribed to longer relaxation time of the longest macromolecular chains and broadened, complex relaxation behaviors due to the introduction of LCB into PLA, which is essential in stabilizing the orientated crystal nuclei after pre-shear.

  14. Orbital Effects on Mercury's Escaping Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2009-01-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 deg field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R(sub m)) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R(sub m) during the January 2008 MESSENGER Fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 x 10(exp 23) atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  15. Cold Ion Escape from Mars

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  16. Enhancing L2 students' listening transcription ability through a focus on morphological awareness.

    PubMed

    Karimi, Mohammad Nabi

    2013-10-01

    Morphological awareness (MA), defined as the ability to understand the morphemic structure of the words, has been reported to affect various aspects of second language performance including reading comprehension ability, spelling performance, etc. But the concept has been far less treated with reference to l2 listening. Against this background, this study investigated the link between MA and listening transcription ability of Iranian pre-university students. To this aim, 40 pre-university students participated in the study and were assigned to control and experimental groups. Prior to giving any instruction regarding the morphological character of English words, the two groups were given three short listening passages to transcribe as pre-tests. The results of the independent-samples t test run for the purpose of comparing the means of the two groups in the pre-test revealed no significant difference between the two groups in their listening transcription ability. The experimental group, then, received five 1-h sessions briefing them on the morphological realization of English words. The two groups were then given three short listening passages to transcribe as their as post-tests. The results of the independent-samples t tests attested to the significant difference between the two groups; thus, supporting the relationship between MA and listening transcription ability.

  17. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    PubMed

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-02-24

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends upon the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology in order to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus sp. PCC 7942. The Min system has established functions in controlling cell division by regulating assembly of FtsZ, a tubulin-like protein required to define the bacterial division plane. We show that altering expression of two FtsZ-regulatory proteins, MinC and Cdv3, permits control over cell morphology by disrupting FtsZ localization and cell division, without preventing continued cell growth. By varying the expression of these proteins, we can tune the length of cyanobacterial cells across a broad dynamic range: anywhere from a ∼20% increased length relative to wildtype to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach towards decreasing harvesting and processing costs associated with mass cyanobacterial cultivation through altering morphology at the cellular level.Importance: We show that the cell length of a model cyanobacterial species can be programmed through the rational manipulation of expression of protein factors that suppress cell division. In some instances, we are able to increase the size of these cells to near millimeter lengths through this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore

  18. Gas7b (growth arrest specific protein 7b) regulates neuronal cell morphology by enhancing microtubule and actin filament assembly.

    PubMed

    Gotoh, Aina; Hidaka, Masafumi; Hirose, Keiko; Uchida, Takafumi

    2013-11-29

    Neurons undergo several morphological changes as a part of normal neuron maturation process. Alzheimer disease is associated with increased neuroproliferation and impaired neuronal maturation. In this study, we demonstrated that Gas7b (growth arrest specific protein 7b) expression in a neuronal cell line, Neuro 2A, induces cell maturation by facilitating formation of dendrite-like processes and/or filopodia projections and that Gas7b co-localizes with neurite microtubules. Molecular analysis was performed to evaluate whether Gas7b associates with actin filaments and microtubules, and the data revealed two novel roles of Gas7b in neurite outgrowth: we showed that Gas7b enhances bundling of several microtubule filaments and connects microtubules with actin filaments. These results suggest that Gas7b governs neural cell morphogenesis by enhancing the coordination between actin filaments and microtubules. We conclude that lower neuronal Gas7b levels may impact Alzheimer disease progression.

  19. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians.

    PubMed

    Schneider, Peter; Scherg, Michael; Dosch, H Günter; Specht, Hans J; Gutschalk, Alexander; Rupp, André

    2002-07-01

    Using magnetoencephalography (MEG), we compared the processing of sinusoidal tones in the auditory cortex of 12 non-musicians, 12 professional musicians and 13 amateur musicians. We found neurophysiological and anatomical differences between groups. In professional musicians as compared to non-musicians, the activity evoked in primary auditory cortex 19-30 ms after stimulus onset was 102% larger, and the gray matter volume of the anteromedial portion of Heschl's gyrus was 130% larger. Both quantities were highly correlated with musical aptitude, as measured by psychometric evaluation. These results indicate that both the morphology and neurophysiology of Heschl's gyrus have an essential impact on musical aptitude.

  20. Niobium doping induced morphological changes and enhanced photocatalytic performance of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Lin, Ting-Han; Chih, Jyun-Sian; Hsiao, Kai-Chi; Wu, Po-Yeh

    2017-04-01

    In order to develop high-performance photocatalysts that are easy to produce even in industrial quantities, we developed a facile method of preparing niobium-doped titanium dioxide (Nb:TiO2) by hydrothermal synthesis and followed by thermal annealing treatment. Niobium-ion doping has been considered as an effective way to improve Nb:TiO2 performance for applications in photocatalysis. Niobium-ion doping of anatase TiO2 induced the morphological changes of Nb:TiO2. Morphological analysis shows sub-microscale fibers at doping concentration lower than 1.00 mol % and nanoscale rods at the doping concentration higher than 1.00 mol %. For the catalyzed photodegradation of methyl orange under visible light irradiation, 0.50 mol % Nb:TiO2 shows the highest activity among the synthesized Nb:TiO2 specimens. Also, for photocatalytic hydrogen generation, its photocatalytic activity is even higher than that of commercial TiO2-P25. In this study, we demonstrated the fabrication of a series of superior Nb:TiO2 specimens. It is a reasonable alternative to commercial TiO2 materials for various applications in the decomposition of organic dyes under visible light irradiation.

  1. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen; Chen, Jihua

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  2. Brain size as a driver of avian escape strategy.

    PubMed

    Samia, Diogo S M; Pape Møller, Anders; Blumstein, Daniel T

    2015-07-03

    After detecting an approaching predator, animals make a decision when to flee. Prey will initiate flight soon after detecting a predator so as to minimize attentional costs related to on-going monitoring of the whereabouts of the predator. Such costs may compete with foraging and other maintenance activities and hence be larger than the costs of immediate flight. The drivers of interspecific variation in escape strategy are poorly known. Here we investigated the morphological, life history and natural history traits that correlate with variation in avian escape strategy across a sample of 96 species of birds. Brain mass, body size, habitat structure and group size were the main predictors of escape strategy. The direction of the effect of these traits was consistent with selection for a reduction of monitoring costs. Therefore, attentional costs depend on relative brain size, which determines the ability to monitor the whereabouts of potential predators and the difficulty of this task as reflected by habitat and social complexity. Thus brain size, and the cognitive functions associated with it, constitute a general framework for explaining the effects of body size, habitat structure and sociality identified as determinants of avian escape strategy.

  3. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact

    PubMed Central

    2014-01-01

    As morphology plays a relevant role in solid/solid catalysis, where the number of contact points is a critical feature in this kind of reaction, three different ceria morphologies have been investigated in this work as soot oxidation catalysts: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m2/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m2/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m2/g) and a high availability of contact points. A high microporous volume of 0.03 cm3/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters. PMID:24940178

  4. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact.

    PubMed

    Miceli, Paolo; Bensaid, Samir; Russo, Nunzio; Fino, Debora

    2014-01-01

    AS MORPHOLOGY PLAYS A RELEVANT ROLE IN SOLID/SOLID CATALYSIS, WHERE THE NUMBER OF CONTACT POINTS IS A CRITICAL FEATURE IN THIS KIND OF REACTION, THREE DIFFERENT CERIA MORPHOLOGIES HAVE BEEN INVESTIGATED IN THIS WORK AS SOOT OXIDATION CATALYSTS: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m(2)/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m(2)/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m(2)/g) and a high availability of contact points. A high microporous volume of 0.03 cm(3)/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T 10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters.

  5. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  6. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  7. Malaria Parasites: The Great Escape

    PubMed Central

    Rénia, Laurent; Goh, Yun Shan

    2016-01-01

    Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses. PMID:27872623

  8. Experiment for Development of Simple Escape Countermeasures for Frogs Falling into Concrete Canals

    NASA Astrophysics Data System (ADS)

    Watabe, Keiji; Mori, Atsushi; Koizumi, Noriyuki; Takemura, Takeshi; Park, Myeong Soo

    Three prototype escape countermeasures for frogs that can be easily installed in U-shaped canals with widths of 30-50 cm and depths of 30-50 cm were experimentally produced because frogs cannot escape from agricultural canals with deep concrete walls after falling into the canal. The differences of effectiveness of the 3 prototypes in places for the countermeasures (1 and 2) and flow conditions (dry and water running) were investigated for 2 frog species (Tokyo Daruma Pond Frog and Japanese Brown Frog). The brown frogs escaped from the canals more easily than the pond frogs. The brown frogs escaped regardless of their body size, but the small pond frogs escaped more easily than the large pond frogs. The prototype with slopes beside both canal walls and a net spread across the center line of the canal enabled frogs to escape from the canal more easily than the prototypes with only slopes or nets beside both canal walls. Increasing the number of places for the countermeasures enhanced frog escape. The differences in frog escape between dry canals and canals with water running were not significant. Therefore, the prototypes were confirmed sufficient as escape countermeasures that is inexpensive and can be easily placed in and removed from agricultural canals.

  9. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    PubMed

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  10. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Hamad, Syed; Ahamad Mohiddon, Md.; Soma, Venugopal Rao; Ghanashyam Krishna, M.

    2016-03-01

    The detection of secondary explosive molecules (e.g., ANTA, FOX-7, and CL-20) using Ag decorated ZnO nanostructures as surface enhanced Raman scattering (SERS) probes is demonstrated. ZnO nanostructures were grown on borosilicate glass substrates by rapid thermal oxidation of metallic Zn films at 500 °C. The oxide nanostructures, including nanosheets and nanowires, emerged over the surface of the Zn film leaving behind the metal residue. We demonstrate that SERS measurements with concentrations as low as 10 μM, of the three explosive molecules ANTA, FOX-7, and CL-20 over ZnO/Ag nanostructures, resulted in enhancement factors of ˜107, ˜107, and ˜104, respectively. These measurements validate the high sensitivity of detection of explosive molecules using Ag decorated ZnO nanostructures as SERS substrates. The Zn metal residue and conditions of annealing play an important role in determining the detection sensitivity.

  11. Wide housing space and chronic exercise enhance physical fitness and adipose tissue morphology in rats.

    PubMed

    Scariot, Pedro Paulo Menezes; de Barros Manchado-Gobatto, Fúlvia; Torsoni, Adriana Souza; Torsoni, Marcio Alberto; dos Reis, Ivan Gustavo Masselli; Beck, Wladimir Rafael; Gobatto, Claudio Alexandre

    2015-05-01

    The current cages commonly used in animal experiments can prevent rats from engaging in most forms of natural locomotion behaviors. These animals tend to exhibit sedentary habits. Here, we show that a combination of wide housing space and training exercise helps to reduce white adipose mass and to increase brown adipose mass. Thus, this combination is a useful strategy for truly enhancing the physical fitness of captive rats commonly used in exercise-related interventional studies and to maximize their welfare.

  12. Polyolefin Nanocomposites with Enhanced Photostability Weathering Effect on Morphology and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Panda, Bishnu P.; Mohanty, Smita; Nayak, Sanjay K.

    2014-09-01

    This research aims to study the effect of accelerated weathering conditions on the photodegradation characteristics for fibrillar silicate clay-filled Polypropylene (PP) nanocomposites in the presence of metallocene linear low density polyethylene (m-LLDPE). Silane-treated attapulgite (ATP) clay along with ethylene octene elastomer-grafted maleic anhydride (POE-g-MAH) was used to compatibilize both blend and nanocomposite system. The result showed that developed PP/m-LLDPE nanocomposites displayed good UV resistance with little change in retained stress-at-break and elongation-at-break values. Balanced loss of toughness values noted maintaining higher fracture toughness values for nanocomposites containing 5 phr ATP clay. Infrared analysis was used to detect progress of degradation followed by change in carbonyl index revealed predominated chain scission in late irradiation, while crosslinking was dominant for initial irradiation period. An increase in crystallinity during UV exposure (chemi-crystallization) was detected with exposure time for all compositions and virtually independent of initial structure of the polymer. The highest value of crystallization observed for PP and the lowest one for nanocomposites containing 5 phr of ATP clay revealed good oxidation stability. Surface morphology revealed induced degradation throughout cross-section of PP, while severity of the surface degradation was significantly reduced for developed nanocomposites.

  13. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    PubMed

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-02

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing.

  14. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  15. Escape manoeuvres in the spiny dogfish (Squalus acanthias).

    PubMed

    Domenici, Paolo; Standen, Emily M; Levine, Robert P

    2004-06-01

    The locomotor performance of dogfish during escape responses was observed by means of high-speed video. Dogfish show C-type escape responses that are comparable with those shown previously in teleosts. Dogfish show high variability of turning rates of the anterior part of the body (head to centre of mass), i.e. with peak values from 434 to 1023 deg. s(-1). We suggest that this variability may be due to the presence of two types of escape manoeuvres, i.e. responses with high and low turning rates, as previously found in a teleost species. Fast responses (i.e. with high maximum turning rates, ranging between 766 and 1023 deg. s(-1)) showed significantly higher locomotor performance than slow responses (i.e. with low maximum turning rates, ranging between 434 and 593 deg. s(-1)) in terms of distance covered, speed and acceleration, although no differences were found in the turning radius of the centre of mass during the escape manoeuvres. The existence of two types of escape responses would have implications in terms of both neural control and muscular activation patterns. When compared with literature data for the locomotor performance of bony fishes, dogfish showed relatively low speed and acceleration, comparable turning rates and a turning radius that is in the low part of the range when compared with teleosts, indicating relatively high manoeuvrability. The locomotor performance observed in dogfish is consistent with their morphological characteristics: (1) low locomotor performance associated with low thrust developed by their relatively small posterior depth of section and (2) relatively high manoeuvrability associated with their high flexibility.

  16. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    SciTech Connect

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N. )

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seed number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.

  17. Impacts of enhanced central Pacific ENSO on wave climate and headland-bay beach morphology

    NASA Astrophysics Data System (ADS)

    Mortlock, Thomas R.; Goodwin, Ian D.

    2016-06-01

    Wave climate and Pacific basin coastal behaviour associated with El Niño Southern Oscillation (ENSO) is understood at a reconnaissance level, but the coastal response to different central Pacific (CP) versus eastern Pacific (EP) flavours of ENSO is unknown. We show that CP ENSO events produce different patterns of directional wave power to EP ENSO along the southeast Australian shelf and southwest Pacific region, because of significant variability in trade-wind wave generation. The modulation of the trade wind wave climate during CP ENSO has thus far been neglected in existing coastal process studies. We also show that coastal change between CP and EP ENSO cannot be inferred from shifts in the deepwater wave climate. This is because variability in trade wind wave generation is masked in deepwater by the persistence of high power extra-tropical waves that have reduced impact on nearshore processes due to high wave refraction. Morphodynamic modelling in a headland-bay beach indicates that CP ENSO leads to higher coastal erosion potential and slower post-storm recovery than EP ENSO during an El Niño/La Niña cycle. We show that the alongshore variability in beach morphological type can be used to model the static equilibrium planform response for each ENSO phase. Results indicate that shoreline response to ENSO in most headland-bay beach coasts is not as simple as the existing paradigm that (anti-) clockwise rotation occurs during El Niño (La Niña). Our methods provide a second-order approach to project coastal response and predict the discrete shoreline rotations for ENSO flavours.

  18. Catalyst-free growth and tailoring morphology of zinc oxide nanostructures by plasma-enhanced deposition at low temperature

    NASA Astrophysics Data System (ADS)

    Chen, W. Z.; Wang, B. B.; Qu, Y. Z.; Huang, X.; Ostrikov, K.; Levchenko, I.; Xu, S.; Cheng, Q. J.

    2017-03-01

    ZnO nanostructures were grown under different deposition conditions from Zn films pre-deposited onto Si substrates in O2-Ar plasma, ignited in an advanced custom-designed plasma-enhanced horizontal tube furnace deposition system. The morphology and structure of the synthesized ZnO nanostructures were systematically and extensively investigated by scanning and transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. It is shown that the morphology of ZnO nanostructures changes from the hybrid ZnO/nanoparticle and nanorod system to the mixture of ZnO nanosheets and nanorods when the growth temperature increases, and the density of ZnO nanorods increases with the increase of oxygen flow rate. The formation of ZnO nanostructures was explained in terms of motion of Zn atoms on the Zn nanoparticle surfaces, and to the local melting of Zn nanoparticles or nanosheets. Moreover, the photoluminescence properties of ZnO nanostructures were studied, and it was revealed that the photoluminescence spectrum features two strong ultraviolet bands at about 378 and 399 nm and a series of weak blue bands within a range of 440-484 nm, related to the emissions of free excitons, near-band edge, and defects of ZnO nanostructures. The obtained results enrich our knowledge on the synthesis of ZnO-based nanostructures and contribute to the development of ZnO-based optoelectronic devices.

  19. Model of a mechanical clock escapement

    NASA Astrophysics Data System (ADS)

    Moline, David; Wagner, John; Volk, Eugene

    2012-07-01

    The mechanical tower clock originated in Europe during the 14th century to sound hourly bells and later display hands on a dial. An important innovation was the escapement mechanism, which converts stored energy into oscillatory motion for fixed time intervals through the pendulum swing. Previous work has modeled the escapement mechanism in terms of inelastic and elastic collisions. We derive and experimentally verify a theoretical model in terms of impulsive differential equations for the Graham escapement mechanism in a Seth Thomas tower clock. The model offers insight into the clock's mechanical behavior and the functionality of the deadbeat escapement mechanism.

  20. Gelatin-stabilized copper nanoparticles: Synthesis, morphology, and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Yang, Houbo

    2013-04-01

    Gelatin-stabilized spherical-shaped copper nanoparticles are synthesized by a simple chemical reaction. The synthesis is performed by the reduction of copper (II) salt with hydrazine in aqueous solution under atmospheric air in the presence of gelatin as capping agent. Advantages of the synthetic method include its production of water dispersible copper nanoparticles at room temperature under no inert atmosphere and making the synthesis more environmental friendly. The synthesized copper nanoparticles are investigated by UV-vis spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS) and transmission electron microscopy (TEM). The results demonstrate that the amount of gelatin is important for the formation of the copper nanoparticles. The resulting colloidal copper nanoparticles exhibit large surface-enhanced Raman scattering (SERS) signals.

  1. Surface-enhanced Raman scattering from silver nanostructures with different morphologies

    NASA Astrophysics Data System (ADS)

    Zhang, W. C.; Wu, X. L.; Kan, C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, Paul K.

    2010-07-01

    Scanning electron microscopy and X-ray diffraction reveal that four different types of crystalline silver nanostructures including nanoparticles, nanowires, nanocubes, and bipyramids are synthesized by a solvothermal method by reducing silver nitrate with ethylene glycol using poly(vinylpyrrolidone) as an adsorption agent and adding different quantities of sodium chloride to the solution. These nanostructures which exhibit different surface plasma resonance properties in the ultraviolet-visible region are shown to be good surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G molecules. Our results demonstrate that the silver nanocubes, bipyramids with sharp corners and edges, and aggregated silver nanoparticles possess better SERS properties than the silver nanowires, indicating that they can serve as high-sensitivity substrates in SERS-based measurements.

  2. Enhanced fluorescence, morphological and thermal properties of CdSe/ZnS quantum dots incorporated in silicone resin.

    PubMed

    Trung, Nguyen Ngoc; Luu, Quynh-Phuong; Son, Bui Thanh; Sinh, Le Hoang; Bae, Jin-Young

    2013-01-01

    Our research focused on the morphological and optical properties of core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots incorporated in silicone resin. After dispersing ligand-coated quantum dots into Dow Corning two-component silicone resins (OE6630A and OE6630B at 1:4 mixing ratio by weight), the resins were cured at 150 degrees C for 1.5 hours to produce the quantum dot-silicone resin nanocomposites. The optical, morphological and thermal properties of the quantum dot incorporated in silicone resin were investigated by ultraviolet-visible, fluorescence, atomic force microscopy, field emission scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis. When the quantum dots, originally coated with trioctylamine ligand, were transferred from a chloroform solvent to methyl phenyl silicone oil and silicone resins of high viscosity, the quantum dots showed increased turbidity and lowered fluorescence intensity. Fluorescence enhancement was investigated by using various functional ligands such as poly(1, 1-dimethyl silazane) (multi-silazane), hexamethylenediamine (diamine), cysteamine (amino-thiol), triethylsilane (reactive hydrosilane), hexamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane (reactive amines). The results showed that the reactive amines were good additive ligands for enhancing the fluorescence of CdSe/ZnS quantum dots dispersed in the silicone resins, providing 1.2-2.48 Im/W and 4.2-5.56% higher luminous efficiency and photoluminescence conversion efficiency, respectively. We speculate that these reactive amines donate electrons to the surface electron traps, thereby reducing charge recombination. In addition, quantum dots aggregate to form quantum dot clusters with a relatively homogeneously dispersed in the silicone resin matrices, showing good emission properties due to surface passivation and good colloidal stability with the addition of silazane compounds to the resin

  3. Effect of Uveal Melanocytes on Choroidal Morphology in Rhesus Macaques and Humans on Enhanced-Depth Imaging Optical Coherence Tomography

    PubMed Central

    Yiu, Glenn; Vuong, Vivian S.; Oltjen, Sharon; Cunefare, David; Farsiu, Sina; Garzel, Laura; Roberts, Jeffrey; Thomasy, Sara M.

    2016-01-01

    Purpose To compare cross-sectional choroidal morphology in rhesus macaque and human eyes using enhanced-depth imaging optical coherence tomography (EDI-OCT) and histologic analysis. Methods Enhanced-depth imaging–OCT images from 25 rhesus macaque and 30 human eyes were evaluated for choriocapillaris and choroidal–scleral junction (CSJ) visibility in the central macula based on OCT reflectivity profiles, and compared with age-matched histologic sections. Semiautomated segmentation of the choriocapillaris and CSJ was used to measure choriocapillary and choroidal thickness, respectively. Multivariate regression was performed to determine the association of age, refractive error, and race with choriocapillaris and CSJ visibility. Results Rhesus macaques exhibit a distinct hyporeflective choriocapillaris layer on EDI-OCT, while the CSJ cannot be visualized. In contrast, humans show variable reflectivities of the choriocapillaris, with a distinct CSJ seen in many subjects. Histologic sections demonstrate large, darkly pigmented melanocytes that are densely distributed in the macaque choroid, while melanocytes in humans are smaller, less pigmented, and variably distributed. Optical coherence tomography reflectivity patterns of the choroid appear to correspond to the density, size, and pigmentation of choroidal melanocytes. Mean choriocapillary thickness was similar between the two species (19.3 ± 3.4 vs. 19.8 ± 3.4 μm, P = 0.615), but choroidal thickness may be lower in macaques than in humans (191.2 ± 43.0 vs. 266.8 ± 78.0 μm, P < 0.001). Racial differences in uveal pigmentation also appear to affect the visibility of the choriocapillaris and CSJ on EDI-OCT. Conclusions Pigmented uveal melanocytes affect choroidal morphology on EDI-OCT in rhesus macaque and human eyes. Racial differences in pigmentation may affect choriocapillaris and CSJ visibility, and may influence the accuracy of choroidal thickness measurements. PMID:27792810

  4. Guidance strategies for microburst escape

    NASA Astrophysics Data System (ADS)

    Dogan, Atilla

    This study compares three escape guidance laws for microburst encounters during final landing approach: Altitude-Guidance, Dive-Guidance, and Pitch-Guidance from the point of view of safety. It also introduces Modified Altitude- and Dive-Guidance laws. In this study, we use a full, 6-DOF, nonlinear, rigid-body aircraft model, including the effects of windshear and wind vorticity, and a model of microburst with turbulence. We also model the effect of stall prevention on the escape path. We first construct a new safety metric that quantifies the aircraft upward force capability in a microburst encounter. In the absence of turbulence, the safety factor is analytically proven to be a decreasing function of altitude. This suggests that descending to a low altitude may improve safety in the sense that the aircraft will have more upward force capability to maintain its altitude. In the presence of stochastic turbulence, the safety factor is treated as a random variable and its probability distribution function is analytically approximated as a function of altitude. This approximation reveals that the probability of safety factor being less than a given value has a minimum, i.e. safety increases as the altitude decreases up to a certain altitude, then starts decreasing. In the dissertation, two different approaches are used for comparison. (1) In a sample analysis approach, typical samples of the time histories of various variables are analyzed. Additionally, an animation of an aircraft escaping a microburst is produced and the behavior of the aircraft along with its inertial velocity and airspeed vectors are studied. (2) In a statistical approach, the probability distribution of the minimum altitude is estimated by the Monte Carlo Method when the statistical properties of the microburst parameters are known. Both approaches suggest that, within the modeling assumptions of this dissertation, and in the absence of human factors, altitude and dive guidance with low commanded

  5. Correlations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Morphologic, Angiogenic, and Molecular Prognostic Factors in Rectal Cancer

    PubMed Central

    Hong, Hye-Suk; Kim, Se Hoon; Park, Hae-Jeong; Park, Mi-Suk; Kim, Won Ho; Kim, Nam Kyu; Lee, Jae Mun; Cho, Hyeon Je

    2013-01-01

    Purpose To investigate the correlations between parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and prognostic factors in rectal cancer. Materials and Methods We studied 29 patients with rectal cancer who underwent gadolinium contrast-enhanced, T1-weighted DCE-MRI with a three Tesla scanner prior to surgery. Signal intensity on DCE-MRI was independently measured by two observers to examine reproducibility. A time-signal intensity curve was generated, from which four semiquantitative parameters were calculated: steepest slope (SLP), time to peak (Tp), relative enhancement during a rapid rise (Erise), and maximal enhancement (Emax). Morphologic prognostic factors including T stage, N stage, and histologic grade were identified. Tumor angiogenesis was evaluated in terms of microvessel count (MVC) and microvessel area (MVA) by morphometric study. As molecular factors, the mutation status of the K-ras oncogene and microsatellite instability were assessed. DCE-MRI parameters were correlated with each prognostic factor using bivariate correlation analysis. A p-value of <0.05 was considered significant. Results Erise was significantly correlated with N stage (r=-0.387 and -0.393, respectively, for two independent data), and Tp was significantly correlated with histologic grade (r=0.466 and 0.489, respectively). MVA was significantly correlated with SLP (r=-0.532 and -0.535, respectively) and Erise (r=-0.511 and -0.446, respectively). MVC was significantly correlated with Emax (r=-0.435 and -0.386, respectively). No significant correlations were found between DCE-MRI parameters and T stage, K-ras mutation, or microsatellite instability. Conclusion DCE-MRI may provide useful prognostic information in terms of histologic differentiation and angiogenesis in rectal cancer. PMID:23225808

  6. Electronic Escape Trails for Firefighters

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Schipper, John; Betts, Bradley

    2008-01-01

    A proposed wireless-communication and data-processing system would exploit recent advances in radio-frequency identification devices (RFIDs) and software to establish information lifelines between firefighters in a burning building and a fire chief at a control station near but outside the building. The system would enable identification of trails that firefighters and others could follow to escape from the building, including identification of new trails should previously established trails become blocked. The system would include a transceiver unit and a computer at the control station, portable transceiver units carried by the firefighters in the building, and RFID tags that the firefighters would place at multiple locations as they move into and through the building (see figure). Each RFID tag, having a size of the order of a few centimeters, would include at least standard RFID circuitry and possibly sensors for measuring such other relevant environmental parameters as temperature, levels of light and sound, concentration of oxygen, concentrations of hazardous chemicals in smoke, and/or levels of nuclear radiation. The RFID tags would be activated and interrogated by the firefighters and control-station transceivers. Preferably, RFID tags would be configured to communicate with each other and with the firefighters units and the control station in an ordered sequence, with built-in redundancy. In a typical scenario, as firefighters moved through a building, they would scatter many RFID tags into smoke-obscured areas by use of a compressed-air gun. Alternatively or in addition, they would mark escape trails by dropping RFID tags at such points of interest as mantraps, hot spots, and trail waypoints. The RFID tags could be of different types, operating at different frequencies to identify their functions, and possibly responding by emitting audible beeps when activated by signals transmitted by transceiver units carried by nearby firefighters.

  7. Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations.

    PubMed

    Chacón, R; Martínez, J A

    2002-03-01

    Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases. For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete series of convergents up to the convergent giving the chosen rational approximation.

  8. Deformation-driven fluid escape in the Levant Basin, offshore southern Israel

    NASA Astrophysics Data System (ADS)

    Eruteya, Ovie Emmanuel; Waldmann, Nicolas; Reshef, Moshe; Ben-Avraham, Zvi

    2016-04-01

    Submarine fluid emissions are global phenomena, which can be inferred from the presence of seafloor morphologies (e.g. pockmarks, mud volcanoes) occurring in various geological settings. However, despite the Levant Basin been a prolific hydrocarbon province, only a paucity of fluid escape morphologies have been identified on the present-day seafloor. In this study, we present a detailed analysis of a newly available high-resolution 3D seismic reflection dataset from offshore southern Israel. Evidences of subsurface fluid plumbing and escape are manifested here as present-day seafloor pockmarks, paleo-pockmarks, pipe structures and enhanced reflectivity patterns. Interestingly, these pockmarks are situated on and around bathymetric highs, which are ridges related to the Palmachim Disturbance. Our initial results show the fluid flow structures are spatially localized above a region of complex evaporites evacuation at depth, and likewise proximal to a shallower region characterized by high amplitude reflectors. The latter may be evidences for a shallow gas system. Our initial hypothesis proposes a dual shallow-source driven focused fluid flow system. Yet, we favour a deeper Messinian plumbing system driving fluid flow across the overburden in the study area. Corroborating this are fault systems characterized near the pipes feeding the seafloor pockmarks and paleo-pockmark, detaching in the upper Messinian evaporite. We further suggest that a combined supra-salt deformation system arising from the evacuation of the Messinian evaporites coupled with gravitational tectonics are in charge of modulating focused fluid flow. Under this scenario the emplaced mass transport complex acts as a transient reservoir for fluid flow, dewatering under deformation and channelling fluids towards the seafloor for expulsion. However, the contributions from microbially-generated methane in the shallow Quaternary overburden associated with the channel-levee complex cannot be neglected.

  9. Escape of H and D from Mars' Atmosphere and the Evolution of its Crustal Water Reservoirs

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The evolution of water on Mars involves preferential escape of hydrogen over deuterium, producing its deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. In the past decade, several estimates have been made of the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Some of the differences in the magnitudes of the reservoirs are influenced by differences in the following basic parameters: composition of H, D, H2 and HD at the exobase; thermal history of the atmosphere; escape mechanisms; and the D/H ratio of earlier epochs as inferred from meteorites. The dominant escape mechanism used in the estimates is Jeans escape. However, the Jeans escape flux is enhanced considerably when atmospheric winds and rotation are applied at the exobase . This constraint is of particular importance because the enhancement of the D escape flux can be an order of magnitude greater than the enhancement of the H escape flux. This preferential enhancement of the D escape flux over that of H means that a great deal more H must escape (than in the case without winds and rotation) to attain the same D/H ratio in the today's atmosphere. Another new constraint on reservoir magnitudes comes from the recent interpretation of Martian meteorite data, which suggests that the D/H ratio was 2 times that of terrestrial water at the end of the heavy bombardment period (1). These two constraints together lead to larger current and ancient crustal water reservoirs. Applying Rayleigh fractionation, new estimates of the sizes of the water reservoirs are made using the above constraints along with plausible values for hydrogen and deuterium densities, temperatures, wind speeds and rotation rates at the exobase.

  10. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.

    PubMed

    Coban, Hasan B; Demirci, Ali; Turhan, Irfan

    2015-06-01

    Phytase can be used in animal's diets to increase the absorption of several divalent ions, amino acids and proteins and to decrease the excessive phosphorus release in manure to prevent negative effects on the environment. This study aimed to enhance the current submerged fungal phytase productions with a novel fermentation technique by evaluating the effect of the various microparticles on Aspergillus ficuum phytase production. It was observed that microparticles prevented bulk fungal pellet growth, decreased average fungal pellet size and significantly increased phytase activity in the submerged fermentation. Microbial structure imaging results showed that the average fungal pellet radius decreased from 800 to 500 and 200 µm by addition of 15 g/L aluminum oxide and talcum, respectively, in shake-flask fermentation. Also, addition of 15 g/L of talcum and aluminum oxide increased phytase activity to 2.01 and 2.93 U/ml, respectively, compared to control (1.02 U/ml) in shake-flask fermentation. Additionally, phytase activity reached 6.49 U/ml within 96 h of fermentation with the addition of 15 g/L of talcum, whereas the maximum phytase activity was only 3.45 U/ml at 120 h of fermentation for the control in the 1-L working volume bioreactors. In conclusion, microparticles significantly increased fungal phytase activity and production yield compared to control fermentation.

  11. Removal of Micrometer Size Morphological Defects and Enhancement of Ultraviolet Emission by Thermal Treatment of Ga-Doped ZnO Nanostructures

    PubMed Central

    Manzoor, Umair; Kim, Do K.; Islam, Mohammad; Bhatti, Arshad S.

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures. PMID:24489725

  12. Escape as Reinforcement and Escape Extinction in the Treatment of Feeding Problems

    ERIC Educational Resources Information Center

    LaRue, Robert H.; Stewart, Victoria; Piazza, Cathleen C.; Volkert, Valerie M.; Patel, Meeta R.; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of…

  13. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  14. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    PubMed Central

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  15. Escaping in Literature. Teaching in the Library.

    ERIC Educational Resources Information Center

    Hurst, Carol Otis

    1993-01-01

    Explores the "escape" genre of children's literature, and recommends and describes several books that deal with such topics as escape from prison camps, from slavery, from the Holocaust, from war, and from Utopian societies. These books should provoke meaningful classroom discussions and allow children to view their own world from different…

  16. Submarine 'safe to escape' studies in man.

    PubMed

    Jurd, K M; Seddon, F M; Thacker, J C; Blogg, S L; Stansfield, M R D; White, M G; Loveman, G A M

    2014-01-01

    The Royal Navy requires reliable advice on the safe limits of escape from a distressed submarine (DISSUB). Flooding in a DISSUB may cause a rise in ambient pressure, increasing the risk of decompression sickness (DCS) and decreasing the maximum depth from which it is safe to escape. The aim of this study was to investigate the pressure/depth limits to escape following saturation at raised ambient pressure. Exposure to saturation pressures up to 1.6 bar (a) (160 kPa) (n = 38); escapes from depths down to 120 meters of sea water (msw) (n = 254) and a combination of saturation followed by escape (n = 90) was carried out in the QinetiQ Submarine Escape Simulator, Alverstoke, United Kingdom. Doppler ultrasound monitoring was used to judge the severity of decompression stress. The trials confirmed the previously untested advice, in the Guardbook, that if a DISSUB was lying at a depth of 90 msw, then it was safe to escape when the pressure in the DISSUB was 1.5 bar (a), but also indicated that this advice may be overly conservative. This study demonstrated that the upper DISSUB saturation pressure limit to safe escape from 90 msw was 1.6 bar (a), resulting in two cases of DCS.

  17. 30 CFR 57.11051 - Escape routes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Escape routes. 57.11051 Section 57.11051 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... read direction signs that clearly indicate the ways of escape....

  18. 30 CFR 57.11051 - Escape routes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Escape routes. 57.11051 Section 57.11051 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... read direction signs that clearly indicate the ways of escape....

  19. Atmospheric escape, redox evolution, and planetary habitability

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  20. Cross Sections for Planetary Escape

    NASA Astrophysics Data System (ADS)

    Tully, C.

    2001-05-01

    Energetic charged-particle bombardment, dissociative recombination and photodissociation processes produce energetic recoil atoms which heat the thermosphere and can lead to escape from a planet affecting the evolution of the atmosphere. In describing these processes by Monte Carlo methods, many of the critical cross sections are not available in the energy range of interest, a few eV to 1 keV. Here we present our recent results for elastic collision and collisional dissociation cross sections relevant to Titan, Triton, Europa and the terrestrial planets [1,2]. Elastic and diffusion cross sections were calculated using both quantum mechanical techniques and the semiclassical JWKB approximation for the collision of ground state oxygen atoms in the energy range 1-10eV [2]. This involved calculation of phase shifts for each of the 18 molecular energy states of O2 which separate to two ground state O atoms. For an O thermosphere the total elastic cross section is close to that typically assumed but the escape depths are shown to be larger than those typically used. Dissociation cross sections of N + N2 were calculated using a semiclassical method, in the energy range 0-30eV. This required treating the vibrational motion quantum mechanically while the rotational and the relative translational motion were treated classically. The evolution of the system was calculated by simultaneous propagation of the classical as well as the quantal degrees of freedom. The solution to the classical part was carried out by solving Hamilton equations of motion using an effective London-Eyring-Polanyi-Sato potential energy surface, calculated by Laganá et al [3]. Propagation of the quantal wavefunction was carried out by solving the time dependent Schrödinger equation using the split operator technique with the help of the fast fourier transform which was used to calculate the second derivatives arising from the kinetic energy operator. This work was supported by NASA's Planetary

  1. Controlling escape from a potential well by reshaping periodic secondary excitations.

    PubMed

    Chacón, R; Martínez, J A

    2011-01-01

    The role of the wave form of periodic secondary excitations at controlling (suppressing and enhancing) escape from a potential well is investigated. We demonstrate analytically (by Melnikov analysis) and numerically that a judicious choice of the excitation's wave form greatly improves the effectiveness of the escape-controlling excitations while keeping their amplitude and period fixed. These predictions are confirmed by an energy-based analysis that provides the same optimal values of the escape-controlling parameters. The example of a dissipative Helmholtz oscillator is used to illustrate the accuracy of these results.

  2. Light weight escape capsule for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Robert, James A.

    1988-01-01

    Emergency crew escape capabilities have been less than adequate for fighter aircraft since before WW II. From the over-the-side bailout of those days through the current ejection seat with a rocket catapult, escaping from a disabled aircraft has been risky at best. Current efforts are underway toward developing a high-tech, smart ejection seat that will give fighter pilots more room to live in the sky, but an escape capsule is needed to meet current and future fighter envelopes. Escape capsules have a bad reputation due to past examples of high weight, poor performance and great complexity. However, the advantages available demand that a capsule be developed. This capsule concept will minimize the inherent disavantages and incorporate the benefits while integrating all aspects of crew station design. The resulting design is appropriate for a crew station of the year 2010 and includes improved combat acceleration protection, chemical or biological combat capability, improved aircraft to escape system interaction, and the highest level of escape performance achievable. The capsule is compact, which can allow a reduced aircraft size and weighs only 1200 lb. The escape system weight penalty is only 120 lb higher than that for the next ejection seat and the capsule has a corresponding increase in performance.

  3. Escape of magnetic toroids from the Sun

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Rust, David M.

