Sample records for morphometric brain dissociation

  1. Morphometricity as a measure of the neuroanatomical signature of a trait.

    PubMed

    Sabuncu, Mert R; Ge, Tian; Holmes, Avram J; Smoller, Jordan W; Buckner, Randy L; Fischl, Bruce

    2016-09-27

    Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer's disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques.

  2. Morphometricity as a measure of the neuroanatomical signature of a trait

    PubMed Central

    Sabuncu, Mert R.; Ge, Tian; Holmes, Avram J.; Smoller, Jordan W.; Buckner, Randy L.; Fischl, Bruce

    2016-01-01

    Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer’s disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques. PMID:27613854

  3. [Recent advances in newborn MRI].

    PubMed

    Morel, B; Hornoy, P; Husson, B; Bloch, I; Adamsbaum, C

    2014-07-01

    The accurate morphological exploration of the brain is a major challenge in neonatology that advances in magnetic resonance imaging (MRI) can now provide. MRI is the gold standard if an hypoxic ischemic pathology is suspected in a full term neonate. In prematures, the specific role of MRI remains to be defined, secondary to US in any case. We present a state of the art of hardware and software technical developments in MRI. The increase in magnetic field strength (3 tesla) and the emergence of new MRI sequences provide access to new information. They both have positive and negative consequences on the daily clinical data acquisition use. The semiology of brain imaging in full term newborns and prematures is more extensive and complex and thereby more difficult to interpret. The segmentation of different brain structures in the newborn, even very premature, is now available. It is now possible to dissociate the cortex and basal ganglia from the cerebral white matter, to calculate the volume of anatomical structures, which improves the morphometric quantification and the understanding of the normal and abnormal brain development. MRI is a powerful tool to analyze the neonatal brain. The relevance of the diagnostic contribution requires an adaptation of the parameters of the sequences to acquire and of the image processing methods. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells.

    PubMed

    Volovitz, Ilan; Shapira, Netanel; Ezer, Haim; Gafni, Aviv; Lustgarten, Merav; Alter, Tal; Ben-Horin, Idan; Barzilai, Ori; Shahar, Tal; Kanner, Andrew; Fried, Itzhak; Veshchev, Igor; Grossman, Rachel; Ram, Zvi

    2016-06-01

    Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells' viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris containing immune-activatory danger associated molecular patterns, and due to the increased quantities of degraded proteins and RNA. Over 40 resected BTs and non-tumorous brain tissue samples were dissociated into single cells by mechanical dissociation or by mechanical and enzymatic dissociation. The quality of dissociation was compared for all frequently used dissociation enzymes (collagenase, DNase, hyaluronidase, papain, dispase) and for neutral protease (NP) from Clostridium histolyticum. Single-cell-dissociated cell mixtures were evaluated for cellular viability and for the cell-mixture dissociation quality. Dissociation quality was graded by the quantity of subcellular debris, non-dissociated cell clumps, and DNA released from dead cells. Of all enzymes or enzyme combinations examined, NP (an enzyme previously not evaluated on brain tissues) produced dissociated cell mixtures with the highest mean cellular viability: 93 % in gliomas, 85 % in brain metastases, and 89 % in non-tumorous brain tissue. NP also produced cell mixtures with significantly less cellular debris than other enzymes tested. Dissociation using NP was non-aggressive over time-no changes in cell viability or dissociation quality were found when comparing 2-h dissociation at 37 °C to overnight dissociation at ambient temperature. The use of NP allows for the most effective dissociation of viable single cells from human BTs or brain tissue. Its non-aggressive dissociative capacity may enable ambient-temperature shipping of tumor pieces in multi-center clinical trials, meanwhile being dissociated. As clinical grade NP is commercially available it can be easily integrated into cell-therapy clinical trials in neuro-oncology. The high quality viable cells produced may enable investigators to conduct more consistent research by avoiding the experimental artifacts associated with the presence dead cells or cellular debris.

  5. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.

    PubMed

    Puga, Sónia; Pereira, Patrícia; Pinto-Ribeiro, Filipa; O'Driscoll, Nelson J; Mann, Erin; Barata, Marisa; Pousão-Ferreira, Pedro; Canário, João; Almeida, Armando; Pacheco, Mário

    2016-11-01

    The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg -1 ), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where homeostatic mechanisms prevented circumstantially morphometric alterations in the brain and behavioral shifts. Although it has become clear the complexity of matching brain morphometric changes and behavioral shifts, motor-related alterations induced by MeHg seem to depend on a combination of disruptions in different brain regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dissociated learning using GABAergic drugs.

    PubMed

    Azarashvili, A A; Kaimachnikova, I E

    2009-02-01

    Experiments on Wistar rats addressed the possibility of dissociated learning using drugs acting directly on brain GABA(B) receptors. A previously suggested hypothesis was tested: that the cholinergic system of the brain plays the decisive role in the mechanisms of dissociative learning. The data obtained here provided evidence that dissociated learning an occur with compounds acting on the GABAergic transmitter system of the brain. Dissociated states arose on treatment of animals with both the GABA-mimetic baclofen and the GABA receptor antagonist 5-aminovaleric acid. Thus, these results show that dissociated learning can occur using drugs acting on both the cholinergic and the GABAergic transmitter systems of the brain.

  7. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    PubMed

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  8. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer's disease.

    PubMed

    Wolk, David A; Dickerson, Bradford C

    2010-06-01

    The epsilon4 allele of the apolipoprotein E (APOE) gene is the major genetic risk factor for Alzheimer's disease (AD), but limited work has suggested that APOE genotype may modulate disease phenotype. Carriers of the epsilon4 allele have been reported to have greater medial temporal lobe (MTL) pathology and poorer memory than noncarriers. Less attention has focused on whether there are domains of cognition and neuroanatomical regions more affected in noncarriers. Further, a major potential confound of prior in vivo studies is the possibility of different rates of clinical misdiagnosis for carriers vs. noncarriers. We compared phenotypic differences in cognition and topography of regional cortical atrophy of epsilon4 carriers (n = 67) vs. noncarriers (n = 24) with mild AD from the Alzheimer's Disease Neuroimaging Initiative, restricted to those with a cerebrospinal fluid (CSF) molecular profile consistent with AD. Between-group comparisons were made for psychometric tests and morphometric measures of cortical thickness and hippocampal volume. Carriers displayed significantly greater impairment on measures of memory retention, whereas noncarriers were more impaired on tests of working memory, executive control, and lexical access. Consistent with this cognitive dissociation, carriers exhibited greater MTL atrophy, whereas noncarriers had greater frontoparietal atrophy. Performance deficits in particular cognitive domains were associated with disproportionate regional brain atrophy within nodes of cortical networks thought to subserve these cognitive processes. These convergent cognitive and neuroanatomic findings in individuals with a CSF molecular profile consistent with AD support the hypothesis that APOE genotype modulates the clinical phenotype of AD through influence on specific large-scale brain networks.

  9. The Contribution of Art Therapy to the Dissociative Disorders.

    ERIC Educational Resources Information Center

    Murphy, Patricia S.

    1994-01-01

    Explored concepts of brain hemispheric lateralization and distinct right brain functioning in extensive dissociation by administering Dissociative Experiences Scale to 114 engineering students and 92 university drawing students. Chi-square calculation found differences in dissociative scoring levels between groups that approached significance at…

  10. Tissue Tracking: Applications for Brain MRI Classification

    DTIC Science & Technology

    2007-01-01

    General Hospital, Center for Morphometric Analysis.10,11 The IBSR data-sets are T1-weighted, 3D coronal brain scans after having been positionally...learned priors,” Image Processing, IEEE Transactions on 9(2), pp. 299–301, 2000. 5. P. Olver, G. Sapiro, and A. Tannenbaum, “Invariant Geometric Evolutions...MRI,” NeuroImage 22(3), pp. 1060–1075, 2004. 16. A. Zijdenbos, B. Dawant, R. Margolin, and A. Palmer, “ Morphometric analysis of white matter lesions in

  11. Morphometric abnormalities of the lateral ventricles in methamphetamine-dependent subjects☆

    PubMed Central

    Jeong, Hyeonseok S.; Lee, Sunho; Yoon, Sujung; Jung, Jiyoung J.; Cho, Han Byul; Kim, Binna N.; Ma, Jiyoung; Ko, Eun; Im, Jooyeon Jamie; Ban, Soonhyun; Renshaw, Perry F.; Lyoo, In Kyoon

    2017-01-01

    Background The presence of morphometric abnormalities of the lateral ventricles, which can reflect focal or diffuse atrophic changes of nearby brain structures, is not well characterized in methamphetamine dependence. The current study was aimed to examine the size and shape alterations of the lateral ventricles in methamphetamine-dependent subjects. Methods High-resolution brain structural images were obtained from 37 methamphetamine-dependent subjects and 25 demographically matched healthy individuals. Using a combined volumetric and surface-based morphometric approach, the structural variability of the lateral ventricles, with respect to extent and location, was examined. Results Methamphetamine-dependent subjects had an enlarged right lateral ventricle compared with healthy individuals. Morphometric analysis revealed a region-specific pattern of lateral ventricular expansion associated with methamphetamine dependence, which was mainly distributed in the areas adjacent to the ventral striatum, medial prefrontal cortex, and thalamus. Conclusions Patterns of shape decomposition in the lateral ventricles may have relevance to the structural vulnerability of the prefrontal-ventral striatal-thalamic circuit to methamphetamine-induced neurotoxicity. PMID:23769159

  12. Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia.

    PubMed

    Del Bene, Victor A; Foxe, John J; Ross, Lars A; Krakowski, Menahem I; Czobor, Pal; De Sanctis, Pierfilippo

    2016-01-01

    Several structural brain abnormalities have been associated with aggression in patients with schizophrenia. However, little is known about shared and distinct abnormalities underlying aggression in these subjects and non-psychotic violent individuals. We applied a region-of-interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic versus psychotic), adjusted for substance abuse, age, academic achievement and negative psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus and smaller left thalamus volumes. This was particularly the case for non-violent individuals diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size. With regard to left amygdala, we found an interaction between violence and diagnosis. More specifically, we report a double dissociation with smaller amygdala size linked to violence in non-psychotic individuals, while for psychotic patients smaller size was linked to non-violence. Importantly, the double dissociation appeared to be mostly driven by substance abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individuals were largely accounted for by substance abuse. This might be an indication that the association between amygdala reduction and violence is mediated by substance abuse. Our results indicate the importance of structural abnormalities in aggressive individuals.

  13. Effects of environmental enrichment on blood vessels in the optic tract of malnourished rats: A morphological and morphometric analysis.

    PubMed

    Barbosa, Everton Horiquini; Soares, Roberto Oliveira; Braga, Natália Nassif; Almeida, Sebastião de Sousa; Lachat, João-José

    2016-06-01

    This study aimed to compare the effects of environmental enrichment in nourished (on a diet containing 16% protein) and malnourished (on a diet containing 6% protein) rats during the critical period of brain development, specifically focusing on the optic nerve. By means of morphologic and morphometric assessment of the optic nerve, we analyzed the changes caused by diet and stimulation (environmental enrichment) on postnatal day 35, a time point ideal for such morphological analysis since developmental processes are considered complete at this age. Malnourished animals presented low body and brain weights and high body-to-brain weight ratio compared to well-nourished rats. Furthermore, malnourished animals showed morphological changes in the optic nerve such as edema and vacuolization characterized by increased interstitial space. The malnourished-stimulated group presented lesions characteristic of early protein malnutrition but were milder than lesions exhibited by malnourished-non-stimulated group. The morphometric analysis revealed no difference in glial cell density between groups, but there was significantly higher blood vessel density in the stimulated rats, independent of their nutritional condition. Our data indicate that protein malnutrition imposed during the critical period of brain development alters the cytoarchitecture of the optic nerve. In addition, we affirm that a 1-hour exposure to an enriched environment everyday was sufficient for tissue preservation in rats maintained on a low-protein diet. This protective effect might be related to angiogenesis, as confirmed by the increased vascular density observed in morphometric analyses.

  14. Functional brain imaging in 14 patients with dissociative amnesia reveals right inferolateral prefrontal hypometabolism.

    PubMed

    Brand, Matthias; Eggers, Carsten; Reinhold, Nadine; Fujiwara, Esther; Kessler, Josef; Heiss, Wolf-Dieter; Markowitsch, Hans J

    2009-10-30

    Dissociative amnesia is a condition usually characterized by severely impaired retrograde memory functioning in the absence of structural brain damage. Recent case studies nevertheless found functional brain changes in patients suffering from autobiographical-episodic memory loss in the cause of dissociative amnesia. Functional changes were demonstrated in both resting state and memory retrieval conditions. In addition, some but not all cases also showed other neuropsychological impairments beyond retrograde memory deficits. However, there is no group study available that examined potential functional brain abnormalities and accompanying neuropsychological deteriorations in larger samples of patients with dissociative retrograde amnesia. We report functional imaging and neuropsychological data acquired in 14 patients with dissociative amnesia following stressful or traumatic events. All patients suffered from autobiographical memory loss. In addition, approximately half of the patients had deficits in anterograde memory and executive functioning. Accompanying functional brain changes were measured by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET). Regional glucose utilization of the patients was compared with that of 19 healthy subjects, matched for age and gender. We found significantly decreased glucose utilization in the right inferolateral prefrontal cortex in the patients. Hypometabolism in this brain region, known to be involved in retrieval of autobiographical memories and self-referential processing, may be a functional brain correlate of dissociative amnesia.

  15. No association between hair cortisol or cortisone and brain morphology in children.

    PubMed

    Chen, Ruoqing; Muetzel, Ryan L; El Marroun, Hanan; Noppe, Gerard; van Rossum, Elisabeth F C; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Fang, Fang; Tiemeier, Henning

    2016-12-01

    Little is known about the relationship between the long-term hypothalamic-pituitary-adrenal (HPA) axis functioning and brain structure in children. Glucocorticoid in hair has emerged as an important biomarker of HPA activity. In this study, we investigated the associations of hair cortisol and cortisone concentrations with brain morphology in young children. We included 219 children aged 6-10 years from the Generation R Study in Rotterdam, the Netherlands. We examined cortisol and cortisone concentrations by hair analysis using liquid chromatography-tandem mass spectrometry, and assessed brain morphometric measures with structural magnetic resonance imaging. The relationships of hair cortisol and cortisone concentrations with brain volumetrics, cortical thickness, cortical surface area and gyrification were analyzed separately after adjustment for several potential confounding factors. We observed a positive association between cortisol concentrations and cortical surface area in the parietal lobe, positive associations of cortisone concentrations with thalamus volume, occipital lobe volume and cortical surface area in the parietal lobe, and a negative association between cortisone concentrations and cortical surface area in the temporal lobe in the regions of interest analyses. A negative association between cortisol or cortisone concentrations and hippocampal volume was observed in children with behavioral problems. The whole brain vertex-wise analyses did however not show any association between cortisol or cortisone concentration and brain morphometric measures after correction for multiple testing. Although some associations are noted in region of interest analyses, we do not observe clear association of hair cortisol or cortisone with brain morphometric measures in typically developing young children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structural brain aberrations associated with the dissociative subtype of post-traumatic stress disorder.

    PubMed

    Daniels, J K; Frewen, P; Theberge, J; Lanius, R A

    2016-03-01

    One factor potentially contributing to the heterogeneity of previous results on structural grey matter alterations in adult participants suffering from post-traumatic stress disorder (PTSD) is the varying levels of dissociative symptomatology. The aim of this study was therefore to test whether the recently defined dissociative subtype of PTSD characterized by symptoms of depersonalization and derealization is characterized by specific differences in volumetric brain morphology. Whole-brain MRI data were acquired for 59 patients with PTSD. Voxel-based morphometry was carried out to test for group differences between patients classified as belonging (n = 15) vs. not belonging (n = 44) to the dissociative subtype of PTSD. The correlation between dissociation (depersonalization/derealization) severity and grey matter volume was computed. Patients with PTSD classified as belonging to the dissociative subtype exhibited greater grey matter volume in the right precentral and fusiform gyri as well as less volume in the right inferior temporal gyrus. Greater dissociation severity was associated with greater volume in the right middle frontal gyrus. The results of this first whole-brain investigation of specific grey matter volume in dissociative subtype PTSD indentified structural aberrations in regions subserving the processing and regulation of emotional arousal. These might constitute characteristic biomarkers for the dissociative subtype PTSD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry.

    PubMed

    Katuwal, Gajendra J; Baum, Stefi A; Cahill, Nathan D; Michael, Andrew M

    2016-01-01

    Low success (<60%) in autism spectrum disorder (ASD) classification using brain morphometry from the large multi-site ABIDE dataset and inconsistent findings on brain morphometric abnormalities in ASD can be attributed to the ASD heterogeneity. In this study, we show that ASD brain morphometry is highly heterogeneous, and demonstrate that the heterogeneity can be mitigated and classification improved if autism severity (AS), verbal IQ (VIQ) and age are used with morphometric features. Morphometric features from structural MRIs (sMRIs) of 734 males (ASD: 361, controls: 373) of ABIDE were derived using FreeSurfer. Applying the Random Forest classifier, an AUC of 0.61 was achieved. Adding VIQ and age to morphometric features, AUC improved to 0.68. Sub-grouping the subjects by AS, VIQ and age improved the classification with the highest AUC of 0.8 in the moderate-AS sub-group (AS = 7-8). Matching subjects on age and/or VIQ in each sub-group further improved the classification with the highest AUC of 0.92 in the low AS sub-group (AS = 4-5). AUC decreased with AS and VIQ, and was the lowest in the mid-age sub-group (13-18 years). The important features were mainly from the frontal, temporal, ventricular, right hippocampal and left amygdala regions. However, they highly varied with AS, VIQ and age. The curvature and folding index features from frontal, temporal, lingual and insular regions were dominant in younger subjects suggesting their importance for early detection. When the experiments were repeated using the Gradient Boosting classifier similar results were obtained. Our findings suggest that identifying brain biomarkers in sub-groups of ASD can yield more robust and insightful results than searching across the whole spectrum. Further, it may allow identification of sub-group specific brain biomarkers that are optimized for early detection and monitoring, increasing the utility of sMRI as an important tool for early detection of ASD.

  18. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry

    PubMed Central

    Baum, Stefi A.; Cahill, Nathan D.; Michael, Andrew M.

    2016-01-01

    Low success (<60%) in autism spectrum disorder (ASD) classification using brain morphometry from the large multi-site ABIDE dataset and inconsistent findings on brain morphometric abnormalities in ASD can be attributed to the ASD heterogeneity. In this study, we show that ASD brain morphometry is highly heterogeneous, and demonstrate that the heterogeneity can be mitigated and classification improved if autism severity (AS), verbal IQ (VIQ) and age are used with morphometric features. Morphometric features from structural MRIs (sMRIs) of 734 males (ASD: 361, controls: 373) of ABIDE were derived using FreeSurfer. Applying the Random Forest classifier, an AUC of 0.61 was achieved. Adding VIQ and age to morphometric features, AUC improved to 0.68. Sub-grouping the subjects by AS, VIQ and age improved the classification with the highest AUC of 0.8 in the moderate-AS sub-group (AS = 7–8). Matching subjects on age and/or VIQ in each sub-group further improved the classification with the highest AUC of 0.92 in the low AS sub-group (AS = 4–5). AUC decreased with AS and VIQ, and was the lowest in the mid-age sub-group (13–18 years). The important features were mainly from the frontal, temporal, ventricular, right hippocampal and left amygdala regions. However, they highly varied with AS, VIQ and age. The curvature and folding index features from frontal, temporal, lingual and insular regions were dominant in younger subjects suggesting their importance for early detection. When the experiments were repeated using the Gradient Boosting classifier similar results were obtained. Our findings suggest that identifying brain biomarkers in sub-groups of ASD can yield more robust and insightful results than searching across the whole spectrum. Further, it may allow identification of sub-group specific brain biomarkers that are optimized for early detection and monitoring, increasing the utility of sMRI as an important tool for early detection of ASD. PMID:27065101

  19. Statistical Analysis of Organ Morphometric Parameters and Weights in South Iranian Adult Autopsies.

    PubMed

    Gholamzadeh, Saeid; Zarenezhad, Mohammad; Montazeri, Mahmoud; Zareikordshooli, Marzieh; Sadeghi, Ghazaleh; Malekpour, Abdorrasoul; Hoseni, Sanaz; Bahrani, Mohammadreza; Hajatmand, Razieh

    2017-05-01

    Organ weight is one important indicator to discern normal from abnormal condition in forensic pathology as well as in clinical medicine. The present study aimed to investigate morphometric parameters and organ weights of southern Iranian adults, which can be fundamental sources to be compared to abnormal cases.Morphometric parameters and weights of 6 organs (heart, liver, kidney, spleen, appendix, and brain), which were harvested from 501 southern Iranian adults (385 males and 116 females) during ordinary postmortem examination, were measured.All the organs were heavier in males than in females. Heart, brain, spleen, and right kidney were significantly heavier in males compared to females, but no significant difference was observed between the 2 sexes regarding the weights of the rest of the organs. Moreover, brain and heart became heavier as one got older and most organs were heavier in middle-aged individuals compared to other age groups. Furthermore, various types of correlations were observed between different organs' weights and body parameters.These results can be useful anatomical data for autopsy investigations, clinical practices, and research in southern Iran.

  20. Morphometric study of phylogenetic and ecologic signals in procyonid (mammalia: carnivora) endocasts.

    PubMed

    Ahrens, Heather E

    2014-12-01

    Endocasts provide a proxy for brain morphology but are rarely incorporated in phylogenetic analyses despite the potential for new suites of characters. The phylogeny of Procyonidae, a carnivoran family with relatively limited taxonomic diversity, is not well resolved because morphological and molecular data yield conflicting topologies. The presence of phylogenetic and ecologic signals in the endocasts of procyonids will be determined using three-dimensional geometric morphometrics. Endocasts of seven ingroup species and four outgroup species were digitally rendered and 21 landmarks were collected from the endocast surface. Two phylogenetic hypotheses of Procyonidae will be examined using methods testing for phylogenetic signal in morphometric data. In analyses of all taxa, there is significant phylogenetic signal in brain shape for both the morphological and molecular topologies. However, the analyses of ingroup taxa recover a significant phylogenetic signal for the morphological topology only. These results indicate support for the molecular outgroup topology, but not the ingroup topology given the brain shape data. Further examination of brain shape using principal components analysis and wireframe comparisons suggests procyonids possess more developed areas of the brain associated with motor control, spatial perception, and balance relative to the basal musteloid condition. Within Procyonidae, similar patterns of variation are present, and may be associated with increased arboreality in certain taxa. Thus, brain shape derived from endocasts may be used to test for phylogenetic signal and preliminary analyses suggest an association with behavior and ecology. © 2014 Wiley Periodicals, Inc.

  1. Applications of wavelets in morphometric analysis of medical images

    NASA Astrophysics Data System (ADS)

    Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang

    2003-11-01

    Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.

  2. Population differences in brain morphology: Need for population specific brain template.

    PubMed

    Rao, Naren P; Jeelani, Haris; Achalia, Rashmin; Achalia, Garima; Jacob, Arpitha; Bharath, Rose Dawn; Varambally, Shivarama; Venkatasubramanian, Ganesan; K Yalavarthy, Phaneendra

    2017-07-30

    Brain templates provide a standard anatomical platform for population based morphometric assessments. Typically, standard brain templates for such assessments are created using Caucasian brains, which may not be ideal to analyze brains from other ethnicities. To effectively demonstrate this, we compared brain morphometric differences between T1 weighted structural MRI images of 27 healthy Indian and Caucasian subjects of similar age and same sex ratio. Furthermore, a population specific brain template was created from MRI images of healthy Indian subjects and compared with standard Montreal Neurological Institute (MNI-152) template. We also examined the accuracy of registration of by acquiring a different T1 weighted MRI data set and registering them to newly created Indian template and MNI-152 template. The statistical analysis indicates significant difference in global brain measures and regional brain structures of Indian and Caucasian subjects. Specifically, the global brain measurements of the Indian brain template were smaller than that of the MNI template. Also, Indian brain images were better realigned to the newly created template than to the MNI-152 template. The notable variations in Indian and Caucasian brains convey the need to build a population specific Indian brain template and atlas. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Structural MRI and Cognitive Correlates in Pest-control Personnel from Gulf War I

    DTIC Science & Technology

    2009-04-01

    Medicine where they will be reconstructed for morphometric analyses by the study imaging expert, Dr. Killiany. All the images will be transferred to... geometric design; assess ability to organize and construct Raw Score...MRI and morphometric analysis of the images. The results of the current study will be able to compare whether brain imaging differences exist

  4. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study.

    PubMed

    Gehricke, Jean-G; Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L Tugan

    2017-01-01

    This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker.

  5. The brain anatomy of attention-deficit/hyperactivity disorder in young adults – a magnetic resonance imaging study

    PubMed Central

    Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L. Tugan

    2017-01-01

    Background This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Methods Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Results Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. Conclusion An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker. PMID:28406942

  6. Dissociative states in dreams and brain chaos: implications for creative awareness

    PubMed Central

    Bob, Petr; Louchakova, Olga

    2015-01-01

    This article reviews recent findings indicating some common brain processes during dissociative states and dreaming with the aim to outline a perspective that neural chaotic states during dreaming can be closely related to dissociative states that may manifest in dreams scenery. These data are in agreement with various clinical findings that dissociated states can be projected into the “dream scenery” in REM sleep periods and dreams may represent their specific interactions that may uncover unusual psychological potential of creativity in psychotherapy, art, and scientific discoveries. PMID:26441729

  7. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament.

    PubMed

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A; Münsterkötter, Anna L; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter; Lonsdorf, Tina B

    2016-04-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. © The Author (2015). Published by Oxford University Press.

  8. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament

    PubMed Central

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A.; Münsterkötter, Anna L.; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter

    2016-01-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  9. Morphometric analysis and neuroanatomical mapping of the zebrafish brain.

    PubMed

    Gupta, Tripti; Marquart, Gregory D; Horstick, Eric J; Tabor, Kathryn M; Pajevic, Sinisa; Burgess, Harold A

    2018-06-21

    Large-scale genomic studies have recently identified genetic variants causative for major neurodevelopmental disorders, such as intellectual disability and autism. However, determining how underlying developmental processes are affected by these mutations remains a significant challenge in the field. Zebrafish is an established model system in developmental neurogenetics that may be useful in uncovering the mechanisms of these mutations. Here we describe the use of voxel-intensity, deformation field, and volume-based morphometric techniques for the systematic and unbiased analysis of gene knock-down and environmental exposure-induced phenotypes in zebrafish. We first present a computational method for brain segmentation based on transgene expression patterns to create a comprehensive neuroanatomical map. This map allowed us to disclose statistically significant changes in brain microstructure and composition in neurodevelopmental models. We demonstrate the effectiveness of morphometric techniques in measuring changes in the relative size of neuroanatomical subdivisions in atoh7 morphant larvae and in identifying phenotypes in larvae treated with valproic acid, a chemical demonstrated to increase the risk of autism in humans. These tools enable rigorous evaluation of the effects of gene mutations and environmental exposures on neural development, providing an entry point for cellular and molecular analysis of basic developmental processes as well as neurodevelopmental and neurodegenerative disorders. Published by Elsevier Inc.

  10. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  11. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    PubMed

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. [Morphometric features of the structure of the central nucleus of the amygdala in men and women].

    PubMed

    Antyukhov, A D

    2015-01-01

    To identify the interhemispheric asymmetry in the structure of the central nucleus of the amygdala in men and women. Morphometric features of the structure of neurons of the central nucleus amygdala complex were studied in histological sections of the brain of 6 men and 6 women (24 hemispheres), aged 19 to 55 years, with no lifetime diagnosis of mental or neurological disease. The value of the profile fields of neurons of the central nucleus amygdala complex in the left and right hemispheres of the brain were investigated. In women, the average value of neurons in the left hemisphere was somewhat greater than in the right hemisphere, while in men this value was greater in the right hemisphere. The interhemispheric morphometric differences were not significant regardless of gender. In addition, the quantity of relevant fields of neurons in the central nucleus of the amygdala in women was significantly larger than that of men in both hemispheres. The authors attempted to associate the results obtained in the study with emotional perception in men and women.

  13. A robust, efficient and flexible method for staining myelinated axons in blocks of brain tissue.

    PubMed

    Wahlsten, Douglas; Colbourne, Frederick; Pleus, Richard

    2003-03-15

    Previous studies have demonstrated the utility of the gold chloride method for en bloc staining of a bisected brain in mice and rats. The present study explores several variations in the method, assesses its reliability, and extends the limits of its application. We conclude that the method is very efficient, highly robust, sufficiently accurate for most purposes, and adaptable to many morphometric measures. We obtained acceptable staining of commissures in every brain, despite a wide variety of fixation methods. One-half could be stained 24 h after the brain was extracted and the other half could be stained months later. When staining failed because of an exhausted solution, the brain could be stained successfully in fresh solution. Relatively small changes were found in the sizes of commissures several weeks after initial fixation or staining. A half brain stained to reveal the mid-sagittal section could then be sectioned coronally and stained again in either gold chloride for myelin or cresyl violet for Nissl substance. Uncertainty, arising from pixelation of digitized images was far less than errors arising from human judgments about the histological limits of major commissures. Useful data for morphometric analysis were obtained by scanning the surface of a gold chloride stained block of brain with an inexpensive flatbed scanner.

  14. Brain morphological alterations and cellular metabolic changes in patients with generalized anxiety disorder: A combined DARTEL-based VBM and (1)H-MRS study.

    PubMed

    Moon, Chung-Man; Jeong, Gwang-Woo

    2016-05-01

    Generalized anxiety disorder (GAD) is characterized by emotional dysregulation and cognitive deficit in conjunction with brain morphometric and metabolic alterations. This study assessed the combined neural morphological deficits and metabolic abnormality in patients with GAD. Thirteen patients with GAD and 13 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and proton magnetic resonance spectroscopy ((1)H-MRS) at 3Tesla. In this study, the combination of voxel-based morphometry (VBM) and (1)H-MRS was used to assess the brain morphometric and metabolic alterations in GAD. The patients showed significantly reduced white matter (WM) volumes in the midbrain (MB), precentral gyrus (PrG), dorsolateral prefrontal cortex (DLPFC) and anterior limb of the internal capsule (ALIC) compared to the controls. In MRS study, the choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC were significantly lower in the patients. Particularly, the WM volume variation of the DLPFC was positively correlated with both of the Cho/Cr and Cho/NAA ratios in patients with GAD. This study provides an evidence for the association between the morphometric deficit and metabolic changes in GAD. This finding would be helpful to understand the neural dysfunction and pathogenesis in connection with cognitive impairments in GAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Psychophysiology of dissociated consciousness.

    PubMed

    Bob, Petr

    2014-01-01

    Recent study of consciousness provides an evidence that there is a limit of consciousness, which presents a barrier between conscious and unconscious processes. This barrier likely is specifically manifested as a disturbance of neural mechanisms of consciousness that through distributed brain processing, attentional mechanisms and memory processes enable to constitute integrative conscious experience. According to recent findings a level of conscious integration may change during certain conditions related to experimental cognitive manipulations, hypnosis, or stressful experiences that can lead to dissociation of consciousness. In psychopathological research the term dissociation was proposed by Pierre Janet for explanation of processes related to splitting of consciousness due to traumatic events or during hypnosis. According to several recent findings dissociation of consciousness likely is related to deficits in global distribution of information and may lead to heightened levels of "neural complexity" that reflects brain integration or differentiation based on numbers of independent neural processes in the brain that may be specifically related to various mental disorders.

  16. Construction of population-specific Indian MRI brain template: Morphometric comparison with Chinese and Caucasian templates.

    PubMed

    Bhalerao, Gaurav Vivek; Parlikar, Rujuta; Agrawal, Rimjhim; Shivakumar, Venkataram; Kalmady, Sunil V; Rao, Naren P; Agarwal, Sri Mahavir; Narayanaswamy, Janardhanan C; Reddy, Y C Janardhan; Venkatasubramanian, Ganesan

    2018-06-01

    Spatial normalization of brain MR images is highly dependent on the choice of target brain template. Morphological differences caused by factors like genetic and environmental exposures, generates a necessity to construct population specific brain templates. Brain image analysis performed using brain templates from Caucasian population may not be appropriate for non-Caucasian population. In this study, our objective was to construct an Indian brain template from a large population (N = 157 subjects) and compare the morphometric parameters of this template with that of Chinese-56 and MNI-152 templates. In addition, using an independent MRI data of 15 Indian subjects, we also evaluated the potential registration accuracy differences using these three templates. Indian brain template was constructed using iterative routines as per established procedures. We compared our Indian template with standard MNI-152 template and Chinese template by measuring global brain features. We also examined accuracy of registration by aligning 15 new Indian brains to Indian, Chinese and MNI templates. Furthermore, we supported our measurement protocol with inter-rater and intra-rater reliability analysis. Our results showed that there were significant differences in global brain features of Indian template in comparison with Chinese and MNI brain templates. The results of registration accuracy analysis revealed that fewer deformations are required when Indian brains are registered to Indian template as compared to Chinese and MNI templates. This study concludes that population specific Indian template is likely to be more appropriate for structural and functional image analysis of Indian population. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A Computational Analysis of Mental Image Generation: Evidence from Functional Dissociations in Split-Brain Patients.

    DTIC Science & Technology

    1984-08-20

    neuropsychological data on the apraxias and the visual agnosias imply that motor and visual memories can be separately spared or destroyed after brain...agraphia Imagery dissociations 53 and (vice versa), and visual object agnosia without apraxia (and vice versa). We next asked him to *draw the letters in

  18. Monozygotic Twins with Asperger Syndrome: Differences in Behaviour Reflect Variations in Brain Structure and Function

    ERIC Educational Resources Information Center

    Belmonte, Matthew K.; Carper, Ruth A.

    2006-01-01

    A pair of monozygotic twins discordant for symptoms of Asperger syndrome was evaluated at the age of 13.45 years using psychometric, morphometric, behavioural, and functional imaging methods. The lower-functioning twin had a smaller brain overall, a smaller right cerebellum, and a disproportionately large left frontal lobe, and manifested almost…

  19. [Dissociated learning with GABAergic drugs].

    PubMed

    Azarashvili, A A; Kaĭmachnikova, I E

    2008-01-01

    The possibility of dissociated learning was investigated using drugs which act directly on GABAB receptors of the brain. The earlier proposed suggestion that the cholinergic system plays a key role in the mechanisms of dissociated learning was tested. It was shown in male Wistar rats that dissociated learning was possible with GABAergic drugs. The dissociated state was induced by injecting the animals with both GABA agonist Baclofen and GABA antagonist 5-aminovaleric acid. Thus, dissociated learning is possible with drugs which act on either cholinergic or GABAergic transmitter systems.

  20. [Processes of logical thought in a case of cerebral vascular lesion].

    PubMed

    Blanco Men ndez, R; Aguado Balsas, A M

    Reasoning and logical thought processes have traditionally been attributed to frontal lobe function or,on the other hand, have been considered as diffuse functions of the brain. However, there is today evidence enough about the possibility to find dissociations in thought processes, depending on logical structure of the experimental tasks and referring to different areas of the brain, frontal and post rolandic ones. To study possible dissociations between thought structures corresponding to categorical and relational logic, on one hand, and propositional logic on the other hand. The case of a brain injured patient with vascular etiology, localized in left frontal parietal cortex, is presented. A specific battery of reasoning tests has been administered. . A differential performance at some reasoning experimental tasks has been found depending on such logical conceptual structures. The possibility of establishing dissociations among certain logical thought and intelectual functions depending on localization of possible brain lesion (frontal versus temporal) is discussed.

  1. Mathematical model in post-mortem estimation of brain edema using morphometric parameters.

    PubMed

    Radojevic, Nemanja; Radnic, Bojana; Vucinic, Jelena; Cukic, Dragana; Lazovic, Ranko; Asanin, Bogdan; Savic, Slobodan

    2017-01-01

    Current autopsy principles for evaluating the existence of brain edema are based on a macroscopic subjective assessment performed by pathologists. The gold standard is a time-consuming histological verification of the presence of the edema. By measuring the diameters of the cranial cavity, as individually determined morphometric parameters, a mathematical model for rapid evaluation of brain edema was created, based on the brain weight measured during the autopsy. A cohort study was performed on 110 subjects, divided into two groups according to the histological presence or absence of (the - deleted from the text) brain edema. In all subjects, the following measures were determined: the volume and the diameters of the cranial cavity (longitudinal and transverse distance and height), the brain volume, and the brain weight. The complex mathematical algorithm revealed a formula for the coefficient ε, which is useful to conclude whether a brain edema is present or not. The average density of non-edematous brain is 0.967 g/ml, while the average density of edematous brain is 1.148 g/ml. The resulting formula for the coefficient ε is (5.79 x longitudinal distance x transverse distance)/brain weight. Coefficient ε can be calculated using measurements of the diameters of the cranial cavity and the brain weight, performed during the autopsy. If the resulting ε is less than 0.9484, it could be stated that there is cerebral edema with a reliability of 98.5%. The method discussed in this paper aims to eliminate the burden of relying on subjective assessments when determining the presence of a brain edema. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Retrieval Search and Strength Evoke Dissociable Brain Activity during Episodic Memory Recall

    PubMed Central

    Reas, Emilie T.; Brewer, James B.

    2014-01-01

    Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks. PMID:23190328

  3. Morphometric brain abnormalities in boys with conduct disorder.

    PubMed

    Huebner, Thomas; Vloet, Timo D; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R; Herpertz, Sabine C; Herpertz-Dahlmann, Beate

    2008-05-01

    Children with the early-onset type of conduct disorder (CD) are at high risk for developing an antisocial personality disorder. Although there have been several neuroimaging studies on morphometric differences in adults with antisocial personality disorder, little is known about structural brain aberrations in boys with CD. Magnetic resonance imaging and voxel-based morphometry were used to assess abnormalities in gray matter volumes in 23 boys ages 12 to 17 years with CD (17 comorbid for attention-deficit/hyperactivity disorder) in comparison with age- and IQ-matched controls. Compared with healthy controls, mean gray matter volume was 6% smaller in the clinical group. Compared with controls, reduced gray matter volumes were found in the left orbitofrontal region and bilaterally in the temporal lobes, including the amygdala and hippocampus on the left side in the CD group. Regression analyses in the clinical group indicated an inverse association of hyperactive/impulsive symptoms and widespread gray matter abnormalities in the frontoparietal and temporal cortices. By contrast, CD symptoms correlated primarily with gray matter reductions in limbic brain structures. The data suggest that boys with CD and comorbid attention-deficit/hyperactivity disorder show brain abnormalities in frontolimbic areas that resemble structural brain deficits, which are typically observed in adults with antisocial behavior.

  4. Investigating structural brain changes of dehydration using voxel-based morphometry.

    PubMed

    Streitbürger, Daniel-Paolo; Möller, Harald E; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1)-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheimer's disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.

  5. Investigating Structural Brain Changes of Dehydration Using Voxel-Based Morphometry

    PubMed Central

    Streitbürger, Daniel-Paolo; Möller, Harald E.; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L.; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T 1-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain. PMID:22952926

  6. Use of Morphometric Mapping to Characterise Symptomatic Chiari-Like Malformation, Secondary Syringomyelia and Associated Brachycephaly in the Cavalier King Charles Spaniel

    PubMed Central

    Cross, Chloe; Griffiths, Sandra; McFadyen, Angus K.; Jovanovik, Jelena; Tauro, Anna; Kibar, Zoha; Driver, Colin J.; La Ragione, Roberto M.; Rusbridge, Clare

    2017-01-01

    Objectives To characterise the symptomatic phenotype of Chiari-like malformation (CM), secondary syringomyelia (SM) and brachycephaly in the Cavalier King Charles Spaniel using morphometric measurements on mid-sagittal Magnetic Resonance images (MRI) of the brain and craniocervical junction. Methods This retrospective study, based on a previous quantitative analysis in the Griffon Bruxellois (GB), used 24 measurements taken on 130 T1-weighted MRI of hindbrain and cervical region. Associated brachycephaly was estimated using 26 measurements, including rostral forebrain flattening and olfactory lobe rotation, on 72 T2-weighted MRI of the whole brain. Both study cohorts were divided into three groups; Control, CM pain and SM and their morphometries compared with each other. Results Fourteen significant traits were identified in the hindbrain study and nine traits in the whole brain study, six of which were similar to the GB and suggest a common aetiology. The Control cohort had the most elliptical brain (p = 0.010), least olfactory bulb rotation (p = 0.003) and a protective angle (p = 0.004) compared to the other groups. The CM pain cohort had the greatest rostral forebrain flattening (p = 0.007), shortest basioccipital (p = 0.019), but a greater distance between the atlas and basioccipital (p = 0.002) which was protective for SM. The SM cohort had two conformation anomalies depending on the severity of craniocervical junction incongruities; i) the proximity of the dens (p <0.001) ii) increased airorhynchy with a smaller, more ventrally rotated olfactory bulb (p <0.001). Both generated ‘concertina’ flexures of the brain and craniocervical junction. Conclusion Morphometric mapping provides a diagnostic tool for quantifying symptomatic CM, secondary SM and their relationship with brachycephaly. It is hypothesized that CM pain is associated with increased brachycephaly and SM can result from different combinations of abnormalities of the forebrain, caudal fossa and craniocervical junction which compromise the neural parenchyma and impede cerebrospinal fluid flow. PMID:28122014

  7. Gray-matter macrostructure in cognitively healthy older persons: Associations with age and cognition

    PubMed Central

    Fleischman, Debra A.; Leurgans, Sue; Arfanakis, Konstantinos; Arvanitakis, Zoe; Barnes, Lisa L.; Boyle, Patricia A.; Han, S. Duke; Bennett, David A.

    2013-01-01

    A deeper understanding of brain macrostructure and its associations with cognition in persons who are considered cognitively healthy is critical to the early detection of persons at risk of developing dementia. Few studies have examined the associations of all three gray-matter macrostructural brain indices (volume, thickness, surface area) with age and cognition, in the same persons who are over the age of 65 and do not have cognitive impairment. We performed automated morphometric reconstruction of total gray matter, cortical gray matter, subcortical gray matter and 84 individual regions in 186 participants (60% over the age of 80) without cognitive impairment. Morphometric measures were scaled and expressed as difference per decade of age and an adjusted score was created to identify those regions in which there was greater atrophy per decade of age compared to cortical or subcortical brain averages. The results showed that there is substantial total volume loss and cortical thinning in cognitively healthy older persons. Thinning was more widespread than volume loss, but volume loss, particularly in temporoparietal and hippocampal regions, was more strongly associated with cognition. PMID:23955313

  8. Repetition priming influences distinct brain systems: evidence from task-evoked data and resting-state correlations.

    PubMed

    Wig, Gagan S; Buckner, Randy L; Schacter, Daniel L

    2009-05-01

    Behavioral dissociations suggest that a single experience can separately influence multiple processing components. Here we used a repetition priming functional magnetic resonance imaging paradigm that directly contrasted the effects of stimulus and decision changes to identify the underlying brain systems. Direct repetition of stimulus features caused marked reductions in posterior regions of the inferior temporal lobe that were insensitive to whether the decision was held constant or changed between study and test. By contrast, prefrontal cortex showed repetition effects that were sensitive to the exact stimulus-to-decision mapping. Analysis of resting-state functional connectivity revealed that the dissociated repetition effects are embedded within distinct brain systems. Regions that were sensitive to changes in the stimulus correlated with perceptual cortices, whereas the decision changes attenuated activity in regions correlated with middle-temporal regions and a frontoparietal control system. These results thus explain the long-known dissociation between perceptual and conceptual components of priming by revealing how a single experience can separately influence distinct, concurrently active brain systems.

  9. Functional (dissociative) retrograde amnesia.

    PubMed

    Markowitsch, H J; Staniloiu, A

    2016-01-01

    Retrograde amnesia is described as condition which can occur after direct brain damage, but which occurs more frequently as a result of a psychiatric illness. In order to understand the amnesic condition, content-based divisions of memory are defined. The measurement of retrograde memory is discussed and the dichotomy between "organic" and "psychogenic" retrograde amnesia is questioned. Briefly, brain damage-related etiologies of retrograde amnesia are mentioned. The major portion of the review is devoted to dissociative amnesia (also named psychogenic or functional amnesia) and to the discussion of an overlap between psychogenic and "brain organic" forms of amnesia. The "inability of access hypothesis" is proposed to account for most of both the organic and psychogenic (dissociative) patients with primarily retrograde amnesia. Questions such as why recovery from retrograde amnesia can occur in retrograde (dissociative) amnesia, and why long-term new learning of episodic-autobiographic episodes is possible, are addressed. It is concluded that research on retrograde amnesia research is still in its infancy, as the neural correlates of memory storage are still unknown. It is argued that the recollection of episodic-autobiographic episodes most likely involves frontotemporal regions of the right hemisphere, a region which appears to be hypometabolic in patients with dissociative amnesia. © 2016 Elsevier B.V. All rights reserved.

  10. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining.

    PubMed

    Gittins, Rebecca; Harrison, Paul J

    2004-03-15

    There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.

  11. Mutism and amnesia following high-voltage electrical injury: psychogenic symptomatology triggered by organic dysfunction?

    PubMed

    Mishra, Nishant K; Russmann, Heike; Granziera, Cristina; Maeder, Philippe; Annoni, Jean-Marie

    2011-01-01

    Mutism and dense retrograde amnesia are found both in organic and dissociative contexts. Moreover, dissociative symptoms may be modulated by right prefrontal activity. A single case, M.R., developed left hemiparesis, mutism and retrograde amnesia after a high-voltage electric shock without evidence of lasting brain lesions. M.R. suddenly recovered from his mutism following a mild brain trauma 2 years later. M.R.'s neuropsychological pattern and anatomoclinical correlations were studied through (i) language and memory assessment to characterize his deficits, (ii) functional neuroimaging during a standard language paradigm, and (iii) assessment of frontal and left insular connectivity through diffusion tractography imaging and transcranial magnetic stimulation. A control evaluation was repeated after recovery. M.R. recovered from the left hemiparesis within 90 days of the accident, which indicated a transient right brain impairment. One year later, neurobehavioral, language and memory evaluations strongly suggested a dissociative component in the mutism and retrograde amnesia. Investigations (including MRI, fMRI, diffusion tensor imaging, EEG and r-TMS) were normal. Twenty-seven months after the electrical injury, M.R. had a very mild head injury which was followed by a rapid recovery of speech. However, the retrograde amnesia persisted. This case indicates an interaction of both organic and dissociative mechanisms in order to explain the patient's symptoms. The study also illustrates dissociation in the time course of the two different dissociative symptoms in the same patient. Copyright © 2011 S. Karger AG, Basel.

  12. Trauma-related pathological dissociation in a case with cerebral palsy.

    PubMed

    Fung, Hong Wang

    2016-01-01

    This article provides a case report of a Chinese-Cantonese female with both cerebral palsy and dissociative identity disorder. To my knowledge, this is the first report of a case with dissociative identity disorder from Hong Kong, as well as the first report of a case with both dissociative identity disorder and cerebral palsy in the literature. Large-sample studies should be undertaken in the future to investigate the prevalence of dissociative disorders in a variety of populations in Hong Kong, including individuals with diagnosed brain diseases.

  13. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury

    PubMed Central

    Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

    2011-01-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

  14. Fetal Magnetic Resonance Imaging Findings in Prenatal Zika Virus Infection.

    PubMed

    Sanín-Blair, José Enrique; Gutiérrez-Márquez, Carolina; Herrera, Diego A; Vossough, Arastoo

    2017-01-01

    Brain lesions and malformations have been described on ultrasonography of prenatal Zika infection; however, there are scarce reports about fetal magnetic resonance (MR) findings. We report 3 cases of fetuses with confirmed intrauterine Zika virus infection evaluated by ultrasound and fetal MR. Various morphometric measurements were assessed and brain maturation was calculated with the fetal total maturation score. Fetuses with prenatal Zika virus infection showed retardation in brain maturation indexes evaluated by fetal MR. Brain calcifications were demonstrated by neurosonography in all cases, while fetal MR characterized the specific type of cortical development malformation. © 2017 S. Karger AG, Basel.

  15. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    PubMed

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Interaction of ligands with the opiate receptors of brain membranes: Regulation by ions and nucleotides

    PubMed Central

    Blume, Arthur J.

    1978-01-01

    This study shows that nucleotides, as well as ions, regulate the opiate receptors of brain. GMP-P(NH)P and Na+ reduce the amount of steady-state specific [3H]dihydromorphine binding and increase the rate of dissociation of the ligand from the opiate receptor. In contrast, Mn2+ decreases the rate of ligand dissociation and antagonizes the ability of Na+ to increase dissociation. The effects of GMP-P(NH)P on steady-state binding and dissociation are not reversed by washing. Only GTP, GDP, ITP, and IMP-P(NH)P, in addition to GMP-P(NH)P, increase the rate of dihydromorphine dissociation. The site of nucleotide action appears to have high affinity: <1 μM GMP-P(NH)P produces half-maximal increases in ligand dissociation. GMP-P(NH)P- and Na+-directed increases in dissociation have also been found for the opiate agonists [3H]etorphine, [3H]Leu-enkephalin, and [3H]Met-enkephalin and the opiate antagonist [3H]naltrexone. Mn2+-directed decreases in dissociation have been found for the agonist [3H]-etorphine and the antagonist [3H]naltrexone. Although the plasma membrane receptors for a number of other neuro-transmitters and hormones are also regulated by guanine nucleotides, the opiate receptors appear unique because only they show nucleotide regulation of both agonist and antagonist binding. PMID:205867

  17. Pain, dissociation and subliminal self-representations.

    PubMed

    Bob, Petr

    2008-03-01

    According to recent evidence, neurophysiological processes coupled to pain are closely related to the mechanisms of consciousness. This evidence is in accordance with findings that changes in states of consciousness during hypnosis or traumatic dissociation strongly affect conscious perception and experience of pain, and markedly influence brain functions. Past research indicates that painful experience may induce dissociated state and information about the experience may be stored or processed unconsciously. Reported findings suggest common neurophysiological mechanisms of pain and dissociation and point to a hypothesis of dissociation as a defense mechanism against psychological and physical pain that substantially influences functions of consciousness. The hypothesis is also supported by findings that information can be represented in the mind/brain without the subject's awareness. The findings of unconsciously present information suggest possible binding between conscious contents and self-functions that constitute self-representational dimensions of consciousness. The self-representation means that certain inner states of own body are interpreted as mental and somatic identity, while other bodily signals, currently not accessible to the dominant interpreter's access are dissociated and may be defined as subliminal self-representations. In conclusion, the neurophysiological aspects of consciousness and its integrative role in the therapy of painful traumatic memories are discussed.

  18. Chronic auditory hallucinations in schizophrenic patients: MR analysis of the coincidence between functional and morphologic abnormalities.