    1995-01-01

    Analysis of heliospheric magnetic fields at 1 AU shows that 10(exp 24) Mx of net azimuthal flux escapes from the Sun per solar cycle. This rate is consistent with rates derived from other indicators of flux escape, including coronal mass ejections and filament eruptions. The toroidal flux escape rate is compared with the apparent rate of flux emergence at the solar surface, and it is concluded that escaping toroids will remove at least 20% of the emerging flux, and may remove as much as 100% of emerging flux if multiple eruptions occur on the toroids. The data imply that flux escapes the Sun with an efficiency far exceeding Parker's upper limit estimate of 3%. Toroidal flux escape is almost certainly the source of the observed overwinding of the interplanetary magnetic field spiral. Two mechanisms to facilitate net flux escape are discussed: helicity charging to push open the fields and flux transport with reconnection to close them off. We estimate the Sun will shed approximately 2 x 10(exp 45) of magnetic helicity per solar cycle, leading to a mean helicity density of 100 Mx(exp 2)cm(exp -3) at 1 AU, which agrees well with observations.

  4. Plasma-induced Escape and Alterations of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  5. Performance Enhancement of Dye-Sensitized Solar Cells Based on TiO₂ Thick Mesoporous Photoanodes by Morphological Manipulation.

    PubMed

    Keshavarzi, Reza; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj

    2015-10-27

    This study is an attempt to give an account of the preparation of mesoporous TiO2 thick templated films of nonsimilar pore architecture and their use in dye-sensitized solar cells (DSSCs). Highly crystallized mesoporous titania thick templated films with four different morphologies including hexagonal, wormlike, cubic, and gridlike mesostructure, have been successfully synthesized through an evaporation-induced self-assembly (EISA) route followed by layer-by-layer deposition. Stabilization, followed by each coating, and calcinations, carried out after every five layers, were used to produce crack-free thick films. These mesoporous templated titanium dioxide samples were characterized by TEM, XRD, SEM, BET, and UV-vis measurements and used as a photoelectrode material in DSSCs. The mesostructured films with a thickness of about 7 μm demonstrated better performance in comparison to nanocrystalline TiO2 films (NC-TiO2) at a film thickness of 13 μm as the most typical films utilized in DSSCs. The findings reveal that a surfactant/Ti ratio change undergone for developing cubic mesostructures can enhance the crystallinity and roughness factor and therefore increase the energy conversion efficiency of DSSC. The cell performances derived from these mesofilms were enhanced compared to the efficiencies reported thus far. The best photovoltaic performance of 8.73% came from DSSC using the cubic mesoporous TiO2 photoelectrode with the following properties: open circuit voltage of 743 mV, short circuit photocurrent density of 16.35 mA/cm(2), and fill factor of 0.72.

  6. Statin escape phenomenon: Fact or fiction?

    PubMed Central

    Barkas, Fotios; Elisaf, Moses; Klouras, Eleftherios; Dimitriou, Theodora; Tentolouris, Nikolaos; Liberopoulos, Evangelos

    2017-01-01

    AIM To evaluate the presence of the so called “statin escape” phenomenon among hyperlipidemic subjects attending a lipid clinic. METHODS This was a retrospective analysis of 1240 hyperlipidemic individuals followed-up for ≥ 3 years. We excluded those individuals meeting one of the following criteria: Use of statin therapy at baseline visit, discontinuation of statin treatment at most recent visit, change in statin treatment during follow-up and poor compliance to treatment. Statin escape phenomenon was defined as an increase in low-density lipoprotein cholesterol (LDL-C) levels at the most recent visit by > 10% compared with the value at 6 mo following initiation of statin treatment. RESULTS Of 181 eligible subjects, 31% exhibited the statin escape phenomenon. No major differences regarding baseline characteristics were found between statin escapers and non-statin escapers. Both escapers and non-escapers had similar baseline LDL-C levels [174 (152-189) and 177 (152-205) mg/dL, respectively]. In comparison with non-escapers, statin escapers demonstrated lower LDL-C levels at 6 mo after treatment initiation [88 (78-97) mg/dL vs 109 (91-129) mg/dL, P < 0.05], but higher levels at the most recent visit [103 (96-118) mg/dL vs 94 (79-114) mg/dL, P < 0.05]. CONCLUSION These data confirm the existence of an escape phenomenon among statin-treated individuals. The clinical significance of this phenomenon remains uncertain. PMID:28261552

  7. Phonological and orthographic cues enhance the processing of inflectional morphology. ERP evidence from L1 and L2 French

    PubMed Central

    Carrasco-Ortiz, Haydee; Frenck-Mestre, Cheryl

    2014-01-01

    We report the results of two event-related potential (ERP) experiments in which Spanish learners of French and native French controls show graded sensitivity to verbal inflectional errors as a function of the presence of orthographic and/or phonological cues when reading silently in French. In both experiments, verbal agreement was manipulated in sentential context such that subject verb agreement was either correct, ill-formed and orally realized, involving both orthographic and phonological cues, or ill-formed and silent which involved only orthographic cues. The results of both experiments revealed more robust ERP responses to orally realized than to silent inflectional errors. This was true for L2 learners as well as native controls, although the effect in the learner group was reduced in comparison to the native group. In addition, the combined influence of phonological and orthographic cues led to the largest differences between syntactic/phonological conditions. Overall, the results suggest that the presence of phonological cues may enhance L2 readers’ sensitivity to morphology but that such may appear in L2 processing only when sufficient proficiency is attained. Moreover, both orthographic and phonological cues are used when available. PMID:25165460

  8. A new perspective on structural and morphological properties of carbon nanotubes synthesized by Plasma Enhanced Chemical Vapor Deposition technique

    NASA Astrophysics Data System (ADS)

    Salar Elahi, A.; Agah, K. Mikaili; Ghoranneviss, M.

    CNTs were produced on a silicon wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs.

  9. Isotopic Fractionation by Gravitational Escape

    NASA Astrophysics Data System (ADS)

    Lammer, H. S. J.

    2003-04-01

    Present natural data bases for abundances of the isotopic compositions of noble gases, carbon and nitrogen inventories can be found in the Sun, the solar wind, meteorites and the planetary atmospheres and crustal reservoirs. Mass distributions in the various volatile reservoirs provide boundary conditions which must be satisfied in modelling the history of the present atmospheres. Such boundary conditions are constraints posed by comparison of isotopic ratios in primordial volatile sources with the isotopic pattern which was found on the planets and their satellites. Observations from space missions and Earth-based spectroscopic telescope observations of Venus, Mars and Saturn's major satellite Titan show that the atmospheric evolution of these planetary bodies to their present states was affected by processes capable of fractionating their elements and isotopes. The isotope ratios of D/H in the atmospheres of Venus and Mars indicate evidence for their planetary water inventories. Venus' H2O content may have been at least 0.3% of a terrestrial ocean. Analysis of the D/H ratio on Mars imply that a global H2O ocean with a depth of ≤ 30 m was lost since the end of hydrodynamic escape. Calculations of the time evolution of the 15N/14N isotope anomalies in the atmospheres of Mars and Titan show that the Martian atmosphere was at least ≥ 20 times denser than at present and that the mass of Titan's early atmosphere was about 30 times greater than its present value. A detailed study of gravitational fractionation of isotopes in planetary atmospheres furthermore indicates a much higher solar wind mass flux of the early Sun during the first half billion years.

  10. The fast escaping set for quasiregular mappings

    NASA Astrophysics Data System (ADS)

    Bergweiler, Walter; Drasin, David; Fletcher, Alastair

    2014-06-01

    The fast escaping set of a transcendental entire function is the set of all points which tend to infinity under iteration as fast as possible compatible with the growth of the function. We study the analogous set for quasiregular mappings in higher dimensions and show, among other things, that various equivalent definitions of the fast escaping set for transcendental entire functions in the plane also coincide for quasiregular mappings. We also exhibit a class of quasiregular mappings for which the fast escaping set has the structure of a spider's web.

  11. The Neuroethology of C. elegans Escape

    PubMed Central

    Pirri, Jennifer K.; Alkema, Mark J.

    2012-01-01

    Escape behaviors are crucial to survive predator encounters. Touch to the head of C. elegans induces an escape response where the animal rapidly backs away from the stimulus and suppresses foraging head movements. The coordination of head and body movements facilitates escape from predacious fungi that cohabitate with nematodes in organic debris. An appreciation of the natural habitat of laboratory organisms, like C. elegans, enables a comprehensive neuroethological analysis of behavior. In this review we discuss the neuronal mechanisms and the ecological significance of the C. elegans touch response. PMID:22226513

  12. Interspecific evaluation of octopus escape behavior.

    PubMed

    Wood, James B; Anderson, Roland C

    2004-01-01

    The well-known ability of octopuses to escape enclosures is a behavior that can be fatal and, therefore, is an animal welfare issue. This study obtained survey data from 38 participants-primarily scientists and public aquarists who work with octopuses-on 25 described species of octopus. The study demonstrates that the likeliness to escape is species specific (p =.001). The study gives husbandry techniques to keep captive octopuses contained. This first interspecific study of octopus escape behavior allows readers to make informed species-specific husbandry choices.

  13. Evolutionary dynamics of escape from biomedical intervention.

    PubMed Central

    Iwasa, Yoh; Michor, Franziska; Nowak, Martin A

    2003-01-01

    Viruses, bacteria, eukaryotic parasites, cancer cells, agricultural pests and other inconvenient animates have an unfortunate tendency to escape from selection pressures that are meant to control them. Chemotherapy, anti-viral drugs or antibiotics fail because their targets do not hold still, but evolve resistance. A major problem in developing vaccines is that microbes evolve and escape from immune responses. The fundamental question is the following: if a genetically diverse population of replicating organisms is challenged with a selection pressure that has the potential to eradicate it, what is the probability that this population will produce escape mutants? Here, we use multi-type branching processes to describe the accumulation of mutants in independent lineages. We calculate escape dynamics for arbitrary mutation networks and fitness landscapes. Our theory shows how to estimate the probability of success or failure of biomedical intervention, such as drug treatment and vaccination, against rapidly evolving organisms. PMID:14728779

  14. Biogeochemistry: Nocturnal escape route for marsh gas

    NASA Astrophysics Data System (ADS)

    Anthony, Katey Walter; MacIntyre, Sally

    2016-07-01

    A field study of methane emissions from wetlands reveals that more of the gas escapes through diffusive processes than was thought, mostly at night. Because methane is a greenhouse gas, the findings have implications for global warming.

  15. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    PubMed

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities.

  16. Gated escaping of ligand out of protein

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2000-01-01

    We construct a new gating model and develop a new theory to study the escaping process of a ligand out of a spherical cavity with a puncture (or gate) on the surface. The gate undulation can be regulated by any time-dependent function and the motion of the ligand inside the spherical cavity is mapped into a two-dimensional entropy potential surface. Hence the driving force of our model is entropy only. For a static gate, the escaping process corresponds to climbing a two-dimensional entropy barrier. When the gate open angle is small, the escaping rate is proportional to the square of the opening angle. The prefactor of the escaping rate constant depends on the curvature of the entropy potential surface. For coherent gating, the survival time depends not only on the gate undulation frequency but also on how the initial state is defined. On the escaping from protein, our escaping rate shows it is qualitatively consistent with the experimental result of ligand recombination in myoglobin.

  17. Polymer escape from a confining potential

    SciTech Connect

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-07

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  18. Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage

    PubMed Central

    Ding, Mingye; Chen, Daqin; Yin, Shilong; Ji, Zhenguo; Zhong, Jiasong; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2015-01-01

    A strategy has been adopted for simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage. X-ray power diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectra (PL) were used to characterize the samples. The influence of molar ratio of KF to Y3+ on the crystal phase and morphology has been systematically investigated and discussed. It is found that the molar ratio of KF to Y3+ can strongly control the morphology of the as-synthesized β-NaYF4 samples because of the different capping effect of F− ions on the different crystal faces. The possible formation mechanism has been proposed on the basis of a series of time-dependent experiments. More importantly, the upconversion luminescence of β-NaYF4:Yb3+/Er3+ was greatly enhanced by increasing the molar ratio of KF to RE3+ (RE = Y, Yb, Er), which is attributed to the distortion of local crystal field symmetry around lanthanide ions through K+ ions doping. This synthetic methodology is expected to provide a new strategy for simultaneous morphology control and remarkable upconversion luminescence enhancement of yttrium fluorides, which may be applicable for other rare earth fluorides. PMID:26235808

  19. Compensatory escape mechanism at low Reynolds number

    PubMed Central

    Gemmell, Brad J.; Sheng, Jian; Buskey, Edward J.

    2013-01-01

    Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods’ fitness at lower temperature. Using high-speed digital holography we acquire 3D kinematics of the nauplius escape including both location and detailed appendage motion. By independently varying temperature and viscosity we demonstrate that at natural thermal extremes, contrary to conventional views, nauplii achieve equivalent escape distance while maintaining optimal velocity. Using experimental results and kinematic simulations from a resistive force theory propulsion model, we demonstrate that a shift in appendage timing creates an increase in power stroke duration relative to recovery stroke duration. This change allows the nauplius to limit losses in velocity and maintain distance during escapes at the lower bound of its natural thermal range. The shift in power stroke duration relative to recovery stroke duration is found to be regulated by the temperature dependence of swimming appendage muscle groups, not a dynamic response to viscosity change. These results show that copepod nauplii have natural adaptive mechanisms to compensate for viscosity variations with temperature but not in situations in which viscosity varies independent of temperature, such as in some phytoplankton blooms. Understanding the robustness of escapes in the wake of environmental changes such as temperature and viscosity has implications in assessing the future health of performance compensation. PMID:23487740

  20. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.

    PubMed

    Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W

    2015-06-01

    CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.

  1. Residential smoke alarms and fire escape plans.

    PubMed Central

    Harvey, P A; Sacks, J J; Ryan, G W; Bender, P F

    1998-01-01

    OBJECTIVE: To estimate the proportion of U.S. homes with installed smoke alarms, smoke alarms on the same floor as occupants' bedrooms, and fire escape plans. METHODS: The authors analyzed data on smoke alarm use and fire escape planning from a 1994 stratified random telephone survey of 5238 U.S. households. RESULTS: Respondents from 91% of surveyed households reported the presence of at least one installed smoke alarm, and 94% of respondents reported having an alarm on the same level of the home as their sleeping area. The prevalence of installed smoke alarms varied by highest education level in the household and income level. Sixty percent of all households had designed or discussed a fire escape plan at least once; only 17% of these households had actually practiced one. CONCLUSIONS: Although overall use of smoke alarms was high, certain population subgroups were less likely to have smoke alarms or to have them installed on the same floor as bedrooms. Fire escape planning, another important safety measure, was somewhat less common, and very few respondents reported having practiced a fire escape plan with the members of their household. PMID:9769771

  2. Genes that escape from X inactivation.

    PubMed

    Berletch, Joel B; Yang, Fan; Xu, Jun; Carrel, Laura; Disteche, Christine M

    2011-08-01

    To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.

  3. Escape as reinforcement and escape extinction in the treatment of feeding problems.

    PubMed

    LaRue, Robert H; Stewart, Victoria; Piazza, Cathleen C; Volkert, Valerie M; Patel, Meeta R; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of swallowing), escape as reinforcement for mouth clean plus escape extinction (EE), and EE alone as treatment for the food refusal of 5 children. Results were similar to those of previous studies, in that reinforcement alone did not result in increases in mouth clean or decreases in inappropriate behavior (e.g., Piazza, Patel, Gulotta, Sevin, & Layer, 2003). Increases in mouth clean and decreases in inappropriate behavior occurred when the therapist implemented EE independent of the presence or absence of reinforcement. Results are discussed in terms of the role of negative reinforcement in the etiology and treatment of feeding problems.

  4. Synthesis of Upconversion β-NaYF4:Nd3+/Yb3+/Er3+ Particles with Enhanced Luminescent Intensity through Control of Morphology and Phase

    PubMed Central

    Shang, Yunfei; Hao, Shuwei; Liu, Jing; Tan, Meiling; Wang, Ning; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Hexagonal NaYF4:Nd3+/Yb3+/Er3+ microcrystals and nanocrystals with well-defined morphologies and sizes have been synthesized via a hydrothermal route. The rational control of initial reaction conditions can not only result in upconversion (UC) micro and nanocrystals with varying morphologies, but also can produce enhanced and tailored upconversion emissions from the Yb3+/Er3+ ion pairs sensitized by the Nd3+ ions. The increase of reaction time converts the phase of NaYF4:Nd3+/Yb3+/Er3+ particles from the cubic to the hexagonal structure. The added amount of oleic acid plays a critical role in the shape evolution of the final products due to their preferential attachment to some crystal planes. The adjustment of the molar ratio of F−/Ln3+ can range the morphologies of the β-NaYF4:Nd3+/Yb3+/Er3+ microcrystals from spheres to nanorods. When excited by 808 nm infrared laser, β-NaYF4:Nd3+/Yb3+/Er3+ microplates exhibit a much stronger UC emission intensity than particles with other morphologies. This phase- and morphology-dependent UC emission holds promise for applications in photonic devices and biological studies.

  5. Changing the habitat: the evolution of intercorrelated traits to escape from predators.

    PubMed

    Mikolajewski, D J; Scharnweber, K; Jiang, B; Leicht, S; Mauersberger, R; Johansson, F

    2016-07-01

    Burst escape speed is an effective and widely used behaviour for evading predators, with burst escape speed relying on several different morphological features. However, we know little about how behavioural and underlying morphological attributes change in concert as a response to changes in selective predation regime. We studied intercorrelated trait differentiation of body shape and burst-swim-mediating morphology in response to a habitat shift-related reduction in burst escape speed using larvae of the dragonfly genus Leucorrhinia. Species in this genus underwent a well-known habitat shift from predatory fish lakes (fish lakes) to predatory fish-free lakes dominated by large predatory dragonflies (dragonfly lakes) accompanied by relaxed selection on escape burst speed. Results revealed that species from fish lakes that possess faster burst speed have evolved a suite of functionally intercorrelated traits, expressing a wider abdomen, a higher abdominal muscles mass and a larger branchial chamber compared with species from dragonfly lakes. In contrast, populations within species did not show significant differences in muscle mass and branchial chamber size between lake types in three of the species. High multicollinearity among variables suggests that traits have evolved in concert rather than independently when Leucorrhinia shifted from fish lakes to dragonfly lakes. Thus, relaxed selection on burst escape speed in dragonfly-lake species resulted in a correlated reduction of abdominal muscles and a smaller branchial chamber, likely to save production and/or maintenance costs. Our results highlight the importance of studying integrated behavioural and morphological traits to fully understand the evolution of complex phenotypes.

  6. Finite-Difference Time-Domain (FDTD) Modeling of Gold Core-Shell Structures with Different Shell Morphology for Surface-Enhanced Raman Spectroscopy (SERS)

    NASA Astrophysics Data System (ADS)

    Gorunmez, Zohre; Jana, Debrina; He, Jie; Sagle, Laura; Beck, Thomas

    Core-shell (CS) nanostructures have received attention in recent years due to their usefulness in applications ranging from catalysis to cancer treatment. SERS has been shown to be one of the most sensitive techniques for molecular detection, achieving single molecule detection. It has been established that the electromagnetic mechanism (EM) provides the main contribution to SERS enhancement due to the normal Raman spectroscopy arising from coupling of both the incident and re-emitted fields. The FDTD technique has been developed to provide numerical solutions to Maxwell's time-dependent curl equations in order to promise modeling capabilities for EM enhancement of SERS. Herein, we apply this method to the study of three morphologically different gold core-shell nanoparticles to investigate their contributions to SERS. In these structures, the dye/probe molecule resides in between the shell and the core and only the shell morphology is altered. The data shows that the surface plasmon resonances (PRs) influencing the SERS of the probe molecules, due to the coupling of the core and shell, are tunable by changing the shell morphologies and CS structures with sharp features on their surfaces highlight larger enhancements due to stronger localized surface PRs. University of Cincinnati start-up funds, NSF, Ohio Supercomputer Center, and the Ministry of National Education of the Republic of Turkey.

  7. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  8. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  9. Statistical theory of asteroid escape rates.

    PubMed

    Jaffé, Charles; Ross, Shane D; Lo, Martin W; Marsden, Jerrold; Farrelly, David; Uzer, T

    2002-07-01

    Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations.

  10. Bacillus anthracis factors for phagosomal escape.

    PubMed

    Tonello, Fiorella; Zornetta, Irene

    2012-07-01

    The mechanism of phagosome escape by intracellular pathogens is an important step in the infectious cycle. During the establishment of anthrax, Bacillus anthracis undergoes a transient intracellular phase in which spores are engulfed by local phagocytes. Spores germinate inside phagosomes and grow to vegetative bacilli, which emerge from their resident intracellular compartments, replicate and eventually exit from the plasma membrane. During germination, B. anthracis secretes multiple factors that can help its resistance to the phagocytes. Here the possible role of B. anthracis toxins, phospholipases, antioxidant enzymes and capsules in the phagosomal escape and survival, is analyzed and compared with that of factors of other microbial pathogens involved in the same type of process.

  11. Dynamical Effects on the Escape of H and D: Martian Water Reservoirs

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The evolution of water on Mars is dependent on the loss rates of H and D from its atmosphere, where the dominant loss mechanism for these constituents is Jeans escape. Throughout time, preferential escape of H over D has produced a deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. Motion in the atmosphere of Mars is shown to change the Jeans escape rates of H and D in two important ways: (1) Atmospheric wind and rotation at the exobase increase the escape fluxes of H and D above the corresponding Jeans fluxes. (2) The percentage increase in escape flux due to motion is greatest for D. Recently, several models have been used to estimate the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Differences in the reservoir sizes are influenced by differences in the composition at the exobase, thermal history of the atmosphere and the D/H ratio of earlier epochs as inferred from meteorites. When motion enhanced Jeans escape is applied to each of these models, it is shown in every case that factors (1) and (2) above lead to current and ancient crustal water reservoirs that are larger than those obtained without motion.

  12. On the escape of CH4 from Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Erwin, J. T.; Yelle, R. V.

    2015-09-01

    We adapted a multispecies escape model, developed for close-in extrasolar planets, to calculate the escape rates of CH4 and N2 from Pluto. In the absence of escape, CH4 should overtake N2 as the dominant species below the exobase. The CH4 profile depends strongly on the escape rate, however, and the typical escape rates predicted for Pluto lead to a nearly constant mixing ratio of less than 1% below the exobase. In this case the CH4 escape rate is only 5-10% of the N2 escape rate. Observations of the CH4 profile by the New Horizons/ALICE spectrograph can constrain the CH4 escape rate and provide a unique test for escape models.

  13. Sex differences in lizard escape decisions vary with latitude, but not sexual dimorphism.

    PubMed

    Samia, Diogo S M; Møller, Anders Pape; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2015-04-22

    Sexual selection is a powerful evolutionary mechanism that has shaped the physiology, behaviour and morphology of the sexes to the extent that it can reduce viability while promoting traits that enhance reproductive success. Predation is one of the underlying mechanisms accounting for viability costs of sexual displays. Therefore, we should expect that individuals of the two sexes adjust their anti-predator behaviour in response to changes in predation risk. We conducted a meta-analysis of 28 studies (42 species) of sex differences in risk-taking behaviour in lizards and tested whether these differences could be explained by sexual dichromatism, by sexual size dimorphism or by latitude. Latitude was the best predictor of the interspecific heterogeneity in sex-specific behaviour. Males did not change their escape behaviour with latitude, whereas females had increasingly reduced wariness at higher latitudes. We hypothesize that this sex difference in risk-taking behaviour is linked to sex-specific environmental constraints that more strongly affect the reproductive effort of females than males. This novel latitudinal effect on sex-specific anti-predator behaviour has important implications for responses to climate change and for the relative roles of natural and sexual selection in different species.

  14. Escape from Albuquerque: An Apache Memorate.

    ERIC Educational Resources Information Center

    Greenfeld, Philip J.

    2001-01-01

    Clarence Hawkins, a White Mountain Apache, escaped from the Albuquerque Indian School around 1920. His 300-mile trip home, made with two other boys, exemplifies the reaction of many Indian youths to the American government's plans for cultural assimilation. The tale is told in the form of traditional Apache narrative. (TD)

  15. Nociception and escape behavior in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  16. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  17. Animal escapology II: escape trajectory case studies

    PubMed Central

    Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.

    2011-01-01

    Summary Escape trajectories (ETs; measured as the angle relative to the direction of the threat) have been studied in many taxa using a variety of methodologies and definitions. Here, we provide a review of methodological issues followed by a survey of ET studies across animal taxa, including insects, crustaceans, molluscs, lizards, fish, amphibians, birds and mammals. Variability in ETs is examined in terms of ecological significance and morpho-physiological constraints. The survey shows that certain escape strategies (single ETs and highly variable ETs within a limited angular sector) are found in most taxa reviewed here, suggesting that at least some of these ET distributions are the result of convergent evolution. High variability in ETs is found to be associated with multiple preferred trajectories in species from all taxa, and is suggested to provide unpredictability in the escape response. Random ETs are relatively rare and may be related to constraints in the manoeuvrability of the prey. Similarly, reports of the effect of refuges in the immediate environment are relatively uncommon, and mainly confined to lizards and mammals. This may be related to the fact that work on ETs carried out in laboratory settings has rarely provided shelters. Although there are a relatively large number of examples in the literature that suggest trends in the distribution of ETs, our understanding of animal escape strategies would benefit from a standardization of the analytical approach in the study of ETs, using circular statistics and related tests, in addition to the generation of large data sets. PMID:21753040

  18. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  19. Enhanced Nitrogen in Morphologically Disturbed Blue Compact Galaxies at 0.20 < z < 0.35: Probing Galaxy Merging Features

    NASA Astrophysics Data System (ADS)

    Chung, Jiwon; Rey, Soo-Chang; Sung, Eon-Chang; Yeom, Bum-Suk; Humphrey, Andrew; Yi, Wonhyeong; Kyeong, Jaemann

    2013-04-01

    We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z = 0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either "disturbed" or "undisturbed" by visual inspection of the SDSS images, and using the Gini coefficient and M 20. We derive oxygen and nitrogen abundances using the Te method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the Hα to near-UV star formation rate ratio. The equivalent width of the Hβ emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer timescales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  20. Escape from viscosity: the kinematics and hydrodynamics of copepod foraging and escape swimming.

    PubMed

    van Duren, Luca A; Videler, John J

    2003-01-01

    Feeding and escape swimming in adult females of the calanoid copepod Temora longicornis Müller were investigated and compared. Swimming velocities were calculated using a 3-D filming setup. Foraging velocities ranged between 2 and 6 mm s(-1), while maximum velocities of up to 80 mm s(-1) were reached during escape responses. Foraging took place at Reynolds numbers between 2 and 6, indicating that viscous forces are considerable during this swimming mode. Inertial forces are much more important during escape responses, when Reynolds numbers of more than 100 are reached. High-speed film recordings at 500 frames s(-1) of the motion pattern of the feeding appendages and the escape movement of the swimming legs revealed that the two swimming modes are essentially very different. While foraging, the first three mouth appendages (antennae, mandibular palps and maxillules) create a backwards motion of water with a metachronal beating pattern. During escape movements the mouth appendages stop moving and the swimming legs beat in a very fast metachronal rhythm, accelerating a jet of water backwards. The large antennules are folded backwards, resulting in a streamlined body shape. Particle image velocimetry analysis of the flow around foraging and escaping copepods revealed that during foraging an asymmetrical vortex system is created on the ventral side of the animal. The feeding motion is steady over a long period of time. The rate of energy dissipation due to viscous friction relates directly to the energetic cost of the feeding current. During escape responses a vortex ring appears behind the animal, which dissipates over time. Several seconds after cessation of swimming leg movements, energy dissipation can still be measured. During escape responses the rate of energy dissipation due to viscous friction increases by up to two orders of magnitude compared to the rate when foraging.

  1. Escape of asteroids from the main belt

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F.; Nesvorný, David; Jedicke, Robert

    2017-01-01

    Aims: We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods: We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q > 1.3 au and semimajor axis a < 4.1 au is essentially complete, with an absolute magnitude limit ranging from HV < 15.9 in the inner belt (a < 2.5 au) to HV < 14.4 in the outer belt (2.5 au < a < 4.1 au). We modeled the semimajor-axis drift caused by the Yarkovsky force and assigned four different sizes (diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results: We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky-only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical

  2. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  3. Innovative Bayesian and parsimony phylogeny of dung beetles (coleoptera, scarabaeidae, scarabaeinae) enhanced by ontology-based partitioning of morphological characters.

    PubMed

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  4. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters

    PubMed Central

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  5. Morphology engineering of ZnO nanostructures for high performance supercapacitors: Enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung; Lee, Min; Bae, Joonho

    2017-04-06

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kind of electrodes in three electrode cell confirms that ZnO NCs exhibit high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and EIS measurements also clearly results in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric spuercapacitors are fabricated using activated carbon (AC) as negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC//AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW//AC displays 63% of capacitance obtained from ZnO NC//AC supercapacitor. The enhanced performances of NCs are attributed to higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  6. Morphological tuned preparation of zinc oxide: reduced graphene oxide composites for non-enzymatic fluorescence glucose sensing and enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Sivalingam, Muthu Mariappan; Balasubramanian, Karthikeyan

    2016-07-01

    Zinc oxide: reduced graphene oxide (ZnO:rgo) composites with varying ZnO morphologies have been synthesized towards the application of non-enzymatic fluorescence (FL) glucose sensor and photocatalysis for methylene blue (MB) degradation. The phase structure of ZnO has confirmed by X-ray diffraction studies, and the band gap calculations were done by UV absorption spectra. Scanning electron microscope and Raman spectra revealed the morphological change and the vibrational studies of the prepared samples, respectively. The quenching of the FL emission band of ZnO:rgo composite sample confirmed the transfer of electrons from ZnO to rgo which inhibit the exciton recombination process. The non-enzymatic FL glucose sensing was carried out by the addition of dextrose glucose ( d-glucose) into the ZnO:rgo composite solution, which shows strong relationship between glucose concentration and the FL intensity. The photocatalytic studies showed that composite with high surface to volume ratio exhibits a maximum degradation of MB over 93 %. Our combined results ensured that the ZnO:rgo composites with varying morphologies could be an effective system for applications such as FL-based glucose sensing and photocatalytic degradation.

  7. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  8. 23. VIEW OF ESCAPE TRAINING TANK, LOOKING NORTHWEST, SHOWING TWOLOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW OF ESCAPE TRAINING TANK, LOOKING NORTHWEST, SHOWING TWO-LOCK RECOMPRESSION CHAMBER IN PASSAGEWAY FROM ELEVATOR TO CUPOLA - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  9. 14. DETAIL VIEW OF ESCAPE TRAINING TANK, SHOWING HOLDDOWN RODS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF ESCAPE TRAINING TANK, SHOWING HOLD-DOWN RODS, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  10. 15. VIEW OF ESCAPE TRAINING TANK, LOOKING EAST ACROSS MEZZANINE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF ESCAPE TRAINING TANK, LOOKING EAST ACROSS MEZZANINE, SHOWING ENTRANCE TO SUBMARINE SECTION AT 110-FOOT LEVEL - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  11. 21. VIEW OF ESCAPE TRAINING TANK, SHOWING INTERIOR OF CUPOLA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF ESCAPE TRAINING TANK, SHOWING INTERIOR OF CUPOLA AND TOP OF THE TANK, LOOKING NORTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  12. 18. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM 50-FOOT LOCK TO ELEVATOR, LOOKING WEST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  13. 17. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ELEVATOR TO 18-FOOT LOCK, LOOKING EAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  14. Escape of atmospheres and loss of water

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Donahue, T. M.; Walker, J. C. G.; Kasting, J. F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or 'blowoff', is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable.

  15. Fixed-ratio escape reinforcement1

    PubMed Central

    Azrin, N. H.; Holz, W. C.; Hake, D. F.; Ayllon, T.

    1963-01-01

    Escape responses of squirrel monkeys were reinforced according to a fixed-ratio schedule. The reinforcement was a period of safety from a stimulus that signalled the delivery of intermittent pain-shocks. When the frequency of shock was gradually reduced, the performance remained at a high level until the shocks were quite infrequent. Similarly, the duration of the period of safety could be reduced to a few seconds with little loss of behavior. Thus, the responses appeared to be reinforced by even a brief period of safety, the actual degree of shock reduction being fairly slight. The changes in responding during this fixed-ratio escape procedure were comparable to the response changes typically obtained during fixed-ratio food procedures. PMID:13965780

  16. Triton: topside ionosphere and nitrogen escape.

    PubMed

    Yung, Y L; Lyons, J R

    1990-09-01

    The principal ion in the ionosphere of Triton is N+. Energetic electrons of magnetospheric origin are the primary source of ionization, with a smaller contribution due to photoionization. To explain the topside plasma scale height, we postulate that N+ ions escape from Triton. The loss rate is 3.4 x 10(7) cm-2 s-1 or 7.9 x 10(24) ions s-1. Dissociative recombination of N2+ produces neutral exothermic fragments that can escape from Triton. The rate is estimated to be 8.6 x 10(6) N cm-2 s-1 or 2.0 x 10(24) atoms s-1. Implications for the magnetosphere of Neptune and Triton's evolution are discussed.

  17. [Escape mutants of hepatitis B virus].

    PubMed

    Jaramillo, Carlos Mario; Navas, María-Cristina

    2015-04-01

    The hepatitis B virus (HBV) infection is a public health problem worldwide. Considering HBV morbidity and mortality and the economic consequences .of this infection, policies and strategies to control it have been implemented, especially in regions where HBV infection is endemic, with high rates of vertical and horizontal infection. One of these strategies is the development of the recombinant vaccine. A 92% of the countries in the world have implemented the vaccine with a global coverage of 69%. The escape variants of HBV correspond to isolates with mutations in the sequence coding for the "a" determinant; these mutations result in changes in the amino acid sequence of the surface antigen (HBsAg) that prevent neutralization of viral particles by antibodies generated in response to vaccination or infection. The escape variants can infect vaccinated individuals and have been identified in the population of countries with different epidemiological patterns.

  18. Interspecific differences in how habitat degradation affects escape response.

    PubMed

    McCormick, Mark I; Allan, Bridie J M

    2017-03-27

    Degradation of habitats is widespread and a leading cause of extinctions. Our study determined whether the change in the chemical landscape associated with coral degradation affected the way three fish species use olfactory information to optimize their fast-start escape response. Water from degraded coral habitats affected the fast-start response of the three closely-related damselfishes, but its effect differed markedly among species. The Ward's damselfish (Pomacentrus wardi) was most affected by water from degraded coral, and displayed shorter distances covered in the fast-start and slower escape speeds compared to fish in water from healthy coral. In the presence of alarm odours, which indicate an imminent threat, the Ambon damsel (P. amboinensis) displayed enhanced fast-start performance in water from healthy coral, but not when in water from degraded coral. In contrast, while the white-tailed damsel (P. chrysurus) was similarly primed by its alarm odour, the elevation of fast start performance was not altered by water from degraded coral. These species-specific responses to the chemistry of degraded water and alarm odours suggest differences in the way alarm odours interact with the chemical landscape, and differences in the way species balance information about threats, with likely impacts on the survival of affected species in degraded habitats.

  19. Dynamic Escape Routes for Naval Ships

    DTIC Science & Technology

    2005-09-01

    3 o Increase the likelihood of successfully salvaging the ship, and o Increase the likelihood that the crew is rescued safely. It will be possible...spans the period before the event that triggers ship abandonment. Escape routes can be configured based on two factors: 6 o “Crew distribution...crewmembers but the guards are resting in cabins and berthing rooms. This is a plausible scenario at night when the ship is in a non-home port. o

  20. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.382 Mechanical escape facilities. (a) Mechanical escape facilities shall be provided with overspeed, overwind, and automatic stop... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mechanical escape facilities. 75.382 Section...

  1. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mechanical escape facilities. 75.382 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.382 Mechanical escape facilities. (a) Mechanical escape facilities shall be provided with overspeed, overwind, and automatic...

  2. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mechanical escape facilities. 75.382 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.382 Mechanical escape facilities. (a) Mechanical escape facilities shall be provided with overspeed, overwind, and automatic...

  3. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mechanical escape facilities. 75.382 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.382 Mechanical escape facilities. (a) Mechanical escape facilities shall be provided with overspeed, overwind, and automatic...

  4. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mechanical escape facilities. 75.382 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.382 Mechanical escape facilities. (a) Mechanical escape facilities shall be provided with overspeed, overwind, and automatic...

  5. 46 CFR 108.153 - Location of means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location of means of escape. 108.153 Section 108.153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Means of Escape § 108.153 Location of means of escape....

  6. 46 CFR 108.153 - Location of means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Location of means of escape. 108.153 Section 108.153 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Means of Escape § 108.153 Location of means of escape....

  7. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  8. Scrunching: a novel escape gait in planarians.

    PubMed

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J; Collins, Eva-Maria S

    2015-09-10

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, 'scrunching', which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  9. Scrunching: a novel escape gait in planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  10. Characterizing the Impact of Enhanced Solubilization Reagents on Organic-Liquid Morphology and Organic-Liquid/Water Interfacial Area Using Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Narter, M.; Brusseau, M.

    2010-12-01

    A primary goal of enhanced solubilization reagents is to increase contaminant mass transfer into the aqueous phase in order to achieve faster and more efficient mass removal from the subsurface. The rate of mass transfer depends on the degree of contact between the aqueous phase and the contaminant, and thus is dependent upon the interfacial area between the two phases. It is therefore important to understand the impact of enhanced solubilization reagents on organic-liquid distribution and morphology. This was accomplished using synchrotron X-ray microtomography to examine entrapped organic liquid in a natural porous medium. Polyoxyethylene Sorbitan Monooleate (tween 80), hydroxypropyl-β-cyclodextrin (HPCD), sodium dodecyl sulfate (SDS), and ethanol were used as the solubilization agents. Tetrachloroethene (PCE) was used as the entrapped organic immiscible liquid. Microtomography images were collected prior to and after successive floods with three concentrations of each reagent. The results were compared to those obtained from equivalent experiments conducted with water flooding.

  11. Escape behavior and escape circuit activation in juvenile crayfish during prey-predator interactions.

    PubMed

    Herberholz, Jens; Sen, Marjorie M; Edwards, Donald H

    2004-05-01

    The neural systems that control escape behavior have been studied intensively in several animals, including mollusks, fish and crayfish. Surprisingly little is known, however, about the activation and the utilization of escape circuits during prey-predator interactions. To complement the physiological and anatomical studies with a necessary behavioral equivalent, we investigated encounters between juvenile crayfish and large dragonfly nymphs in freely behaving animals using a combination of high-speed video-recordings and measurements of electric field potentials. During attacks, dragonfly nymphs rapidly extended their labium, equipped with short, sharp palps, to capture small crayfish. Crayfish responded to the tactile stimulus by activating neural escape circuits to generate tail-flips directed away from the predator. Tail-flips were the sole defense mechanism in response to an attack and every single strike was answered by tail-flip escape behavior. Crayfish used all three known types of escape tail-flips during the interactions with the dragonfly nymphs. Tail-flips generated by activity in the giant neurons were predominantly observed to trigger the initial escape responses to an attack, but non-giant mediated tail-flips were often generated to attempt escape after capture. Attacks to the front of the crayfish triggered tail-flips mediated either by the medial giant neuron or by non-giant circuitry, whereas attacks to the rear always elicited tail-flips mediated by the lateral giant neuron. Overall, tail flipping was found to be a successful behavior in preventing predation, and only a small percentage of crayfish were killed and consumed.

  12. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  13. Impulse-induced optimum control of escape from a metastable state by periodic secondary excitations.

    PubMed

    Chacón, R; Martínez, J A; Miralles, J J

    2012-06-01

    We characterize the role of the impulse transmitted (time integral over a half-period) by resonant secondary excitations at controlling (suppressing and enhancing) escape from a potential well, which is induced by periodic primary excitations. By using the universal model of a dissipative Helmholtz oscillator, we demonstrate numerically that optimum control of escape occurs when the impulse transmitted by the chaos-controlling excitations is maximum while keeping their amplitude and period fixed. These findings are in complete agreement with analytical predictions from two independent methods: Melnikov analysis and energy-based analysis. Additional numerical results corresponding to other alternative escape-controlling excitations demonstrate the generality of the essential role of the excitation's impulse.

  14. Sputtering at Mars: MAVEN observations of precipitating and escaping oxygen during nominal and extreme conditions

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Dong, Chuanfei; Ma, Yingjuan; Leblanc, Francois; Modolo, Ronan; Brain, David; Gruesbeck, Jacob; Hara, Takuya; Halekas, Jasper; Dong, Yaxue; Williamson, Hayley N.; Johnson, Robert E.; McFadden, James; Espley, Jared R.; Mitchell, David; Connerney, Jack; Eparvier, Frank; Lillis, Robert J.; Jakosky, Bruce

    2016-10-01

    Sputtering is believed to be one of the dominant escape mechanisms during the early epochs of our solar system when the solar activity and EUV intensities were much higher than the present day. Mars lacks a global dynamo magnetic field, which creates a scenario where the solar wind directly interacts with the upper atmosphere and newly created ions can be picked up and swept away by the background convection electric field. These pick-up ions can directly escape or precipitate back into the atmosphere and induce atmospheric sputtering of neutrals.The MAVEN spacecraft has observed the Mars upper atmosphere, ionosphere, magnetic topology and interactions with the Sun and solar wind during numerous Interplanetary Coronal Mass Ejection (ICME) impacts spanning from March 2015 to June 2016. ICMEs are associated with enhanced solar wind velocities, densities and magnetic field strength, and often drive heavy ion precipitation at much higher rates than during nominal conditions. Thus, ICMEs provide a unique environment for observing sputtering. We will compare MAVEN observations of heavy ion precipitation during nominal conditions as well as during ICMEs. Additionally, we will present global MHD and test particle simulations of the ICMEs in order to calculate sputtering escape rates for oxygen. Finally, we will use the observed and modeled sputtering escape rates to provide an initial estimate of the total sputtered atmospheric escape from Mars over billions of years.

  15. Relationship between Alcohol Dependence, Escape Drinking, and Early Neural Attention to Alcohol-Related Cuess

    PubMed Central

    Dickter, Cheryl L.; Forestell, Catherine A.; Hammett, Patrick J.; Young, Chelsie M.

    2014-01-01

    Rationale Previous work has indicated that implicit attentional biases to alcohol-related cues are indicative of susceptibility to alcohol dependence and escape drinking, or drinking to avoid dysphoric mood or emotions. Objective The goal of the current study was to examine whether alcohol dependence and escape drinking were associated with early neural attentional biases to alcohol cues. Methods EEG data were recorded from 54 college students who reported that they regularly drank alcohol, while they viewed alcohol and control pictures that contained human content (active) or no human content (inactive). Results Those who were alcohol dependent showed more neural attentional bias to the active alcohol-related stimuli than to the matched control stimuli early in processing, as indicated by N1 amplitude. Escape drinkers showed greater neural attention to the active alcohol cues than non-escape drinkers, as measured by larger N2 amplitudes. Conclusions While alcohol dependence is associated with enhanced automatic attentional biases early in processing, escape drinking is associated with more controlled attentional biases to active alcohol cues during a relatively later stage in processing. These findings reveal important information about the time-course of attentional processing in problem drinkers and have important implications for addiction models and treatment. PMID:24292342

  16. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  17. Risks incurred by hydrogen escaping from containers and conduits

    SciTech Connect

    Swain, M.R.; Grilliot, E.S.; Swain, M.N.

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  18. Effect of substrate crystalline morphology on the adhesion of plasma enhanced chemical vapor deposited thin silicon oxide coatings on polyamide

    NASA Astrophysics Data System (ADS)

    Rochat, G.; Leterrier, Y.; Plummer, C. J. G.; Mânson, J.-A. E.; Szoszkiewicz, R.; Kulik, A. J.; Fayet, P.

    2004-05-01

    The influence of the surface morphology of semicrystalline polyamide 12 (PA12) on the adhesion of thin silicon oxide coatings is analyzed by means of uniaxial fragmentation tests and scanning local-acceleration microscopy (SLAM). Two types of PA12 substrates are investigated, namely, as-received PA12, which contains large spherulites, and quenched PA12, which has a relatively smooth, homogeneous surface structure. The adhesion of the coating is found to be identical for the two types of PA12. This indicates that plasma deposition of the oxide leads to an equivalent functionalization of the two types of surfaces. Nonetheless, localized delamination is observed at spherulite boundaries, and is argued to result from strain concentrations in the corresponding soft zones, revealed by SLAM measurements.

  19. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum.

    PubMed

    Liu, Hui; Zheng, Zhiming; Wang, Peng; Gong, Guohong; Wang, Li; Zhao, Genhai

    2013-04-01

    Chitin synthases catalyze the formation of β-(1,4)-glycosidic bonds between N-acetylglucosamine residues to form the unbranched polysaccharide chitin, which is the major component of cell walls in most filamentous fungi. Several studies have shown that chitin synthases are structurally and functionally divergent and play crucial roles in the growth and morphogenesis of the genus Aspergillus although little research on this topic has been done in Penicillium chrysogenum. We used BLAST to find the genes encoding chitin synthases in P. chrysogenum related to chitin synthase genes in Aspergillus nidulans. Three homologous sequences coding for a class III chitin synthase CHS4 and two hypothetical proteins in P. chrysogenum were found. The gene which product showed the highest identity and encoded the class III chitin synthase CHS4 was studied in detail. To investigate the role of CHS4 in P. chrysogenum morphogenesis, we developed an RNA interference system to silence the class III chitin synthase gene chs4. After transformation, mutants exhibited a slow growth rate and shorter and more branched hyphae, which were distinct from those of the original strain. The results also showed that the conidiation efficiency of all transformants was reduced sharply and indicated that chs4 is essential in conidia development. The morphologies of all transformants and the original strain in penicillin production were investigated by light microscopy, which showed that changes in chs4 expression led to a completely different morphology during fermentation and eventually caused distinct penicillin yields, especially in the transformants PcRNAi1-17 and PcRNAi2-1 where penicillin production rose by 27 % and 41 %, respectively.

  20. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2016-12-01

    The classification of erythrocytes plays an important role in the field of hematological diagnosis, specifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the discrimination power of these features against 2-D features with a neural network classifier. The 3-D features include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius, elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experimental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features. Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection technique, which yields better discrimination results. We believe that the final feature set evaluated with a neural network classification strategy can improve the RBC classification accuracy.

  1. Heating and acceleration of escaping planetary ions

    NASA Astrophysics Data System (ADS)

    Nilsson, Hans

    2010-05-01

    The magnetic field of the Earth acts like a shield against the solar wind, leading to a magnetopause position many planetary radii away from the planet, in contrast to the situation at non- or weakly magnetized planets such as Mars and Venus. Despite this there is significant ion outflow due to solar wind interaction from the cusp and polar cap regions of the Earth's ionosphere. Effective interaction regions form, in particular in the ionospheric projection of the cusp, where ionospheric plasma flows up along the field-lines in response to magnetospheric energy input. Strong wave-particle interaction at altitudes above the ionosphere further accelerates the particles so that gravity is overcome. For the particles to enter a direct escape path they must be accelerated along open magnetic field lines so that they cross the magnetopause or reach a distance beyond the region of return flow in the tail. This return flow may also be either lost to space or returned to the atmosphere. Throughout this transport chain the heating and acceleration experienced by the particles will have an influence on the final fate of the particles. We will present quantitative estimates of centrifugal acceleration and perpendicular heating along the escape path from the cusp, through the high altitude polar cap/mantle, based on Cluster spacecraft data. We will open up for a discussion on the benefits of a ponderomotive force description of the acceleration affecting the ion circulation and escape. Finally we will compare with the situation at the unmagnetized planets Mars and Venus and discuss to what extent a magnetic field protects an atmosphere from loss through solar wind interaction.

  2. Suicide as escape from psychotic panic.

    PubMed

    Goldblatt, Mark J; Ronningstam, Elsa; Schechter, Mark; Herbstman, Benjamin; Maltsberger, John T

    2016-01-01

    Suicides of patients in states of acute persecutory panic may be provoked by a subjective experience of helpless terror threatening imminent annihilation or dismemberment. These patients are literally scared to death and try to run away. They imagine suicide is survivable and desperately attempt to escape from imaginary enemies. These states of terror occur in a wide range of psychotic illnesses and are often associated with command hallucinations and delusions. In this article, the authors consider the subjective experience of persecutory panic and the suicide response as an attempt to flee from danger.

  3. Evolutionary escape from the prisoner's dilemma.

    PubMed

    Worden, Lee; Levin, Simon A

    2007-04-07

    The classic prisoner's dilemma model of game theory is modified by introducing occasional variations on the options available to players. Mutation and selection of game options reliably change the game matrix, gradually, from a prisoner's dilemma game into a byproduct mutualism one, in which cooperation is stable, and "temptation to defect" is replaced by temptation to cooperate. This result suggests that when there are many different potential ways of interacting, exploring those possibilities may make escape from prisoner's dilemmas a common outcome in the world. A consequence is that persistent prisoner's dilemma structures may be less common than one might otherwise expect.

  4. Modeling Fluorescence Escape from Tissue Phantoms

    NASA Astrophysics Data System (ADS)

    Gardner, Craig Morris

    1995-01-01

    This dissertation represents a contribution to the field of quantitative fluorescence spectroscopy of biological tissue. The absorption and scattering properties of a turbid medium affect the propagation of fluorescence to the medium surface. Optical properties also affect the amount of light reaching a detector placed to monitor fluorescence non-invasively. These facts have in part limited fluorescence spectroscopy of turbid media to a qualitative science. To study the general characteristics of turbid medium fluorescence, a Monte Carlo algorithm of fluorescence light propagation was developed. Modifications to the general algorithm were made to study several specific light distribution quantities associated with optical fiber fluorescent measurement devices. The Monte Carlo-based studies were also used to develop simple, accurate expressions describing the one -dimensional distribution of excitation light within a turbid medium and the escape of fluorescence from the medium. The expressions have accuracy comparable to solutions of the radiative transport equation. The two expressions were combined to derive a simple expression relating the fluorescence power escaping a turbid medium due to surface excitation, to the medium intrinsic fluorescence coefficient, as a function of the medium optical properties. Based on this expression and a description of the fluorescence escape power intercepted by a distant detector, a method was developed to recover the intrinsic fluorescence coefficient from surface measurements of fluorescence and optical properties. Experiments with water-based, turbid media verified the recovery method. The method used to recover the intrinsic fluorescence coefficient was modified for use with a clinical measurement geometry, specifically a small diameter optical fiber probe. Modification required a calibration method to estimate two optical property variables from two unique surface measurements of diffuse reflectance made with the optical

  5. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    PubMed

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  6. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity.

    PubMed

    Patra, Astam K; Kundu, Sudipta K; Bhaumik, Asim; Kim, Dukjoon

    2016-01-07

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe(3+) ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.

  7. Morphology Tuning of Self-Assembled Perylene Monoimide from Nanoparticles to Colloidosomes with Enhanced Excimeric NIR Emission for Bioimaging.

    PubMed

    Jana, Avijit; Bai, Linyi; Li, Xin; Ågren, Hans; Zhao, Yanli

    2016-01-27

    Organic near-infrared (NIR) fluorescent probes have been recognized as an emerging class of materials exhibiting a great potential in advanced bioanalytical applications. However, synthesizing such organic probes that could simultaneously work in the NIR spectral range and have large Stokes shift, high stability in biological systems, and high photostability have been proven challenging. In this work, aggregation induced excimeric NIR emission in aqueous media was observed from a suitably substituted perylene monoimide (PeIm) dye. Controlled entrapment of the dye into pluronic F127 micellar system to preserve its monomeric green emission in aqueous media was also established. The aggregation process of the PeIm dye to form organic nanoparticles (NPs) was evaluated experimentally by the means of transmission electron microscope imaging as well as theoretically by the molecular dynamics simulation studies. Tuning the morphology along with the formation of colloidosomes by the controlled self-aggregation of PeIm NPs in aqueous suspension was demonstrated successfully. Finally, both excimeric and monomeric emissive PeIm NPs as well as PeIm colloidosomes were employed for the bioimaging in vitro.

  8. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    PubMed

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant.

  9. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.

    PubMed

    Uwamahoro, Nathalie; Verma-Gaur, Jiyoti; Shen, Hsin-Hui; Qu, Yue; Lewis, Rowena; Lu, Jingxiong; Bambery, Keith; Masters, Seth L; Vince, James E; Naderer, Thomas; Traven, Ana

    2014-03-25

    The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. IMPORTANCE Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent

  10. The effects of steady swimming on fish escape performance.

    PubMed

    Anwar, Sanam B; Cathcart, Kelsey; Darakananda, Karin; Gaing, Ashley N; Shin, Seo Yim; Vronay, Xena; Wright, Dania N; Ellerby, David J

    2016-06-01

    Escape maneuvers are essential to the survival and fitness of many animals. Escapes are frequently initiated when an animal is already in motion. This may introduce constraints that alter the escape performance. In fish, escape maneuvers and steady, body caudal fin (BCF) swimming are driven by distinct patterns of curvature of the body axis. Pre-existing muscle activity may therefore delay or diminish a response. To quantify the performance consequences of escaping in flow, escape behavior was examined in bluegill sunfish (Lepomis macrochirus) in both still-water and during steady swimming. Escapes executed during swimming were kinematically less variable than those made in still-water. Swimming escapes also had increased response latencies and lower peak velocities and accelerations than those made in still-water. Performance was also lower for escapes made up rather than down-stream, and a preference for down-stream escapes may be associated with maximizing performance. The constraints imposed by pre-existing motion and flow, therefore, have the potential to shape predator-prey interactions under field conditions by shifting the optimal strategies for both predators and prey.

  11. Structured Observations Reveal Slow HIV-1 CTL Escape

    PubMed Central

    Roberts, Hannah E.; Hurst, Jacob; Robinson, Nicola; Brown, Helen; Flanagan, Peter; Vass, Laura; Fidler, Sarah; Weber, Jonathan; Babiker, Abdel; Phillips, Rodney E.; McLean, Angela R.; Frater, John

    2015-01-01

    The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years. PMID:25642847

  12. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts.

    PubMed

    Stephenson, Robert S; Boyett, Mark R; Hart, George; Nikolaidou, Theodora; Cai, Xue; Corno, Antonio F; Alphonso, Nelson; Jeffery, Nathan; Jarvis, Jonathan C

    2012-01-01

    The general anatomy of the cardiac conduction system (CCS) has been known for 100 years, but its complex and irregular three-dimensional (3D) geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT) as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I(2)KI), we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN) and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart.

  13. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups.

    PubMed

    Szili, Endre J; Kumar, Sunil; Smart, Roger St C; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H

    2008-07-15

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO(2), showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups.

  14. HEC-cysteamine particles: influence of particle size, zeta potential, morphology and sulfhydryl groups on permeation enhancing properties.

    PubMed

    Rahmat, Deni; Müller, Christiane; Shahnaz, Gul; Leithner, Katharina; Laffleur, Flavia; Khan, Mohammad Imran; Martien, Ronny; Bernkop Schnürch, Andreas

    2013-09-01

    Within this study, the influence of particle size and zeta potential of hydroxyethyl cellulose-cysteamine particles on permeation enhancing properties was investigated. Particles were prepared by four different methods namely ionic gelation, spray drying, air jet milling and grinding. Particles prepared by grinding were additionally air jet milled. All particles were characterized in terms of particle size and zeta potential. The transport of fluorescein isothiocyanate-dextran 4 (FD4) across Caco-2 cell monolayers in the presence of these particles and the decrease in transepithelial electrical resistance (TEER) was evaluated. The cytotoxic effect of the particles was investigated using resazurin assay. Nanoparticles displaying a zeta potential of 3.3 ± 1.3 mV showed the highest enhancement of FD4 transport among all particles with a 5.83-fold improvement compared to buffer only. Due to the larger particle size, particles generated by grinding exhibited a lower capability in opening of tight junctions compared to smaller particles generated by air jet milling. In addition, the results of the transport studies were supported by the decrease in the TEER. All particle formulations tested were comparatively non-cytotoxic. Accordingly, the zeta potential and particle size showed a significant impact on the opening of tight junctions and hence could play an important role in the design of hydroxyethyl cellulose (HEC)-cysteamine-based nano- and micro-particles as drug delivery systems.

  15. The escape problem for mortal walkers

    NASA Astrophysics Data System (ADS)

    Grebenkov, D. S.; Rupprecht, J.-F.

    2017-02-01

    We introduce and investigate the escape problem for random walkers that may eventually die, decay, bleach, or lose activity during their diffusion towards an escape or reactive region on the boundary of a confining domain. In the case of a first-order kinetics (i.e., exponentially distributed lifetimes), we study the effect of the associated death rate onto the survival probability, the exit probability, and the mean first passage time. We derive the upper and lower bounds and some approximations for these quantities. We reveal three asymptotic regimes of small, intermediate, and large death rates. General estimates and asymptotics are compared to several explicit solutions for simple domains and to numerical simulations. These results allow one to account for stochastic photobleaching of fluorescent tracers in bio-imaging, degradation of mRNA molecules in genetic translation mechanisms, or high mortality rates of spermatozoa in the fertilization process. Our findings provide a mathematical ground for optimizing storage containers and materials to reduce the risk of leakage of dangerous chemicals or nuclear wastes.

  16. F111 Crew Escape Module pilot parachute

    SciTech Connect

    Tadios, E.L.

    1991-01-01

    A successfully deployment of a parachute system highly depends on the efficiency of the deployment device and/or method. There are several existing methods and devices that may be considered for a deployment system. For the F111 Crew Escape Module (CEM), the recovery parachute system deployment is initiated by the firing of a catapult that ejects the complete system from the CEM. At first motion of the pack, a drogue gun is fired, which deploys the pilot parachute system. The pilot parachute system then deploys the main parachute system, which consists of a cluster of three 49-ft diameter parachutes. The pilot parachute system which extracts the F111 Crew Escape Module recovery parachute system must provide reasonable bag strip velocities throughout the flight envelope (10 psf to 300 psf). The pilot parachute system must, therefore, have sufficient drag area at the lower dynamic pressures and a reduced drag area at the high end of the flight envelope. The final design that was developed was a dual parachute system which consists of a 5-ft diameter guide surface parachute tethered inside a 10-ft diameter flat circular parachute. The high drag area is sustained at the low dynamic pressures by keeping both parachutes intact. The drag area is reduced at the higher extreme by allowing the 10-ft parachute attachment to fail. The discussions to follow describe in detail how the system was developed. 4 refs., 10 figs., 2 tabs.

  17. Escape mechanisms of dust in Io

    NASA Astrophysics Data System (ADS)

    Flandes, A.

    The injection of material into the jovian magnetosphere through Io's volcanic activity makes possible the formation of structures such as the plasma torus and the dust ballerina skirt. Io's high temperature volcanism produces spectacular plumes, but even the tallest plumes, as those of Pelen Patera, will not produce enough energy to defeat the gravitational attraction of Io. The fact is that dust escapes from Io, which implies that a second mechanism is acting on the grains. Grains brought to the top of the highest plumes by the volcanic forces are still under Io's gravitational pull, but need only a minimum charge (~10-1 4 C) so that the Lorentz force due to the Jovian magnetic field equilibrates this attraction. In the volcanic vents, the escape velocity of the ejected material and its own density produces enough collisions to create charges. On top of the highest plumes (~500km) charged grains are exposed to the plasma torus that co-rotates rigidly with Jupiter and, due to the relative velocity among Io and the torus, the grains will be dragged away from Io. As it is well known, these dust grains will also be dragged away from Jupiter.

  18. A New Maneuver for Escape Trajectories

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation put forth a new maneuver for escape trajectories and specifically sought to find an analytical approximation for medium thrust trajectories. In most low thrust derivations the idea is that escape velocity is best achieved by accelerating along the velocity vector. The reason for this is that change in specific orbital energy is a function of velocity and acceleration. However, Levin (1952) suggested that while this is a locally optimal solution it might not be a globally optimal one. Turning acceleration inward would drop periapse giving a higher velocity later in the trajectory. Acceleration at that point would be dotted against a higher magnitude V giving a greater rate of change of mechanical energy. The author then hypothesized that decelerating from the initial orbit and then accelerating at periapse would not lead to a gain in greater specific orbital energy--however, the hypothesis was incorrect. After considerable derivation it was determined that this new maneuver outperforms a direct burn when the overall DeltaV budget exceeds the initial orbital velocity (the author has termed this the Heinlein maneuver). The author provides a physical explanation for this maneuver and presents optimization analyses.

  19. Escape of water molecular from Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jiaxi; Li, Wenfeng; Zhang, Jianwei

    2014-03-01

    Understanding and controlling the transport of water molecules through nanopores have attracted great interest due to potential applications for designing novel nanofluidic devices, machines and sensors. In this work, we theoretically investigate the effects of an external nonuniform electric field on the escape of water molecules through single-walled carbon nanotubes (SWNTs) by using of molecular dynamics (MD) simulations. When polar water molecules are placed in the gradient electric field, the electric force is experienced that can drive the water molecules. Molecular dynamics simulations show that the escape probability of water obeys the Boltzmann distribution. Our results show that energy barrier delta E is independent of temperature which indicates that it is a single-barrier system. From the MD results statistics, the key parameters could be determined such that the relationship between energy barrier delta E and diameter of SWNTs and nozzle distance of the charge r would be revealed that could deepen our current theoretical understanding on transport of water molecular inside SWNTs with the nonuniform electric field.

  20. Effects of escape to alone versus escape to enriched environments on adaptive and aberrant behavior.

    PubMed Central

    Golonka, Z; Wacker, D; Berg, W; Derby, K M; Harding, J; Peck, S

    2000-01-01

    Escape-maintained aberrant behavior may be influenced by two outcomes: (a) a break from the activity and (b) subsequent access to preferred activities. To assess this hypothesis, a treatment was developed that analyzed response allocation across two break options: break alone and break with access to preferred social activities. The break with preferred activities decreased aberrant behavior and increased appropriate behavior. PMID:10885532

  1. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity

    NASA Astrophysics Data System (ADS)

    Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon

    2015-12-01

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of

  2. Controlled synthesis of Bi25FeO40 with different morphologies: growth mechanism and enhanced photo-Fenton catalytic properties.

    PubMed

    Ji, Wenda; Li, Mingmeng; Zhang, Gaoke; Wang, Pei

    2017-02-07

    Bi25FeO40 microtetrahedra, microcubes and microspheres were successfully synthesized by a simple hydrothermal process and by adding different additive agents. The formation mechanism of Bi25FeO40 microcrystals was proposed; the additive agents had important influences on the morphology and facet exposure of the products. The catalytic activity of these materials was evaluated by the degradation of RhB in a heterogeneous photo-Fenton process. The Bi25FeO40 microcubes showed enhanced photo-Fenton catalytic activity, which can be attributed to an exposed {001} facet with the active O atoms. The hydroxyl radicals are the main active group in the heterogeneous photo-Fenton catalytic degradation. This study may provide a new method to design and synthesize novel nanoscale and microscope functional materials.

  3. Association of colony morphology with coenzyme Q(10) production and its enhancement from Rhizobium radiobacter T6102W by addition of isopentenyl alcohol as a precursor.

    PubMed

    Seo, Myung-Ji; Kook, Moo-Chang; Kim, Soon-Ok

    2012-02-01

    Rhizobium radiobacter T6102 was morphologically purified by the aniline blue agar plates to give two distinct colonies; white smooth mucoid colony (T6102W) and blue rough colony (T6102B). The coenzyme Q(10) (CoQ(10)) was produced just by T6102W, showing 2.0 mg/g of CoQ(10) content, whereas the T6102B did not produce the CoQ(10). All of the used CoQ(10) biosynthetic precursors enhanced the CoQ(10) production by T6102W. Specifically, the supplementation of 0.75 mM isopentenyl alcohol improved the CoQ(10) concentration (19.9 mg/l) and content (2.4 mg/g) by 42% and 40%, respectively.

  4. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells

    SciTech Connect

    Tagami, Mizuki; Kusuhara, Sentaro; Imai, Hisanori; Uemura, Akiyoshi; Honda, Shigeru; Tsukahara, Yasutomo; Negi, Akira

    2010-10-01

    Research highlights: {yields} Exogenous VEGF decreases MRP4 expression in a dose-dependent manner. {yields} MRP4 knockdown leads to enhanced cell migration. {yields} MRP4 knockdown suppresses caspase-3-mediated cell apoptosis. {yields} MRP4 knockdown produces cell assembly and cell aggregation. -- Abstract: The multidrug resistance protein (MRP) MRP4/ABCC4 is an ATP-binding cassette transporter that actively effluxes endogenous and xenobiotic substrates out of cells. In the rodent retina, Mrp4 mRNA and protein are exclusively expressed in vascular endothelial cells, but the angiogenic properties of Mrp4 are poorly understood so far. This study aims to explore the angiogenic properties of MRP4 in human retinal microvascular endothelial cells (HRECs) utilizing the RNA interference (RNAi) technique. MRP4 expression was decreased at the mRNA and protein levels after stimulation with exogenous vascular endothelial growth factor in a dose-dependent manner. RNAi-mediated MRP4 knockdown in HRECs do not affect cell proliferation but enhances cell migration. Moreover, cell apoptosis induced by serum starvation was less prominent in MRP4 siRNA-treated HRECs as compared to control siRNA-treated HRECs. In a Matrigel-based tube-formation assay, although MRP4 knockdown did not lead to a significant change in the total tube length, MRP4 siRNA-treated HRECs assembled and aggregated into a massive tube-like structure, which was not observed in control siRNA-treated HRECs. These results suggest that MRP4 is uniquely involved in retinal angiogenesis.

  5. Soybean (Glycine max) Pollen Germination Characteristics, Flower and Pollen Morphology in Response to Enhanced Ultraviolet-B Radiation

    PubMed Central

    KOTI, S.; REDDY, K. R.; KAKANI, V. G.; ZHAO, D.; REDDY, V. R.

    2004-01-01

    • Background and Aims Ultraviolet-B (UV-B) radiation effect on reproductive parts of the plants has received little attention. We studied the influence of UV-B radiation on flower and pollen morphology, pollen production and in vitro pollen germination and tube growth of six genotypes of soybean (Glycine max). • Methods Soybean genotypes were investigated by growing them under four levels of biologically effective UV-B radiation of 0 (control), 5, 10 and 15 kJ m−2 d−1 in sunlit controlled-environment chambers. • Key Results Reductions in lengths of flower, standard petal, and staminal column along with reduced pollen production, germination and tube growth were observed in all genotypes with increasing UV-B radiation. Combined response index (CRI), the sum of percentage relative responses in flower size, pollen production, pollen germination and tube growth due to UV-B radiation varied with UV-B dosage: −67 to −152 with 5 kJ m−2 d−1, −90 to −212 with 10 kJ m−2 d−1, and −118 to −248 with 15 kJ m−2 d−1 of UV-B compared to controls. Genotypes were classified based on the UV-B sensitivity index (USI) calculated as CRI per unit UV-B, where D 90-9216, DG 5630RR and D 88-5320 were classified as tolerant (USI > −7·43), and DP 4933RR, Stalwart III and PI 471938 were sensitive (USI < −7·43) in their response to UV-B radiation. Pollen grains produced in plants grown at 15 kJ m−2 d−1 UV-B radiation were shrivelled and lacked apertures compared to control and other UV-B treatments in both sensitive and tolerant genotypes, and the differences were more conspicuous in the sensitive genotype (PI 471938) than in the tolerant genotype (D 90-9216). The number of columellae heads of the exine was reduced with increasing UV-B radiation. • Conclusions Soybean genotypes varied in their reproductive response to UV-B radiation. The identified UV-B tolerant genotypes could be used in future breeding programmes. PMID:15466876

  6. Some Possible Cases of Escape Mimicry in Neotropical Butterflies.

    PubMed

    Pinheiro, C E G; Freitas, A V L

    2014-10-01

    The possibility that escape or evasive mimicry evolved in butterflies and other prey insects in a similar fashion to classical Batesian and Müllerian mimicry has long been advanced in the literature. However, there is a general disagreement among lepidopterists and evolutionary biologists on whether or not escape mimicry exists, as well as in which mimicry rings this form of mimicry has evolved. Here, we review some purported cases of escape mimicry in Neotropical butterflies and suggest new mimicry rings involving several species of Archaeoprepona, Prepona, and Doxocopa (the "bright blue bands" ring) and species of Colobura and Hypna (the "creamy bands" ring) where the palatability of butterflies, their ability to escape predator attacks, geographic distribution, relative abundance, and co-occurrence in the same habitats strongly suggest that escape mimicry is involved. In addition, we also indicate other butterfly taxa whose similarities of coloration patterns could be due to escape mimicry and would constitute important case studies for future investigation.

  7. Strong purifying selection at genes escaping X chromosome inactivation.

    PubMed

    Park, Chungoo; Carrel, Laura; Makova, Kateryna D

    2010-11-01

    To achieve dosage balance of X-linked genes between mammalian males and females, one female X chromosome becomes inactivated. However, approximately 15% of genes on this inactivated chromosome escape X chromosome inactivation (XCI). Here, using a chromosome-wide analysis of primate X-linked orthologs, we test a hypothesis that such genes evolve under a unique selective pressure. We find that escape genes are subject to stronger purifying selection than inactivated genes and that positive selection does not significantly affect the evolution of these genes. The strength of selection does not differ between escape genes with similar versus different expression levels in males versus females. Intriguingly, escape genes possessing Y homologs evolve under the strongest purifying selection. We also found evidence of stronger conservation in gene expression levels in escape than inactivated genes. We hypothesize that divergence in function and expression between X and Y gametologs is driving such strong purifying selection for escape genes.

  8. Revealing nanoscale optical properties and morphology in perfluoropentacene films by confocal and tip-enhanced near-field optical microscopy and spectroscopy.

    PubMed

    Wang, Xiao; Broch, Katharina; Schreiber, Frank; Meixner, Alfred J; Zhang, Dai

    2016-06-21

    Combining high resolution optical microscopy and spectroscopy, we propose a novel, generally applicable and highly sensitive method for determining the local morphology in organic semiconductor thin films (e.g. perfluoropentacene (PFP)). An azimuthally or radially polarized doughnut mode (APDM or RPDM) laser beam is focused by a high numerical aperture parabolic-mirror to excite a diffraction limited volume of the PFP film with an electric field polarized either exclusively in-plane or dominantly out-of-plane (relative to the substrate). We find two distinct morphologies of thin PFP films: molecular aggregates and crystalline terraces. The well-defined dipole emission patterns observed from the molecular aggregates strongly suggest the presence of localized excitations. For both laser modes, we observe that for the PFP aggregates, the photoluminescence (PL) emission from the main electronic transition is blue-shifted by about 10 meV, as compared to that from the molecular terraces. For the C-C bending modes, the B3g at 1581 cm(-1) (ν1) and the Ag at 1316 cm(-1) (ν0), we observe a decrease of the intensity ratio (Iν1/Iν0) from 0.6 (terrace) to 0.15 (aggregate). Furthermore, the intensity ratios (IAPDM/IRPDM) of ν1 excited by different polarizations increase from 0.12 (terrace) to 0.73 (aggregate). These results indicate that the PFP molecules orient rather parallel to the substrate in the aggregates, whilst more upright in the terraces. Benefiting from the nanometer scale optical resolution offered by the tip-enhanced near-field optical method, we observe clear optical contrasts between the molecular aggregate and the terrace as well as individual layers within a terrace. Tip-enhanced optical spectra locally taken from the molecular terrace and the aggregate show similar blue-shift of the main PL peak and change in the Raman intensity with different polarizations as from the far-field assemble-measurements, which further confirms the different molecular

  9. The atmospheric escape at Mars: complementing the scenario

    NASA Astrophysics Data System (ADS)

    Lilensten, Jean; Simon, Cyril; Barthélémy, Mathieu; Thissen, Roland; Ehrenreich, David; Gronoff, Guillaume; Witasse, Olivier

    2013-04-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly ener- getic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. This study assesses the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions.We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO++ for a simplified single constituent atmosphere of a 2 case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering ...), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished but complement the other processes and allow writing the scenario of the Mars escape. We show that the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible.When simulating the hot Jupiter HD209458b, the two processes cannot explain the measured escape flux of C+.

  10. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells.

    PubMed

    Tagami, Mizuki; Kusuhara, Sentaro; Imai, Hisanori; Uemura, Akiyoshi; Honda, Shigeru; Tsukahara, Yasutomo; Negi, Akira

    2010-10-01

    The multidrug resistance protein (MRP) MRP4/ABCC4 is an ATP-binding cassette transporter that actively effluxes endogenous and xenobiotic substrates out of cells. In the rodent retina, Mrp4 mRNA and protein are exclusively expressed in vascular endothelial cells, but the angiogenic properties of Mrp4 are poorly understood so far. This study aims to explore the angiogenic properties of MRP4 in human retinal microvascular endothelial cells (HRECs) utilizing the RNA interference (RNAi) technique. MRP4 expression was decreased at the mRNA and protein levels after stimulation with exogenous vascular endothelial growth factor in a dose-dependent manner. RNAi-mediated MRP4 knockdown in HRECs do not affect cell proliferation but enhances cell migration. Moreover, cell apoptosis induced by serum starvation was less prominent in MRP4 siRNA-treated HRECs as compared to control siRNA-treated HRECs. In a Matrigel-based tube-formation assay, although MRP4 knockdown did not lead to a significant change in the total tube length, MRP4 siRNA-treated HRECs assembled and aggregated into a massive tube-like structure, which was not observed in control siRNA-treated HRECs. These results suggest that MRP4 is uniquely involved in retinal angiogenesis.

  11. Feedback regulated escape of ionising radiation from high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Trebitsch, M.; Blaizot, J.

    2016-12-01

    Small galaxies are thought to provide the bulk of the radiation necessary to reionise the Universe by z ˜ 6. Their ionising efficiency is usually quantified by their escape fraction f_{esc}, but it is extremely hard to constrain from observations. With the goal of studying the physical processes that determine the values of the escape fraction, we have run a series of high resolution, cosmological, radiative hydrodynamics simulations centred on three galaxies. We find that the variability of the escape fraction follows that of the star formation rate, and that local feedback is necessary for radiation to escape.

  12. Managing Pacific salmon escapements: The gaps between theory and reality

    USGS Publications Warehouse

    Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald D.; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    There are myriad challenges to estimating intrinsic production capacity for Pacific salmon populations that are heavily exploited and/or suffering from habitat alteration. Likewise, it is difficult to determine whether perceived decreases in production are due to harvest, habitat, or hatchery influences, natural variation, or some combination of all four. There are dramatic gaps between the true nature of the salmon spawner/recruit relationship and the theoretical basis for describing and understanding the relationship. Importantly, there are also extensive practical difficulties associated with gathering and interpreting accurate escapement and run-size information and applying it to population management. Paradoxically, certain aspects of salmon management may well be contributing to losses in abundance and biodiversity, including harvesting salmon in mixed population fisheries, grouping populations into management units subject to a common harvest rate, and fully exploiting all available hatchery fish at the expense of wild fish escapements. Information on U.S. Pacific salmon escapement goal-setting methods, escapement data collection methods and estimation types, and the degree to which stocks are subjected to mixed stock fisheries was summarized and categorized for 1,025 known management units consisting of 9,430 known populations. Using criteria developed in this study, only 1% of U.S. escapement goals are by methods rated as excellent. Escapement goals for 16% of management units were rated as good. Over 60% of escapement goals have been set by methods rated as either fair or poor and 22% of management units have no escapement goals at all. Of the 9,430 populations for which any information was available, 6,614 (70%) had sufficient information to categorize the method by which escapement data are collected. Of those, data collection methods were rated as excellent for 1%, good for 1%, fair for 2%, and poor for 52%. Escapement estimates are not made for 44

  13. Transposon-mediated enhancer detection reveals the location, morphology and development of the cupular organs, which are putative hydrodynamic sensors, in the ascidian Ciona intestinalis.

    PubMed

    Ohta, Naoyuki; Horie, Takeo; Satoh, Nori; Sasakura, Yasunori

    2010-11-01

    The adult of the ascidian Ciona intestinalis has cupular organs, i.e., putative hydrodynamic sensors, at the atrial epithelium. The cupular organ consists of support cells and sensory neurons, and it extends a gelatinous matrix, known as a cupula, toward the atrial cavity. These characteristics are shared with sensory hair cells in the vertebrate inner ear and lateral line neuromasts in fish and amphibians, which suggests an evolutionary link between the cupular organ and these vertebrate hydrodynamic sensors. In the present study, we have isolated and investigated two transposon-mediated enhancer detection lines that showed GFP expression in support cells of the cupular organs. Using the enhancer detection lines and neuron marker transgenic lines, we describe the position, morphology, and development of the cupular organs. Cupular organs were found at the atrial epithelium, but not in the branchial epithelium. We found that cupular organs are also present along the dorsal fold and the gonoducts. The cells lining the pre-atrial opening in juveniles are presumably precursor cells of the cupular organ. To our knowledge, the present study is the first precise description of the ascidian cupular organ, providing evidence that may help to resolve discrepancies among previous studies on the organ.

  14. Simulating dynamical features of escape panic

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Farkas, Illés; Vicsek, Tamás

    2000-09-01

    One of the most disastrous forms of collective human behaviour is the kind of crowd stampede induced by panic, often leading to fatalities as people are crushed or trampled. Sometimes this behaviour is triggered in life-threatening situations such as fires in crowded buildings; at other times, stampedes can arise during the rush for seats or seemingly without cause. Although engineers are finding ways to alleviate the scale of such disasters, their frequency seems to be increasing with the number and size of mass events. But systematic studies of panic behaviour and quantitative theories capable of predicting such crowd dynamics are rare. Here we use a model of pedestrian behaviour to investigate the mechanisms of (and preconditions for) panic and jamming by uncoordinated motion in crowds. Our simulations suggest practical ways to prevent dangerous crowd pressures. Moreover, we find an optimal strategy for escape from a smoke-filled room, involving a mixture of individualistic behaviour and collective `herding' instinct.