    PubMed

    Martí-Bonmatí, Luis; Lull, Juan José; García-Martí, Gracián; Aguilar, Eduardo J; Moratal-Pérez, David; Poyatos, Cecilio; Robles, Montserrat; Sanjuán, Julio

    2007-08-01

    To prospectively evaluate if functional magnetic resonance (MR) imaging abnormalities associated with auditory emotional stimuli coexist with focal brain reductions in schizophrenic patients with chronic auditory hallucinations. Institutional review board approval was obtained and all participants gave written informed consent. Twenty-one right-handed male patients with schizophrenia and persistent hallucinations (started to hear hallucinations at a mean age of 23 years +/- 10, with 15 years +/- 8 of mean illness duration) and 10 healthy paired participants (same ethnic group [white], age, and education level [secondary school]) were studied. Functional echo-planar T2*-weighted (after both emotional and neutral auditory stimulation) and morphometric three-dimensional gradient-recalled echo T1-weighted MR images were analyzed using Statistical Parametric Mapping (SPM2) software. Brain activation images were extracted by subtracting those with emotional from nonemotional words. Anatomic differences were explored by optimized voxel-based morphometry. The functional and morphometric MR images were overlaid to depict voxels statistically reported by both techniques. A coincidence map was generated by multiplying the emotional subtracted functional MR and volume decrement morphometric maps. Statistical analysis used the general linear model, Student t tests, random effects analyses, and analysis of covariance with a correction for multiple comparisons following the false discovery rate method. Large coinciding brain clusters (P < .005) were found in the left and right middle temporal and superior temporal gyri. Smaller coinciding clusters were found in the left posterior and right anterior cingular gyri, left inferior frontal gyrus, and middle occipital gyrus. The middle and superior temporal and the cingular gyri are closely related to the abnormal neural network involved in the auditory emotional dysfunction seen in schizophrenic patients.

  19. Cytokine Response, Tract-Specific Fractional Anisotropy, and Brain Morphometry in Post-Stroke Cognitive Impairment.

    PubMed

    Kulesh, Aleksey; Drobakha, Viktor; Kuklina, Elena; Nekrasova, Irina; Shestakov, Vladimir

    2018-07-01

    Post-stroke cognitive impairment is a clinically heterogeneous condition and its types have a different course and prognosis. The aim of the present study is to address the roles of inflammation, white matter pathology, and brain atrophy in different neuropsychological types of cognitive impairment in the acute period of ischemic stroke. In 92 patients, we performed an assessment of the cognitive status and measured concentrations of cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-alpha, IL-10) in liquor and serum, as well as a number of magnetic resonance imaging (MRI) morphometric parameters and fractional anisotropy. The control group consisted of 14 individuals without cerebrovascular disease. All patients had a higher level of IL-10 in serum than the control group. Patients with dysexecutive cognitive impairment had a higher concentration of IL-1β and IL-10 in liquor, IL-6 level in serum, and a lower fractional anisotropy of the ipsilateral thalamus than patients with normal cognition. Patients with mixed cognitive impairment were characterized by a lower fractional anisotropy of contralateral fronto-occipital fasciculus, compared with patients with dysexecutive cognitive impairment. Patients with both dysexecutive and mixed cognitive deficit had a wide area of leukoaraiosis and a reduced fractional anisotropy of the contralateral cingulum, compared with patients without cognitive impairment. Also, we found numerous correlations between cognitive status and levels of cytokines, MRI morphometric parameters, and fractional anisotropy of certain regions of the brain. The concentrations of cytokines in serum and cerebrospinal fluid studied in combination with MRI morphometric parameters and fractional anisotropy appear to be informative biomarkers of clinical types of post-stroke cognitive impairment. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Clinical characteristics and brain PET findings in 3 cases of dissociative amnesia: disproportionate retrograde deficit and posterior middle temporal gyrus hypometabolism.

    PubMed

    Thomas-Antérion, C; Dubas, F; Decousus, M; Jeanguillaume, C; Guedj, E

    2014-10-01

    Precipitated by psychological stress, dissociative amnesia occurs in the absence of identifiable brain damage. Its clinical characteristics and functional neural basis are still a matter of controversy. In the present paper, we report 3 cases of retrograde autobiographical amnesia, characterized by an acute onset concomitant with emotional/neurological precipitants. We present 2 cases of dissociative amnesia with fugue (cases 1 and 2), and one case of focal dissociative amnesia after a minor head trauma (case 3). The individual case histories and neuropsychological characteristics are reported, as well as the whole-brain voxel-based 18FDG-PET metabolic findings obtained at group-level in comparison to 15 healthy subjects. All patients suffered from autobiographical memory loss, in the absence of structural lesion. They had no significant impairment of anterograde memory or of executive function. Impairment of autobiographical memory was complete for two of the three patients, with loss of personal identity (cases 1 and 2). A clinical recovery was found for the two patients in whom follow-up was available (cases 2 and 3). Voxel-based group analysis highlighted a metabolic impairment of the right posterior middle temporal gyrus. 18FDG-PET was repeated in case 3, and showed a complete functional brain recovery. The situation of dissociative amnesia with disproportionate retrograde amnesia is clinically heterogeneous between individuals. Our findings may suggest that impairment of high-level integration of visual and/or emotional information processing involving dysfunction of the right posterior middle temporal gyrus could reduce triggering of multi-modal visual memory traces, thus impeding reactivation of aversive memories. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Peas, please: a case report and neuroscientific review of dissociative amnesia and fugue.

    PubMed

    MacDonald, Kai; MacDonald, Tina

    2009-01-01

    Dissociative amnesia that encompasses one's entire life and identity is a rare disorder, as is dissociative fugue. In evaluating such cases, a dichotomy is often invoked between functional and organic etiologies. However, this dichotomy suffers from both conceptual and ethical flaws. Conceptually, putative brain-based, organic etiologies for many dissociative disorders-including dissociative amnesia-exist. Ethically, such dichotomies may result in dismissive care for patients with distress-based disorders like dissociative amnesia. In support of humane, neurobiologically informed treatment of patients with dissociative amnesia, we present excerpts from 2 post-event interviews with a patient who suffered and recovered from an episode of dissociative amnesia and fugue. Following this, we review current neurobiological models of dissociative amnesia that undermine the dichotomy of functional versus organic, and suggest that the crucial distinction in such cases is between a patient's willful, conscious deceit and processes that occur without conscious intent.

  2. Hemispheric Asymmetry of Visual Scene Processing in the Human Brain: Evidence from Repetition Priming and Intrinsic Activity

    PubMed Central

    Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.

    2012-01-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568

  3. Hemispheric asymmetry of visual scene processing in the human brain: evidence from repetition priming and intrinsic activity.

    PubMed

    Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L

    2012-08-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.

  4. Does dissociation offer a useful explanation for psychopathology?

    PubMed

    Jureidini, Jon

    2004-01-01

    Dissociation is often conceptualised as an altered state of consciousness, a trance-like state in which normal barriers between conscious and unconscious memories, desires and beliefs break down and other amnestic barriers emerge. This review explores whether it is likely that there is a neurophysiology of pathological dissociative processes that will elucidate management. A critical reading of current research, sourced through Medline and Psychinfo searches from 1990 to 2002, using subject headings: dissociative disorders, hypnosis and stress disorder (post-traumatic), as well as keywords: dissociation, hypnosis and trance. Current knowledge does not support the notion of dissociation as a discrete brain state or process. Psychiatric and neurophysiological research and theory development are better directed towards individual components that contribute to dissociative experience. Copyright (c) 2004 S. Karger AG, Basel.

  5. Nouns, verbs, objects, actions, and abstractions: Local fMRI activity indexes semantics, not lexical categories

    PubMed Central

    Moseley, Rachel L.; Pulvermüller, Friedemann

    2014-01-01

    Noun/verb dissociations in the literature defy interpretation due to the confound between lexical category and semantic meaning; nouns and verbs typically describe concrete objects and actions. Abstract words, pertaining to neither, are a critical test case: dissociations along lexical-grammatical lines would support models purporting lexical category as the principle governing brain organisation, whilst semantic models predict dissociation between concrete words but not abstract items. During fMRI scanning, participants read orthogonalised word categories of nouns and verbs, with or without concrete, sensorimotor meaning. Analysis of inferior frontal/insula, precentral and central areas revealed an interaction between lexical class and semantic factors with clear category differences between concrete nouns and verbs but not abstract ones. Though the brain stores the combinatorial and lexical-grammatical properties of words, our data show that topographical differences in brain activation, especially in the motor system and inferior frontal cortex, are driven by semantics and not by lexical class. PMID:24727103

  6. Nouns, verbs, objects, actions, and abstractions: local fMRI activity indexes semantics, not lexical categories.

    PubMed

    Moseley, Rachel L; Pulvermüller, Friedemann

    2014-05-01

    Noun/verb dissociations in the literature defy interpretation due to the confound between lexical category and semantic meaning; nouns and verbs typically describe concrete objects and actions. Abstract words, pertaining to neither, are a critical test case: dissociations along lexical-grammatical lines would support models purporting lexical category as the principle governing brain organisation, whilst semantic models predict dissociation between concrete words but not abstract items. During fMRI scanning, participants read orthogonalised word categories of nouns and verbs, with or without concrete, sensorimotor meaning. Analysis of inferior frontal/insula, precentral and central areas revealed an interaction between lexical class and semantic factors with clear category differences between concrete nouns and verbs but not abstract ones. Though the brain stores the combinatorial and lexical-grammatical properties of words, our data show that topographical differences in brain activation, especially in the motor system and inferior frontal cortex, are driven by semantics and not by lexical class. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Neural dissociation of phonological and visual attention span disorders in developmental dyslexia: FMRI evidence from two case reports.

    PubMed

    Peyrin, C; Lallier, M; Démonet, J F; Pernet, C; Baciu, M; Le Bas, J F; Valdois, S

    2012-03-01

    A dissociation between phonological and visual attention (VA) span disorders has been reported in dyslexic children. This study investigates whether this cognitively-based dissociation has a neurobiological counterpart through the investigation of two cases of developmental dyslexia. LL showed a phonological disorder but preserved VA span whereas FG exhibited the reverse pattern. During a phonological rhyme judgement task, LL showed decreased activation of the left inferior frontal gyrus whereas this region was activated at the level of the controls in FG. Conversely, during a visual categorization task, FG demonstrated decreased activation of the parietal lobules whereas these regions were activated in LL as in the controls. These contrasted patterns of brain activation thus mirror the cognitive disorders' dissociation. These findings provide the first evidence for an association between distinct brain mechanisms and distinct cognitive deficits in developmental dyslexia, emphasizing the importance of taking into account the heterogeneity of the reading disorder. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. [Morphometric evaluation of the lateral fossa during the pre-gyrus period].

    PubMed

    Varlam, H; Macovei, G N; Antohe, D St

    2002-09-01

    During edification of neocortex, the lateral fossa is involved in the process of development of cerebral hemispheres. It changes its shape and, from a shallow depression at the end of the 3rd month, it becomes a triangular surface with marked borders. Finally, in the same time with the appearance of circumvolutions the opercles that limit it come closer and give rise to the lateral sulcus. The evolution of the lateral fossa can be analysed by linear and surface parameters. Morphometric and statistic analyse of these parameters, compared with those of the cerebral hemisphere, allowed us to establish some original criteria for appreciating the growth of the foetal brain.

  9. Body knowledge in brain-damaged children: a double-dissociation in self and other's body processing.

    PubMed

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self processing in children and the development of its neuronal bases, 57 typically developing healthy subjects and 17 subjects with unilateral brain damage (5 right and 12 left sided), aged 4-17 years, were submitted to a matching-to-sample task. In this task, three stimuli vertically aligned were simultaneously presented at the centre of the computer screen. Subjects were required which of two stimuli (the upper or the lower one) matched the central target stimulus, half stimuli representing self and half stimuli representing other people's body-parts and face-parts. The results showed that corporeal self recognition is present since at least 4 years of age and that self and others' body parts processing are different and sustained by separate cerebral substrates. Indeed, a double dissociation was found: right brain damaged patients were impaired in self but not in other people's body parts, showing a self-disadvantage, whereas left brain damaged patients were impaired in others' but not in self body parts processing. Finally, since the double dissociation self/other was found for body-parts but not for face parts, the corporal self seems to be dissociated for body and face-parts. This opens the possibility of independent and lateralized functional modules for the processing of self and other body parts during development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Differential associations between types of verbal memory and prefrontal brain structure in healthy aging and late life depression.

    PubMed

    Lamar, Melissa; Charlton, Rebecca; Zhang, Aifeng; Kumar, Anand

    2012-07-01

    Verbal memory deficits attributed to late life depression (LLD) may result from executive dysfunction that is more detrimental to list-learning than story-based recall when compared to healthy aging. Despite these behavioral dissociations, little work has been done investigating related neuroanatomical dissociations across types of verbal memory performance in LLD. We compared list-learning to story-based memory performance in 24 non-demented individuals with LLD (age ~ 66.1 ± 7.8) and 41 non-demented/non-depressed healthy controls (HC; age ~ 67.6 ± 5.3). We correlated significant results of between-group analyses across memory performance variables with brain volumes of frontal, temporal and parietal regions known to be involved with verbal learning and memory. When compared to the HC group, the LLD group showed significantly lower verbal memory performance for spontaneous recall after repeated exposure and after a long-delay but only for the list-learning task; groups did not differ on story-based memory performance. Despite equivalent brain volumes across regions, only the LLD group showed brain associations with verbal memory performance and only for the list-learning task. Specifically, frontal volumes important for subjective organization and response monitoring correlated with list-learning performance in the LLD group. This study is the first to demonstrate neuroanatomical dissociations across types of verbal memory performance in individuals with LLD. Results provide structural evidence for the behavioral dissociations between list-learning and story-based recall in LLD when compared to healthy aging. More specifically, it points toward a network of predominantly anterior brain regions that may underlie the executive contribution to list-learning in older adults with depression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. An eye for an I: a 35-year-old woman with fluctuating oculomotor deficits and dissociative identity disorder.

    PubMed

    Bhuvaneswar, Chaya; Spiegel, David

    2013-01-01

    Physiologic changes, including neurological or pseudo-neurological symptoms, occur across identity states in dissociative identity disorder DID) and can be objectively measured. The idea that dissociative phenomena might be associated with changes in brain function is consistent with research on the brain effects of hypnosis. The authors report a case of psycho-physiologic differences among 4 alter personalities manifested by a 35-year-old woman with DID. Differences in visual acuity, frequency of pendular nystagmus, and handedness were observed in this patient both when the alter personalities appeared spontaneously and when elicited under hypnosis. The authors consider several diagnostic possibilities for these findings and discuss whether prevailing treatment recommendations for DID patients could possibly be modified to ameliorate such visual and neurologic symptoms.

  12. Multispectral Brain Morphometry in Tourette Syndrome Persisting into Adulthood

    ERIC Educational Resources Information Center

    Draganski, Bogdan; Martino, Davide; Cavanna, Andrea E.; Hutton, Chloe; Orth, Michael; Robertson, Mary M.; Critchley, Hugo D.; Frackowiak, Richard S.

    2010-01-01

    Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into…

  13. Reduced amygdala reactivity and impaired working memory during dissociation in borderline personality disorder.

    PubMed

    Krause-Utz, Annegret; Winter, Dorina; Schriner, Friederike; Chiu, Chui-De; Lis, Stefanie; Spinhoven, Philip; Bohus, Martin; Schmahl, Christian; Elzinga, Bernet M

    2018-06-01

    Affective hyper-reactivity and impaired cognitive control of emotional material are core features of borderline personality disorder (BPD). A high percentage of individuals with BPD experience stress-related dissociation, including emotional numbing and memory disruptions. So far little is known about how dissociation influences the neural processing of emotional material in the context of a working memory task in BPD. We aimed to investigate whole-brain activity and amygdala functional connectivity (FC) during an Emotional Working Memory Task (EWMT) after dissociation induction in un-medicated BPD patients compared to healthy controls (HC). Using script-driven imagery, dissociation was induced in 17 patients ('BPD_D'), while 12 patients ('BPD_N') and 18 HC were exposed to neutral scripts during fMRI. Afterwards, participants performed the EWMT with neutral vs. negative IAPS pictures vs. no distractors. Main outcome measures were behavioral performance (reaction times, errors) and whole-brain activity during the EWMT. Psychophysiological interaction analysis was used to examine amygdala connectivity during emotional distraction. BPD patients after dissociation induction showed overall WM impairments, a deactivation in bilateral amygdala, and lower activity in left cuneus, lingual gyrus, and posterior cingulate than BPD_N, along with stronger left inferior frontal gyrus activity than HC. Furthermore, reduced amygdala FC with fusiform gyrus and stronger amygdala FC with right middle/superior temporal gyrus and left inferior parietal lobule was observed in BPD_D. Findings suggest that dissociation affects reactivity to emotionally salient material and WM. Altered activity in areas associated with emotion processing, memory, and self-referential processes may contribute to dissociative states in BPD.

  14. Dissociation in hysteria and hypnosis: evidence from cognitive neuroscience.

    PubMed

    Bell, Vaughan; Oakley, David A; Halligan, Peter W; Deeley, Quinton

    2011-03-01

    Jean-Martin Charcot proposed the radical hypothesis that similar brain processes were responsible for the unexplained neurological symptoms of 'hysteria', now typically diagnosed as 'conversion disorder' or 'dissociative (conversion) disorder', and the temporary effects of hypnosis. While this idea has been largely ignored, recent cognitive neuroscience studies indicate that (i) hypnotisability traits are associated with a tendency to develop dissociative symptoms in the sensorimotor domain; (ii) dissociative symptoms can be modelled with suggestions in highly hypnotisable subjects; and (iii) hypnotic phenomena engage brain processes similar to those seen in patients with symptoms of hysteria. One clear theme to emerge from the findings is that 'symptom' presentation, whether clinically diagnosed or simulated using hypnosis, is associated with increases in prefrontal cortex activity suggesting that intervention by the executive system in both automatic and voluntary cognitive processing is common to both hysteria and hypnosis. Nevertheless, while the recent literature provides some compelling leads into the understanding of these phenomena, the field still lacks well controlled systematically designed studies to give a clear insight into the neurocognitive processes underlying dissociation in both hysteria and hypnosis. The aim of this review is to provide an agenda for future research.

  15. BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.

    PubMed

    Nenadić, Igor; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian

    2017-08-30

    BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive pathogenic component. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    PubMed

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  17. [A voxel-based morphometric analysis of brain gray matter in online game addicts].

    PubMed

    Weng, Chuan-bo; Qian, Ruo-bing; Fu, Xian-ming; Lin, Bin; Ji, Xue-bing; Niu, Chao-shi; Wang, Ye-han

    2012-12-04

    To explore the possible brain mechanism of online game addiction (OGA) in terms of brain morphology through voxel-based morphometric (VBM) analysis. Seventeen subjects with OGA and 17 age- and gender-matched healthy controls (HC group) were recruited from Department of Psychology at our hospital during February-December 2011. The internet addiction scale (IAS) was used to measure the degree of OGA tendency. Magnetic resonance imaging (MRI) scans were performed to acquire 3-dimensional T1-weighted images. And FSL 4.1 software was employed to confirm regional gray matter volume changes. For the regions where OGA subjects showed significantly different gray matter volumes from the controls, the gray matter volumes of these areas were extracted, averaged and regressed against the scores of IAS. The OGA group had lower gray matter volume in left orbitofrontal cortex (OFC), left medial prefrontal cortex (mPFC), bilateral insula (INS), left posterior cingulate cortex (PCC) and left supplementary motor area (SMA). Gray matter volumes of left OFC and bilateral INS showed a negative correlation with the scores of IAS (r = -0.65, r = -0.78, P < 0.05). Gray matter volume changes are present in online game addicts and they may be correlated with the occurrence and maintenance of OGA.

  18. Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa

    PubMed Central

    2011-01-01

    Background Brain morphometry is extensively used in cross-sectional studies. However, the difference in the estimated values of the morphometric measures between patients and healthy subjects may be small and hence overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner. Methods We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13 and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and verified whether the estimated values were significantly different across different scanners or different sessions of the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability, the results of brain segmentation were compared to those obtained using FAST within FSL. Results In a considerable number of cases, the main effects of both centre and visit factors were found to be significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias correction. However, the results were still significantly different across different scanners or different visits. Conclusions Our results confirm that for morphometry analysis with the current version of Brainvisa using data from multicentre or longitudinal studies, the scanner-related variability must be taken into account and where possible should be corrected for. We also suggest providing some flexibility to Brainvisa for a step-by-step analysis of the robustness of this package in terms of reproducibility of the results by allowing the bias corrected images to be imported from other packages and bias correction step be skipped, for example. PMID:22189342

  19. Domain-Specific Control Mechanisms for Emotional and Nonemotional Conflict Processing

    ERIC Educational Resources Information Center

    Soutschek, Alexander; Schubert, Torsten

    2013-01-01

    Recent neuroimaging studies suggest that the human brain activates dissociable cognitive control networks in response to conflicts arising within the cognitive and the affective domain. The present study tested the hypothesis that nonemotional and emotional conflict regulation can also be dissociated on a functional level. For that purpose, we…

  20. Reading Disorders in Primary Progressive Aphasia: A Behavioral and Neuroimaging Study

    ERIC Educational Resources Information Center

    Brambati, S. M.; Ogar, J.; Neuhaus, J.; Miller, B. L.; Gorno-Tempini, M. L.

    2009-01-01

    Previous neuropsychological studies on acquired dyslexia revealed a double dissociation in reading impairments. Patients with phonological dyslexia have selective difficulty in reading pseudo-words, while those with surface dyslexia misread exception words. This double dissociation in reading abilities has often been reported in brain-damaged…

  1. Dissociative Experience and Cultural Neuroscience: Narrative, Metaphor and Mechanism

    PubMed Central

    Kirmayer, Laurence J.

    2016-01-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical “either/or” arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context. PMID:18213511

  2. Dissociative experience and cultural neuroscience: narrative, metaphor and mechanism.

    PubMed

    Seligman, Rebecca; Kirmayer, Laurence J

    2008-03-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical "either/or" arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context.

  3. Somatic and vicarious pain are represented by dissociable multivariate brain patterns

    PubMed Central

    Krishnan, Anjali; Woo, Choong-Wan; Chang, Luke J; Ruzic, Luka; Gu, Xiaosi; López-Solà, Marina; Jackson, Philip L; Pujol, Jesús; Fan, Jin; Wager, Tor D

    2016-01-01

    Understanding how humans represent others’ pain is critical for understanding pro-social behavior. ‘Shared experience’ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others’ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others’ pain, and present new, more specific, brain targets for studying pain empathy. DOI: http://dx.doi.org/10.7554/eLife.15166.001 PMID:27296895

  4. Opposite brain emotion-regulation patterns in identity states of dissociative identity disorder: a PET study and neurobiological model.

    PubMed

    Reinders, Antje A T S; Willemsen, Antoon T M; den Boer, Johan A; Vos, Herry P J; Veltman, Dick J; Loewenstein, Richard J

    2014-09-30

    Imaging studies in posttraumatic stress disorder (PTSD) have shown differing neural network patterns between hypo-aroused/dissociative and hyper-aroused subtypes. Since dissociative identity disorder (DID) involves different emotional states, this study tests whether DID fits aspects of the differing brain-activation patterns in PTSD. While brain activation was monitored using positron emission tomography, DID individuals (n=11) and matched DID-simulating healthy controls (n=16) underwent an autobiographic script-driven imagery paradigm in a hypo-aroused and a hyper-aroused identity state. Results were consistent with those previously found in the two PTSD subtypes for the rostral/dorsal anterior cingulate, the prefrontal cortex, and the amygdala and insula, respectively. Furthermore, the dissociative identity state uniquely activated the posterior association areas and the parahippocampal gyri, whereas the hyper-aroused identity state uniquely activated the caudate nucleus. Therefore, we proposed an extended PTSD-based neurobiological model for emotion modulation in DID: the hypo-aroused identity state activates the prefrontal cortex, cingulate, posterior association areas and parahippocampal gyri, thereby overmodulating emotion regulation; the hyper-aroused identity state activates the amygdala and insula as well as the dorsal striatum, thereby undermodulating emotion regulation. This confirms the notion that DID is related to PTSD as hypo-aroused and hyper-arousal states in DID and PTSD are similar. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Brain systems underlying susceptibility to helplessness and depression.

    PubMed

    Shumake, J; Gonzalez-Lima, F

    2003-09-01

    There has been a relative lack of research into the neurobiological predispositions that confer vulnerability to depression. This article reviews functional brain mappings from a genetic animal model, the congenitally helpless rat, which is predisposed to develop learned helplessness. Neurometabolic findings from this model are integrated with the neuroscientific literature from other animal models of depression as well as depressed humans. Changes in four major brain systems are suggested to underlie susceptibility to helplessness and possibly depression: (a) an unbalanced prefrontal-cingulate cortical system, (b) a dissociated hypothalamic-pituitary-adrenal axis, (c) a dissociated septal-hippocampal system, and (d) a hypoactive brain reward system, as exemplified by a hypermetabolic habenula-interpeduncular nucleus pathway and a hypometabolic ventral tegmental area-striatum pathway. Functional interconnections and causal relationships among these systems are considered and further experiments are suggested, with theoretical attention to how an abnormality in any one system could affect the others.

  6. Spatiotemporal Dissociation of Brain Activity Underlying Subjective Awareness, Objective Performance and Confidence

    PubMed Central

    Li, Qi; Hill, Zachary

    2014-01-01

    Despite intense recent research, the neural correlates of conscious visual perception remain elusive. The most established paradigm for studying brain mechanisms underlying conscious perception is to keep the physical sensory inputs constant and identify brain activities that correlate with the changing content of conscious awareness. However, such a contrast based on conscious content alone would not only reveal brain activities directly contributing to conscious perception, but also include brain activities that precede or follow it. To address this issue, we devised a paradigm whereby we collected, trial-by-trial, measures of objective performance, subjective awareness, and the confidence level of subjective awareness. Using magnetoencephalography recordings in healthy human volunteers, we dissociated brain activities underlying these different cognitive phenomena. Our results provide strong evidence that widely distributed slow cortical potentials (SCPs) correlate with subjective awareness, even after the effects of objective performance and confidence were both removed. The SCP correlate of conscious perception manifests strongly in its waveform, phase, and power. In contrast, objective performance and confidence were both contributed by relatively transient brain activity. These results shed new light on the brain mechanisms of conscious, unconscious, and metacognitive processing. PMID:24647958

  7. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms.

    PubMed

    Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm

    2018-06-06

    Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.

  8. Representation of grammatical categories of words in the brain.

    PubMed

    Hillis, A E; Caramazza, A

    1995-01-01

    We report the performance of a patient who, as a consequence of left frontal and temporoparietal strokes, makes far more errors on nouns than on verbs in spoken output tasks, but makes far more errors on verbs than on nouns in written input tasks. This double dissociation within a single patient with respect to grammatical category provides evidence for the hypothesis that phonological and orthographic representations of nouns and verbs are processed by independent neural mechanisms. Furthermore, the opposite dissociation in the verbal output modality, an advantage for nouns over verbs in spoken tasks, by a different patient using the same stimuli has also been reported (Caramazza & Hillis, 1991). This double dissociation across patients on the same task indicates that results cannot be ascribed to "greater difficulty" with one type of stimulus, and provides further evidence for the view that grammatical category information is an important organizational principle of lexical knowledge in the brain.

  9. Grammatical category dissociation in multilingual aphasia.

    PubMed

    Faroqi-Shah, Yasmeen; Waked, Arifi N

    2010-03-01

    Word retrieval deficits for specific grammatical categories, such as verbs versus nouns, occur as a consequence of brain damage. Such deficits are informative about the nature of lexical organization in the human brain. This study examined retrieval of grammatical categories across three languages in a trilingual person with aphasia who spoke Arabic, French, and English. In order to delineate the nature of word production difficulty, comprehension was tested, and a variety of concomitant lexical-semantic variables were analysed. The patient demonstrated a consistent noun-verb dissociation in picture naming and narrative speech, with severely impaired production of verbs across all three languages. The cross-linguistically similar noun-verb dissociation, coupled with little evidence of semantic impairment, suggests that (a) the patient has a true "nonsemantic" grammatical category specific deficit, and (b) lexical organization in multilingual speakers shares grammatical class information between languages. The findings of this study contribute to our understanding of the architecture of lexical organization in bilinguals.

  10. EEG source reconstruction evidence for the noun-verb neural dissociation along semantic dimensions.

    PubMed

    Zhao, Bin; Dang, Jianwu; Zhang, Gaoyan

    2017-09-17

    One of the long-standing issues in neurolinguistic research is about the neural basis of word representation, concerning whether grammatical classification or semantic difference causes the neural dissociation of brain activity patterns when processing different word categories, especially nouns and verbs. To disentangle this puzzle, four orthogonalized word categories in Chinese: unambiguous nouns (UN), unambiguous verbs (UV), ambiguous words with noun-biased semantics (AN), and ambiguous words with verb-biased semantics (AV) were adopted in an auditory task for recording electroencephalographic (EEG) signals from 128 electrodes on the scalps of twenty-two subjects. With the advanced current density reconstruction (CDR) algorithm and the constraint of standardized low-resolution electromagnetic tomography, the spatiotemporal brain dynamics of word processing were explored with the results that in multiple time periods including P1 (60-90ms), N1 (100-140ms), P200 (150-250ms) and N400 (350-450ms), noun-verb dissociation over the parietal-occipital and frontal-central cortices appeared not only between the UN-UV grammatical classes but also between the grammatically identical but semantically different AN-AV pairs. The apparent semantic dissociation within one grammatical class strongly suggests that the semantic difference rather than grammatical classification could be interpreted as the origin of the noun-verb neural dissociation. Our results also revealed that semantic dissociation occurs from an early stage and repeats in multiple phases, thus supporting a functionally hierarchical word processing mechanism. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Female adolescents with severe substance and conduct problems have substantially less brain gray matter volume.

    PubMed

    Dalwani, Manish S; McMahon, Mary Agnes; Mikulich-Gilbertson, Susan K; Young, Susan E; Regner, Michael F; Raymond, Kristen M; McWilliams, Shannon K; Banich, Marie T; Tanabe, Jody L; Crowley, Thomas J; Sakai, Joseph T

    2015-01-01

    Structural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages. Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex), conflict processing (i.e., anterior cingulate), valuation of expected outcomes (i.e., medial orbitofrontal cortex) and the dopamine reward system (i.e. striatum). We conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years) with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM) and voxel-based morphometric (VBM8) toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold. Female adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls. Female adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation of outcomes, decision-making, reward, risk-taking, and rule-breaking antisocial behavior.

  12. The Polymorphism of YWHAE, a Gene Encoding 14-3-3Epsilon, and Brain Morphology in Schizophrenia: A Voxel-Based Morphometric Study

    PubMed Central

    Nemoto, Kiyotaka; Takahashi, Tsutomu; Aleksic, Branko; Furuichi, Atsushi; Nakamura, Yumiko; Ikeda, Masashi; Noguchi, Kyo; Kaibuchi, Kozo; Iwata, Nakao; Ozaki, Norio; Suzuki, Michio

    2014-01-01

    Background YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown. Methods In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs) (rs28365859, rs11655548, and rs9393) and DISC1 SNP (rs821616) on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume. Results Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume. Conclusions These different effects of the YWHAE (rs28365859) genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia. PMID:25105667

  13. Morphometric magnetic resonance imaging and genetic testing in cerebellar abiotrophy in Arabian horses

    PubMed Central

    2013-01-01

    Background Cerebellar abiotrophy (CA) is a rare but significant disease in Arabian horses caused by progressive death of the Purkinje cells resulting in cerebellar ataxia characterized by a typical head tremor, jerky head movements and lack of menace response. The specific role of magnetic resonance imaging (MRI) to support clinical diagnosis has been discussed. However, as yet MR imaging has only been described in one equine CA case. The role of MR morphometry in this regard is currently unknown. Due to the hereditary nature of the disease, genetic testing can support the diagnosis of CA. Therefore, the objective of this study was to perform MR morphometric analysis and genetic testing in four CA-affected Arabian horses and one German Riding Pony with purebred Arabian bloodlines in the third generation. Results CA was diagnosed pathohistologically in the five affected horses (2 months - 3 years) supported by clinical signs, necropsy, and genetic testing which confirmed the TOE1:g.2171G>A SNP genotype A/A in all CA-affected horses. On MR images morphometric analysis of the relative cerebellar size and relative cerebellar cerebrospinal fluid (CSF) space were compared to control images of 15 unaffected horses. It was demonstrated that in MR morphometric analyses, CA affected horses displayed a relatively smaller cerebellum compared to the entire brain mass than control animals (P = 0.0088). The relative cerebellar CSF space was larger in affected horses (P = 0.0017). Using a cut off value of 11.0% for relative cerebellar CSF space, the parameter differentiated between CA-affected horses and controls with a sensitivity of 100% and a specificity of 93.3%. Conclusions In conclusion, morphometric MRI and genetic analysis could be helpful to support the diagnosis of CA in vivo. PMID:23702154

  14. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  15. The neuroanatomy of general intelligence: sex matters.

    PubMed

    Haier, Richard J; Jung, Rex E; Yeo, Ronald A; Head, Kevin; Alkire, Michael T

    2005-03-01

    We examined the relationship between structural brain variation and general intelligence using voxel-based morphometric analysis of MRI data in men and women with equivalent IQ scores. Compared to men, women show more white matter and fewer gray matter areas related to intelligence. In men IQ/gray matter correlations are strongest in frontal and parietal lobes (BA 8, 9, 39, 40), whereas the strongest correlations in women are in the frontal lobe (BA10) along with Broca's area. Men and women apparently achieve similar IQ results with different brain regions, suggesting that there is no singular underlying neuroanatomical structure to general intelligence and that different types of brain designs may manifest equivalent intellectual performance.

  16. Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder.

    PubMed

    Reinders, A A T S; Chalavi, S; Schlumpf, Y R; Vissia, E M; Nijenhuis, E R S; Jäncke, L; Veltman, D J; Ecker, C

    2018-02-01

    To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Memory repression: brain mechanisms underlying dissociative amnesia.

    PubMed

    Kikuchi, Hirokazu; Fujii, Toshikatsu; Abe, Nobuhito; Suzuki, Maki; Takagi, Masahito; Mugikura, Shunji; Takahashi, Shoki; Mori, Etsuro

    2010-03-01

    Dissociative amnesia usually follows a stressful event and cannot be attributable to explicit brain damage. It is thought to reflect a reversible deficit in memory retrieval probably due to memory repression. However, the neural mechanisms underlying this condition are not clear. We used fMRI to investigate neural activity associated with memory retrieval in two patients with dissociative amnesia. For each patient, three categories of face photographs and three categories of people's names corresponding to the photographs were prepared: those of "recognizable" high school friends who were acquainted with and recognizable to the patients, those of "unrecognizable" colleagues who were actually acquainted with but unrecognizable to the patients due to their memory impairments, and "control" distracters who were unacquainted with the patients. During fMRI, the patients were visually presented with these stimuli and asked to indicate whether they were personally acquainted with them. In the comparison of the unrecognizable condition with the recognizable condition, we found increased activity in the pFC and decreased activity in the hippocampus in both patients. After treatment for retrograde amnesia, the altered pattern of brain activation disappeared in one patient whose retrograde memories were recovered, whereas it remained unchanged in the other patient whose retrograde memories were not recovered. Our findings provide direct evidence that memory repression in dissociative amnesia is associated with an altered pattern of neural activity, and they suggest the possibility that the pFC has an important role in inhibiting the activity of the hippocampus in memory repression.

  18. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    PubMed

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Partially dissociable roles of OFC and ACC in stimulus-guided and action-guided decision making.

    PubMed

    Khani, Abbas

    2014-05-01

    Recently, the functional specialization of prefrontal areas of the brain, and, specifically, the functional dissociation of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), during decision making have become a particular focus of research. A number of neuropsychological and lesion studies have shown that the OFC and ACC have dissociable functions in various dimensions of decision making, which are supported by their different anatomical connections. A recent single-neuron study, however, described a more complex picture of the functional dissociation between these two frontal regions during decision making. Here, I discuss the results of that study and consider alternative interpretations in connection with other findings.

  20. Subtle changes in myelination due to childhood experiences: label-free microscopy to infer nerve fibers morphology and myelination in brain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gasecka, Alicja; Tanti, Arnaud; Lutz, Pierre-Eric; Mechawar, Naguib; Cote, Daniel C.

    2017-02-01

    Adverse childhood experiences have lasting detrimental effects on mental health and are strongly associated with impaired cognition and increased risk of developing psychopathologies. Preclinical and neuroimaging studies have suggested that traumatic events during brain development can affect cerebral myelination particularly in areas and tracts implicated in mood and emotion. Although current neuroimaging techniques are quite powerful, they lack the resolution to infer myelin integrity at the cellular level. Recently demonstrated coherent Raman microscopy has accomplished cellular level imaging of myelin sheaths in the nervous system. However, a quantitative morphometric analysis of nerve fibers still remains a challenge. In particular, in brain, where fibres exhibit small diameters and varying local orientation. In this work, we developed an automated myelin identification and analysis method that is capable of providing a complete picture of axonal myelination and morphology in brain samples. This method performs three main procedures 1) detects molecular anisotropy of membrane phospholipids based on polarization resolved coherent Raman microscopy, 2) identifies regions of different molecular organization, 3) calculates morphometric features of myelinated axons (e.g. myelin thickness, g-ratio). We applied this method to monitor white matter areas from suicides adults that suffered from early live adversity and depression compared to depressed suicides adults and psychiatrically healthy controls. We demonstrate that our method allows for the rapid acquisition and automated analysis of neuronal networks morphology and myelination. This is especially useful for clinical and comparative studies, and may greatly enhance the understanding of processes underlying the neurobiological and psychopathological consequences of child abuse.

  1. Neurobiological changes of schizotypy: evidence from both volume-based morphometric analysis and resting-state functional connectivity.

    PubMed

    Wang, Yi; Yan, Chao; Yin, Da-zhi; Fan, Ming-xia; Cheung, Eric F C; Pantelis, Christos; Chan, Raymond C K

    2015-03-01

    The current study sought to examine the underlying brain changes in individuals with high schizotypy by integrating networks derived from brain structural and functional imaging. Individuals with high schizotypy (n = 35) and low schizotypy (n = 34) controls were screened using the Schizotypal Personality Questionnaire and underwent brain structural and resting-state functional magnetic resonance imaging on a 3T scanner. Voxel-based morphometric analysis and graph theory-based functional network analysis were conducted. Individuals with high schizotypy showed reduced gray matter (GM) density in the insula and the dorsolateral prefrontal gyrus. The graph theoretical analysis showed that individuals with high schizotypy showed similar global properties in their functional networks as low schizotypy individuals. Several hubs of the functional network were identified in both groups, including the insula, the lingual gyrus, the postcentral gyrus, and the rolandic operculum. More hubs in the frontal lobe and fewer hubs in the occipital lobe were identified in individuals with high schizotypy. By comparing the functional connectivity between clusters with abnormal GM density and the whole brain, individuals with high schizotypy showed weaker functional connectivity between the left insula and the putamen, but stronger connectivity between the cerebellum and the medial frontal gyrus. Taken together, our findings suggest that individuals with high schizotypy present changes in terms of GM and resting-state functional connectivity, especially in the frontal lobe. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Oscillatory magnetic brain activity is related to dissociative symptoms and childhood adversities - A study in women with multiple trauma.

    PubMed

    Schalinski, I; Moran, J K; Elbert, T; Reindl, V; Wienbruch, C

    2017-08-15

    Individuals with trauma-related disorders are complex and heterogeneous; part of this complexity derives from additional psychopathology like dissociation as well as environmental adversities such as traumatic stress, experienced throughout the lifespan. Understanding the neurophysiological abnormalities in Post-traumatic stress disorder (PTSD) requires a simultaneous consideration of these factors. Resting state magnetoencephalography (MEG) recordings were obtained from 41 women with PTSD and comorbid depressive symptoms, and 16 healthy women. Oscillatory brain activity was extracted for five frequency bands and 11 source locations, and analyzed in relation to shutdown dissociation and adversity-related measures. Dissociative symptoms were related to increased delta and lowered beta power. Adversity-related measures modulated theta and alpha oscillatory power (in particular childhood sexual abuse) and differed between patients and controls. Findings are based on women with comorbid depressive symptoms and therefore may not be applicable for men or groups with other clinical profiles. In respect to childhood adversities, we had no reliable source for the early infancy. Trauma-related abnormalities in neural organization vary with both exposure to adversities as well as their potential to evoke ongoing shutdown responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Neuroimaging correlates of handwriting quality as children learn to read and write

    PubMed Central

    Gimenez, Paul; Bugescu, Nicolle; Black, Jessica M.; Hancock, Roeland; Pugh, Kenneth; Nagamine, Masanori; Kutner, Emily; Mazaika, Paul; Hendren, Robert; McCandliss, Bruce D.; Hoeft, Fumiko

    2014-01-01

    Reading and writing are related but separable processes that are crucial skills to possess in modern society. The neurobiological basis of reading acquisition and development, which critically depends on phonological processing, and to a lesser degree, beginning writing as it relates to letter perception, are increasingly being understood. Yet direct relationships between writing and reading development, in particular, with phonological processing is not well understood. The main goal of the current preliminary study was to examine individual differences in neurofunctional and neuroanatomical patterns associated with handwriting in beginning writers/readers. In 46 5–6 year-old beginning readers/writers, ratings of handwriting quality, were rank-ordered from best to worst and correlated with brain activation patterns during a phonological task using functional MRI, and with regional gray matter volume from structural T1 MRI. Results showed that better handwriting was associated negatively with activation and positively with gray matter volume in an overlapping region of the pars triangularis of right inferior frontal gyrus. This region, in particular in the left hemisphere in adults and more bilaterally in young children, is known to be important for decoding, phonological processing, and subvocal rehearsal. We interpret the dissociation in the directionality of the association in functional activation and morphometric properties in the right inferior frontal gyrus in terms of neural efficiency, and suggest future studies that interrogate the relationship between the neural mechanisms underlying reading and writing development. PMID:24678293

  4. Beyond functional architecture in cognitive neuropsychology: a reply to Coltheart (2010).

    PubMed

    Plaut, David C; Patterson, Karalyn

    2010-01-01

    We (Patterson & Plaut, 2009) argued that cognitive neuropsychology has had a limited impact on cognitive science due to a nearly exclusive reliance on (a) single-case studies, (b) dissociations in cognitive performance, and (c) shallow, box-and-arrow theorizing, and we advocated adopting a case-series methodology, considering associations as well as dissociations, and employing explicit computational modeling in studying "how the brain does its cognitive business." In reply, Coltheart (2010) claims that our concern is misplaced because cognitive neuropsychology is concerned only with studying the mind, in terms of its "functional architecture," without regard to how this is implemented in the brain. In this response, we do not dispute his characterization of cognitive neuropsychology as it has typically been practiced over the last 40 years, but we suggest that our understanding of brain structure and function has advanced to the point where studying the mind without regard to the brain is unwise and perpetuates the field's isolation. Copyright © 2009 Cognitive Science Society, Inc.

  5. Pleasure attainment or self-realization: the balance between two forms of well-beings are encoded in default mode network.

    PubMed

    Luo, Yangmei; Qi, Senqing; Chen, Xuhai; You, Xuqun; Huang, Xiting; Yang, Zhen

    2017-10-01

    What is a good life and how it can be achieved is one of the fundamental issues. When considering a good life, there is a division between hedonic (pleasure attainment) and eudaimonic well-being (meaning pursuing and self-realization). However, an integrated approach that can compare the brain functional and structural differences of these two forms of well-being is lacking. Here, we investigated how the individual tendency to eudaimonic well-being relative to hedonic well-being, measured using eudaimonic and hedonic balance (EHB) index, is reflected in the functional and structural features of a key network of well-being-the default mode network (DMN). We found that EHB was positively correlated with functional connectivity of bilateral ventral medial prefrontal cortex within anterior DMN and bilateral precuneus within posterior DMN. Brain morphometric analysis showed that EHB was also positively correlated with gray matter volume in left precuneus. These results demonstrated that the relative dominance of one form of well-being to the other is reflected in the morphometric characteristics and intrinsic functions of DMN. © The Author (2017). Published by Oxford University Press.

  6. Phenotypic variation in a significant spore character in Kudoa (Myxosporea: Multivalvulida) species infecting brain tissue.

    PubMed

    Burger, Mieke A A; Adlard, Robert D

    2010-10-01

    Some Kudoa species display variations in the number of polar capsules in spores within an individual pseudocyst. Nonetheless, there is usually a dominant morphotype which forms a significant element of diagnosis. In 2007, a Kudoa isolate from whiting (spores with 5 (dominant) or 6 (minor) polar capsules) was characterized by Burger et al. (2007) as being 100% identical in SSU rDNA to Kudoa yasunagai (spores with 7 polar capsules) from a halibut, despite its obvious morphological differences. The authors hypothesized that either SSU rDNA had reached its level of resolution or that the genetic identity revealed conspecificity. To further investigate these hypotheses, SSU and LSU rDNA sequence data were coupled with principal components, correlation, and regression analyses of morphometric data from different kudoid isolates that infect brain tissue to determine the relationships between spore morphotypes and different kudoid isolates. The trends in morphometrics between the spores of particular isolates were so similar that it was concluded that the molecular results did indicate conspecificity rather than SSU reaching its level of resolution. This phenotypic influence on a significant diagnostic character within the Kudoidae has a major impact on the diagnosis of this, and potentially other, pathogenic species.

  7. Frontal and occipital perfusion changes in dissociative identity disorder.

    PubMed

    Sar, Vedat; Unal, Seher N; Ozturk, Erdinc

    2007-12-15

    The aim of the study was to investigate if there were any characteristics of regional cerebral blood flow (rCBF) in dissociative identity disorder. Twenty-one drug-free patients with dissociative identity disorder and nine healthy volunteers participated in the study. In addition to a clinical evaluation, dissociative psychopathology was assessed using the Structured Clinical Interview for DSM-IV Dissociative Disorders, the Dissociative Experiences Scale and the Clinician-Administered Dissociative States Scale. A semi-structured interview for borderline personality disorder, the Hamilton Depression Rating Scale, and the Childhood Trauma Questionnaire were also administered to all patients. Normal controls had to be without a history of childhood trauma and without any depressive or dissociative disorder. Regional cerebral blood flow (rCBF) was studied with single photon emission computed tomography (SPECT) with Tc99m-hexamethylpropylenamine (HMPAO) as a tracer. Compared with findings in the control group, the rCBF ratio was decreased among patients with dissociative identity disorder in the orbitofrontal region bilaterally. It was increased in median and superior frontal regions and occipital regions bilaterally. There was no significant correlation between rCBF ratios of the regions of interest and any of the psychopathology scale scores. An explanation for the neurophysiology of dissociative psychopathology has to invoke a comprehensive model of interaction between anterior and posterior brain regions.

  8. Visual–motor integration and fine motor skills at 6½ years of age and associations with neonatal brain volumes in children born extremely preterm in Sweden: a population-based cohort study

    PubMed Central

    Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika

    2018-01-01

    Objectives This exploratory study aimed to investigate associations between neonatal brain volumes and visual–motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Setting Prospective population-based cohort study in Stockholm, Sweden, during 3 years. Participants All children born before gestational age, 27 weeks, during 2004–2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Main outcome measures Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual–Motor Integration—sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children—second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Results Out of 107 children born at gestational age <27 weeks, 83 were assessed at 6½ years and 66/83 were without major brain lesions or cerebral palsy and included in the analyses. A representative subsample underwent morphometric analyses: automatic segmentation (n=34) and atlas-based segmentation (n=26). The precentral gyrus was associated with both VMI (r=0.54, P=0.007) and fine motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=−0.38, P=0.04). Conclusions Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. PMID:29455171

  9. Glomerular anionic site distribution in nonproteinuric rats. A computer-assisted morphometric analysis.

    PubMed

    Pilia, P A; Swain, R P; Williams, A V; Loadholt, C B; Ainsworth, S K

    1985-12-01

    The cationic ultrastructural tracer polyethyleneimine (PEI: pI approximately equal to 11.0), binds electrophysically to uniformly spaced discrete electron-dense anionic sites present in the laminae rarae of the rat glomerular basement membrane (GBM), mesangial reflections of the GBM, Bowman's capsule, and tubular basement membranes when administered intravenously. Computer-assisted morphometric analysis of glomerular anionic sites reveals that the maximum concentration of stainable lamina rara externa (lre) sites (21/10,000 A GBM) occurs 60 minutes after PEI injection with a site-site interspacing of 460 A. Lamina rara interna (lri) sites similarly demonstrate a maximum concentration (20/10,000 A GBM) at 60 minutes with a periodicity of 497 A. The concentration and distribution of anionic sites within the lri was irregular in pattern and markedly decreased in number, while the lre possesses an electrical field that is highly regular at all time intervals analyzed (15, 30, 60, 120, 180, 240, and 300 minutes). Immersion and perfusion of renal tissue with PEI reveals additional heavy staining of the epithelial and endothelial cell sialoprotein coatings. PEI appears to bind to glomerular anionic sites reversibly: ie, between 60 and 180 minutes the concentration of stained sites decreases. At 300 minutes, the interspacing once again approaches the 60-minute concentration. This suggests a dynamic turnover or dissociation followed by a reassociation of glomerular negatively charged PEI binding sites. In contrast, morphometric analysis of anionic sites stained with lysozyme and protamine sulfate reveals interspacings of 642 A and 585 A, respectively; in addition, these tracers produce major glomerular ultrastructural alterations and induce transient proteinuria. PEI does not induce proteinuria in rats, nor does it produce glomerular morphologic alterations when ten times the tracer dosage is administered intravenously. These findings indicate that the choice of ultrastructural charge tracer, the method of administering the tracer, and the time selected for analysis of tissue after administration of tracer significantly influences results. Morphometric analysis of the distribution of glomerular anionic sites in nonproteinuric rats provides a method of evaluating quantitative alterations of the glomerular charge barrier in renal disease models.

  10. Integrating magnetic resonance imaging postprocessing results into neuronavigation for electrode implantation and resection of subtle focal cortical dysplasia in previously cryptogenic epilepsy.