  15. THERMAL ESCAPE FROM SUPER EARTH ATMOSPHERES IN THE HABITABLE ZONES OF M STARS

    SciTech Connect

    Tian Feng

    2009-09-20

    A fundamental question for exoplanet habitability is the long-term stability of the planet's atmosphere. We numerically solve a one-dimensional multi-component hydrodynamic thermosphere/ionosphere model to examine the thermal and chemical responses of the primary CO{sub 2} atmospheres of heavy super Earths (6-10 Earth masses) in the habitable zones of typical low-mass M stars to the enhanced soft X-ray and ultraviolet (XUV) fluxes associated with the prolonged high-activity levels of M stars. The results show that such atmospheres are stable against thermal escape, even for M stars XUV enhancements as large as 1000 compared to the present Earth. It is possible that the CO{sub 2}-dominant atmospheres of super Earths in the habitable zones of M stars could potentially contain modest amount of free oxygen as a result of more efficient atmosphere escape of carbon than oxygen instead of photosynthesis.

  16. Simplified models of circumstellar morphologies for interpreting high-resolution data. Analytical approach to the equatorial density enhancement

    NASA Astrophysics Data System (ADS)

    Homan, W.; Boulangier, J.; Decin, L.; de Koter, A.

    2016-12-01

    Context. Equatorial density enhancements (EDEs) are a very common astronomical phenomenon. Studies of the circumstellar environments (CSE) of young stellar objects and of evolved stars have shown that these objects often possess these features. These are believed to originate from different mechanisms, ranging from binary interactions to the gravitational collapse of interstellar material. Quantifying the effect of the presence of this type of EDE on the observables is essential for a correct interpretation of high-resolution data. Aims: We seek to investigate the manifestation in the observables of a circumstellar EDE, to assess which properties can be constrained, and to provide an intuitive bedrock on which to compare and interpret upcoming high-resolution data (e.g. ALMA data) using 3D models. Methods: We develop a simplified analytical parametrised description of a 3D EDE, with possible substructure such as warps, gaps, and spiral instabilities. In addition, different velocity fields (Keplerian, radial, super-Keplerian, sub-Keplerian and rigid rotation) are considered. The effect of a bipolar outflow is also investigated. The geometrical models are fed into the 3D radiative transfer code LIME, that produces 3D intensity maps throughout velocity space. We investigate the spectral signature of the J = 3-2 up to J = 7-6 rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of channel maps, wide-slit position-velocity (PV) diagrams, stereograms, and spectral lines. Additionally, we discuss methods of constraining the geometry of the EDE, the inclination, the mass-contrast between the EDE and the bipolar outflow, and the global velocity field. Finally, we simulated ALMA observations to explore the effects of interferometric noise and artefacts on the emission signatures. Results: The effects of the different velocity fields are most evident in the PV diagrams. These diagrams also enable us to constrain the EDE height

  17. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  18. How many ions have escaped the Martian atmosphere?

    NASA Astrophysics Data System (ADS)

    Brain, David; McFadden, James; Halekas, Jasper; Connerney, J. E. P.; Eparvier, Frank; Mitchell, David; Bougher, Stephen W.; Bowers, Charlie; Curry, Shannon; Dong, Chuanfei; Dong, Yaxue; Egan, Hilary; Fang, Xiaohua; Harada, Yuki; Jakosky, Bruce; Lillis, Robert; Luhmann, Janet; Ma, Yingjuan; Modolo, Ronan; Weber, Tristan

    2016-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making science measurements of the Martian upper atmosphere and its escape to space since November 2014. A key part of this effort is the measurement of the escape rates of charged particles (ions) at present and over solar system history. The lack of a global dynamo magnetic field at Mars leaves its upper atmosphere more directly exposed to the impinging solar wind than magnetized planets such as Earth. For this reason it is thought that ion escape at Mars may have played a significant role in long term climate change. MAVEN measures escaping planetary ions directly, with high energy, mass, and time resolution.With nearly two years of observations in hand, we will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express). We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.). Finally, we will use these results to provide an initial estimate of the total ion escape from Mars over billions of years.

  19. Green Pea Galaxies Reveal Secrets of Lyα Escape

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Dijkstra, Mark; Jaskot, Anne; Zheng, Zhenya; Wang, Junxian

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fraction and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.

  20. The Origins and Underpinning Principles of E-Scape

    ERIC Educational Resources Information Center

    Kimbell, Richard

    2012-01-01

    In this article I describe the context within which we developed project e-scape and the early work that laid the foundations of the project. E-scape (e-solutions for creative assessment in portfolio environments) is centred on two innovations. The first concerns a web-based approach to portfolio building; allowing learners to build their…

  1. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this section, each space accessible to passengers or used by the crew on a regular basis, must have at... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... windows. (d) The number and dimensions of the means of escape from each space must be sufficient for...

  2. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... least two means of escape, one of which must not be a watertight door. (b) The two required means of... clothing, or damage life jackets. (f) The minimum clear opening of a door or passageway used as a means of escape must not be less than 810 millimeters (32 inches) in width, however, doors or passageways...

  3. 7. VIEW OF ESCAPE TRAINING TANK, LOOKING UP SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF ESCAPE TRAINING TANK, LOOKING UP SOUTH SIDE FROM 50-FOOT PASSAGEWAY, SHOWING 25-FOOT BLISTER AT LEFT, 18-FOOT PASSAGEWAY AND PLATFORM AT RIGHT - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  4. 22. VIEW OF ESCAPE TRAINING TANK, LOOKING WEST FROM EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW OF ESCAPE TRAINING TANK, LOOKING WEST FROM EAST SIDE OF CUPOLA TOWARD ELEVATOR. TWO-LOCK RECOMPRESSION CHAMBER AT REAR - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  5. 29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT POINT JUST ABOVE THE SUBMARINE SECTION AT THE 110-FOOT LEVEL 1929-1930 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  6. 36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING RESCUE BELL SUSPENDED ABOVE TANK, WITH TWO-LOCK RECOMPRESSION CHAMBER AT REAR, LOOKING WEST. Photo taken after installation of recompression chamber in 1956. - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  7. 35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, PRIOR TO ENLARGEMENT OF ROOM AND INSTALLATION OF TRIPLE-LOCK RECOMPRESSION CHAMBER IN 1957 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  8. 31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF THE ELEVATOR AND PASSAGEWAYS TO THE 18- AND 50-FOOT LOCKS AND CUPOLA 1932 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  9. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Means of escape. 143.101 Section 143.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.101 Means of escape. (a) “Primary...

  10. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a hold-back to hold the scuttle in an open position. (e) The required means of escape must not have... escape is acceptable provided that— (1) There is no source of fire in the space, such as a galley stove... back of the ladder; and (4) Except when unavoidable obstructions are encountered, there must be...

  11. Complete mapping of viral escape from neutralizing antibodies

    PubMed Central

    Hensley, Scott E.

    2017-01-01

    Identifying viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a high-throughput approach to quantify the selection that monoclonal antibodies exert on all single amino-acid mutations to a viral protein. This approach, mutational antigenic profiling, involves creating all replication-competent protein variants of a virus, selecting with antibody, and using deep sequencing to identify enriched mutations. We use mutational antigenic profiling to comprehensively identify mutations that enable influenza virus to escape four monoclonal antibodies targeting hemagglutinin, and validate key findings with neutralization assays. We find remarkable mutation-level idiosyncrasy in antibody escape: for instance, at a single residue targeted by two antibodies, some mutations escape both antibodies while other mutations escape only one or the other. Because mutational antigenic profiling rapidly maps all mutations selected by an antibody, it is useful for elucidating immune specificities and interpreting the antigenic consequences of viral genetic variation. PMID:28288189

  12. Escape rate scaling in infinite measure preserving systems

    NASA Astrophysics Data System (ADS)

    Munday, Sara; Knight, Georgie

    2016-02-01

    We investigate the scaling of the escape rate from piecewise linear dynamical systems displaying intermittency due to the presence of an indifferent fixed point. Strong intermittent behaviour in the dynamics can result in the system preserving an infinite measure. We define a neighbourhood of the indifferent fixed point to be a hole through which points escape and investigate the scaling of the rate of this escape as the length of the hole decreases, both in the finite measure preserving case and infinite measure preserving case. In the infinite measure preserving systems we observe logarithmic corrections to and polynomial scaling of the escape rate with hole length. Finally we conjecture a relationship between the wandering rate and the observed scaling of the escape rate.

  13. Split-second escape decisions in blue tits (Parus caeruleus)

    NASA Astrophysics Data System (ADS)

    Lind, Johan; Kaby, Ulrika; Jakobsson, Sven

    2002-07-01

    Bird mortality is heavily affected by birds of prey. Under attack, take-off is crucial for survival and even minor mistakes in initial escape response can have devastating consequences. Birds may respond differently depending on the character of the predator's attack and these split-second decisions were studied using a model merlin (Falco columbarius) that attacked feeding blue tits (Parus caeruleus) from two different attack angles in two different speeds. When attacked from a low attack angle they took off more steeply than when attacked from a high angle. This is the first study to show that escape behaviour also depends on predator attack speed. The blue tits responded to a high-speed attack by dodging sideways more often than when attacked at a low speed. Escape speed was not significantly affected by the different treatments. Although they have only a split-second before escaping an attack, blue tits do adjust their escape strategy to the prevailing attack conditions.

  14. Escape fraction of ionizing photons during reionization: Effects due to supernova feedback and runaway ob stars

    SciTech Connect

    Kimm, Taysun; Cen, Renyue

    2014-06-20

    The fraction of hydrogen ionizing photons escaping from galaxies into the intergalactic medium is a critical ingredient in the theory of reionization. We use two zoomed-in, high-resolution (4 pc), cosmological radiation hydrodynamic simulations with adaptive mesh refinement to investigate the impact of two physical mechanisms (supernova, SN, feedback, and runaway OB stars) on the escape fraction (f {sub esc}) at the epoch of reionization (z ≥ 7). We implement a new, physically motivated SN feedback model that can approximate the Sedov solutions at all (from the free expansion to snowplow) stages. We find that there is a significant time delay of about ten million years between the peak of star formation and that of escape fraction, due to the time required for the build-up and subsequent destruction of the star-forming cloud by SN feedback. Consequently, the photon number-weighted mean escape fraction for dwarf galaxies in halos of mass 10{sup 8}-10{sup 10.5} M {sub ☉} is found to be 〈f{sub esc}〉∼11%, although instantaneous values of f {sub esc} > 20% are common when star formation is strongly modulated by the SN explosions. We find that the inclusion of runaway OB stars increases the mean escape fraction by 22% to 〈f{sub esc}〉∼14%. As SNe resulting from runaway OB stars tend to occur in less dense environments, the feedback effect is enhanced and star formation is further suppressed in halos with M{sub vir}≳10{sup 9} M{sub ⊙} in the simulation with runaway OB stars compared with the model without them. While both our models produce enough ionizing photons to maintain a fully ionized universe at z ≤ 7 as observed, a still higher amount of ionizing photons at z ≥ 9 appears necessary to accommodate the high observed electron optical depth inferred from cosmic microwave background observations.

  15. Comparisons of Selected Atmospheric Escape Mechanisms on Venus, Mars and Titan

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2008-01-01

    The similarities and differences of the escape mechanisms for H+ and D+ from Venus, H+ and D+ from Mars, and heavier ions (approximately 17 and approximately 28 amu) from Titan are described. The dominant escape process for hydrogen and deuterium on Venus is thought to originate in the night side ionosphere, located in the night side H and D bulge region, where the polarization electric field is the dominant force accelerating ionospheric H+ and D+ upward into the induced magnetic tail of Titan. The resulting loss rates approximately 8.6 x 10(exp26)/s and approximately 3.2 x 10(exp 23)/s for H+ and D+, respectively, are consistent with the large observed D/H ratio - 160 times that of terrestrial water and an ancient ocean more than 10 m of liquid uniformly distributed on the surface. In contrast, Jeans escape is the dominant loss mechanism for H and D on Mars, which has a D/H ratio approximately 5.3 times that of terrestrial water. The resulting loss rates for H and D of approximately 3.7 x 10(exp 26/s and approximately 10(exp 22)/s, respectively, can be related to possible ancient water reservoirs below the surface. When horizontal atmospheric winds are taken into account, the Jeans escape rates for H and D are enhanced considerably, as are the corresponding water reservoirs. On Titan, 28 amu ions were observed to escape along its induced magnetic tail by the Voyager 1 Plasma Science Instrument (PLS). In analogy with Venus, the escaping ions were thought to originate in the ionosphere. The Cassini mission permits a test of this principle due to the numerous flybys of Titan through both the ionosphere and the tail. A polarization electric field is obtained in the ionosphere of the TA flyby, yielding an upward acceleration of 17 and 28 amu ionospheric ions that is consistent with the flux of heavy ionospheric ions observed escaping along the magnetic tail by the Cassini Ion Mass Spectrometer (CAPS) during the T9 flyby.

  16. Comparisons of selected atmospheric escape mechanisms on Venus, Mars and Titan

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.; Sittler, E. C.

    2008-09-01

    The similarities and differences of the escape mechanisms for H+ and D+ from Venus, H and D from Mars, and heavier ions (~ 17 and ~ 28 amu) from Titan are described. The dominant escape process for hydrogen and deuterium on Venus is thought to originate in the night side ionosphere, located in the night side H and D bulge region, where the polarization electric field is the dominant force accelerating ionospheric H+ and D+ upward into the induced magnetic tail of Titan [1]. The resulting loss rates ~ 8.6x1026 s-1 and ~ 3.2x1023 s-1 for H+ and D+, respectively, are consistent with the large observed D/H ratio ~ 160 times that of terrestrial water and an ancient ocean more than 10 m of liquid uniformly distributed on the surface. In contrast, Jeans escape is the dominant loss mechanism for H and D on Mars [2], which has a D/H ratio ~ 5.3 times that of terrestrial water. The resulting loss rates for H and D of ~ 3.7x1026 s-1 and ~ 1022 s-1, respectively, can be related to possible ancient water reservoirs below the surface. When horizontal atmospheric winds are taken into account, the Jeans escape rates for H and D are enhanced considerably [3], as are the corresponding water reservoirs. On Titan, 28 amu ions were observed to escape along its induced magnetic tail by the Voyager 1 Plasma Science Instrument (PLS). In analogy with Venus, the escaping ions were thought to originate in the ionosphere [4]. The Cassini mission permits a test of this principal due to the numerous flybys of Titan through both the ionosphere and the tail. A polarization electric field is obtained in the ionosphere of the TA flyby, yielding an upward acceleration of 17 and 28 amu ionospheric ions that is consistent with the flux of heavy ionospheric ions observed escaping along the magnetic tail by the Cassini Ion Mass Spectrometer (CAPS) during the T9 flyby [5]. References [1] R. E. Hartle, T. M. Donahue, et al., J. Geophys. Res., 101,4525, 1996. [2] T. M. Donahue, Icarus, 167, 225, 2004. [3

  17. Immune Escape Strategies of Malaria Parasites

    PubMed Central

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  18. Escaping the resource curse in China.

    PubMed

    Cao, Shixiong; Li, Shurong; Ma, Hua; Sun, Yutong

    2015-02-01

    Many societies face an income gap between rich regions with access to advanced technology and regions that are rich in natural resources but poorer in technology. This "resource curse" can lead to a Kuznets trap, in which economic inequalities between the rich and the poor increase during the process of socioeconomic development. This can also lead to depletion of natural resources, environmental degradation, social instability, and declining socioeconomic development. These problems will jeopardize China's achievements if the current path continues to be pursued without intervention by the government to solve the problems. To mitigate the socioeconomic development gap between western and eastern China, the government implemented its Western Development Program in 2000. However, recent data suggest that this program has instead worsened the resource curse. Because each region has its own unique strengths and weaknesses, China must escape the resource curse by accounting for this difference; in western China, this can be done by improving education, promoting high-tech industry, adjusting its economic strategy to balance regional development, and seeking more sustainable approaches to socioeconomic development.

  19. WANDERING STARS: AN ORIGIN OF ESCAPED POPULATIONS

    SciTech Connect

    Teyssier, Maureen; Johnston, Kathryn V.; Shara, Michael M.

    2009-12-10

    We demonstrate that stars beyond the virial radii of galaxies may be generated by the gravitational impulse received by a satellite as it passes through the pericenter of its orbit around its parent. These stars may become energetically unbound (escaped stars), or may travel to further than a few virial radii for longer than a few Gyr, but still remain energetically bound to the system (wandering stars). Larger satellites (10%-100% the mass of the parent), and satellites on more radial orbits are responsible for the majority of this ejected population. Wandering stars could be observable on Mpc scales via classical novae, and on 100 Mpc scales via Type Ia supernova. The existence of such stars would imply a corresponding population of barely bound, old, high-velocity stars orbiting the Milky Way, generated by the same physical mechanism during the Galaxy's formation epoch. Sizes and properties of these combined populations should place some constraints on the orbits and masses of the progenitor objects from which they came, providing insight into the merging histories of galaxies in general and the Milky Way in particular.

  20. Sensitization of the Tritonia escape swim.

    PubMed

    Frost, W N; Brandon, C L; Mongeluzi, D L

    1998-03-01

    When repeatedly elicited, the oscillatory escape swim of the marine mollusc Tritonia diomedea undergoes habituation of the number of cycles per swim. Previous work has shown that this habituation is accompanied by sensitization of another feature of the behavior: latency to swim onset. Here we focused on the behavioral features of sensitization itself. Test swims elicited 5 min after a strong sensitizing head stimulus differed in several ways from control swims: sensitized animals had shorter latencies for gill and rhinophore withdrawal, a shorter latency for swim onset, a lower threshold for swim initiation, and an increased number of cycles per swim. Sensitized animals did not, however, swim any faster (no change in cycle period). A separate experiment found that swim onset latency also sensitized when Tritonia came into contact with one of their natural predators, the seastar Pycnopodia helianthoides, demonstrating the ecological relevance of this form of nonassociative learning. These results define the set of behavioral changes to be explained by cellular studies of sensitization in Tritonia.

  1. Immune Escape Strategies of Malaria Parasites.

    PubMed

    Gomes, Pollyanna S; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  2. Dications and thermal ions in planetary atmospheric escape

    NASA Astrophysics Data System (ADS)

    Lilensten, J.; Simon Wedlund, C.; Barthélémy, M.; Thissen, R.; Ehrenreich, D.; Gronoff, G.; Witasse, O.

    2013-01-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly energetic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. The goal of this study is to assess the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions. We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO2++ for a simplified single constituent atmosphere of a case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering, etc.), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished and even contribute only marginally to this loss. We show that with these two mechanisms, the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible. When simulating the hot Jupiter HD 209458 b, the two processes cannot explain the measured escape flux of C+. This study shows that the dications may constitute a source of the escape of planetary atmospheres which had not been taken into account until now. This source, although marginal, is not negligible. The influence of the photoionization is of course large, but cannot explain alone the loss of Mars

  3. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-08-20

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s{sup -1}. Their high speeds allow them to travel {approx}0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f{sub esc}, from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f{sub esc} as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f{sub esc} by factors of Almost-Equal-To 1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  4. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis.

    PubMed

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F A

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  5. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    PubMed Central

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  6. Lyman-Werner UV escape fractions from primordial haloes

    NASA Astrophysics Data System (ADS)

    Schauer, Anna T. P.; Whalen, Daniel J.; Glover, Simon C. O.; Klessen, Ralf S.

    2015-12-01

    Population III (Pop III) stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby haloes, and even if their ionizing photons are trapped by their own haloes, their Lyman-Werner (LW) photons can still escape and destroy H2 in other haloes, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic haloes by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9-120 M⊙ Pop III stars in 105-107 M⊙ haloes with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H2 in nearby systems) have escape fractions ranging from 0 to 85 per cent. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18-13.6 eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60 per cent for all but the least massive stars in the most massive haloes. We find that shielding of H2 by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of 3 smaller than those predicted by H2 self-shielding alone.

  7. Modelling the Evolution and Spread of HIV Immune Escape Mutants

    PubMed Central

    Fryer, Helen R.; Frater, John; Duda, Anna; Roberts, Mick G.; Phillips, Rodney E.; McLean, Angela R.

    2010-01-01

    During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level. PMID:21124991

  8. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    USGS Publications Warehouse

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  9. The Impacts of Orbital Distance on Exoplanetary Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Yang, M.; Guo, J. H.

    2016-11-01

    Driven by the high energy radiation of host stars, atmospheric escape is very important for planet evolution. While the flux drops dramatically with the increase of orbital distance, it is essential to study the impacts of orbital distance on atmospheric escape. We consider the hydrodynamic escape of exoplanets driven by the XUV (X-ray and extreme-ultraviolet) radiation of their host stars. We aim to study the mass-loss rate, the transition of escape mechanism, the structures of temperature and velocity, based on a one-dimensional hydrodynamic model which includes radiative transfer processes and photochemical reactions. As the stellar XUV emission varies with the stellar evolution, we use XSPEC (X-Ray Spectral Fitting Package) to construct the XUV spectra of solar-type stars at different ages. We find that with the increase of orbital distance, the mass-loss rates drop significantly, and when the stellar XUV flux is too small to preserve the hydrodynamic escape, it will turn to Jeans escape. This transition occurs in larger distance for younger and smaller planets. For young planets, hydrodynamic escape can occur in 1-2 au. For very young and close-in planets, the relation between mass-loss rate and stellar flux is not as significant as planets that are not close to their host stars, and the energy-limited equation can lead to large overestimate.

  10. Improving the Endosomal Escape of Cell-Penetrating Peptides and Their Cargos: Strategies and Challenges

    PubMed Central

    Erazo-Oliveras, Alfredo; Muthukrishnan, Nandhini; Baker, Ryan; Wang, Ting-Yi; Pellois, Jean-Philippe

    2012-01-01

    Cell penetrating peptides (CPPs) can deliver cell-impermeable therapeutic cargos into cells. In particular, CPP-cargo conjugates tend to accumulate inside cells by endocytosis. However, they often remain trapped inside endocytic organelles and fail to reach the cytosolic space of cells efficiently. In this review, the evidence for CPP-mediated endosomal escape is discussed. In addition, several strategies that have been utilized to enhance the endosomal escape of CPP-cargos are described. The recent development of branched systems that display multiple copies of a CPP is presented. The use of viral or synthetic peptides that can disrupt the endosomal membrane upon activation by the low pH of endosomes is also discussed. Finally, we survey how CPPs labeled with chromophores can be used in combination with light to stimulate endosomal lysis. The mechanisms and challenges associated with these intracellular delivery methodologies are discussed. PMID:24223492

  11. The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages

    PubMed Central

    Uwamahoro, Nathalie; Verma-Gaur, Jiyoti; Shen, Hsin-Hui; Qu, Yue; Lewis, Rowena; Lu, Jingxiong; Bambery, Keith; Masters, Seth L.; Vince, James E.; Naderer, Thomas; Traven, Ana

    2014-01-01

    ABSTRACT The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. PMID:24667705

  12. 16. INTERIOR VIEW OF SUBMARINE SECTION AT 110FOOT LEVEL, ESCAPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR VIEW OF SUBMARINE SECTION AT 110-FOOT LEVEL, ESCAPE TRAINING TANK, SHOWING LADDER TO ESCAPE TANK, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  13. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape.

    PubMed

    Hegde, Meenakshi; Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A; Wakefield, Amanda; Fousek, Kristen; Bielamowicz, Kevin; Chow, Kevin K H; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K; Orange, Jordan S; Ahmed, Nabil

    2016-08-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape.

  14. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape

    PubMed Central

    Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A.; Wakefield, Amanda; Bielamowicz, Kevin; Chow, Kevin K.H.; Brawley, Vita S.; Byrd, Tiara T.; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S.; Baker, Matthew L.; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K.

    2016-01-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape. PMID:27427982

  15. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

    PubMed

    Takahashi, Akiko; Islam, M Sadiqul; Abe, Hideki; Okubo, Kataaki; Akazome, Yasuhisa; Kaneko, Takeshi; Hioki, Hiroyuki; Oka, Yoshitaka

    2016-03-01

    Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.

  16. Enhancing Carrier Mobilities in Organic Thin-Film Transistors Through Morphological Changes at the Semiconductor/Dielectric Interface Using Supercritical Carbon Dioxide Processing.

    PubMed

    Dong, Ban Xuan; Amonoo, Jojo A; Purdum, Geoffrey E; Loo, Yueh-Lin; Green, Peter F

    2016-11-16

    Charge-carrier mobilities in poly(3-hexylthiophene) (P3HT) organic thin-film transistors (OTFTs) increase 5-fold when OTFTs composed of P3HT films on trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane (FTS) monolayers supported on SiO2 dielectric substrates (P3HT/FTS/SiO2/Si) are subjected to supercritical carbon dioxide (scCO2) processing. In contrast, carrier mobilities in P3HT/octadecyltrichlorosilane (OTS)/SiO2 OTFTs processed using scCO2 are comparable to mobilities measured in as-cast P3HT/OTS/SiO2/Si devices. Topographical images of the free and buried interfaces of P3HT films reveal that scCO2 selectively alters the P3HT morphology near the buried P3HT/FTS-SiO2 interface; identical processing has negligible effects at the P3HT/OTS-SiO2 interface. A combination of spectroscopic ellipsometry and grazing-incidence X-ray diffraction experiments indicate insignificant change in the orientation distribution of the intermolecular π-π stacking direction of P3HT/FTS with scCO2 processing. The improved mobilities are instead correlated with enhanced in-plane orientation of the conjugated chain backbone of P3HT after scCO2 annealing. These findings suggest a strong dependence of polymer processing on the nature of polymer/substrate interface and the important role of backbone orientation toward dictating charge transport of OTFTs.

  17. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape and evacuation shall include the designation and proper maintenance of adequate means for exit from all...

  18. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape and evacuation shall include the designation and proper maintenance of adequate means for exit from all...

  19. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape and evacuation shall include the designation and proper maintenance of adequate means for exit from all...

  20. Survey of space escape/rescue/survivability capabilities.

    NASA Technical Reports Server (NTRS)

    Fleisig, R.; Bolger, P. H.; Heath, G. W.

    1971-01-01

    Discussion of preventive or remedial systems to achieve safer space flight operations. Escape, rescue, and survival systems are defined by categories: on board, prepositioned aid, and earth-launched concepts. The survey considers separable escape or survival capsules; standby escape or rescue systems; and earth-launched manned and unmanned rescue systems. Reports covering such systems are listed, and the contents are classified as to scope of investigation, space mission, and design approach. Mission classes considered are earth orbit, lunar, and interplanetary. Results of the space escape, rescue, and survivability investigations are summarized in terms of system features and performance, including apparent voids or limitations in rescue capability. Recovery requirements and resources for space rescue are discussed.

  1. Experimental Analysis and Extinction of Self-Injurious Escape Behavior.

    ERIC Educational Resources Information Center

    Iwata, Brian A.; And Others

    1990-01-01

    Three studies investigated environmental correlates of self-injurious behavior in seven developmentally disabled children and adolescents which were then later used for treatment. Correlates investigated included positive reinforcement, negative reinforcement, automatic reinforcement, and control. "Escape extinction" was successfully…

  2. Pilot Fullerton dons ejection escape suit (EES) on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton dons ejection escape suit (EES) (high altitude pressure garment) life preserver unit (LPU) on forward port side of middeck above potable water tank. Fullerton also adjusts lapbelt fitting and helmet holddown strap.

  3. Dissociated neural effects of cortisol depending on threat escapability.

    PubMed

    Montoya, Estrella R; van Honk, Jack; Bos, Peter A; Terburg, David

    2015-11-01

    Evolution has provided us with a highly flexible neuroendocrine threat system which, depending on threat imminence, switches between active escape and passive freezing. Cortisol, the "stress-hormone", is thought to play an important role in both fear behaviors, but the exact mechanisms are not understood. Using pharmacological functional magnetic resonance imaging we investigated how cortisol modulates the brain's fear systems when humans are under virtual-predator attack. We show dissociated neural effects of cortisol depending on whether escape from threat is possible. During inescapable threat cortisol reduces fear-related midbrain activity, whereas in anticipation of active escape cortisol boosts activity in the frontal salience network (insula and anterior cingulate cortex), which is involved in autonomic control, visceral perception and motivated action. Our findings suggest that cortisol adjusts the human neural threat system from passive fear to active escape, which illuminates the hormone's crucial role in the adaptive flexibility of fear behaviors.

  4. Prey escaping wolves, Canis lupus, despite close proximity

    USGS Publications Warehouse

    Nelson, M.E.; Mech, L.D.

    1993-01-01

    We describe attacks by wolf (Canis lupus) packs in Minnesota on a white-tailed deer (Odocoileus virginianus) and a moose (Alces alces) in which wolves were within contact distance of the prey but in which the prey escaped.

  5. 14. View inside Building 802, the "Escape Hatch" at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View inside Building 802, the "Escape Hatch" at the rear of the "Sleeping Quarters", facing south. - Naval Air Station Fallon, 100-man Fallout Shelter, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. Electron yields and escape depths from spacecraft materials

    SciTech Connect

    Yang, K.Y.

    1986-01-01

    Secondary electron emission (SEE) characteristics and photoelectron yields were determined for several insulating materials used onboard a space shuttle. These materials are: kapton, teflon, spaceshuttle tiles, and space suit cloth. Secondary electron escape depth and photoelectron escape depth from kapton were calculated from the experimental data. Sternglass' theory and Dionne's method were used in the calculation. Some semi-empirical theories of SEE and three-step theory of photoemission were reviewed. Pulsed beam techniques were used to reduce surface charging problems. Three ..mu..sec pulses of electrons were used in SEE experiments, and 100 msec to 1 sec pulses were used in photoemission experiments. The maximum SEE yields of the materials studied range from 1.75 ro 2.70. The secondary electron escape depth in kapton was calculated to be 55 +/- 5 A. All samples have photoyields lower than 1.0%. The photoelectrons excited by 21-eV photons have 87 +/- 30 A escape depth in kapton.

  7. Escape behaviour and ultimate causes of specific induced defences in an anuran tadpole.

    PubMed

    Teplitsky, C; Plenet, S; Léna, J-P; Mermet, N; Malet, E; Joly, P

    2005-01-01

    Induced defences, such as the predator avoidance morphologies in amphibians, result from spatial or temporal variability in predation risk. One important component of this variability should be the difference in hunting strategies between predators. However, little is known about how specific and effective induced defences are to different types of predators. We analysed the impact of both pursuing (fish, Gasterosteus aculeatus) and sit-and-wait (dragonfly, Aeshna cyanea) predators on tadpole (Rana dalmatina) morphology and performance (viz locomotive performance and growth rate). We also investigated the potential benefits of the predator-induced phenotype in the presence of fish predators. Both predators induced deeper tail fins in tadpoles exposed to threat of predation, and stickleback presence also induced longer tails and deeper tail muscles. Morphological and behavioural differences resulted in better escape ability of stickleback-induced tadpoles, leading to improved survival in the face of stickleback predation. These results clearly indicate that specific morphological responses to different types of predators have evolved in R. dalmatina. The specific morphologies suggest low correlations between the traits involved in the defence. Independence of traits allows prey species to fine-tune their response according to current predation risk, so that the benefit of the defence can be maximal.

  8. Photoelectron escape fluxes over the equatorial and midlatitude regions

    NASA Technical Reports Server (NTRS)

    Narasingarao, B. C.; Singh, R. N.; Maier, E. J.

    1972-01-01

    Satellite measurements of photoelectron escape flux around noontime made by Explorer 31 in 600-800 km altitude range are reported for the equatorial and midlatitude regions. The pitch angle distributions and the spectral distributions are derived from the data. Analyzed data show that the flux for equatorial regions is lower by a factor 2 to 3 in comparison to that of midlatitude regions. Theoretical calculations are also made to compare with observed escape fluxes.

  9. Ion escape from Venus using statistical distribution functions

    NASA Astrophysics Data System (ADS)

    Nordstrom, T.; Stenberg, G.; Nilsson, H.; Barabash, S.; Futaana, Y.

    2012-04-01

    We use more than three years of data from the ASPERA-4 instrument onboard Venus Express to compile statistical distribution functions of ion flux in and around induced magnetosphere of Venus. We present samples of statistical distribution functions, as well average flux patterns in the near Venus space based on the statistical distribution functions. The statistical distribution functions allows for a compensation of biased sampling regarding both position and angular coverage of the instrument. Protons and heavy ions (mass/charge > 16) are the major ion species escaping from Venus. The escape is due to acceleration of planetary ions by energy transfer from the solar wind. The ion escape appears to exclusively take place in the induced magnetotail region and no heavy ions are present in the magnetosheath. Protons of solar wind origin are travelling around the planet and penetrating the tail, resulting in a mix of planetary and solar wind protons inside the induced magnetosphere boundary. The escape rates of ions inside the tail agree with results from recent published studies, where other analysis methods have been used. We also compare our results for Venus with a recent study of ion escape from Mars, where the same analysis method has been applied to data from the ASPERA-3 instrument on Mars Express. Both Mars and Venus are unmagnetized planets and are expected to interact similarly with the solar wind. On Mars the heavy ions are seen escaping in both the magnetosheath and tail regions as opposed to Venus where escape only takes place inside the tail. A possible explanation is that the magnetosphere of Mars is smaller compared to the ion gyroradius, making it easier for the ions to pass through the induced magnetosphere boundary. On both planets the escape rates of heavy ions in the tail are constant with increasing tail distance, verifying that the ions are leaving the planet in this region.

  10. GREEN PEA GALAXIES REVEAL SECRETS OF Lyα ESCAPE

    SciTech Connect

    Yang, Huan; Wang, Junxian; Malhotra, Sangeeta; Rhoads, James E.; Gronke, Max; Dijkstra, Mark; Jaskot, Anne; Zheng, Zhenya E-mail: huan.y@asu.edu E-mail: James.Rhoads@asu.edu

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fraction and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.

  11. Optimal escapement in stage-structured fisheries with environmental stochasticity.

    PubMed

    Holden, Matthew H; Conrad, Jon M

    2015-11-01

    Stage-structured population models are commonly used to understand fish population dynamics and additionally for stock assessment. Unfortunately, there is little theory on the optimal harvest of stage-structured populations, especially in the presence of stochastic fluctuations. In this paper, we find closed form optimal equilibrium escapement policies for a three-dimensional, discrete-time, stage-structured population model with linear growth, post-harvest nonlinear recruitment, and stage-specific pricing and extend the analytic results to structured populations with environmental stochasticity. When only fishing reproductive adults, stochasticity does not affect optimal escapement policies. However, when harvesting immature fish, the addition of stochasticity can increase or decrease optimal escapement depending on the second and third derivative of the recruitment function. For logistic recruitment, stochasticity reduces optimal immature escapement by a multiplicative factor of one over one plus the variance of the environmental noise. Using hard clam, Mercenaria mercenaria, as an example and assuming Beverton-Holt recruitment, we show that optimal fishing of hard clam targets the immature stage class exclusively and that environmental stochasticity increases optimal escapement for low discount rates and decreases optimal escapement for high discount rates.

  12. Group chase and escape with sight-limited chasers

    NASA Astrophysics Data System (ADS)

    Wang, Huodong; Han, Wenchen; Yang, Junzhong

    2017-01-01

    We study group chase and escape with sight-limited chasers. Two search strategies, random-walk-strategy and relocation-strategy, are introduced for chasers when escapers are out of their fields of vision. There exist two regimes for the group lifetime of escapers. In the narrow sight regime, the group lifetime is a decreasing function of chasers' sight range. In the wide sight regime, the group lifetime stays at a constant when chasers adopting random-walk-strategy while increases with the sight range when chasers adopting relocation-strategy. The impacts of the two search strategies on group chase and escape are studied by investigating the lifetime distribution of all escapers and the dependence of the minimum lifetime on the number of chasers. We also find that, to reach the most efficient and the lowest energy cost chase for chasers, the ratio between the number of chasers and escapers stays at around 6 under random-walk-strategy. However, the optimal number of chasers vanishes and the energy cost monotonically increases with increasing the number of chasers under relocation-strategy.

  13. Foraging behavior delays mechanically-stimulated escape responses in fish.

    PubMed

    Bohórquez-Herrera, Jimena; Kawano, Sandy M; Domenici, Paolo

    2013-11-01

    Foraging and the evasion of predators are fundamental for the survival of organisms, but they impose contrasting demands that can influence performance in each behavior. Previous studies suggested that foraging organisms may experience decreased vigilance to attacks by predators; however, little is known about the effect of foraging on escape performance with respect to the kinematics and the timing of the response. This study tested the hypothesis that engaging in foraging activities affected escape performance by comparing fast-start escape responses of silver-spotted sculpins Blepsias cirrhosus under three conditions: (1) control (no foraging involved), (2) while targeting prey, and (3) immediately after capture of prey. Escape response variables (non-locomotor and locomotor) were analyzed from high-speed videos. Responsiveness was lower immediately after capturing a prey item compared with the other two treatments, and latency of performance was higher in the control treatment than in the other two. Locomotor variables such as maximum speed, maximum acceleration, and turning rates did not show statistical differences among the three groups. Our results demonstrate that foraging can negatively affect two fundamental components of the escape response: (1) responsiveness and (2) latency of escape, suggesting that engaging in foraging may decrease an individual's ability to successfully evade predators.

  14. Link between intraphagosomal biotin and rapid phagosomal escape in Francisella

    PubMed Central

    Napier, Brooke A.; Meyer, Lena; Bina, James E.; Miller, Mark A.; Sjöstedt, Anders; Weiss, David S.