    PubMed

    Wellmer, Jörg; Parpaley, Yaroslav; von Lehe, Marec; Huppertz, Hans-Jürgen

    2010-01-01

    Focal cortical dysplasias (FCDs) are highly epileptogenic lesions. Surgical removal is frequently the best treatment option for pharmacoresistant epilepsy. However, subtle FCDs may remain undetected even after high-resolution magnetic resonance imaging (MRI). Morphometric MRI analysis, which compares the individual brain with a normal database, can facilitate the detection of FCDs. We describe how the results of normal database-based MRI postprocessing can be used to guide stereotactic electrode implantation and subsequent resection of lesions that are suspected to be FCDs. A presurgical evaluation was conducted on a 19-year-old woman with pharmacoresistant hypermotor seizures. Conventional high-resolution MRI was classified as negative for epileptogenic lesions. However, morphometric analysis of the spatially normalized MRI revealed abnormal gyration and blurring of the gray-white matter junction, which was suggestive of a small and deeply seated FCD in the left frontal lobe. The brain region highlighted by morphometric analysis was marked as a region of interest, transferred back to the original dimension of the individual MRI, and imported into a neuronavigation system. This allowed the region of interest-targeted stereotactic implantation of 2 depth electrodes, by which seizure onset was confirmed in the lesion. The electrodes also guided the final resection, which rendered the patient seizure-free. The lesion was histologically classified as FCD Palmini and Lüders IIB. Transferring normal database-based MRI postprocessing results into a neuronavigation system is a new and worthwhile extension of multimodal neuronavigation. The combination of resulting regions of interest with functional and anatomic data may facilitate planning of electrode implantation for invasive electroencephalographic recordings and the final resection of small or deeply seated FCDs.

  11. Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function.

    PubMed

    Xiao, Ena; Chen, Qiang; Goldman, Aaron L; Tan, Hao Yang; Healy, Kaitlin; Zoltick, Brad; Das, Saumitra; Kolachana, Bhaskar; Callicott, Joseph H; Dickinson, Dwight; Berman, Karen F; Weinberger, Daniel R; Mattay, Venkata S

    2017-11-01

    We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.

  12. In vivo studies of brain development by magnetic resonance techniques.

    PubMed

    Inder, T E; Huppi, P S

    2000-01-01

    Understanding of the morphological development of the human brain has largely come from neuropathological studies obtained postmortem. Magnetic resonance (MR) techniques have recently allowed the provision of detailed structural, metabolic, and functional information in vivo on the human brain. These techniques have been utilized in studies from premature infants to adults and have provided invaluable data on the sequence of normal human brain development. This article will focus on MR techniques including conventional structural MR imaging techniques, quantitative morphometric MR techniques, diffusion weighted MR techniques, and MR spectroscopy. In order to understand the potential applications and limitations of MR techniques, relevant physical and biological principles for each of the MR techniques are first reviewed. This is followed by a review of the understanding of the sequence of normal brain development utilizing these techniques. MRDD Research Reviews 6:59-67, 2000. Copyright 2000 Wiley-Liss, Inc.

  13. Deconstructing the brain’s moral network: dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex

    PubMed Central

    Mobbs, Dean; Dalgleish, Tim

    2014-01-01

    Research has illustrated that the brain regions implicated in moral cognition comprise a robust and broadly distributed network. However, understanding how these brain regions interact and give rise to the complex interplay of cognitive processes underpinning human moral cognition is still in its infancy. We used functional magnetic resonance imaging to examine patterns of activation for ‘difficult’ and ‘easy’ moral decisions relative to matched non-moral comparators. This revealed an activation pattern consistent with a relative functional double dissociation between the temporoparietal junction (TPJ) and ventro-medial prefrontal cortex (vmPFC). Difficult moral decisions activated bilateral TPJ and deactivated the vmPFC and OFC. In contrast, easy moral decisions revealed patterns of activation in the vmPFC and deactivation in bilateral TPJ and dorsolateral PFC. Together these results suggest that moral cognition is a dynamic process implemented by a distributed network that involves interacting, yet functionally dissociable networks. PMID:23322890

  14. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    PubMed Central

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  15. [Changes in visual event-related potentials and SPECT in dissociative amnesia].

    PubMed

    Kurita, Akira; Yonezawa, Jin; Suzuki, Masahiko; Kawaguchi, Sachiko; Ito, Yasuhiko; Inoue, Kiyoharu

    2004-01-01

    A 29-year-old man was admitted because of sudden onset of retrograde amnesia. The patient was unable to recall events having occurred during the past 2 years. The impairment was especially serious with regard to personal memories during the 5 months prior to admission, while he had first been working as a full-time employee under stressful circumstance. A diagnosis of dissociative amnesia was made on the basis of absence of any systemic or neurological diseases that could cause amnesia, the inadaptable character of the patient, the nature of amnesia, and presence of stressful condition possibly related to the amnesia. Visual event-related potential (ERP) studies recorded with human face discrimination tasks demonstrated a P3a wave in response to a face of his superior in the office, whom he said that he had never seen before. The similar P3a wave was observed in response to a face quite familiar to the patient, his mother, but not to a face "truly" unknown to him. These findings suggest that the visual memory of his superior's face exists in the brain, but the patient is unable to retrieve it by some psychogenic mechanism. 131I-IMP SPECT revealed decreased perfusion in the left medial temporal lobe and the basal forebrain, suggesting the association between dissociative amnesia and focal brain dysfunction. While dissociative amnesia has been understood as psychogenic nature, both ERPs and SPECT are quite important tools to understand the association between the psychological phenomenon and biological changes of the brain in this disorder.

  16. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex.

    PubMed

    Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S

    2004-01-01

    Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.

  17. Nativism versus Neuroconstructivism: Rethinking the Study of Developmental Disorders

    ERIC Educational Resources Information Center

    Karmiloff-Smith, Annette

    2009-01-01

    This article argues that one dominant position in psychology, linguistics, neuroscience, and philosophy about how genetic disorders point to the innate specification of dissociated modules in the human brain should be replaced by a dynamic, neuroconstructivist approach in which genes, brain, cognition, and environment interact multidirectionally.…

  18. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    PubMed

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  19. Double Dissociation in the Anatomy of Socioemotional Disinhibition and Executive Functioning in Dementia

    PubMed Central

    Krueger, Casey E.; Laluz, Victor; Rosen, Howard J.; Neuhaus, John M.; Miller, Bruce L.; Kramer, Joel H.

    2010-01-01

    Objective To determine if socioemotional disinhibition and executive dysfunction are related to dissociable patterns of brain atrophy in neurodegenerative disease. Previous studies have indicated that behavioral and cognitive dysfunction in neurodegenerative disease are linked to atrophy in different parts of the frontal lobe, but these prior studies did not establish that these relationships were specific, which would best be demonstrated by a double dissociation. Method Subjects included 157 patients with neurodegenerative disease. A semi-automated parcellation program (Freesurfer) was used to generate regional cortical volumes from structural MRI scans. Regions of interest (ROIs) included anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), middle frontal gyrus (MFG) and inferior frontal gyrus (IFG). Socioemotional disinhibition was measured using the Neuropsychiatric Inventory. Principal component analysis including three tasks of executive function (EF; verbal fluency, Stroop Interference, modified Trails) was used to generate a single factor score to represent EF. Results Partial correlations between ROIs, disinhibition, and EF were computed after controlling for total intracranial volume, MMSE, diagnosis, age, and education. Brain regions significantly correlated with disinhibition (ACC, OFC, IFG, and temporal lobes) and EF (MFG) were entered into separate hierarchical regressions to determine which brain regions predicted disinhibition and EF. OFC was the only brain region to significantly predict disinhibition and MFG significantly predicted executive functioning performance. A multivariate general linear model demonstrated a significant interaction between ROIs and cognitive-behavioral functions. Conclusions These results support a specific association between orbitofrontal areas and behavioral management as compared to dorsolateral areas and EF. PMID:21381829

  20. Psychological causes of autobiographical amnesia: A study of 28 cases.

    PubMed

    Staniloiu, Angelica; Markowitsch, Hans J; Kordon, Andreas

    2018-02-01

    Autobiographical amnesia is found in patients with focal or diffuse brain damage ("organic amnesia"), but also without overt brain damage (at least when measured with conventional brain imaging methods). This last condition is usually named dissociative amnesia at present, and was originally described as hysteria. Classically and traditionally, dissociative amnesia is seen as a disorder that causes retrograde amnesia in the autobiographical domain in the aftermath of incidents of major psychological stress or trauma. In the present study one of the probably largest published collections of patients (28) with psychogenically caused autobiographical amnesia, who were assessed with comprehensive neuropsychological tests, will be described and documented in order to identify variables which are central for the occurrence of dissociative amnesia. The presented cases demonstrate that autobiographical amnesia without direct brain damage can have very mixed clinical presentations, causes and consequences. The described cases of psychogenic amnesia are clustered according to a number of manifestations and features, which include a reduced effort to perform cognitively at a normal level, a forensic background, anterograde (instead of retrograde) autobiographical amnesia, the fugue condition, concurrent somatic diseases, and their appearance in childhood and youth. It is concluded that autobiographical amnesia of a psychogenic origin may occur within a variety of symptom pictures. For all patients, it probably serves a protective function by offering them a mechanism to exit a life situation which appears to them unmanageable or adverse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury.

    PubMed

    Hattori, Naoya; Swan, Megan; Stobbe, Gary A; Uomoto, Jay M; Minoshima, Satoshi; Djang, David; Krishnananthan, Ruben; Lewis, David H

    2009-07-01

    Patients with mild traumatic brain injury (TBI) often complain of cognitive fatigue during the chronic recovery phase. The Paced Auditory Serial Addition Test (PASAT) is a complex psychologic measure that may demonstrate subtle deficiencies in higher cognitive functions. The purpose of this study was to investigate the brain activation of regional cerebral blood flow (rCBF) with PASAT in patients with mild TBI to explore mechanisms for the cognitive fatigue. Two groups consisting of 15 patients with mild TBI and 15 healthy control subjects underwent (99m)Tc-ethylene cysteine dimer SPECT at rest and during PASAT on a separate day. Cortical rCBF was extracted using a 3-dimensional stereotactic surface projection and statistically analyzed to identify areas of activation, which were compared with PASAT performance scores. Image analysis demonstrated a difference in the pattern of activation between patients with mild TBI and healthy control subjects. Healthy control subjects activated the superior temporal cortex (Brodmann area [BA] 22) bilaterally, the precentral gyrus (BA 9) on the left, and the precentral gyrus (BA 6) and cerebellum bilaterally. Patients with mild TBI demonstrated a larger area of supratentorial activation (BAs 9, 10, 13, and 46) but a smaller area of activation in the cerebellum, indicating frontocerebellar dissociation. Patients with mild TBI and cognitive fatigue demonstrated a different pattern of activation during PASAT. Frontocerebellar dissociation may explain cognitive impairment and cognitive fatigue in the chronic recovery phase of mild traumatic brain injury.

  2. Words, Hemispheres, and Dissociable Subsystems: The Effects of Exposure Duration, Case Alternation, Priming, and Continuity of Form on Word Recognition in the Left and Right Visual Fields

    ERIC Educational Resources Information Center

    Ellis, Andrew W.; Ansorge, Lydia; Lavidor, Michal

    2007-01-01

    Three experiments explore aspects of the dissociable neural subsystems theory of hemispheric specialisation proposed by Marsolek and colleagues, and in particular a study by [Deason, R. G., & Marsolek, C. J. (2005). A critical boundary to the left-hemisphere advantage in word processing. "Brain and Language," 92, 251-261]. Experiment 1A showed…

  3. Which method of posttraumatic stress disorder classification best predicts psychosocial function in children with traumatic brain injury?

    PubMed

    Iselin, Greg; Le Brocque, Robyne; Kenardy, Justin; Anderson, Vicki; McKinlay, Lynne

    2010-10-01

    Controversy surrounds the classification of posttraumatic stress disorder (PTSD), particularly in children and adolescents with traumatic brain injury (TBI). In these populations, it is difficult to differentiate TBI-related organic memory loss from dissociative amnesia. Several alternative PTSD classification algorithms have been proposed for use with children. This paper investigates DSM-IV-TR and alternative PTSD classification algorithms, including and excluding the dissociative amnesia item, in terms of their ability to predict psychosocial function following pediatric TBI. A sample of 184 children aged 6-14 years were recruited following emergency department presentation and/or hospital admission for TBI. PTSD was assessed via semi-structured clinical interview (CAPS-CA) with the child at 3 months post-injury. Psychosocial function was assessed using the parent report CHQ-PF50. Two alternative classification algorithms, the PTSD-AA and 2 of 3 algorithms, reached statistical significance. While the inclusion of the dissociative amnesia item increased prevalence rates across algorithms, it generally resulted in weaker associations with psychosocial function. The PTSD-AA algorithm appears to have the strongest association with psychosocial function following TBI in children and adolescents. Removing the dissociative amnesia item from the diagnostic algorithm generally results in improved validity. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Drawing/Writing: A Brain Research-Based Writing Program Designed to Develop Descriptive, Analytical and Inferential Thinking Skills at the Elementary School Level

    ERIC Educational Resources Information Center

    Sheridan, Susan Rich

    1990-01-01

    The research and the study focus on the problem of dissociated learning. Why do students fail to connect with knowledge? The purposes of the study are: to summarize research pertaining to brain growth; to describe educational approaches and tactics consistent with this research; to test a brain research-based program designed to connect children…

  5. Bilinguals at the "cocktail party": dissociable neural activity in auditory-linguistic brain regions reveals neurobiological basis for nonnative listeners' speech-in-noise recognition deficits.

    PubMed

    Bidelman, Gavin M; Dexter, Lauren

    2015-04-01

    We examined a consistent deficit observed in bilinguals: poorer speech-in-noise (SIN) comprehension for their nonnative language. We recorded neuroelectric mismatch potentials in mono- and bi-lingual listeners in response to contrastive speech sounds in noise. Behaviorally, late bilinguals required ∼10dB more favorable signal-to-noise ratios to match monolinguals' SIN abilities. Source analysis of cortical activity demonstrated monotonic increase in response latency with noise in superior temporal gyrus (STG) for both groups, suggesting parallel degradation of speech representations in auditory cortex. Contrastively, we found differential speech encoding between groups within inferior frontal gyrus (IFG)-adjacent to Broca's area-where noise delays observed in nonnative listeners were offset in monolinguals. Notably, brain-behavior correspondences double dissociated between language groups: STG activation predicted bilinguals' SIN, whereas IFG activation predicted monolinguals' performance. We infer higher-order brain areas act compensatorily to enhance impoverished sensory representations but only when degraded speech recruits linguistic brain mechanisms downstream from initial auditory-sensory inputs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Vitamin B12 deficiency: Characterization of psychometrics and MRI morphometrics.

    PubMed

    Hsu, Yen-Hsuan; Huang, Ching-Feng; Lo, Chung-Ping; Wang, Tzu-Lan; Tu, Min-Chien

    2016-01-01

    Vitamin B12 is essential for the integrity of the central nervous system. However, performances in different cognitive domains relevant to vitamin B12 deficiency remain to be detailed. To date, there have been limited studies that examined the relationships between cognitions and structural neuroimaging in a single cohort of low-vitamin B12 status. The present study aimed to depict psychometrics and magnetic resonance imaging (MRI) morphometrics among patients with vitamin B12 deficiency, and to examine their inter-relations. We compared 34 consecutive patients with vitamin B12 deficiency (serum level ≤ 250 pg/ml) to 34 demographically matched controls by their cognitive performances and morphometric indices of brain MRI. The correlations between psychometrics and morphometrics were analyzed. The vitamin B12 deficiency group had lower scores than the controls on total scores of Mini-Mental Status Examination (MMSE) and Cognitive Abilities Screening Instrument (CASI) (both P < 0.05), language (P < 0.01), orientation (P < 0.01), and mental manipulation (P < 0.05). The patients also showed a greater frontal horn ratio than the controls (P < 0.05). Bicaudate ratio, fronto-occipital ratio, uncotemporal index, and normalized interuncal distance all showed a strong correlation with the total score of MMSE and CASI (all P < 0.01). Among these psychometric and morphometric indices, pronounced correlations between bicaudate ratio and long-term memory, mental manipulation, orientation, language, and verbal fluency were noted (all P < 0.01). Vitamin B12 deficiency is associated with a global cognition decline with language, orientation, and mental manipulation selectively impaired. Preferential atrophy in frontal regions is the main neuroimaging feature. Although the frontal ratio highlights the relevant atrophy among patients, the bicaudate ratio might be the best index on the basis of its strong association with global cognition and related cognitive domains, implying dysfunction of fronto-subcortical circuits as the fundamental pathogenesis related to vitamin B12 deficiency.

  7. Early detection of consciousness in patients with acute severe traumatic brain injury.

    PubMed

    Edlow, Brian L; Chatelle, Camille; Spencer, Camille A; Chu, Catherine J; Bodien, Yelena G; O'Connor, Kathryn L; Hirschberg, Ronald E; Hochberg, Leigh R; Giacino, Joseph T; Rosenthal, Eric S; Wu, Ona

    2017-09-01

    See Schiff (doi:10.1093/awx209) for a scientific commentary on this article. Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sustaining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic resonance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissociation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and (ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended. Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 ± 5.0 and electroencephalography on Day 9.8 ± 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence of language function, responses to language and music were more frequently observed than responses to motor imagery (62.5-80% versus 33.3-42.9%). Similarly, in 16 matched healthy subjects, responses to language and music were more frequently observed than responses to motor imagery (87.5-100% versus 68.8-75.0%). Except for one patient who died in the intensive care unit, all patients with cognitive motor dissociation and higher-order cortex motor dissociation recovered beyond a confusional state by 6 months. However, 6-month outcomes were not associated with early functional magnetic resonance imaging and electroencephalography responses for the entire cohort. These observations suggest that functional magnetic resonance imaging and electroencephalography can detect command-following and higher-order cortical function in patients with acute severe traumatic brain injury. Early detection of covert consciousness and cortical responses in the intensive care unit could alter time-sensitive decisions about withholding life-sustaining therapies. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. [Dissociated nystagmus in side gaze. Major symptoms in the diagnosis of an internuclear ophthalmoplegia].

    PubMed

    Neugebauer, P; Neugebauer, A; Fricke, J; Michel, O

    2004-07-01

    A prerequisite for a qualified analysis of nystagmus is the recognition of uncommon forms of this condition. In internuclear ophthalmoplegia (INO), a dissociated nystagmus in side gaze is typical. This is accompanied by limited medial excursion of the adducted eye together with a dissociated nystagmus, which is stronger in the abducting fellow eye. This motility disturbance stems from a lesion in the medial longitudinal fasciculus running in the brain stem between the sixth and the third nerve nuclei. The lesion is often due to multiple sclerosis, but can also be ischemic, traumatic, neoplastic or inflammatory (e.g. HIV infection).

  9. Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate

    PubMed Central

    Yang, Ting; Li, Shaomin; Xu, Huixin

    2017-01-01

    Soluble oligomers of amyloid β-protein (oAβ) isolated from the brains of Alzheimer's disease (AD) patients have been shown experimentally (in the absence of amyloid plaques) to impair hippocampal synaptic plasticity, decrease synapses, induce tau hyperphosphorylation and neuritic dystrophy, activate microglial inflammation, and impair memory in normal adult rodents. Nevertheless, there has been controversy about what types of oligomers actually confer these AD-like phenotypes. Here, we show that the vast majority of soluble Aβ species obtained from brains of humans who died with confirmed AD elute at high molecular weight (HMW) on nondenaturing size-exclusion chromatography. These species have little or no cytotoxic activity in several bioassays. However, incubation of HMW oAβ in mildly alkaline buffer led to their quantitative dissociation into low molecular weight oligomers (∼8–70 kDa), and these were now far more bioactive: they impaired hippocampal LTP, decreased neuronal levels of β2-adrenergic receptors, and activated microglia in wt mice in vivo. Thus, most soluble Aβ assemblies in AD cortex are large and inactive but under certain circumstances can dissociate into smaller, highly bioactive species. Insoluble amyloid plaques likely sequester soluble HMW oligomers, limiting their potential to dissociate. We conclude that conditions that destabilize HMW oligomers or retard the sequestration of their smaller, more bioactive components are important drivers of Aβ toxicity. Selectively targeting these small, cytotoxic forms should be therapeutically beneficial. SIGNIFICANCE STATEMENT Oligomers of amyloid β-protein (oAβ) are tought to play an important role in Alzheimer's disease (AD), but there is confusion and controversy about what types and sizes of oligomers have disease-relevant activity. Using size-exclusion chromatography and three distinct measures of bioactivity, we show that the predominant forms of Aβ in aqueous extracts of AD brain are high molecular weight (HMW) and relatively inactive. Importantly, under certain conditions, the abundant HMW oAβ can dissociate into low molecular weight species, and these low molecular weight oligomers are significantly more bioactive on synapses and microglia than the HMW species from which they are derived. We conclude that conditions that destabilize HMW oAβ or retard the sequestration of smaller, more bioactive components are important drivers of Aβ toxicity. PMID:28053038

  10. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by ß-amyloid peptide

    PubMed Central

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE

    2010-01-01

    Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j.1476-5381.2010.00663.x PMID:20218980

  11. Evidence for a double dissociation of articulatory rehearsal and non-articulatory maintenance of phonological information in human verbal working memory.

    PubMed

    Trost, Sarah; Gruber, Oliver

    2012-01-01

    Recent functional neuroimaging studies have provided evidence that human verbal working memory is represented by two complementary neural systems, a left lateralized premotor-parietal network implementing articulatory rehearsal and a presumably phylogenetically older bilateral anterior-prefrontal/inferior-parietal network subserving non-articulatory maintenance of phonological information. In order to corroborate these findings from functional neuroimaging, we performed a targeted behavioural study in patients with very selective and circumscribed brain lesions to key regions suggested to support these different subcomponents of human verbal working memory. Within a sample of over 500 neurological patients assessed with high-resolution structural magnetic resonance imaging, we identified 2 patients with corresponding brain lesions, one with an isolated lesion to Broca's area and the other with a selective lesion bilaterally to the anterior middle frontal gyrus. These 2 patients as well as groups of age-matched healthy controls performed two circuit-specific verbal working memory tasks. In this way, we systematically assessed the hypothesized selective behavioural effects of these brain lesions on the different subcomponents of verbal working memory in terms of a double dissociation. Confirming prior findings, the lesion to Broca's area led to reduced performance under articulatory rehearsal, whereas the non-articulatory maintenance of phonological information was unimpaired. Conversely, the bifrontopolar brain lesion was associated with impaired non-articulatory phonological working memory, whereas performance under articulatory rehearsal was unaffected. The present experimental neuropsychological study in patients with specific and circumscribed brain lesions confirms the hypothesized double dissociation of two complementary brain systems underlying verbal working memory in humans. In particular, the results demonstrate the functional relevance of the anterior prefrontal cortex for non-articulatory maintenance of phonological information and, in this way, provide further support for the evolutionary-based functional-neuroanatomical model of human working memory. Copyright © 2012 S. Karger AG, Basel.

  12. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    PubMed Central

    Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197

  13. Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging.

    PubMed

    Counsell, Serena J; Boardman, James P

    2005-10-01

    Preterm birth is associated with a high prevalence of neuropsychiatric impairment in childhood and adolescence, but the neural correlates underlying these disorders are not fully understood. Quantitative magnetic resonance imaging techniques have been used to investigate subtle differences in cerebral growth and development among children and adolescents born preterm or with very low birth weight. Diffusion tensor imaging and computer-assisted morphometric techniques (including voxel-based morphometry and deformation-based morphometry) have identified abnormalities in tissue microstructure and cerebral morphology among survivors of preterm birth at different ages, and some of these alterations have specific functional correlates. This chapter reviews the literature reporting differential brain development following preterm birth, with emphasis on the morphological changes that correlate with neuropsychiatric impairment.

  14. Brain oscillatory subsequent memory effects differ in power and long-range synchronization between semantic and survival processing.

    PubMed

    Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    2013-10-01

    Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A new Homo erectus (Zhoukoudian V) brain endocast from China.

    PubMed

    Wu, Xiujie; Schepartz, Lynne A; Liu, Wu

    2010-01-22

    A new Homo erectus endocast, Zhoukoudian (ZKD) V, is assessed by comparing it with ZKD II, ZKD III, ZKD X, ZKD XI, ZKD XII, Hexian, Trinil II, Sambungmacan (Sm) 3, Sangiran 2, Sangiran 17, KNM-ER 3733, KNM-WT 15 000, Kabwe, Liujiang and 31 modern Chinese. The endocast of ZKD V has an estimated endocranial volume of 1140 ml. As the geological age of ZKD V is younger than the other ZKD H. erectus, evolutionary changes in brain morphology are evaluated. The brain size of the ZKD specimens increases slightly over time. Compared with the other ZKD endocasts, ZKD V shows important differences, including broader frontal and occipital lobes, some indication of fuller parietal lobes, and relatively large brain size that reflect significant trends documented in later hominin brain evolution. Bivariate and principal component analyses indicate that geographical variation does not characterize the ZKD, African and other Asian specimens. The ZKD endocasts share some common morphological and morphometric features with other H. erectus endocasts that distinguish them from Homo sapiens.

  16. Visual-motor integration and fine motor skills at 6½ years of age and associations with neonatal brain volumes in children born extremely preterm in Sweden: a population-based cohort study.

    PubMed

    Bolk, Jenny; Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika

    2018-02-17

    This exploratory study aimed to investigate associations between neonatal brain volumes and visual-motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Prospective population-based cohort study in Stockholm, Sweden, during 3 years. All children born before gestational age, 27 weeks, during 2004-2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual-Motor Integration-sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children-second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Out of 107 children born at gestational age <27 weeks, 83 were assessed at 6½ years and 66/83 were without major brain lesions or cerebral palsy and included in the analyses. A representative subsample underwent morphometric analyses: automatic segmentation (n=34) and atlas-based segmentation (n=26). The precentral gyrus was associated with both VMI (r=0.54, P=0.007) and fine motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=-0.38, P=0.04). Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Dissociable prefrontal brain systems for attention and emotion

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hiroshi; Labar, Kevin S.; McCarthy, Gregory

    2002-08-01

    The prefrontal cortex has been implicated in a variety of attentional, executive, and mnemonic mental operations, yet its functional organization is still highly debated. The present study used functional MRI to determine whether attentional and emotional functions are segregated into dissociable prefrontal networks in the human brain. Subjects discriminated infrequent and irregularly presented attentional targets (circles) from frequent standards (squares) while novel distracting scenes, parametrically varied for emotional arousal, were intermittently presented. Targets differentially activated middle frontal gyrus, posterior parietal cortex, and posterior cingulate gyrus. Novel distracters activated inferior frontal gyrus, amygdala, and fusiform gyrus, with significantly stronger activation evoked by the emotional scenes. The anterior cingulate gyrus was the only brain region with equivalent responses to attentional and emotional stimuli. These results show that attentional and emotional functions are segregated into parallel dorsal and ventral streams that extend into prefrontal cortex and are integrated in the anterior cingulate. These findings may have implications for understanding the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders. novelty | prefrontal cortex | amygdala | cingulate gyrus

  18. Brain responses to sound intensity changes dissociate depressed participants and healthy controls.

    PubMed

    Ruohonen, Elisa M; Astikainen, Piia

    2017-07-01

    Depression is associated with bias in emotional information processing, but less is known about the processing of neutral sensory stimuli. Of particular interest is processing of sound intensity which is suggested to indicate central serotonergic function. We tested weather event-related brain potentials (ERPs) to occasional changes in sound intensity can dissociate first-episode depressed, recurrent depressed and healthy control participants. The first-episode depressed showed larger N1 amplitude to deviant sounds compared to recurrent depression group and control participants. In addition, both depression groups, but not the control group, showed larger N1 amplitude to deviant than standard sounds. Whether these manifestations of sensory over-excitability in depression are directly related to the serotonergic neurotransmission requires further research. The method based on ERPs to sound intensity change is fast and low-cost way to objectively measure brain activation and holds promise as a future diagnostic tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

    PubMed

    Kujala, Miiamaaria V; Kujala, Jan; Carlson, Synnöve; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

  20. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    PubMed

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J

    2015-01-01

    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  1. Brain cortical thickness in male adolescents with serious substance use and conduct problems

    PubMed Central

    Chumachenko, Serhiy Y.; Sakai, Joseph T.; Dalwani, Manish S.; Mikulich-Gilbertson, Susan K.; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K.; Banich, Marie T.; Crowley, Thomas J.

    2016-01-01

    Background Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. Objectives To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. Methods We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Results Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right>left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Conclusion Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches. PMID:26337200

  2. Dissociable brain biomarkers of fluid intelligence.

    PubMed

    Paul, Erick J; Larsen, Ryan J; Nikolaidis, Aki; Ward, Nathan; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F; Barbey, Aron K

    2016-08-15

    Cognitive neuroscience has long sought to understand the biological foundations of human intelligence. Decades of research have revealed that general intelligence is correlated with two brain-based biomarkers: the concentration of the brain biochemical N-acetyl aspartate (NAA) measured by proton magnetic resonance spectroscopy (MRS) and total brain volume measured using structural MR imaging (MRI). However, the relative contribution of these biomarkers in predicting performance on core facets of human intelligence remains to be well characterized. In the present study, we sought to elucidate the role of NAA and brain volume in predicting fluid intelligence (Gf). Three canonical tests of Gf (BOMAT, Number Series, and Letter Sets) and three working memory tasks (Reading, Rotation, and Symmetry span tasks) were administered to a large sample of healthy adults (n=211). We conducted exploratory factor analysis to investigate the factor structure underlying Gf independent from working memory and observed two Gf components (verbal/spatial and quantitative reasoning) and one working memory component. Our findings revealed a dissociation between two brain biomarkers of Gf (controlling for age and sex): NAA concentration correlated with verbal/spatial reasoning, whereas brain volume correlated with quantitative reasoning and working memory. A follow-up analysis revealed that this pattern of findings is observed for males and females when analyzed separately. Our results provide novel evidence that distinct brain biomarkers are associated with specific facets of human intelligence, demonstrating that NAA and brain volume are independent predictors of verbal/spatial and quantitative facets of Gf. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Relationship between brain volumetric changes and interim drinking at six months in alcohol-dependent patients.

    PubMed

    Segobin, Shailendra H; Chételat, Gaël; Le Berre, Anne-Pascale; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne-Lise

    2014-03-01

    Chronic alcohol consumption results in brain damage potentially reversible with abstinence. It is however difficult to gauge the degree of recovery of brain tissues with abstinence since changes are subtle and a significant portion of patients relapse. State-of-the-art morphometric methods are increasingly used in neuroimaging studies to detect subtle brain changes at a voxel level. Our aim was to use the most refined morphometric methods to observe in alcohol dependence the relationship between volumetric changes and interim drinking over a 6-month follow-up. Overall, 19 patients with alcohol dependence received volumetric T1-weighted magnetic resonance imaging (MRI) after detoxification. A 6-month follow-up study was then conducted, during which 11 of them received a second MRI scan. First, correlations were conducted between gray matter (GM) and white matter (WM) volumes of patients at alcohol treatment entry and the amount of alcohol consumed between treatment entry and follow-up. Second, longitudinal analyses were performed from pairs of MRI scans using tensor-based morphometry in the 11 patients, and correlations were computed between the resultant Jacobian maps of GM and WM and interim drinking. Our preliminary results showed that, among others, alcoholics with smaller thalamus at alcohol treatment entry tended to resume with heavy alcohol consumption (p < 0.005 uncorrected [unc.]). Our longitudinal study revealed an overall inverse relationship between recovery of brain structures like the cerebellum, striatum, and cingulate gyrus, and the amount of alcohol consumed over the 6-month follow-up (p < 0.005 unc.). The recovery could be observed not only with strict abstinence but also in cases of moderate resumption of alcohol consumption, when there had been no drastic relapse into alcohol dependence. Those preliminary findings indicate that the volume of the thalamus at treatment entry may have an influence on subsequent interim drinking. There is recovery of certain brain regions even when patients resume with moderate, but not drastic, alcohol consumption. Copyright © 2014 by the Research Society on Alcoholism.

  4. Face Encoding and Recognition in the Human Brain

    NASA Astrophysics Data System (ADS)

    Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

    1996-01-01

    A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

  5. Hemispheric association and dissociation of voice and speech information processing in stroke.

    PubMed

    Jones, Anna B; Farrall, Andrew J; Belin, Pascal; Pernet, Cyril R

    2015-10-01

    As we listen to someone speaking, we extract both linguistic and non-linguistic information. Knowing how these two sets of information are processed in the brain is fundamental for the general understanding of social communication, speech recognition and therapy of language impairments. We investigated the pattern of performances in phoneme versus gender categorization in left and right hemisphere stroke patients, and found an anatomo-functional dissociation in the right frontal cortex, establishing a new syndrome in voice discrimination abilities. In addition, phoneme and gender performances were most often associated than dissociated in the left hemisphere patients, suggesting a common neural underpinnings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Comparative analysis of glutamate-binding membrane proteins from the cerebral cortex of rats and humans].

    PubMed

    Dambinova, S A; Gorodinskiĭ, A I; Lekomtseva, T M; Koreshonkov, O N

    1987-10-01

    The kinetics of 3H-L-glutamate binding to human brain synaptic membranes revealed the existence of one type of binding sites with Kd and Vmax comparable with those for freshly isolated rat brain membranes. The fraction of glutamate-binding proteins (GBP) was shown to contain three components with Mr of 14, 60 and 280 kD whose stoichiometry is specific for human and rat brain. All fractions were found to bind the radiolabeled neurotransmitter and to dissociate into subunits with Mr of 14 kD after treatment with-potent detergents (with the exception of the 56-60 kD component). Study of association-dissociation of GBP protein subunits by high performance liquid chromatography confirmed the hypothesis on the oligomeric structure of glutamate receptors which are made up of low molecular weight glycoprotein-lipid subunits and which form ionic channels by way of repeated association. Despite the similarity of antigen determinants in the active center of glutamate receptors from human and rat brain, it was assumed that the stoichiometry of structural organization of receptor subunits isolated from different sources is different. The functional role of structural complexity of human brain glutamate receptors is discussed.

  7. Central-Variant Posterior Reversible Encephalopathy Syndrome with Albuminocytologic Dissociation.

    PubMed

    Lee, Sang-Woo; Lee, Seung-Jae

    2018-01-01

    Posterior reversible encephalopathy syndrome (PRES) is a disorder of reversible vasogenic brain edema which mainly involves the parieto-occipital lobes in various clinical settings. The main mechanism is known to be cerebral autoregulation failure and endothelial dysfunction leading to the disruption of the blood-brain barrier. We report the case of a 47-year-old woman with PRES which involved the brain stem and thalami, sparing the cerebral hemispheres. She was admitted to the emergency room because of acute-onset confusion. Her initial blood pressure was 270/220 mm Hg. Routine blood lab tests showed pleocytosis, hyperglycemia, and azotemia. Brain magnetic resonance imaging (MRI) showed a lesion of vasogenic edema involving nearly the whole area of pons, the left side of the midbrain, and the bilateral medial thalami. Cerebrospinal fluid (CSF) examination revealed an increased level of protein with normal white blood cell count. With conservative care, the patient markedly recovered 3 days after symptom onset, and a follow-up MRI confirmed complete resolution of the vasogenic edema. This case suggests that PRES can rarely involve the "central zone" only, sparing the cerebral hemispheres, which may be confused with other neurological diseases. Besides, the CSF albuminocytologic dissociation may suggest the disruption of the blood-brain barrier in patients with PRES.

  8. A Retrospective 2D Morphometric Analysis of Adult Female Chiari Type I Patients with Commonly Reported and Related Conditions

    PubMed Central

    Eppelheimer, Maggie S.; Houston, James R.; Bapuraj, Jayapalli R.; Labuda, Richard; Loth, Dorothy M.; Braun, Audrey M.; Allen, Natalie J.; Heidari Pahlavian, Soroush; Biswas, Dipankar; Urbizu, Aintzane; Martin, Bryn A.; Maher, Cormac O.; Allen, Philip A.; Loth, Francis

    2018-01-01

    Purpose: Researchers have sought to better understand Chiari type I malformation (CMI) through morphometric measurements beyond tonsillar position (TP). Soft tissue and bone structures within the brain and craniocervical junction have been shown to be different for CMI patients compared to healthy controls. Yet, several morphological characteristics have not been consistently associated with CMI. CMI is also associated with different prevalent conditions (PCs) such as syringomyelia, pseudotumor, Ehlers-Danlos syndrome (EDS), scoliosis, and craniocervical instability. The goal of this study was two-fold: (1) to identify unique morphological characteristics of PCs, and (2) to better explain inconsistent results from case-control comparisons of CMI. Methods: Image, demographic, and PC information was obtained through the Chiari1000, a self-report web-accessed database. Twenty-eight morphometric measurements (MMs) were performed on the cranial MR images of 236 pre-surgery adult female CMI participants and 140 female healthy control participants. Custom software was used to measure 28 structures within the posterior cranial fossa (PCF) compartment, craniocervical junction, oral cavity, and intracranial area on midsagittal MR images for each participant. Results: Morphometric analysis of adult females indicated a smaller McRae line length in CMI participants with syringomyelia compared to those without syringomyelia. TP was reduced in CMI participants with EDS than those without EDS. Basion to posterior axial line was significantly longer in CMI participants with scoliosis compared to those without scoliosis. No additional MMs were found to differ between CMI participants with and without a specific PC. Four morphometric differences were found to be consistently different between CMI participants and healthy controls regardless of PC: larger TP and a smaller clivus length, fastigium, and corpus callosum height in CMI participants. Conclusion: Syringomyelia, EDS, and scoliosis were the only PCs that showed significant morphometric differences between CMI participants. Additionally, four midsagittal MR-based MMs were found to be significantly different between healthy controls and CMI participants regardless of the presence of one or more PCs. This study suggests that the prevalence of comorbid conditions are not strongly related to CMI morphology, and that inconsistent findings in the radiographic literature cannot be explained by varying prevalence of comorbid conditions in CMI study samples. PMID:29403363

  9. The evolution of modern human brain shape

    PubMed Central

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  10. The evolution of modern human brain shape.

    PubMed

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  11. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    PubMed

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  12. Finding sacral: Developmental evolution of the axial skeleton of odontocetes (Cetacea).

    PubMed

    Buchholtz, Emily A; Gee, Jessica K

    2017-07-01

    Axial morphology was dramatically transformed during the transition from terrestrial to aquatic environments by archaeocete cetaceans, and again during the subsequent odontocete radiation. Here, we reconstruct the sequence of developmental events that underlie these phenotypic transitions. Archaeocete innovations include the loss of primaxial/abaxial interaction at the sacral/pelvic articulation and the modular dissociation of the fluke from the remainder of the tail. Odontocetes subsequently integrated lumbar, sacral, and anterior caudal vertebrae into a single torso module, and underwent multiple series-specific changes in vertebral count. The conservation of regional proportions despite regional fluctuations in count strongly argues that rates of somitogenesis can vary along the column and that segmentation was dissociated from regionalization during odontocete evolution. Conserved regional proportions also allow the prediction of the location and count of sacral homologs within the torso module. These predictions are tested with the analysis of comparative pudendal nerve root location and geometric morphometrics. We conclude that the proportion of the column represented by the sacral series has been conserved, and that its vertebrae have changed in count and relative centrum length in parallel with other torso vertebrae. Although the sacral series of odontocetes is de-differentiated, it is not de-regionalized. © 2017 Wiley Periodicals, Inc.

  13. Dissociated language functions: a matter of atypical language lateralization or cerebral plasticity?

    PubMed

    Acioly, Marcus Andre; Gharabaghi, Alireza; Zimmermann, Christoph; Erb, Michael; Heckl, Stefan; Tatagiba, Marcos

    2014-01-01

    The left hemisphere is generally considered to harbor language functions. Atypical cortical language lateralization is mainly demonstrated in left-handed and ambidextrous individuals, whereas dissociated language functions have been reported in association with brain injuries as a part of the reorganization process. We present a thoughtful discussion on the underlying mechanisms of dissociated language functions through an illustrative case of dissociated expressive language. A 31-year-old left-handed woman presented with a recurrent left frontal glioma. Preoperative language functional magnetic resonance imaging (fMRI) panel revealed right-sided dominance for two different language tasks (verbal fluency and visual naming), and the word chain task demonstrated maximal activation in the left hemisphere at the posterior margin of the tumor. The patient was operated on awake to assess language functions intraoperatively. Preoperative fMRI findings were confirmed revealing a task-specific dissociation of expressive language functions. Surgical resection was taken to the functional boundaries. Postoperatively, no language dysfunction occurred. Dissociated language functions are prone to occur in long-standing lesions. Different patterns of dissociation may be encountered due to interindividual particularities and cerebral plasticity. The presented patient is unique by demonstrating new insight into expressive language dissociation, emphasizing the role of a preoperative language fMRI panel and the capability of intraoperative language mapping for identifying special language networks. Georg Thieme Verlag KG Stuttgart · New York.

  14. Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder.

    PubMed

    Brinkmann, L; Buff, C; Feldker, K; Tupak, S V; Becker, M P I; Herrmann, M J; Straube, T

    2017-11-01

    Panic disorder (PD) patients are constantly concerned about future panic attacks and exhibit general hypersensitivity to unpredictable threat. We aimed to reveal phasic and sustained brain responses and functional connectivity of the amygdala and the bed nucleus of the stria terminalis (BNST) during threat anticipation in PD. Using functional magnetic resonance imaging (fMRI), we investigated 17 PD patients and 19 healthy controls (HC) during anticipation of temporally unpredictable aversive and neutral sounds. We used a phasic and sustained analysis model to disentangle temporally dissociable brain activations. PD patients compared with HC showed phasic amygdala and sustained BNST responses during anticipation of aversive v. neutral stimuli. Furthermore, increased phasic activation was observed in anterior cingulate cortex (ACC), insula and prefrontal cortex (PFC). Insula and PFC also showed sustained activation. Functional connectivity analyses revealed partly distinct phasic and sustained networks. We demonstrate a role for the BNST during unpredictable threat anticipation in PD and provide first evidence for dissociation between phasic amygdala and sustained BNST activation and their functional connectivity. In line with a hypersensitivity to uncertainty in PD, our results suggest time-dependent involvement of brain regions related to fear and anxiety.

  15. High affinity dopamine D2 receptor radioligands. 3. [[sup 123]I] and [[sup 125]I]epidepride: In vivo studies in rhesus monkey brain and comparison with in vitro pharmacokinetics in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, R.M.; Votaw, J.R.; Schmidt, D.E.

    1993-01-01

    Studies of [[sup 123]I]epidepride uptake in rhesus monkey brain were performed using single photon tomography. Striatal uptake peaked at 0.85% of administered dose/g at 107 min post-injection, then declined slowly to 0.70% of administered dose/g at 6 h. Striatal:posterior brain ratios rose from 2 at 25 min to 6.8 at 105 min, to 15 at 4 h and to 58 at 6.4 h. [[sup 123]I]Epidepride was displaced by haloperidol (0.1 and 1 mg/kg) with a half-life of washout of 55 min. Little displacement of [[sup 123]I]epidepride was observed following administration of 1 or 2 mg/kg d-amphetamine, respectively, indicating [[sup 123]I]epidepridemore » is not easily displaced by endogenous dopamine. In vitro equilibrium binding studies with [[sup 125]I]epidepride using rat striatum revealed a K[sub D] of 46 pM and B[sub max] of 33 pmol/g tissue at 37[degrees]C, while at 25[degrees]C the K[sub D] was 25 pM and the B[sub max] 32 pmol/g tissue. In vitro kinetic analysis of association and dissociation curves revealed a half-life for receptor dissociation at 37[degrees]C of 15 min and 79--90 min at 25[degrees]C. Allowing for the temperature difference, there is good correspondence between in vivo and in vitro dissociation kinetics at 25[degrees]C. Increasing in vitro incubation temperature from 25 to 37[degrees]C caused a 6-fold increase in the dissociation rate, suggesting that there is a change in binding kinetics at the dopamine D2 receptor at 37[degrees]C compared to in vivo binding. The results of this study indicate that [[sup 123]I]epidepride is an excellent radioligand for SPECT studies of the dopamine D2 receptor in man. 34 refs., 4 figs.« less

  16. Tubulin Dimer Reversible Dissociation

    PubMed Central

    Schuck, Peter; Sackett, Dan L.

    2016-01-01

    Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918

  17. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    PubMed

    Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz

    2014-01-01

    In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing.

  18. Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

    PubMed Central

    Schlumpf, Yolanda R.; Reinders, Antje A. T. S.; Nijenhuis, Ellert R. S.; Luechinger, Roger; van Osch, Matthias J. P.; Jäncke, Lutz

    2014-01-01

    Background In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the “Emotional Part” (EP) and the “Apparently Normal Part” (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Methods Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Results Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. Conclusion DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing. PMID:24922512

  19. Resting-state functional connectivity of the bed nucleus of the stria terminalis in post-traumatic stress disorder and its dissociative subtype.

    PubMed

    Rabellino, Daniela; Densmore, Maria; Harricharan, Sherain; Jean, Théberge; McKinnon, Margaret C; Lanius, Ruth A

    2018-03-01

    The bed nucleus of the stria terminals (BNST) is a subcortical structure involved in anticipatory and sustained reactivity to threat and is thus essential to the understanding of anxiety and stress responses. Although chronic stress and anxiety represent a hallmark of post-traumatic stress disorder (PTSD), to date, few studies have examined the functional connectivity of the BNST in PTSD. Here, we used resting state functional Magnetic Resonance Imaging (fMRI) to investigate the functional connectivity of the BNST in PTSD (n = 70), its dissociative subtype (PTSD + DS) (n = 41), and healthy controls (n = 50). In comparison to controls, PTSD showed increased functional connectivity of the BNST with regions of the reward system (ventral and dorsal striatum), possibly underlying stress-induced reward-seeking behaviors in PTSD. By contrast, comparing PTSD + DS to controls, we observed increased functional connectivity of the BNST with the claustrum, a brain region implicated in consciousness and a primary site of kappa-opioid receptors, which are critical to the dynorphin-mediated dysphoric stress response. Moreover, PTSD + DS showed increased functional connectivity of the BNST with brain regions involved in attention and salience detection (anterior insula and caudate nucleus) as compared to PTSD and controls. Finally, BNST functional connectivity positively correlated with default-mode network regions as a function of state identity dissociation, suggesting a role of BNST networks in the disruption of self-relevant processing characterizing the dissociative subtype. These findings represent an important first step in elucidating the role of the BNST in aberrant functional networks underlying PTSD and its dissociative subtype. © 2017 Wiley Periodicals, Inc.

  20. Automatic recognition and analysis of synapses. [in brain tissue

    NASA Technical Reports Server (NTRS)

    Ungerleider, J. A.; Ledley, R. S.; Bloom, F. E.

    1976-01-01

    An automatic system for recognizing synaptic junctions would allow analysis of large samples of tissue for the possible classification of specific well-defined sets of synapses based upon structural morphometric indices. In this paper the three steps of our system are described: (1) cytochemical tissue preparation to allow easy recognition of the synaptic junctions; (2) transmitting the tissue information to a computer; and (3) analyzing each field to recognize the synapses and make measurements on them.

  1. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    PubMed Central

    Wang, Shuai; Liu, Jing; Tian, Lin; Chen, Limin; Wang, Jun; Tang, Qunfeng; Zhang, Fuquan; Zhou, Zhenhe

    2018-01-01

    With the rising increase in Internet-usage, Internet gaming disorder (IGD) has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT). We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder. PMID:29666588

  2. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.

    PubMed

    Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C

    2008-07-07

    The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.

  3. Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations.

    PubMed

    Fox, Kieran C R; Dixon, Matthew L; Nijeboer, Savannah; Girn, Manesh; Floman, James L; Lifshitz, Michael; Ellamil, Melissa; Sedlmeier, Peter; Christoff, Kalina

    2016-06-01

    Meditation is a family of mental practices that encompasses a wide array of techniques employing distinctive mental strategies. We systematically reviewed 78 functional neuroimaging (fMRI and PET) studies of meditation, and used activation likelihood estimation to meta-analyze 257 peak foci from 31 experiments involving 527 participants. We found reliably dissociable patterns of brain activation and deactivation for four common styles of meditation (focused attention, mantra recitation, open monitoring, and compassion/loving-kindness), and suggestive differences for three others (visualization, sense-withdrawal, and non-dual awareness practices). Overall, dissociable activation patterns are congruent with the psychological and behavioral aims of each practice. Some brain areas are recruited consistently across multiple techniques-including insula, pre/supplementary motor cortices, dorsal anterior cingulate cortex, and frontopolar cortex-but convergence is the exception rather than the rule. A preliminary effect-size meta-analysis found medium effects for both activations (d=0.59) and deactivations (d=-0.74), suggesting potential practical significance. Our meta-analysis supports the neurophysiological dissociability of meditation practices, but also raises many methodological concerns and suggests avenues for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Body Knowledge in Brain-Damaged Children: A Double-Dissociation in Self and Other's Body Processing

    ERIC Educational Resources Information Center

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self…

  5. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.

    PubMed

    Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen

    2013-09-01

    Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.

  6. Regional Infant Brain Development: An MRI-Based Morphometric Analysis in 3 to 13 Month Olds

    PubMed Central

    Choe, Myong-sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S.; Benasich, April A.; Grant, P. Ellen

    2013-01-01

    Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants’ whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders. PMID:22772652

  7. Computational neuroanatomy using brain deformations: From brain parcellation to multivariate pattern analysis and machine learning.

    PubMed

    Davatzikos, Christos

    2016-10-01

    The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.

  8. Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2016-09-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.

  9. Computational neuroanatomy using brain deformations: From brain parcellation to multivariate pattern analysis and machine learning

    PubMed Central

    Davatzikos, Christos

    2017-01-01

    The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582

  10. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    PubMed

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.

  11. Dissociable meta-analytic brain networks contribute to coordinated emotional processing.

    PubMed

    Riedel, Michael C; Yanes, Julio A; Ray, Kimberly L; Eickhoff, Simon B; Fox, Peter T; Sutherland, Matthew T; Laird, Angela R

    2018-06-01

    Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks. © 2018 Wiley Periodicals, Inc.

  12. Brain functional integration: an epidemiologic study on stress-producing dissociative phenomena.

    PubMed

    Sperandeo, Raffaele; Monda, Vincenzo; Messina, Giovanni; Carotenuto, Marco; Maldonato, Nelson Mauro; Moretto, Enrico; Leone, Elena; De Luca, Vincenzo; Monda, Marcellino; Messina, Antonietta

    2018-01-01

    Dissociative phenomena are common among psychiatric patients; the presence of these symptoms can worsen the prognosis, increasing the severity of their clinical conditions and exposing them to increased risk of suicidal behavior. Personality disorders as long duration stressful experiences may support the development of dissociative phenomena. In 933 psychiatric outpatients consecutively recruited, presence of dissociative phenomena was identified with the Dissociative Experience Scale (DES). Dissociative phenomena were significantly more severe in the group of people with mental disorders and/or personality disorders. All psychopathologic traits detected with the symptom checklist-90-revised had a significant correlation with the total score on the DES. Using total DES score as the dependent variable, a linear regression model was constructed. Mental and personality disorders which were associated with greater severity of dissociative phenomena on analysis of variance were included as predictors; scores from the nine scales of symptom checklist-90-revised, significantly correlated to total DES score, were used as covariates. The model consisted of seven explanatory variables (four factors and three covariates) explaining 82% of variance. The four significant factors were the presence of borderline and narcissistic personality disorder, substance abuse disorders and psychotic disorders. Significant covariates were psychopathologic traits of anger, psychoticism and obsessiveness. This study, confirming Janet's theory, explains that, mental disorders and psychopathologic experiences of patients can configure the chronic stress condition that produces functional damage to the adaptive executive system. The symptoms of dissociative depersonalization/derealization and dissociative amnesia can be explained, in large part, through their current and previous psychopathologic experiences.

  13. Brain functional integration: an epidemiologic study on stress-producing dissociative phenomena

    PubMed Central

    Messina, Giovanni; Carotenuto, Marco; Maldonato, Nelson Mauro; Moretto, Enrico; Leone, Elena; De Luca, Vincenzo; Monda, Marcellino; Messina, Antonietta

    2018-01-01

    Dissociative phenomena are common among psychiatric patients; the presence of these symptoms can worsen the prognosis, increasing the severity of their clinical conditions and exposing them to increased risk of suicidal behavior. Personality disorders as long duration stressful experiences may support the development of dissociative phenomena. In 933 psychiatric outpatients consecutively recruited, presence of dissociative phenomena was identified with the Dissociative Experience Scale (DES). Dissociative phenomena were significantly more severe in the group of people with mental disorders and/or personality disorders. All psychopathologic traits detected with the symptom checklist-90-revised had a significant correlation with the total score on the DES. Using total DES score as the dependent variable, a linear regression model was constructed. Mental and personality disorders which were associated with greater severity of dissociative phenomena on analysis of variance were included as predictors; scores from the nine scales of symptom checklist-90-revised, significantly correlated to total DES score, were used as covariates. The model consisted of seven explanatory variables (four factors and three covariates) explaining 82% of variance. The four significant factors were the presence of borderline and narcissistic personality disorder, substance abuse disorders and psychotic disorders. Significant covariates were psychopathologic traits of anger, psychoticism and obsessiveness. This study, confirming Janet’s theory, explains that, mental disorders and psychopathologic experiences of patients can configure the chronic stress condition that produces functional damage to the adaptive executive system. The symptoms of dissociative depersonalization/derealization and dissociative amnesia can be explained, in large part, through their current and previous psychopathologic experiences. PMID:29296086

  14. Apraxia in left-handers.

    PubMed

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as manifested by a lower proportion of left-handed patients with global aphasia.

  15. Dog Experts' Brains Distinguish Socially Relevant Body Postures Similarly in Dogs and Humans

    PubMed Central

    Kujala, Miiamaaria V.; Kujala, Jan; Carlson, Synnöve; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans. PMID:22720054

  16. Establishment, characterization, virus susceptibility and transfection of cell lines from cobia, Rachycentron canadum (L.), brain and fin.

    PubMed

    Cheng, T-C; Lai, Y-S; Lin, I-Y; Wu, C-P; Chang, S-L; Chen, T-I; Su, M-S

    2010-02-01

    Establishment and characterization of two cobia, Rachycentron canadum, cell lines derived from cobia brain (CB) and cobia fin (CF) are described. Caudal fin and brain from juvenile cobia were dissociated for 30 and 10 min, respectively, in phosphate-buffered saline containing 0.25% trypsin at 25 degrees C. The optimal culture condition for both dissociated cells (primary cell culture) was at 28 degrees C in Leibovitz-15 medium containing 10% foetal bovine serum. The cells have been sub-cultured at a ratio of 1:2 for more than 160 passages over a period of 3 years. Origin of the cultured cells was verified by comparison of their sequences of mitochondrial cytochrome oxidase subunit I genes (cox I) with the cox 1 sequence from cobia muscle tissue. The cell lines showed polyploidy. No mycoplasma contamination was detected. Susceptibility to grouper iridovirus was observed for the CB cell line but not the CF cell line. Both cell lines expressed green fluorescent protein after being transfected with green fluorescent reporter gene driven by the cytomegalovirus promoter.

  17. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    PubMed Central

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Y.; Kawai, R.; McManaway, M.

    (3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB);more » estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.« less

  19. MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

    PubMed Central

    Mohseni, Hamid R.; Smith, Penny P.; Parsons, Christine E.; Young, Katherine S.; Hyam, Jonathan A.; Stein, Alan; Stein, John F.; Green, Alexander L.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2012-01-01

    Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain. PMID:22675503

  20. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    PubMed

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Tracking down the footprints of bad paternal relationships in dissociative disorders: A diffusion tensor imaging study.

    PubMed

    Basmacı Kandemir, Sultan; Bayazıt, Hüseyin; Selek, Salih; Kılıçaslan, Nihat; Kandemir, Hasan; Karababa, İbrahim Fatih; Katı, Mahmut; Çeçe, Hasan

    2016-01-01

    Preclinical studies indicate that stress early in life can cause long-term alterations in brain development. Studies have shown alterations in the brain functions of patients after experiencing trauma. Our aim is to examine whether the integrity of white matter tracts might be affected in dissociative disorder (DD) patients. A total of 15 DD patients and 15 healthy controls were studied, with the groups matched by age and gender. Diffusion-weighted echoplanar brain images were obtained using a 1.5 Tesla magnetic resonance imaging scanner. Regions of interest were manually placed on directional maps based on principal anisotropy. Apparent diffusion coefficient and fractional anisotropy (FA) values of white matter were measured bilaterally in the anterior corona radiata (ACR) and by diffusion tensor imaging in the genu and splenium of the corpus callosum. Significantly lower FA values were observed in the right ACR of DD patients versus healthy individuals. We also found an association between bad paternal relationships and lower FA in the genu of the corpus callosum in female patients. Alterations in the right ACR suggest that diffusion anisotropy measurement can be used as a quantitative biomarker for DD. Paternal relationships may also affect the brain's microstructure in women with DD.

  2. The hippocampus and memory of verbal and pictorial material.

    PubMed

    Papanicolaou, Andrew C; Simos, Panagiotis G; Castillo, Eduardo M; Breier, Joshua I; Katz, Jeffrey S; Wright, Anthony A

    2002-01-01

    Recognition of words and kaleidoscope pictures showed a double dissociation of left and right hippocampal activity using magnetic source imaging (MSI). MSI has advantages over alternative imaging techniques that measure hemodynamic changes for identifying regional changes in brain activity in real time and on an individual subject basis without the need for image subtraction. In this study, lists of words or kaleidoscope pictures were presented for memorization followed by tests of list items and foils during which brain activity was recorded. There was greater activation in the left than the right hippocampus with abstract nouns (e.g., relief) and greater activation in the right than the left hippocampus with kaleidoscope pictures. This dissociation was evident on a case by case basis. This study demonstrates the specialization of the two medial temporal lobe (MTL) regions, including the hippocampi, for mnemonic processing of verbal and pictorial items that are difficult to encode verbally.

  3. Particulate matter neurotoxicity in culture is size-dependent.

    PubMed

    Gillespie, Patricia; Tajuba, Julianne; Lippmann, Morton; Chen, Lung-Chi; Veronesi, Bellina

    2013-05-01

    Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (<0.18μm) samples. Rat dopaminergic neurons (N27) were exposed to suspensions of each PM fraction (0, 12.5, 25, 50μm/ml) and cell loss (as measured by Hoechst nuclear stain) measured after 24h exposure. Neuronal loss occurred in response to all tested concentrations of UF (>12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Acting without seeing: eye movements reveal visual processing without awareness.

    PubMed

    Spering, Miriam; Carrasco, Marisa

    2015-04-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. Here, we review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movement. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging, and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Acting without seeing: Eye movements reveal visual processing without awareness Miriam Spering & Marisa Carrasco

    PubMed Central

    Spering, Miriam; Carrasco, Marisa

    2015-01-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. We review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movements. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. PMID:25765322

  6. A neuroconstructivist model of past tense development and processing.

    PubMed

    Westermann, Gert; Ruh, Nicolas

    2012-07-01

    We present a neural network model of learning and processing the English past tense that is based on the notion that experience-dependent cortical development is a core aspect of cognitive development. During learning the model adds and removes units and connections to develop a task-specific final architecture. The model provides an integrated account of characteristic errors during learning the past tense, adult generalization to pseudoverbs, and dissociations between verbs observed after brain damage in aphasic patients. We put forward a theory of verb inflection in which a functional processing architecture develops through interactions between experience-dependent brain development and the structure of the environment, in this case, the statistical properties of verbs in the language. The outcome of this process is a structured processing system giving rise to graded dissociations between verbs that are easy and verbs that are hard to learn and process. In contrast to dual-mechanism accounts of inflection, we argue that describing dissociations as a dichotomy between regular and irregular verbs is a post hoc abstraction and is not linked to underlying processing mechanisms. We extend current single-mechanism accounts of inflection by highlighting the role of structural adaptation in development and in the formation of the adult processing system. In contrast to some single-mechanism accounts, we argue that the link between irregular inflection and verb semantics is not causal and that existing data can be explained on the basis of phonological representations alone. This work highlights the benefit of taking brain development seriously in theories of cognitive development. Copyright 2012 APA, all rights reserved.

  7. Dissociative part-dependent biopsychosocial reactions to backward masked angry and neutral faces: An fMRI study of dissociative identity disorder.

    PubMed

    Schlumpf, Yolanda R; Nijenhuis, Ellert R S; Chalavi, Sima; Weder, Ekaterina V; Zimmermann, Eva; Luechinger, Roger; La Marca, Roberto; Reinders, A A T Simone; Jäncke, Lutz

    2013-01-01

    The Theory of Structural Dissociation of the Personality (TSDP) proposes that dissociative identity disorder (DID) patients are fixed in traumatic memories as "Emotional Parts" (EP), but mentally avoid these as "Apparently Normal Parts" of the personality (ANP). We tested the hypotheses that ANP and EP have different biopsychosocial reactions to subliminally presented angry and neutral faces, and that actors instructed and motivated to simulate ANP and EP react differently. Women with DID and matched healthy female actors (CON) were as ANP and EP (DIDanp, DIDep, CONanp, CONep) consecutively exposed to masked neutral and angry faces. Their brain activation was monitored using functional magnetic resonance imaging. The black-and-white dotted masks preceding and following the faces each had a centered colored dot, but in a different color. Participants were instructed to immediately press a button after a perceived color change. State anxiety was assessed after each run using the STAI-S. Final statistical analyses were conducted on 11 DID patients and 15 controls for differences in neural activity, and 13 DID patients and 15 controls for differences in behavior and psychometric measures. Differences between ANP and EP in DID patients and between DID and CON in the two dissociative parts of the personality were generally larger for neutral than for angry faces. The longest reaction times (RTs) existed for DIDep when exposed to neutral faces. Compared to DIDanp, DIDep was associated with more activation of the parahippocampal gyrus. Following neutral faces and compared to CONep, DIDep had more activation in the brainstem, face-sensitive regions, and motor-related areas. DIDanp showed a decreased activity all over the brain in the neutral and angry face condition. There were neither significant within differences nor significant between group differences in state anxiety. CON was not able to simulate genuine ANP and EP biopsychosocially. DID patients have dissociative part-dependent biopsychosocial reactions to masked neutral and angry faces. As EP, they are overactivated, and as ANP underactivated. The findings support TSDP. Major clinical implications are discussed.

  8. Dissociative part-dependent biopsychosocial reactions to backward masked angry and neutral faces: An fMRI study of dissociative identity disorder☆

    PubMed Central

    Schlumpf, Yolanda R.; Nijenhuis, Ellert R.S.; Chalavi, Sima; Weder, Ekaterina V.; Zimmermann, Eva; Luechinger, Roger; La Marca, Roberto; Reinders, A.A.T. Simone; Jäncke, Lutz

    2013-01-01

    Objective The Theory of Structural Dissociation of the Personality (TSDP) proposes that dissociative identity disorder (DID) patients are fixed in traumatic memories as “Emotional Parts” (EP), but mentally avoid these as “Apparently Normal Parts” of the personality (ANP). We tested the hypotheses that ANP and EP have different biopsychosocial reactions to subliminally presented angry and neutral faces, and that actors instructed and motivated to simulate ANP and EP react differently. Methods Women with DID and matched healthy female actors (CON) were as ANP and EP (DIDanp, DIDep, CONanp, CONep) consecutively exposed to masked neutral and angry faces. Their brain activation was monitored using functional magnetic resonance imaging. The black-and-white dotted masks preceding and following the faces each had a centered colored dot, but in a different color. Participants were instructed to immediately press a button after a perceived color change. State anxiety was assessed after each run using the STAI-S. Final statistical analyses were conducted on 11 DID patients and 15 controls for differences in neural activity, and 13 DID patients and 15 controls for differences in behavior and psychometric measures. Results Differences between ANP and EP in DID patients and between DID and CON in the two dissociative parts of the personality were generally larger for neutral than for angry faces. The longest reaction times (RTs) existed for DIDep when exposed to neutral faces. Compared to DIDanp, DIDep was associated with more activation of the parahippocampal gyrus. Following neutral faces and compared to CONep, DIDep had more activation in the brainstem, face-sensitive regions, and motor-related areas. DIDanp showed a decreased activity all over the brain in the neutral and angry face condition. There were neither significant within differences nor significant between group differences in state anxiety. CON was not able to simulate genuine ANP and EP biopsychosocially. Conclusions DID patients have dissociative part-dependent biopsychosocial reactions to masked neutral and angry faces. As EP, they are overactivated, and as ANP underactivated. The findings support TSDP. Major clinical implications are discussed. PMID:24179849

  9. Brain volume reductions in adolescent heavy drinkers.

    PubMed

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (p<.05), compared to continuous non-using teens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (p<.05). Findings suggest pre-existing volume differences in frontal brain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  10. Mapping the Proxies of Memory and Learning Function in Senior Adults with High-performing, Normal Aging and Neurocognitive Disorders.

    PubMed

    Lu, Hanna; Xi, Ni; Fung, Ada W T; Lam, Linda C W

    2018-06-09

    Memory and learning, as the core brain function, shows controversial results across studies focusing on aging and dementia. One of the reasons is because of the multi-faceted nature of memory and learning. However, there is still a dearth of comparable proxies with psychometric and morphometric portrait in clinical and non-clinical populations. We aim to investigate the proxies of memory and learning function with direct and derived measures and examine their associations with morphometric features in senior adults with different cognitive status. Based on two modality-driven tests, we assessed the component-specific memory and learning in the individuals with high performing (HP), normal aging, and neurocognitive disorders (NCD) (n = 488). Structural magnetic resonance imaging was used to measure the regional cortical thickness with surface-based morphometry analysis in a subsample (n = 52). Compared with HP elderly, the ones with normal aging and minor NCD showed declined recognition memory and working memory, whereas had better learning performance (derived scores). Meanwhile, major NCD patients showed more breakdowns of memory and learning function. The correlation between proxies of memory and learning and cortical thickness exhibited the overlapped and unique neural underpinnings. The proxies of memory and learning could be characterized by component-specific constructs with psychometric and morphometric bases. Overall, the constructs of memory are more likely related to the pathological changes, and the constructs of learning tend to reflect the cognitive abilities of compensation.

  11. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson's disease.

    PubMed

    Peng, Bo; Wang, Suhong; Zhou, Zhiyong; Liu, Yan; Tong, Baotong; Zhang, Tao; Dai, Yakang

    2017-06-09

    Machine learning methods have been widely used in recent years for detection of neuroimaging biomarkers in regions of interest (ROIs) and assisting diagnosis of neurodegenerative diseases. The innovation of this study is to use multilevel-ROI-features-based machine learning method to detect sensitive morphometric biomarkers in Parkinson's disease (PD). Specifically, the low-level ROI features (gray matter volume, cortical thickness, etc.) and high-level correlative features (connectivity between ROIs) are integrated to construct the multilevel ROI features. Filter- and wrapper- based feature selection method and multi-kernel support vector machine (SVM) are used in the classification algorithm. T1-weighted brain magnetic resonance (MR) images of 69 PD patients and 103 normal controls from the Parkinson's Progression Markers Initiative (PPMI) dataset are included in the study. The machine learning method performs well in classification between PD patients and normal controls with an accuracy of 85.78%, a specificity of 87.79%, and a sensitivity of 87.64%. The most sensitive biomarkers between PD patients and normal controls are mainly distributed in frontal lobe, parental lobe, limbic lobe, temporal lobe, and central region. The classification performance of our method with multilevel ROI features is significantly improved comparing with other classification methods using single-level features. The proposed method shows promising identification ability for detecting morphometric biomarkers in PD, thus confirming the potentiality of our method in assisting diagnosis of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Morphometric evaluation of parasagittal venous anatomy for intracranial approaches: a cadaveric study.

    PubMed

    Sayhan, Salih; Guvencer, Mustafa; Ozer, Ercan; Arda, Mehmet Nuri

    2012-01-01

    Obstruction of superior sagittal sinus (SSS) and collateral bridging veins is a well-known reason of postoperative brain edema and brain infarct, however, morphometric anatomic studies done in the light of surgical landmarks aren't sufficient in number. Object of this study is to describe venous structures related to SSS with silicon injected cadaveric models. This study was on 6 silicon injected cadaveric heads at Anatomy Department. Duramater was removed and veins on parasagittal area were examined. SSS morphology, veins draining into SSS, their size, number and distance were evaluated. Mean vein number draining into SSS is 2.9±1.5 at anterior to coronal suture (CS), between CS and vertex is 3.2±0.8, between vertex and lambdoid suture (LS) is 2.3±0.9, between LS and confluens sinuum 0.3±0.5. There was no statically difference between right and left sides (p=0.140, p > 0.05). Diameter of veins was 2.4±1.0 mm at anterior to CS, 3.0±1.2 mm at between CS and vertex, 2.4±0.7 mm at between vertex and LS, and 2.2±0.5 mm at between LS and confluens sinuum. Knowing details of anatomic structures of SSS and venous structures draining into it may protect the patients from many surgical complications. SSS and related structures with surgical landmarks are valuable for neurosurgeons.

  13. 2010 Aerospace Medical Certification Statistical Handbook

    DTIC Science & Technology

    2012-02-01

    type, hysterical- dissociative type, phobic, neurasthenic, depersonalization, hypochondriacal, adjustment disorder and other neurosis 12,178 2.03...Murmur – includes functional or physiological 10,301 1.72 Traumatic brain injury, concussion, amnesia , coma (30 minutes or more), loss of memory 10,197

  14. Influence of cadmium on ketamine-induced anesthesia and brain microsomal Na[sup +], K[sup +]-ATPase in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Y.; Sangiah, S.

    1994-10-01

    Cadmium is a rare metallic element, present in almost all types of food. Shellfish, wheat and rice accumulate very high amounts. Occupational and environmental pollutants are the main sources of cadmium exposure. Cadmium has a very long biologic half-life. Exposure to Cadmium causes anemia, hypertension, hepatic, renal, pulmonary and cardiovascular disorders as well as being a possible mutagen, teratogen and carcinogen. Acute cadmium treatment increased the hexobarbital sleeping time and inhibited hepatic microsomal drug metabolism due to a decrease in cytochrome P[sub 450] content. Cadmium potentiated ethanol-induced sleep in a dose-dependent manner. Cadmium has been shown to inhibit brain microsomalmore » Na[sup +], K[sup +]-ATPase activity in vitro and in vivo. Cadmium and ethanol additively inhibited brain Na[sup +], K[sup +]-ATPase. This might be a direct interaction between cadmium and ethanol in the central nervous system. Ketamine is an intravenous anesthetic agent. It acts on central nervous system and produces [open quotes]dissociative anaesthesia.[close quotes] Ketamine provides adequate surgical anesthesia and is used alone in humans and/or combination with xylazine, an [alpha][sub 2]-adrenergic agonist in animals. It produces CNS depression, analgesia, amnesia, immobility and a feeling of dissociation from the environment. Ketamine is a non-competitive antagonist of the NMDA subset of the glutamate receptor. This perhaps results in an increase in neuronal activity leading to disorganization of normal neurotransmission and produces dissociative anesthetic state. Because it is different from most other anesthetics, ketamine may be expected to have a unique effect on brain biochemical parameters and enzymes. The purpose of this study was to examine the interactions between cadmium and ketamine on the central nervous system and ATPase, in an attempt to further understand the mechanism of action. 12 refs., 3 figs.« less

  15. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior

    PubMed Central

    Frenois, François; Moreau, Maïté; Connor, Jason O’; Lawson, Marc; Micon, Charlotte; Lestage, Jacques; Kelley, Keith W.; Dantzer, Robert; Castanon, Nathalie

    2007-01-01

    Proinflammatory cytokines induce both sickness behavior and depression, but their respective neurobiological correlates are still poorly understood. The aim of the present study was therefore to identify in mice the neural substrates of sickness and depressive-like behavior induced by lipopolysaccharide (LPS, 830 μg/kg, intraperitoneal). LPS-induced depressive-like behavior was dissociated from LPS-induced sickness by testing mice either at 6 h (at which time sickness was expected to be maximal) or at 24 h post-LPS (at which time sickness was expected to be minimal and not to bias the measurement of depressive-like behavior). Concurrently, the expression of acute and chronic cellular reactivity markers (c-Fos and FosB/ΔFosB respectively) was mapped by immunohistochemistry at these two time points. In comparison to saline, LPS decreased motor activity in a new cage at 6 but not at 24 h. In contrast, the duration of immobility in the tail suspension test was increased at both 6 and 24 h. This dissociation between decreased motor activity and depressive-like behavior was confirmed at 24 h post-LPS in the forced swim test. LPS also decreased sucrose consumption at 24 and 48 h, despite normal food and water consumption by that time. At 24 h post-LPS, LPS-induced depressive-like behavior was associated with a delayed cellular activity (as assessed by FosB/ΔFosB immunostaining) in specific brain structures, particularly within the extended amygdala, hippocampus and hypothalamus, whereas c-Fos labeling was markedly decreased by that time in all the brain areas at 6 h post-LPS. These results provide the first evidence in favor of a functional dissociation between the brain structures that underlie cytokine-induced sickness behavior and cytokine-induced depressive-like behavior, and provide important cues about the neuroanatomical brain circuits through which cytokines could have an impact on affect. PMID:17482371

  16. Domain-specific control mechanisms for emotional and nonemotional conflict processing.

    PubMed

    Soutschek, Alexander; Schubert, Torsten

    2013-02-01

    Recent neuroimaging studies suggest that the human brain activates dissociable cognitive control networks in response to conflicts arising within the cognitive and the affective domain. The present study tested the hypothesis that nonemotional and emotional conflict regulation can also be dissociated on a functional level. For that purpose, we examined the effects of a working memory and an emotional Go/Nogo task on cognitive control in an emotional and a nonemotional variant of the Stroop paradigm. The data confirmed the hypothesized dissociation: Working memory efforts selectively suppressed conflict regulation in the nonemotional Stroop task, while the demands of an emotional Go/Nogo task impaired only conflict regulation in the emotional Stroop task. We conclude that these findings support a modular architecture of cognitive control with domain-specific conflict regulation processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle

    PubMed Central

    Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce

    2017-01-01

    MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324

  18. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action.

    PubMed

    Bissonette, Gregory B; Roesch, Matthew R

    2016-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum.

  19. Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions

    PubMed Central

    Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong

    2016-01-01

    The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093

  20. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action

    PubMed Central

    Roesch, Matthew R.

    2017-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum. PMID:26276036

  1. Gender Dimorphism of Brain Reward System Volumes in Alcoholism

    PubMed Central

    Sawyer, Kayle S.; Oscar-Berman, Marlene; Barthelemy, Olivier J.; Papadimitriou, George M.; Harris, Gordon J.; Makris, Nikos

    2017-01-01

    The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy over time. PMID:28285206

  2. [MRI for brain structure and function in patients with first-episode panic disorder].

    PubMed

    Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang

    2011-12-01

    To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.

  3. A population MRI brain template and analysis tools for the macaque.

    PubMed

    Seidlitz, Jakob; Sponheim, Caleb; Glen, Daniel; Ye, Frank Q; Saleem, Kadharbatcha S; Leopold, David A; Ungerleider, Leslie; Messinger, Adam

    2018-04-15

    The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non-human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single-subject processing. Here we present the "National Institute of Mental Health Macaque Template", or NMT for short. The NMT is a high-resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single-subject data analysis and for characterizations of neuroimaging results across subjects and studies. Copyright © 2017 ElsevierCompany. All rights reserved.

  4. Validation of voxel-based morphometry (VBM) based on MRI

    NASA Astrophysics Data System (ADS)

    Yang, Xueyu; Chen, Kewei; Guo, Xiaojuan; Yao, Li

    2007-03-01

    Voxel-based morphometry (VBM) is an automated and objective image analysis technique for detecting differences in regional concentration or volume of brain tissue composition based on structural magnetic resonance (MR) images. VBM has been used widely to evaluate brain morphometric differences between different populations, but there isn't an evaluation system for its validation until now. In this study, a quantitative and objective evaluation system was established in order to assess VBM performance. We recruited twenty normal volunteers (10 males and 10 females, age range 20-26 years, mean age 22.6 years). Firstly, several focal lesions (hippocampus, frontal lobe, anterior cingulate, back of hippocampus, back of anterior cingulate) were simulated in selected brain regions using real MRI data. Secondly, optimized VBM was performed to detect structural differences between groups. Thirdly, one-way ANOVA and post-hoc test were used to assess the accuracy and sensitivity of VBM analysis. The results revealed that VBM was a good detective tool in majority of brain regions, even in controversial brain region such as hippocampus in VBM study. Generally speaking, much more severity of focal lesion was, better VBM performance was. However size of focal lesion had little effects on VBM analysis.

  5. Variability of perceptual multistability: from brain state to individual trait

    PubMed Central

    Kleinschmidt, Andreas; Sterzer, Philipp; Rees, Geraint

    2012-01-01

    Few phenomena are as suitable as perceptual multistability to demonstrate that the brain constructively interprets sensory input. Several studies have outlined the neural circuitry involved in generating perceptual inference but only more recently has the individual variability of this inferential process been appreciated. Studies of the interaction of evoked and ongoing neural activity show that inference itself is not merely a stimulus-triggered process but is related to the context of the current brain state into which the processing of external stimulation is embedded. As brain states fluctuate, so does perception of a given sensory input. In multistability, perceptual fluctuation rates are consistent for a given individual but vary considerably between individuals. There has been some evidence for a genetic basis for these individual differences and recent morphometric studies of parietal lobe regions have identified neuroanatomical substrates for individual variability in spontaneous switching behaviour. Moreover, disrupting the function of these latter regions by transcranial magnetic stimulation yields systematic interference effects on switching behaviour, further arguing for a causal role of these regions in perceptual inference. Together, these studies have advanced our understanding of the biological mechanisms by which the brain constructs the contents of consciousness from sensory input. PMID:22371620

  6. Incrementally Dissociating Syntax and Semantics

    ERIC Educational Resources Information Center

    Brennan, Jonathan R.

    2010-01-01

    A basic challenge for research into the neurobiology of language is understanding how the brain combines words to make complex representations. Linguistic theory divides this task into several computations including syntactic structure building and semantic composition. The close relationship between these computations, however, poses a strong…

  7. Separate and overlapping brain areas encode subjective value during delay and effort discounting.

    PubMed

    Massar, Stijn A A; Libedinsky, Camilo; Weiyan, Chee; Huettel, Scott A; Chee, Michael W L

    2015-10-15

    Making decisions about rewards that involve delay or effort requires the integration of value and cost information. The brain areas recruited in this integration have been well characterized for delay discounting. However only a few studies have investigated how effort costs are integrated into value signals to eventually determine choice. In contrast to previous studies that have evaluated fMRI signals related to physical effort, we used a task that focused on cognitive effort. Participants discounted the value of delayed and effortful rewards. The value of cognitively effortful rewards was represented in the anterior portion of the inferior frontal gyrus and dorsolateral prefrontal cortex. Additionally, the value of the chosen option was encoded in the anterior cingulate cortex, caudate, and cerebellum. While most brain regions showed no significant dissociation between effort discounting and delay discounting, the ACC was significantly more activated in effort compared to delay discounting tasks. Finally, overlapping regions within the right orbitofrontal cortex and lateral temporal and parietal cortices encoded the value of the chosen option during both delay and effort discounting tasks. These results indicate that encoding of rewards discounted by cognitive effort and delay involves partially dissociable brain areas, but a common representation of chosen value is present in the orbitofrontal, temporal and parietal cortices. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Double dissociation of structure-function relationships in memory and fluid intelligence observed with magnetic resonance elastography.

    PubMed

    Johnson, Curtis L; Schwarb, Hillary; Horecka, Kevin M; McGarry, Matthew D J; Hillman, Charles H; Kramer, Arthur F; Cohen, Neal J; Barbey, Aron K

    2018-05-01

    Brain tissue mechanical properties, measured in vivo with magnetic resonance elastography (MRE), have proven to be sensitive metrics of neural tissue integrity. Recently, our group has reported on the positive relationship between viscoelasticity of the hippocampus and performance on a relational memory task in healthy young adults, which highlighted the potential of sensitive MRE measures for studying brain health and its relation to cognitive function; however, structure-function relationships outside of the hippocampus have not yet been explored. In this study, we examined the relationships between viscoelasticity of both the hippocampus and the orbitofrontal cortex and performance on behavioral assessments of relational memory and fluid intelligence. In a sample of healthy, young adults (N = 53), there was a significant, positive relationship between orbitofrontal cortex viscoelasticity and fluid intelligence performance (r = 0.42; p = .002). This finding is consistent with the previously reported relationship between hippocampal viscoelasticity and relational memory performance (r = 0.41; p = .002). Further, a significant double dissociation between the orbitofrontal-fluid intelligence relationship and the hippocampal-relational memory relationship was observed. These data support the specificity of regional brain MRE measures in support of separable cognitive functions. This report of a structure-function relationship observed with MRE beyond the hippocampus suggests a future role for MRE as a sensitive neuroimaging technique for brain mapping. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A Matlab user interface for the statistically assisted fluid registration algorithm and tensor-based morphometry

    NASA Astrophysics Data System (ADS)

    Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha

    2015-01-01

    Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.

  10. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people.

    PubMed

    Bridges, Leslie R; Andoh, Joycelyn; Lawrence, Andrew J; Khoong, Cheryl H L; Poon, Wayne; Esiri, Margaret M; Markus, Hugh S; Hainsworth, Atticus H

    2014-11-01

    The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.

  11. Superior colliculus resting state networks in post-traumatic stress disorder and its dissociative subtype.

    PubMed

    Olivé, Isadora; Densmore, Maria; Harricharan, Sherain; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth

    2018-01-01

    The innate alarm system (IAS) models the neurocircuitry involved in threat processing in posttraumatic stress disorder (PTSD). Here, we investigate a primary subcortical structure of the IAS model, the superior colliculus (SC), where the SC is thought to contribute to the mechanisms underlying threat-detection in PTSD. Critically, the functional connectivity between the SC and other nodes of the IAS remains unexplored. We conducted a resting-state fMRI study to investigate the functional architecture of the IAS, focusing on connectivity of the SC in PTSD (n = 67), its dissociative subtype (n = 41), and healthy controls (n = 50) using region-of-interest seed-based analysis. We observed group-specific resting state functional connectivity between the SC for both PTSD and its dissociative subtype, indicative of dedicated IAS collicular pathways in each group of patients. When comparing PTSD to its dissociative subtype, we observed increased resting state functional connectivity between the left SC and the right dorsolateral prefrontal cortex (DLPFC) in PTSD. The DLPFC is involved in modulation of emotional processes associated with active defensive responses characterising PTSD. Moreover, when comparing PTSD to its dissociative subtype, increased resting state functional connectivity was observed between the right SC and the right temporoparietal junction in the dissociative subtype. The temporoparietal junction is involved in depersonalization responses associated with passive defensive responses typical of the dissociative subtype. Our findings suggest that unique resting state functional connectivity of the SC parallels the unique symptom profile and defensive responses observed in PTSD and its dissociative subtype. Hum Brain Mapp 39:563-574, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Hemispheric lateralization of verbal and spatial working memory during adolescence

    PubMed Central

    Nagel, Bonnie J.; Herting, Megan M.; Maxwell, Emily C.; Bruno, Richard; Fair, Damien

    2013-01-01

    Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to assess lateralization. Furthermore, it is unclear whether this hemispheric lateralization is present during adolescence, a time in which WM skills are improving, and whether there is a developmental association with laterality of brain functioning. This study used comparable verbal and spatial WM n-back tasks during fMRI and a bootstrap analysis approach to calculate lateralization indices (LI) across several thresholds to examine the potential of a left-right WM hemispheric dissociation in healthy adolescents. We found significant left hemispheric lateralization for verbal WM, most notably in the frontal and parietal lobes, as well as right hemisphere lateralization for spatial WM, seen in frontal and temporal cortices. Although no significant relationships were observed between LI and age or LI and performance, significant age-related patterns of brain activity were demonstrated during both verbal and spatial WM. Specifically, increased adolescent age was associated with less activity in the default mode brain network during verbal WM. In contrast, increased adolescent age was associated with greater activity in task-positive posterior parietal cortex during spatial working memory. Our findings highlight the importance of utilizing non-biased statistical methods and comparable tasks for determining patterns of functional lateralization. Our findings also suggest that, while a left-right hemispheric dissociation of verbal and spatial WM is apparent by early adolescence, age-related changes in functional activation during WM are also present. PMID:23511846

  13. Characterization of EEG signals revealing covert cognition in the injured brain.

    PubMed

    Curley, William H; Forgacs, Peter B; Voss, Henning U; Conte, Mary M; Schiff, Nicholas D

    2018-05-01

    See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.

  14. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization

    PubMed Central

    Sasaki, Ryo; Angelaki, Dora E.

    2017-01-01

    We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. PMID:29030435

  15. Brain tissues atrophy is not always the best structural biomarker of physiological aging: A multimodal cross-sectional study.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2015-01-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.

  16. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    PubMed

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders.

  17. Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D

    2016-08-01

    The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.

  18. Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase.

    PubMed

    Monge, Claire; Beraud, Nathalie; Kuznetsov, Andrey V; Rostovtseva, Tatiana; Sackett, Dan; Schlattner, Uwe; Vendelin, Marko; Saks, Valdur A

    2008-11-01

    The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.

  19. 2011 Aerospace Medical Certification Statistical Handbook

    DTIC Science & Technology

    2013-01-01

    reconstruction§ 14,769 2.48 Asthma 12,777 2.15 Neuroses – hysterical, hysterical-conversion type, hysterical- dissociative type, phobic, neurasthenic...functional or physiological 10,086 1.70 Traumatic brain injury, concussion, amnesia , coma (30 minutes or more), loss of memory 10,010 1.68 * Excludes

  20. Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures.

    PubMed

    van der Kruijs, Sylvie J M; Bodde, Nynke M G; Vaessen, Maarten J; Lazeron, Richard H C; Vonck, Kristl; Boon, Paul; Hofman, Paul A M; Backes, Walter H; Aldenkamp, Albert P; Jansen, Jacobus F A

    2012-03-01

    Psychogenic non-epileptic seizures (PNES) resemble epileptic seizures, but lack epileptiform brain activity. Instead, the cause is assumed to be psychogenic. An abnormal coping strategy may be exhibited by PNES patients, as indicated by their increased tendency to dissociate. Investigation of resting-state networks may reveal altered routes of information and emotion processing in PNES patients. The authors therefore investigated whether PNES patients differ from healthy controls in their resting-state functional connectivity characteristics and whether these connections are associated with the tendency to dissociate. 11 PNES patients without psychiatric comorbidity and 12 healthy controls underwent task-related paradigms (picture-encoding and Stroop paradigms) and resting-state functional MRI (rsfMRI). Global cognitive performance was tested using the Raven's Matrices test and participants completed questionnaires for evaluating dissociation. Functional connectivity analysis on rsfMRI was based on seed regions extracted from task-related fMRI activation maps. The patients displayed a significantly lower cognitive performance and significantly higher dissociation scores. No significant differences were found between the picture-encoding and Stroop colour-naming activation maps between controls and patients with PNES. However, functional connectivity maps from the rsfMRI were statistically different. For PNES patients, stronger connectivity values between areas involved in emotion (insula), executive control (inferior frontal gyrus and parietal cortex) and movement (precentral sulcus) were observed, which were significantly associated with dissociation scores. The abnormal, strong functional connectivity in PNES patients provides a neurophysiological correlate for the underlying psychoform and somatoform dissociation mechanism where emotion can influence executive control, resulting in altered motor function (eg, seizure-like episodes).

  1. Dissociable intrinsic functional networks support noun-object and verb-action processing.

    PubMed

    Yang, Huichao; Lin, Qixiang; Han, Zaizhu; Li, Hongyu; Song, Luping; Chen, Lingjuan; He, Yong; Bi, Yanchao

    2017-12-01

    The processing mechanism of verbs-actions and nouns-objects is a central topic of language research, with robust evidence for behavioral dissociation. The neural basis for these two major word and/or conceptual classes, however, remains controversial. Two experiments were conducted to study this question from the network perspective. Experiment 1 found that nodes of the same class, obtained through task-evoked brain imaging meta-analyses, were more strongly connected with each other than nodes of different classes during resting-state, forming segregated network modules. Experiment 2 examined the behavioral relevance of these intrinsic networks using data from 88 brain-damaged patients, finding that across patients the relative strength of functional connectivity of the two networks significantly correlated with the noun-object vs. verb-action relative behavioral performances. In summary, we found that verbs-actions and nouns-objects are supported by separable intrinsic functional networks and that the integrity of such networks accounts for the relative noun-object- and verb-action-selective deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Selective increase of intention-based economic decisions by noninvasive brain stimulation to the dorsolateral prefrontal cortex.

    PubMed

    Nihonsugi, Tsuyoshi; Ihara, Aya; Haruno, Masahiko

    2015-02-25

    The intention behind another's action and the impact of the outcome are major determinants of human economic behavior. It is poorly understood, however, whether the two systems share a core neural computation. Here, we investigated whether the two systems are causally dissociable in the brain by integrating computational modeling, functional magnetic resonance imaging, and transcranial direct current stimulation experiments in a newly developed trust game task. We show not only that right dorsolateral prefrontal cortex (DLPFC) activity is correlated with intention-based economic decisions and that ventral striatum and amygdala activity are correlated with outcome-based decisions, but also that stimulation to the DLPFC selectively enhances intention-based decisions. These findings suggest that the right DLPFC is involved in the implementation of intention-based decisions in the processing of cooperative decisions. This causal dissociation of cortical and subcortical backgrounds may indicate evolutionary and developmental differences in the two decision systems. Copyright © 2015 the authors 0270-6474/15/53412-08$15.00/0.

  3. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  4. Matrix-Assisted Laser Desorption/Ionisation - High-Energy Collision-Induced Dissociation of Steroids: Analysis of Oxysterols in Rat Brain

    PubMed Central

    Wang, Yuqin; Hornshaw, Martin; Alvelius, Gunvor; Bodin, Karl; Liu, Suya; Sjövall, Jan; Griffiths, William J.

    2008-01-01

    Neutral steroids have traditionally been analysed by gas chromatography – mass spectrometry (GC-MS) after necessary derivatisation reactions. However, GC-MS is unsuitable for the analysis of many conjugated steroids and those with unsuspected functional groups. Here we describe an alternative analytical method specifically designed for the analysis of oxosteroids and those with a 3β-hydroxy-Δ5 or 5α-hydrogen-3β-hydroxy structure. Steroids were derivatised with Girard P (GP) hydrazine to give GP hydrazones which are charged species and readily analysed by matrix-assisted laser desorption/ionization mass spectrometry. The resulting [M]+ ions were then subjected to high-energy collision-induced dissociation on a tandem time-of-flight instrument. The product-ion spectra give structurally informative fragment-ion patterns. The sensitivity of the analytical method is such that steroids structures can be determined from low pg (low fmole) amounts of sample. The utility of the method has been demonstrated by the analysis of oxysterols extracted from rat brain. PMID:16383324

  5. Dissociable effects of motivation and expectancy on conflict processing: an fMRI study.

    PubMed

    Soutschek, Alexander; Stelzel, Christine; Paschke, Lena; Walter, Henrik; Schubert, Torsten

    2015-02-01

    Previous studies suggest that both motivation and task difficulty expectations activate brain regions associated with cognitive control. However, it remains an open question whether motivational and cognitive determinants of control have similar or dissociable impacts on conflict processing on a neural level. The current study tested the effects of motivation and conflict expectancy on activity in regions related to processing of the target and the distractor information. Participants performed a picture-word interference task in which we manipulated the size of performance-dependent monetary rewards (level of motivation) and the ratio of congruent to incongruent trials within a block (level of conflict expectancy). Our results suggest that motivation improves conflict processing by facilitating task-relevant stimulus processing and task difficulty expectations mainly modulate the processing of distractor information. We conclude that motivation and conflict expectancy engage dissociable control strategies during conflict resolution.

  6. When concepts lose their color: A case of object color knowledge impairment

    PubMed Central

    Stasenko, Alena; Garcea, Frank E.; Dombovy, Mary; Mahon, Bradford Z.

    2014-01-01

    Color is important in our daily interactions with objects, and plays a role in both low- and high-level visual processing. Previous neuropsychological studies have shown that color perception and object-color knowledge can doubly dissociate, and that both can dissociate from processing of object form. We present a case study of an individual who displayed an impairment for knowledge of the typical colors of objects, with preserved color perception and color naming. Our case also presented with a pattern of, if anything, worse performance for naming living items compared to nonliving things. The findings of the experimental investigation are evaluated in light of two theories of conceptual organization in the brain: the Sensory Functional Theory and the Domain-Specific Hypothesis. The dissociations observed in this case compel a model in which sensory/motor modality and semantic domain jointly constrain the organization of object knowledge. PMID:25058612

  7. Dissociation of Down syndrome and Alzheimer's disease effects with imaging.

    PubMed

    Matthews, Dawn C; Lukic, Ana S; Andrews, Randolph D; Marendic, Boris; Brewer, James; Rissman, Robert A; Mosconi, Lisa; Strother, Stephen C; Wernick, Miles N; Mobley, William C; Ness, Seth; Schmidt, Mark E; Rafii, Michael S

    2016-06-01

    Down Syndrome (DS) adults experience accumulation of Alzheimer's disease (AD)-like amyloid plaques and tangles and a high incidence of dementia and could provide an enriched population to study AD-targeted treatments. However, to evaluate effects of therapeutic intervention, it is necessary to dissociate the contributions of DS and AD from overall phenotype. Imaging biomarkers offer the potential to characterize and stratify patients who will worsen clinically but have yielded mixed findings in DS subjects. We evaluated 18F fluorodeoxyglucose positron emission tomography (PET), florbetapir PET, and structural magnetic resonance (sMR) image data from 12 nondemented DS adults using advanced multivariate machine learning methods. Our results showed distinctive patterns of glucose metabolism and brain volume enabling dissociation of DS and AD effects. AD-like pattern expression corresponded to amyloid burden and clinical measures. These findings lay groundwork to enable AD clinical trials with characterization and disease-specific tracking of DS adults.

  8. Dissociating Stimulus-Set and Response-Set in the Context of Task-Set Switching

    PubMed Central

    Kieffaber, Paul D.; Kruschke, John K.; Cho, Raymond Y.; Walker, Philip M.; Hetrick, William P.

    2014-01-01

    The primary aim of the present research was to determine how stimulus-set and response-set components of task-set contribute to switch costs and conflict processing. Three experiments are described wherein participants completed an explicitly cued task-switching procedure. Experiment 1 established that task switches requiring a reconfiguration of both stimulus- and response-set incurred larger residual switch costs than task switches requiring the reconfiguration of stimulus-set alone. Between-task interference was also drastically reduced for response-set conflict compared with stimulus-set conflict. A second experiment replicated these findings and demonstrated that stimulus- and response-conflict have dissociable effects on the “decision time” and “motor time” components of total response time. Finally, a third experiment replicated Experiment 2 and demonstrated that the stimulus- and response- components of task switching and conflict processing elicit dissociable neural activity as evidence by event-related brain potentials. PMID:22984990

  9. Brain damage and semantic category dissociations: is the animals category easier for males?

    PubMed

    Scotti, Stefania; Laiacona, Marcella; Capitani, Erminio

    2010-08-01

    Semantic dissociations show that biological stimuli present a further dissociation between animals and plant life. Almost all cases of greater impairment of plant life knowledge were males, suggesting a higher male familiarity with animals possibly derived from different daily activities. To verify this hypothesis, we collected familiarity ratings for normal males and females, for 288 animals, subdivided according to whether they were hunted/fished, or were used as food. The overall familiarity was almost identical between males and females. Males were more familiar with hunted animals, but for them also food animals were more familiar. There was not a consistent effect of hunting/fishing independently of the food/not food classification. The claim that males are generally more proficient with animals knowledge because most hunters/fishers are males seems rather simplistic, and the familiarity structure of the animals category is more complex. An evolution-based account is suggested for the category by sex interaction.

  10. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.B.; Reid, A.; Mahboubi, A.

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and lowmore » affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.« less

  11. The functional subdivision of the visual brain: Is there a real illusion effect on action? A multi-lab replication study.

    PubMed

    Kopiske, Karl K; Bruno, Nicola; Hesse, Constanze; Schenk, Thomas; Franz, Volker H

    2016-06-01

    It has often been suggested that visual illusions affect perception but not actions such as grasping, as predicted by the "two-visual-systems" hypothesis of Milner and Goodale (1995, The Visual Brain in Action, Oxford University press). However, at least for the Ebbinghaus illusion, relevant studies seem to reveal a consistent illusion effect on grasping (Franz & Gegenfurtner, 2008. Grasping visual illusions: consistent data and no dissociation. Cognitive Neuropsychology). Two interpretations are possible: either grasping is not immune to illusions (arguing against dissociable processing mechanisms for vision-for-perception and vision-for-action), or some other factors modulate grasping in ways that mimic a vision-for perception effect in actions. It has been suggested that one such factor may be obstacle avoidance (Haffenden Schiff & Goodale, 2001. The dissociation between perception and action in the Ebbinghaus illusion: nonillusory effects of pictorial cues on grasp. Current Biology, 11, 177-181). In four different labs (total N = 144), we conducted an exact replication of previous studies suggesting obstacle avoidance mechanisms, implementing conditions that tested grasping as well as multiple perceptual tasks. This replication was supplemented by additional conditions to obtain more conclusive results. Our results confirm that grasping is affected by the Ebbinghaus illusion and demonstrate that this effect cannot be explained by obstacle avoidance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Isolating dividing neural and brain tumour cells for gene expression profiling.

    PubMed

    Endaya, Berwini; Cavanagh, Brenton; Alowaidi, Faisal; Walker, Tom; de Pennington, Nicholas; Ng, Jin-Ming A; Lam, Paula Y P; Mackay-Sim, Alan; Neuzil, Jiri; Meedeniya, Adrian C B

    2016-01-15

    The characterisation of dividing brain cells is fundamental for studies ranging from developmental and stem cell biology, to brain cancers. Whilst there is extensive anatomical data on these dividing cells, limited gene transcription data is available due to technical constraints. We focally isolated dividing cells whilst conserving RNA, from culture, primary neural tissue and xenografted glioma tumours, using a thymidine analogue that enables gene transcription analysis. 5-ethynyl-2-deoxyuridine labels the replicating DNA of dividing cells. Once labelled, cultured cells and tissues were dissociated, fluorescently tagged with a revised click chemistry technique and the dividing cells isolated using fluorescence-assisted cell sorting. RNA was extracted and analysed using real time PCR. Proliferation and maturation related gene expression in neurogenic tissues was demonstrated in acutely and 3 day old labelled cells, respectively. An elevated expression of marker and pathway genes was demonstrated in the dividing cells of xenografted brain tumours, with the non-dividing cells showing relatively low levels of expression. BrdU "immune-labelling", the most frequently used protocol for detecting cell proliferation, causes complete denaturation of RNA, precluding gene transcription analysis. This EdU labelling technique, maintained cell integrity during dissociation, minimized copper exposure during labelling and used a cell isolation protocol that avoided cell lysis, thus conserving RNA. The technique conserves RNA, enabling the definition of cell proliferation-related changes in gene transcription of neural and pathological brain cells in cells harvested immediately after division, or following a period of maturation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development of Novel Patient-Derived Xenografts from Breast Cancer Brain Metastases

    PubMed Central

    Contreras-Zárate, María J.; Ormond, D. Ryan; Gillen, Austin E.; Hanna, Colton; Day, Nicole L.; Serkova, Natalie J.; Jacobsen, Britta M.; Edgerton, Susan M.; Thor, Ann D.; Borges, Virginia F.; Lillehei, Kevin O.; Graner, Michael W.; Kabos, Peter; Cittelly, Diana M.

    2017-01-01

    Brain metastases are an increasing burden among breast cancer patients, particularly for those with HER2+ and triple negative (TN) subtypes. Mechanistic insight into the pathophysiology of brain metastases and preclinical validation of therapies has relied almost exclusively on intracardiac injection of brain-homing cells derived from highly aggressive TN MDA-MB-231 and HER2+ BT474 breast cancer cell lines. Yet, these well characterized models are far from representing the tumor heterogeneity observed clinically and, due to their fast progression in vivo, their suitability to validate therapies for established brain metastasis remains limited. The goal of this study was to develop and characterize novel human brain metastasis breast cancer patient-derived xenografts (BM-PDXs) to study the biology of brain metastasis and to serve as tools for testing novel therapeutic approaches. We obtained freshly resected brain metastases from consenting donors with breast cancer. Tissue was immediately implanted in the mammary fat pad of female immunocompromised mice and expanded as BM-PDXs. Brain metastases from 3/4 (75%) TN, 1/1 (100%) estrogen receptor positive (ER+), and 5/9 (55.5%) HER2+ clinical subtypes were established as transplantable BM-PDXs. To facilitate tracking of metastatic dissemination using BM-PDXs, we labeled PDX-dissociated cells with EGFP-luciferase followed by reimplantation in mice, and generated a BM-derived cell line (F2-7). Immunohistologic analyses demonstrated that parental and labeled BM-PDXs retained expression of critical clinical markers such as ER, progesterone receptor, epidermal growth factor receptor, HER2, and the basal cell marker cytokeratin 5. Similarly, RNA sequencing analysis showed clustering of parental, labeled BM-PDXs and their corresponding cell line derivative. Intracardiac injection of dissociated cells from BM-E22-1, resulted in magnetic resonance imaging-detectable macrometastases in 4/8 (50%) and micrometastases (8/8) (100%) mice, suggesting that BM-PDXs remain capable of colonizing the brain at high frequencies. Brain metastases developed 8–12 weeks after ic injection, located to the brain parenchyma, grew around blood vessels, and elicited astroglia activation characteristic of breast cancer brain metastasis. These novel BM-PDXs represent heterogeneous and clinically relevant models to study mechanisms of brain metastatic colonization, with the added benefit of a slower progression rate that makes them suitable for preclinical testing of drugs in therapeutic settings. PMID:29164052

  14. Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    PubMed Central

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Hajnal, Joseph V.; Duncan, John S.; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander

    2012-01-01

    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study. PMID:22523539

  15. Cross-population myelination covariance of human cerebral cortex.

    PubMed

    Ma, Zhiwei; Zhang, Nanyin

    2017-09-01

    Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Aging: compensation or maturation?