    2012-01-01

    Cytosolic bacterial pathogens require extensive metabolic adaptations within the host to replicate intracellularly and cause disease. In phagocytic cells such as macrophages, these pathogens must respond rapidly to nutrient limitation within the harsh environment of the phagosome. Many cytosolic pathogens escape the phagosome quickly (15–60 min) and thereby subvert this host defense, reaching the cytosol where they can replicate. Although a great deal of research has focused on strategies used by bacteria to resist antimicrobial phagosomal defenses and transiently pass through this compartment, the metabolic requirements of bacteria in the phagosome are largely uncharacterized. We previously identified a Francisella protein, FTN_0818, as being essential for intracellular replication and involved in virulence in vivo. We now show that FTN_0818 is involved in biotin biosynthesis and required for rapid escape from the Francisella-containing phagosome (FCP). Addition of biotin complemented the phagosomal escape defect of the FTN_0818 mutant, demonstrating that biotin is critical for promoting rapid escape during the short time that the bacteria are in the phagosome. Biotin also rescued the attenuation of the FTN_0818 mutant during infection in vitro and in vivo, highlighting the importance of this process. The key role of biotin in phagosomal escape implies biotin may be a limiting factor during infection. We demonstrate that a bacterial metabolite is required for phagosomal escape of an intracellular pathogen, providing insight into the link between bacterial metabolism and virulence, likely serving as a paradigm for other cytosolic pathogens. PMID:23071317

  15. Non-thermal escape of H2 and OH from the upper atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Kharchenko, Vasili

    2016-10-01

    Two major sources of energetic O atoms in the upper atmosphere of Mars are photochemical production, via dissociative recombination (DR) of O2+ and CO2+ molecular ions, and energizing collisions with fast energetic neutral atoms (ENA) produced by the precipitating solar wind ions. The non-thermal O atoms can either directly escape to space, forming a hot oxygen corona, or participate in collisions with background thermal atmospheric gases, such as H2. In this study we present a theoretical analysis of formation and kinetics of hot OH molecules in the upper atmosphere of Mars, produced in reactions of thermal molecular hydrogen and suprathermal oxygen atoms energized by both DR and ENAs. The non-thermal chemical reaction O + H2(v',j') → H + OH(v',j') is described using recent quantum-mechanical state-to-state cross sections[1], which allow us to predict non-equilibrium distributions of excited rotational and vibrational states (v',j') of OH and expected emission spectra for different geometry and solar activity conditions. A potential consequence is appearance or enhancement of faint Meinel bands in the upper atmosphere of Mars. Moreover, a fraction of produced translationally hot H2 and OH are sufficiently energetic to overcome Mars' gravitational potential and escape into space, contributing to the hot corona. The described non-thermal mechanisms produce estimated total escape fluxes of OH and H2 from dayside of Mars, for low solar activity conditions, equal to about 5×1022 s-1 for OH, or about 0.1% of the total escape rate of atomic O and H, and 1023 s-1 for H2 [2]. If HD molecules are considered instead of H2, the non-thermal mechanisms are about 30 times more efficient than Jeans escape, contribute about 5-10% of the total D escape rate, potentially of interest in atmospheric models of water evolution on Mars.[1] M. Gacesa and V. Kharchenko, J. Chem. Phys. 141, 4324 (2014)[2] M. Gacesa, P. Zhang, V. Kharchenko, Geophys. Res. Lett. 39, L10203 (2012).

  16. Escape from R-peptide deletion in a {gamma}-retrovirus

    SciTech Connect

    Schneider, Irene C.; Eckhardt, Manon; Brynza, Julia; Collins, Mary K.; Cichutek, Klaus; Buchholz, Christian J.

    2011-09-30

    The R peptide in the cytoplasmic tail (C-tail) of {gamma}-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in {gamma}-retrovirus infected cells.

  17. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody.

    PubMed

    Chai, Ning; Swem, Lee R; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-06-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness.

  18. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody

    PubMed Central

    Chai, Ning; Swem, Lee R.; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D.; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-01-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  19. Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics

    PubMed Central

    Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.

    2015-01-01

    The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526

  20. Energy-limited escape revised. The transition from strong planetary winds to stable thermospheres

    NASA Astrophysics Data System (ADS)

    Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.

    2016-01-01

    Gas planets in close proximity to their host stars experience photoevaporative mass loss. The energy-limited escape concept is generally used to derive estimates for the planetary mass-loss rates. Our photoionization hydrodynamics simulations of the thermospheres of hot gas planets show that the energy-limited escape concept is valid only for planets with a gravitational potential lower than log 10(-ΦG)< 13.11 erg g-1 because in these planets the radiative energy input is efficiently used to drive the planetary wind. Massive and compact planets with log 10(-ΦG) ≳ 13.6 erg g-1 exhibit more tightly bound atmospheres in which the complete radiative energy input is re-emitted through hydrogen Lyα and free-free emission. These planets therefore host hydrodynamically stable thermospheres. Between these two extremes the strength of the planetary winds rapidly declines as a result of a decreasing heating efficiency. Small planets undergo enhanced evaporation because they host expanded atmospheres that expose a larger surface to the stellar irradiation. We present scaling laws for the heating efficiency and the expansion radius that depend on the gravitational potential and irradiation level of the planet. The resulting revised energy-limited escape concept can be used to derive estimates for the mass-loss rates of super-Earth-sized planets as well as massive hot Jupiters with hydrogen-dominated atmospheres.

  1. The Impact of Unresolved Turbulence on the Escape Fraction of Lyman Continuum Photons

    NASA Astrophysics Data System (ADS)

    Safarzadeh, M.; Scannapieco, E.

    2016-11-01

    We investigate the relation between the turbulent Mach number ({ M }) and the escape fraction of Lyman continuum photons ({f}{esc}) in high-redshift galaxies. Approximating the turbulence as isothermal and isotropic, we show that the increase in the variance in column densities from { M }=1 to { M }=10 causes {f}{esc} to increase by ≈ 25%, and the increase from { M }=1 to { M }=20 causes {f}{esc} to increases by ≈ 50% for a medium with opacity τ ≈ 1. At a fixed Mach number, the correction factor for escape fraction relative to a constant column density case scales exponentially with the opacity in the cell, which has a large impact for simulated star-forming regions. Furthermore, in simulations of isotropic turbulence with full atomic/ionic cooling and chemistry, the fraction of HI drops by a factor of ≈ 2.5 at { M }≈ 10 even when the mean temperature is ≈ 5× {10}3 {{K}}. If turbulence is unresolved, these effects together enhance {f}{esc} by a factor \\gt 3 at Mach numbers above 10. Such Mach numbers are common at high redshifts where vigorous turbulence is driven by supernovae, gravitational instabilities, and merger activity, as shown both by numerical simulations and observations. These results, if implemented in the current hydrodynamical cosmological simulations to account for unresolved turbulence, can boost the theoretical predictions of the Lyman Continuum photon escape fraction and further constrain the sources of reionization.

  2. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance?

    PubMed

    Zhang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (A n), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher A n, stomatal conductance (g s), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for A n and g s to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water

  3. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance?

    PubMed Central

    Zhang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (An), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher An, stomatal conductance (gs), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for An and gs to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water

  4. Effect of electric field on carrier escape mechanisms in quantum dot intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Dai, Yushuai; Polly, Stephen J.; Hellstroem, Staffan; Slocum, Michael A.; Bittner, Zachary S.; Forbes, David V.; Roland, Paul J.; Ellingson, Randy J.; Hubbard, Seth M.

    2017-01-01

    Carrier escape and recombination from quantum dot (QD) states reduce the probability of two-step photon absorption (TSPA) by decreasing the available carrier population in the intermediate band (IB). In order to optimize the second photon absorption for future designs of quantum dot embedded intermediate band solar cells, the presented study combined the results of simulations and experiments to quantify the effect of electric field on the barrier height and the carrier escape from the QDs in InAs/GaAs quantum dot solar cells with five-layer QD superlattices. The electric field dependent effective barrier heights for ground state electrons were calculated using eight band k.p theory at short circuit conditions. With an increase in electric field surrounding the QDs from 5 kV/cm to 50 kV/cm, the effective barrier height of the ground state electrons was reduced from 147 meV to 136 meV, respectively. Thus, the increasing electric field not only exponentially enhances the ground state electron tunneling rate (effectively zero at 5 kV/cm and 7.9 × 106 s-1 at 50 kV/cm) but also doubles the thermal escape rate (2.2 × 1011 s-1 at 5 kV/cm and 4.1 × 1011 s-1 at 50 kV/cm). Temperature-dependent external quantum efficiency measurements were performed to verify that the increasing electric field decreases the effective barrier height. Additionally, the electric field dependent radiative lifetimes of the ground state were characterized with time-resolved photoluminescence experiments. This study showed that the increasing electric field extended the radiative recombination lifetime in the ground state of the QDs as a consequence of the reduced wave-function overlap between the electrons and holes. The balance of carrier escape and recombination determines the probability of TSPA.

  5. Alanine mutagenesis of the primary antigenic escape residue cluster, c1, of apical membrane antigen 1.

    PubMed

    Dutta, Sheetij; Dlugosz, Lisa S; Clayton, Joshua W; Pool, Christopher D; Haynes, J David; Gasser, Robert A; Batchelor, Adrian H

    2010-02-01

    Antibodies against apical membrane antigen 1 (AMA1) inhibit invasion of Plasmodium merozoites into red cells, and a large number of single nucleotide polymorphisms on AMA1 allow the parasite to escape inhibitory antibodies. The availability of a crystal structure makes it possible to test protein engineering strategies to develop a monovalent broadly reactive vaccine. Previously, we showed that a linear stretch of polymorphic residues (amino acids 187 to 207), localized within the C1 cluster on domain 1, conferred the highest level of escape from inhibitory antibodies, and these were termed antigenic escape residues (AER). Here we test the hypothesis that immunodampening the C1 AER will divert the immune system toward more conserved regions. We substituted seven C1 AER of the FVO strain Plasmodium falciparum AMA1 with alanine residues (ALA). The resulting ALA protein was less immunogenic than the native protein in rabbits. Anti-ALA antibodies contained a higher proportion of cross-reactive domain 2 and domain 3 antibodies and had higher avidity than anti-FVO. No overall enhancement of cross-reactive inhibitory activity was observed when anti-FVO and anti-ALA sera were compared for their ability to inhibit invasion. Alanine mutations at the C1 AER had shifted the immune response toward cross-strain-reactive epitopes that were noninhibitory, refuting the hypothesis but confirming the importance of the C1 cluster as an inhibitory epitope. We further demonstrate that naturally occurring polymorphisms that fall within the C1 cluster can predict escape from cross-strain invasion inhibition, reinforcing the importance of the C1 cluster genotype for antigenic categorization and allelic shift analyses in future phase 2b trials.

  6. Differential effects of stress on escape and reflex responses to nociceptive thermal stimuli in the rat.

    PubMed

    King, C D; Devine, D P; Vierck, C J; Rodgers, J; Yezierski, R P

    2003-10-17

    Acute stress has been shown to increase latencies of nociceptive reflexes, and this effect is considered evidence for stress-induced analgesia. However, tests for nociception that rely on motivated operant escape assess cerebral processing of pain and could be modulated independent of reflex responses. We therefore compared the effects of an acute stressor (restraint) on escape responses and lick/guard reflexes to stimulation of the paws by a thermally regulated floor. Testing sessions included a pre-test exposure to 36 degrees C, followed by a test trial in which either escape from 44 or 36 degrees C or reflex responses to 44 degrees C were observed. Behavioral responses to stress were assessed during a three day period, with baseline testing on day 1, post-stress or control testing on day 2, and evaluation of long-term stress effects on day 3. On day 2, half the animals received 15 min of restraint stress, followed by 15-min pre-test and test trials. Licking and guarding responses to thermal stimulation during 44 degrees C test trials were significantly reduced by restraint stress, confirming previously reported stress effects on nociceptive reflexes. In contrast, learned escape responses to the same thermal stimulus were significantly enhanced after stress. The increase in operant sensitivity suggests that acute restraint, a form of psychological stress, produces hyperalgesia for a level of thermal stimulation that preferentially activates C nociceptors. These results are discussed in relation to studies involving physical or psychological forms of stress, different nociceptive stimuli, and assessment strategies used to evaluate thermal pain sensitivity.

  7. Green Pea Galaxies Reveal Secrets of Lyα Escape

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Jaskot, Anne; Zheng, Zhenya; Dijkstra, Mark; Wang, JunXian

    2016-01-01

    In star-forming galaxies, a lot of Lyα photons were generated in HII regions surrounding massive stars. The escape of Lyα photons from galaxies is a key issue in studying high redshift galaxies and probing cosmic reionization with Lyα. To understand Lyα escape, it is valuable to study high quality Lyα profiles in Lyα emitters. However, such studies are rare due to the faintness of high-z Lyα emitters and the lack of local analogs with high Lyα equivalent width. Here we show that "Green Pea" galaxies are the best local analogs of high-z Lyα emitters and their high quality Lyα profiles demonstrate low HI column density is the key to Lyα escape. The Lyα escape fraction shows correlations with the ratio of Lyα blue peak velocity to Hα line width, the normalized flux density at valley of Lyα profile, and a few other features of Lyα profiles. We compared the Lyα profiles with outflowing HI shell radiative transfer model and found that the best-fit HI column density is anti-correlated with the Lyα escape fraction. We also found an anti-correlation between Lyα escape fraction and galactic metallicity. Our results support that LAEs with high Lyα escape fraction have low metallicity, low HI column density, and mild HI gas outflow.

  8. Oxygen or carbogen breathing before simulated submarine escape.

    PubMed

    Gennser, M; Blogg, S L

    2008-01-01

    Raised internal pressure in a distressed submarine increases the risk of bubble formation and decompression illness after submarine escape. The hypothesis that short periods of oxygen breathing before submarine escape would reduce decompression stress was tested, using Doppler-detectable venous gas emboli as a measure. Twelve goats breathed oxygen for 15 min at 0.1 MPa before exposure to a simulated submarine escape profile to and from 2.5 MPa (240 m/seawater), whereas 28 control animals underwent the same dive without oxygen prebreathe. No decompression sickness (DCS) occurred in either of these two groups. Time with high bubble scores (Kisman-Masurel >or=3) was significantly (P < 0.001) shorter in the prebreathe group. In a second series, 30 goats breathed air at 0.2 MPa for 6 h. Fifteen minutes before escape from 2.5 MPa, animals were provided with either air (n = 10), oxygen (n = 12), or carbogen (97.5% O(2) and 2.5% CO(2)) gas (n = 8) as breathing gas. Animals breathed a hyperoxic gas (60% O(2)-40% N(2)) during the escape. Two animals (carbogen group) suffered oxygen convulsions during the escape but recovered on surfacing. Only one case of DCS occurred (carbogen group). The initial bubble score was reduced in the oxygen group (P < 0.001). The period with bubble score of Kisman-Masurel >or=3 was also significantly reduced in the oxygen group (P < 0.001). Oxygen breathing before submarine escape reduces initial bubble scores, although its significance in reducing central nervous system DCS needs to be investigated further.

  9. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.

    PubMed

    Rao, S Srinivasa; Durga, Ikkurthi Kanaka; Kang, Tae-Su; Kim, Soo-Kyoung; Punnoose, Dinah; Gopi, Chandu V V M; Eswar Reddy, Araveeti; Krishna, T N V; Kim, Hee-Je

    2016-02-28

    To make quantum-dot sensitized solar cells (QDSSCs) competitive, photovoltaic parameters such as the power conversion efficiency (PCE) and fill factor (FF) must become comparable to those of other emerging solar cell technologies. In the present study, a novel strategy has been successfully developed for a highly efficient surface-modified platinum (Pt) counter electrode (CE) with high catalytic activity and long-term stability in a polysulfide redox electrolyte. The reinforcement of the Pt surface was performed using a thin passivating layer of CuS, NiS, or CoS by simple chemical bath deposition techniques. This method was a more efficient method for reducing the electron recombination in QDSSCs. The optimized Pt/CuS CE shows a very low charge transfer resistance of 37.01 Ω, which is an order of magnitude lower than those of bare Pt (86.32 Ω), Pt/NiS (53.83 Ω), and Pt/CoS (73.51 Ω) CEs. Therefore, the Pt/CuS CEs show much greater catalytic activity in the polysulfide redox electrolyte than Pt, Pt/NiS and Pt/CoS CEs. As a result, under one-sun illumination (AM 1.5G, 100 mW cm(-2)), the Pt/CuS CE exhibits a PCE of 4.32%, which is higher than the values of 1.77%, 2.95%, and 3.25% obtained with bare Pt, Pt/CoS, and Pt/NiS CEs, respectively. The performance of the Pt/CuS CE was enhanced by the improved current density, Cu vacancies with increased S composition, and surface morphology, which enable rapid electron transport and lower the electron recombination rate for the polysulfide electrolyte redox couple. Electrochemical impedance spectroscopy and Tafel polarization revealed that the hybrid CEs reduce interfacial recombination and exhibit better electrochemical and photovoltaic performance compared with a bare Pt CE. The Pt/CuS CE also shows superior stability in the polysulfide electrolyte in a working state for over 10 h, resulting in a long-term electrode stability than Pt CE.

  10. Single-File Escape of Colloidal Particles from Microfluidic Channels.

    PubMed

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-15

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15}  N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  11. History of oxygen and carbon escape from the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Zhang, M. H. G.; Johnson, R. E.; Bougher, S. W.; Nagy, A. F.

    1992-01-01

    A fraction of the oxygen in the Martian atmosphere continually escapes to space because dissociative recombination of the O2(+) ions in the ionosphere can impart sufficient energy to the product O atoms. In addition, ionization of the extended atomic oxygen corona resulting from the above process adds to escape since the solar wind can carry away O(+) ions born above a few hundred km altitude. A further by-product of this ion-pickup by the solar wind is an additional population of escaping oxygen atoms that are sputtered from the atmosphere near the exobase by pickup ions that are on reentry rather than escaping trajectories. This sputtering process can also remove carbon in the form of intact or dissociated CO2 since all atoms and molecules in the 'target' gas are subject to the collisional energy transfer that characterizes sputtering. We have estimated the present rates of escape of oxygen and carbon due to these mechanisms, as well as the rates at several epochs in the history of the solar system.

  12. Single-File Escape of Colloidal Particles from Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  13. MAVEN measurements of photochemical escape of oxygen from the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Deighan, J.; Fox, J. L.; Bougher, S. W.; Cravens, T. E.; Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Andersson, L.; McFadden, J.

    2015-10-01

    One of the primary goals of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) mission is to characterize rates of atmospheric escape at the present epoch and relate those escape rates to solar drivers [1]. One of the major escape processes is known as photochemical escape, which is broadly defined as a process by which a) an exothermic reaction in the atmosphere/ionosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through any subsequent collisions[2].At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher[3]. Thus characterizing this escape process is central to understanding the role escape to space has played in Mars' climate evolution.

  14. Accuracy of nonmolecular identification of growth-hormone- transgenic coho salmon after simulated escape.

    PubMed

    SundströM, L F; Lõhmus, M; Devlin, R H

    2015-09-01

    Concerns with transgenic animals include the potential ecological risks associated with release or escape to the natural environment, and a critical requirement for assessment of ecological effects is the ability to distinguish transgenic animals from wild type. Here, we explore geometric morphometrics (GeoM) and human expertise to distinguish growth-hormone-transgenic coho salmon (Oncorhynchus kisutch) specimens from wild type. First, we simulated an escape of 3-month-old hatchery-reared wild-type and transgenic fish to an artificial stream, and recaptured them at the time of seaward migration at an age of 13 months. Second, we reared fish in the stream from first-feeding fry until an age of 13 months, thereby simulating fish arising from a successful spawn in the wild of an escaped hatchery-reared transgenic fish. All fish were then assessed from 'photographs by visual identification (VID) by local staff and by GeoM based on 13 morphological landmarks. A leave-one-out discriminant analysis of GeoM data had on average 86% (72-100% for individual groups) accuracy in assigning the correct genotypes, whereas the human experts were correct, on average, in only 49% of cases (range of 18-100% for individual fish groups). However, serious errors (i.e., classifying transgenic specimens as wild type) occurred for 7% (GeoM) and 67% (VID) of transgenic fish, and all of these incorrect assignments arose with fish reared in the stream from the first-feeding stage. The results show that we presently lack the skills of visually distinguishing transgenic coho salmon from wild type with a high level of accuracy, but that further development-of GeoM methods could be useful in identifying second-generation,fish from nature as a nonmolecular approach.

  15. Escape rate and diffusion of a Stochastically Driven particle

    PubMed Central

    Piscitelli, Antonio; Pica Ciamarra, Massimo

    2017-01-01

    The dynamical properties of a tracer repeatedly colliding with heat bath particles can be described within a Langevin framework provided that the tracer is more massive than the bath particles, and that the collisions are frequent. Here we consider the escape of a particle from a potential well, and the diffusion coefficient in a periodic potential, without making these assumptions. We have thus investigated the dynamical properties of a Stochastically Driven particle that moves under the influence of the confining potential in between successive collisions with the heat bath. In the overdamped limit, both the escape rate and the diffusion coefficient coincide with those of a Langevin particle. Conversely, in the underdamped limit the two dynamics have a different temperature dependence. In particular, at low temperature the Stochastically Driven particle has a smaller escape rate, but a larger diffusion coefficient. PMID:28120904

  16. Mean escape time in a system with stochastic volatility

    NASA Astrophysics Data System (ADS)

    Bonanno, Giovanni; Valenti, Davide; Spagnolo, Bernardo

    2007-01-01

    We study the mean escape time in a market model with stochastic volatility. The process followed by the volatility is the Cox, Ingersoll, and Ross process which is widely used to model stock price fluctuations. The market model can be considered as a generalization of the Heston model, where the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity. We investigate the statistical properties of the escape time of the returns, from a given interval, as a function of the three parameters of the model. We find that the noise can have a stabilizing effect on the system, as long as the global noise is not too high with respect to the effective potential barrier experienced by a fictitious Brownian particle. We compare the probability density function of the return escape times of the model with those obtained from real market data. We find that they fit very well.

  17. Kramers escape of a self-propelled particle

    NASA Astrophysics Data System (ADS)

    Geiseler, Alexander; Hänggi, Peter; Schmid, Gerhard

    2016-08-01

    We investigate the escape rate of an overdamped, self-propelled spherical Brownian particle on a surface from a metastable potential well. Within a modeling in terms of a 1D constant speed of the particle's active dynamics we consider the associated rate using both numerical and analytical approaches. Regarding the properties of the stationary state in the potential well, two major timescales exist, each governing the translational and the rotational dynamics of the particle, respectively. The particle radius is identified to present the essential quantity in charge of regulating the ratio between those timescales. For very small and very large particle radii, approximate analytic expressions for the particle's escape rate can be derived, which, within their respective range of validity, compare favorably with the precise escape numerics of the underlying full two-dimensional Fokker-Planck description.

  18. Coexisting chaotic and periodic dynamics in clock escapements.

    PubMed

    Moon, Francis C; Stiefel, Preston D

    2006-09-15

    This paper addresses the nature of noise in machines. As a concrete example, we examine the dynamics of clock escapements from experimental, historical and analytical points of view. Experiments on two escapement mechanisms from the Reuleaux kinematic collection at Cornell University are used to illustrate chaotic-like noise in clocks. These vibrations coexist with the periodic dynamics of the balance wheel or pendulum. A mathematical model is presented that shows how self-generated chaos in clocks can break the dry friction in the gear train. This model is shown to exhibit a strange attractor in the structural vibration of the clock. The internal feedback between the oscillator and the escapement structure is similar to anti-control of chaos models.

  19. Social escape behaviors in children with fragile X syndrome.

    PubMed

    Hall, Scott; DeBernardis, Marie; Reiss, Allan

    2006-10-01

    Social escape behavior is a common behavioral feature of individuals with fragile X syndrome (fraX). In this observational study, we examined the effect of antecedent social and performance demands on problem behaviors in four conditions: face-to-face interview, silent reading, oral reading and a singing task. Results showed that problem behaviors were significantly more likely to occur during the interview and singing conditions. Higher levels of salivary cortisol were predictive of higher levels of fidgeting behavior and lower levels of eye contact in male participants. There were no associations between level of FMRP expression and social escape behaviors. These data suggest that specific antecedent biological and environmental factors evoke social escape behaviors in fragile X syndrome.

  20. Exploring the Escape of Hydrogen Ionizing Photons from Local Galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Jesse A.; Rosenberg, Jessica L.; Venkatesan, Aparna; Cannon, John M.; Salzer, John Joseph

    2016-01-01

    Low-mass galaxies dominate the universe by number and many of these systems have large star formation rates per unit mass. Measurements of the escape fraction of ionizing radiation from dwarf galaxies are an important input to cosmological simulations and theoretical studies but are largely unconstrained by observations. As a result, the role of low-mass galaxies in cosmological reionization and the ionization state of the intergalactic medium (IGM) at high and low redshifts remains poorly understood. Here we study a sample of 18 star-forming galaxies (12 from the Lyman-Alpha Reference Sample, Rivera-Thorsen et al. 2015; 6 from the KISS sample, Salzer et al. 2001), some of which are low-mass systems (10 with M_star < 5 x 10^9 M_sun). All of the sample galaxies were observed in the FUV with the HST/COS spectrograph and these measurements were used to derive limits on their escaping Lyman-alpha radiation (Rivera-Thorsen et al. 2015, Wofford et al. 2013). Using the numerical radiative transfer simulations of Yajima et al. 2014, we relate the escape of Lyman-alpha radiation to limits on the fraction of escaping H-ionizing radiation from these galaxies. This correlation is stronger for low-redshift galaxies (Yajima et al. 2014) and these galaxies are more accessible observationally for these studies. Although the Yajima et al. (2014) study focuses on high-mass galaxies, we derive tentative limits on the escape fraction for H-ionizing radiation for all of the galaxies in this sample. From our analysis, we find escape fractions of less than 5% in all but two extreme cases where the escape fractions are greater than 14%. Our sample averaged escape fraction is insufficient for what reionization requires, although our values are likely to be lower limits and the two outliers are two of the lowest mass systems from the LARS sample. We discuss future directions, including further modeling of the radiative transfer and the galaxy's physical conditions, to better understand the

  1. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  2. Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum).

    PubMed

    Ackerly, Kerri L; Ward, Andrea B

    2015-12-01

    Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation.

  3. Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGFβ2-bioenergetics-mitochondrial priming

    PubMed Central

    Zhang, Wei; Shi, Ivy; Bagai, Rakesh; Leahy, Patrick; Feng, Yan; Veigl, Martina; Lindner, Daniel; Danielpour, David; Yin, Lihong; Rosell, Rafael; Bivona, Trever G.; Zhang, Zhenfeng; Ma, Patrick C.

    2016-01-01

    The impact of EGFR-mutant NSCLC precision therapy is limited by acquired resistance despite initial excellent response. Classic studies of EGFR-mutant clinical resistance to precision therapy were based on tumor rebiopsies late during clinical tumor progression on therapy. Here, we characterized a novel non-mutational early adaptive drug-escape in EGFR-mutant lung tumor cells only days after therapy initiation, that is MET-independent. The drug-escape cell states were analyzed by integrated transcriptomic and metabolomics profiling uncovering a central role for autocrine TGFβ2 in mediating cellular plasticity through profound cellular adaptive Omics reprogramming, with common mechanistic link to prosurvival mitochondrial priming. Cells undergoing early adaptive drug escape are in proliferative-metabolic quiescent, with enhanced EMT-ness and stem cell signaling, exhibiting global bioenergetics suppression including reverse Warburg, and are susceptible to glutamine deprivation and TGFβ2 inhibition. Our study further supports a preemptive therapeutic targeting of bioenergetics and mitochondrial priming to impact early drug-escape emergence using EGFR precision inhibitor combined with broad BH3-mimetic to interrupt BCL-2/BCL-xL together, but not BCL-2 alone. PMID:27852038

  4. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps

    PubMed Central

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans. Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans: contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.

  5. Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI2 phase, and CH3NH3PbI3 morphologies

    NASA Astrophysics Data System (ADS)

    Jung, Kyungeun; Lee, Jeongwon; Kim, Joosun; Chae, Weon-Sik; Lee, Man-Jong

    2016-08-01

    This paper reports a synergistic strategy to enhance the power conversion efficiency (PCE) of flexible planar perovskite solar cells (PSCs) by controlling the thickness of the ZnO electron transport layer (ETL), PbI2 phase, and size/morphology of the perovskite (MAPbI3) absorber layer. To optimize the size/morphology of MAPbI3 via a two-step spin coating process, various volumes of CH3NH3I precursor solutions with a constant concentration were continuously coated, which greatly affected the grain growth condition of the MAPbI3. In addition, the remnant PbI2 phase in the MAPbI3, which acted as a recombination barrier, was simultaneously controlled. This strategic method to synergistically combine the major factors affecting the final PCE resulted in the best efficiency of 12.3%, which is the highest efficiency among ZnO-ETL-based flexible planar PSCs to date.

  6. Rejection versus escape: the tumor MHC dilemma.

    PubMed

    Garrido, Federico; Ruiz-Cabello, Francisco; Aptsiauri, Natalia

    2017-02-01

    Most tumor cells derive from MHC-I-positive normal counterparts and remain positive at early stages of tumor development. T lymphocytes can infiltrate tumor tissue, recognize and destroy MHC class I (MHC-I)-positive cancer cells ("permissive" phase I). Later, MHC-I-negative tumor cell variants resistant to T-cell killing emerge. During this process, tumors first acquire a heterogeneous MHC-I expression pattern and finally become uniformly MHC-I-negative. This stage (phase II) represents a "non-permissive" encapsulated structure with tumor nodes surrounded by fibrous tissue containing different elements including leukocytes, macrophages, fibroblasts, etc. Molecular mechanisms responsible for total or partial MHC-I downregulation play a crucial role in determining and predicting the antigen-presenting capacity of cancer cells. MHC-I downregulation caused by reversible ("soft") lesions can be upregulated by TH1-type cytokines released into the tumor microenvironment in response to different types of immunotherapy. In contrast, when the molecular mechanism of the tumor MHC-I loss is irreversible ("hard") due to a genetic defect in the gene/s coding for MHC-I heavy chains (chromosome 6) or beta-2-microglobulin (B2M) (chromosome 15), malignant cells are unable to upregulate MHC-I, remain undetectable by cytotoxic T-cells, and continue to grow and metastasize. Based on the tumor MHC-I molecular analysis, it might be possible to define MHC-I phenotypes present in cancer patients in order to distinguish between non-responders, partial/short-term responders, and likely durable responders. This highlights the need for designing strategies to enhance tumor MHC-I expression that would allow CTL-mediated tumor rejection.

  7. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta

    NASA Astrophysics Data System (ADS)

    Nayak, M.; Asphaug, E.

    2016-08-01

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties.

  8. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta.

    PubMed

    Nayak, M; Asphaug, E

    2016-08-30

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties.

  9. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta

    PubMed Central

    Nayak, M.; Asphaug, E.

    2016-01-01

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002

  10. Development of three-layered rumen escapable capsules for cattle

    PubMed Central

    SEYAMA, Tomohiro; HIRAYASU, Hirofumi; YAMAWAKI, Kenji; ADACHI, Takuhiko; SUGIMOTO, Takayuki; KASAI, Koji

    2016-01-01

    A new rumen escapable tool is presented for cattle in prospect of developing medical treatment or supplementing trace elements for disease prevention. This tool consists of a three-layered capsule that dissolves in the lower digestive tract, but not in the rumen. The capsule was manufactured by capsule-forming techniques through the use of liquid surface tension. This method does not involve high-temperature treatment, so the capsule can contain not only lipophilic substances but also hydrophilic or heat-sensitive substances. Furthermore, the capsule has a specific gravity of 1.3 and diameter of 6.0 mm, which were previously shown to be appropriate to avoid rumination. The objective of this study was to confirm the effectiveness of the capsule pertinent to rumen escaping. In order to validate rumen escape, capsules containing 30 g of water-soluble vitamin (thiamine hydrochloride) per head were administered to four lactating cows assigned in a crossover trial. In the group administered encapsulated thiamine hydrochloride, blood thiamine levels increased from 12.4 ± 1.03 ng/ml before administration to 54.8 ± 2.21 ng/ml at 6 hr following administration, whereas the level remained at 13.3 ± 2.05 ng/ml in the control group administered via aqueous solution. This indicates that the three-layered capsules passed through the rumen and dissolved in the lower digestive tract, thus functioning as a rumen escapable tool. PMID:27546371

  11. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... elevator enclosures, elevated stages, bars, and cashier stands, but not including slot machines, tables, or... necessary for handling lifesaving equipment, anchor handling equipment, or line handling gear, or in way...

  12. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... elevator enclosures, elevated stages, bars, and cashier stands, but not including slot machines, tables, or... necessary for handling lifesaving equipment, anchor handling equipment, or line handling gear, or in way...

  13. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... elevator enclosures, elevated stages, bars, and cashier stands, but not including slot machines, tables, or... necessary for handling lifesaving equipment, anchor handling equipment, or line handling gear, or in way...

  14. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... elevator enclosures, elevated stages, bars, and cashier stands, but not including slot machines, tables, or... necessary for handling lifesaving equipment, anchor handling equipment, or line handling gear, or in way...

  15. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... elevator enclosures, elevated stages, bars, and cashier stands, but not including slot machines, tables, or... necessary for handling lifesaving equipment, anchor handling equipment, or line handling gear, or in way...

  16. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems §...

  17. Evolving Project E-Scape for National Assessment

    ERIC Educational Resources Information Center

    Kimbell, Richard

    2012-01-01

    In the opening paper in this Special Edition I outlined the major issues that led to the establishment of "project e-scape". The project was intended to develop systems and approaches that enabled learners to build real-time web-based portfolios of their performance (initially) in design & technology and additionally to build systems…

  18. 75 FR 61386 - Emergency Escape Breathing Apparatus Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ...FRA is proposing to amend its regulations related to occupational safety and health in locomotive cabs in three ways. First and foremost, pursuant to a 2008 Congressional mandate, FRA is proposing to include requirements that railroads provide an appropriate atmosphere-supplying emergency escape breathing apparatus (EEBA) to the members of the train crew and certain other employees while they......

  19. Enuresis Control through Fading, Escape, and Avoidance Training.

    ERIC Educational Resources Information Center

    Hansen, Gordon D.

    1979-01-01

    A twin signal device that provides both escape and avoidance conditioning in enuresis control was documented with case studies of two enuretic children (eight and nine years old). In addition, a technique of fading as an adjunct to the process was utilized with one subject. (Author/SBH)

  20. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction... apart, uniform for the length of the ladder; (3) At least 3 inches from the nearest permanent object...

  1. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction... apart, uniform for the length of the ladder; (3) At least 3 inches from the nearest permanent object...

  2. 12. CLOSEUP VIEW FROM NORTHWEST, SHOWING DETAILS OF FIRE ESCAPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP VIEW FROM NORTHWEST, SHOWING DETAILS OF FIRE ESCAPE NEAR CORNER OF MILLS HALL MAIN WING NORTH WALL, AND MILLS HALL NORTH WING WEST WALL. - Mills Hall, Mills College, 5000 MacArthur Boulevard, Oakland, Alameda County, CA

  3. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1984-06-01

    Magnetic buoyancy causes the azimuthal magnetic fields of stars to rise rapidly to the surface, from where they are generally assumed to escape freely into space. However, a closer look at the problem reveals the simple fact that disengagement of the field from the gas, and escape into space, require a convoluted field configuration, producing neutral point reconnection of the flux in the tenuous gas above the surface of the star. Only that flux which reconnects can escape. Recent observations of the magnetic fields emerging through the surface of the Sun show that even at sunspot maximum the gaps in longitude between bipolar magnetic regions are so wide as to limit severely the reconnection between regions. We suggest from the observations that no more than perhaps 3% of the flux that is observed to emerge through the surface is able to reconnect and escape. Hence the surface of the Sun approximates to an impenetrable barrier rather than an open surface, with quantitative consequences for theoretical dynamo models. Recent observations of the retraction of bipolar fields at the end of their appearance at the surface suggest active dynamical control by the convection beneath the surface.

  4. Speed kills: ineffective avian escape responses to oncoming vehicles

    PubMed Central

    DeVault, Travis L.; Blackwell, Bradley F.; Seamans, Thomas W.; Lima, Steven L.; Fernández-Juricic, Esteban

    2015-01-01

    Animal–vehicle collisions cause high levels of vertebrate mortality worldwide, and what goes wrong when animals fail to escape and ultimately collide with vehicles is not well understood. We investigated alert and escape behaviours of captive brown-headed cowbirds (Molothrus ater) in response to virtual vehicle approaches of different sizes and at speeds ranging from 60 to 360 km h−1. Alert and flight initiation distances remained similar across vehicle speeds, and accordingly, alert and flight initiation times decreased at higher vehicle speeds. Thus, avoidance behaviours in cowbirds appeared to be based on distance rather than time available for escape, particularly at 60–150 km h−1; however, at higher speeds (more than or equal to 180 km h−1) no trend in response behaviour was discernible. As vehicle speed increased, cowbirds did not have enough time to assess the approaching vehicle, and cowbirds generally did not initiate flight with enough time to avoid collision when vehicle speed exceeded 120 km h−1. Although potentially effective for evading predators, the decision-making process used by cowbirds in our study appears maladaptive in the context of avoiding fast-moving vehicles. Our methodological approach and findings provide a framework to assess how novel management strategies could affect escape rules, and the sensory and cognitive abilities animals use to avoid vehicle collisions. PMID:25567648

  5. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems §...

  6. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Alarm and means of escape. (a) Each CO2 system that has a supply of more than 136 kilograms (300 pounds) of CO2, except a system that protects a tank, must have an alarm that sounds for at least 20 seconds before the CO2 is released into the space. (b) Each audible alarm for a CO2 system must have the...

  7. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Alarm and means of escape. (a) Each CO2 system that has a supply of more than 136 kilograms (300 pounds) of CO2, except a system that protects a tank, must have an alarm that sounds for at least 20 seconds before the CO2 is released into the space. (b) Each audible alarm for a CO2 system must have the...

  8. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Alarm and means of escape. (a) Each CO2 system that has a supply of more than 136 kilograms (300 pounds) of CO2, except a system that protects a tank, must have an alarm that sounds for at least 20 seconds before the CO2 is released into the space. (b) Each audible alarm for a CO2 system must have the...

  9. Spatial and Nonspatial Escape Strategies in the Barnes Maze

    ERIC Educational Resources Information Center

    Harrison, Fiona E.; Reiserer, Randall S.; Tomarken, Andrew J.; McDonald, Michael P.

    2006-01-01

    The Barnes maze is a spatial memory task that requires subjects to learn the position of a hole that can be used to escape the brightly lit, open surface of the maze. Two experiments assessed the relative importance of spatial (extra-maze) versus proximal visible cues in solving the maze. In Experiment 1, four groups of mice were trained either…

  10. Seasonal Dependence of the Escape of Martian Water

    NASA Astrophysics Data System (ADS)

    Clarke, John

    2013-10-01

    This proposal is to obtain ACS/SBC images and STIS spectra of the extended H Ly alpha and O 1304 emissions from H and O atoms in the atmosphere of Mars to study seasonal changes in the escape rate of H and O atoms, and thereby water. Prior HST observations have revealed a surprising rapid change in the H escape rate in late martian summer following a global dust storm, and have shown that STIS spectra can easily detect superthermal O atoms. The relative degree of influence of seasons and dust storms on the H density and escape flux are not known, and little is known about variations in the hot O density and escape rate. The timing of these observations is key to these scientific goals. Mars is now approaching the Sun, HST can observe Mars over a wide range of seasons from April - Nov 2014, and HST will not be able to observe Mars again until after the prime mission of MAVEN. These observations will provide strong support for the NASA MAVEN mission, scheduled to arrive at Mars in Sept. 2014. This proposal is for a single visit of 3 HST orbits in late sprign 2014 to establish the baseline conditions when Mars is far from the Sun.

  11. Solar forcing and planetary ion escape from Mars

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Barabash, S.; Fedorov, A.; Holmström, M.; Nilsson, H.; Sauvaud, J.-A.; Yamauchi, M.