    PubMed

    Aine, Cheryl J; Woodruff, Chad C; Knoefel, Janice E; Adair, John C; Hudson, David; Qualls, Clifford; Bockholt, Jeremy; Best, Elaine; Kovacevic, Sanja; Cobb, Wayne; Padilla, Denise; Hart, Blaine; Stephen, Julia M

    2006-10-01

    Neuroimaging studies of healthy aging often reveal differences in neural activation patterns between young and elderly groups for episodic memory tasks, even though there are no differences in behavioral performance. One explanation typically offered is that the elderly compensate for their memory deficiencies through the recruitment of additional prefrontal regions. The present study of healthy aging compared magnetoencephalographic (MEG) time-courses localized to specific cortical regions in two groups of subjects (20-29 years and >or=65 years) during a visual delayed-match-to-sample (DMS) task. MR morphometrics and neuropsychological test results were also examined with the hope of providing insight into the nature of the age-related differences. The behavioral results indicated no differences in performance between young and elderly groups. Although there was a main effect of age on the latency of the initial peak in primary/secondary visual cortex, these longer latencies were not correlated with the performance of elderly on the DMS task. The lateral occipital gyrus (LOG) revealed qualitatively different patterns of activity for the two age groups corroborated by neuropsychological test results. Morphometric results for the young versus elderly groups revealed less white (WM) and gray matter (GM) volumes in the frontal lobes of the elderly. When a group of middle-aged subjects (33-43 years) was included in the morphometric analyses, the middle-aged subjects revealed statistically greater WM volumes in frontal and parietal cortex suggesting immature WM tracts in the young. Perhaps our elderly utilized a different strategy compared to the young due to the different brain maturation levels of these groups.

  17. Morphometric and functional MRI changes in essential tremor with and without resting tremor.

    PubMed

    Nicoletti, Valentina; Cecchi, Paolo; Frosini, Daniela; Pesaresi, Ilaria; Fabbri, Serena; Diciotti, Stefano; Bonuccelli, Ubaldo; Cosottini, Mirco; Ceravolo, Roberto

    2015-03-01

    The etiopathogenesis of essential tremor (ET) is still debated, since the predominant role of circuit dysfunction or brain degenerative changes has not been clearly established. The relationship with Parkinson's Disease (PD) is also controversial and resting tremor occurs in up to 20 % of ET. We investigated the morphological and functional changes associated with ET and we assessed potential differences related to the presence (ET+R) or absence (ET-R) of resting tremor. 32 ET patients (18 ET+R; 14 ET-R) and 12 healthy controls (HC) underwent 3T-MRI protocol including Spoiled Gradient T1-weighted sequence for Voxel-Based Morphometry (VBM) analysis and functional MRI during continuous writing of "8" with right dominant hand. VBM analysis revealed no gray and white matter atrophy comparing ET patients to HC and ET+R to ET-R patients. HC showed a higher BOLD response with respect to ET patients in cerebellum and other brain areas pertaining to cerebello-thalamo-cortical circuit. Between-group activation maps showed higher activation in precentral gyrus bilaterally, right superior and inferior frontal gyri, left postcentral gyrus, superior and inferior parietal gyri, mid temporal and supramarginal gyri, cerebellum and internal globus pallidus in ET-R compared to ET+R patients. Our findings support that the dysfunction of cerebello-thalamo-cortical network is associated with ET in absence of any morphometric changes. The dysfunction of GPi in ET+R patients, consistently with data reported in PD resting tremor, might suggest a potential role of this structure in this type of tremor.

  18. Volumetric cerebral characteristics of children exposed to opiates and other substances in utero

    PubMed Central

    Walhovd, K. B.; Moe, V.; Slinning, K.; Due-Tønnessen, P.; Bjørnerud, A.; Dale, A. M.; van der Kouwe, A.; Quinn, B. T.; Kosofsky, B.; Greve, D.; Fischl, B.

    2007-01-01

    Morphometric cerebral characteristics were studied in children with prenatal poly-substance exposure (n =14) compared to controls (n = 14) without such exposure. Ten of the substance exposed children were born to mothers who used opiates (heroin) throughout the pregnancy. Groups were compared across 16 brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, lateral ventricles, inferior lateral ventricles, and the 3rd and 4th ventricles. In addition, continuous measurement of thickness across the entire cortical mantle was performed. Volumetric characteristics were correlated with ability and questionnaire assessments 2 years prior to scan. Compared to controls, the substance-exposed children had smaller intracranial and brain volumes, including smaller cerebral cortex, amygdala, accumbens area, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, and inferior lateral ventricles, and thinner cortex of the right anterior cingulate and lateral orbitofrontal cortex. Pallidum and putamen appeared especially reduced in the subgroup exposed to opiates. Only volumes of the right anterior cingulate, the right lateral orbitofrontal cortex and the accumbens area, showed some association with ability and questionnaire measures. The sample studied is rare, and hence small, so conclusions cannot be drawn with certainty. Morphometric group differences were observed, but associations with previous behavioral assessment were generally weak. Some of the volumetric differences, particularly thinner cortex in part of the right lateral orbitofrontal cortex, may be moderately involved in cognitive and behavioral difficulties more frequently experienced by opiate and poly-substance exposed children. PMID:17513131

  19. Head motion during MRI acquisition reduces gray matter volume and thickness estimates.

    PubMed

    Reuter, Martin; Tisdall, M Dylan; Qureshi, Abid; Buckner, Randy L; van der Kouwe, André J W; Fischl, Bruce

    2015-02-15

    Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Spatial Hyperschematia without Spatial Neglect after Insulo-Thalamic Disconnection

    PubMed Central

    Saj, Arnaud; Wilcke, Juliane C.; Gschwind, Markus; Emond, Héloïse; Assal, Frédéric

    2013-01-01

    Different spatial representations are not stored as a single multipurpose map in the brain. Right brain-damaged patients can show a distortion, a compression of peripersonal and extrapersonal space. Here we report the case of a patient with a right insulo-thalamic disconnection without spatial neglect. The patient, compared with 10 healthy control subjects, showed a constant and reliable increase of her peripersonal and extrapersonal egocentric space representations - that we named spatial hyperschematia - yet left her allocentric space representations intact. This striking dissociation shows that our interactions with the surrounding world are represented and processed modularly in the human brain, depending on their frame of reference. PMID:24302992

  1. Dissociable contributions of MRI volume reductions of superior temporal and fusiform gyri to symptoms and neuropsychology in schizophrenia.

    PubMed

    Nestor, Paul G; Onitsuka, Toshiaki; Gurrera, Ronald J; Niznikiewicz, Margaret; Frumin, Melissa; Shenton, Martha E; McCarley, Robert W

    2007-03-01

    We sought to identify the functional correlates of reduced magnetic resonance imaging (MRI) volumes of the superior temporal gyrus (STG) and the fusiform gyrus (FG) in patients with chronic schizophrenia. MRI volumes, positive/negative symptoms, and neuropsychological tests of facial memory and executive functioning were examined within the same subjects. The results indicated two distinct, dissociable brain structure-function relationships: (1) reduced left STG volume-positive symptoms-executive deficits; (2) reduced left FG-negative symptoms-facial memory deficits. STG and FG volume reductions may each make distinct contributions to symptoms and cognitive deficits of schizophrenia.

  2. [Dissociation of antihypertensive and metabolic response to losartan and spironolactone in experimental rats with metabolic sindrome].

    PubMed

    Machado, Hussen; Pinheiro, Helady Sanders; Terra, Marcella Martins; Guerra, Martha de Oliveira; de Paula, Rogerio Baumgratz; Peters, Vera Maria

    2012-01-01

    The treatment of arterial hypertension (AH) in patients with metabolic syndrome (MS) is a challenge, since non drug therapies are difficult to implement and optimal pharmacological treatment is not fully established. To assess the blockade of the rennin angiotensin aldosterone system (RAAS) in blood pressure (BP) in renal function and morphology in an experimental model of MS induced by high fat diet. Wistar rats were fed on high fat diet from the fourth week of life, for 20 weeks. The groups received Losartan or Spironolactone from the eighth week of life. We weekly evaluated the body weight and BP by tail plethysmography. At the end of the experiment oral glucose tolerance, lipid profile, creatinine clearance tests, and the direct measurement of BP were performed. A morphometric kidney analysis was performed. The administration of high-fat diet was associated with the development of MS, characterized by central fat accumulation, hypertension, hyperglycemia and hypertriglyceridemia. In this model there were no changes in renal histomorphometry. The blockade of angiotensin II (Ang II) receptor AT1 prevented the development of hypertension. The mineralocorticoid blockage did not have antihypertensive efficacy but was associated with reduction of abdominal fat. The dissociation of the antihypertensive response to the blockades of Ang II receptors and mineralocorticoid indicates the involvement of Ang II in the pathogenesis of hypertension associated with obesity. Reduction of central obesity with Spironolactone suggests the presence of mineralocorticoid adipogenic effect.

  3. A web system of virtual morphometric globes for Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.; Garov, A. S.; Karachevtseva, I. P.

    2018-09-01

    We developed a web system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15-arc-minutes gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. We derived global digital models of sixteen morphometric variables including horizontal, vertical, minimal, and maximal curvatures, as well as catchment area and topographic index. The morphometric models were integrated into the web system developed as a distributed application consisting of a client front-end and a server back-end. The following main functions are implemented in the system: (1) selection of a morphometric variable; (2) two-dimensional visualization of a calculated global morphometric model; (3) 3D visualization of a calculated global morphometric model on the sphere surface; (4) change of a globe scale; and (5) globe rotation by an arbitrary angle. Free, real-time web access to the system is provided. The web system of virtual morphometric globes can be used for geological and geomorphological studies of Mars and the Moon at the global, continental, and regional scales.

  4. Model-free and model-based reward prediction errors in EEG.

    PubMed

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Neural connectivity during reward expectation dissociates psychopathic criminals from non-criminal individuals with high impulsive/antisocial psychopathic traits

    PubMed Central

    von Borries, Katinka; Volman, Inge; Bulten, Berend Hendrik; Cools, Roshan; Verkes, Robbert-Jan

    2016-01-01

    Criminal behaviour poses a big challenge for society. A thorough understanding of the neurobiological mechanisms underlying criminality could optimize its prevention and management. Specifically,elucidating the neural mechanisms underpinning reward expectation might be pivotal to understanding criminal behaviour. So far no study has assessed reward expectation and its mechanisms in a criminal sample. To fill this gap, we assessed reward expectation in incarcerated, psychopathic criminals. We compared this group to two groups of non-criminal individuals: one with high levels and another with low levels of impulsive/antisocial traits. Functional magnetic resonance imaging was used to quantify neural responses to reward expectancy. Psychophysiological interaction analyses were performed to examine differences in functional connectivity patterns of reward-related regions. The data suggest that overt criminality is characterized, not by abnormal reward expectation per se, but rather by enhanced communication between reward-related striatal regions and frontal brain regions. We establish that incarcerated psychopathic criminals can be dissociated from non-criminal individuals with comparable impulsive/antisocial personality tendencies based on the degree to which reward-related brain regions interact with brain regions that control behaviour. The present results help us understand why some people act according to their impulsive/antisocial personality while others are able to behave adaptively despite reward-related urges. PMID:27217111

  6. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex

    PubMed Central

    Hofstetter, Christoph; Vuilleumier, Patrik

    2014-01-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  7. Picture Superiority Doubly Dissociates the ERP Correlates of Recollection and Familiarity

    ERIC Educational Resources Information Center

    Curran, Tim; Doyle, Jeanne

    2011-01-01

    Two experiments investigated the processes underlying the picture superiority effect on recognition memory. Studied pictures were associated with higher accuracy than studied words, regardless of whether test stimuli were words (Experiment 1) or pictures (Experiment 2). Event-related brain potentials (ERPs) recorded during test suggested that the…

  8. Linguistic Inability or Poor Performance: Dissociating Scalar Implicature Generation and Mismatch in the Developing Brain

    ERIC Educational Resources Information Center

    Shetreet, Einat; Chierchia, Gennaro; Gaab, Nadine

    2014-01-01

    Behavioral investigations of the acquisition of "some" have shown that children favor its logical interpretation ("some and possibly all"). Adults, however, use the pragmatic interpretation ("some but not all") derived by a scalar implicature. Certain experimental manipulations increase children's rates of adult-like…

  9. Pragmatic and executive functions in traumatic brain injury and right brain damage: An exploratory comparative study

    PubMed Central

    Zimmermann, Nicolle; Gindri, Gigiane; de Oliveira, Camila Rosa; Fonseca, Rochele Paz

    2011-01-01

    Objective To describe the frequency of pragmatic and executive deficits in right brain damaged (RBD) and in traumatic brain injury (TBI) patients, and to verify possible dissociations between pragmatic and executive functions in these two groups. Methods The sample comprised 7 cases of TBI and 7 cases of RBD. All participants were assessed by means of tasks from the Montreal Communication Evaluation Battery and executive functions tests including the Trail Making Test, Hayling Test, Wisconsin Card Sorting Test, semantic and phonemic verbal fluency tasks, and working memory tasks from the Brazilian Brief Neuropsychological Assessment Battery NEUPSILIN. Z-score was calculated and a descriptive analysis of frequency of deficits (Z< -1.5) was carried out. Results RBD patients presented with deficits predominantly on conversational and narrative discursive tasks, while TBI patients showed a wider spread pattern of pragmatic deficits. Regarding EF, RBD deficits included predominantly working memory and verbal initiation impairment. On the other hand, TBI individuals again exhibited a general profile of executive dysfunction, affecting mainly working memory, initiation, inhibition, planning and switching. Pragmatic and executive deficits were generally associated upon comparisons of RBD patients and TBI cases, except for two simple dissociations: two post-TBI cases showed executive deficits in the absence of pragmatic deficits. Discussion Pragmatic and executive deficits can be very frequent following TBI or vascular RBD. There seems to be an association between these abilities, indicating that although they can co-occur, a cause-consequence relationship cannot be the only hypothesis. PMID:29213762

  10. Postnatal Loss of Mef2c Results in Dissociation of Effects on Synapse Number and Learning and Memory.

    PubMed

    Adachi, Megumi; Lin, Pei-Yi; Pranav, Heena; Monteggia, Lisa M

    2016-07-15

    Myocyte enhancer factor 2 (MEF2) transcription factors play critical roles in diverse cellular processes during central nervous system development. Studies attempting to address the role of MEF2 in brain have largely relied on overexpression of a constitutive MEF2 construct that impairs memory formation or knockdown of MEF2 function that increases spine numbers and enhances memory formation. Genetic deletion of individual MEF2 isoforms in brain during embryogenesis demonstrated that Mef2c loss negatively regulates spine numbers resulting in learning and memory deficits, possibly as a result of its essential role in development. To investigate MEF2C function in brain further, we genetically deleted Mef2c during postnatal development in mice. We characterized these conditional Mef2c knockout mice in an array of behavioral paradigms and examined the impact of postnatal loss of Mef2c on long-term potentiation. We observed increased spine numbers in hippocampus of the conditional Mef2c knockout mice. However, the postnatal loss of Mef2c did not impact learning and memory, long-term potentiation, or social and repetitive behaviors. Our findings demonstrate a critical role for MEF2C in the regulation of spine numbers with a dissociation of learning and memory, synaptic plasticity, and measures of autism-related behaviors in postnatal brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, M.E.; Geiger, J.D.

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than didmore » mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.« less

  12. Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.

    PubMed

    Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H

    2018-06-16

    Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.

  13. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    PubMed

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However, it remains unclear whether this flexibly functional reconfiguration is intrinsic and occurs in the absence of an overt task. In this study, we propose a probabilistic framework to quantify the functional flexibility of each brain region using resting-state fMRI. We identify regions showing high flexibility mainly in the higher-order association cortex. In contrast, primary and unimodal visual and sensory areas show low flexibility. On the other hand, our findings reveal dissociable changes of frontal and parietal cortices in terms of inherent functional flexibility over the life span. Copyright © 2016 the authors 0270-6474/16/3610060-15$15.00/0.

  14. Rise and fall of the two visual systems theory.

    PubMed

    Rossetti, Yves; Pisella, Laure; McIntosh, Robert D

    2017-06-01

    Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson's disease.

    PubMed

    Hirano, Shigeki; Asanuma, Kotaro; Ma, Yilong; Tang, Chengke; Feigin, Andrew; Dhawan, Vijay; Carbon, Maren; Eidelberg, David

    2008-04-16

    We compared the metabolic and neurovascular effects of levodopa (LD) therapy for Parkinson's disease (PD). Eleven PD patients were scanned with both [15O]-H2O and [18F]-fluorodeoxyglucose positron emission tomography in the unmedicated state and during intravenous LD infusion. Images were used to quantify LD-mediated changes in the expression of motor- and cognition-related PD covariance patterns in scans of cerebral blood flow (CBF) and cerebral metabolic rate for glucose (CMR). These changes in network activity were compared with those occurring during subthalamic nucleus (STN) deep brain stimulation (DBS), and those observed in a test-retest PD control group. Separate voxel-based searches were conducted to identify individual regions with dissociated treatment-mediated changes in local cerebral blood flow and metabolism. We found a significant dissociation between CBF and CMR in the modulation of the PD motor-related network by LD treatment (p < 0.001). This dissociation was characterized by reductions in network activity in the CMR scans (p < 0.003) occurring concurrently with increases in the CBF scans (p < 0.01). Flow-metabolism dissociation was also evident at the regional level, with LD-mediated reductions in CMR and increases in CBF in the putamen/globus pallidus, dorsal midbrain/pons, STN, and ventral thalamus. CBF responses to LD in the putamen and pons were relatively greater in patients exhibiting drug-induced dyskinesia. In contrast, flow-metabolism dissociation was not present in the STN DBS treatment group or in the PD control group. These findings suggest that flow-metabolism dissociation is a distinctive feature of LD treatment. This phenomenon may be especially pronounced in patients with LD-induced dyskinesia.

  16. Dissociation between two subgroups of the suprachiasmatic nucleus affected by the number of damped oscillated neurons

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Yang, Huijie; Rohling, Jos HT

    2017-03-01

    In mammals, the main clock located in the suprachiasmatic nucleus (SCN) of the brain synchronizes the body rhythms to the environmental light-dark cycle. The SCN is composed of about 2 ×104 neurons which can be classified into three oscillatory phenotypes: self-sustained oscillators, damped oscillators, and arrhythmic neurons. Exposed to an artificial external light-dark cycle with a period of 22 h instead of 24 h , two subgroups of the SCN can become desynchronized (dissociated). The ventrolateral (VL) subgroup receives photic input and is entrained to the external cycle and a dorsomedial (DM) subgroup oscillates with its endogenous (i.e., free running) period and is synchronized to the external light-dark cycle through coupling from the VL. In the present study, we examined the effects of damped oscillatory neurons on the dissociation between VL and DM under an external 22 h cycle. We found that, with increasing numbers of damped oscillatory neurons located in the VL, the dissociation between the VL and DM emerges, but if these neurons are increasingly present in the DM the dissociation disappears. Hence, the damped oscillatory neurons in different subregions of the SCN play distinct roles in the dissociation between the two subregions of the SCN. This shows that synchrony between SCN subregions is affected by the number of damped oscillatory neurons and the location of these cells. We suggest that more knowledge on the number and the location of these cells may explain why some species do show a dissociation between the subregions and others do not, as the distribution of oscillatory types of neurons offers a plausible and novel candidate mechanism to explain heterogeneity.

  17. Responses of the Human Brain to Mild Dehydration and Rehydration Explored In Vivo by 1H-MR Imaging and Spectroscopy.

    PubMed

    Biller, A; Reuter, M; Patenaude, B; Homola, G A; Breuer, F; Bendszus, M; Bartsch, A J

    2015-12-01

    As yet, there are no in vivo data on tissue water changes and associated morphometric changes involved in the osmo-adaptation of normal brains. Our aim was to evaluate osmoadaptive responses of the healthy human brain to osmotic challenges of de- and rehydration by serial measurements of brain volume, tissue fluid, and metabolites. Serial T1-weighted and (1)H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, on 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. MR imaging data were analyzed by using FreeSurfer and LCModel. On dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%, on average. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. Continuous fluid ingestion of 1 L of water for 1 hour within the scanner lowered serum osmolality by 0.96% and increased brain tissue fluid by 0.43%, on average. Concomitantly, cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus increased. Changes in brain tissue fluid were related to volume changes of the whole brain, the white matter, and hypothalamus/thalamus. Only volume changes of the hypothalamus/thalamus significantly correlated with serum osmolality. This is the first study simultaneously evaluating changes in brain tissue fluid, metabolites, volume, and cortical thickness. Our results reflect cellular volume regulatory mechanisms at a macroscopic level and emphasize that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings. © 2015 by American Journal of Neuroradiology.

  18. HYDROXYCHLOROQUINE REDUCES BINDING OF ANTIPHOSPHOLIPID ANTIBODIES TO SYNCYTIOTROPHOBLASTS AND RESTORES ANNEXIN A5 EXPRESSION

    PubMed Central

    Wu, Xiao-Xuan; Guller, Seth; Rand, Jacob H.

    2011-01-01

    Objectives Antibody-mediated disruption of the annexin A5 (AnxA5) anticoagulant shield has been posited to be a thrombogenic mechanism in the antiphospholipid syndrome. We recently showed that the antimalarial drug, hydroxychloroquine, dissociates antiphospholipid immune complexes and restores AnxA5 binding to planar phospholipid bilayer. Using quantitative immunoassays, we demonstrated similar effects on BeWo trophoblasts. We therefore investigated the effects of the drug on localization of AnxA5 in primary cultures of human placental syncytiotrophoblasts (SCTs). Study Laser confocal microscopy with computer-based morphometric analysis was used to localize AnxA5 and antiphospholipid antibodies on SCTs exposed to polyclonal and monoclonal antiphospholipid and control IgGs. Results Hydroxychloroquine reversed the effects of the antiphospholipid antibodies on the SCTs by markedly reducing IgG binding and restoring AnxA5 expression. Conclusions These results provide the first morphologic evidence for this effect of hydroxychloroquine on human placental SCTs and support the possibility of novel treatments that target antiphospholipid antibody binding. PMID:21871597

  19. Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.

    PubMed

    Reichenbach, A; Eberhardt, W

    1988-01-01

    Müller (radial glial) cells were isolated from rabbit retinae by means of papaine and mechanical dissociation. Regional membrane properties of these cells were studied by intracellular microelectrode recordings of potential responses to local application of high K+ solutions. When different parts of the cell membrane were exposed to high K+, the amplitude of the depolarizing responses varied greatly, indicating a strong regional specialization of the membrane properties. Using morphometrical data of isolated rabbit Müller cells, and a simple circuit model, we calculated the endfoot membrane to constitute more than 80% of the total K+ conductance of the cell; the specific resistivity of the endfoot membrane was about 400 omega cm2, i.e., more than 40 times less than that of the membrane of the vitread process, which is immediately adjacent. This kind of regional membrane specialization seems to be optimized in respect to the Müller cells' ability to carry spatial buffering K+ currents.

  20. STRUCTURAL AND CONNECTOMIC NEUROIMAGING FOR THE PERSONALIZED STUDY OF LONGITUDINAL ALTERATIONS IN CORTICAL SHAPE, THICKNESS AND CONNECTIVITY AFTER TRAUMATIC BRAIN INJURY

    PubMed Central

    Irimia, A.; Goh, S.-Y. M.; Torgerson, C. M.; Vespa, P. M.; Van Horn, J. D.

    2014-01-01

    The integration of longitudinal brain structure analysis with neurointensive care strategies continues to be a substantial difficulty facing the traumatic brain injury (TBI) research community. For patient-tailored case analysis, it remains challenging to establish how lesion profile modulates longitudinal changes in cortical structure and connectivity, as well as how these changes lead to behavioral, cognitive and neural dysfunction. Additionally, despite the clinical potential of morphometric and connectomic studies, few analytic tools are available for their study in TBI. Here we review the state of the art in structural and connectomic neuroimaging for the study of TBI and illustrate a set of recently-developed, patient-tailored approaches for the study of TBI-related brain atrophy and alterations in morphometry as well as inter-regional connectivity. The ability of such techniques to quantify how injury modulates longitudinal changes in cortical shape, structure and circuitry is highlighted. Quantitative approaches such as these can be used to assess and monitor the clinical condition and evolution of TBI victims, and can have substantial translational impact, especially when used in conjunction with measures of neuropsychological function. PMID:24844173

  1. Gender dimorphism of brain reward system volumes in alcoholism.

    PubMed

    Sawyer, Kayle S; Oscar-Berman, Marlene; Barthelemy, Olivier J; Papadimitriou, George M; Harris, Gordon J; Makris, Nikos

    2017-05-30

    The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy with greater length of sobriety. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. A paradigm of undernourishing and neonatal rehabilitation in the newborn rat.

    PubMed

    Perez-Torrero, Esther; Torrerob, Carmen; Collado, Paloma; Salas, Manuel

    2003-04-01

    Perinatal undernutrition as a deficiency of nutrient availability, affects body and brain developmental processes and promotes recurrent health problems. Thus, altered mother-litter bonds and deficient environmental interactions may interfere with the brain pluripotential capabilities of the newborn. To gather information concerning the mechanisms underlying perinatal undernutrition we designed a paradigm of undernutrition and neonatal rehabilitation in the rat. An underfed group came from pregnant Wistar rats fed with 50% of the diet from G6 to G12 and with 60% from G13 until G21. After birth, pups were daily undernourished during 12 h daily by rotating a pair of lactating well-nourished dams which had one of their nipples subcutaneously ligated. The rehabilitated animals were undernourished pups neonatally fed by a pair of normally lactating dams. Controls received plenty of food during the pre- and neonatal periods. Pups were sacrificed at 12, 20 and 30 days of age. Perinatal underfeeding significantly reduced body and brain weights and neuronal morphometric parameters. Normal neonatal feeding in the newborn ameliorated the damages associated to food deprivation. The current undernourishing paradigm may be helpful to assess brain development alterations, as well as to study the compensatory mechanisms associated to salutary epigenetic influences.

  3. Poor Brain Growth in Extremely Preterm Neonates Long Before the Onset of Autism Spectrum Disorder Symptoms.

    PubMed

    Padilla, Nelly; Eklöf, Eva; Mårtensson, Gustaf E; Bölte, Sven; Lagercrantz, Hugo; Ådén, Ulrika

    2017-02-01

    Preterm infants face an increased risk of autism spectrum disorder (ASD). The relationship between autism during childhood and early brain development remains unexplored. We studied 84 preterm children born at <27 weeks of gestation, who underwent neonatal magnetic resonance imaging (MRI) at term and were screened for ASD at 6.5 years. Full-scale intelligence quotient was measured and neonatal morbidities were recorded. Structural brain morphometric studies were performed in 33 infants with high-quality MRI and no evidence of focal brain lesions. Twenty-three (27.4%) of the children tested ASD positive and 61 (72.6%) tested ASD negative. The ASD-positive group had a significantly higher frequency of neonatal complications than the ASD-negative group. In the subgroup of 33 children, the ASD infants had reduced volumes in the temporal, occipital, insular, and limbic regions and in the brain areas involved in social/behavior and salience integration. This study shows that the neonatal MRI scans of extremely preterm children, subsequently diagnosed with ASD at 6.5 years, showed brain structural alterations, localized in the regions that play a key role in the core features of autism. Early detection of these structural alterations may allow the early identification and intervention of children at risk of ASD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Abnormal Hippocampal Morphology in Dissociative Identity Disorder and Posttraumatic Stress Disorder Correlates with Childhood Trauma and Dissociative Symptoms

    PubMed Central

    Chalavi, Sima; Vissia, Eline M.; Giesen, Mechteld E.; Nijenhuis, Ellert R.S.; Draijer, Nel; Cole, James H.; Dazzan, Paola; Pariante, Carmine M.; Madsen, Sarah K.; Rajagopalan, Priya; Thompson, Paul M.; Toga, Arthur W.; Veltman, Dick J.; Reinders, Antje A.T.S.

    2015-01-01

    Smaller hippocampal volume has been reported in individuals with posttraumatic stress disorder (PTSD) and dissociative identity disorder (DID), but the regional specificity of hippocampal volume reductions and the association with severity of dissociative symptoms and/or childhood traumatization are still unclear. Brain structural MRI scans were analyzed for 33 outpatients (17 with DID and 16 with PTSD only) and 28 healthy controls (HC), all matched for age, sex, and education. DID patients met criteria for PTSD (PTSD-DID). Hippocampal global and subfield volumes and shape measurements were extracted. We found that global hippocampal volume was significantly smaller in all 33 patients (left: 6.75%; right: 8.33%) compared to HC. PTSD-DID (left: 10.19%; right: 11.37%) and PTSD-only with a history of childhood traumatization (left: 7.11%; right: 7.31%) had significantly smaller global hippocampal volume relative to HC. PTSD-DID had abnormal shape and significantly smaller volume in the CA2-3, CA4-DG and (pre)subiculum compared to HC. In the patient groups, smaller global and subfield hippocampal volumes significantly correlated with higher severity of childhood traumatization and dissociative symptoms. These findings support a childhood trauma-related etiology for abnormal hippocampal morphology in both PTSD and DID and can further the understanding of neurobiological mechanisms involved in these disorders. PMID:25545784

  5. Errors and conflict at the task level and the response level.

    PubMed

    Desmet, Charlotte; Fias, Wim; Hartstra, Egbert; Brass, Marcel

    2011-01-26

    In the last decade, research on error and conflict processing has become one of the most influential research areas in the domain of cognitive control. There is now converging evidence that a specific part of the posterior frontomedian cortex (pFMC), the rostral cingulate zone (RCZ), is crucially involved in the processing of errors and conflict. However, error-related research has focused primarily on a specific error type, namely, response errors. The aim of the present study was to investigate whether errors on the task level rely on the same neural and functional mechanisms. Here we report a dissociation of both error types in the pFMC: whereas response errors activate the RCZ, task errors activate the dorsal frontomedian cortex. Although this last region shows an overlap in activation for task and response errors on the group level, a closer inspection of the single-subject data is more in accordance with a functional anatomical dissociation. When investigating brain areas related to conflict on the task and response levels, a clear dissociation was perceived between areas associated with response conflict and with task conflict. Overall, our data support a dissociation between response and task levels of processing in the pFMC. In addition, we provide additional evidence for a dissociation between conflict and errors both at the response level and at the task level.

  6. Abnormal hippocampal morphology in dissociative identity disorder and post-traumatic stress disorder correlates with childhood trauma and dissociative symptoms.

    PubMed

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Cole, James H; Dazzan, Paola; Pariante, Carmine M; Madsen, Sarah K; Rajagopalan, Priya; Thompson, Paul M; Toga, Arthur W; Veltman, Dick J; Reinders, Antje A T S

    2015-05-01

    Smaller hippocampal volume has been reported in individuals with post-traumatic stress disorder (PTSD) and dissociative identity disorder (DID), but the regional specificity of hippocampal volume reductions and the association with severity of dissociative symptoms and/or childhood traumatization are still unclear. Brain structural magnetic resonance imaging scans were analyzed for 33 outpatients (17 with DID and 16 with PTSD only) and 28 healthy controls (HC), all matched for age, sex, and education. DID patients met criteria for PTSD (PTSD-DID). Hippocampal global and subfield volumes and shape measurements were extracted. We found that global hippocampal volume was significantly smaller in all 33 patients (left: 6.75%; right: 8.33%) compared with HC. PTSD-DID (left: 10.19%; right: 11.37%) and PTSD-only with a history of childhood traumatization (left: 7.11%; right: 7.31%) had significantly smaller global hippocampal volume relative to HC. PTSD-DID had abnormal shape and significantly smaller volume in the CA2-3, CA4-DG and (pre)subiculum compared with HC. In the patient groups, smaller global and subfield hippocampal volumes significantly correlated with higher severity of childhood traumatization and dissociative symptoms. These findings support a childhood trauma-related etiology for abnormal hippocampal morphology in both PTSD and DID and can further the understanding of neurobiological mechanisms involved in these disorders. © 2014 Wiley Periodicals, Inc.

  7. Visuomotor 'immunity' to perceptual illusion: a mismatch of attentional demands cannot explain the perception-action dissociation.

    PubMed

    Dewar, Michaela T; Carey, David P

    2006-01-01

    Recent findings of visuomotor immunity to perceptual illusions have been attributed to a perception-action division of labour within two anatomically segregated streams in the visual cortex. However, critics argue that such experimental findings are not valid and have suggested that the perception-action dissociations can be explained away by differential attentional/processing demands, rather than a functional dissociation in the neurologically intact brain: perceptual tasks require processing of the entire illusion display while visuomotor tasks only require processing the target that is acted upon. The present study examined whether grasping of the Müller-Lyer display would remain immune to the illusion when the task required the direction of attention or a related resource towards both Müller-Lyer shafts. Twelve participants were required to match and grasp two Müller-Lyer shafts bimanually (i.e. one with each hand). It was found that bimanual grasping was not significantly affected by the illusion, while there was a highly significant illusion effect on perceptual estimation by matching. Furthermore, it was established that this dissociation did not result from a differing baseline rate of change in manual estimation and grasping aperture to a change in physical object size. These findings provide further support for the postulated perception-action dissociation and fail to uphold the idea that grasping 'immunity' to the Müller-Lyer illusions merely represents an experimental artefact.

  8. Netrin-G1 regulates fear-like and anxiety-like behaviors in dissociable neural circuits.

    PubMed

    Zhang, Qi; Sano, Chie; Masuda, Akira; Ando, Reiko; Tanaka, Mika; Itohara, Shigeyoshi

    2016-06-27

    In vertebrate mammals, distributed neural circuits in the brain are involved in emotion-related behavior. Netrin-G1 is a glycosyl-phosphatidylinositol-anchored synaptic adhesion molecule whose deficiency results in impaired fear-like and anxiety-like behaviors under specific circumstances. To understand the cell type and circuit specificity of these responses, we generated netrin-G1 conditional knockout mice with loss of expression in cortical excitatory neurons, inhibitory neurons, or thalamic neurons. Genetic deletion of netrin-G1 in cortical excitatory neurons resulted in altered anxiety-like behavior, but intact fear-like behavior, whereas loss of netrin-G1 in inhibitory neurons resulted in attenuated fear-like behavior, but intact anxiety-like behavior. These data indicate a remarkable double dissociation of fear-like and anxiety-like behaviors involving netrin-G1 in excitatory and inhibitory neurons, respectively. Our findings support a crucial role for netrin-G1 in dissociable neural circuits for the modulation of emotion-related behaviors, and provide genetic models for investigating the mechanisms underlying the dissociation. The results also suggest the involvement of glycosyl-phosphatidylinositol-anchored synaptic adhesion molecules in the development and pathogenesis of emotion-related behavior.

  9. Dissociations among functional subsystems governing melody recognition after right-hemisphere damage.

    PubMed

    Steinke, W R; Cuddy, L L; Jakobson, L S

    2001-07-01

    This study describes an amateur musician, KB, who became amusic following a right-hemisphere stroke. A series of assessments conducted post-stroke revealed that KB functioned in the normal range for most verbal skills. However, compared with controls matched in age and music training, KB showed severe loss of pitch and rhythmic processing abilities. His ability to recognise and identify familiar instrumental melodies was also lost. Despite these deficits, KB performed remarkably well when asked to recognise and identify familiar song melodies presented without accompanying lyrics. This dissociation between the ability to recognise/identify song vs. instrumental melodies was replicated across different sets of musical materials, including newly learned melodies. Analyses of the acoustical and musical features of song and instrumental melodies discounted an explanation of the dissociation based on these features alone. Rather, the results suggest a functional dissociation resulting from a focal brain lesion. We propose that, in the case of song melodies, there remains sufficient activation in KB's melody analysis system to coactivate an intact representation of both associative information and the lyrics in the speech lexicon, making recognition and identification possible. In the case of instrumental melodies, no such associative processes exist; thus recognition and identification do not occur.

  10. Dissociating sensory from decision processes in human perceptual decision making.

    PubMed

    Mostert, Pim; Kok, Peter; de Lange, Floris P

    2015-12-15

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.

  11. Dissociating sensory from decision processes in human perceptual decision making

    PubMed Central

    Mostert, Pim; Kok, Peter; de Lange, Floris P.

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393

  12. Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization.

    PubMed

    Brown, Robyn Mary; Short, Jennifer Lynn; Lawrence, Andrew John

    2010-12-29

    Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.

  13. Lion's Mane, Hericium erinaceus and Tiger Milk, Lignosus rhinocerotis (Higher Basidiomycetes) Medicinal Mushrooms Stimulate Neurite Outgrowth in Dissociated Cells of Brain, Spinal Cord, and Retina: An In Vitro Study.

    PubMed

    Samberkar, Snehlata; Gandhi, Sivasangkary; Naidu, Murali; Wong, Kah-Hui; Raman, Jegadeesh; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative disease is defined as a deterioration of the nervous system in the intellectual and cognitive capabilities. Statistics show that more than 80-90 million individuals age 65 and above in 2050 may be affected by neurodegenerative conditions like Alzheimer's and Parkinson's disease. Studies have shown that out of 2000 different types of edible and/or medicinal mushrooms, only a few countable mushrooms have been selected until now for neurohealth activity. Hericium erinaceus is one of the well-established medicinal mushrooms for neuronal health. It has been documented for its regenerative capability in peripheral nerve. Another mushroom used as traditional medicine is Lignosus rhinocerotis, which has been used for various illnesses. It has been documented for its neurite outgrowth potential in PC12 cells. Based on the regenerative capabilities of both the mushrooms, priority was given to select them for our study. The aim of this study was to investigate the potential of H. erinaceus and L. rhinocerotis to stimulate neurite outgrowth in dissociated cells of brain, spinal cord, and retina from chick embryo when compared to brain derived neurotrophic factor (BDNF). Neurite outgrowth activity was confirmed by the immu-nofluorescence method in all tissue samples. Treatment with different concentrations of extracts resulted in neuronal differentiation and neuronal elongation. H. erinaceus extract at 50 µg/mL triggered neurite outgrowth at 20.47%, 22.47%, and 21.70% in brain, spinal cord, and retinal cells. L. rhinocerotis sclerotium extract at 50 µg/mL induced maximum neurite outgrowth of 20.77% and 24.73% in brain and spinal cord, whereas 20.77% of neurite outgrowth was observed in retinal cells at 25 µg/mL, respectively.

  14. Limitations on the developing preterm brain: impact of periventricular white matter lesions on brain connectivity and cognition.

    PubMed

    Pavlova, Marina A; Krägeloh-Mann, Ingeborg

    2013-04-01

    Brain lesions to the white matter in peritrigonal regions, periventricular leukomalacia, in children who were born prematurely represent an important model for studying limitations on brain development. The lesional pattern is of early origin and bilateral, that constrains the compensatory potential of the brain. We suggest that (i) topography and severity of periventricular lesions may have a long-term predictive value for cognitive and social capabilities in preterm birth survivors; and (ii) periventricular lesions may impact cognitive and social functions by affecting brain connectivity, and thereby, the dissociable neural networks underpinning these functions. A further pathway to explore is the relationship between cerebral palsy and cognitive outcome. Restrictions caused by motor disability may affect active exploration of surrounding and social participation that may in turn differentially impinge on cognitive development and social cognition. As an outline for future research, we underscore sex differences, as the sex of a preterm newborn may shape the mechanisms by which the developing brain is affected.

  15. A morphometric signature of depressive symptoms in unmedicated patients with mood disorders.

    PubMed

    Wise, T; Marwood, L; Perkins, A M; Herane-Vives, A; Williams, S C R; Young, A H; Cleare, A J; Arnone, D

    2018-04-22

    A growing literature indicates that unipolar depression and bipolar depression are associated with alterations in grey matter volume. However, it is unclear to what degree these patterns of morphometric change reflect symptom dimensions. Here, we aimed to predict depressive symptoms and hypomanic symptoms based on patterns of grey matter volume using machine learning. We used machine learning methods combined with voxel-based morphometry to predict depressive and self-reported hypomanic symptoms from grey matter volume in a sample of 47 individuals with unmedicated unipolar and bipolar depression. We were able to predict depressive severity from grey matter volume in the anteroventral bilateral insula in both unipolar depression and bipolar depression. Self-reported hypomanic symptoms did not predict grey matter loss with a significant degree of accuracy. The results of this study suggest that patterns of grey matter volume alteration in the insula are associated with depressive symptom severity across unipolar and bipolar depression. Studies using other modalities and exploring other brain regions with a larger sample are warranted to identify other systems that may be associated with depressive and hypomanic symptoms across affective disorders. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    PubMed

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  17. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks

    PubMed Central

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement. PMID:29725294

  18. Long-term penile morphometric alterations in patients treated with robot-assisted versus open radical prostatectomy.

    PubMed

    Capogrosso, P; Ventimiglia, E; Cazzaniga, W; Stabile, A; Pederzoli, F; Boeri, L; Gandaglia, G; Dehò, F; Briganti, A; Montorsi, F; Salonia, A

    2018-01-01

    Neglected side effects after radical prostatectomy have been previously reported. In this context, the prevalence of penile morphometric alterations has never been assessed in robot-assisted radical prostatectomy series. We aimed to assess prevalence of and predictors of penile morphometric alterations (i.e. penile shortening or penile morphometric deformation) at long-term follow-up in patients submitted to either robot-assisted (robot-assisted radical prostatectomy) or open radical prostatectomy. Sexually active patients after either robot-assisted radical prostatectomy or open radical prostatectomy prospectively completed a 28-item questionnaire, with sensitive issues regarding sexual function, namely orgasmic functioning, climacturia and changes in morphometric characteristics of the penis. Only patients with a post-operative follow-up ≥ 24 months were included. Patients submitted to either adjuvant or salvage therapies or those who refused to comprehensively complete the questionnaire were excluded from the analyses. A propensity-score matching analysis was implemented to control for baseline differences between groups. Logistic regression models tested potential predictors of penile morphometric alterations at long-term post-operative follow-up. Overall, 67 (50%) and 67 (50%) patients were included after open radical prostatectomy or robot-assisted radical prostatectomy, respectively. Self-rated post-operative penile shortening and penile morphometric deformation were reported by 75 (56%) and 29 (22.8%) patients, respectively. Rates of penile shortening and penile morphometric deformation were not different after open radical prostatectomy and robot-assisted radical prostatectomy [all p > 0.5]. At univariable analysis, self-reported penile morphometric alterations (either penile shortening or penile morphometric deformation) were significantly associated with baseline international index of erectile function-erectile function scores, body mass index, post-operative erectile function recovery, year of surgery and type of surgery (all p < 0.05). At multivariable analysis, robot-assisted radical prostatectomy was independently associated with a lower risk of post-operative penile morphometric alterations (OR: 0.38; 95% CI: 0.16-0.93). Self-perceived penile morphometric alterations were reported in one of two patients after radical prostatectomy at long-term follow-up, with open surgery associated with a potential higher risk of this self-perception. © 2017 American Society of Andrology and European Academy of Andrology.

  19. Is dissociative amnesia a culture-bound syndrome? Findings from a survey of historical literature.

    PubMed

    Pope, Harrison G; Poliakoff, Michael B; Parker, Michael P; Boynes, Matthew; Hudson, James I

    2007-02-01

    Natural human psychological phenomena, such as depression, anxiety, delusions, hallucinations and dementia, are documented across the ages in both fictional and non-fictional works. We asked whether 'dissociative amnesia' was similarly documented throughout history. We advertised in three languages on more than 30 Internet web sites and discussion groups, and also in print, offering US$1000 to the first individual who could find a case of dissociative amnesia for a traumatic event in any fictional or non-fictional work before 1800. Our search generated more than 100 replies; it produced numerous examples of ordinary forgetfulness, infantile amnesia and biological amnesia throughout works in English, other European languages, Latin, Greek, Arabic, Sanskrit and Chinese before 1800, but no descriptions of individuals showing dissociative amnesia for a traumatic event. If dissociative amnesia for traumatic events were a natural psychological phenomenon, an innate capacity of the brain, then throughout the millennia before 1800, individuals would presumably have witnessed such cases and portrayed them in non-fictional works or in fictional characters. The absence of cases before 1800 cannot reasonably be explained by arguing that our ancestors understood or described psychological phenomena so differently as to make them unrecognizable to modern readers because spontaneous complete amnesia for a major traumatic event, in an otherwise lucid individual, is so graphic that it would be recognizable even through a dense veil of cultural interpretation. Therefore, it appears that dissociative amnesia is not a natural neuropsychological phenomenon, but instead a culture-bound syndrome, dating from the nineteenth century.

  20. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  1. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. What is extinguished in auditory extinction?

    PubMed

    Deouell, L Y; Soroker, N

    2000-09-11

    Extinction is a frequent sequel of brain damage, whereupon patients disregard (extinguish) a contralesional stimulus, and report only the more ipsilesional stimulus, of a pair of stimuli presented simultaneously. We investigated the possibility of a dissociation between the detection and the identification of extinguished phonemes. Fourteen right hemisphere damaged patients with severe auditory extinction were examined using a paradigm that separated the localization of stimuli and the identification of their phonetic content. Patients reported the identity of left-sided phonemes, while extinguishing them at the same time, in the traditional sense of the term. This dissociation suggests that auditory extinction is more about acknowledging the existence of a stimulus in the contralesional hemispace than about the actual processing of the stimulus.

  3. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-07-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.

  4. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    PubMed Central

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-01-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690

  5. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization.

    PubMed

    Sasaki, Ryo; Angelaki, Dora E; DeAngelis, Gregory C

    2017-11-15

    We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. Copyright © 2017 the authors 0270-6474/17/3711204-16$15.00/0.

  6. The skull roof tracks the brain during the evolution and development of reptiles including birds.

    PubMed

    Fabbri, Matteo; Mongiardino Koch, Nicolás; Pritchard, Adam C; Hanson, Michael; Hoffman, Eva; Bever, Gabriel S; Balanoff, Amy M; Morris, Zachary S; Field, Daniel J; Camacho, Jasmin; Rowe, Timothy B; Norell, Mark A; Smith, Roger M; Abzhanov, Arhat; Bhullar, Bhart-Anjan S

    2017-10-01

    Major transformations in brain size and proportions, such as the enlargement of the brain during the evolution of birds, are accompanied by profound modifications to the skull roof. However, the hypothesis of concerted evolution of shape between brain and skull roof over major phylogenetic transitions, and in particular of an ontogenetic relationship between specific regions of the brain and the skull roof, has never been formally tested. We performed 3D morphometric analyses to examine the deep history of brain and skull-roof morphology in Reptilia, focusing on changes during the well-documented transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds. Non-avialan taxa cluster tightly together in morphospace, whereas Archaeopteryx and crown birds occupy a separate region. There is a one-to-one correspondence between the forebrain and frontal bone and the midbrain and parietal bone. Furthermore, the position of the forebrain-midbrain boundary correlates significantly with the position of the frontoparietal suture across the phylogenetic breadth of Reptilia and during the ontogeny of individual taxa. Conservation of position and identity in the skull roof is apparent, and there is no support for previous hypotheses that the avian parietal is a transformed postparietal. The correlation and apparent developmental link between regions of the brain and bony skull elements are likely to be ancestral to Tetrapoda and may be fundamental to all of Osteichthyes, coeval with the origin of the dermatocranium.

  7. Episodic Memory in Detoxified Alcoholics: Contribution of Grey Matter Microstructure Alteration

    PubMed Central

    Chanraud, Sandra; Leroy, Claire; Martelli, Catherine; Kostogianni, Nikoleta; Delain, Françoise; Aubin, Henri-Jean; Reynaud, Michel; Martinot, Jean-Luc

    2009-01-01

    Even though uncomplicated alcoholics may likely have episodic memory deficits, discrepancies exist regarding to the integrity of brain regions that underlie this function in healthy subjects. Possible relationships between episodic memory and 1) brain microstructure assessed by magnetic resonance diffusion tensor imaging (DTI), 2) brain volumes assessed by voxel-based morphometry (VBM) were investigated in uncomplicated, detoxified alcoholics. Diffusion and morphometric analyses were performed in 24 alcohol dependent men without neurological or somatic complications and in 24 healthy men. The mean apparent coefficient of diffusion (ADC) and grey matter volumes were measured in the whole brain. Episodic memory performance was assessed using a French version of the Free and Cued Selective Reminding Test (FCSRT). Correlation analyses between verbal episodic memory, brain microstructure, and brain volumes were carried out using SPM2 software. In those with alcohol dependence, higher ADC was detected mainly in frontal, temporal and parahippocampal regions, and in the cerebellum. In alcoholics, regions with higher ADC typically also had lower grey matter volume. Low verbal episodic memory performance in alcoholism was associated with higher mean ADC in parahippocampal areas, in frontal cortex and in the left temporal cortex; no correlation was found between regional volumes and episodic memory scores. Regression analyses for the control group were not significant. These findings support the hypothesis that regional microstructural but no macrostructural alteration of the brain might be responsible, at least in part, for episodic memory deficits in alcohol dependence. PMID:19707568

  8. [Patterns of brain ageing].

    PubMed

    Fernández Viadero, Carlos; Verduga Vélez, Rosario; Crespo Santiago, Dámaso

    2017-06-01

    Neuroplasticity lends the brain a strong ability to adapt to changes in the environment that occur during ageing. Animal models have shown alterations in neurotransmission and imbalances in the expression of neural growth factor. Changes at the morphometric level are not constant. Volume loss is related to alterations in neuroplasticity and involvement of the cerebral neuropil. Although there are no conclusive data, physical exercise improves the molecular, biological, functional and behavioural-cognitive changes associated with brain ageing. The aged human brain has been described as showing weight and volume loss and increased ventricular size. However, neuroimaging shows significant variation and many healthy elderly individuals show no significant macroscopic changes. In most brain regions, the number of neurons remains stable throughout life. Neuroplasticity does not disappear with ageing, and changes in dendritic arborization and the density of spines and synapses are more closely related to brain activity than to age. At the molecular level, although the presence of altered Tau and β-amyloid proteins is used as a biomarker of neurodegenerative disease, postmortem studies show that these abnormal proteins are common in the brains of elderly people without dementia. Finally, due to the relationship between neurodegenerative diseases and metabolic alterations, this article analyses the influence of insulin-like growth factor and ageing, both in animal models and in humans, and the possible neuroprotective effect of insulin. Copyright © 2017 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Premorbid Expertise Produces Category-Specific Impairment in a Domain-General Semantic Disorder

    ERIC Educational Resources Information Center

    Jefferies, Elizabeth; Rogers, Timothy T.; Ralph, Matthew A. Lambon

    2011-01-01

    For decades, category-specific semantic impairment--i.e., better comprehension of items from one semantic category than another--has been the driving force behind many claims about the organisation of conceptual knowledge in the brain. Double dissociations between patients with category-specific disorders are widely interpreted as showing that…

  10. Explicit Pre-Training Instruction Does Not Improve Implicit Perceptual-Motor Sequence Learning

    ERIC Educational Resources Information Center

    Sanchez, Daniel J.; Reber, Paul J.

    2013-01-01

    Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key…

  11. Dissociated Overt and Covert Recognition as an Emergent Property of Lesioned Attractor Networks

    DTIC Science & Technology

    1992-01-01

    1989). Prosopagnosia and object agnosia without covert recognition. Neuropsychologia, 27, 179-191. Rafal, R., Smith, J., Krantz, J., Cohen, A., Brennan...recognition in patients with face agnosia . RphaiorA2 Brain Research, 30, 235-249. 55 Volpe, B. T., LeDoux, J. A., and Gazzaniga, M. S. (1979). Information

  12. Words, Hemispheres, and Processing Mechanisms: A Response to Marsolek and Deason (2007)

    ERIC Educational Resources Information Center

    Ellis, Andrew W.; Ansorge, Lydia; Lavidor, Michal

    2007-01-01

    Ellis, Ansorge and Lavidor (2007) [Ellis, A.W., Ansorge, L., & Lavidor, M. (2007). Words, hemispheres, and dissociable subsystems: The effects of exposure duration, case alternation, priming and continuity of form on word recognition in the left and right visual fields. "Brain and Language," 103, 292-303.] presented three experiments investigating…

  13. Watershed-based Morphometric Analysis: A Review

    NASA Astrophysics Data System (ADS)

    Sukristiyanti, S.; Maria, R.; Lestiana, H.

    2018-02-01

    Drainage basin/watershed analysis based on morphometric parameters is very important for watershed planning. Morphometric analysis of watershed is the best method to identify the relationship of various aspects in the area. Despite many technical papers were dealt with in this area of study, there is no particular standard classification and implication of each parameter. It is very confusing to evaluate a value of every morphometric parameter. This paper deals with the meaning of values of the various morphometric parameters, with adequate contextual information. A critical review is presented on each classification, the range of values, and their implications. Besides classification and its impact, the authors also concern about the quality of input data, either in data preparation or scale/the detail level of mapping. This review paper hopefully can give a comprehensive explanation to assist the upcoming research dealing with morphometric analysis.

  14. Habit formation.

    PubMed

    Smith, Kyle S; Graybiel, Ann M

    2016-03-01

    Habits, both good ones and bad ones, are pervasive in animal behavior. Important frameworks have been developed to understand habits through psychological and neurobiological studies. This work has given us a rich understanding of brain networks that promote habits, and has also helped us to understand what constitutes a habitual behavior as opposed to a behavior that is more flexible and prospective. Mounting evidence from studies using neural recording methods suggests that habit formation is not a simple process. We review this evidence and take the position that habits could be sculpted from multiple dissociable changes in neural activity. These changes occur across multiple brain regions and even within single brain regions. This strategy of classifying components of a habit based on different brain signals provides a potentially useful new way to conceive of disorders that involve overly fixed behaviors as arising from different potential dysfunctions within the brain's habit network.

  15. Habit formation

    PubMed Central

    Smith, Kyle S.; Graybiel, Ann M.

    2016-01-01

    Habits, both good ones and bad ones, are pervasive in animal behavior. Important frameworks have been developed to understand habits through psychological and neurobiological studies. This work has given us a rich understanding of brain networks that promote habits, and has also helped us to understand what constitutes a habitual behavior as opposed to a behavior that is more flexible and prospective. Mounting evidence from studies using neural recording methods suggests that habit formation is not a simple process. We review this evidence and take the position that habits could be sculpted from multiple dissociable changes in neural activity. These changes occur across multiple brain regions and even within single brain regions. This strategy of classifying components of a habit based on different brain signals provides a potentially useful new way to conceive of disorders that involve overly fixed behaviors as arising from different potential dysfunctions within the brain's habit network. PMID:27069378

  16. Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex

    PubMed Central

    Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik

    2012-01-01

    Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444

  17. An open resource for transdiagnostic research in pediatric mental health and learning disorders

    PubMed Central

    Alexander, Lindsay M.; Escalera, Jasmine; Ai, Lei; Andreotti, Charissa; Febre, Karina; Mangone, Alexander; Vega-Potler, Natan; Langer, Nicolas; Alexander, Alexis; Kovacs, Meagan; Litke, Shannon; O'Hagan, Bridget; Andersen, Jennifer; Bronstein, Batya; Bui, Anastasia; Bushey, Marijayne; Butler, Henry; Castagna, Victoria; Camacho, Nicolas; Chan, Elisha; Citera, Danielle; Clucas, Jon; Cohen, Samantha; Dufek, Sarah; Eaves, Megan; Fradera, Brian; Gardner, Judith; Grant-Villegas, Natalie; Green, Gabriella; Gregory, Camille; Hart, Emily; Harris, Shana; Horton, Megan; Kahn, Danielle; Kabotyanski, Katherine; Karmel, Bernard; Kelly, Simon P.; Kleinman, Kayla; Koo, Bonhwang; Kramer, Eliza; Lennon, Elizabeth; Lord, Catherine; Mantello, Ginny; Margolis, Amy; Merikangas, Kathleen R.; Milham, Judith; Minniti, Giuseppe; Neuhaus, Rebecca; Levine, Alexandra; Osman, Yael; Parra, Lucas C.; Pugh, Ken R.; Racanello, Amy; Restrepo, Anita; Saltzman, Tian; Septimus, Batya; Tobe, Russell; Waltz, Rachel; Williams, Anna; Yeo, Anna; Castellanos, Francisco X.; Klein, Arno; Paus, Tomas; Leventhal, Bennett L.; Craddock, R. Cameron; Koplewicz, Harold S.; Milham, Michael P.

    2017-01-01

    Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5–21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n=664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis). PMID:29257126

  18. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8.

    PubMed

    Eckert, Gunter P; Schiborr, Christina; Hagl, Stephanie; Abdel-Kader, Reham; Müller, Walter E; Rimbach, Gerald; Frank, Jan

    2013-04-01

    The aging brain suffers mitochondrial dysfunction and a reduced availability of energy in the form of ATP, which in turn may cause or promote the decline in cognitive, sensory, and motor function observed with advancing age. There is a need for animal models that display some of the pathological features of human brain aging in order to study their prevention by e.g. dietary factors. We thus investigated the suitability of the fast-aging senescence-accelerated mouse-prone 8 (SAMP8) strain and its normally aging control senescence-accelerated mouse-resistant 1 (SAMR1) as a model for the age-dependent changes in mitochondrial function in the brain. To this end, 2-months old male SAMR1 (n=10) and SAMP8 mice (n=7) were fed a Western type diet (control groups) for 5months and one group of SAMP8 mice (n=6) was fed an identical diet fortified with 500mg curcumin per kg. Dissociated brain cells and brain tissue homogenates were analyzed for malondialdehyde, heme oxygenase-1 mRNA, mitochondrial membrane potential (MMP), ATP concentrations, protein levels of mitochondrial marker proteins for mitochondrial membranes (TIMM, TOMM), the mitochondrial permeability transition pore (ANT1, VDAC1, TSPO), respiration complexes, and fission and fusion (Fis, Opa1, Mfn1, Drp1). Dissociated brain cells isolated from SAMP8 mice showed significantly reduced MMP and ATP levels, probably due to significantly diminished complex V protein expression, and increased expression of TSPO. Fission and fusion marker proteins indicate enhanced mitochondrial fission in brains of SAMP8 mice. Treatment of SAMP8 mice with curcumin improved MMP and ATP and restored mitochondrial fusion, probably by up-regulating nuclear factor PGC1α protein expression. In conclusion, SAMP8 compared to SAMR1 mice are a suitable model to study age-dependent changes in mitochondrial function and curcumin emerges as a promising nutraceutical for the prevention of neurodegenerative diseases that are accompanied or caused by mitochondrial dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Prenatal Exposure to Arsenic Impairs Behavioral Flexibility and Cortical Structure in Mice

    PubMed Central

    Aung, Kyaw H.; Kyi-Tha-Thu, Chaw; Sano, Kazuhiro; Nakamura, Kazuaki; Tanoue, Akito; Nohara, Keiko; Kakeyama, Masaki; Tohyama, Chiharu; Tsukahara, Shinji; Maekawa, Fumihiko

    2016-01-01

    Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment. PMID:27064386

  20. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry.

    PubMed

    Shi, Jie; Collignon, Olivier; Xu, Liang; Wang, Gang; Kang, Yue; Leporé, Franco; Lao, Yi; Joshi, Anand A; Leporé, Natasha; Wang, Yalin

    2015-07-01

    Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g., via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling's T(2) test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses.

  1. A voxel-based approach to gray matter asymmetries.

    PubMed

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  2. IMPACT OF EARLY AND LATE VISUAL DEPRIVATION ON THE STRUCTURE OF THE CORPUS CALLOSUM: A STUDY COMBINING THICKNESS PROFILE WITH SURFACE TENSOR-BASED MORPHOMETRY

    PubMed Central

    Shi, Jie; Collignon, Olivier; Xu, Liang; Wang, Gang; Kang, Yue; Leporé, Franco; Lao, Yi; Joshi, Anand A.

    2015-01-01

    Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g. via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling’s T2 test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses. PMID:25649876

  3. Disposition in the rat of buprenorphine administered parenterally and as a subcutaneous implant.

    PubMed

    Pontani, R B; Vadlamani, N L; Misra, A L

    1985-04-01

    Disposition of [15, 16(n)-3H]buprenorphine in the rat has been investigated after a single 0.2 mg/kg i.v. bolus dose and continuous administration via a s.c. implantable long-acting delivery system. After the i.v. injection, the tri-exponential decay of drug from brain occurred with t1/2 values of 0.6, 2.3 and 7.2 h, respectively (plasma t1/2 0.5, 1.4 h, third phase not estimated due to sustained concn.) Decay of drug from another high-affinity binding site in brain occurred with t1/2 values of 1.1 and 68.7 h, respectively. Fat and lung had higher concn. than other tissues and plasma. No metabolites of drug were detected in brain. Unmetabolized drug excreted in urine and faeces one week after i.v. injection were 1.9 and 22.4% of dose, respectively, and 92% of the dose was accounted for in one week. Urinary metabolites (%) were: conjugated buprenorphine 0.9; norbuprenorphine (free 9.4, conjugated 5.2); tentative 6-O-desmethylnorbuprenorphine (free 5.4, conjugated 15.9). Peak plasma concn. of buprenorphine occurred four weeks after s.c. implantation of a long-acting 10 mg 3H-buprenorphine pellet, and apparent dissociation half-lives of drug from low- and high-affinity binding sites in brain were 4.6 and 6.8 weeks, respectively. Fat, spleen and skeletal muscle had higher concn. than other tissues and plasma. No significant difference in brain morphine concn. was observed in placebo and nonlabelled buprenorphine-pelleted animals after a 2 mg/kg i.v. challenge dose of 3H-morphine. This study emphasizes the importance of high-affinity binding of buprenorphine in brain and subsequent slow dissociation as a prime factor in its prolonged agonist/antagonist effects and higher potency than other narcotic agonists.

  4. Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction.

    PubMed

    Resende, Fernando F B; Bai, Xianshu; Del Bel, Elaine Aparecida; Kirchhoff, Frank; Scheller, Anja; Titze-de-Almeida, Ricardo

    2016-02-08

    Glioblastoma multiforme is the most aggressive brain tumor. Microglia are prominent cells within glioma tissue and play important roles in tumor biology. This work presents an animal model designed for the study of microglial cell morphology in situ during gliomagenesis. It also allows a quantitative morphometrical analysis of microglial cells during their activation by glioma cells. The animal model associates the following cell types: 1- mCherry red fluorescent GL261 glioma cells and; 2- EGFP fluorescent microglia, present in the TgH(CX3CR1-EGFP) mouse line. First, mCherry-GL261 glioma cells were implanted in the brain cortex of TgH(CX3CR1-EGFP) mice. Epifluorescence - and confocal laser-scanning microscopy were employed for analysis of fixed tissue sections, whereas two-photon laser-scanning microscopy (2P-LSM) was used to track tumor cells and microglia in the brain of living animals. Implanted mCherry-GL261 cells successfully developed brain tumors. They mimic the aggressive behavior found in human disease, with a rapid increase in size and the presence of secondary tumors apart from the injection site. As tumor grows, mCherry-GL261 cells progressively lost their original shape, adopting a heterogeneous and diffuse morphology at 14-18 d. Soma size increased from 10-52 μm. At this point, we focused on the kinetics of microglial access to glioma tissues. 2P-LSM revealed an intense microgliosis in brain areas already shortly after tumor implantation, i.e. at 30 min. By confocal microscopy, we found clusters of microglial cells around the tumor mass in the first 3 days. Then cells infiltrated the tumor area, where they remained during all the time points studied, from 6-18 days. Microglia in contact with glioma cells also present changes in cell morphology, from a ramified to an amoeboid shape. Cell bodies enlarged from 366 ± 0.0 μm(2), in quiescent microglia, to 1310 ± 146.0 μm(2), and the cell processes became shortened. The GL261/CX3CR1 mouse model reported here is a valuable tool for imaging of microglial cells during glioma growth, either in fixed tissue sections or living animals. Remarkable advantages are the use of immunocompetent animals and the simplified imaging method without the need of immunohistochemical procedures.

  5. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    PubMed Central

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  6. Dissociation of functional and anatomical brain abnormalities in unaffected siblings of schizophrenia patients.

    PubMed

    Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping

    2015-05-01

    Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Brain structural changes and their correlation with vascular disease in type 2 diabetes mellitus patients: a voxel-based morphometric study.

    PubMed

    Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun

    2014-08-15

    Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.

  8. Brain structure differences between Chinese and Caucasian cohorts: A comprehensive morphometry study.

    PubMed

    Tang, Yuchun; Zhao, Lu; Lou, Yunxia; Shi, Yonggang; Fang, Rui; Lin, Xiangtao; Liu, Shuwei; Toga, Arthur

    2018-05-01

    Numerous behavioral observations and brain function studies have demonstrated that neurological differences exist between East Asians and Westerners. However, the extent to which these factors relate to differences in brain structure is still not clear. As the basis of brain functions, the anatomical differences in brain structure play a primary and critical role in the origination of functional and behavior differences. To investigate the underlying differences in brain structure between the two cultural/ethnic groups, we conducted a comparative study on education-matched right-handed young male adults (age = 22-29 years) from two cohorts, Han Chinese (n = 45) and Caucasians (n = 45), using high-dimensional structural magnetic resonance imaging (MRI) data. Using two well-validated imaging analysis techniques, surface-based morphometry (SBM) and voxel-based morphometry (VBM), we performed a comprehensive vertex-wise morphometric analysis of the brain structures between Chinese and Caucasian cohorts. We identified consistent significant between-group differences in cortical thickness, volume, and surface area in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices. The SBM analyses revealed that compared with Caucasians, the Chinese population showed larger cortical structures in the temporal and cingulate regions, and smaller structural measures in the frontal and parietal cortices. The VBM data of the same sample was well-aligned with the SBM findings. Our findings systematically revealed comprehensive brain structural differences between young male Chinese and Caucasians, and provided new neuroanatomical insights to the behavioral and functional distinctions in the two cultural/ethnic populations. © 2018 Wiley Periodicals, Inc.

  9. Visual extinction in relation to visuospatial neglect after right-hemispheric stroke: quantitative assessment and statistical lesion-symptom mapping.

    PubMed

    Vossel, S; Eschenbeck, P; Weiss, P H; Weidner, R; Saliger, J; Karbe, H; Fink, G R

    2011-08-01

    Visual neglect and extinction are two common neurological syndromes in patients with right-hemispheric brain damage. Whether and how these two syndromes are associated or share common neural substrates is still a matter of debate. To address these issues, the authors investigated 56 patients with right-hemispheric stroke with a novel diagnostic test to detect extinction and neglect. In this computerised task, subjects had to respond to target stimuli in uni- and bilateral stimulation conditions with detection probabilities being assessed. A cluster-analytical approach identified 18 patients with neglect and 13 patients with extinction. Statistical lesion-symptom mapping analyses with measures for extinction and neglect were performed. Extinction and neglect co-occurred in a subset of patients but were also observed independently from each other, thereby constituting a double dissociation. Lesions within the right inferior parietal cortex were significantly associated with the severity of visual extinction. Visuospatial neglect was related to damage of fronto-parietal brain regions, with parieto-occipital areas affecting line bisection and dorsal fronto-parietal areas affecting cancellation task performance, respectively. Quantifying lesion-induced symptoms with this novel paradigm shows that extinction and neglect are dissociable syndromes in patients with right-hemispheric stroke. Furthermore, extinction and neglect can be related to differential neural substrates, with extinction being related to focal brain damage within the right inferior parietal cortex.

  10. Dissociation between iron accumulation and ferritin upregulation in the aged substantia nigra: attenuation by dietary restriction

    PubMed Central

    Walker, Thomas; Michaelides, Christos; Ekonomou, Antigoni; Geraki, Kalotina; Parkes, Harold G; Suessmilch, Maria; Herlihy, Amy H; Crum, William R; So, Po-Wah

    2016-01-01

    Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation. Iron accumulation was concomitant with increased ferritin immunoreactivity in basal ganglia regions except in the substantia nigra (SN). The unexpected dissociation of iron accumulation from ferritin-upregulation in the SN suggests iron dyshomeostasis in the SN. Occurring alongside microgliosis and astrogliosis, iron dyshomeotasis may contribute to the particular vulnerability of the SN. Dietary restriction (DR) has long been touted to ameliorate brain aging and we show DR attenuated agerelated in vivo R2 increases in the SN over ages 7 – 19 months, concomitant with normal iron-induction of ferritin expression and decreased microgliosis. Iron is known to induce microgliosis and conversely, microgliosis can induce iron accumulation, which of these may be the initial pathological aging event warrants further investigation. We suggest iron chelation therapies and anti-inflammatory treatments may be putative ‘antibrain aging’ therapies and combining these strategies may be synergistic. PMID:27743512

  11. Dissociable Brain Signatures of Choice Conflict and Immediate Reward Preferences in Alcohol Use Disorders

    PubMed Central

    Amlung, Michael; Sweet, Lawrence H.; Acker, John; Brown, Courtney L.; MacKillop, James

    2013-01-01

    Impulsive delayed reward discounting (DRD) is an important behavioral process in alcohol use disorders (AUDs), reflecting incapacity to delay gratification. Recent work in neuroeconomics has begun to unravel the neural mechanisms supporting DRD, but applications of neuroeconomics in relation to AUDs have been limited. This study examined the neural mechanisms of DRD preferences in AUDs, with emphasis on dissociating activation patterns based on DRD choice type and level of cognitive conflict. Heavy drinking adult males with (n = 13) and without (n = 12) a diagnosis of an AUD completed a monetary DRD task during a functional magnetic resonance imaging scan. Participant responses were coded based on choice type (impulsive vs. restrained) and level of cognitive conflict (easy vs. hard). AUD+ participants exhibited significantly more impulsive DRD decision-making. Significant activation during DRD was found in several decision-making regions, including dorsolateral prefrontal cortex (DLPFC), insula, posterior parietal cortex (PPC), and posterior cingulate. An axis of cognitive conflict was also observed, with hard choices associated with anterior cingulate cortex and easy choices associated with activation in supplementary motor area. AUD+ individuals exhibited significant hyperactivity in regions associated with cognitive control (DLPFC) and prospective thought (PPC) and exhibited less task-related deactivation of areas associated with the brain's default network during DRD decisions. This study provides further clarification of the brain systems supporting DRD in general and in relation to AUDs. PMID:23231650

  12. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics

    PubMed Central

    Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.

    2015-01-01

    Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162

  13. Lesion studies of human emotion and feeling.

    PubMed

    Feinstein, Justin S

    2013-06-01

    The lesion method provides unique insight into how the human brain generates emotion and feeling. Recent work has explored a number of interesting topics including the dissociation of emotional experience from memory in patients with amnesia, the reliability of specific emotional deficits following focal brain damage (including fear and the amygdala), and the investigation of compensatory neural mechanisms in lesion patients. Several detailed case studies have challenged the necessary role of the insular cortex in both awareness and feeling by showing that even in rare instances of complete bilateral insula destruction, the patient remains fully sentient and capable of expressing and feeling emotion. These findings highlight the distributed nature of emotion processing in the human brain and emphasize the importance of utilizing the lesion method for elucidating brain-behavior relationships. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Updating Sensory "versus" Task Representations during Task-Switching: Insights from Cognitive Brain Potentials in Humans

    ERIC Educational Resources Information Center

    Perianez, Jose A.; Barcelo, Francisco

    2009-01-01

    Task-cueing studies suggest that the updating of sensory and task representations both contribute to behavioral task-switch costs [Forstmann, B. U., Brass, M., & Koch, I. (2007). "Methodological and empirical issues when dissociating cue-related from task-related processes in the explicit task-cuing procedure." "Psychological Research, 71"(4),…

  15. Neural Mechanisms of Attention

    DTIC Science & Technology

    1993-05-21

    of Attention 39 The Element Superiority Effect : Attention? 46 Animal Models of Attention Deficit 47 Conditioned Attention Theory 50 2 ATTENTION AND...fails to obtain the necessary quantitative information about the effects of parametric manipulations on the dissociation, or the parametric results...neuroscience endeavor as described here. If simultaneously psychologists ignore the brain arid neuroscientists ignore the mind, no effective translation

  16. Reaching a Moveable Visual Target: Dissociations in Brain Tumour Patients

    ERIC Educational Resources Information Center

    Buiatti, Tania; Skrap, Miran; Shallice, Tim

    2013-01-01

    Damage to the posterior parietal cortex (PPC) can lead to Optic Ataxia (OA), in which patients misreach to peripheral targets. Recent research suggested that the PPC might be involved not only in simple reaching tasks toward peripheral targets, but also in changing the hand movement trajectory in real time if the target moves. The present study…

  17. Spatial and Temporal Episodic Memory Retrieval Recruit Dissociable Functional Networks in the Human Brain

    ERIC Educational Resources Information Center

    Ekstrom, Arne D.; Bookheimer, Susan Y.

    2007-01-01

    Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…

  18. Dissociable Top-Down Anticipatory Neural States for Different Linguistic Dimensions

    ERIC Educational Resources Information Center

    Ruz, Maria; Nobre, Anna C.

    2008-01-01

    When preparing to perform a task, the brain settles into task-set states which are relevant for the selection of the appropriate task-rules and stimulus-response mappings. The way this selection takes place within the Language domain is not well understood. We used high-density electrophysiological recordings while participants were engaged in a…

  19. A desktop system of virtual morphometric globes for Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.; Filippov, S. V.

    2017-03-01

    Global morphometric models can be useful for earth and planetary studies. Virtual globes - programs implementing interactive three-dimensional (3D) models of planets - are increasingly used in geo- and planetary sciences. We describe the development of a desktop system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15'-gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. For two celestial bodies, we derived global digital models of several morphometric attributes, such as horizontal curvature, vertical curvature, minimal curvature, maximal curvature, and catchment area. To develop the system, we used Blender, the free open-source software for 3D modeling and visualization. First, a 3D sphere model was generated. Second, the global morphometric maps were imposed to the sphere surface as textures. Finally, the real-time 3D graphics Blender engine was used to implement rotation and zooming of the globes. The testing of the developed system demonstrated its good performance. Morphometric globes clearly represent peculiarities of planetary topography, according to the physical and mathematical sense of a particular morphometric variable.

  20. fMRI functional connectivity of the periaqueductal gray in PTSD and its dissociative subtype.

    PubMed

    Harricharan, Sherain; Rabellino, Daniela; Frewen, Paul A; Densmore, Maria; Théberge, Jean; McKinnon, Margaret C; Schore, Allan N; Lanius, Ruth A

    2016-12-01

    Posttraumatic stress disorder (PTSD) is associated with hyperarousal and active fight or flight defensive responses. By contrast, the dissociative subtype of PTSD, characterized by depersonalization and derealization symptoms, is frequently accompanied by additional passive or submissive defensive responses associated with autonomic blunting. Here, the periaqueductal gray (PAG) plays a central role in defensive responses, where the dorsolateral (DL-PAG) and ventrolateral PAG (VL-PAG) are thought to mediate active and passive defensive responses, respectively. We examined PAG subregion (dorsolateral and ventrolateral) resting-state functional connectivity in three groups: PTSD patients without the dissociative subtype ( n  = 60); PTSD patients with the dissociative subtype ( n  = 37); and healthy controls ( n  = 40) using a seed-based approach via PickAtlas and SPM12. All PTSD patients showed extensive DL- and VL-PAG functional connectivity at rest with areas associated with emotional reactivity and defensive action as compared to controls ( n  = 40). Although all PTSD patients demonstrated DL-PAG functional connectivity with areas associated with initiation of active coping strategies and hyperarousal (e.g., dorsal anterior cingulate; anterior insula), only dissociative PTSD patients exhibited greater VL-PAG functional connectivity with brain regions linked to passive coping strategies and increased levels of depersonalization (e.g., temporoparietal junction; rolandic operculum). These findings suggest greater defensive posturing in PTSD patients even at rest and demonstrate that those with the dissociative subtype show unique patterns of PAG functional connectivity when compared to those without the subtype. Taken together, these findings represent an important first step toward identifying neural and behavioral targets for therapeutic interventions that address defensive strategies in trauma-related disorders.

  1. Voxel-based morphometric brain comparison between healthy subjects and major depressive disorder patients in Japanese with the s/s genotype of 5-HTTLPR.

    PubMed

    Igata, Natsuki; Kakeda, Shingo; Watanabe, Keita; Ide, Satoru; Kishi, Taro; Abe, Osamu; Igata, Ryouhei; Katsuki, Asuka; Iwata, Nakao; Yoshimura, Reiji; Korogi, Yukunori

    2017-06-21

    Individuals with s/s genotype of serotonin transporter gene-linked promotor region (5-HTTLPR), which appear with a high frequency in Japanese, exhibit more diagnosable depression in relation to stressful life events than those with the s/l or l/l genotype. We prospectively investigated the brain volume changes in first-episode and medication naïve major depression disorder patients (MDD) with the s/s genotype in Japanese. We assessed the differences between 27 MDD with the s/s genotype and 44 healthy subjects (HS) with the same genotype using a whole-brain voxel-by-voxel statistical analysis of MRI. Gray matter volume in a brain region with significant clusters obtained via voxel-based morphometry analysis were measured and, as an exploratory analysis, evaluated for relationships to the subcategory scores (core, sleep, activity, psychic, somatic anxiety, delusion) of the Hamilton Depression Rating Scale (HAM-D) and the Social Readjustment Rating Scale (SRRS). The brain volume in the left insula lobe was significantly smaller in the MDD than in the HS. The left insula lobe volume correlated negatively with the "psychic" score of HAM-D and the SRRS. In a Japanese population with the s/s genotype, we found an atrophy of the insula in the MDD, which might be associated with "psychic" symptom and stress events.

  2. Dystrophic Serotonergic Axons in Neurodegenerative Diseases

    PubMed Central

    Azmitia, Efrain C.; Nixon, Ralph

    2012-01-01

    Neurodegenerative diseases such as Parkinson's disease (PD), frontal lobe dementia (FLD) and Diffuse Lewy-Body dementia (DLBD) have diverse neuropathologic features. Here we report that serotonin fibers are dystrophic in the brains of individuals with these three diseases. In neuropathologically normal (control) brains (n=3), serotonin axons immunoreactive (IR) with antibodies against the serotonin transporter (5-HTT) protein were widely distributed in cortex (entorhinal and dorsolateral prefrontal), hippocampus and rostral brainstem. 5-HTT-IR fibers of passage appeared thick, smooth, and un-branched in medial forebrain bundle, medial lemniscus and cortex white matter. The terminal branches were fine, highly branched and varicose in substantia nigra, hippocampus and cortical gray matter. In the diseased brains, however, 5-HTT-IR fibers in the forebrain were reduced in number and were frequently bulbous, splayed, tightly clustered and enlarged. Morphometric analysis revealed significant differences in the size distribution of the 5-HTT-IR profiles in dorsolateral prefrontal area between neurodegenerative diseases and controls. Our observations provide direct morphologic evidence for degeneration of human serotonergic axons in the brains of patients with neurodegenerative diseases despite the limited size (n=3 slices for each region (3) from each brain (4), total slices was n=36) and lack of extensive clinical characterization of the analyzed cohort. This is the first report of dystrophic 5-HTT-IR axons in postmortem human tissue PMID:18502405

  3. Thought beyond language: neural dissociation of algebra and natural language.

    PubMed

    Monti, Martin M; Parsons, Lawrence M; Osherson, Daniel N

    2012-08-01

    A central question in cognitive science is whether natural language provides combinatorial operations that are essential to diverse domains of thought. In the study reported here, we addressed this issue by examining the role of linguistic mechanisms in forging the hierarchical structures of algebra. In a 3-T functional MRI experiment, we showed that processing of the syntax-like operations of algebra does not rely on the neural mechanisms of natural language. Our findings indicate that processing the syntax of language elicits the known substrate of linguistic competence, whereas algebraic operations recruit bilateral parietal brain regions previously implicated in the representation of magnitude. This double dissociation argues against the view that language provides the structure of thought across all cognitive domains.

  4. Selective loss of verbal imagery.

    PubMed

    Mehta, Z; Newcombe, F

    1996-05-01

    This single case study of the ability to generate verbal and non-verbal imagery in a woman who sustained a gunshot wound to the brain reports a significant difficulty in generating images of word shapes but not a significant problem in generating object images. Further dissociation, however, was observed in her ability to generate images of living vs non-living material. She made more errors in imagery and factual information tasks for non-living items than for living items. This pattern contrasts with our previous report of the agnosic patient, M.S., who had severe difficulty in generating images of living material, whereas his ability to image the shape of words was comparable to that of normal control subjects. Furthermore, with regard to the generation of images of living compared with non-living material, M.S. shows more errors with living than nonliving items. In contrast, the present patient, S.M., made significantly more errors with non-living relative to living items. There appear to be two types of double dissociation which reinforce the growing evidence of dissociable impairments in the ability to generate images for different types of verbal and non-verbal material. Such dissociations, presumably related to sensory and cognitive processing demands, address the problem of the neural basis of imagery.

  5. Dissociation in Optokinetic Stimulation Sensitivity between Omission and Substitution Reading Errors in Neglect Dyslexia.

    PubMed

    Daini, Roberta; Albonico, Andrea; Malaspina, Manuela; Martelli, Marialuisa; Primativo, Silvia; Arduino, Lisa S

    2013-01-01

    Although omission and substitution errors in neglect dyslexia (ND) patients have always been considered as different manifestations of the same acquired reading disorder, recently, we proposed a new dual mechanism model. While omissions are related to the exploratory disorder which characterizes unilateral spatial neglect (USN), substitutions are due to a perceptual integration mechanism. A consequence of this hypothesis is that specific training for omission-type ND patients would aim at restoring the oculo-motor scanning and should not improve reading in substitution-type ND. With this aim we administered an optokinetic stimulation (OKS) to two brain-damaged patients with both USN and ND, MA and EP, who showed ND mainly characterized by omissions and substitutions, respectively. MA also showed an impairment in oculo-motor behavior with a non-reading task, while EP did not. The two patients presented a dissociation with respect to their sensitivity to OKS, so that, as expected, MA was positively affected, while EP was not. Our results confirm a dissociation between the two mechanisms underlying omission and substitution reading errors in ND patients. Moreover, they suggest that such a dissociation could possibly be extended to the effectiveness of rehabilitative procedures, and that patients who mainly omit contralesional-sided letters would benefit from OKS.

  6. Dissociable Frontostriatal White Matter Connectivity Underlies Reward and Motor Impulsivity

    PubMed Central

    Hampton, William H.; Alm, Kylie H.; Venkatraman, Vinod; Nugiel, Tehila; Olson, Ingrid R.

    2017-01-01

    Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry. PMID:28189592

  7. Dissociation in Optokinetic Stimulation Sensitivity between Omission and Substitution Reading Errors in Neglect Dyslexia

    PubMed Central

    Daini, Roberta; Albonico, Andrea; Malaspina, Manuela; Martelli, Marialuisa; Primativo, Silvia; Arduino, Lisa S.

    2013-01-01

    Although omission and substitution errors in neglect dyslexia (ND) patients have always been considered as different manifestations of the same acquired reading disorder, recently, we proposed a new dual mechanism model. While omissions are related to the exploratory disorder which characterizes unilateral spatial neglect (USN), substitutions are due to a perceptual integration mechanism. A consequence of this hypothesis is that specific training for omission-type ND patients would aim at restoring the oculo-motor scanning and should not improve reading in substitution-type ND. With this aim we administered an optokinetic stimulation (OKS) to two brain-damaged patients with both USN and ND, MA and EP, who showed ND mainly characterized by omissions and substitutions, respectively. MA also showed an impairment in oculo-motor behavior with a non-reading task, while EP did not. The two patients presented a dissociation with respect to their sensitivity to OKS, so that, as expected, MA was positively affected, while EP was not. Our results confirm a dissociation between the two mechanisms underlying omission and substitution reading errors in ND patients. Moreover, they suggest that such a dissociation could possibly be extended to the effectiveness of rehabilitative procedures, and that patients who mainly omit contralesional-sided letters would benefit from OKS. PMID:24062678

  8. Lucid dreaming: an age-dependent brain dissociation.

    PubMed

    Voss, Ursula; Frenzel, Clemens; Koppehele-Gossel, Judith; Hobson, Allan

    2012-12-01

    The current study focused on the distribution of lucid dreams in school children and young adults. The survey was conducted on a large sample of students aged 6-19 years. Questions distinguished between past and current experience with lucid dreams. Results suggest that lucid dreaming is quite pronounced in young children, its incidence rate drops at about age 16 years. Increased lucidity was found in those attending higher level compared with lower level schools. Taking methodological issues into account, we feel confident to propose a link between the natural occurrence of lucid dreaming and brain maturation. © 2012 European Sleep Research Society.

  9. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    PubMed

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  10. Dissociable effects of reward and expectancy during evaluative feedback processing revealed by topographic ERP mapping analysis.

    PubMed

    Gheza, Davide; Paul, Katharina; Pourtois, Gilles

    2017-11-24

    Evaluative feedback provided during performance monitoring (PM) elicits either a positive or negative deflection ~250-300ms after its onset in the event-related potential (ERP) depending on whether the outcome is reward-related or not, as well as expected or not. However, it remains currently unclear whether these two deflections reflect a unitary process, or rather dissociable effects arising from non-overlapping brain networks. To address this question, we recorded 64-channel EEG in healthy adult participants performing a standard gambling task where valence and expectancy were manipulated in a factorial design. We analyzed the feedback-locked ERP data using a conventional ERP analysis, as well as an advanced topographic ERP mapping analysis supplemented with distributed source localization. Results reveal two main topographies showing opposing valence effects, and being differently modulated by expectancy. The first one was short-lived and sensitive to no-reward irrespective of expectancy. Source-estimation associated with this topographic map comprised mainly regions of the dorsal anterior cingulate cortex. The second one was primarily driven by reward, had a prolonged time-course and was monotonically influenced by expectancy. Moreover, this reward-related topographical map was best accounted for by intracranial generators estimated in the posterior cingulate cortex. These new findings suggest the existence of dissociable brain systems depending on feedback valence and expectancy. More generally, they inform about the added value of using topographic ERP mapping methods, besides conventional ERP measurements, to characterize qualitative changes occurring in the spatio-temporal dynamic of reward processing during PM. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex

    PubMed Central

    O’Reilly, Jill X.; Schüffelgen, Urs; Cuell, Steven F.; Behrens, Timothy E. J.; Mars, Rogier B.; Rushworth, Matthew F. S.

    2013-01-01

    Brains use predictive models to facilitate the processing of expected stimuli or planned actions. Under a predictive model, surprising (low probability) stimuli or actions necessitate the immediate reallocation of processing resources, but they can also signal the need to update the underlying predictive model to reflect changes in the environment. Surprise and updating are often correlated in experimental paradigms but are, in fact, distinct constructs that can be formally defined as the Shannon information (IS) and Kullback–Leibler divergence (DKL) associated with an observation. In a saccadic planning task, we observed that distinct behaviors and brain regions are associated with surprise/IS and updating/DKL. Although surprise/IS was associated with behavioral reprogramming as indexed by slower reaction times, as well as with activity in the posterior parietal cortex [human lateral intraparietal area (LIP)], the anterior cingulate cortex (ACC) was specifically activated during updating of the predictive model (DKL). A second saccade-sensitive region in the inferior posterior parietal cortex (human 7a), which has connections to both LIP and ACC, was activated by surprise and modulated by updating. Pupillometry revealed a further dissociation between surprise and updating with an early positive effect of surprise and late negative effect of updating on pupil area. These results give a computational account of the roles of the ACC and two parietal saccade regions, LIP and 7a, by which their involvement in diverse tasks can be understood mechanistically. The dissociation of functional roles between regions within the reorienting/reprogramming network may also inform models of neurological phenomena, such as extinction and Balint syndrome, and neglect. PMID:23986499

  12. Functional dissociation of ventral frontal and dorsomedial default mode network components during resting state and emotional autobiographical recall

    PubMed Central

    Bado, Patricia; Engel, Annerose; de Oliveira-Souza, Ricardo; Bramati, Ivanei E; Paiva, Fernando F; Basilio, Rodrigo; Sato, João R; Tovar-Moll, Fernanda; Moll, Jorge

    2014-01-01

    Humans spend a substantial share of their lives mind-wandering. This spontaneous thinking activity usually comprises autobiographical recall, emotional, and self-referential components. While neuroimaging studies have demonstrated that a specific brain “default mode network” (DMN) is consistently engaged by the “resting state” of the mind, the relative contribution of key cognitive components to DMN activity is still poorly understood. Here we used fMRI to investigate whether activity in neural components of the DMN can be differentially explained by active recall of relevant emotional autobiographical memories as compared with the resting state. Our study design combined emotional autobiographical memory, neutral memory and resting state conditions, separated by a serial subtraction control task. Shared patterns of activation in the DMN were observed in both emotional autobiographical and resting conditions, when compared with serial subtraction. Directly contrasting autobiographical and resting conditions demonstrated a striking dissociation within the DMN in that emotional autobiographical retrieval led to stronger activation of the dorsomedial core regions (medial prefrontal cortex, posterior cingulate cortex), whereas the resting state condition engaged a ventral frontal network (ventral striatum, subgenual and ventral anterior cingulate cortices) in addition to the IPL. Our results reveal an as yet unreported dissociation within the DMN. Whereas the dorsomedial component can be explained by emotional autobiographical memory, the ventral frontal one is predominantly associated with the resting state proper, possibly underlying fundamental motivational mechanisms engaged during spontaneous unconstrained ideation. Hum Brain Mapp 35:3302–3313, 2014. © 2013 Wiley Periodicals, Inc. PMID:25050426

  13. Recovery of Repressed Memories in Fibromyalgia Patients Treated With Hyperbaric Oxygen – Case Series Presentation and Suggested Bio-Psycho-Social Mechanism

    PubMed Central

    Efrati, Shai; Hadanny, Amir; Daphna-Tekoah, Shir; Bechor, Yair; Tiberg, Kobi; Pik, Nimrod; Suzin, Gil; Lev-Wiesel, Rachel

    2018-01-01

    Fibromyalgia Syndrome (FMS) is a condition considered to represent a prototype of central sensitization syndrome, characterized by chronic widespread pain and along with symptoms of fatigue, non-restorative sleep and cognitive difficulties. FMS can be induced by trauma, infection or emotional stress with cumulative evidence that dissociation is relatively frequent in FMS patients. Two randomized controlled trials have shown that hyperbaric oxygen therapy (HBOT) can induce neuroplasticity and be effective in patients suffering from FMS. In this paper we present, for the first time, case series of female fibromyalgia patients who, in the course of HBOT, suddenly recalled repressed traumatic memories of childhood sexual abuse (CSA). The surfacing of the repressed (dissociative) memories decades after the sexual abuse events was sudden and utterly surprising. No psychological intervention was involved. As the memories surfaced, the physical pain related to FMS subsided. In one patient who had brain single photon emission CT (SPECT) before and after HBOT, the prefrontal cortex appeared suppressed before and reactivated after. The 3 cases reported in this article are representative of a total of nine fibromyalgia patients who experienced a retrieval of repressed memory during HBOT. These cases provide insights on dissociative amnesia and suggested mechanism hypothesis that is further discussed in the article. Obviously, prospective studies cannot be planned since patients are not aware of their repressed memories. However, it is very important to keep in mind the possibility of surfacing memories when treating fibromyalgia patients with HBOT or other interventions capable of awakening dormant brain regions. PMID:29896150

  14. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches

    PubMed Central

    Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo

    2015-01-01

    External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335

  15. Anatomical Variations of the Circulus Arteriosus in Cadaveric Human Brains

    PubMed Central

    Gunnal, S. A.; Farooqui, M. S.; Wabale, R. N.

    2014-01-01

    Objective. Circulus arteriosus/circle of Willis (CW) is a polygonal anastomotic channel at the base of the brain which unites the internal carotid and vertebrobasilar system. It maintains the steady and constant supply to the brain. The variations of CW are seen often. The Aim of the present work is to find out the percentage of normal pattern of CW, and the frequency of variations of the CW and to study the morphological and morphometric aspects of all components of CW. Methods. Circulus arteriosus of 150 formalin preserved brains were dissected. Dimensions of all the components forming circles were measured. Variations of all the segments were noted and well photographed. The variations such as aplasia, hypoplasia, duplication, fenestrations, and difference in dimensions with opposite segments were noted. The data collected in the study was analyzed. Results. Twenty-one different types of CW were found in the present study. Normal and complete CW was found in 60%. CW with gross morphological variations was seen in 40%. Maximum variations were seen in the PCoA followed by the ACoA in 50% and 40%, respectively. Conclusion. As it confirms high percentage of variations, all surgical interventions should be preceded by angiography. Awareness of these anatomical variations is important in neurovascular procedures. PMID:24891951

  16. Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy.

    PubMed

    Sharief, Anjum A; Badea, Alexandra; Dale, Anders M; Johnson, G Allan

    2008-01-01

    Magnetic resonance microscopy (MRM) has created new approaches for high-throughput morphological phenotyping of mouse models of diseases. Transgenic and knockout mice serve as a test bed for validating hypotheses that link genotype to the phenotype of diseases, as well as developing and tracking treatments. We describe here a Markov random fields based segmentation of the actively stained mouse brain, as a prerequisite for morphological phenotyping. Active staining achieves higher signal to noise ratio (SNR) thereby enabling higher resolution imaging per unit time than obtained in previous formalin-fixed mouse brain studies. The segmentation algorithm was trained on isotropic 43-mum T1- and T2-weighted MRM images. The mouse brain was segmented into 33 structures, including the hippocampus, amygdala, hypothalamus, thalamus, as well as fiber tracts and ventricles. Probabilistic information used in the segmentation consisted of (a) intensity distributions in the T1- and T2-weighted data, (b) location, and (c) contextual priors for incorporating spatial information. Validation using standard morphometric indices showed excellent consistency between automatically and manually segmented data. The algorithm has been tested on the widely used C57BL/6J strain, as well as on a selection of six recombinant inbred BXD strains, chosen especially for their largely variant hippocampus.

  17. Postnatal brain development of the pulse type, weakly electric gymnotid fish Gymnotus omarorum.

    PubMed

    Iribarne, Leticia; Castelló, María E

    2014-01-01

    Teleosts are a numerous and diverse group of fish showing great variation in body shape, ecological niches and behaviors, and a correspondent diversity in brain morphology, usually associated with their functional specialization. Weakly electric fish are a paradigmatic example of functional specialization, as these teleosts use self-generated electric fields to sense the nearby environment and communicate with conspecifics, enabling fish to better exploit particular ecological niches. We analyzed the development of the brain of the pulse type gymnotid Gymnotus omarorum, focusing on the brain regions involved directly or indirectly in electrosensory information processing. A morphometric analysis has been made of the whole brain and of brain regions of interest, based on volumetric data obtained from 3-D reconstructions to study the growth of the whole brain and the relative growth of brain regions, from late larvae to adulthood. In the smallest studied larvae some components of the electrosensory pathway appeared to be already organized and functional, as evidenced by tract-tracing and in vivo field potential recordings of electrosensory-evoked activity. From late larval to adult stages, rombencephalic brain regions (cerebellum and electrosensory lateral line lobe) showed a positive allometric growth, mesencephalic brain regions showed a negative allometric growth, and the telencephalon showed an isometric growth. In a first step towards elucidating the role of cell proliferation in the relative growth of the analyzed brain regions, we also studied the spatial distribution of proliferation zones by means of pulse type BrdU labeling revealed by immunohistochemistry. The brain of G. omarorum late larvae showed a widespread distribution of proliferating zones, most of which were located at the ventricular-cisternal lining. Interestingly, we also found extra ventricular-cisternal proliferation zones at in the rombencephalic cerebellum and electrosensory lateral line lobe. We discuss the role of extraventricular-cisternal proliferation in the relative growth of the latter brain regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of freezing on white perch Morone americana (Gmelin, 1789): Implications for multivariate morphometrics

    USGS Publications Warehouse

    Kocovsky, Patrick

    2016-01-01

    This study tested the hypothesis that duration of freezing differentially affects whole-body morphometrics of a derived teleost. Whole-body morphometrics are frequently analyzed to test hypotheses of different species, or stocks within a species, of fishes. Specimens used for morphometric analyses are typically fixed or preserved prior to analysis, yet little research has been done on how fixation or preservation methods or duration of preservation of specimens might affect outcomes of multivariate statistical analyses of differences in shape. To determine whether whole-body morphometrics changed as a result of freezing, 23 whole-body morphometrics of age-1 white perch (Morone americana) from western Lake Erie (n = 211) were analyzed immediately after capture, after being held on ice overnight, and after freezing for 100 or 200 days. Discriminant function analysis revealed that all four groups differed significantly from one another (P < 0.0001). The first canonical axis reflected long-axis morphometrics, where there was a clear pattern of positive translation along this axis with duration of preservation. Re-classification analysis demonstrated fish were typically assigned to their original preservation class except for fish frozen 100 days, which assigned mostly to frozen 200 days. Morphometric comparisons using frozen fish must be done on fish frozen for identical periods of time to avoid biases related to the length of time they were frozen. Similar experiments should be conducted on other species and also using formalin- and alcohol-preserved specimens.

  19. Regional volumes in brain stem and cerebellum are associated with postural impairments in young brain-injured patients.

    PubMed

    Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P

    2015-12-01

    Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.

  20. Automatic cortical thickness analysis on rodent brain

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Ehlers, Cindy; Crews, Fulton; Niethammer, Marc; Budin, Francois; Paniagua, Beatriz; Sulik, Kathy; Johns, Josephine; Styner, Martin; Oguz, Ipek

    2011-03-01

    Localized difference in the cortex is one of the most useful morphometric traits in human and animal brain studies. There are many tools and methods already developed to automatically measure and analyze cortical thickness for the human brain. However, these tools cannot be directly applied to rodent brains due to the different scales; even adult rodent brains are 50 to 100 times smaller than humans. This paper describes an algorithm for automatically measuring the cortical thickness of mouse and rat brains. The algorithm consists of three steps: segmentation, thickness measurement, and statistical analysis among experimental groups. The segmentation step provides the neocortex separation from other brain structures and thus is a preprocessing step for the thickness measurement. In the thickness measurement step, the thickness is computed by solving a Laplacian PDE and a transport equation. The Laplacian PDE first creates streamlines as an analogy of cortical columns; the transport equation computes the length of the streamlines. The result is stored as a thickness map over the neocortex surface. For the statistical analysis, it is important to sample thickness at corresponding points. This is achieved by the particle correspondence algorithm which minimizes entropy between dynamically moving sample points called particles. Since the computational cost of the correspondence algorithm may limit the number of corresponding points, we use thin-plate spline based interpolation to increase the number of corresponding sample points. As a driving application, we measured the thickness difference to assess the effects of adolescent intermittent ethanol exposure that persist into adulthood and performed t-test between the control and exposed rat groups. We found significantly differing regions in both hemispheres.

  1. Morphological evidence for discrete stocks of yellow perch in Lake Erie

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Knight, Carey T.

    2012-01-01

    Identification and management of unique stocks of exploited fish species are high-priority management goals in the Laurentian Great Lakes. We analyzed whole-body morphometrics of 1430 yellow perch Perca flavescens captured during 2007–2009 from seven known spawning areas in Lake Erie to determine if morphometrics vary among sites and management units to assist in identification of spawning stocks of this heavily exploited species. Truss-based morphometrics (n = 21 measurements) were analyzed using principal component analysis followed by ANOVA of the first three principal components to determine whether yellow perch from the several sampling sites varied morphometrically. Duncan's multiple range test was used to determine which sites differed from one another to test whether morphometrics varied at scales finer than management unit. Morphometrics varied significantly among sites and annually, but differences among sites were much greater. Sites within the same management unit typically differed significantly from one another, indicating morphometric variation at a scale finer than management unit. These results are largely congruent with recently-published studies on genetic variation of yellow perch from many of the same sampling sites. Thus, our results provide additional evidence that there are discrete stocks of yellow perch in Lake Erie and that management units likely comprise multiple stocks.

  2. Orthographic and phonological processing in developing readers revealed by ERPs

    PubMed Central

    EDDY, MARIANNA D.; GRAINGER, JONATHAN; HOLCOMB, PHILLIP J.; GABRIELI, JOHN D. E.