    2008-05-01

    The variability of planetary ion escape from Mars is studied using data from the Ion Mass Analyzer, IMA, on Mars Express (MEX). 42 orbits were selected during 17 months for different solar wind conditions, focusing on the low energy (~30 - 800 eV) heavy ion (e.g. O+, O2 + and CO2 +) outflow. A strong correlation is found between solar wind forcing of the obstacle, the cross-sectional area enclosing the ion outflow from Mars and the total heavy ion escape flux. The at least one order of magnitude changes of the ion outflow on the short term (hours, days), is directly connected with the variability of solar wind, solar soft x-ray and solar EUV (XEUV). The latter was first inferred from an analysis of how the obstacle size changes with changing solar wind and solar XEUV forcing. The 17-month trend of decreasing ion outflow with EUV during a declining phase of solar cycle 23, the EUV determined from the Neutral Particle Imager (NPI) on MEX, illustrates the influence of solar EUV forcing. On the basis of this we conclude that changes in solar wind- and solar XEUV forcing governs the variable ion escape from Mars. Both forcing terms appear to be equally important for the escape rate. Considering the difference in travel time for XEUV and the solar wind to Mars, the XEUV effect will precede the solar wind effect by several (3-9) days.

  12. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... escape must be widely separated and, if possible, at opposite ends or sides of the space to minimize the... millimeters (0.333 inches) multiplied by the number of passengers for which the space is designed. (g) A dead end passageway, or the equivalent, of more than 6.1 meters (20 feet) in length is prohibited. (h)...

  13. 6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape tunnel. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  14. Escaping Embarrassment: Face-Work in the Rap Cipher

    ERIC Educational Resources Information Center

    Lee, Jooyoung

    2009-01-01

    How do individuals escape embarrassing moments in interaction? Drawing from ethnographic fieldwork, in-depth interviews, and video recordings of weekly street corner ciphers (impromptu rap sessions), this paper expands Goffman's theory of defensive and protective face-work. The findings reveal formulaic and indirect dimensions of face-work. First,…

  15. Purinergic inhibition of ENaC produces aldosterone escape.

    PubMed

    Stockand, James D; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-11-01

    The mechanisms underlying "aldosterone escape," which refers to the excretion of sodium (Na(+)) during high Na(+) intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na(+) channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na(+) intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y(2)(-/-) mice, which lack the purinergic receptor, had significantly less increased Na(+) excretion than wild-type mice in response to high-Na(+) intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y(2) receptor each modestly increased the resistance of ENaC to changes in Na(+) intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na(+) intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na(+) excretion in response to high-Na(+) intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape.

  16. Purinergic Inhibition of ENaC Produces Aldosterone Escape

    PubMed Central

    Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A.; Vallon, Volker; Peti-Peterdi, Janos

    2010-01-01

    The mechanisms underlying “aldosterone escape,” which refers to the excretion of sodium (Na+) during high Na+ intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na+ channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na+ intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y2−/− mice, which lack the purinergic receptor, had significantly less increased Na+ excretion than wild-type mice in response to high-Na+ intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y2 receptor each modestly increased the resistance of ENaC to changes in Na+ intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na+ intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na+ excretion in response to high-Na+ intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape. PMID:20813869

  17. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  18. Social Escape Behaviors in Children with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Hall, Scott; DeBernardis, Marie; Reiss, Allan

    2006-01-01

    Social escape behavior is a common behavioral feature of individuals with fragile X syndrome (fraX). In this observational study, we examined the effect of antecedent social and performance demands on problem behaviors in four conditions: face-to-face interview, silent reading, oral reading and a singing task. Results showed that problem behaviors…

  19. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... emergency exits, passageways, stairways, ladders, deck scuttles, and windows. (b) At least one of the means... suitable for use in emergency conditions and must be of rigid construction. (f) A window or windshield...

  20. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... emergency exits, passageways, stairways, ladders, deck scuttles, and windows. (b) At least one of the means... suitable for use in emergency conditions and must be of rigid construction. (f) A window or windshield...

  1. 2. WEST REAR, WITH PORTHOLE ESCAPE HATCH ABOVE ENTRY DOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST REAR, WITH PORTHOLE ESCAPE HATCH ABOVE ENTRY DOOR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  2. Atmospheric Escape and Climate Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Tian, F.; Chassefière, E.; Leblanc, F.; Brain, D.

    The climate of a planet is primarily determined by its orbital distance from its star, the luminosity of the star, the existence of oceans, the pressure of its atmosphere, and the composition of its atmosphere. The last two components are what could be impacted by atmosphere escape. The Sun, as the dominant energy source driving the climate of terrestrial planets, was not always as bright as it is today. Stellar evolution theory predicts that the luminosity of the young Sun was 75% of its present luminosity, at approximately 4 b.y. ago (4 Ga) (Gough, 1981). Although the Sun could have lost some of its mass, thus making the very young Sun somewhat more massive than it is now and therefore could have emitted more energy, most of this mass loss was completed prior to 4 Ga (Wood et al., 2005). Thus the Sun has provided increasingly more energy to solar system planets during the past 4 b.y. Contrary to the evolutionary trend of the total luminosity increasing with time, the young Sun should have emitted much stronger EUV, soft X-ray, and far-UV photons than at present. These photons are from the upper atmosphere of the Sun and are linked to solar magnetic activity. Generally speaking, a young star rotates much faster and thus has stronger magnetic activity. Observations of solar-type stars with different ages show that the EUV energy flux from a 0.5-b.y.-old solar-type star could be as much as 20 times that of the present Sun (Ribas et al., 2005). Accompanying this much-enhanced solar extreme ultraviolet (XUV) radiation is a much stronger solar wind, with mass flux up to 1000 times more intense than the present solar wind flux (Wood et al., 2005). It can be expected that many more energetic-particle events were caused by the young Sun. The fate of the atmospheres of terrestrial planets in such an environment and the consequences for their climates are the focus of this chapter.

  3. Danger detection and escape behaviour in wood crickets.

    PubMed

    Dupuy, Fabienne; Casas, Jérôme; Body, Mélanie; Lazzari, Claudio R

    2011-07-01

    The wind-sensitive cercal system of Orthopteroid insects that mediates the detection of the approach of a predator is a very sensitive sensory system. It has been intensively analysed from a behavioural and neurobiological point of view, and constitutes a classical model system in neuroethology. The escape behaviour is triggered in orthopteroids by the detection of air-currents produced by approaching objects, allowing these insects to keep away from potential dangers. Nevertheless, escape behaviour has not been studied in terms of success. Moreover, an attacking predator is more than "air movement", it is also a visible moving entity. The sensory basis of predator detection is thus probably more complex than the perception of air movement by the cerci. We have used a piston mimicking an attacking running predator for a quantitative evaluation of the escape behaviour of wood crickets Nemobius sylvestris. The movement of the piston not only generates air movement, but it can be seen by the insect and can touch it as a natural predator. This procedure allowed us to study the escape behaviour in terms of detection and also in terms of success. Our results showed that 5-52% of crickets that detected the piston thrust were indeed touched. Crickets escaped to stimulation from behind better than to a stimulation from the front, even though they detected the approaching object similarly in both cases. After cerci ablation, 48% crickets were still able to detect a piston approaching from behind (compared with 79% of detection in intact insects) and 24% crickets escaped successfully (compared with 62% in the case of intact insects). So, cerci play a major role in the detection of an approaching object but other mechanoreceptors or sensory modalities are implicated in this detection. It is not possible to assure that other sensory modalities participate (in the case of intact animals) in the behaviour; rather, than in the absence of cerci other sensory modalities can

  4. Recording Field Potentials From Zebrafish Larvae During Escape Responses

    PubMed Central

    Monesson-Olson, Bryan D.; Troconis, Eileen L.; Trapani, Josef G.

    2014-01-01

    Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the “C-bend” due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials. PMID:25565920

  5. In situ and remote measurements of ions escaping from Venus

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.

    2013-12-01

    Venus is thought to lose a large fraction of its atmosphere in the form ions, mainly via pickup. The relative loss rate of the exosphere as neutrals or ions is not known, nor is the flux of escaping ions well constrained. Knowledge of these processes will shed light on the role an intrinsic magnetic field has in atmospheric erosion. We use the complementary in-situ plasma and energetic neutral atom (ENA) measurements from the Venus Express (VEx) spacecraft in order to constrain the ion escape. VEx completed about 2500 orbits to date and reached altitudes as low as 200km. The ASPERA/IMA instrument measured directional proton and oxygen ion spectra in the 10eV to 40keV range. We bin the data accumulated over the mission in space and bulk flow direction, yielding a direct measure of the local ion escape flux. While such in-situ measurements provide data without ambiguity, they are limited by the orbital coverage. This is why we include remote ENA measurements from the ASPERA/NPD (100eV to 10keV) instrument to our study. ENAs are created when escaping ions charge exchange with the high atmosphere atoms or molecules. We have done an exhaustive analysis of the data, excluding time periods of instrument contamination. Most ENA emission originates from low altitudes above Venus' limb. These measurements will be compared with the in-situ data, which allows constraining the atmospheric density at high altitudes. Interestingly, there are also ENA emissions from other directions, which were not sampled in-situ. This allows us to put a lower limit to the escape from these regions.

  6. High Lyman Continuum Escape Fraction in a Lensed Young Compact Dwarf Galaxy at z = 2.5

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Fan, Xiaohui; McGreer, Ian; Cai, Zheng; Jiang, Linhua

    2017-03-01

    We present the HST WFC3/F275W UV imaging observations of A2218-Flanking, a lensed compact dwarf galaxy at redshift z≈ 2.5. The stellar mass of A2218-Flanking is {log}({M}* /{M}ȯ )={9.14}-0.04+0.07 and SFR is {12.5}-7.4+3.8 {M}ȯ yr‑1 after correcting the magnification. This galaxy has a young galaxy age of 127 Myr and a compact galaxy size of {r}1/2=2.4 {kpc}. The HST UV imaging observations cover the rest-frame Lyman continuum (LyC) emission (∼800 Å) from A2218-Flanking. We firmly detect (14σ ) the LyC emission in A2218-Flanking in the F275W image. Together with the HST F606W images, we find that the absolute escape fraction of LyC is {f}{abs,{esc}}> 28 % {--}57 % based on the flux density ratio between 1700 and 800 Å ({f}1700/{f}800). The morphology of the LyC emission in the F275W images is extended and follows the morphology of the UV continuum morphology in the F606W images, suggesting that the f 800 is not from foreground contaminants. We find that the region with a high star formation rate surface density has a lower {f}1700/{f}800 (higher {f}800/{f}1700) ratio than the diffused regions, suggesting that LyC photons are more likely to escape from the region with the intensive star-forming process. We compare the properties of galaxies with and without LyC detections and find that LyC photons are easier to escape in low-mass galaxies.

  7. QUANTITATIVE MORPHOLOGY

    EPA Science Inventory

    Abstract: In toxicology, the role of quantitative assessment of brain morphology can be understood in the context of two types of treatment-related alterations. One type of alteration is specifically associated with treatment and is not observed in control animals. Measurement ...

  8. An Empirical Investigation of Time-Out with and without Escape Extinction to Treat Escape-Maintained Noncompliance

    ERIC Educational Resources Information Center

    Everett, Gregory E.; Olmi, D. Joe; Edwards, Ron P.; Tingstrom, Daniel H.; Sterling-Turner, Heather E.; Christ, Theodore J.

    2007-01-01

    The present study evaluates the effectiveness of two time-out (TO) procedures in reducing escape-maintained noncompliance of 4 children. Noncompliant behavioral function was established via a functional assessment (FA), including indirect and direct descriptive procedures and brief confirmatory experimental analyses. Following FA, parents were…

  9. Formulation of a Cooperative-Confinement-Escape problem of multiple cooperative defenders against an evader escaping from a circular region

    NASA Astrophysics Data System (ADS)

    Li, Wei

    2016-10-01

    In this paper, we propose and formulate the Cooperative-Confinement-Escape (CCE) problem of multiple cooperative defenders against an evader escaping from a circular region, in which the defenders are moving on the circle with attempt to prevent possible escape of a single evader who is initially located inside the circle. The main contributions are summarized as follows: (1) we first provide an effective formulation of the CCE problem, which is an emphasis of this paper, with design of two nonlinear control strategies for the cooperative defenders and the adversarial evader, respectively. Particularly, we consider to include a proper interaction between each pair of the nearest-neighbor defenders, and an adaptive trajectory prediction mechanism in the strategies of the defenders to increase the chance of successful confinement. (2) For the first attempt on analyzing the CCE dynamics which is unavoidably strongly nonlinear, we analyze the minimum energy of the evader for possible escape. (3) For understanding of the behaviors of the system under different parameters, (i) we illustrate the effectiveness of the confinement strategy using the adaptive trajectory prediction mechanism, and (ii) the physical roles of the system parameters with respect to the system dynamics, some of which may be unexpected or not straightforward. A separate paper will be presented for systematic analysis of the agents' behaviors with respect to the large intervals of the parameter settings.

  10. A Generalized Escape System Simulation (GESS) Computer Program: GESS User’s Guide. Version II. Volume 1.

    DTIC Science & Technology

    1983-09-01

    4-14 4-7 Ocupant Alone Variable Fields ......................... 4-15 4-8 Rail Data Variable Fields ............................. 4...civilian management, and Navy personnel with greater ability to: - establish escape system performance requirements, -. . evaluate competitive escape...system proposals, z. evaluate escape system design modifications, ~. monitor escape system test programs, .. prepare fleet information on escape

  11. Anatomy of an escape tectonic zone: Western Irian Jaya (Indonesia)

    NASA Astrophysics Data System (ADS)

    Pubellier, Manuel; Ego, Frédéric

    2002-07-01

    The western fold-and-thrust belt of New Guinea in Irian Jaya is presently a complex boundary, dominated by the Bird's Head block escape from the collision between the Australian plate and the remnants of volcanic belts carried by the Pacific plate. The escape rate given by geodetic measurements is of the order of 7 cm/yr, and movement is accommodated by a broad shear zone. We analyze this shear pattern using fault slip analyses performed in the field from 1992 to 1996, combined with focal mechanism inversions, moment tensors summations, and surface trace of structures inferred from radar and multispectral satellite images. Time control of the deformation is attained by isotope dating of the recent syntectonic intrusives. The geometry of the macro and microstructures occurred in two stages from the early Pliocene to the Present. The first stage (5 to 2 Ma) is marked by flat-and-ramps structures guided by N60°E lateral ramps associated with a N60°E cleavage, affecting the whole of western Irian Jaya. The second stage (2 Ma to Present) shows the collapse of the western fold-and-thrust belt and the escape of the Bird's Head and the Lengguru belts along N60°E transtensile faults. In the latter stage, the strike-slip offset is distributed on the N60°E schistosity zone along which some fracture planes are reactivated as left-lateral transtensile faults. Shallow earthquakes moment tensors have been inverted for stress and summed to get strain rates to define contrasting structural provinces. The spatial variations in both stress and strain fields from earthquakes and microtectonics show that (1) they are consistent and are assumed to be coeval, (2) they reveal that oblique convergence is partitioned, and (3) they are influenced by the existence of a free boundary. We see no significant rotation of stress axes laterally along the escape zone. Instead, stresses change according to the different orientations of basement structures and thus undergo rapid spatial variations

  12. Novel Anti-Adhesive CMC-PE Hydrogel Significantly Enhanced Morphological and Physiological Recovery after Surgical Decompression in an Animal Model of Entrapment Neuropathy.

    PubMed

    Urano, Hideki; Iwatsuki, Katsuyuki; Yamamoto, Michiro; Ohnisi, Tetsuro; Kurimoto, Shigeru; Endo, Nobuyuki; Hirata, Hitoshi

    2016-01-01

    We developed a novel hydrogel derived from sodium carboxymethylcellulose (CMC) in which phosphatidylethanolamine (PE) was introduced into the carboxyl groups of CMC to prevent perineural adhesions. This hydrogel has previously shown excellent anti-adhesive effects even after aggressive internal neurolysis in a rat model. Here, we confirmed the effects of the hydrogel on morphological and physiological recovery after nerve decompression. We prepared a rat model of chronic sciatic nerve compression using silicone tubing. Morphological and physiological recovery was confirmed at one, two, and three months after nerve decompression by assessing motor conduction velocity (MCV), the wet weight of the tibialis anterior muscle and morphometric evaluations of nerves. Electrophysiology showed significantly quicker recovery in the CMC-PE group than in the control group (24.0 ± 3.1 vs. 21.0± 2.1 m/s (p < 0.05) at one months and MCV continued to be significantly faster thereafter. Wet muscle weight at one month significantly differed between the CMC-PE (BW) and control groups (0.148 ± 0.020 vs. 0.108 ± 0.019%BW). The mean wet muscle weight was constantly higher in the CMC-PE group than in the control group throughout the experimental period. The axon area at one month was twice as large in the CMC-PE group compared with the control group (24.1 ± 17.3 vs. 12.3 ± 9 μm2) due to the higher ratio of axons with a larger diameter. Although the trend continued throughout the experimental period, the difference decreased after two months and was not statistically significant at three months. Although anti-adhesives can reduce adhesion after nerve injury, their effects on morphological and physiological recovery after surgical decompression of chronic entrapment neuropathy have not been investigated in detail. The present study showed that the new anti-adhesive CMC-PE gel can accelerate morphological and physiological recovery of nerves after decompression surgery.

  13. Novel Anti-Adhesive CMC-PE Hydrogel Significantly Enhanced Morphological and Physiological Recovery after Surgical Decompression in an Animal Model of Entrapment Neuropathy

    PubMed Central

    Urano, Hideki; Iwatsuki, Katsuyuki; Yamamoto, Michiro; Ohnisi, Tetsuro; Kurimoto, Shigeru; Endo, Nobuyuki; Hirata, Hitoshi

    2016-01-01

    We developed a novel hydrogel derived from sodium carboxymethylcellulose (CMC) in which phosphatidylethanolamine (PE) was introduced into the carboxyl groups of CMC to prevent perineural adhesions. This hydrogel has previously shown excellent anti-adhesive effects even after aggressive internal neurolysis in a rat model. Here, we confirmed the effects of the hydrogel on morphological and physiological recovery after nerve decompression. We prepared a rat model of chronic sciatic nerve compression using silicone tubing. Morphological and physiological recovery was confirmed at one, two, and three months after nerve decompression by assessing motor conduction velocity (MCV), the wet weight of the tibialis anterior muscle and morphometric evaluations of nerves. Electrophysiology showed significantly quicker recovery in the CMC-PE group than in the control group (24.0 ± 3.1 vs. 21.0± 2.1 m/s (p < 0.05) at one months and MCV continued to be significantly faster thereafter. Wet muscle weight at one month significantly differed between the CMC-PE (BW) and control groups (0.148 ± 0.020 vs. 0.108 ± 0.019%BW). The mean wet muscle weight was constantly higher in the CMC-PE group than in the control group throughout the experimental period. The axon area at one month was twice as large in the CMC-PE group compared with the control group (24.1 ± 17.3 vs. 12.3 ± 9 μm2) due to the higher ratio of axons with a larger diameter. Although the trend continued throughout the experimental period, the difference decreased after two months and was not statistically significant at three months. Although anti-adhesives can reduce adhesion after nerve injury, their effects on morphological and physiological recovery after surgical decompression of chronic entrapment neuropathy have not been investigated in detail. The present study showed that the new anti-adhesive CMC-PE gel can accelerate morphological and physiological recovery of nerves after decompression surgery. PMID:27741280

  14. 20. DETAIL VIEW IN 18FOOT LOCK, ESCAPE TRAINING TANK, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL VIEW IN 18-FOOT LOCK, ESCAPE TRAINING TANK, SHOWING DOOR INTO TANK AT RIGHT - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  15. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives.

    PubMed

    Wen, Yuting; Guo, Zhenhuan; Du, Zhuo; Fang, Rong; Wu, Hongmei; Zeng, Xin; Wang, Chi; Feng, Min; Pan, Shirong

    2012-11-01

    Aiming to aid polyamidoamine (PAMAM, generation 4, PG4) to overcome gene delivery barriers like extrinsic serum inhibition, intrinsic cytotoxicity and lysosome digestion, histidine motifs modified PAMAM was prepared. The histidine activated PAMAM generation 4 (HPG4) was synthesized via aminolysis reaction and characterized by 1H NMR spectrum and MALDI-TOF-MS. Cytotoxicity profiles of HPG4 on MD-MB-231 cells were significantly improved in the form of polymer and polymer/DNA complexes comparing to PG4. The luciferase protein expression level of HPG4 was 20-, 2.7- and 1.2- fold higher than that of PG4, SuperFect and PEI 25k. Most importantly, flow cytometry and gene transfection studies showed that histidine motifs of HPG4 not only acted as enhancer for faster cellular uptake, but also played an important role on enhancing serum tolerance of the system on cellular uptake and transfection. Among the serum concentrations of 10%-50%, HPG4 showed 10-100 folds higher transfection efficiency than PG4. Intracellular fate observation conducted by confocal microscope provided visual and quantitative evidence that endsomal escape efficiency of HPG4 system was higher than that of PG4. Lastly, the endosomal escape mechanism of HPG4 system was analyzed by endosome destabilization and proton pump inhibition treatment. Collectively, compared to PG4/pDNA, HPG4/pDNA showed improvement on cellular uptake, serum tolerance, cytotoxicity profile, and endosomal escape.

  16. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    PubMed

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-07

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.

  17. The production and escape of nitrogen atoms on Mars

    NASA Astrophysics Data System (ADS)

    Fox, J. L.

    1993-02-01

    Updated rate coefficients and a revised ionosphere-thermosphere model are used to compute the production rates and densities of odd nitrogen species in the Martian atmosphere. Computed density profiles for N(4S), N(2D), N(2P), and NO are presented. The model NO densities are found to be about a factor of 2-3 less than those measured by the Viking 1 mass spectrometer. Revised values for the escape rates of N atoms from dissociative recombination and ionospheric reactions are also computed. Dissociative recombination is found to be comparable in importance to photodissociation at low solar activity, but it is still the most important escape mechanism for N-14 at high solar activity.

  18. The production and escape of nitrogen atoms on Mars

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1993-01-01

    Updated rate coefficients and a revised ionosphere-thermosphere model are used to compute the production rates and densities of odd nitrogen species in the Martian atmosphere. Computed density profiles for N(4S), N(2D), N(2P), and NO are presented. The model NO densities are found to be about a factor of 2-3 less than those measured by the Viking 1 mass spectrometer. Revised values for the escape rates of N atoms from dissociative recombination and ionospheric reactions are also computed. Dissociative recombination is found to be comparable in importance to photodissociation at low solar activity, but it is still the most important escape mechanism for N-14 at high solar activity.

  19. Escape rate of active particles in the effective equilibrium approach

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Wittmann, R.; Brader, J. M.

    2017-01-01

    The escape rate of a Brownian particle over a potential barrier is accurately described by the Kramers theory. A quantitative theory explicitly taking the activity of Brownian particles into account has been lacking due to the inherently out-of-equilibrium nature of these particles. Using an effective equilibrium approach [Farage et al., Phys. Rev. E 91, 042310 (2015), 10.1103/PhysRevE.91.042310] we study the escape rate of active particles over a potential barrier and compare our analytical results with data from direct numerical simulation of the colored noise Langevin equation. The effective equilibrium approach generates an effective potential that, when used as input to Kramers rate theory, provides results in excellent agreement with the simulation data.

  20. Characteristics of the dynamic shielding on the Wannier-ridge electron escapes by electron impact in weakly coupled plasmas

    SciTech Connect

    Ki, Dae-Han; Jung, Young-Dae

    2013-03-15

    The influence of the dynamic shielding on the Wannier ridge electron escapes into the continuum states by the electron-impact is investigated in weakly coupled plasmas. The dynamically shielded renormalized electron charge and screened Wannier exponent are obtained by considering the equation of motion in the Wannier configuration mode with the effective interaction potential as functions of the charge of the residual ion, Debye length, projectile energy, and thermal energy. The result shows that the dynamic renormalized effective electron charge decreases with an increase of the thermal energy, especially for large distances. It is found that the dynamic shielding effect enhances the Wannier exponent for the double-electron escape. The variation of the dynamic shielding effect on the screened Wannier exponent is also discussed.

  1. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides

    NASA Astrophysics Data System (ADS)

    Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  2. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium–zinc hybrid oxides

    SciTech Connect

    Fu, Rongrong; Wang, Qingyao; Gao, shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium–zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium–zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium–zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium–zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  3. Self-Organizing Reactive Fluid Escape from Dehydrating Rocks

    NASA Astrophysics Data System (ADS)

    John, T.; Pluemper, O.; Podladchikov, Y.; Vrijmoed, J. C.; Scambelluri, M.

    2014-12-01

    Water escape from dehydrating rocks within the Earth's interior is a key process for long-term global water and element cycles, eg. at subduction zones a fluid escape mechanism must exist that prevents ocean water to be drained into the mantle. Existing fluid flow models require a priori physical assumptions (eg. preexisting porosity) and cannot resolve the evolution from initial fluid production to flow channelization. In order to develop a model of this evolution, we need to unravel natural laboratories that display the incipient dehydration stages and the micro- to macro-scale fluid escape route evolution. The Erro-Tobbio meta-serpentinites (Italy) provide a unique snapshot into these early dehydration stages, recording the breakdown of hydrous antigorite to anhydrous olivine plus fluid and the formation of an olivine-vein network. We find that dehydration, fluid pooling, and flow initiation are controlled by micro-scale compositional rock differences. Our model starts with a rock in which all water is stored in solid and any preexisting porosity is negligible (zero-porosity case). As the rock descents into the mantle increasing T will initiate dehydration reactions, dividing the rock continuously into a dry solid and a fluid-filled porosity. Spatially variable reaction progress results in dynamically evolving porosity/permeability and heterogeneous fluid-pore pressure distributions. Fluid-pressure gradient relaxation causes fluid flow and its thermodynamic feedback triggers reactions to progress, resulting in a self-amplifying process. Our new thermodynamic-mechanical model for reaction-porosity waves shows that fluid flow occurs solely in the reaction products and self-organizes into channelized fluid escape networks. This holds the key to formulating future quantitative models that address spatiotemporal processes such as the coupling between fluid release at depth and volcanic eruptions and the amounts of structurally bound water transferred into deep Earth.

  4. On the Relative Contributions of Noncontingent Reinforcement and Escape Extinction in the Treatment of Food Refusal

    ERIC Educational Resources Information Center

    Reed, Gregory K.; Piazza, Cathleen C.; Patel, Meeta R.; Layer, Stacy A.; Bachmeyer, Melanie H.; Bethke, Stephanie D.; Gutshall, Katharine A.

    2004-01-01

    In the current investigation, we evaluated the relative effects of noncontingent reinforcement (NCR), escape extinction, and a combination of NCR and escape extinction as treatment for the feeding problems exhibited by 4 children. For each participant, consumption increased only when escape extinction was implemented, independent of whether NCR…

  5. Escape Geography--Developing Middle-School Students' Sense of Place.

    ERIC Educational Resources Information Center

    Allen, Rodney F.; Molina, Laurie E. S.

    1992-01-01

    Suggests a social studies unit on escaping geography. Examines escape from dangerous places including an airliner, hotel fire, or war zone or from a social situation such as a boring speech or party. Describes historic escapes such as the Underground Railroad and the Berlin Wall. Lists learning strategies such as awareness of space and cognitive…

  6. CD8 epitope escape and reversion in acute HCV infection.

    PubMed

    Timm, Joerg; Lauer, Georg M; Kavanagh, Daniel G; Sheridan, Isabelle; Kim, Arthur Y; Lucas, Michaela; Pillay, Thillagavathie; Ouchi, Kei; Reyor, Laura L; Schulze zur Wiesch, Julian; Gandhi, Rajesh T; Chung, Raymond T; Bhardwaj, Nina; Klenerman, Paul; Walker, Bruce D; Allen, Todd M

    2004-12-20

    In the setting of acute hepatitis C virus (HCV) infection, robust HCV-specific CD8+ cytotoxic T lymphocyte (CTL) responses are associated with initial control of viremia. Despite these responses, 70-80% of individuals develop persistent infection. Although viral escape from CD8 responses has been illustrated in the chimpanzee model of HCV infection, the effect of CD8 selection pressure on viral evolution and containment in acute HCV infection in humans remains unclear. Here, we examined viral evolution in an immunodominant human histocompatibility leukocyte antigen (HLA)-B8-restricted NS3 epitope in subjects with acute HCV infection. Development of mutations within the epitope coincided with loss of strong ex vivo tetramer and interferon gamma enzyme-linked immunospot responses, and endogenous expression of variant NS3 sequences suggested that the selected mutations altered processing and presentation of the variant epitope. Analysis of NS3 sequences from 30 additional chronic HCV-infected subjects revealed a strong association between sequence variation within this region and expression of HLA-B8, supporting reproducible allele-specific selection pressures at the population level. Interestingly, transmission of an HLA-B8-associated escape mutation to an HLA-B8 negative subject resulted in rapid reversion of the mutation. Together, these data indicate that viral escape from CD8+ T cell responses occurs during human HCV infection and that acute immune selection pressure is of sufficient magnitude to influence HCV evolution.

  7. Comparison of operant escape and reflex tests of nociceptive sensitivity.

    PubMed

    Vierck, Charles J; Yezierski, Robert P

    2015-04-01

    Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.

  8. Oxygen and carbogen breathing following simulated submarine escape.

    PubMed

    Gennser, Mikael; Loveman, Geoff; Seddon, Fiona; Thacker, Julian; Blogg, S Lesley

    2014-01-01

    Escape from a disabled submarine exposes escapers to a high risk of decompression sickness (DCS). The initial bubble load is thought to emanate from the fast tissues; it is this load that should be lowered to reduce risk of serious neurological DCS. The breathing of oxygen or carbogen (5% CO2, 95% O2) post-surfacing was investigated with regard to its ability to reduce the initial bubble load in comparison to air breathing. Thirty-two goats were subject to a dry simulated submarine escape profile to and from 240 meters (2.5 MPa). On surfacing, they breathed air (control), oxygen or carbogen for 30 minutes. Regular Doppler audio bubble grading was carried out, using the Kisman Masurel (KM) scale. One suspected case of DCS was noted. No oxygen toxicity or arterial gas embolism occurred. No significant difference was found between the groups in terms of the median peak KM grade or the period before the KM grade dropped below III. Time to disappearance of bubbles was significantly different between groups; oxygen showed faster bubble resolution than carbogen and air. This reduction in time to bubble resolution may be beneficial in reducing decompression stress, but probably does not affect the risk of fast-tissue DCS.

  9. The C. elegans touch response facilitates escape from predacious fungi

    PubMed Central

    Maguire, Sean M.; Clark, Christopher M.; Nunnari, John; Pirri, Jennifer K.; Alkema, Mark J.

    2012-01-01

    Summary Predator-prey interactions are vital determinants in the natural selection of behavioral traits. However, we have few insights into both the neural mechanisms and the selective advantage of specific behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1]. Even though the C. elegans touch response has provided one of the rare examples of how neural networks translate sensory input to a coordinated motor output [2], the ecological significance of the escape response is unclear. We investigate predator-prey relationships between C. elegans and predacious fungi that catch nematodes using constricting rings as trapping devices. We show that the constricting rings of Drechslerella doedycoides catch early larval stages with a diameter similar to the trap opening. There is a delay between the ring entry and ring closure, which allows the animal to withdraw from the trap before getting caught. Mutants that fail to suppress head movements in response to touch are caught more efficiently than the wild type in constricting fungal rings. Direct competition experiments show that the suppression of head movements in response to touch is an ecologically relevant behavior that allows the C. elegans to smoothly retract from a fungal noose and evade capture. These results suggest that selective pressures imposed by predacious fungi have shaped the evolution of C. elegans escape behavior. PMID:21802299

  10. Fleeing to refuge: Escape decisions in the race for life.

    PubMed

    Cooper, William E

    2016-10-07

    Economic escape theory that predicts that flight initiation distance (FID=predator-prey distance when a prey begins to flee from an approaching predator) increases as predation risk increases has been overwhelmingly supported. However, the vast majority of empirical tests have focused on effects of single predation risk factors. Even studies that have included multiple risk factors have not predicted how they jointly affect FID. I present a model that predicts joint effects of several predation risk factors that affect the outcome of a race between predator and prey to the prey's refuge. As a prey's distance to refuge and predator attack speed increase, and as the prey's location forces it to flee more toward a predator to reach refuge, FID increases. A published model proposed and experiment showed that FID is longer when prey flee directly toward than directly away from a predator to a refuge. We present a new geometric model that predicts FID for all angles between the prey's and predator's paths to refuge, distance of the prey from refuge when escape begins, predator and prey speeds, and a margin of safety allowing the prey to reach refuge before the predator. The model provides many new, testable predictions about relationships among its variables and FID. Most notably, it predicts that FID increases sigmoidally as the angle between predator and prey paths to refuge increases. Although the model is not economic (cost-benefit), we discuss its relationship to economic escape theory.

  11. A Treatment Package without Escape Extinction to Address Food Selectivity.

    PubMed

    Weber, Jessica; Gutierrez, Anibal

    2015-08-21

    Feeding difficulties and feeding disorders are a commonly occurring problem for young children, particularly children with developmental delays including autism. Behavior analytic interventions for the treatment of feeding difficulties oftentimes include escape extinction as a primary component of treatment. The use of escape extinction, while effective, may be problematic as it is also associated with the emergence of challenging behavior (e.g., extinction burst). Such challenging behavior may be an acceptable side effect in treatment cases where feeding problems are severe and chronic (e.g., failure to thrive). However, in more acute cases (e.g., selective eating), the negative side effect may be unwarranted and undesired. More recent research on the behavioral treatment of food selectivity has begun to evaluate treatments for feeding difficulties that do not include escape extinction (e.g., demand fading, behavioral momentum), with some success. However, research to date reveals individual differences in responsiveness to such treatments and no clear preferable treatment has emerged. This manuscript describes a multi-component treatment package that includes shaping, sequential presentation and simultaneous presentation, for the treatment of food selectivity in four young children with developmental delays. This treatment package extends the literature on the behavioral treatment for food selectivity and offers a multi-component treatment protocol that may be clinically applicable across a range of treatment scenarios and settings.

  12. New sedimentary structures in seismites from SW Tanzania: Evaluating gas- vs. water-escape mechanisms of soft-sediment deformation

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah L.; Roberts, Eric M.; Simpson, Edward L.

    2016-10-01

    Seismite horizons are abundant in Cretaceous sandstones of the Rukwa Rift Basin, southwestern Tanzania. Diverse morphologies of soft-sediment deformation are preserved, including two new, unusual sedimentary structures, herein referred to as 1) balloon-shaped inflation structures and 2) surface fractures with linked sandstone splays. This original description of new sedimentary structures contributes to the growing catalogue of seismically induced deformation features. Their unusual morphologies bring to the forefront an important, though seldom touched upon, question of how to differentiate between gas- and water-escape in soft-sediment deformation features. The recognition of the spectrum of soft-sediment deformation structures contained in strata and their deformational mechanisms is important because it permits the differentiation between triggering mechanisms, particularly seismic activity, and can constrain such events spatially and temporally. We interpret the surface fractures and linked sandstone splays to reflect a high gas effusion rate, formed by the release of high-pressure gas followed by a limited expulsion of water. The balloon-shaped inflation structures reflect lower gas effusion rates due to expulsion of lower pressure gas that did not breach the Cretaceous surface seal. When these gas pulses did breach the paleosurface, they formed gas-discharge pits. These seismogenic structures are consistent with deposition of Cretaceous strata in the Rukwa Rift during periods of active carbonatite volcanism, seismicity, and possibly hot spring activity. This documentation serves as an important data point for the re-examination of the classification scheme of soft-sediment deformation structures as primarily water-escape structures to accommodate for the genesis of some secondary sedimentary features by gas-escape.

  13. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus.

    PubMed

    Medan, Violeta; Oliva, Damián; Tomsic, Daniel

    2007-10-01

    In the grapsid crab Chasmagnathus, a visual danger stimulus elicits a strong escape response that diminishes rapidly on stimulus repetition. This behavioral modification can persist for several days as a result of the formation of an associative memory. We have previously shown that a generic group of large motion-sensitive neurons from the lobula of the crab respond to visual stimuli and accurately reflect the escape performance. Additional evidence indicates that these neurons play a key role in visual memory and in the decision to initiate an escape. Although early studies recognized that the group of lobula giant (LG) neurons consisted of different classes of motion-sensitive cells, a distinction between these classes has been lacking. Here, we recorded in vivo the responses of individual LG neurons to a wide range of visual stimuli presented in different segments of the animal's visual field. Physiological characterizations were followed by intracellular dye injections, which permitted comparison of the functional and morphological features of each cell. All LG neurons consisted of large tangential arborizations in the lobula with axons projecting toward the midbrain. Functionally, these cells proved to be more sensitive to single objects than to flow field motion. Despite these commonalities, clear differences in morphology and physiology allowed us to identify four distinct classes of LG neurons. These results will permit analysis of the role of each neuronal type for visually guided behaviors and will allow us to address specific questions on the neuronal plasticity of LGs that underlie the well-recognized memory model of the crab.

  14. Lunar mission safety and rescue: Escape/rescue analysis and plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of the technical analysis of escape/rescue/survival situations, crew survival techniques, alternate escape/rescue approaches and vehicles, and the advantages and disadvantages of each for advanced lunar exploration. Candidate escape/rescue guidelines are proposed and elements of a rescue plan developed. The areas of discussions include the following: lunar arrival/departure operations, lunar orbiter operations, lunar surface operations, lunar surface base escape/rescue analysis, lander tug location operations, portable airlock, emergency pressure suit, and the effects of no orbiting lunar station, no lunar surface base, and no foreign lunar orbit/surface operations on the escape/rescue plan.

  15. Broad CTL Response in Early HIV Infection Drives Multiple Concurrent CTL Escapes.

    PubMed

    Leviyang, Sivan; Ganusov, Vitaly V

    2015-10-01

    Recent studies have highlighted the ability of HIV to escape from cytotoxic T lymphocyte (CTL) responses that concurrently target multiple viral epitopes. Yet, the viral dynamics involved in such escape are incompletely understood. Previous analyses have made several strong assumptions regarding HIV escape from CTL responses such as independent or non-concurrent escape from individual CTL responses. Using experimental data from evolution of HIV half genomes in four patients we observe concurrent viral escape from multiple CTL responses during early infection (first 100 days of infection), providing confirmation of a recent result found in a study of one HIV-infected patient. We show that current methods of estimating CTL escape rates, based on the assumption of independent escapes, are biased and perform poorly when CTL escape proceeds concurrently at multiple epitopes. We propose a new method for analyzing longitudinal sequence data to estimate the rate of CTL escape across multiple epitopes; this method involves few parameters and performs well in simulation studies. By applying our novel method to experimental data, we find that concurrent multiple escapes occur at rates between 0.03 and 0.4 day(-1), a relatively broad range that reflects uncertainty due to sparse sampling and wide ranges of parameter values. However, we show that concurrent escape at rates 0.1-0.2 day(-1) across multiple epitopes is consistent with our patient datasets.

  16. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism

    PubMed Central

    Jamwal, Shilpa V.; Mehrotra, Parul; Singh, Archana; Siddiqui, Zaved; Basu, Atanu; Rao, Kanury V.S.