    2018-01-01

    The development of neurocognitive mechanisms in single word reading was studied in children ages 8–10 years using ERPs combined with priming manipulations aimed at dissociating orthographic and phonological processes. Transposed-letter (TL) priming (barin–BRAIN vs. bosin–BRAIN) was used to assess orthographic processing, and pseudohomophone (PH) priming (brane–BRAIN vs. brant–BRAIN) was used to assess phonological processing. Children showed TL and PH priming effects on both the N250 and N400 ERP components, and the magnitude of TL priming correlated positively with reading ability, with better readers showing larger TL priming effects. Phonological priming, on the other hand, did not correlate with reading ability. The positive correlations between TL priming and reading ability in children points to a key role for flexible sublexical orthographic representations in reading development, in line with their hypothesized role in the efficient mapping of orthographic information onto semantic information in skilled readers. PMID:27671210

  3. Homo floresiensis Contextualized: A Geometric Morphometric Comparative Analysis of Fossil and Pathological Human Samples

    PubMed Central

    Baab, Karen L.; McNulty, Kieran P.; Harvati, Katerina

    2013-01-01

    The origin of hominins found on the remote Indonesian island of Flores remains highly contentious. These specimens may represent a new hominin species, Homo floresiensis, descended from a local population of Homo erectus or from an earlier (pre-H. erectus) migration of a small-bodied and small-brained hominin out of Africa. Alternatively, some workers suggest that some or all of the specimens recovered from Liang Bua are pathological members of a small-bodied modern human population. Pathological conditions proposed to explain their documented anatomical features include microcephaly, myxoedematous endemic hypothyroidism (“cretinism”) and Laron syndrome (primary growth hormone insensitivity). This study evaluates evolutionary and pathological hypotheses through comparative analysis of cranial morphology. Geometric morphometric analyses of landmark data show that the sole Flores cranium (LB1) is clearly distinct from healthy modern humans and from those exhibiting hypothyroidism and Laron syndrome. Modern human microcephalic specimens converge, to some extent, on crania of extinct species of Homo. However in the features that distinguish these two groups, LB1 consistently groups with fossil hominins and is most similar to H. erectus. Our study provides further support for recognizing the Flores hominins as a distinct species, H. floresiensis, whose affinities lie with archaic Homo. PMID:23874886

  4. A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks.

    PubMed

    Brown, Kerry M; Donohue, Duncan E; D'Alessandro, Giampaolo; Ascoli, Giorgio A

    2005-01-01

    Digital reconstruction of neuronal arborizations is an important step in the quantitative investigation of cellular neuroanatomy. In this process, neurites imaged by microscopy are semi-manually traced through the use of specialized computer software and represented as binary trees of branching cylinders (or truncated cones). Such form of the reconstruction files is efficient and parsimonious, and allows extensive morphometric analysis as well as the implementation of biophysical models of electrophysiology. Here, we describe Neuron_ Morpho, a plugin for the popular Java application ImageJ that mediates the digital reconstruction of neurons from image stacks. Both the executable and code of Neuron_ Morpho are freely distributed (www.maths. soton.ac.uk/staff/D'Alessandro/morpho or www.krasnow.gmu.edu/L-Neuron), and are compatible with all major computer platforms (including Windows, Mac, and Linux). We tested Neuron_Morpho by reconstructing two neurons from each of the two preparations representing different brain areas (hippocampus and cerebellum), neuritic type (pyramidal cell dendrites and olivar axonal projection terminals), and labeling method (rapid Golgi impregnation and anterograde dextran amine), and quantitatively comparing the resulting morphologies to those of the same cells reconstructed with the standard commercial system, Neurolucida. None of the numerous morphometric measures that were analyzed displayed any significant or systematic difference between the two reconstructing systems.

  5. Morphometric characteristics of caudal cranial nerves at petroclival region in fetuses.

    PubMed

    Ozdogmus, Omer; Saban, Enis; Ozkan, Mazhar; Yildiz, Sercan Dogukan; Verimli, Ural; Cakmak, Ozgur; Arifoglu, Yasin; Sehirli, Umit

    2016-06-01

    Morphometric measurements of cranial nerves in posterior cranial fossa of fetus cadavers were carried out in an attempt to identify any asymmetry in their openings into the cranium. Twenty-two fetus cadavers (8 females, 14 males) with gestational age ranging between 22 and 38 weeks (mean 30 weeks) were included in this study. The calvaria were removed, the brains were lifted, and the cranial nerves were identified. The distance of each cranial nerve opening to midline and the distances between different cranial nerve openings were measured on the left and right side and compared. The mean clivus length and width were 21.2 ± 4.4 and 13.2 ± 1.5 mm, respectively. The distance of the twelfth cranial nerve opening from midline was shorter on the right side when compared with the left side (6.6 ± 1.1 versus 7.1 ± 0.8 mm, p = 0.038). Openings of other cranial nerves did not show such asymmetry with regard to their distance from midline, and the distances between different cranial nerves were similar on the left and right side. Cranial nerves at petroclival region seem to show minimal asymmetry in fetuses.

  6. Morphometric brain characterization of refractory obsessive-compulsive disorder: diffeomorphic anatomic registration using exponentiated Lie algebra.

    PubMed

    Tang, Wanjie; Li, Bin; Huang, Xiaoqi; Jiang, Xiaoyu; Li, Fei; Wang, Lijuan; Chen, Taolin; Wang, Jinhui; Gong, Qiyong; Yang, Yanchun

    2013-10-01

    Few studies have used neuroimaging to characterize treatment-refractory obsessive-compulsive disorder (OCD). This study sought to explore gray matter structure in patients with treatment-refractory OCD and compare it with that of healthy controls. A total of 18 subjects with treatment-refractory OCD and 26 healthy volunteers were analyzed by MRI using a 3.0-T scanner and voxel-based morphometry (VBM). Diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) was used to identify structural changes in gray matter associated with treatment-refractory OCD. A partial correlation model was used to analyze whether morphometric changes were associated with Yale-Brown Obsessive-Compulsive Scale scores and illness duration. Gray matter volume did not differ significantly between the two groups. Treatment-refractory OCD patients showed significantly lower gray matter density than healthy subjects in the left posterior cingulate cortex (PCC) and mediodorsal thalamus (MD) and significantly higher gray matter density in the left dorsal striatum (putamen). These changes did not correlate with symptom severity or illness duration. Our findings provide new evidence of deficits in gray matter density in treatment-refractory OCD patients. These patients may show characteristic density abnormalities in the left PCC, MD and dorsal striatum (putamen), which should be verified in longitudinal studies. © 2013. Published by Elsevier Inc. All rights reserved.

  7. The interrelationship of dopamine D2-like receptor availability in striatal and extrastriatal brain regions in healthy humans: A principal component analysis of [18F]Fallypride binding

    PubMed Central

    Zald, David H.; Woodward, Neil D.; Cowan, Ronald L.; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Smith, Clarence E.; Hakyemez, Helene; Li, Rui; Kessler, Robert M.

    2010-01-01

    Individual differences in dopamine D2-like receptor availability arise across all brain regions expressing D2-like receptors. However, the inter-relationships in receptor availability across brain regions are poorly understood. To address this issue, we examined the relationship between D2-like binding potential (BPND) across striatal and extrastriatal regions in a sample of healthy participants. PET imaging was performed with the high affinity D2/D3 ligand [18F]fallypride in 45 participants. BPND images were submitted to voxel-wise principal components analysis to determine the pattern of associations across brain regions. Individual differences in D2-like BPND were explained by three distinguishable components. A single component explained almost all of the variance within the striatum, indicating that individual differences in receptor availability vary in a homogenous manner across the caudate, putamen, and ventral striatum. Cortical BPND was only modestly related to striatal BPND, and mostly loaded on a distinct component. After controlling for the general level of cortical D2-like BPND, an inverse relationship emerged between receptor availability in the striatum and the ventral temporal and ventromedial frontal cortices, suggesting possible cross-regulation of D2-like receptors in these regions. The analysis additionally revealed evidence of: 1) a distinct component involving the midbrain and limbic areas; 2) a dissociation between BPND in the medial and lateral temporal regions; and 3) a dissociation between BPND in the medial/midline and lateral thalamus. In summary, individual differences in D2-like receptor availability reflect several distinct patterns. This conclusion has significant implications for neuropsychiatric models that posit global or regionally specific relationships between dopaminergic tone and behavior. PMID:20149883

  8. Differential recruitment of brain networks in single-digit addition and multiplication: Evidence from EEG oscillations in theta and lower alpha bands.

    PubMed

    Wang, Lihan; Gan, John Q; Zhang, Li; Wang, Haixian

    2018-06-01

    Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Word and Number Reading in the Brain: Evidence from a Voxel-Based Lesion-Symptom Mapping Study

    ERIC Educational Resources Information Center

    Piras, Fabrizio; Marangolo, Paola

    2009-01-01

    The high incidence of number transcoding deficits in aphasic subjects suggests there is a strong similarity between language and number domains. However, recent single case studies of subjects who showed a dissociation between word and number word transcoding led us to hypothesize that the two types of stimuli are represented independently in the…

  10. Category-Specific Naming Deficit in Alzheimer's Disease: The Effect of a Display by Domain Interaction

    ERIC Educational Resources Information Center

    Zannino, Gian Daniele; Perri, Roberta; Caltagirone, Carlo; Carlesimo, Giovanni A.

    2007-01-01

    A category-specific naming effect penalizing living things has often been reported in patients suffering from Alzheimer's disease (AD) and in other brain damaged populations, while the opposite dissociation (i.e., lower accuracy in naming nonliving than living things) is much rarer. In this study, we investigated whether the use of line drawings…

  11. Individual Differences in Skilled Adult Readers Reveal Dissociable Patterns of Neural Activity Associated with Component Processes of Reading

    ERIC Educational Resources Information Center

    Welcome, Suzanne E.; Joanisse, Marc F.

    2012-01-01

    We used fMRI to examine patterns of brain activity associated with component processes of visual word recognition and their relationships to individual differences in reading skill. We manipulated both the judgments adults made on written stimuli and the characteristics of the stimuli. Phonological processing led to activation in left inferior…

  12. Perception and Action Selection Dissociate Human Ventral and Dorsal Cortex

    ERIC Educational Resources Information Center

    Ikkai, Akiko; Jerde, Trenton A.; Curtis, Clayton E.

    2011-01-01

    We test theories about the functional organization of the human cortex by correlating brain activity with demands on perception versus action selection. Subjects covertly searched for a target among an array of 4, 8, or 12 items (perceptual manipulation) and then, depending on the color of the array, made a saccade toward, away from, or at a right…

  13. Abnormalities in white matter microstructure associated with chronic ketamine use.

    PubMed

    Edward Roberts, R; Curran, H Valerie; Friston, Karl J; Morgan, Celia J A

    2014-01-01

    Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.

  14. Mapping the Regional Influence of Genetics on Brain Structure Variability - A Tensor-Based Morphometry Study

    PubMed Central

    Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645

  15. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology.

    PubMed

    Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  16. The remains of the day in dissociative amnesia.

    PubMed

    Staniloiu, Angelica; Markowitsch, Hans J

    2012-04-10

    Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia-a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called "internal coherence of life".

  17. Dissociations in cognitive memory: the syndrome of developmental amnesia.

    PubMed

    Vargha-Khadem, F; Gadian, D G; Mishkin, M

    2001-09-29

    The dearth of studies on amnesia in children has led to the assumption that when damage to the medial temporal lobe system occurs early in life, the compensatory capacity of the immature brain rescues memory functions. An alternative view is that such damage so interferes with the development of learning and memory that it results not in selective cognitive impairments but in general mental retardation. Data will be presented to counter both of these arguments. Results obtained from a series of 11 amnesic patients with a history of hypoxic ischaemic damage sustained perinatally or during childhood indicate that regardless of age at onset of hippocampal pathology, there is a pronounced dissociation between episodic memory, which is severely impaired, and semantic memory, which is relatively preserved. A second dissociation is characterized by markedly impaired recall and relatively spared recognition leading to a distinction between recollection-based versus familiarity-based judgements. These findings are discussed in terms of the locus and extent of neuropathology associated with hypoxic ischaemic damage, the neural basis of 'remembering' versus 'knowing', and a hierarchical model of cognitive memory.

  18. Brain dysfunction behind functional symptoms: neuroimaging and somatoform, conversive, and dissociative disorders.

    PubMed

    García-Campayo, Javier; Fayed, Nicolas; Serrano-Blanco, Antoni; Roca, Miquel

    2009-03-01

    Neuroimaging research in psychiatry has been increasing exponentially in recent years, yet many psychiatrists are relatively unfamiliar with this field. This article summarizes the findings of the most relevant research articles on the neuroimaging of somatoform, conversive, and dissociative disorders published from January 2007 through June 2008. Neuroimaging findings summarized here include alterations of stress regulation and coping in somatoform pain disorders, the importance of catastrophizing in somatization disorder, and the relevance of a history of physical/sexual abuse in irritable bowel syndrome. Regarding fibromyalgia, three of the most significant advances have been the impossibility of differentiating primary and concomitant fibromyalgia in the presence of quiescent underlying disease, the role of hippocampal dysfunction, and the possibility that fibromyalgia may be characterized as an aging process. In dissociative disorders, the high levels of elaborative memory encoding and the reduced size of the parietal lobe are highlighted. The most promising clinical consequence of these studies, in addition to improving knowledge about the etiology of these illnesses, is the possibility of using neuroimaging findings to identify subgroups of patients, which could allow treatments to be tailored.

  19. "That part of the body is just gone": understanding and responding to dissociation and physical health.

    PubMed

    Haven, Terri J

    2009-01-01

    The past 2 decades have brought a significant surge in interest and research regarding the ways in which psychological trauma relates to the physical body. Researchers now understand a great deal about how the brain and the body process traumatic experiences, as well as the increased likelihood of an array of physical health consequences associated with both childhood and adult trauma and posttraumatic stress disorder. Experts are increasingly challenging mind-body dualism through solid theoretical and clinical bases for the central importance of listening to and communicating with trauma clients' bodies as part of reducing the suffering and long-lasting consequences of trauma. This article integrates this growing body of knowledge through a particular focus on trauma-induced dissociation and the implications of the physical and neurological processes and consequences of dissociation on clients' ability to participate in caring for their own bodies. The author utilizes an in-depth clinical example of expanding relational trauma psychotherapy to include a focus on working directly with trauma-related sensorimotor and physiological sensations and patterns.

  20. The Remains of the Day in Dissociative Amnesia

    PubMed Central

    Staniloiu, Angelica; Markowitsch, Hans J.

    2012-01-01

    Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia—a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called “internal coherence of life”. PMID:24962768

  1. Diffeomorphic functional brain surface alignment: Functional demons.

    PubMed

    Nenning, Karl-Heinz; Liu, Hesheng; Ghosh, Satrajit S; Sabuncu, Mert R; Schwartz, Ernst; Langs, Georg

    2017-08-01

    Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala and ventral striatum

    PubMed Central

    Fletcher, PC; Napolitano, A; Skeggs, A; Miller, SR; Delafont, B; Cambridge, VC; de Wit, S; Nathan, PJ; Brooke, A; O’Rahilly, S; Farooqi, IS; Bullmore, ET

    2012-01-01

    We used fMRI to explore brain responses to food images in overweight humans, examining independently the impact of a pre-scan meal (“satiety”) and the anti-obesity drug sibutramine, a serotonin and noradrenaline reuptake inhibitor. We identified significantly different responses to these manipulations in amygdala, hypothalamus and ventral striatum. Each region was specifically responsive to high calorie compared to low calorie food images. However, the ventral striatal response was attenuated by satiety (but unaffected by sibutramine) while the hypothalamic and amygdala responses were attenuated by drug but unaffected by satiety. Direct assessment of regional interactions confirmed the significance of this double dissociation. We explored the regional responses in greater detail by determining whether they were predictive of eating behaviour and weight change. We observed that across the different regions, the individual-specific magnitude of drug- and satiety-induced modulation was associated with both variables: the sibutramine-induced modulation of the hypothalamic response was correlated with the drug’s impact on both weight and subsequently-measured ad libitum eating. The satiety-induced modulation of striatal response also correlated with subsequent ad lib eating. These results suggest that hypothalamus and amygdala have roles in the control of food intake that are distinct from those of ventral striatum. Furthermore, they support a regionally-specific effect on brain function through which sibutramine exerts its clinical effect. PMID:20980590

  3. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.

  4. Dissociable brain signatures of choice conflict and immediate reward preferences in alcohol use disorders.

    PubMed

    Amlung, Michael; Sweet, Lawrence H; Acker, John; Brown, Courtney L; MacKillop, James

    2014-07-01

    Impulsive delayed reward discounting (DRD) is an important behavioral process in alcohol use disorders (AUDs), reflecting incapacity to delay gratification. Recent work in neuroeconomics has begun to unravel the neural mechanisms supporting DRD, but applications of neuroeconomics in relation to AUDs have been limited. This study examined the neural mechanisms of DRD preferences in AUDs, with emphasis on dissociating activation patterns based on DRD choice type and level of cognitive conflict. Heavy drinking adult men with (n = 13) and without (n = 12) a diagnosis of an AUD completed a monetary DRD task during a functional magnetic resonance imaging scan. Participant responses were coded based on choice type (impulsive versus restrained) and level of cognitive conflict (easy versus hard). AUD+ participants exhibited significantly more impulsive DRD decision-making. Significant activation during DRD was found in several decision-making regions, including dorsolateral prefrontal cortex (DLPFC), insula, posterior parietal cortex (PPC), and posterior cingulate. An axis of cognitive conflict was also observed, with hard choices associated with anterior cingulate cortex and easy choices associated with activation in supplementary motor area. AUD+ individuals exhibited significant hyperactivity in regions associated with cognitive control (DLPFC) and prospective thought (PPC) and exhibited less task-related deactivation of areas associated with the brain's default network during DRD decisions. This study provides further clarification of the brain systems supporting DRD in general and in relation to AUDs. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  5. Morphometric synaptology of a whole neuron profile using a semiautomatic interactive computer system.

    PubMed

    Saito, K; Niki, K

    1983-07-01

    We propose a new method of dealing with morphometric synaptology that processes all synapses and boutons around the HRP marked neuron on a large composite electron micrograph, rather than a qualitative or a piecemeal quantitative study of a particular synapse and/or bouton that is not positioned on the surface of the neuron. This approach requires the development of both neuroanatomical procedures, by which a specific whole neuronal profile is identified, and valuable specialized tools, which support the collection and analysis of a great volume of morphometric data from composite electron micrographs, in order to reduce the burden of the morphologist. The present report is also concerned with the total and reliable semi-automatic interactive computer system for gathering and analyzing morphometric data that has been under development in our laboratory. A morphologist performs the pattern recognition portion by using a large-sized tablet digitizer and a menu-sheet command, and the system registers the various morphometric values of many different neurons and performs statistical analysis. Some examples of morphometric measurements and analysis show the usefulness and efficiency of the proposed system and method.

  6. Insights in spatio-temporal characterization of human fetal neural stem cells.

    PubMed

    Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M

    2017-05-01

    Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were multipotent and kept the ability to differentiate to region specific mature neuronal phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The attention schema theory: a mechanistic account of subjective awareness

    PubMed Central

    Graziano, Michael S. A.; Webb, Taylor W.

    2015-01-01

    We recently proposed the attention schema theory, a novel way to explain the brain basis of subjective awareness in a mechanistic and scientifically testable manner. The theory begins with attention, the process by which signals compete for the brain’s limited computing resources. This internal signal competition is partly under a bottom–up influence and partly under top–down control. We propose that the top–down control of attention is improved when the brain has access to a simplified model of attention itself. The brain therefore constructs a schematic model of the process of attention, the ‘attention schema,’ in much the same way that it constructs a schematic model of the body, the ‘body schema.’ The content of this internal model leads a brain to conclude that it has a subjective experience. One advantage of this theory is that it explains how awareness and attention can sometimes become dissociated; the brain’s internal models are never perfect, and sometimes a model becomes dissociated from the object being modeled. A second advantage of this theory is that it explains how we can be aware of both internal and external events. The brain can apply attention to many types of information including external sensory information and internal information about emotions and cognitive states. If awareness is a model of attention, then this model should pertain to the same domains of information to which attention pertains. A third advantage of this theory is that it provides testable predictions. If awareness is the internal model of attention, used to help control attention, then without awareness, attention should still be possible but should suffer deficits in control. In this article, we review the existing literature on the relationship between attention and awareness, and suggest that at least some of the predictions of the theory are borne out by the evidence. PMID:25954242

  8. Cervical spine injuries in young children: pattern and outcomes in accidental versus inflicted trauma.

    PubMed

    Baerg, Joanne; Thirumoorthi, Arul; Hazboun, Rajaie; Vannix, Rosemary; Krafft, Paul; Zouros, Alexander

    2017-11-01

    The aim of the study was to compare the cervical spine (c-spine) pattern of injury and outcomes in children below 3 y with a head injury from confirmed inflicted versus accidental trauma. After Institutional Review Board approval, data were prospectively collected between July 2011 and January 2016. Inclusion criteria were age below 3 y, a loss of consciousness, and any one of the following initial head computed tomography (CT) findings (subdural hematoma, intraventricular, intraparenchymal, subarachnoid hemorrhage, or cerebral edema). A protocol of brain and neck magnetic resonance imaging and magnetic resonance angiography was instituted. Brain and neck imaging results, clinical variables, and outcomes were recorded. Data were compared by t-test for continuous and Fisher exact test for categorical variables. 73 children were identified, 52 (71%) with inflicted and 21 (29%) with accidental trauma. The median age was 11 mo; (range: 1-35 mo). Ten (14%) had c-spine injuries, 7/52 (13%) inflicted, and 3/21 (14%) accidental. The mechanism was shaking for all inflicted and motor vehicle accident or pedestrian struck for accidental c-spine injuries. The inflicted group were significantly younger (P = 0.03), had higher Injury Severity Scores (P = 0.02), subdural hematomas (P = 0.03), fractures (P = 0.03), retinal hemorrhages (P = 0.02), brain infarcts (P = 0.01), and required cardiopulmonary resuscitation (P = 0.01). Seven with inflicted trauma died from brain injury (9.5%), one had atlanto-occipital dissociation. Six mortalities (86%) had no c-spine injury. Six with inflicted c-spine injuries survived with neurologic impairment, whereas three with accidental survived without disability, including one atlanto-occipital dissociation. Compared to accidental trauma, young children with inflicted c-spine injuries have more multisystem trauma, long-term disability from brain injury, and an injury pattern consistent with shaking. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Neurophysiology of hypnosis.

    PubMed

    Vanhaudenhuyse, A; Laureys, S; Faymonville, M-E

    2014-10-01

    We here review behavioral, neuroimaging and electrophysiological studies of hypnosis as a state, as well as hypnosis as a tool to modulate brain responses to painful stimulations. Studies have shown that hypnotic processes modify internal (self awareness) as well as external (environmental awareness) brain networks. Brain mechanisms underlying the modulation of pain perception under hypnotic conditions involve cortical as well as subcortical areas including anterior cingulate and prefrontal cortices, basal ganglia and thalami. Combined with local anesthesia and conscious sedation in patients undergoing surgery, hypnosis is associated with improved peri- and postoperative comfort of patients and surgeons. Finally, hypnosis can be considered as a useful analogue for simulating conversion and dissociation symptoms in healthy subjects, permitting better characterization of these challenging disorders by producing clinically similar experiences. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Neuroimaging during Trance State: A Contribution to the Study of Dissociation

    PubMed Central

    Peres, Julio Fernando; Moreira-Almeida, Alexander; Caixeta, Leonardo; Leao, Frederico; Newberg, Andrew

    2012-01-01

    Despite increasing interest in pathological and non-pathological dissociation, few researchers have focused on the spiritual experiences involving dissociative states such as mediumship, in which an individual (the medium) claims to be in communication with, or under the control of, the mind of a deceased person. Our preliminary study investigated psychography – in which allegedly “the spirit writes through the medium's hand” – for potential associations with specific alterations in cerebral activity. We examined ten healthy psychographers – five less expert mediums and five with substantial experience, ranging from 15 to 47 years of automatic writing and 2 to 18 psychographies per month – using single photon emission computed tomography to scan activity as subjects were writing, in both dissociative trance and non-trance states. The complexity of the original written content they produced was analyzed for each individual and for the sample as a whole. The experienced psychographers showed lower levels of activity in the left culmen, left hippocampus, left inferior occipital gyrus, left anterior cingulate, right superior temporal gyrus and right precentral gyrus during psychography compared to their normal (non-trance) writing. The average complexity scores for psychographed content were higher than those for control writing, for both the whole sample and for experienced mediums. The fact that subjects produced complex content in a trance dissociative state suggests they were not merely relaxed, and relaxation seems an unlikely explanation for the underactivation of brain areas specifically related to the cognitive processing being carried out. This finding deserves further investigation both in terms of replication and explanatory hypotheses. PMID:23166648

  11. Comparative Tissue Stainability of Lawsonia inermis (Henna) and Eosin as Counterstains to Hematoxylin in Brain Tissues.

    PubMed

    Alawa, Judith N; Gideon, Gbenga O; Adetiba, Bamidele; Alawa, Clement B

    2015-04-01

    We hyposthesized that henna staining could provide an alternative to eosin when used as a counterstain to hematoxylin for understanding basic neurohistological principles. Therefore, this study was aimed at investigating the suitability of henna as counterstain to hematoxylin for the demonstration of the layer stratification and cellular distribution in the brain tissue. Henna stained nervous tissue by reacting with the basic elements in proteins via its amino groups. It stained the neuropil and connective tissue membranes brown and effectively outlined the perikarya of neurons with no visible nuclei demonstrating that it is an acidic dye. Henna as a counterstain to hematoxylin demonstrated reliability as a new neurohistological stain. It facilitated identification of cortical layer stratification and cellular distribution in brain tissue sections from Wistar rats. This was comparable to standard hematoxylin and eosin staining as morphological and morphometrical analyses of stained cells did not show significant differences in size or number. This study presents a method for staining with henna and demonstrates that although henna and eosin belong to different dye groups (anthraquinone and xanthenes, respectively) based on their chromophores, they share similar staining techniques and thus could be used interchangeably in neurohistology.

  12. Salient measures of inhibition and switching are associated with frontal lobe gray matter volume in healthy middle-aged and older adults.

    PubMed

    Adólfsdóttir, Steinunn; Haász, Judit; Wehling, Eike; Ystad, Martin; Lundervold, Arvid; Lundervold, Astri J

    2014-11-01

    To investigate brain-behavior relationships between morphometric brain measures and salient executive function (EF) measures of inhibition and switching. One hundred participants (49-80 years) performed the Color Word Interference Test from the Delis-Kaplan Executive Function System (D-KEFS). Salient measures of EF components of inhibition and switching, of which the effect of more fundamental skills were regressed out, were analyzed using linear models and a conditional inference trees analysis taking intercorrelations between predictor variables (brain volumes, age, gender, and education) into account. The conditional inference trees analysis demonstrated a primary role of the middle frontal gyrus (MFG) in explaining variations in the salient EF measure of switching and combined inhibition/switching. Age predicted measures of inhibition. The study highlights the importance of considering fundamental cognitive skills and the use of a statistical method taking possible complex relationships between predictor variables into account when interpreting standard EF test results. Further studies should include MRI measures representing neural networks that may relate to CWIT performance, and longitudinal studies are required to investigate any causal relationships. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Morphometric studies of heavy ion damage in the brains of rodents

    NASA Technical Reports Server (NTRS)

    Kraft, L. M.; Cox, A. B.

    1986-01-01

    The relative biological effectiveness (RBE) of different heavy ions for the mammalian brain was determined in mice irradiated at 100 days of age with He-4, C-12, Ne-20, Fe-56, Ar-40, or Co-60 gamma photons (with the primary particle LET values ranging from 2 to 650). Brain preparations were examined 16 months later for volume changes in the external plexiform layer (P-zone) of the olfactory bulb and an internal region (G-zone), which consists of the granule cells, the internal plexiform layer, and the mitral cell layer. The result indicate that the volume changes did occur in the olfactory bulb, not only in absolute terms but also when expressed as the ratio of the structures to each other and to the bulb as a whole. While the observed increased neuronal loss in mice receiving 700 cGy of Co-60 support the earlier data from irradiated rabbits, the increases observed in bulbar volumes and in the volume ratios of the P and the G zones measured in the mice given lower doses (320 or 160 cGy of He or C), were not expected.

  14. Differences in brain structure in patients with distinct sites of chronic pain: A voxel-based morphometric analysis

    PubMed Central

    Mao, Cuiping; Wei, Longxiao; Zhang, Qiuli; Liao, Xia; Yang, Xiaoli; Zhang, Ming

    2013-01-01

    A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine differences in brain morphology in patients with low back pain or neck and upper back pain, we investigated changes in gray matter volume in chronic back pain patients having different sites of pain using voxel-based morphometry. A reduction in cortical gray matter volume was found primarily in the left postcentral gyrus and in the left precuneus and bilateral cuneal cortex of patients with low back pain. In these patients, there was an increase in subcortical gray matter volume in the bilateral putamen and accumbens, right pallidum, right caudate nucleus, and left amygdala. In upper back pain patients, reduced cortical gray matter volume was found in the left precentral and left postcentral cortices. Our findings suggest that regional gray matter volume abnormalities in low back pain patients are more extensive than in upper back pain patients. Subcortical gray matter volume increases are found only in patients with low back pain. PMID:25206618

  15. Support for distinct subcomponents of spatial working memory: a double dissociation between spatial-simultaneous and spatial-sequential performance in unilateral neglect.

    PubMed

    Wansard, Murielle; Bartolomeo, Paolo; Bastin, Christine; Segovia, Fermín; Gillet, Sophie; Duret, Christophe; Meulemans, Thierry

    2015-01-01

    Over the last decade, many studies have demonstrated that visuospatial working memory (VSWM) can be divided into separate subsystems dedicated to the retention of visual patterns and their serial order. Impaired VSWM has been suggested to exacerbate left visual neglect in right-brain-damaged individuals. The aim of this study was to investigate the segregation between spatial-sequential and spatial-simultaneous working memory in individuals with neglect. We demonstrated that patterns of results on these VSWM tasks can be dissociated. Spatial-simultaneous and sequential aspects of VSWM can be selectively impaired in unilateral neglect. Our results support the hypothesis of multiple VSWM subsystems, which should be taken into account to better understand neglect-related deficits.

  16. Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis

    NASA Astrophysics Data System (ADS)

    Evans, Alan C.; Dai, Weiqian; Collins, D. Louis; Neelin, Peter; Marrett, Sean

    1991-06-01

    We describe the implementation, experience and preliminary results obtained with a 3-D computerized brain atlas for topographical and functional analysis of brain sub-regions. A volume-of-interest (VOI) atlas was produced by manual contouring on 64 adjacent 2 mm-thick MRI slices to yield 60 brain structures in each hemisphere which could be adjusted, originally by global affine transformation or local interactive adjustments, to match individual MRI datasets. We have now added a non-linear deformation (warp) capability (Bookstein, 1989) into the procedure for fitting the atlas to the brain data. Specific target points are identified in both atlas and MRI spaces which define a continuous 3-D warp transformation that maps the atlas on to the individual brain image. The procedure was used to fit MRI brain image volumes from 16 young normal volunteers. Regional volume and positional variability were determined, the latter in such a way as to assess the extent to which previous linear models of brain anatomical variability fail to account for the true variation among normal individuals. Using a linear model for atlas deformation yielded 3-D fits of the MRI data which, when pooled across subjects and brain regions, left a residual mis-match of 6 - 7 mm as compared to the non-linear model. The results indicate a substantial component of morphometric variability is not accounted for by linear scaling. This has profound implications for applications which employ stereotactic coordinate systems which map individual brains into a common reference frame: quantitative neuroradiology, stereotactic neurosurgery and cognitive mapping of normal brain function with PET. In the latter case, the combination of a non-linear deformation algorithm would allow for accurate measurement of individual anatomic variations and the inclusion of such variations in inter-subject averaging methodologies used for cognitive mapping with PET.

  17. The iconic memory skills of brain injury survivors and non-brain injured controls after visual scanning training.

    PubMed

    McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T

    1994-01-01

    Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.

  18. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?

    PubMed

    Lemaitre, Herve; Goldman, Aaron L; Sambataro, Fabio; Verchinski, Beth A; Meyer-Lindenberg, Andreas; Weinberger, Daniel R; Mattay, Venkata S

    2012-03-01

    Normal aging is accompanied by global as well as regional structural changes. While these age-related changes in gray matter volume have been extensively studied, less has been done using newer morphological indexes, such as cortical thickness and surface area. To this end, we analyzed structural images of 216 healthy volunteers, ranging from 18 to 87 years of age, using a surface-based automated parcellation approach. Linear regressions of age revealed a concomitant global age-related reduction in cortical thickness, surface area and volume. Cortical thickness and volume collectively confirmed the vulnerability of the prefrontal cortex, whereas in other cortical regions, such as in the parietal cortex, thickness was the only measure sensitive to the pronounced age-related atrophy. No cortical regions showed more surface area reduction than the global average. The distinction between these morphological measures may provide valuable information to dissect age-related structural changes of the brain, with each of these indexes probably reflecting specific histological changes occurring during aging. Published by Elsevier Inc.

  19. Multivariate statistical model for 3D image segmentation with application to medical images.

    PubMed

    John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O

    2003-12-01

    In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).

  20. Dissociation between melodic and rhythmic processing during piano performance from musical scores.

    PubMed

    Bengtsson, Sara L; Ullén, Fredrik

    2006-03-01

    When performing or perceiving music, we experience the melodic (spatial) and rhythmic aspects as a unified whole. Moreover, the motor program theory stipulates that the relative timing and the serial order of the movement are invariant features of a motor program. Still, clinical and psychophysical observations suggest independent processing of these two aspects, in both production and perception. Here, we used functional magnetic resonance imaging to dissociate between brain areas processing the melodic and the rhythmic aspects during piano playing from musical scores. This behavior requires that the pianist decodes two types of information from the score in order to produce the desired piece of music. The spatial location of a note head determines which piano key to strike, and the various features of the note, such as the stem and flags determine the timing of each key stroke. We found that the medial occipital lobe, the superior temporal lobe, the rostral cingulate cortex, the putamen and the cerebellum process the melodic information, whereas the lateral occipital and the inferior temporal cortex, the left supramarginal gyrus, the left inferior and ventral frontal gyri, the caudate nucleus, and the cerebellum process the rhythmic information. Thus, we suggest a dissociate involvement of the dorsal visual stream in the spatial pitch processing and the ventral visual stream in temporal movement preparation. We propose that this dissociate organization may be important for fast learning and flexibility in motor control.

  1. Dissociable frontostriatal white matter connectivity underlies reward and motor impulsivity.

    PubMed

    Hampton, William H; Alm, Kylie H; Venkatraman, Vinod; Nugiel, Tehila; Olson, Ingrid R

    2017-04-15

    Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dissociated neural basis of two behavioral hallmarks of holistic face processing: The whole-part effect and composite-face effect.

    PubMed

    Li, Jin; Huang, Lijie; Song, Yiying; Liu, Jia

    2017-07-28

    It has been long proposed that our extraordinary face recognition ability stems from holistic face processing. Two widely-used behavioral hallmarks of holistic face processing are the whole-part effect (WPE) and composite-face effect (CFE). However, it remains unknown whether these two effects reflect similar or different aspects of holistic face processing. Here we investigated this question by examining whether the WPE and CFE involved shared or distinct neural substrates in a large sample of participants (N=200). We found that the WPE and CFE showed hemispheric dissociation in the fusiform face area (FFA), that is, the WPE was correlated with face selectivity in the left FFA, while the CFE was correlated with face selectivity in the right FFA. Further, the correlation between the WPE and face selectivity was largely driven by the FFA response to faces, whereas the association between the CFE and face selectivity resulted from suppressed response to objects in the right FFA. Finally, we also observed dissociated correlation patterns of the WPE and CFE in other face-selective regions and across the whole brain. These results suggest that the WPE and CFE may reflect different aspects of holistic face processing, which shed new light on the behavioral dissociations of these two effects demonstrated in literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity

    PubMed Central

    Ginter, Carly C.; DeWitt, Thomas J.; Fish, Frank E.; Marshall, Christopher D.

    2012-01-01

    Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in vibrotactile reception, but it is currently unclear how the diversity of shapes affects environmental signal modulation. PMID:22509310

  4. Identifying homologous anatomical landmarks on reconstructed magnetic resonance images of the human cerebral cortical surface

    PubMed Central

    MAUDGIL, D. D.; FREE, S. L.; SISODIYA, S. M.; LEMIEUX, L.; WOERMANN, F. G.; FISH, D. R.; SHORVON, S. D.

    1998-01-01

    Guided by a review of the anatomical literature, 36 sulci on the human cerebral cortical surface were designated as homologous. These sulci were assessed for visibility on 3-dimensional images reconstructed from magnetic resonance imaging scans of the brains of 20 normal volunteers by 2 independent observers. Those sulci that were found to be reproducibly identifiable were used to define 24 landmarks around the cortical surface. The interobserver and intraobserver variabilities of measurement of the 24 landmarks were calculated. These reliably reproducible landmarks can be used for detailed morphometric analysis, and may prove helpful in the analysis of suspected cerebral cortical structured abnormalities in patients with such conditions as epilepsy. PMID:10029189

  5. [Morphometry of giant multipolar neurons of the brain stem reticular formation in rats on board the Kosmos-1667 biosatellite].

    PubMed

    Belichenko, P V; Leontovich, T A

    1989-05-01

    Giant multipolar neurons of nucleus reticularis gigantocellularis of rats which had been kept on board the biosatellite "Kosmos-1667" were morphometrically studied. There was a trend towards the increase in the cellular surface, the maximum diameter of dendritic field, the volume of the whole dendritic territory in the test group ad in the control experimental group kept on the earth. A reliable decrease in dendritic mass oriented to nucleus vestibularis and an increase in dendritic mass oriented to the midline were also found in test group, as compared to 3 control groups. Our data were discussed in the light of nervous tissue plasticity in adult mammals.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, R.J.; Sharma, S.D.; Toth, G.

    (D-Pen2,4{prime}-125I-Phe4,D-Pen5)enkephalin ((125I)DPDPE) is a highly selective radioligand for the delta opioid receptor with a specific activity (2200 Ci/mmol) that is over 50-fold greater than that of tritium-labeled DPDPE analogs. (125I)DPDPE binds to a single site in rat brain membranes with an equilibrium dissociation constant (Kd) value of 421 {plus minus} 67 pM and a receptor density (Bmax) value of 36.4 {plus minus} 2.7 fmol/mg protein. The high affinity of this site for delta opioid receptor ligands and its low affinity for mu or kappa receptor-selective ligands are consistent with its being a delta opioid receptor. The distribution of these sitesmore » in rat brain, observed by receptor autoradiography, is also consistent with that of delta opioid receptors. Association and dissociation binding kinetics of 1.0 nM (125I) DPDPE are monophasic at 25 degrees C. The association rate (k + 1 = 5.80 {plus minus} 0.88 {times} 10(7) M-1 min-1) is about 20- and 7-fold greater than that measured for 1.0 nM (3H) DPDPE and 0.8 nM (3H) (D-Pen2,4{prime}-Cl-Phe4, D-Pen5)enkephalin, respectively. The dissociation rate of (125I)DPDPE (0.917 {plus minus} 0.117 {times} 10(-2) min-1) measured at 1.0 nM is about 3-fold faster than is observed for either of the other DPDPE analogs. The rapid binding kinetics of (125I)DPDPE is advantageous because binding equilibrium is achieved with much shorter incubation times than are required for other cyclic enkephalin analogs. This, in addition to its much higher specific activity, makes (125I)DPDPE a valuable new radioligand for studies of delta opioid receptors.« less

  7. Functional anatomic studies of memory retrieval for auditory words and visual pictures.

    PubMed

    Buckner, R L; Raichle, M E; Miezin, F M; Petersen, S E

    1996-10-01

    Functional neuroimaging with positron emission tomography was used to study brain areas activated during memory retrieval. Subjects (n = 15) recalled items from a recent study episode (episodic memory) during two paired-associate recall tasks. The tasks differed in that PICTURE RECALL required pictorial retrieval, whereas AUDITORY WORD RECALL required word retrieval. Word REPETITION and REST served as two reference tasks. Comparing recall with repetition revealed the following observations. (1) Right anterior prefrontal activation (similar to that seen in several previous experiments), in addition to bilateral frontal-opercular and anterior cingulate activations. (2) An anterior subdivision of medial frontal cortex [pre-supplementary motor area (SMA)] was activated, which could be dissociated from a more posterior area (SMA proper). (3) Parietal areas were activated, including a posterior medial area near precuneus, that could be dissociated from an anterior parietal area that was deactivated. (4) Multiple medial and lateral cerebellar areas were activated. Comparing recall with rest revealed similar activations, except right prefrontal activation was minimal and activations related to motor and auditory demands became apparent (e.g., bilateral motor and temporal cortex). Directly comparing picture recall with auditory word recall revealed few notable activations. Taken together, these findings suggest a pathway that is commonly used during the episodic retrieval of picture and word stimuli under these conditions. Many areas in this pathway overlap with areas previously activated by a different set of retrieval tasks using stem-cued recall, demonstrating their generality. Examination of activations within individual subjects in relation to structural magnetic resonance images provided an-atomic information about the location of these activations. Such data, when combined with the dissociations between functional areas, provide an increasingly detailed picture of the brain pathways involved in episodic retrieval tasks.

  8. The anatomy of object recognition--visual form agnosia caused by medial occipitotemporal stroke.

    PubMed

    Karnath, Hans-Otto; Rüter, Johannes; Mandler, André; Himmelbach, Marc

    2009-05-06

    The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). Since CO induces a diffuse and widespread pattern of neuronal and white matter damage throughout the whole brain, precise conclusions from these patients with VFA on the selective role of ventral stream structures for shape and orientation perception were difficult. Here, we report patient J.S., who demonstrated VFA after a well circumscribed brain lesion due to stroke etiology. Like the famous patient D.F. with VFA after CO intoxication studied by Milner, Goodale, and coworkers (Goodale et al., 1991, 1994; Milner et al., 1991; Servos et al., 1995; Mon-Williams et al., 2001a,b; Wann et al., 2001; Westwood et al., 2002; McIntosh et al., 2004; Schenk and Milner, 2006), J.S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.

  9. Double-dissociation between the mechanism leading to impulsivity and inattention in Attention Deficit Hyperactivity Disorder: A resting-state functional connectivity study.

    PubMed

    Sanefuji, Masafumi; Craig, Michael; Parlatini, Valeria; Mehta, Mitul A; Murphy, Declan G; Catani, Marco; Cerliani, Leonardo; Thiebaut de Schotten, Michel

    2017-01-01

    Two core symptoms characterize Attention Deficit Hyperactivity Disorder (ADHD) subtypes: inattentiveness and hyperactivity-impulsivity. While previous brain imaging research investigated ADHD as if it was a homogenous condition, its two core symptoms may originate from different brain mechanisms. We, therefore, hypothesized that the functional connectivity of cortico-striatal and attentional networks would be different between ADHD subtypes. We studied 165 children (mean age 10.93 years; age range, 7-17 year old) diagnosed as having ADHD based on their revised Conner's rating scale score and 170 typical developing individuals (mean age 11.46 years; age range, 7-17 year old) using resting state functional fMRI. Groups were matched for age, IQ and head motion during the MRI acquisition. We fractionated the ADHD group into predominantly inattentive, hyperactive-impulsive and combined subtypes based on their revised Conner's rating scale score. We then analyzed differences in resting state functional connectivity of the cortico-striatal and attentional networks between these subtypes. We found a double dissociation of functional connectivity in the cortico-striatal and ventral attentional networks, reflecting the subtypes of the ADHD participants. Particularly, the hyperactive-impulsive subtype was associated with increased connectivity in cortico-striatal network, whereas the inattentive subtype was associated with increased connectivity in the right ventral attention network. Our study demonstrated for the first time a right lateralized, double dissociation between specific networks associated with hyperactivity-impulsivity and inattentiveness in ADHD children, providing a biological basis for exploring symptom dimensions and revealing potential targets for more personalized treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of trauma-related cues on pain processing in posttraumatic stress disorder: an fMRI investigation

    PubMed Central

    Mickleborough, Marla J.S.; Daniels, Judith K.; Coupland, Nicholas J.; Kao, Raymond; Williamson, Peter C.; Lanius, Ulrich F.; Hegadoren, Kathy; Schore, Allan; Densmore, Maria; Stevens, Todd; Lanius, Ruth A.

    2011-01-01

    Background Imaging studies of pain processing in primary psychiatric disorders are just emerging. This study explored the neural correlates of stress-induced analgesia in individuals with posttraumatic stress disorder (PTSD). It combined functional magnetic resonance imaging (fMRI) and the traumatic script-driven imagery symptom provocation paradigm to examine the effects of trauma-related cues on pain perception in individuals with PTSD. Methods The study included 17 patients with PTSD and 26 healthy, trauma-exposed controls. Participants received warm (nonpainful) or hot (painful) thermal stimuli after listening to a neutral or a traumatic script while they were undergoing an fMRI scan at a 4.0 T field strength. Results Between-group analyses revealed that after exposure to the traumatic scripts, the blood oxygen level–dependent (BOLD) signal during pain perception was greater in the PTSD group than the control group in the head of the caudate. In the PTSD group, strong positive correlations resulted between BOLD signal and symptom severity in a number of brain regions previously implicated in stress-induced analgesia, such as the thalamus and the head of the caudate nucleus. Trait dissociation as measured by the Dissociative Experiences Scale correlated negatively with the right amygdala and the left putamen. Limitations This study included heterogeneous traumatic experiences, a different proportion of military trauma in the PTSD versus the control group and medicated patients with PTSD. Conclusion These data indicate that in patients with PTSD trauma recall will lead in a state-dependent manner to greater activation in brain regions implicated in stress-induced analgesia. Correlational analyses lend support to cortical hyperinhibition of the amygdala as a function of dissociation. PMID:20964954

  11. Brain-region–specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism

    PubMed Central

    2014-01-01

    Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon’s horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits. PMID:24612906

  12. Networks of myelin covariance

    PubMed Central

    Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2017-01-01

    Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053

  13. Structural brain abnormalities in adolescent anorexia nervosa before and after weight recovery and associated hormonal changes.

    PubMed

    Mainz, Verena; Schulte-Rüther, Martin; Fink, Gereon R; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2012-01-01

    The neurobiological mechanisms of structural brain abnormalities in patients with anorexia nervosa (AN) remain poorly understood. In particular, little is known about the changes in and the recovery of gray matter (GM) volumes after weight gain and the relation to hormonal normalization in adolescent patients with AN. Nineteen female patients aged 12 to 17 years were assessed using magnetic resonance imaging at the time of admission to the hospital (T1) and after weight recovery (T2). Patients were compared with typically developing girls matched for age and intelligence quotient. Structural brain images were analyzed using a voxel-based morphometric approach. Circulating levels of cortisol and gonadotropins were assessed in blood samples. Compared with controls, patients with AN showed reduced GM in several brain regions along the cortical midline, reaching from the occipital cortex to the medial frontal areas. These GM reductions were mostly reversible at T1. Patients showed a GM increase from T1 to T2 along the cortical midline and in the occipital, temporal, parietal, and frontal lobes. GM increases at T2 correlated inversely with cortisol levels at T1 and positively with weight gain at T2. The strongest associations between regional GM increase and weight gain were found in the cerebellum. In addition, increases in GM volumes at T2 in the thalamus, hippocampus, and amygdala were associated with increases in follicle-stimulating hormone. Our data suggest that brain alterations in adolescents with acute AN are mostly reversible at T1 and that GM recovery in specific brain regions is associated with weight and hormonal normalization.

  14. Edema fluid accumulation within necrotic brain tissue as a cause of the mass effect of cerebral contusion in head trauma patients.

    PubMed

    Katayama, Y; Kawamata, T

    2003-01-01

    The early massive edema caused by severe cerebral contusion results in progressive intracranial pressure (ICP) elevation and clinical deterioration within 24-72 hours post-trauma. Surgical excision of the necrotic brain tissue represents the only therapy, which can provide satisfactory control of the elevated ICP and clinical deterioration. In order to elucidate the mechanisms underlying the early massive edema, we have carried out a series of detailed clinical studies. Diffusion magnetic resonance (MR) imaging and apparent diffusion co-efficient (ADC) mapping suggest that cells in the central area of contusion undergo shrinkage, disintegration and homogenization, whereas cellular swelling is predominant in the peripheral area during the period of 24-72 hours post-trauma. The ADC values in the central and peripheral areas are maximally dissociated during this period. A large amount of edema fluid accumulates within the necrotic brain tissue of the central area beginning at approximately 24 hours post-trauma. We have found that fluid-blood interface formation within the central area does not represent an uncommon finding in various neuroimaging examinations of cerebral contusions, indicating layering of red blood cells within the necrotic brain tissue accumulating voluminous edema fluid. Intravenous slow infusion of gadolinium-DTPA and delayed MR imaging revealed that the central area of contusion can be enhanced at 24-48 hours post-trauma. implying that water supply from the blood vessels is not completely interrupted. Necrotic brain tissue sampled from the central area of contusion during surgery demonstrates a very high osmolality. It appears that the capacitance for edema fluid accumulation increases in the central area, whereas cellular swelling in the peripheral area elevates the resistance for edema fluid propagation. Combination of these circumstances may facilitate edema fluid accumulation in the central area. We also suggest that the dissociation of ADC values and high osmolality within the necrotic brain tissue may generate an osmotic potential across the central and peripheral areas and contribute to the early massive edema caused by cerebral contusion.

  15. Influences of cholecystokinin octapeptide on phosphoinositide turnover in neonatal-rat brain cells.

    PubMed Central

    Zhang, L J; Lu, X Y; Han, J S

    1992-01-01

    Cholecystokinin octapeptide (CCK-8) has been shown to be coupled to phosphoinositide turnover in pancreatic acini as well as in a kind of neuroblastoma cell and a human embryonic cell line. Little is known, however, about its link with phosphatidylinositol breakdown in the brain. The brains (minus cerebella) from 1-2-day-old neonatal rats were enzymically dissociated into single cells. The intact cells were prelabelled by incubation with myo-[3H]inositol for 3 h, and were then stimulated with agonists in the presence of 10 mM-LiCl. Carbachol at 1 mM induced an increase in InsP3 labelling in brain cells (peak at 30 min, and then a gradual decrease), and a static accumulation of InsP with time, whereas the labelling of InsP2 remained essentially unchanged. A very similar time-response curve was obtained for 10 nM-CCK-8 in stimulating phosphoinositide turnover. The dose-response curve for incubated brain cells revealed that the formation of InsP3 increased when the concentration of CCK-8 was increased from 0.1 to 10 nM. A further increase in CCK-8 concentration to 100-1000 nM resulted in a gradual decrease in InsP3 formation. InsP and InsP2 levels stayed relatively stable. The production of InsP3 stimulated by 10 nM-CCK-8 was dose-dependently suppressed by the CCK-A antagonist Devazepide in the concentration range 1-10 nM; the effect declined when the concentration was further increased to 100-1000 nM. In contrast, the CCK-B antagonist L365,260 showed a sustained suppression of InsP3 production at concentrations above 0.1 nM, i.e. in the range 1-1000 nM. The results provide evidence that CCK-8 stimulates the turnover of phosphoinositide and increases InsP3 labelling in dissociated neonatal-rat brain cells, in which both CCK-A and CCK-B receptors seem to be involved. PMID:1323276

  16. PTSD and Substance Abuse

    DTIC Science & Technology

    2011-08-01

    9 4 INTRODUCTION Substance use disorders (SUD) and Posttraumatic stress disorder ( PTSD ) are some of the most prominent...Fee, F. (in press). Substance use disorder , PTSD , and traumatic brain injury. In J. Vasterling, R. Bryant, T. Keane (Eds). PTSD and Mild Traumatic ...another DoD investigator, on a paper on dissociation, PTSD , and substance use disorder , using DoD Naval Health research data.  Dr. Najavits presented at

  17. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy.