    2016-01-01

    Survival of Mycobacterium tuberculosis (Mtb) within the host macrophage is mediated through pathogen-dependent inhibition of phagosome-lysosome fusion, which enables bacteria to persist within the immature phagosomal compartment. By employing ultrastructural examination of different field isolates supported by biochemical analysis, we found that some of the Mtb strains were in fact poorly adapted for subsistence within endocytic vesicles of infected macrophages. Instead, through a mechanism involving activation of host cytosolic phospholipase A2, these bacteria rapidly escaped from phagosomes, and established residence in the cytoplasm of the host cell. Interestingly, by facilitating an enhanced suppression of host cellular autophagy, this translocation served as an alternate virulence acquisition mechanism. Thus, our studies reveal plasticity in the adaptation strategies employed by Mtb, for survival in the host macrophage. PMID:26980157

  17. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection.

    PubMed

    Cervia, Lisa D; Chang, Chun-Chi; Wang, Liangli; Yuan, Fan

    2017-01-01

    A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA.

  18. Solar cycle dynamic of the Martian induced magnetosphere. Planetary ions acceleration zones and escape.

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrey; Modolo, Ronan; Jarvinen, Riku; Barabash, Stas

    2016-10-01

    This work presents a massive statistical analysis of the ion flows in the Martian induced magnetosphere. We performed this analysis using Mars Express ion mass spectrometer data taken during 2008 - 2013 time interval. This data allows to make an enhanced study of the induced magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma properties in the planetary wake as well as the ionosospheric escape as a function of the solar activity.

  19. Espisodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape

    SciTech Connect

    Brain, D A; Baker, A H; Briggs, J; Eastwood, J P; Halekas, J S; Phan, T

    2009-06-02

    We present an analysis of magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft that reveals isolated magnetic structures filled with Martian atmospheric plasma located downstream from strong crustal magnetic fields with respect to the flowing solar wind. The structures are characterized by magnetic field enhancements and rotations characteristic of magnetic flux ropes, and characteristic ionospheric electron energy distributions with angular distributions distinct from surrounding regions. These observations indicate that significant amounts of atmosphere are intermittently being carried away from Mars by a bulk removal process: the top portions of crustal field loops are stretched through interaction with the solar wind and detach via magnetic reconnection. This process occurs frequently and may account for as much as 10% of the total present-day ion escape from Mars.

  20. The effects of escape from self and interpersonal relationship on the pathological use of Internet games.

    PubMed

    Kwon, Jung-Hye; Chung, Chung-Suk; Lee, Jung

    2011-02-01

    The purpose of the present study was to examine whether Baumeister's escape from self theory may account for the pathological use of Internet games among Korean adolescents. A sample of 1,136 junior high school students completed measures assessing Internet game addiction (IGA), real-ideal self discrepancy, escape from self, current mood, peer relationships, perceived parent-child relationship, and parental supervision. IGA was significantly correlated with all of these variables. Multiple regression analysis showed that escape from self best explained the adolescents' IGA. A path model yielded significant paths from self-discrepancy to negative mood, from negative mood to escape from self, and from escape from self to IGA. These results support the validity of using the escape from self theory to explain the adolescents' IGA, thereby suggesting that adolescents become addicted to Internet games in an attempt to escape from self and reality.

  1. A comparison of positive and negative reinforcement for compliance to treat problem behavior maintained by escape.

    PubMed

    Slocum, Sarah K; Vollmer, Timothy R

    2015-09-01

    Previous research has shown that problem behavior maintained by escape can be treated using positive reinforcement. In the current study, we directly compared functional (escape) and nonfunctional (edible) reinforcers in the treatment of escape-maintained problem behavior for 5 subjects. In the first treatment, compliance produced a break from instructions. In the second treatment, compliance produced a small edible item. Neither treatment included escape extinction. Results suggested that the delivery of a positive reinforcer for compliance was effective for treating escape-maintained problem behavior for all 5 subjects, and the delivery of escape for compliance was ineffective for 3 of the 5 subjects. Implications and future directions related to the use of positive reinforcers in the treatment of escape behavior are discussed.

  2. The DYNAMO Orbiter Project: High Resolution Mapping of Gravity/Magnetic Fields and In Situ Investigation of Mars Atmospheric Escape

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.

    2000-01-01

    /or enhanced effects over the several billion years of the solar system's life. If the detailed history of the Martian internal field could be traced back, and the current escape processes could be understood well enough to model the expected stronger losses under early Sun conditions, one could go a long way toward constraining this part of the mysterious history of Mars' atmosphere.

  3. 5-hydroxytryptamine 2C receptors in the dorsal striatum mediate stress-induced interference with negatively reinforced instrumental escape behavior.

    PubMed

    Strong, P V; Christianson, J P; Loughridge, A B; Amat, J; Maier, S F; Fleshner, M; Greenwood, B N

    2011-12-01

    Uncontrollable stress can interfere with instrumental learning and induce anxiety in humans and rodents. While evidence supports a role for serotonin (5-HT) and serotonin 2C receptors (5-HT(2C)R) in the behavioral consequences of uncontrollable stress, the specific sites of action are unknown. These experiments sought to delineate the role of 5-HT and 5-HT(2C)R in the dorsal striatum (DS) and the lateral/basolateral amygdala (BLA) in the expression of stress-induced instrumental escape deficits and exaggerated fear, as these structures are critical to instrumental learning and fear behaviors. Using in vivo microdialysis, we first demonstrated that prior uncontrollable, but not controllable, stress sensitizes extracellular 5-HT in the dorsal striatum, a result that parallels prior work in the BLA. Additionally, rats were implanted with bi-lateral cannula in either the DS or the BLA and exposed to uncontrollable tail shock stress. One day later, rats were injected with 5-HT(2C)R antagonist (SB242084) and fear and instrumental learning behaviors were assessed in a shuttle box. Separately, groups of non-stressed rats received an intra-DS or an intra-BLA injection of the 5-HT(2C)R agonist (CP809101) and behavior was observed. Intra-DS injections of the 5-HT(2C)R antagonist prior to fear/escape tests completely blocked the stress-induced interference with instrumental escape learning; a partial block was observed when injections were in the BLA. Antagonist administration in either region did not influence stress-induced fear behavior. In the absence of prior stress, intra-DS administration of the 5-HT(2C)R agonist was sufficient to interfere with escape behavior without enhancing fear, while intra-BLA administration of the 5-HT(2C)R agonist increased fear behavior but had no effect on escape learning. Results reveal a novel role of the 5-HT(2C)R in the DS in the expression of instrumental escape deficits produced by uncontrollable stress and demonstrate that the

  4. Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction

    NASA Astrophysics Data System (ADS)

    Cheng, Kui; Cao, Dianxue; Yang, Fan; Xu, Yang; Sun, Gaohui; Ye, Ke; Yin, Jinling; Wang, Guiling

    2014-05-01

    Hydrogen peroxide (H2O2) replaced oxygen (O2) as oxidant has been widely investigated due to its faster reduction kinetics, easier storage and handling than gaseous oxygen. The main challenge of using H2O2 as oxidant is the chemical decomposition. In this article, by using different C2H5OH/H2O volume ratio as the solvent, Co3O4 with different morphologies (nanosheet, nanowire, ultrafine nanowire net, nanobelts, and honeycomb-like) direct growth on Ni foam are synthesized via a simple solvothermal method for the first time. Results show that the introduction of ethanol could obviously improve the catalytic performance toward H2O2 electroreduction. The sample prepared in the solution with the C2H5OH/H2O volume ratio of 1:2 shows the best catalytic performance among the five samples and a current density of 0.214 A cm-2 is observed in 3.0 mol L-1 KOH + 0.5 mol L-1 H2O2 at -0.4 V (vs. Ag/AgCl KCl), which is much larger than that on the other metal oxides reported previously, almost comparable with the precious metals. This electrode of Co3O4 directly grown on Ni foam has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.

  5. LKB1 deletion with the RIP2.Cre transgene modifies pancreatic β-cell morphology and enhances insulin secretion in vivo

    PubMed Central

    Sun, Gao; Tarasov, Andrei I.; McGinty, James A.; French, Paul M.; McDonald, Angela; Leclerc, Isabelle

    2010-01-01

    The tumor suppressor liver kinase B1 (LKB1), also called STK11, is a protein kinase mutated in Peutz-Jeghers syndrome. LKB1 phosphorylates AMP-activated protein kinase (AMPK) and several related protein kinases. Whereas deletion of both catalytic isoforms of AMPK from the pancreatic β-cell and hypothalamic neurons using the rat insulin promoter (RIP2).Cre transgene (βAMPKdKO) diminishes insulin secretion in vivo, deletion of LKB1 in the β-cell with an inducible Pdx-1.CreER transgene enhances insulin secretion in mice. To determine whether the differences between these models reflect genuinely distinct roles for the two kinases in the β-cell or simply differences in the timing and site(s) of deletion, we have therefore created mice deleted for LKB1 with the RIP2.Cre transgene. In marked contrast to βAMPKdKO mice, βLKB1KO mice showed diminished food intake and weight gain, enhanced insulin secretion, unchanged insulin sensitivity, and improved glucose tolerance. In line with the phenotype of Pdx1-CreER mice, total β-cell mass and the size of individual islets and β-cells were increased and islet architecture was markedly altered in βLKB1KO islets. Signaling by mammalian target of rapamycin (mTOR) to eIF4-binding protein-1 and ribosomal S6 kinase was also enhanced. In contrast to Pdx1-CreER-mediated deletion, the expression of Glut2, glucose-induced changes in membrane potential and intracellular Ca2+ were sharply reduced in βLKB1KO mouse islets and the stimulation of insulin secretion was modestly inhibited. We conclude that LKB1 and AMPK play distinct roles in the control of insulin secretion and that the timing of LKB1 deletion, and/or its loss from extrapancreatic sites, influences the final impact on β-cell function. PMID:20354156

  6. Escape erosion and relaxation of craters on Pluto

    NASA Astrophysics Data System (ADS)

    Porter, S.; Zangari, A.; Stern, A.

    2014-07-01

    Pluto and its major satellite Charon will be the most distant objects ever visited when NASA's New Horizons spacecraft flies past them in mid-2015. Both bodies should have suffered impacts from other transneptunian objects, though those impacts are of much lower velocity than typical on giant-planet satellites. New Horizons will image the illuminated hemispheres of Pluto and Charon seen at closest approach at better than 0.5 km/pix and 1.0 km/pix, respectively. We compare new different predictions of the impactor population on Pluto and Charon, including the effects of escape erosion from Pluto, and examine the crater size distributions those impactors would produce over the range observable to the imagers on New Horizons. The impact distribution models diverge the most for craters smaller than 10 km. We expect the crater size distribution on Charon to be determined by the impactor distribution and the rheology of the surface. Inverting the Charon size distribution seen by New Horizons will then constrain the overall size frequency distribution in the Kuiper belt, and the location of any break in that size frequency distribution. However, owing to escape erosion, craters on Pluto may be much more modified than on Charon. To constrain this modification, we present a range of possible Pluto crater distributions, as a function of impactor distribution, atmospheric escape rate, and surface ice viscosity. Pluto's atmosphere is primarily made of molecular nitrogen and is currently escaping at between 10^{27} and 10^{28} N_2/s according to model estimates. To sustain these escape rates for 3.5 billion years, a global layer of N_2 ice 0.3 to 3 km thick would need to have sublimated from the surface. We show that this gradual mass loss could have erased many of the smaller craters on Pluto, especially craters with diameters smaller than 10 km. This sublimation erosion process does not occur on Charon, which has a water ice surface and no observed atmosphere. We also show

  7. Experimental analysis and extinction of self-injurious escape behavior.

    PubMed

    Iwata, B A; Pace, G M; Kalsher, M J; Cowdery, G E; Cataldo, M F

    1990-01-01

    Three studies are presented in which environmental correlates of self-injurious behavior were systematically examined and later used as the basis for treatment. In Study 1, 7 developmentally disabled subjects were exposed to a series of conditions designed to identify factors that maintain self-injurious behavior: attention contingent on self-injurious behavior (positive reinforcement), escape from or avoidance of demands contingent on self-injurious behaviour (negative reinforcement), alone (automatic reinforcement), and play (control). Results of a multielement design showed that each subject's self-injurious behavior occurred more frequently in the demand condition, suggesting that the behavior served an avoidance or escape function. Six of the 7 subjects participated in Study 2. During educational sessions, "escape extinction" was applied as treatment for their self-injurious behavior in a multiple baseline across subjects design. Results showed noticeable reduction or elimination of self-injurious behavior for each subject and an increase in compliance with instructions in all subjects for whom compliance data were taken. The 7th subject, whose self-injurious behavior during Study 1 occurred in response to medical demands (i.e., physical examinations), participated in Study 3. Treatment was comprised of extinction, as in Study 2, plus reinforcement for tolerance of the examination procedure, and was evaluated in a multiple baseline across settings design. Results showed that the treatment was successful in eliminating self-injurious behavior and that its effects transferred across eight new therapists and three physicians. General implications for the design, interpretation, and uses of assessment studies are discussed.

  8. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    PubMed

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  9. Enhancement of median nerve regeneration by mesenchymal stem cells engraftment in an absorbable conduit: improvement of peripheral nerve morphology with enlargement of somatosensory cortical representation

    PubMed Central

    Oliveira, Julia T.; Bittencourt-Navarrete, Ruben Ernesto; de Almeida, Fernanda M.; Tonda-Turo, Chiara; Martinez, Ana Maria B.; Franca, João G.

    2014-01-01

    We studied the morphology and the cortical representation of the median nerve (MN), 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL) conduit with or without bone marrow-derived mesenchymal stem cell (MSC) transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1), electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in three groups: MN Intact (n = 4), PCL-Only (n = 3), and PCL+MSC (n = 3). Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group) or without (PCL-Only group) injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to five animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383 ± 390 fibers; 2.3 mm2, respectively) than the PCL-Only group (2,226 ± 575 fibers; 1.6 mm2). In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN. PMID:25360086

  10. Enhancement of median nerve regeneration by mesenchymal stem cells engraftment in an absorbable conduit: improvement of peripheral nerve morphology with enlargement of somatosensory cortical representation.

    PubMed

    Oliveira, Julia T; Bittencourt-Navarrete, Ruben Ernesto; de Almeida, Fernanda M; Tonda-Turo, Chiara; Martinez, Ana Maria B; Franca, João G

    2014-01-01

    We studied the morphology and the cortical representation of the median nerve (MN), 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL) conduit with or without bone marrow-derived mesenchymal stem cell (MSC) transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1), electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in three groups: MN Intact (n = 4), PCL-Only (n = 3), and PCL+MSC (n = 3). Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group) or without (PCL-Only group) injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to five animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383 ± 390 fibers; 2.3 mm(2), respectively) than the PCL-Only group (2,226 ± 575 fibers; 1.6 mm(2)). In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.

  11. Advanced Crew Escape Suits (ACES): Particle Impact Test

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center (JSC) requested NASA JSC White Sands Test Facility to assist in determining the effects of impaired anodization on aluminum parts in advanced crew escape suits (ACES). Initial investigation indicated poor anodization could lead to an increased risk of particle impact ignition, and a lack of data was prevalent for particle impact of bare (unanodized) aluminum; therefore, particle impact tests were performed. A total of 179 subsonic and 60 supersonic tests were performed with no ignition of the aluminum targets. Based on the resulting test data, WSTF found no increased particle impact hazard was present in the ACES equipment.

  12. Service-Life Extension of Explosive Escape Devices

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1987-01-01

    Chemical and functional tests yield conservative service-life estimates. Approach to extension of service lives of explosive devices in aircraft escape system developed, supported by testing of representative candidate devices to evaluate quantitatively effects of service, age, and degradation, and to enable responsible, conservative service-life determinations. Five types of explosive components evaluated: rigid and flexible explosive transfer lines; one-way transfers; flexible, linear-shaped charges; and initiation-handles. Extension of service in realistic manner provides both cost savings and increased system reliability.

  13. The age structure of selected countries in the ESCAP region.

    PubMed

    Hong, S

    1982-01-01

    The study objective was to examine the age structure of selected countries in the Economic and Social Commission for Asia and the Pacific (ESCAP) region, using available data and frequently applied indices such as the population pyramid, aged-child ratio, and median age. Based on the overall picture of the age structure thus obtained, age trends and their implication for the near future were arrived at. Countries are grouped into 4 types based on the fertility and mortality levels. Except for Japan, Hong Kong, and Singapore, the age structure in the 18 ESCAP region countries changed comparatively little over the 1950-80 period. The largest structural change occurred in Singapore, where the proportion of children under age 15 in the population declined significantly from 41-27%, while that of persons 65 years and older more than doubled. This was due primarily to the marked decline in fertility from a total fertility rate (TFR) of 6.7-1.8 during the period. Hong Kong also had a similar major transformation during the same period: the proportion of the old age population increased 2 1/2 times, from 2.5-6.3%. The age structures of the 18 ESCAP countries varied greatly by country. 10 countries of the 2 high fertility and mortality types showed a similar young age structural pattern, i.e., they have higher dependency ratios, a higher proportion of children under 15 years, a lower proportion of population 65 years and older, lower aged-child ratios, and younger median ages than the average countries in the less developed regions of the world. With minimal changes over the 1950-80 period, the gap between these countries and the average of the less developed regions widened. Unlike these 10 (mostly South Asian) countries, moderately low fertility and mortality countries (China, Korea, and Sri Lanka) are located between the world average and the less developed region in most of the indices, particularly during the last decade. Although their rate of population aging is not

  14. Behavioral momentum in the treatment of escape-motivated stereotypy.

    PubMed Central

    Mace, F C; Belfiore, P

    1990-01-01

    Descriptive and experimental analyses of stereotypy by a woman with severe mental retardation showed that the behavior was maintained by escape from demands. A sequence of high-probability requests issued immediately prior to a task-related request established a momentum of compliance that increased compliance with task-related demands. Increases in compliance were accompanied by collateral reductions in stereotypic behavior. A mechanism of response covariation, called functional incompatibility, and an animal analogue study for testing the validity of this mechanism are proposed. PMID:2074239

  15. Astrophysical bounds on photons escaping into extra dimensions.

    PubMed

    Friedland, A; Giannotti, M

    2008-01-25

    In a class of extra-dimensional models with a warped metric and a single brane the photon can be localized on the brane by gravity only. An intriguing feature of these models is the possibility of the photon escaping into the extra dimensions. The search for this effect has motivated the present round of precision ortho-positronium decay experiments. We point out that in this framework a photon in plasma should be metastable, and we consider what this implies for cooling of globular cluster stars and core-collapse supernovae. The resulting bounds on the model parameter exceed the possible reach of ortho-positronium experiments by many orders of magnitude.

  16. First-passage and escape problems in the Feller process

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Perelló, Josep

    2012-10-01

    The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.

  17. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    USGS Publications Warehouse

    Kinzel, Paul J.

    2009-01-01

    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per

  18. The Route of HIV Escape from Immune Response Targeting Multiple Sites Is Determined by the Cost-Benefit Tradeoff of Escape Mutations

    PubMed Central

    Batorsky, Rebecca; Sergeev, Rinat A.; Rouzine, Igor M.

    2014-01-01

    Cytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, , as well as cost to viral replication, . The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of from published experimental studies to be in the range (0.01–0.86) and show that the assumption of complete recognition loss () leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be targeted by vaccines. PMID:25356981

  19. Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages.

    PubMed

    Davis, Michael J; Gregorka, Brian; Gestwicki, Jason E; Swanson, Joel A

    2012-11-01

    Membranes of endolysosomal compartments in macrophages are often damaged by physical or chemical effects of particles ingested through phagocytosis or by toxins secreted by intracellular pathogens. This study identified a novel inducible activity in macrophages that increases resistance of phagosomes, late endosomes, and lysosomes to membrane damage. Pretreatment of murine macrophages with LPS, peptidoglycan, TNF-α, or IFN-γ conferred protection against subsequent damage to intracellular membranes caused by photooxidative chemistries or by phagocytosis of ground silica or silica microspheres. Phagolysosome damage was partially dependent on reactive oxygen species but was independent of the phagocyte oxidase. IFN-γ-stimulated macrophages from mice lacking the phagocyte oxidase inhibited escape from vacuoles by the intracellular pathogen Listeria monocytogenes, which suggested a role for this inducible renitence (resistance to pressure) in macrophage resistance to infection by pathogens that damage intracellular membranes. Renitence and inhibition of L. monocytogenes escape were partially attributable to heat shock protein-70. Thus, renitence is a novel, inducible activity of macrophages that maintains or restores the integrity of endolysosomal membranes.

  20. Numerical simulation of a self-propelled copepod during escape

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Borazjani, Iman; Malkiel, Edwin; Katz, Josef

    2008-11-01

    Obtaining the 3D flow field, forces, and power is essential for understanding the high accelerations of a copepod during the escap. We carry out numerical simulations to study a free swimming copepod using the sharp-interface immersed boundary, fluid-structure interaction (FSI) approach of Borazjani et al. (J Compu Phys, 2008, 227, p 7587-7620). We use our previous tethered copepod model with a realistic copepod-like body, including all the appendages with the appendages motion prescribed from high-resolution, cinematic dual digital holography. The simulations are performed in a frame of reference attached to the copepod whose velocity is calculated by considering the forces acting on the copepod. The self-propelled simulations are challenging due to the destabilizing effects of the large added mass resulting from the low copepod mass and fast acceleration during the escape. Strongly-coupled FSI with under-relaxation and the Aitken acceleration technique is used to obtain stable and robust FSI iterations. The computed results for the self-propelled model are analyzed and compared with our earlier results for the tethered model.

  1. Escape of Hot Oxygen Atoms from the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Croxell, J. A.; Cravens, T.; Pothapragada, S.; Nagy, A. F.; Ledvina, S. A.

    2013-12-01

    The main source of the production of hot oxygen atoms in the Martian atmosphere is the dissociative recombination (DR) reaction of O2+ ions with electrons. In this study, the primary production rate of hot O atoms is found for four energy channels of DR reaction. The one-dimensional energy and altitude dependent up and down flux differential equations are solved using a two-stream transport method, by taking into account the primary, secondary and cascade productions of hot O and also, the interactions with the background atmosphere. The forward and backward scattering probabilities and energy loss coefficients for 12 neutral target species are found using a Monte-Carlo simulation. The neutral target species are H, H2, He, C, N, O, CO, N2, NO, O2, Ar and CO2 for which the density profiles appropriate for Viking landers condition are used. From the up and down fluxes, the energy distribution function of hot O atoms and the escape flux at the exobase of Mars is calculated and by using the Liouville equation, the density profile of hot O is found above the exobase, extending out to several Martian radii. The results are used to study the interaction of escaping hot O atoms with the solar wind and specifically, the fluxes of energetic O+ pickup ions are determined.

  2. Escape of Hydrogen from the Exosphere of Mars

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Dolon; Clarke, John T.; Bertaux, Jean-Loup; Chaufray, Jean-Yves; Mayyasi-Matta, Majd A.

    2016-10-01

    After decades of exploration, the martian neutral hydrogen exosphere has remained largely uncharacterized even today. In my dissertation I have attempted to constrain the characteristics of the martian hydrogen exosphere using Hubble Space Telescope observations obtained during October-November 2007 and 2014. These observations reveal short-term seasonal changes exhibited by the martian hydrogen exosphere that are inconsistent with the diffusion-limited escape scenario. This seasonal behavior adds a new element towards backtracking the history of water loss from Mars. Modeling of the data also indicates the likely presence of a superthermal population of hydrogen created by non-thermal processes at Mars, another key element to understand the present-day escape. Exploration of the latitudinal symmetry of the martian exosphere indicates that it is symmetric above 2.5 martian radii and asymmetric below this altitude, which could be due to temperature differences between the day and night sides. Finally, the large uncertainties in determining the characteristics of the martian exosphere after decades of exploration is due to various assumptions about the intrinsic characteristics of the martian exosphere in the modeling process, degeneracy in the two modeling parameters temperature and density of the hydrogen atoms, unaccounted seasonal effects, and uncertainties introduced from spacecraft instrumentation as well as their viewing geometry.

  3. Quantification of Nociceptive Escape Response in C.elegans

    NASA Astrophysics Data System (ADS)

    Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya

    2013-03-01

    Animals cannot rank and communicate their pain consciously. Thus in pain studies on animal models, one must infer the pain level from high precision experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. Here we explore the feasibility of C.elegans as a model for pain transduction. The nematode has a robust neurally mediated noxious escape response, which we show to be partially decoupled from other sensory behaviors. We develop a nociceptive behavioral response assay that allows us to apply controlled levels of pain by locally heating worms with an IR laser. The worms' motions are captured by machine vision programming with high spatiotemporal resolution. The resulting behavioral quantification allows us to build a statistical model for inference of the experienced pain level from the behavioral response. Based on the measured nociceptive escape of over 400 worms, we conclude that none of the simple characteristics of the response are reliable indicators of the laser pulse strength. Nonetheless, a more reliable statistical inference of the pain stimulus level from the measured behavior is possible based on a complexity-controlled regression model that takes into account the entire worm behavioral output. This work was partially supported by NSF grant No. IOS/1208126 and HFSP grant No. RGY0084/2011.

  4. On the escape of pollutants from urban street canyons

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kim, Jae-Jin

    Pollutant transport from urban street canyons is numerically investigated using a two-dimensional flow and dispersion model. The ambient wind blows perpendicular to the street and passive pollutants are released at the street level. Results from the control experiment with a street aspect ratio of 1 show that at the roof level of the street canyon, the vertical turbulent flux of pollutants is upward everywhere and the vertical flux of pollutants by mean flow is upward or downward. The horizontally integrated vertical flux of pollutants by mean flow at the roof level of the street canyon is downward and its magnitude is much smaller than that by turbulent process. These results indicate that pollutants escape from the street canyon mainly by turbulent process and that the net effect of mean flow is to make some escaped pollutants reenter the street canyon. Further experiments with different inflow turbulence intensities, inflow wind speeds, and street aspect ratio confirm the findings from the control experiment. In the case of two isolated buildings, the horizontally integrated vertical flux of pollutants by mean flow is upward due to flow separation but the other main results are the same as those from the control experiment.

  5. Ultra-fast Escape of a Octopus-inspired Rocket

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  6. Slow and Fast Escape for Open Intermittent Maps

    NASA Astrophysics Data System (ADS)

    Demers, Mark F.; Todd, Mike

    2017-04-01

    If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.

  7. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  8. Autoimmunity as a result of escape from RNA surveillance.

    PubMed

    Bachmann, Michael P; Bartsch, Holger; Gross, Joanne K; Maier, Shannon M; Gross, Timothy F; Workman, Jennifer L; James, Judith A; Farris, A Darise; Jung, Bettina; Franke, Claudia; Conrad, Karsten; Schmitz, Marc; Büttner, Cordula; Buyon, Jill P; Semsei, Imre; Harley, John B; Rieber, E Peter

    2006-08-01

    In previous studies, we detected a frame shift mutation in the gene encoding the autoantigen La of a patient with systemic lupus erythematosus. The mutant La mRNA contains a premature termination codon. mRNAs that prematurely terminate translation should be eliminated by RNA quality control mechanisms. As we find Abs specific for the mutant La form in approximately 30% of sera from anti-La-positive patients, we expected that mutant La mRNAs circumvent RNA control and the expression of mutant La protein could become harmful. Indeed, real-time PCR, immunostaining, and immunoblotting data of mice transgenic for the mutant La form show that mutant La mRNAs are not repressed in these animals and are translated to mutant La protein. In addition to the mutant La protein, we detected a minor portion of native human La in the mutant La-transgenic mice. Therefore, ribosomal frame shifting may allow the mutant La mRNA to escape from RNA control. Interestingly, expression of the mutant La mRNA results in a lupus-like disease in the experimental mice. Consequently, escape of mutant La mRNA from RNA control can have two effects: it 1) results in the expression of an immunogenic (neo)epitope, and 2) predisposes to autoimmunity.

  9. Autoimmunity as a Result of Escape from RNA Surveillance

    PubMed Central

    Bachmann, Michael P.; Bartsch, Holger; Gross, Joanne K.; Maier, Shannon M.; Gross, Timothy F.; Workman, Jennifer L.; James, Judith A.; Farris, A. Darise; Jung, Bettina; Franke, Claudia; Conrad, Karsten; Schmitz, Marc; Büttner, Cordula; Buyon, Jill P.; Semsei, Imre; Harley, John B.; Rieber, E. Peter

    2006-01-01

    In previous studies we detected a frame shift mutation in the gene encoding the autoantigen La of a patient with systemic lupus erythematosus. The mutant La mRNA contains a premature termination codon. mRNAs that prematurely terminate translation should be eliminated by RNA quality control mechanisms. As we find Abs specific for the mutant La form in about 30% of sera from anti-La positive patients we expected that mutant La mRNAs circumvent RNA control and the expression of mutant La protein could become harmful. Indeed, realtime PCR, immunostaining, and immunoblotting data of mice transgenic for the mutant La form show that mutant La mRNAs are not repressed in these animals and are translated to mutant La protein. In addition to the mutant La protein, we detected a minor portion of native human La in the mutant La transgenic mice. Therefore, ribosomal frame shifting may allow the mutant La mRNA to escape from RNA control. Interestingly, expression of the mutant La mRNA results in a lupus like disease in the experimental mice. Consequently, escape of mutant La mRNA from RNA control can have two effects: It (i) results in the expression of an immunogenic (neo)epitope, and (ii) predisposes to autoimmunity. PMID:16849479

  10. The C. elegans touch response facilitates escape from predacious fungi.

    PubMed

    Maguire, Sean M; Clark, Christopher M; Nunnari, John; Pirri, Jennifer K; Alkema, Mark J

    2011-08-09

    Predator-prey interactions are vital determinants in the natural selection of behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1, 2]. Here, we investigate the ecological significance of the touch response in predator-prey interactions between C. elegans and predacious fungi that catch nematodes using constricting hyphal rings. We show that the constricting rings of Drechslerella doedycoides catch early larval stages with a diameter similar to the trap opening. There is a delay between the ring entry and ring closure, which allows the animal to withdraw from the trap before being caught. Mutants that fail to suppress head movements in response to touch are caught more efficiently than the wild-type. This demonstrates that the coordination of motor programs allows C. elegans to smoothly retract from a fungal noose and evade capture. Our results suggest that selective pressures imposed by predacious fungi have shaped the evolution of C. elegans escape behavior.

  11. Lionfish misidentification circumvents an optimized escape response by prey

    PubMed Central

    McCormick, Mark I.; Allan, Bridie J. M.

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish (Pterois volitans) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel (Pomacentrus chrysurus), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod (Cephalopholis microprion), a corallivorous butterflyfish (Chaetodon trifasctiatus) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators. PMID:27990292

  12. Naloxone facilitates appetitive extinction and eliminates escape from frustration.

    PubMed

    Norris, Jacob N; Pérez-Acosta, Andrés M; Ortega, Leonardo A; Papini, Mauricio R

    2009-11-01

    Two experiments tested the effects of opioid receptor blockage on behavior. In Experiment 1, rats reinforced for lever pressing with either sucrose or food pellets received treatment with saline, 2, and 10 mg/kg naloxone, i.p. (within-subject design). Naloxone 10 mg/kg increased response latency, but 2 mg/kg had no effect. When shifted to extinction (between-group design), naloxone (2 and 10 mg/kg) facilitated extinction relative to saline animals, after reinforcement with either sucrose or food pellets. In Experiment 2, after 10 sessions of access to 32% sucrose or an empty tube (between-group design), all rats were exposed to the empty tube while allowing them to jump over a barrier into a different compartment. Escape latencies were shorter for downshifted saline than for saline rats always given access to the empty tube. This escape-from-frustration effect was eliminated by naloxone (2 mg/kg, i.p.). Opioid blockage appears to reduce the value of alternative incentives.

  13. Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone.

    PubMed

    Zhang, Binbin; Chuang, Kai-Hsiang; Tjio, Ci'en; Chen, Way Cherng; Sheu, Fwu-Shan; Routtenberg, Aryeh

    2016-03-01

    Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional role of this presynaptic remodeling is still obscure. In vivo imaging that allows longitudinal observation of such remodeling could provide a deeper understanding of this presynaptic growth phenomenon as it occurs over time. Here we used manganese-enhanced magnetic resonance imaging (MEMRI), which shows a high-contrast area that co-localizes with the MFs. This technique was applied in the detection of learning-induced MF plasticity in two strains of rats. Quantitative analysis of a series of sections in the rostral dorsal hippocampus showed increases in the CA3a' area in MEMRI of trained Wistar rats consistent with the increased SO+SP area seen in the Timm's staining. MF plasticity was not seen in the trained Lister-Hooded rats in either MEMRI or in Timm's staining. This indicates the potential of MEMRI for revealing neuro-architectures and plasticity of the hippocampal MF system in vivo in longitudinal studies.

  14. Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy

    SciTech Connect

    Maryński, A.; Sĕk, G.; Musiał, A.; Andrzejewski, J.; Misiewicz, J.; Gilfert, C.; Reithmaier, J. P.; Capua, A.; Karni, O.; Gready, D.; Eisenstein, G.; Atiya, G.; Kaplan, W. D.; Kölling, S.

    2013-09-07

    The optical and structural properties of a new kind of InAs/InGaAlAs/InP quantum dot (QD)-like objects grown by molecular beam epitaxy have been investigated. These nanostructures were found to have significantly more symmetrical shapes compared to the commonly obtained dash-like geometries typical of this material system. The enhanced symmetry has been achieved due to the use of an As{sub 2} source and the consequent shorter migration length of the indium atoms. Structural studies based on a combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) provided detailed information on both the structure and composition distribution within an individual nanostructure. However, it was not possible to determine the lateral aspect ratio from STEM or APT. To verify the in-plane geometry, electronic structure calculations, including the energy levels and transition oscillator strength for the QDs have been performed using an eight-band k·p model and realistic system parameters. The results of calculations were compared to measured polarization-resolved photoluminescence data. On the basis of measured degree of linear polarization of the surface emission, the in-plane shape of the QDs has been assessed proving a substantial increase in lateral symmetry. This results in quantum-dot rather than quantum-dash like properties, consistent with expectations based on the growth conditions and the structural data.

  15. SPARSE: Seed Point Auto-Generation for Random Walks Segmentation Enhancement in medical inhomogeneous targets delineation of morphological MR and CT images.

    PubMed

    Chen, Haibin; Zhen, Xin; Gu, Xuejun; Yan, Hao; Cervino, Laura; Xiao, Yang; Zhou, Linghong

    2015-03-08

    In medical image processing, robust segmentation of inhomogeneous targets is a challenging problem. Because of the complexity and diversity in medical images, the commonly used semiautomatic segmentation algorithms usually fail in the segmentation of inhomogeneous objects. In this study, we propose a novel algorithm imbedded with a seed point autogeneration for random walks segmentation enhancement, namely SPARSE, for better segmentation of inhomogeneous objects. With a few user-labeled points, SPARSE is able to generate extended seed points by estimating the probability of each voxel with respect to the labels. The random walks algorithm is then applied upon the extended seed points to achieve improved segmentation result. SPARSE is implemented under the compute unified device architecture (CUDA) programming environment on graphic processing unit (GPU) hardware platform. Quantitative evaluations are performed using clinical homogeneous and inhomogeneous cases. It is found that the SPARSE can greatly decrease the sensitiveness to initial seed points in terms of location and quantity, as well as the freedom of selecting parameters in edge weighting function. The evaluation results of SPARSE also demonstrate substantial improvements in accuracy and robustness to inhomogeneous target segmentation over the original random walks algorithm.

  16. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated

  17. Tectonic escape of the Caribbean plate since the Paleocene: a consequence of the Chicxulub meteor impact?

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.

    2012-04-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic

  18. Exploitation of an ancient escape circuit by an avian predator: relationships between taxon-specific prey escape circuits and the sensitivity to visual cues from the predator.

    PubMed

    Jabłoński, P G; Strausfeld, N J

    2001-01-01

    The painted redstart Myioborus pictus uses visual displays to flush, pursue, and then capture an abundance of brachyceran Diptera that are equipped with giant fiber escape circuits. This paper investigates the relationships between features of the giant fiber system, the structure of visual stimuli produced by redstarts and their effectiveness in eliciting escape reactions by flies. The results show that dipterous taxa having large-diameter giant fibers extending short distances from the brain to motor neurons involved in escape are flushed at greater distances than taxa with longer and small-diameter giant fibers. The results of behavioral tests show the importance of angular acceleration of expanding image edges on the compound eye in eliciting escape responses. Lateral motion of stimulus profile edges as well as structured visual profiles additionally contribute to the sensitivity of one or more neural systems that trigger escape. Retinal subtense and angular velocity are known to trigger physiological responses in fly giant fiber circuits, but the contributions of edge length and lateral motion in a looming stimulus suggest that escape pathways might also receive inputs from circuits that are tuned to different types of motion. The present results suggest that these several properties of escape pathways have contributed to the evolution of foraging displays and plumage patterns in flush-pursuing birds.

  19. Apparent AV junctional escape in Wenckebach AV block: markedly slow conduction through the slow AV pathway.

    PubMed

    Kinoshita, Shinji; Katoh, Takakazu; Hagisawa, Kohsuke; Fukushima, Tsutomu; Ikawa, Shinji

    2009-02-01

    We report here two cases of Wenckebach atrioventricular (AV) block in which apparent AV junctional escape was observed, but most likely resulted from markedly slow conduction through the slow pathway of dual AV junctional pathways. In these cases, it seems that a blocked P-wave was followed by an AV junctional escape beat. However, a blocked P-wave occasionally failed to be followed by an escape beat, and the RR interval containing the blocked P-wave was markedly longer than the above escape interval. In one case, apparent AV junctional escape beats with aberrant ventricular conduction were found, and QRS complexes of the same configuration were also found without the preceding ventricular pause. This strengthens the possibility that apparent AV junctional escape occurred because of markedly slow conduction through the slow AV pathway.

  20. The great escape: Active genes on inactive sex chromosomes and their evolutionary implications.

    PubMed

    Sin, Ho-Su; Namekawa, Satoshi H

    2013-09-01

    Epigenetic mechanisms precisely regulate sex chromosome inactivation as well as genes that escape the silencing process. In male germ cells, DNA damage response factor RNF8 establishes active epigenetic modifications on the silent sex chromosomes during meiosis, and activates escape genes during a state of sex chromosome-wide silencing in postmeiotic spermatids. During the course of evolution, the gene content of escape genes in postmeiotic spermatids recently diverged on the sex chromosomes. This evolutionary feature mirrors the epigenetic processes of sex chromosomes in germ cells. In this article, we describe how epigenetic processes have helped to shape the evolution of sex chromosome-linked genes. Furthermore, we compare features of escape genes on sex chromosomes in male germ cells to escape genes located on the single X chromosome silenced during X-inactivation in females, clarifying the distinct evolutionary implications between male and female escape genes.

  1. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes.

    PubMed

    Krause, Kim; Cherubini, Paolo; Bugmann, Harald; Schleppi, Patrick

    2012-12-01

    Human activities have drastically increased nitrogen (N) inputs into natural and near-natural terrestrial ecosystems such that critical loads are now being exceeded in many regions of the world. This implies that these ecosystems are shifting from natural N limitation to eutrophication or even N saturation. This process is expected to modify the growth of forests and thus, along with management, to affect their carbon (C) sequestration. However, knowledge of the physiological mechanisms underlying tree response to N inputs, especially in the long term, is still lacking. In this study, we used tree-ring patterns and a dual stable isotope approach (δ(13)C and δ(18)O) to investigate tree growth responses and the underlying physiological reactions in a long-term, low-dose N addition experiment (+23 kg N ha(-1) a(-1)). This experiment has been conducted for 14 years in a mountain Picea abies (L.) Karst. forest in Alptal, Switzerland, using a paired-catchment design. Tree stem C sequestration increased by ∼22%, with an N use efficiency (NUE) of ca. 8 kg additional C in tree stems per kg of N added. Neither earlywood nor latewood δ(13)C values changed significantly compared with the control, indicating that the intrinsic water use efficiency (WUE(i)) (A/g(s)) did not change due to N addition. Further, the isotopic signal of δ(18)O in early- and latewood showed no significant response to the treatment, indicating that neither stomatal conductance nor leaf-level photosynthesis changed significantly. Foliar analyses showed that needle N concentration significantly increased in the fourth to seventh treatment year, accompanied by increased dry mass and area per needle, and by increased tree height growth. Later, N concentration and height growth returned to nearly background values, while dry mass and area per needle remained high. Our results support the hypothesis that enhanced stem growth caused by N addition is mainly due to an increased leaf area index (LAI

  2. 4D imaging of fluid escape in low permeability shales during heating

    NASA Astrophysics Data System (ADS)

    Renard, F.; Kobchenko, M.

    2012-04-01

    The coupling between thermal effects and deformation is relevant in many natural geological environments (rising magma, primary migration of hydrocarbons, vents) and has many industrial applications (storage of nuclear wastes, enhanced hydrocarbon recovery, coal exploitation, geothermic plants). When thermal effects involve phase transformation in the rock and production of fluids, a strong coupling may emerge between the processes of fluid escape and the ability of the rock to deform and transport fluids. To better understand the mechanisms of fracture pattern development and fluid escape in low permeability rocks, we performed time-resolved in situ X-ray tomography imaging to investigate the processes that occur during the slow heating (from 60° to 400°C) of organic-rich Green River shale. At about 350°C cracks nucleated in the sample, and as the temperature continued to increase, these cracks propagated parallel to shale bedding and coalesced, thus cutting across the sample. Thermogravimetry and gas chromatography revealed that the fracturing occurring at ~350°C was associated with significant mass loss and release of light hydrocarbons generated by the decomposition of immature organic matter. Kerogen decomposition is thought to cause an internal pressure build up sufficient to form cracks in the shale, thus providing pathways for the outgoing hydrocarbons. We show that a 2D numerical model based on this idea qualitatively reproduces the experimentally observed dynamics of crack nucleation, growth and coalescence, as well as the irregular outlines of the cracks. Our results provide a new description of fracture pattern formation in low permeability shales.

  3. Clonal Plasticity of Aquatic Plant Species Submitted to Mechanical Stress: Escape versus Resistance Strategy

    PubMed Central

    Puijalon, Sara; Bouma, Tjeerd J.; Van Groenendael, Jan; Bornette, Gudrun

    2008-01-01

    Background and Aims The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses. Methods The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured. Key Results For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow. Conclusions This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy. PMID:18854376

  4. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water

    NASA Astrophysics Data System (ADS)

    Chaffin, M. S.; Deighan, J.; Schneider, N. M.; Stewart, A. I. F.

    2017-01-01

    Atmospheric loss has controlled the history of Martian habitability, removing most of the planet’s initial water through atomic hydrogen and oxygen escape from the upper atmosphere to space. In standard models, H and O escape in a stoichiometric 2:1 ratio because H reaches the upper atmosphere via long-lived molecular hydrogen, whose abundance is regulated by a photochemical feedback sensitive to atmospheric oxygen content. The relatively constant escape rates these models predict are inconsistent with known H escape variations of more than an order of magnitude on seasonal timescales, variation that requires escaping H to have a source other than H2. The best candidate source is high-altitude water, detected by the Mars Express spacecraft in seasonally variable concentrations. Here we use a one-dimensional time-dependent photochemical model to show that the introduction of high-altitude water can produce a large increase in the H escape rate on a timescale of weeks, quantitatively linking these observations. This H escape pathway produces prompt H loss that is not immediately balanced by O escape, influencing the oxidation state of the atmosphere for millions of years. Martian atmospheric water loss may be dominated by escape via this pathway, which may therefore potentially control the planet’s atmospheric chemistry. Our findings highlight the influence that seasonal atmospheric variability can have on planetary evolution.

  5. On the relative contributions of positive reinforcement and escape extinction in the treatment of food refusal.

    PubMed

    Piazza, Cathleen C; Patel, Meeta R; Gulotta, Charles S; Sevin, Bari M; Layer, Stacy A

    2003-01-01

    We compared the effects of positive reinforcement alone, escape extinction alone, and positive reinforcement with escape extinction in the treatment of the food and fluid refusal of 4 children who had been diagnosed with a pediatric feeding disorder. Consumption did not increase when positive reinforcement was implemented alone. By contrast, consumption increased for all participants when escape extinction was implemented, independent of the presence or absence of positive reinforcement. However, the addition of positive reinforcement to escape extinction was associated with beneficial effects (e.g., greater decreases in negative vocalizations and inappropriate behavior) for some participants.

  6. On the hydrodynamic model of thermal escape from planetary atmospheres and its comparison with kinetic simulations

    NASA Astrophysics Data System (ADS)

    Volkov, A. N.

    2016-06-01

    Parkers' model of thermal escape implies the search of solutions of one-dimensional hydrodynamic equations for an inviscid but thermally conducting gas with a critical point and vanishing temperature far from the source. The properties of solutions of this model are studied for neutral mon- and diatomic gases with the viscosity index varying from 1/2 to 1. The domains of existence and uniqueness of solutions in terms of the source Jeans escape parameter and Knudsen number are established. The solutions are found to exist only in a narrow range of the critical point Jeans parameter. The lower and upper limits of this range correspond to solutions that are dominated by either heat conduction or adiabatic expansion. Thermal escape described by Parker's model occurs in two asymptotic regimes: the low-density (LD) regime, when escape is dominated by heat conduction, and the high-density (HD) regime, when escape is dominated by adiabatic expansion. Expressions for the mass and energy escape rates in these regimes are found theoretically. The comparison of results of hydrodynamic and kinetic simulations performed in identical conditions shows that Parker's model is capable of describing thermal escape only in the HD regime, providing decent agreement with the kinetic model in terms of the atmospheric structure below the exobase and the mass and energy escape rates. In the LD regime, Parker's model predicts a much faster drop in atmospheric temperature and less extended atmospheres, and can both over- and underestimate the escape rates in orders of magnitude.

  7. Decompression illness in goats following simulated submarine escape: 1993-2006.

    PubMed

    Seddon, F M; Thacker, J C; Fisher, A S; Jurd, K M; White, M G; Loveman, G A M

    2014-01-01

    The United Kingdom Ministry of Defence commissioned work to define the relationship between the internal pressure of a distressed submarine (DISSUB), the depth from which escape is made and the risk of decompression illness (DCI). The program of work used an animal model (goat) to define these risks and this paper reports the incidence and type of DCI observed. A total of 748 pressure exposures comprising saturation only, escape only or saturation followed by escape were conducted in the submarine escape simulator between 1993 and 2006. The DCI following saturation exposures was predominantly limb pain, whereas following escape exposures the DCI predominantly involved the central nervous system and was fast in onset. There was no strong relationship between the risk of DCI and the range of escape depths investigated. The risk of DCI incurred from escape following saturation was greater than that obtained by combining the risks for the independent saturation only, and escape only, exposures. The output from this program of work has led to improved advice on the safety of submarine escape.

  8. How moths escape bats: predicting outcomes of predator-prey interactions.

    PubMed

    Corcoran, Aaron J; Conner, William E

    2016-09-01

    What determines whether fleeing prey escape from attacking predators? To answer this question, biologists have developed mathematical models that incorporate attack geometries, pursuit and escape trajectories, and kinematics of predator and prey. These models have rarely been tested using data from actual predator-prey encounters. To address this problem, we recorded multi-camera infrared videography of bat-insect interactions in a large outdoor enclosure. We documented 235 attacks by four Myotis volans bats on a variety of moths. Bat and moth flight trajectories from 50 high-quality attacks were reconstructed in 3-D. Despite having higher maximum velocity, deceleration and overall turning ability, bats only captured evasive prey in 69 of 184 attacks (37.5%); bats captured nearly all moths not evading attack (50 of 51; 98%). Logistic regression indicated that prey radial acceleration and escape angle were the most important predictors of escape success (44 of 50 attacks correctly classified; 88%). We found partial support for the turning gambit mathematical model; however, it underestimated the escape threshold by 25% of prey velocity and did not account for prey escape angle. Whereas most prey escaping strikes flee away from predators, moths typically escaped chasing bats by turning with high radial acceleration toward 'safety zones' that flank the predator. This strategy may be widespread in prey engaged in chases. Based on these findings, we developed a novel geometrical model of predation. We discuss implications of this model for the co-evolution of predator and prey kinematics and pursuit and escape strategies.

  9. On the relative contributions of noncontingent reinforcement and escape extinction in the treatment of food refusal.

    PubMed

    Reed, Gregory K; Piazza, Cathleen C; Patel, Meeta R; Layer, Stacy A; Bachmeyer, Melanie H; Bethke, Stephanie D; Gutshall, Katharine A

    2004-01-01

    In the current investigation, we evaluated the relative effects of noncontingent reinforcement (NCR), escape extinction, and a combination of NCR and escape extinction as treatment for the feeding problems exhibited by 4 children. For each participant, consumption increased only when escape extinction was implemented, independent of whether NCR was present or absent. These results were consistent with prior research suggesting that positive reinforcement alone is insufficient for increasing consumption, and that escape extinction often is necessary to increase and maintain food acceptance. However, NCR appeared to decrease inappropriate behavior for some participants.

  10. PHYSIOLOGICAL EVALUATION OF THE ACED SUBMARINE ESCAPE SUIT-RAFT SYSTEM.

    DTIC Science & Technology

    SUBMARINE ESCAPE, *SEA RESCUE EQUIPMENT), LIFE RAFTS, PROTECTIVE CLOTHING, EXPOSURE(PHYSIOLOGY), WATER, TEMPERATURE, PHYSIOLOGY, TISSUES(BIOLOGY), DAMAGE, MORTALITY RATES , STRESS(PHYSIOLOGY), TOLERANCES(PHYSIOLOGY)

  11. Norethandrolone produces temporary loss of the ability to escape from salt-retaining steroids.

    PubMed

    Zumoff, B

    1989-01-01

    Patients with diseases characterized by salt retention manifest a loss of the normal ability of healthy persons to escape from repeat injections of aldosterone or other salt-retaining steroids. This phenomenon may be a clue to the pathophysiological mechanisms of salt retention. Administration of norethandrolone to a subject who had demonstrated the ability to escape from the salt-retaining effect of corticosteroid administration temporarily and reversibly deleted his ability to escape. Thus norethandrolone administration provides the basis for a model system for exploring the mechanisms of escape (and therefore of salt retention).

  12. Escape dynamics and fractal basin boundaries in the planar Earth-Moon system

    NASA Astrophysics Data System (ADS)

    de Assis, Sheila C.; Terra, Maisa O.

    2014-10-01

    The escape of trajectories of a spacecraft, or comet or asteroid in the presence of the Earth-Moon system is investigated in detail in the context of the planar circular restricted three-body problem, in a scattering region around the Moon. The escape through the necks around the collinear points and as well as the leaking produced by considering collisions with the Moon surface, taking the lunar mean radius into account, were considered. Given that different transport channels are available as a function of the Jacobi constant, four distinct escape regimes are analyzed. Besides the calculation of exit basins and of the spatial distribution of escape time, the qualitative dynamical investigation through Poincaré sections is performed in order to elucidate the escape process. Our analyses reveal the dependence of the properties of the considered escape basins with the energy, with a remarkable presence of fractal basin boundaries along all the escape regimes. Finally, we observe the plentiful presence of stickiness motion near stability islands which plays a remarkable role in the longest escape time behavior. The application of this analysis is important both in space mission design and study of natural systems, given that fractal boundaries are related with high sensitivity to initial conditions, implying in uncertainty between safe and unsafe solutions, as well as between escaping solutions that evolve to different phase space regions.

  13. Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish.

    PubMed

    Langerhans, R Brian

    2009-08-23

    Bahamas mosquitofish (Gambusia hubbsi) colonized blue holes during the past approximately 15 000 years and exhibit relatively larger caudal regions in blue holes that contain piscivorous fish. It is hypothesized that larger caudal regions enhance fast-start escape performance and thus reflect an adaptation for avoiding predation. Here I test this hypothesis using a three-pronged, experimental approach. First, G. hubbsi from blue holes with predators were found to possess both greater fast-start performance and greater survivorship in the presence of predatory fish. Second, using individual-level data to investigate the morphology-performance-fitness pathway, I found that (i) fish with larger caudal regions produced higher fast-start performance and (ii) fish with higher fast-start performance enjoyed greater survivorship in the presence of fish predators-trends consistently observed across both predator regimes. Finally, I found that morphological divergence between predator regimes at least partially reflects genetic differentiation, as differences were retained in fish raised in a common laboratory environment. These results suggest that natural selection favours increased fast-start performance in the presence of piscivorous fish, consequently driving the evolution of larger caudal regions. Combined with previous work, this provides functional insight into body shape divergence and ecological speciation among Bahamian blue holes.

  14. Fifty years of chasing lizards: new insights advance optimal escape theory.

    PubMed

    Samia, Diogo S M; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2016-05-01

    Systematic reviews and meta-analyses often examine data from diverse taxa to identify general patterns of effect sizes. Meta-analyses that focus on identifying generalisations in a single taxon are also valuable because species in a taxon are more likely to share similar unique constraints. We conducted a comprehensive phylogenetic meta-analysis of flight initiation distance in lizards. Flight initiation distance (FID) is a common metric used to quantify risk-taking and has previously been shown to reflect adaptive decision-making. The past decade has seen an explosion of studies focused on quantifying FID in lizards, and, because lizards occur in a wide range of habitats, are ecologically diverse, and are typically smaller and differ physiologically from the better studied mammals and birds, they are worthy of detailed examination. We found that variables that reflect the costs or benefits of flight (being engaged in social interactions, having food available) as well as certain predator effects (predator size and approach speed) had large effects on FID in the directions predicted by optimal escape theory. Variables that were associated with morphology (with the exception of crypsis) and physiology had relatively small effects, whereas habitat selection factors typically had moderate to large effect sizes. Lizards, like other taxa, are very sensitive to the costs of flight.

  15. Danionella dracula, an escape from the cypriniform Bauplan via developmental truncation?

    PubMed

    Britz, Ralf; Conway, Kevin W

    2016-02-01

    We provide a detailed account of the osteology of the miniature Asian freshwater cyprinid fish Danionella dracula. The skeleton of D. dracula shows a high degree of developmental truncation when compared to most other cyprinids, including its close relative the zebrafish Danio rerio. Sixty-one bones, parts thereof or cartilages present in most other cyprinids are missing in D. dracula. This impressive organism-wide case of progenesis renders it one of the most developmentally truncated bony fishes or even vertebrates. Danionella dracula lacks six of the eight unique synapomorphies that define the order Cypriniformes and has, thus, departed from the cypriniform Bauplan more dramatically than any other member of this group. This escape from one of the most successful Baupläne among bony fishes may have been facilitated by the organism-wide progenesis encountered in D. dracula. By returning in its skeletal structure to the early developmental condition of other cypriniforms, D. dracula may have managed to overcome the evolutionary constraints associated with this Bauplan and opened up new evolutionary avenues that enabled it to evolve a number of striking morphological novelties, including its tooth-like odontoid processes and a complex drumming apparatus.

  16. Little evidence for morphological change in a resilient endemic species following the introduction of a novel predator.

    PubMed

    Sharpe, D M T; Langerhans, R B; Low-Décarie, E; Chapman, L J

    2015-11-01

    Human activities, such as species introductions, are dramatically and rapidly altering natural ecological processes and often result in novel selection regimes. To date, we still have a limited understanding of the extent to which such anthropogenic selection may be driving contemporary phenotypic change in natural populations. Here, we test whether the introduction of the piscivorous Nile perch, Lates niloticus, into East Africa's Lake Victoria and nearby lakes coincided with morphological change in one resilient native prey species, the cyprinid fish Rastrineobola argentea. Drawing on prior ecomorphological research, we predicted that this novel predator would select for increased allocation to the caudal region in R. argentea to enhance burst-swimming performance and hence escape ability. To test this prediction, we compared body morphology of R. argentea across space (nine Ugandan lakes differing in Nile perch invasion history) and through time (before and after establishment of Nile perch in Lake Victoria). Spatial comparisons of contemporary populations only partially supported our predictions, with R. argentea from some invaded lakes having larger caudal regions and smaller heads compared to R. argentea from uninvaded lakes. There was no clear evidence of predator-associated change in body shape over time in Lake Victoria. We conclude that R. argentea have not responded to the presence of Nile perch with consistent morphological changes and that other factors are driving observed patterns of body shape variation in R. argentea.

  17. The Great Escape: Viral Strategies to Counter BST-2/Tetherin

    PubMed Central

    Douglas, Janet L.; Gustin, Jean K.; Viswanathan, Kasinath; Mansouri, Mandana; Moses, Ashlee V.; Früh, Klaus

    2010-01-01

    The interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposi's sarcoma–associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as “tetherin”. However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells. Since the anti-viral function of BST-2 was discovered, there has been an explosion of research into several aspects of this intriguing interplay between host and virus. This review focuses on recent work addressing the molecular mechanisms involved in BST-2 restriction of viral egress and the species-specific countermeasures employed by various viruses. PMID:20485522

  18. Lightning tests of the orbiter pyrotechnic escape system

    NASA Technical Reports Server (NTRS)

    Cohen, R.; Schulte, E. H.

    1977-01-01

    An experimental test program was undertaken to demonstrate that the Space Shuttle Orbiter Vehicle pyrotechnics actuated Crew Escape System was not subject to failure resulting from a lightning strike in the vicinity of the cockpit. A test sample representing a full-scale portion of the Orbiter Outer Panel was preheated to 325 F and struck with three different current waveforms to simulate the various effects of lightning: (1) 2 micro sec risetime, to 180 kA pulse to evaluate fast current rise shock effects; (2) a 205 kA, 100 micro sec wide pulse to evaluate full energy shock effects; and (3) a 490 ampere, 370 msec continuing current to evaluate the thermal effects of a lightning strike. These tests show that the Orbiter outer panel pyrotechnics are adequately protected against damage resulting from a lightning strike.

  19. An Introduction to Survival, Evasion, Resistance, and Escape (SERE) Medicine.

    PubMed

    Smith, Michael B

    2013-01-01

    When an individual finds himself/herself in a survival, evasion, resistance, or escape (SERE) scenario, the ability to treat injuries/illnesses can be the difference between life and death. SERE schools are responsible for preparing military members for these situations, but the concept of SERE medicine is not particularly well defined. To provide a comprehensive working description of SERE medicine, operational and training components were examined. Evidence suggests that SERE medicine is diverse, injury/illness patterns are situationally dependent, and treatment options often differ from conventional clinical medicine. Ideally, medical lessons taught in SERE training are based on actual documented events. Unfortunately, the existing body of literature is dated and does not appear to be expanding. In this article, four distinct facets of SERE medicine are presented to establish a basis for future discussion and research. Recommendations to improve SERE medical curricula and data-gathering processes are also provided.

  20. Can the Martian magnetic anomalies make for the ionosphere escape?

    NASA Astrophysics Data System (ADS)

    Fedorov, A.; Barabash, S.; Sauvaud, J.; Ferrier, C.

    2011-12-01

    Looking forward to the MAVEN mission, it seems very useful to return to Mars Express data to refresh an important problem of Martian atmosphere escape: what role the crustal magnetic field may play in this process? There are several publications on this topic with completely opposite conclusions. We are trying to use a new approach to this problem. On the base of a statistical study of the ion and electron distributions in the Martian magnetotail we show that the characteristic accelerated and thermalized distributions are not associated with the magnetic anomalies but only with interplanetary magnetic field clock angle. However the presence of the X-aligned crustal magnetic field provides a channel that can guide the heated plasmasheet electrons toward the ionosphere.

  1. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells

    PubMed Central

    Pinto, Mauricio P.; Sotomayor, Paula; Carrasco-Avino, Gonzalo; Corvalan, Alejandro H.; Owen, Gareth I.

    2016-01-01

    Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses. PMID:27608016

  2. STS-100 crew members practice emergency escape from the pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - As part of emergency escape training at Launch Pad 39A, the STS-100 crew climb into slidewire baskets that, during a real emergency, would propel them off the Fixed Service Structure to a landing area away from the pad. The crew is taking part in Terminal Countdown Demonstration Test activities that also include a simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  3. STS-100 crew members practice emergency escape from the pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - During emergency escape training at Launch Pad 39A, STS-100 Pilot Jeffrey S. Ashby (left) and Commander Kent V. Rominger are in their slidewire basket that, during a real emergency, would propel them off the Fixed Service Structure to a landing area away from the pad. The crew is taking part in Terminal Countdown Demonstration Test activities that also include a simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  4. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells.

    PubMed

    Pinto, Mauricio P; Sotomayor, Paula; Carrasco-Avino, Gonzalo; Corvalan, Alejandro H; Owen, Gareth I

    2016-09-06

    Tumor angiogenesis is widely recognized as one of the "hallmarks of cancer". Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.

  5. Bacillus cereus immune escape: a journey within macrophages.

    PubMed

    Tran, Seav-Ly; Ramarao, Nalini

    2013-10-01

    During bacterial infection, professional phagocytes are attracted to the site of infection, where they constitute a first line of host cell defense. Their function is to engulf and destroy the pathogens. Thus, bacteria must withstand the bactericidal activity of professional phagocytes, including macrophages to counteract the host immune system. Bacillus cereus infections are characterized by bacteremia despite the accumulation of inflammatory cells at the site of infection. This implies that the bacteria have developed means of resisting the host immune system. Bacillus cereus spores survive, germinate, and multiply in contact with macrophages, eventually producing toxins that kill these cells. However, the exact mechanism by which B. cereus evades immune attack remains unclear. This review addresses the interaction between B. cereus and macrophages, highlighting, in particular, the ways in which the bacteria escape the microbicidal activities of professional phagocytes.

  6. Escape behavior in task situations: task versus social antecedents.

    PubMed

    Taylor, J C; Ekdahl, M M; Romanczyk, R G; Miller, M L

    1994-06-01

    We designed an investigation to differentiate two types of challenging behaviors occurring in teaching situations: those evoked by task stimuli (i.e., task avoidance), and those evoked by social stimuli present in teaching situations (i.e., social avoidance). Four students with developmental disabilities who exhibited challenging behaviors in teaching situations were exposed to social interaction in a play situation and task demands in a teaching situation. Results indicated that the students exhibited two distinct behavior patterns. Two of the students exhibited a behavior pattern consistent with task avoidance and the other two students exhibited a behavior pattern consistent with social avoidance. Implications concerning task versus social avoidance and the need for more fine-grained analyses of the stimuli associated with escape behavior are discussed.

  7. Initiating a watch list for Ebola virus antibody escape mutations.

    PubMed

    Miller, Craig R; Johnson, Erin L; Burke, Aran Z; Martin, Kyle P; Miura, Tanya A; Wichman, Holly A; Brown, Celeste J; Ytreberg, F Marty

    2016-01-01

    The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.

  8. Convergent evolution of escape from hepaciviral antagonism in primates.

    PubMed

    Patel, Maulik R; Loo, Yueh-Ming; Horner, Stacy M; Gale, Michael; Malik, Harmit S

    2012-01-01

    The ability to mount an interferon response on sensing viral infection is a critical component of mammalian innate immunity. Several viruses directly antagonize viral sensing pathways to block activation of the host immune response. Here, we show that recurrent viral antagonism has shaped the evolution of the host protein MAVS--a crucial component of the viral-sensing pathway in primates. From sequencing and phylogenetic analyses of MAVS from 21 simian primates, we found that MAVS has evolved under strong positive selection. We focused on how this positive selection has shaped MAVS' susceptibility to Hepatitis C virus (HCV). We functionally tested MAVS proteins from diverse primate species for their ability to resist antagonism by HCV, which uses its protease NS3/4A to cleave human MAVS. We found that MAVS from multiple primates are resistant to inhibition by the HCV protease. This resistance maps to single changes within the protease cleavage site in MAVS, which protect MAVS from getting cleaved by the HCV protease. Remarkably, most of these changes have been independently acquired at a single residue 506 that evolved under positive selection. We show that "escape" mutations lower affinity of the NS3 protease for MAVS and allow it to better restrict HCV replication. We further show that NS3 proteases from all other primate hepaciviruses, including the highly divergent GBV-A and GBV-C viruses, are functionally similar to HCV. We conclude that convergent evolution at residue 506 in multiple primates has resulted in escape from antagonism by hepaciviruses. Our study provides a model whereby insights into the ancient history of viral infections in primates can be gained using extant host and virus genes. Our analyses also provide a means by which primates might clear infections by extant hepaciviruses like HCV.

  9. Initiating a watch list for Ebola virus antibody escape mutations

    PubMed Central

    Johnson, Erin L.; Burke, Aran Z.; Martin, Kyle P.; Miura, Tanya A.; Wichman, Holly A.; Brown, Celeste J.

    2016-01-01

    The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens. PMID:26925318

  10. Evaluating Melanoma Drug Response and Therapeutic Escape with Quantitative Proteomics*

    PubMed Central

    Rebecca, Vito W.; Wood, Elizabeth; Fedorenko, Inna V.; Paraiso, Kim H. T.; Haarberg, H. Eirik; Chen, Yi; Xiang, Yun; Sarnaik, Amod; Gibney, Geoffrey T.; Sondak, Vernon K.; Koomen, John M.; Smalley, Keiran S. M.

    2014-01-01

    The evolution of cancer therapy into complex regimens with multiple drugs requires novel approaches for the development and evaluation of companion biomarkers. Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) is a versatile platform for biomarker measurement. In this study, we describe the development and use of the LC-MRM platform to study the adaptive signaling responses of melanoma cells to inhibitors of HSP90 (XL888) and MEK (AZD6244). XL888 had good anti-tumor activity against NRAS mutant melanoma cell lines as well as BRAF mutant cells with acquired resistance to BRAF inhibitors both in vitro and in vivo. LC-MRM analysis showed HSP90 inhibition to be associated with decreased expression of multiple receptor tyrosine kinases, modules in the PI3K/AKT/mammalian target of rapamycin pathway, and the MAPK/CDK4 signaling axis in NRAS mutant melanoma cell lines and the inhibition of PI3K/AKT signaling in BRAF mutant melanoma xenografts with acquired vemurafenib resistance. The LC-MRM approach targeting more than 80 cancer signaling proteins was highly sensitive and could be applied to fine needle aspirates from xenografts and clinical melanoma specimens (using 50 μg of total protein). We further showed MEK inhibition to be associated with signaling through the NFκB and WNT signaling pathways, as well as increased receptor tyrosine kinase expression and activation. Validation studies identified PDGF receptor β signaling as a potential escape mechanism from MEK inhibition, which could be overcome through combined use of AZD6244 and the PDGF receptor inhibitor, crenolanib. Together, our studies show LC-MRM to have unique value as a platform for the systems level understanding of the molecular mechanisms of drug response and therapeutic escape. This work provides the proof-of-principle for the future development of LC-MRM assays for monitoring drug responses in the clinic. PMID:24760959

  11. Phenotypic Mismatches Reveal Escape from Arms-Race Coevolution

    PubMed Central

    Hanifin, Charles T; Brodie, Edmund D; Brodie, Edmund D

    2008-01-01

    Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts) and predator traits (tetrodotoxin resistance of snakes) to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were “ahead” of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race. PMID:18336073

  12. Searching for a life history approach to salmon escapement management

    USGS Publications Warehouse

    Knudsen, E.E.; Symmes, E.W.; Margraf, F.J.

    2003-01-01

    A number of Pacific salmon populations have already been lost and many others throughout the range are in various states of decline. Recent research has documented that Pacific salmon carcasses serve as a key delivery vector of marine-derived nutrients into the freshwater portions of their ecosystems. This nutrient supply plays a critical biological feedback role in salmon sustainability by supporting juvenile salmon production. We first demonstrate how nutrient feedback potential to juvenile production may be unaccounted for in spawner-recruit models of populations under long-term exploitation. We then present a heuristic, life history-based, spreadsheet survival model that incorporates salmon carcass-driven nutrient feedback to the freshwater components of the salmon ecosystem. The productivity of a hypothetical coho salmon population was simulated using rates from the literature for survival from spawner to egg, egg to fry, fry to smolt, and smolt to adult. The effects of climate variation and nutrient feedback on survival were incorporated, as were density-dependent effects of the numbers of spawners and fry on freshwater survival of eggs and juveniles. The unexploited equilibrium population was subjected to 100 years of 20, 40, 60, and 80% harvest. Each harvest scenario greater than 20% brought the population to a reduced steady state, regardless of generous compensatory survival at low population sizes. Increasing harvest reduced the positive effects of nutrient contributions to population growth. Salmon researchers should further explore this modeling approach for establishing escapement goals. Given the importance of nutrient feedback, managers should strive for generous escapements that support nutrient rebuilding, as well as egg deposition, to ensure strong future salmon production.

  13. Flare Particle Escape in 3D Solar Eruptive Events

    NASA Astrophysics Data System (ADS)

    Antiochos, Spiro K.; Masson, Sophie; DeVore, C. R.

    2015-04-01

    Among the most important, but least understood forms of space weather are the so-called Impulsive Solar Energetic Particle (SEP) events, which can be especially hazardous to deep-space astronauts. These energetic particles are generally believed to be produced by the flare reconnection that is the primary driver of solar eruptive events (SEE). A key point is that in the standard model of SEEs, the particles should remain trapped in the coronal flare loops and in the ejected plasmoid, the CME. However, flare-accelerated particles frequently reach the Earth long before the CME does. In previous 2.5D calculations we showed how the external reconnection that is an essential element of the breakout model for CME initiation could lead to the escape of flare-accelerated particles. The problem, however, is that in 2.5D this reconnection also tends to destroy the plasmoid, which disagrees with the observation that SEP events are often associated with well-defined plasmoids at 1 AU known as “magnetic clouds”. Consequently, we have extended our model to a fully 3D topology that includes a multi-polar coronal field suitable for a breakout SEE near a coronal hole region. We performed high-resolution 3D MHD numerical simulations with the Adaptively Refined MHD Solver (ARMS). Our results demonstrate that the model allows for the effective escape of energetic particles from deep within an ejecting well-defined plasmoid. We show how the complex interactions between the flare and breakout reconnection reproduce all the main observational features of SEEs and SEPs. We discuss the implications of our calculations for the upcoming Solar Orbiter and Solar Probe Plus missions, which will measure SEEs and SEPs near the Sun, thereby, mitigating propagation effects.This research was supported, in part, by the NASA SR&T and TR&T Programs.

  14. Flow control by means of a traveling curvature wave in fishlike escape responses

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Yu, Yong-Liang; Tong, Bing-Gang

    2011-11-01

    Fish usually bend their bodies into a ‘‘C’’ shape and then beat their tails one or more times to escape from predators (in nature) or stimuli (in experiments). The maneuvering behavior, i.e., the C-shape bending and the return flapping, is called C-start. In this paper, the escaping performance of fishlike C-start motions has been numerically investigated for a flow physics study by the use of a two-dimensional deformable foil bending and stretching quickly. The C-start motions, performed in the quiescent water and based on prescribed deforming modes, are predicted by a numerical method coupling the two-dimensional incompressible Navier-Stokes equations and the deforming body dynamic equations. It has been found earlier that a typical C-start motion consists of (1) a main C-shape bending and (2) a rearward travelling curvature wave which was seldom mentioned in previous studies. In order to reveal the flow control mechanism of the traveling curvature wave in a fish's C-start motion, two kinds of C-start flows with different deforming modes, namely the integrated mode (IM, a C-shape bending plus a travelling curvature wave) and the basic mode (BM, a C-shape bending only) are analyzed and compared in detail. According to the numerical results, it shows that if proper values of the travelling curvature wave parameters are chosen, the foil's escaping maneuverability presented in the IM is much better than that in the BM, i.e. the turn angle and the speed of the center of mass at the end of a C-start in the IM is almost twice as large as those in the BM. Further study shows that the travelling curvature wave not only can enhance the thrust and the centripetal force but also increase the propulsive efficiency. These results suggest that an efficient travelling curvature wave is of great significance in the flow control of a C-start motion. Finally, a parametric study finds that the phase difference between the C-shape bending and the travelling curvature wave (i

  15. Photochemical escape of oxygen from the Martian atmosphere: first results from MAVEN

    NASA Astrophysics Data System (ADS)

    Lillis, Rob; Deigan, Justin; Fox, Jane; Bougher, Steve; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Jakosky, Bruce

    2015-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape at the present epoch and relate those escape rates to solar drivers. One of the major escape processes is known as photochemical escape, which is broadly defined as a process by which a) an exothermic reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through any subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process is central to understanding the role escape to space has played in Mars' climate evolution. Because escaping hot atoms cannot easily be directly measured, models of production and transport (through the atmosphere) of such atoms must be used to constrain escape rates. These models require altitude profiles of neutral densities and electron and ion densities and temperatures, as well as compositional information. All the relevant quantities upon which photochemical escape depends will be measured by MAVEN at the relevant altitudes (150-250 km). LPW will measure electron density and temperature, NGIMS will measure neutral and ion density and STATIC will measure ion density and temperature. 4 separate calculations must be made for every altitude profile: Profiles of O2+dissociative recombination (DR) rates will be calculated straightforwardly from electron temperature, electron density and O2+density. Profiles of rotational and vibrational distributions of O2+ ions will be calculated from profiles of CO2, O, O2, O+, CO2+ and CO+ via a lookup table from an empirical model. Profiles of energy distributions of hot O atoms will be calculated from the results of step 2 and from profiles of electron and ion temperatures. Profiles of all neutral

  16. Hybrid fluid/kinetic modeling of Pluto’s escaping atmosphere

    NASA Astrophysics Data System (ADS)

    Erwin, Justin; Tucker, O. J.; Johnson, Robert E.

    2013-09-01

    Predicting the rate of escape and thermal structure of Pluto’s upper atmosphere in preparation for the New Horizons Spacecraft encounter in 2015 is important for planning and interpreting the expected measurements. Having a moderate Jeans parameter Pluto’s atmosphere does not fit the classic definition of Jeans escape for light species escaping from the terrestrial planets, nor does it fit the hydrodynamic outflow from comets and certain exoplanets. It has been proposed for some time that Pluto lies in the region of slow hydrodynamic escape. Using a hybrid fluid/molecular-kinetic model, we previously demonstrated the typical implementation of this model fails to correctly describe the appropriate temperature structure for the upper atmosphere for solar minimum conditions. Here we use a time-dependent solver to allow us to extend those simulations to higher heating rates and we examine fluid models in which Jeans-like escape expressions are used for the upper boundary conditions. We compare these to hybrid simulations of the atmosphere under heating conditions roughly representative of solar minimum and mean conditions as these bracket conditions expected during the New Horizon encounter. Although we find escape rates comparable to those previously estimated by the slow hydrodynamic escape model, and roughly consistent with energy limited escape, our model produces a much more extended atmosphere with higher temperatures roughly consistent with recent observations of CO. Such an extended atmosphere will be affected by Charon and will affect Pluto’s interaction with the solar wind at the New Horizon encounter. For the parameter space covered, we also find an inverse relationship between exobase temperature and altitude and the Jeans escape rate that is consistent with the energy limited escape rate. Since we have previously shown that such models can be scaled, these results have implications for modeling exoplanet atmospheres for which the energy limited

  17. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (<400 km altitude) data from three MAVEN instruments: the Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make several calculations, each as a function of altitude. The first uses electron and temperatures and simulates the dissociative recombination of both O2+ and CO2+ to calculate the probability distribution for the initial energies of the resulting hot oxygen atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms

  18. The Effects of Fixed-Time Escape on Inappropriate and Appropriate Classroom Behavior

    ERIC Educational Resources Information Center

    Waller, Rachael D.; Higbee, Thomas S.

    2010-01-01

    Few studies have explored the effects of fixed-time (FT) reinforcement on escape-maintained behavior of students in a classroom setting. We measured the effects of an FT schedule on the disruptive and appropriate academic behaviors of 2 junior high students in a public school setting. Results demonstrated that FT escape from tasks resulted in a…

  19. On the thermal process of atomic hydrogen escape from the earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. I.; Golovchanskaia, I. V.

    1983-10-01

    The authors' approach to the problem of the escape of gases from the planetary gravitational field is close to the consideration by Biutner (1958, 1959) which generalizes results obtained by Jones (1923) for the particular cases of the dense and rarefied atmosphere. The choice of the escape layer, the height distribution of the escape probability as well as escape intensity, have been investigated carefully by Biutner when considering the helium isotope escape from the atmosphere. The objects of the present paper include: (1) to take into account the escape of atomic hydrogen from the bulk atmospheric layer (h approximately 100-1000 km) using present-day data on the composition and temperature distribution in the upper atmosphere (Jacchia, 1977), (2) to find the perturbation of the velocity distribution function in energy space under escape conditions when it is not assumed to be Maxwellian or close to it in the whole dissipation layer and (3) to compare the escape rates obtained under such consideration with the production rates of atomic hydrogen in the atmosphere as well as with local values of the fluxes that are observed. The difference between the results obtained and those of Monte Carlo calculations is attributed to the placing of the lower boundary surface at a lower atmospheric level in the present model.

  20. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.

    PubMed

    Kanou, Masamichi; Matsuyama, Akane; Takuwa, Hiroyuki

    2014-09-01

    We investigated the effects of visual information on wind-evoked escape behavior in the cricket, Gryllus bimaculatus. Most agitated crickets were found to retreat into a shelter made of cardboard installed in the test arena within a short time. As this behavior was thought to be a type of escape, we confirmed how a visual image of a shelter affected wind-evoked escape behavior. Irrespective of the brightness of the visual background (black or white) or the absence or presence of a shelter, escape jumps were oriented almost 180° opposite to the source of the air puff stimulus. Therefore, the direction of wind-evoked escape depends solely depended on the direction of the stimulus air puff. In contrast, the turning direction of the crickets during the escape was affected by the position of the visual image of the shelter. During the wind-evoked escape jump, most crickets turned in the direction in which a shelter was presented. This behavioral nature is presumably necessary for crickets to retreat into a shelter within a short time after their escape jump.