    PubMed

    Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin

    2017-03-01

    Continuous measurement of local brain oxygen saturation (SO 2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO 2 ), which is closely related to SO 2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO 2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO 2 for different blood concentrations. The P 3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO 2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO 2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The expression of '150-kDa oxygen regulated protein (ORP-150)' in human brain and its relationship with duration time until death.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro

    2004-04-01

    The expression of oxygen regulated protein 150-kDa (ORP-150) was strongly induced in human brain under the hypoxic conditions. We examined the expression of ORP-150 in the brain samples, and discussed its significance in forensic practice. The cerebral cortexes of 31 cases (asphyxia: 9 cases, hypothermia: 4, exsanguinations: 5, CO intoxication (CO): 6, sudden cardiac death (SCD): 7) were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibody and the number of ORP-150 positive cells were counted. In the multiple linear regression method, the estimated regression coefficient of ORP-150 on age was significant (P=0.039) thus, we could find that the ORP-150 expression level depended on age. Using analysis of covariance, we compared the means of ORP-150, LSMEAN, which means hypothetic average value excluding influence of age, for each cause of death. The LSMEAN+/-SE was 84.74+/-9.03 in hypothermia, 57.52+/-6.34 in asphyxia, 46.68+/-6.70 in CO, 24.84+/-8.05 in exsanguinations, and 16.24+/-7.35 in SCD. As a result of the analysis, the LSMEAN of the ORP-150 expression level was related to the cause of death. There might be differences in the duration of brain ischemia before death. For example, SCD is presumed to be instant death, while brain ischemia continues for several minutes in asphyxia, CO and exsanguinations, and for several hours in hypothermia cases. Therefore, the immunohistochemical and morphometrical analysis of ORP-150 in the brain may be very useful to determine the duration of brain ischemia before death in forensic autopsy cases.

  19. Networks of myelin covariance.

    PubMed

    Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2018-04-01

    Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. A Statistical Analysis of Brain Morphology Using Wild Bootstrapping

    PubMed Central

    Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.

    2008-01-01

    Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909

  1. Asymmetry of different brain structures in homing pigeons with and without navigational experience.

    PubMed

    Mehlhorn, Julia; Haastert, Burkhard; Rehkämper, Gerd

    2010-07-01

    Homing pigeons (Columba livia f.d.) are well-known for their homing abilities, and their brains seem to be functionally adapted to homing as exemplified, e.g. by their larger hippocampi and olfactory bulbs. Their hippocampus size is influenced by navigational experience, and, as in other birds, functional specialisation of the left and right hemispheres ('lateralisation') occurs in homing pigeons. To show in what way lateralisation is reflected in brain structure volume, and whether some lateralisation or asymmetry in homing pigeons is caused by experience, we compared brains of homing pigeons with and without navigational experience referring to this. Fourteen homing pigeons were raised under identical constraints. After fledging, seven of them were allowed to fly around the loft and participated successfully in races. The other seven stayed permanently in the loft and thus did not share the navigational experiences of the first group. After reaching sexual maturity, all individuals were killed and morphometric analyses were carried out to measure the volumes of five basic brain parts and eight telencephalic brain parts. Measurements of telencephalic brain parts and optic tectum were done separately for the left and right hemispheres. The comparison of left/right quotients of both groups reveal that pigeons with navigational experience show a smaller left mesopallium in comparison with the right mesopallium and pigeons without navigational experience a larger left mesopallium in comparison with the right one. Additionally, there are significant differences between left and right brain subdivisions within the two pigeon groups, namely a larger left hyperpallium apicale in both pigeon groups and a larger right nidopallium, left hippocampus and right optic tectum in pigeons with navigational experience. Pigeons without navigational experience did not show more significant differences between their left and right brain subdivisions. The results of our study confirm that the brain of homing pigeons is an example for mosaic evolution and indicates that lateralisation is correlated with individual life history (experience) and not exclusively based on heritable traits.

  2. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera).

    PubMed

    De Souza, Daiana A; Wang, Ying; Kaftanoglu, Osman; De Jong, David; Amdam, Gro V; Gonçalves, Lionel S; Francoy, Tiago M

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.

  3. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera)

    PubMed Central

    A. De Souza, Daiana; Wang, Ying; Kaftanoglu, Osman; De Jong, David; V. Amdam, Gro; S. Gonçalves, Lionel; M. Francoy, Tiago

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates. PMID:25894528

  4. A three-dimensional comparison of a morphometric and conventional cephalometric midsagittal planes for craniofacial asymmetry.

    PubMed

    Damstra, Janalt; Fourie, Zacharias; De Wit, Marnix; Ren, Yijin

    2012-02-01

    Morphometric methods are used in biology to study object symmetry in living organisms and to determine the true plane of symmetry. The aim of this study was to determine if there are clinical differences between three-dimensional (3D) cephalometric midsagittal planes used to describe craniofacial asymmetry and a true symmetry plane derived from a morphometric method based on visible facial features. The sample consisted of 14 dry skulls (9 symmetric and 5 asymmetric) with metallic markers which were imaged with cone-beam computed tomography. An error study and statistical analysis were performed to validate the morphometric method. The morphometric and conventional cephalometric planes were constructed and compared. The 3D cephalometric planes constructed as perpendiculars to the Frankfort horizontal plane resembled the morphometric plane the most in both the symmetric and asymmetric groups with mean differences of less than 1.00 mm for most variables. However, the standard deviations were often large and clinically significant for these variables. There were clinically relevant differences (>1.00 mm) between the different 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features. The difference between 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features were clinically relevant. Care has to be taken using cephalometric midsagittal planes for diagnosis and treatment planning of craniofacial asymmetry as they might differ from the true plane of symmetry as determined by morphometrics.

  5. Forthergillian Lecture. Imaging human brain function.

    PubMed

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning plastic change. Other models of plastic change, such as normal visuospatial learning or re-establishing speech comprehension after cochlear implantation in the deaf illustrate how patterns of brain function adapt over time. Limitations of the scanning techniques and prospects for the future are discussed in relation to new developments in the neuroimaging field.

  6. Feasibility of studying brain morphology in major depressive disorder with structural magnetic resonance imaging and clinical data from the electronic medical record: A pilot study

    PubMed Central

    Hoogenboom, Wouter S.; Perlis, Roy H.; Smoller, Jordan W.; Zeng-Treitler, Qing; Gainer, Vivian S.; Murphy, Shawn N.; Churchill, Susanne E.; Kohane, Isaac S.; Shenton, Martha E.; Iosifescu, Dan V.

    2012-01-01

    For certain research questions related to long-term outcomes or to rare disorders, designing prospective studies is impractical or prohibitively expensive. Such studies could instead utilize clinical and magnetic resonance imaging data (MRI) collected as part of routine clinical care, stored in the electronic medical record (EMR). Using major depressive disorder (MDD) as a disease model, we examined the feasibility of studying brain morphology and associations with remission using clinical and MRI data exclusively drawn from the EMR. Advanced automated tools were used to select MDD patients and controls from the EMR who had brain MRI data, but no diagnosed brain pathology. MDD patients were further assessed for remission status by review of clinical charts. Twenty MDD patients (eight full-remitters, six partial-remitters, and six non-remitters), and fifteen healthy control subjects met all study criteria for advanced morphometric analyses. Compared to controls, MDD patients had significantly smaller right rostral-anterior cingulate volume, and level of non-remission was associated with smaller left hippocampus and left rostral-middle frontal gyrus volume. The use of EMR data for psychiatric research may provide a timely and cost-effective approach with the potential to generate large study samples reflective of the real population with the illness studied. PMID:23149041

  7. Uncovering the Social Deficits in the Autistic Brain. A Source-Based Morphometric Study

    PubMed Central

    Grecucci, Alessandro; Rubicondo, Danilo; Siugzdaite, Roma; Surian, Luca; Job, Remo

    2016-01-01

    Autism is a neurodevelopmental disorder that mainly affects social interaction and communication. Evidence from behavioral and functional MRI studies supports the hypothesis that dysfunctional mechanisms involving social brain structures play a major role in autistic symptomatology. However, the investigation of anatomical abnormalities in the brain of people with autism has led to inconsistent results. We investigated whether specific brain regions, known to display functional abnormalities in autism, may exhibit mutual and peculiar patterns of covariance in their gray-matter concentrations. We analyzed structural MRI images of 32 young men affected by autistic disorder (AD) and 50 healthy controls. Controls were matched for sex, age, handedness. IQ scores were also monitored to avoid confounding. A multivariate Source-Based Morphometry (SBM) was applied for the first time on AD and controls to detect maximally independent networks of gray matter. Group comparison revealed a gray-matter source that showed differences in AD compared to controls. This network includes broad temporal regions involved in social cognition and high-level visual processing, but also motor and executive areas of the frontal lobe. Notably, we found that gray matter differences, as reflected by SBM, significantly correlated with social and behavioral deficits displayed by AD individuals and encoded via the Autism Diagnostic Observation Schedule scores. These findings provide support for current hypotheses about the neural basis of atypical social and mental states information processing in autism. PMID:27630538

  8. What We Know About the Brain Structure-Function Relationship.

    PubMed

    Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette

    2018-04-18

    How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.

  9. Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula.

    PubMed

    Bernstein, Hans-Gert; Hildebrandt, Jens; Dobrowolny, Henrik; Steiner, Johann; Bogerts, Bernhard; Pahnke, Jens

    2016-11-01

    There is increasing evidence that microvascular abnormalities and malfunction of the blood-brain barrier (BBB) significantly contribute to schizophrenia pathophysiology. The ATP-binding cassette transporter ABCB1 is an important molecular component of the intact BBB, which has been implicated in a number of neurodegenerative and psychiatric disorders, including schizophrenia. However, the regional and cellular expression of ABCB1 in schizophrenia is yet unexplored. Therefore, we studied ABCB1 protein expression immunohistochemically in twelve human post-mortem brain regions known to play a role in schizophrenia, in 13 patients with schizophrenia and nine controls. In ten out of twelve brain regions under study, no significant differences were found with regard to the numerical density of ABCB1-expressing capillaries between all patients with schizophrenia and control cases. The left and right habenular complex, however, showed significantly reduced capillary densities in schizophrenia patients. In addition, we found a significantly reduced density of ABCB1-expressing neurons in the left habenula. Reduced ABCB1 expression in habenular capillaries might contribute to increased brain levels of proinflammatory cytokines in patients with schizophrenia, while decreased expression of this protein in a subpopulation of medial habenular neurons (which are probably purinergic) might be related to abnormalities of purines and their receptors found in this disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A web-system of virtual morphometric globes

    NASA Astrophysics Data System (ADS)

    Florinsky, Igor; Garov, Andrei; Karachevtseva, Irina

    2017-04-01

    Virtual globes — programs implementing interactive three-dimensional (3D) models of planets — are increasingly used in geo- and planetary sciences. We develop a web-system of virtual morphometric globes. As the initial data, we used the following global digital elevation models (DEMs): (1) a DEM of the Earth extracted from SRTM30_PLUS database; (2) a DEM of Mars extracted from the Mars Orbiter Laser Altimeter (MOLA) gridded data record archive; and (3) A DEM of the Moon extracted from the Lunar Orbiter Laser Altimeter (LOLA) gridded data record archive. From these DEMs, we derived global digital models of the following 16 local, nonlocal, and combined morphometric variables: horizontal curvature, vertical curvature, mean curvature, Gaussian curvature, minimal curvature, maximal curvature, unsphericity curvature, difference curvature, vertical excess curvature, horizontal excess curvature, ring curvature, accumulation curvature, catchment area, dispersive area, topographic index, and stream power index (definitions, formulae, and interpretations can be found elsewhere [1]). To calculate local morphometric variables, we applied a finite-difference method intended for spheroidal equal angular grids [1]. Digital models of a nonlocal and combined morphometric variables were derived by a method of Martz and de Jong adapted to spheroidal equal angular grids [1]. DEM processing was performed in the software LandLord [1]. The calculated morphometric models were integrated into the testing version of the system. The following main functions are implemented in the system: (1) selection of a celestial body; (2) selection of a morphometric variable; (3) 2D visualization of a calculated global morphometric model (a map in equirectangular projection); (4) 3D visualization of a calculated global morphometric model on the sphere surface (a globe by itself); (5) change of a globe scale (zooming); and (6) globe rotation by an arbitrary angle. The testing version of the system represents morphometric models with the resolution of 15'. In the final version of the system, we plan to implement a multiscale 3D visualization for models of 17 morphometric variables with the resolution from 15' to 30". The web-system of virtual morphometric globes is designed as a separate unit of a 3D web GIS for storage, processing, and access to planetary data [2], which is currently developed as an extension of an existing 2D web GIS (http://cartsrv.mexlab.ru/geoportal). Free, real-time web access to the system of virtual globes will be provided. The testing version of the system is available at: http://cartsrv.mexlab.ru/virtualglobe. The study is supported by the Russian Foundation for Basic Research, grant 15-07-02484. References 1. Florinsky, I.V., 2016. Digital Terrain Analysis in Soil Science and Geology. 2nd ed. Academic Press, Amsterdam, 486 p. 2. Garov, A.S., Karachevtseva, I.P., Matveev, E.V., Zubarev, A.E., and Florinsky, I.V., 2016. Development of a heterogenic distributed environment for spatial data processing using cloud technologies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(B4): 385-390.

  11. Mid-Frequency Sonar Interactions with Beaked Whales

    DTIC Science & Technology

    2011-06-30

    Beaked Whale, was not completed. However, several other goals were achieved, including synthesis of a morphometric model of a beaked whale. This and work...induced acoustic fields inside beaked whales and other marine mammals. Another high-level goal was to acquire new high-resolution morphometric and...range 1-10 kHz; collecting high-resolution morphometric data through computerized tomography (CT) scans on marine mammal specimens, and constructing

  12. Computer-Aided Diagnosis of Solid Breast Lesions Using an Ultrasonic Multi-Feature Analysis Procedure

    DTIC Science & Technology

    2011-01-01

    areas. We quantified morphometric features by geometric and fractal analysis of traced lesion boundaries. Although no single parameter can reliably...These include acoustic descriptors (“echogenicity,” “heterogeneity,” “shadowing”) and morphometric descriptors (“area,” “aspect ratio,” “border...quantitative descriptors; some morphometric features (such as border irregularity) also were particularly effective in lesion classification. Our

  13. Characterization and Biomimcry of Avian Nanostructured Tissues

    DTIC Science & Technology

    2016-01-19

    keratin cortex (Maia et al. 2011) at the outer edge of barbs from TEM images. Geometric morphometrics of barb shape Digitized images of the barb thin...morphological measurements (all P > 0.05; Figure 4C; Table S2). Gloss and Barb Geometric Morphometrics Matte and glossy barbs differed significantly in...barbs and lack of multiple, clear anatomically homologous features, traditional landmark based morphometric techniques (Bookstein, 1982) would be

  14. Mission Connect Mild TBI Translational Research Consortium

    DTIC Science & Technology

    2013-08-01

    year 2 and 3 annual progress report we completed the morphometric and the diffusion tensor imaging (DTI) in cortical impact injury with and without...and morphometric measures. Response to EAB feedback: No concerns were expressed by the External Advisory Board about the MRI core. Manuscript...automatic analysis of morphometry, DTI, and MTR for both humans and rodents.  Completed morphometric and DTI analysis in traumatically injured animals

  15. Regional pressure and temperature variations across the injured human brain: comparisons between paired intraparenchymal and ventricular measurements.

    PubMed

    Childs, Charmaine; Shen, Liang

    2015-06-23

    Intraparenchymal, multimodality sensors are commonly used in the management of patients with severe traumatic brain injury (TBI). The 'gold standard', based on accuracy, reliability and cost for intracranial pressure (ICP) monitoring is within the cerebral ventricle (external strain gauge). There are no standards yet for intracerebral temperature monitoring and little is known of temperature differences between brain tissue and ventricle. The aim of the study therefore was to determine pressure and temperature differences at intraparenchymal and ventricular sites during five days of continuous neuromonitoring. Patients with severe TBI requiring emergency surgery. patients who required ICP monitoring were eligible for recruitment. Two intracerebral probe types were used: a) intraventricular, dual parameter sensor (measuring pressure, temperature) with inbuilt catheter for CSF drainage: b) multiparameter intraparenchymal sensor measuring pressure, temperature and oxygen partial pressure. All sensors were inserted during surgery and under aseptic conditions. Seventeen patients, 12 undergoing neurosurgery (decompressive craniectomy n = 8, craniotomy n = 4) aged 21-78 years were studied. Agreement of measures for 9540 brain tissue-ventricular temperature 'pairs' and 10,291 brain tissue-ventricular pressure 'pairs' were determined using mixed model to compare mean temperature and pressure for longitudinal data. There was no significant overall difference for mean temperature (p = 0.92) or mean pressure readings (p = 0.379) between tissue and ventricular sites. With 95.8 % of paired temperature readings within 2SD (-0.4 to 0.4 °C) differences in temperature between brain tissue and ventricle were clinically insignificant. For pressure, 93.5 % of readings pairs fell within the 2SD range (-9.4756 to 7.8112 mmHg). However, for individual patients, agreement for mean tissue-ventricular pressure differences was poor on occasions. There is good overall agreement between paired temperature measurements obtained from deep white matter and brain ventricle in patients with and without early neurosurgery. For paired ICP measurements, 93.5 % of readings were within 2SD of mean difference. Whilst the majority of paired readings were comparable (within 10 mmHg) clinically relevant tissue-ventricular dissociations were noted. Further work is required to unravel the events responsible for short intervals of pressure dissociation before tissue pressure readings can be definitively accepted as a reliable surrogate for ventricular pressure.

  16. Memory-guided reaching in a patient with visual hemiagnosia.

    PubMed

    Cornelsen, Sonja; Rennig, Johannes; Himmelbach, Marc

    2016-06-01

    The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements rely on intact functions of the ventral stream. Its particular importance for memory-guided actions was initially inferred from behavioral dissociations in the well-known patient DF. Despite of rather accurate reaching and grasping movements to visible targets, she demonstrated grossly impaired memory-guided grasping as much as impaired memory-guided reaching. These dissociations were later complemented by apparently reversed dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in DF and optic ataxia patients differed with respect to the retinotopic position of target objects, questioning the interpretation of the respective findings as a double dissociation. In contrast, the findings for reaching errors in both types of patients came from similar peripheral target presentations. However, new data on brain structural changes and visuomotor deficits in DF also questioned the validity of a double dissociation in reaching. A severe visuospatial short-term memory deficit in DF further questioned the specificity of her memory-guided reaching deficit. Therefore, we compared movement accuracy in visually-guided and memory-guided reaching in a new patient who suffered a confined unilateral damage to the ventral visual system due to stroke. Our results indeed support previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our data suggest that recently discovered optic-ataxia like misreaching in DF is most likely caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided reaching tasks in patients with ventral damage cannot be explained by visuospatial short-term memory or perceptual deficits, but by a specific deficit in visuomotor processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Evidence of progenitor cells in the adult human cochlea: sphere formation and identification of ABCG2.

    PubMed

    Massucci-Bissoli, Milene; Lezirovitz, Karina; Oiticica, Jeanne; Bento, Ricardo Ferreira

    2017-11-01

    The aim of this study was to search for evidence of stem or progenitor cells in the adult human cochlea by testing for sphere formation capacity and the presence of the stem cell marker ABCG2. Cochleas removed from patients undergoing vestibular schwannoma resection (n=2) and from brain-dead organ donors (n=4) were dissociated for either flow cytometry analysis for the stem cell marker ABCG2 or a sphere formation assay that is widely used to test the sphere-forming capacity of cells from mouse inner ear tissue. Spheres were identified after 2-5 days in vitro, and the stem cell marker ABCG2 was detected using flow cytometric analysis after cochlear dissociation. Evidence suggests that there may be progenitor cells in the adult human cochlea, although further studies are required.

  18. Cerebral gray matter volume in patients with chronic migraine: correlations with clinical features.

    PubMed

    Coppola, Gianluca; Petolicchio, Barbara; Di Renzo, Antonio; Tinelli, Emanuele; Di Lorenzo, Cherubino; Parisi, Vincenzo; Serrao, Mariano; Calistri, Valentina; Tardioli, Stefano; Cartocci, Gaia; Ambrosini, Anna; Caramia, Francesca; Di Piero, Vittorio; Pierelli, Francesco

    2017-12-08

    To date, few MRI studies have been performed in patients affected by chronic migraine (CM), especially in those without medication overuse. Here, we performed magnetic resonance imaging (MRI) voxel-based morphometry (VBM) analyses to investigate the gray matter (GM) volume of the whole brain in patients affected by CM. Our aim was to investigate whether fluctuations in the GM volumes were related to the clinical features of CM. Twenty untreated patients with CM without a past medical history of medication overuse underwent 3-Tesla MRI scans and were compared to a group of 20 healthy controls (HCs). We used SPM12 and the CAT12 toolbox to process the MRI data and to perform VBM analyses of the structural T1-weighted MRI scans. The GM volume of patients was compared to that of HCs with various corrected and uncorrected thresholds. To check for possible correlations, patients' clinical features and GM maps were regressed. Initially, we did not find significant differences in the GM volume between patients with CM and HCs (p < 0.05 corrected for multiple comparisons). However, using more-liberal uncorrected statistical thresholds, we noted that compared to HCs, patients with CM exhibited clusters of regions with lower GM volumes including the cerebellum, left middle temporal gyrus, left temporal pole/amygdala/hippocampus/pallidum/orbitofrontal cortex, and left occipital areas (Brodmann areas 17/18). The GM volume of the cerebellar hemispheres was negatively correlated with the disease duration and positively correlated with the number of tablets taken per month. No gross morphometric changes were observed in patients with CM when compared with HCs. However, using more-liberal uncorrected statistical thresholds, we observed that CM is associated with subtle GM volume changes in several brain areas known to be involved in nociception/antinociception, multisensory integration, and analgesic dependence. We speculate that these slight morphometric impairments could lead, at least in a subgroup of patients, to the development and continuation of maladaptive acute medication usage.

  19. Manifestations of early brain recovery associated with abstinence from alcoholism.

    PubMed

    Bartsch, Andreas J; Homola, György; Biller, Armin; Smith, Stephen M; Weijers, Heinz-Gerd; Wiesbeck, Gerhard A; Jenkinson, Mark; De Stefano, Nicola; Solymosi, László; Bendszus, Martin

    2007-01-01

    Chronic alcohol abuse results in morphological, metabolic, and functional brain damage which may, to some extent, be reversible with early effects upon abstinence. Although morphometric, spectroscopic, and neuropsychological indicators of cerebral regeneration have been described previously, the overall amount and spatial preference of early brain recovery attained by abstinence and its associations with other indicators of regeneration are not well established. We investigated global and local brain volume changes in a longitudinal two-timepoint study with T1-weighted MRI at admission and after short-term (6-7 weeks) sobriety follow-up in 15 uncomplicated, recently detoxified alcoholics. Volumetric brain gain was related to metabolic and neuropsychological recovery. On admission and after short-term abstinence, structural image evaluation using normalization of atrophy (SIENA), its voxelwise statistical extension to multiple subjects, proton MR spectroscopy (1H-MRS), and neuropsychological tests were applied. Upon short-term sobriety, 1H-MRS levels of cerebellar choline and frontomesial N-acetylaspartate (NAA) were significantly augmented. Automatically detected global brain volume gain amounted to nearly two per cent on average and was spatially significant around the superior vermis, perimesencephalic, periventricular and frontal brain edges. It correlated positively with the percentages of cerebellar and frontomesial choline increase, as detected by 1H-MRS. Moreover, frontomesial NAA gains were associated with improved performance on the d2-test of attention. In 10 age- and gender-matched healthy control subjects, no significant brain volume or metabolite changes were observed. Although cerebral osmotic regulations may occur initially upon sobriety, significant increases of cerebellar choline and frontomesial NAA levels detected at stable brain water integrals and creatine concentrations, serum electrolytes and red blood cell indices in our patient sample suggest that early brain recovery through abstinence does not simply reflect rehydration. Instead, even the adult human brain and particularly its white matter seems to possess genuine capabilities for regrowth. Our findings emphasize metabolic as well as regionally distinct morphological capacities for partial brain recovery from toxic insults of chronic alcoholism and substantiate early measurable benefits of therapeutic sobriety. Further understanding of the precise mechanisms of this recovery may become a valuable model of brain regeneration with relevance for other disorders.

  20. A strategy to measure electrophysiological changes with photoacoustic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sepela, Rebecka J.; Sherlock, Benjamin E.; Tian, Lin; Marcu, Laura; Sack, Jon

    2017-03-01

    Photoacoustic imaging is an emerging technology capable of both functional and structural biological imaging. Absorption and scattering in tissue limit the penetration depth of conventional microscopy techniques to <1mm. Photoacoustic imaging however, can offer high-resolution and contrast at depths of several centimeters. Though functional imaging of endogenous contrast agents, such as hemoglobin, is widely implemented, currently photoacoustic imaging is unable to functionally report electrophysiological changes within cells. We aim to develop photoacoustic contrast agents to fulfill this need. Cells throughout the brain and body create electrical signals using ion channel proteins. These proteins undergo structural changes to regulate the flux of salt ions into the cell. We have recently developed ion channel activity tracers that dissociate from ion channels after the protein changes structure. By conjugating the tracer to dyes that are sensitive to changes in their chemical environment, we can detect tracer dissociation and therefore ion channel activity. We are exploring whether a similar mechanism can create photoacoustic signal intensity changes. To test if the environmental sensitivity of the dye is photoacoustically distinguishable, we imaged the dye in different solvent backgrounds. We report that manipulation of the chemical environment of the contrast dye results in robust changes in photoacoustic properties. We are working to capture photoacoustic signal changes that occur when ion channel proteins activate using live cell imaging. This technology could permit photoacoustic imaging of electrophysiological dynamics in deep tissue, such as the brain. Further optimization of this technology could lead to concurrent imaging of neural activity and hemodynamic responses, a crucial step towards understanding neurovascular coupling in the brain.

  1. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth

    PubMed Central

    Wallace, Gregory L.; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S.; Raznahan, Armin; Lenroot, Rhoshel K.; Martin, Alex; Giedd, Jay N.

    2012-01-01

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in non-clinical populations. Therefore, we sought to determine if autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. 323 typically developing youth (age at first scan: mean=10.63, SD=3.71 years) underwent anatomic magnetic resonance imaging (1–6 scans each; total=742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies. PMID:22492041

  2. Piracetam improves mitochondrial dysfunction following oxidative stress

    PubMed Central

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  3. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth.

    PubMed

    Wallace, Gregory L; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S; Raznahan, Armin; Lenroot, Rhoshel K; Martin, Alex; Giedd, Jay N

    2012-04-04

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in nonclinical populations. Therefore, we sought to determine whether autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. Three hundred twenty-three typically developing youth (age at first scan: mean = 10.63, SD = 3.71 years) underwent anatomic magnetic resonance imaging (1-6 scans each; total = 742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies.

  4. Attention Effects on Form Discrimination at Different Eccentricities

    DTIC Science & Technology

    1989-01-01

    and Zimba (1985) also were not suggestive of a fixed-velocity movement of attention, althouqh their study was not designed to test this hypothesis. In...opposite hemifield as the foveal or peripheral precue. Similar results occurred at the vertical meridian and at the horizontal meridian (Hughes & Zimba ...M. S. (1981). Dissociation of spatial information for stimulus localization and the control of attention. Brain, 104, 861-872. Hughes, H. C., & Zimba

  5. The number processing and calculation system: evidence from cognitive neuropsychology.

    PubMed

    Salguero-Alcañiz, M P; Alameda-Bailén, J R

    2015-04-01

    Cognitive neuropsychology focuses on the concepts of dissociation and double dissociation. The performance of number processing and calculation tasks by patients with acquired brain injury can be used to characterise the way in which the healthy cognitive system manipulates number symbols and quantities. The objective of this study is to determine the components of the numerical processing and calculation system. Participants consisted of 6 patients with acquired brain injuries in different cerebral localisations. We used Batería de evaluación del procesamiento numérico y el cálculo, a battery assessing number processing and calculation. Data was analysed using the difference in proportions test. Quantitative numerical knowledge is independent from number transcoding, qualitative numerical knowledge, and calculation. Recodification is independent from qualitative numerical knowledge and calculation. Quantitative numerical knowledge and calculation are also independent functions. The number processing and calculation system comprises at least 4 components that operate independently: quantitative numerical knowledge, number transcoding, qualitative numerical knowledge, and calculation. Therefore, each one may be damaged selectively without affecting the functioning of another. According to the main models of number processing and calculation, each component has different characteristics and cerebral localisations. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  6. Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor.

    PubMed

    Wells, Elizabeth; Kambhampati, Madhuri; Damsker, Jesse M; Gordish-Dressman, Heather; Yadavilli, Sridevi; Becher, Oren J; Gittens, Jamila; Stampar, Mojca; Packer, Roger J; Nazarian, Javad

    2017-02-07

    Corticosteroids, such as dexamethasone, are routinely used as palliative care in neuro-oncology for their anti-inflammatory benefits, however many patients experience dose limiting side effects caused by glucocorticoid response element (GRE)-mediated transcription. The purpose of this study was to use a murine model to investigate a new steroid alternative, vamorolone, which promises to reduce side effects through dissociating GRE-mediated transcription and NF-κB -mediated anti-inflammatory actions. To compare vamorolone to dexamethasone in reducing pro-inflammatory signals in vitro, murine glioma cells were treated with dexamethasone, vamorolone or vehicle control. Changes in mRNA expression were assessed using the nanostring inflammatory platform. Furthermore, drug efficacy, post-treatment behavioral activity and side effects were assessed by treating two cohorts of brain tumor bearing mice with dexamethasone, vamorolone, or vehicle control. Our investigation showed that treatment with vamorolone resulted in a reduction of pro-inflammatory signals in tumor cells in vitro similar to treatment with dexamethasone. Treatment with vamorolone resulted in a better safety profile in comparison to dexamethasone treatment. Vamorolone- treated mice showed similar or better activity and survival when compared to dexamethasone-treated mice. Our data indicate vamorolone is a potential steroid-sparing alternative for treating patients with brain tumors.

  7. Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics

    PubMed Central

    Banghart, Matthew R.; Shah, Ruchir C.; Lavis, Luke D.

    2013-01-01

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis. PMID:23960100

  8. Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation

    PubMed Central

    Oliva, Aude

    2017-01-01

    Abstract Perceiving the geometry of surrounding space is a multisensory process, crucial to contextualizing object perception and guiding navigation behavior. Humans can make judgments about surrounding spaces from reverberation cues, caused by sounds reflecting off multiple interior surfaces. However, it remains unclear how the brain represents reverberant spaces separately from sound sources. Here, we report separable neural signatures of auditory space and source perception during magnetoencephalography (MEG) recording as subjects listened to brief sounds convolved with monaural room impulse responses (RIRs). The decoding signature of sound sources began at 57 ms after stimulus onset and peaked at 130 ms, while space decoding started at 138 ms and peaked at 386 ms. Importantly, these neuromagnetic responses were readily dissociable in form and time: while sound source decoding exhibited an early and transient response, the neural signature of space was sustained and independent of the original source that produced it. The reverberant space response was robust to variations in sound source, and vice versa, indicating a generalized response not tied to specific source-space combinations. These results provide the first neuromagnetic evidence for robust, dissociable auditory source and reverberant space representations in the human brain and reveal the temporal dynamics of how auditory scene analysis extracts percepts from complex naturalistic auditory signals. PMID:28451630

  9. Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.

    PubMed

    Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane

    2016-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention.

  10. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress.

    PubMed

    Zelikowsky, Moriel; Hui, May; Karigo, Tomomi; Choe, Andrea; Yang, Bin; Blanco, Mario R; Beadle, Keith; Gradinaru, Viviana; Deverman, Benjamin E; Anderson, David J

    2018-05-17

    Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain.

    PubMed

    Paret, Christian; Zähringer, Jenny; Ruf, Matthias; Gerchen, Martin Fungisai; Mall, Stephanie; Hendler, Talma; Schmahl, Christian; Ende, Gabriele

    2018-03-30

    Brain-computer interfaces provide conscious access to neural activity by means of brain-derived feedback ("neurofeedback"). An individual's abilities to monitor and control feedback are two necessary processes for effective neurofeedback therapy, yet their underlying functional neuroanatomy is still being debated. In this study, healthy subjects received visual feedback from their amygdala response to negative pictures. Activation and functional connectivity were analyzed to disentangle the role of brain regions in different processes. Feedback monitoring was mapped to the thalamus, ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and rostral PFC. The VS responded to feedback corresponding to instructions while rPFC activity differentiated between conditions and predicted amygdala regulation. Control involved the lateral PFC, anterior cingulate, and insula. Monitoring and control activity overlapped in the VS and thalamus. Extending current neural models of neurofeedback, this study introduces monitoring and control of feedback as anatomically dissociated processes, and suggests their important role in voluntary neuromodulation. © 2018 Wiley Periodicals, Inc.

  12. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    PubMed Central

    Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan

    2017-01-01

    Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.

  13. The contribution of single case studies to the neuroscience of vision.

    PubMed

    Zihl, Josef; Heywood, Charles A

    2016-03-01

    Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  14. Cerebral mechanisms underlying the effects of music during a fatiguing isometric ankle-dorsiflexion task.

    PubMed

    Bigliassi, Marcelo; Karageorghis, Costas I; Nowicky, Alexander V; Orgs, Guido; Wright, Michael J

    2016-10-01

    The brain mechanisms by which music-related interventions ameliorate fatigue-related symptoms during the execution of fatiguing motor tasks are hitherto under-researched. The objective of the present study was to investigate the effects of music on brain electrical activity and psychophysiological measures during the execution of an isometric fatiguing ankle-dorsiflexion task performed until the point of volitional exhaustion. Nineteen healthy participants performed two fatigue tests at 40% of maximal voluntary contraction while listening to music or in silence. Electrical activity in the brain was assessed by use of a 64-channel EEG. The results indicated that music downregulated theta waves in the frontal, central, and parietal regions of the brain during exercise. Music also induced a partial attentional switching from associative thoughts to task-unrelated factors (dissociative thoughts) during exercise, which led to improvements in task performance. Moreover, participants experienced a more positive affective state while performing the isometric task under the influence of music. © 2016 Society for Psychophysiological Research.

  15. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    PubMed

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  16. Development of Osseointegrated Implants for Soldier Amputees Following Orthopaedic Extremity Trauma

    DTIC Science & Technology

    2007-08-01

    bone fracture. The first year of research focused on determining morphometric variations in the internal structure of the human femur as a function...hypotheses the research will determine morphometric variations in the internal structure of the human femur as a function of gender, age, and ethnic...QUARTER 1): To perform the sizing studies for the sheep implants an IACUC exempt morphometric study was conducted using cadaveric sheep

  17. Mid-Frequency Sonar Interactions With Beaked Whales

    DTIC Science & Technology

    2009-09-30

    to acquire new high-resolution morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such... morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such a system, together with high-quality... morphometric data through computerized tomography (CT) scans on marine mammal carcasses, and constructing finite-element models of the anatomy

  18. Development of Osseointegrated Implants for Soldier Amputees Following Orthopaedic Extremity Trauma

    DTIC Science & Technology

    2008-08-01

    specimens, histology and mechanical testing of implants. The second focus of Year 2 was human morphometric studies on variations due to ethnicity, gender...custom implants in above-knee patients with amputations would require expensive custom type implants, a morphometric study was conducted on human...male and female cadaveric femurs. Morphometric variations of the periosteal surface of long bones have been identified with changing age, gender and

  19. Spermiogram and sperm head morphometry assessed by multivariate cluster analysis results during adolescence (12-18 years) and the effect of varicocele

    PubMed Central

    Vásquez, Fernando; Soler, Carles; Camps, Patricia; Valverde, Anthony; García-Molina, Almudena

    2016-01-01

    This work evaluates sperm head morphometric characteristics in adolescents from 12 to 18 years of age, and the effect of varicocele. Volunteers between 150 and 224 months of age (mean 191, n = 87), who had reached oigarche by 12 years old, were recruited in the area of Barranquilla, Colombia. Morphometric analysis of sperm heads was performed with principal component (PC) and discriminant analysis. Combining seminal fluid and sperm parameters provided five PCs: two related to sperm morphometry, one to sperm motility, and two to seminal fluid components. Discriminant analysis on the morphometric results of varicocele and nonvaricocele groups did not provide a useful classification matrix. Of the semen-related PCs, the most explanatory (40%) was related to sperm motility. Two PCs, including sperm head elongation and size, were sufficient to evaluate sperm morphometric characteristics. Most of the morphometric variables were correlated with age, with an increase in size and decrease in the elongation of the sperm head. For head size, the entire sperm population could be divided into two morphometric subpopulations, SP1 and SP2, which did not change during adolescence. In general, for varicocele individuals, SP1 had larger and more elongated sperm heads than SP2, which had smaller and more elongated heads than in nonvaricocele men. In summary, sperm head morphometry assessed by CASA-Morph and multivariate cluster analysis provides a better comprehension of the ejaculate structure and possibly sperm function. Morphometric analysis provides much more information than data obtained from conventional semen analysis. PMID:27751986

  20. [On the necessity to distinguishing judgment from subjective choice in the cognitive neuroscience of morality].

    PubMed

    Tassy, Sébastien

    2011-10-01

    Recently, cognitive neuroscience has shed new light on our understanding of the neural underpinning of humans' morality. These findings allow for a fundamental questioning and rethinking of the alleged dichotomy between reason and emotion, that has profoundly shaped both moral philosophy and moral psychology. Functional neuroimaging and neuropsychology studies have provided strong arguments favoring a dynamic and interdependent interaction between rational and emotional processes in the brain. Yet another fundamental issue remains largely unexplored: the dissociation between certain behaviours and the moral judgments that seem to precede them. The importance of this dissociation was highlighted in a study of psychopathic patients during which they preserved their moral judgments while frequently engaging in completely non moral behaviour. Such dissociation could result from the cognitive difference between an objective moral judgement with no personal consequence, and a subjective behavioural choice that has effective or potential personal consequences. Consequently, the results of moral dilemma experiments would differ widely depending whether they explore objective or subjective moral evaluations. That these evaluations involve two distinct neural processes should be taken into account when exploring the neural bases of human morality. © 2011 médecine/sciences – Inserm / SRMS.

  1. Relationship between inter-stimulus-intervals and intervals of autonomous activities in a neuronal network.

    PubMed

    Ito, Hidekatsu; Minoshima, Wataru; Kudoh, Suguru N

    2015-08-01

    To investigate relationships between neuronal network activity and electrical stimulus, we analyzed autonomous activity before and after electrical stimulus. Recordings of autonomous activity were performed using dissociated culture of rat hippocampal neurons on a multi-electrodes array (MEA) dish. Single stimulus and pared stimuli were applied to a cultured neuronal network. Single stimulus was applied every 1 min, and paired stimuli was performed by two sequential stimuli every 1 min. As a result, the patterns of synchronized activities of a neuronal network were changed after stimulus. Especially, long range synchronous activities were induced by paired stimuli. When 1 s inter-stimulus-intervals (ISI) and 1.5 s ISI paired stimuli are applied to a neuronal network, relatively long range synchronous activities expressed in case of 1.5 s ISI. Temporal synchronous activity of neuronal network is changed according to inter-stimulus-intervals (ISI) of electrical stimulus. In other words, dissociated neuronal network can maintain given information in temporal pattern and a certain type of an information maintenance mechanism was considered to be implemented in a semi-artificial dissociated neuronal network. The result is useful toward manipulation technology of neuronal activity in a brain system.

  2. [The aggressive child (author's transl)].

    PubMed

    Harbauer, H

    1978-08-01

    In children a "normal" aggressiveness should be distinguished from "hostile" and "inhibited" aggression; the latter usually become apparent as heteroaggressive or autoaggressive behaviour. Autoaggression is more common with younger children. Different hypotheses about the origin of aggressiveness are discussed. In the younger child nail biting, trichotillomania, rocking, an intensified phase of contrariness and enkopresis may have components of aggressiveness. In older children and adolescents dissocial forms of development, drug taking, attempted suicid, and anorexia nervosa may be parts of aggressive behaviour. Minimal brain dysfunction, autism, and postencephalitic syndromes predominate amongst organic alterations of the brain as causes for aggressive behaviour. Particularly the Lesch-Nyhan-syndrome, but equally the Cornelia de Lange-syndrome show autoaggressive tendencies.

  3. Morphometric information to reduce the semantic gap in the characterization of microscopic images of thyroid nodules.

    PubMed

    Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T

    2016-07-01

    The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Brain structure differences among male schizophrenic patients with history of serious violent acts: an MRI voxel-based morphometric study.

    PubMed

    Kuroki, Noriomi; Kashiwagi, Hiroko; Ota, Miho; Ishikawa, Masanori; Kunugi, Hiroshi; Sato, Noriko; Hirabayashi, Naotsugu; Ota, Toshio

    2017-03-21

    The biological underpinnings of serious violent behaviors in patients with schizophrenia remain unclear. The aim of this study was to identify the characteristics of brain morphometry in patients with schizophrenia and a history of serious violent acts, who were being treated under relatively new legislation for offenders with mental illness in Japan where their relevant action should be strongly associated with their mental illness. We also investigated whether morphometric changes would depend on types of serious violent actions or not. Thirty-four male patients with schizophrenia who were hospitalized after committing serious violent acts were compared with 23 male outpatients or inpatients with schizophrenia and no history of violent acts. T1-weighted magnetic resonance imaging (MRI) with voxel-based morphometry was used to assess gray matter volume. Additionally, patients with violent acts were divided based on whether their relevant actions were premeditated or not. The regional volumes of these two groups were compared to those of the control patient group. Patients with schizophrenia and a history of serious violent acts showed significantly smaller regional volumes of the right inferior temporal area expanded to the middle temporal gyrus and the temporal pole, and the right insular area compared to patients without a history of violence. Patients with premeditated violent acts showed significantly smaller regional volumes of the right inferior temporal area, the right insular area, the left planum polare area including the insula, and the bilateral precuneus area including the posterior cingulate gyrus than those without a history of violence, whereas patients with impulsive violent acts showed significantly smaller volumes of only the right inferior temporal area compared to those without a history of violence. Patients with schizophrenia and a history of serious violent acts showed structural differences in some brain regions compared to those with schizophrenia and no history of violence. Abnormalities in the right inferior temporal area were relatively common but did not depend on whether the violent actions were premeditated or not, and abnormalities in a wider range may be attributed to not only planning the violent action against others but also to maintaining that plan. UMIN.ac.jp UMIN000008065 . Registered 2012/05/31.

  5. Dissociation of metabolic and hemodynamic levodopa responses in the 6-hydroxydopamine rat model.

    PubMed

    Lerner, Renata P; Bimpisidis, Zisis; Agorastos, Stergiani; Scherrer, Sandra; Dewey, Stephen L; Cenci, M Angela; Eidelberg, David

    2016-12-01

    Dissociation of vasomotor and metabolic responses to levodopa has been observed in human subjects with Parkinson's disease (PD) studied with PET and in autoradiograms from 6-hydroxydopamine (6-OHDA) rat. In both species, acute levodopa administration was associated with increases in basal ganglia cerebral blood flow (CBF) with concurrent reductions in cerebral metabolic rate (CMR) for glucose in the same brain regions. In this study, we used a novel dual-tracer microPET technique to measure CBF and CMR levodopa responses in the same animal. Rats with unilateral 6-OHDA or sham lesion underwent sequential 15 O-water (H 2 15 O) and 18 F-fluorodeoxyglucose (FDG) microPET to map CBF and CMR following the injection of levodopa or saline. A subset of animals was separately scanned under ketamine/xylazine and isoflurane to compare the effects of these anesthetics. Regardless of anesthetic agent, 6-OHDA animals exhibited significant dissociation of vasomotor (ΔCBF) and metabolic (ΔCMR) responses to levodopa, with stereotyped increases in CBF and reductions in CMR in the basal ganglia ipsilateral to the dopamine lesion. No significant changes were seen in sham-lesioned animals. These data faithfully recapitulate analogous dissociation effects observed previously in human PD subjects scanned sequentially during levodopa infusion. This approach may have utility in the assessment of new drugs targeting the exaggerated regional vasomotor responses seen in human PD and in experimental models of levodopa-induced dyskinesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Role of Minerogenic Particles in Light Scattering in Lakes and a River in Central New York

    DTIC Science & Technology

    2007-09-10

    calibration protocol. Corrections for differences in the ten samples for both elemental and morphometric pure-water absorption and attenuation due to tem...PA’>, (6) Morphometric characterization of particles by SAX is based on a "rotating chord" algorithm, which pro- where N,,, is the number of...to characterize individual minerogenic par- nous versus autochthonous) is essential information ticles both compositionally and morphometrically for

  7. Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI

    PubMed Central

    Zhao, Sinan; Rangaprakash, D; Venkataraman, Archana; Liang, Peipeng; Deshpande, Gopikrishna

    2017-01-01

    Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD. PMID:28729831

  8. Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors.

    PubMed

    Azmitia, Efrain C; Singh, Jorawer S; Whitaker-Azmitia, Patricia M

    2011-06-01

    Imaging studies of serotonin transporter binding or tryptophan retention in autistic patients suggest that the brain serotonin system is decreased. However, treatment with drugs which increase serotonin (5-HT) levels, specific serotonin reuptake inhibitors (SSRIs), commonly produce a worsening of the symptoms. In this study we examined 5-HT axons that were immunoreactive to a serotonin transporter (5-HTT) antibody in a number of postmortem brains from autistic patients and controls with no known diagnosis who ranged in age from 2 to 29 years. Fine, highly branched, and thick straight fibers were found in forebrain pathways (e.g. medial forebrain bundle, stria terminalis and ansa lenticularis). Many immunoreactive varicose fine fibers were seen in target areas (e.g. globus pallidus, amygdala and temporal cortex). Morphometric analysis of the stained axons at all ages studied indicated that the number of serotonin axons was increased in both pathways and terminal regions in cortex from autism donors. Our findings provide morphological evidence to warrant caution when using serotonin enhancing drugs (e.g. SSRIs and receptor agonist) to treat autistic children. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. No significant brain volume decreases or increases in adults with high-functioning autism spectrum disorder and above average intelligence: a voxel-based morphometric study.

    PubMed

    Riedel, Andreas; Maier, Simon; Ulbrich, Melanie; Biscaldi, Monica; Ebert, Dieter; Fangmeier, Thomas; Perlov, Evgeniy; Tebartz van Elst, Ludger

    2014-08-30

    Autism spectrum disorder (ASD) is increasingly being recognized as an important issue in adult psychiatry and psychotherapy. High intelligence indicates overall good brain functioning and might thus present a particularly good opportunity to study possible cerebral correlates of core autistic features in terms of impaired social cognition, communication skills, the need for routines, and circumscribed interests. Anatomical MRI data sets for 30 highly intelligent patients with high-functioning autism and 30 pairwise-matched control subjects were acquired and analyzed with voxel-based morphometry. The gray matter volume of the pairwise-matched patients and the controls did not differ significantly. When correcting for total brain volume influences, the patients with ASD exhibited smaller left superior frontal volumes on a trend level. Heterogeneous volumetric findings in earlier studies might partly be explained by study samples biased by a high inclusion rate of secondary forms of ASD, which often go along with neuronal abnormalities. Including only patients with high IQ scores might have decreased the influence of secondary forms of ASD and might explain the absence of significant volumetric differences between the patients and the controls in this study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study

    PubMed Central

    Simos, Panagiotis G.; Rezaie, Roozbeh; Papanicolaou, Andrew C.; Fletcher, Jack M.

    2014-01-01

    The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n = 29) or did not (n = 36) meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n = 18) or a higher IQ (n = 44) subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal, and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ-discrepancy criteria in the diagnosis of dyslexia. PMID:24409136

  11. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    PubMed Central

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  12. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study.

    PubMed

    Simos, Panagiotis G; Rezaie, Roozbeh; Papanicolaou, Andrew C; Fletcher, Jack M

    2014-01-01

    The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n = 29) or did not (n = 36) meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n = 18) or a higher IQ (n = 44) subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal, and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ-discrepancy criteria in the diagnosis of dyslexia.

  13. Fear and Reward Circuit Alterations in Pediatric CRPS.

    PubMed

    Simons, Laura E; Erpelding, Nathalie; Hernandez, Jessica M; Serrano, Paul; Zhang, Kunyu; Lebel, Alyssa A; Sethna, Navil F; Berde, Charles B; Prabhu, Sanjay P; Becerra, Lino; Borsook, David

    2015-01-01

    In chronic pain, a number of brain regions involved in emotion (e.g., amygdala, hippocampus, nucleus accumbens, insula, anterior cingulate, and prefrontal cortex) show significant functional and morphometric changes. One phenotypic manifestation of these changes is pain-related fear (PRF). PRF is associated with profoundly altered behavioral adaptations to chronic pain. For example, patients with a neuropathic pain condition known as complex regional pain syndrome (CRPS) often avoid use of and may even neglect the affected body area(s), thus maintaining and likely enhancing PRF. These changes form part of an overall maladaptation to chronic pain. To examine fear-related brain circuit alterations in humans, 20 pediatric patients with CRPS and 20 sex- and age-matched healthy controls underwent functional magnetic resonance imaging (fMRI) in response to a well-established fearful faces paradigm. Despite no significant differences on self-reported emotional valence and arousal between the two groups, CRPS patients displayed a diminished response to fearful faces in regions associated with emotional processing compared to healthy controls. Additionally, increased PRF levels were associated with decreased activity in a number of brain regions including the right amygdala, insula, putamen, and caudate. Blunted activation in patients suggests that (a) individuals with chronic pain may have deficits in cognitive-affective brain circuits that may represent an underlying vulnerability or consequence to the chronic pain state; and (b) fear of pain may contribute and/or maintain these brain alterations. Our results shed new light on altered affective circuits in patients with chronic pain and identify PRF as a potentially important treatment target.

  14. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training.

    PubMed

    Burzynska, Agnieszka Z; Finc, Karolina; Taylor, Brittany K; Knecht, Anya M; Kramer, Arthur F

    2017-01-01

    Dance - as a ritual, therapy, and leisure activity - has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson's disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations.

  15. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training

    PubMed Central

    Burzynska, Agnieszka Z.; Finc, Karolina; Taylor, Brittany K.; Knecht, Anya M.; Kramer, Arthur F.

    2017-01-01

    Dance – as a ritual, therapy, and leisure activity – has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson’s disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations. PMID:29230170

  16. Baby schema modulates the brain reward system in nulliparous women.

    PubMed

    Glocker, Melanie L; Langleben, Daniel D; Ruparel, Kosha; Loughead, James W; Valdez, Jeffrey N; Griffin, Mark D; Sachser, Norbert; Gur, Ruben C

    2009-06-02

    Ethologist Konrad Lorenz defined the baby schema ("Kindchenschema") as a set of infantile physical features, such as round face and big eyes, that is perceived as cute and motivates caretaking behavior in the human, with the evolutionary function of enhancing offspring survival. The neural basis of this fundamental altruistic instinct is not well understood. Prior studies reported a pattern of brain response to pictures of children, but did not dissociate the brain response to baby schema from the response to children. Using functional magnetic resonance imaging and controlled manipulation of the baby schema in infant faces, we found that baby schema activates the nucleus accumbens, a key structure of the mesocorticolimbic system mediating reward processing and appetitive motivation, in nulliparous women. Our findings suggest that engagement of the mesocorticolimbic system is the neurophysiologic mechanism by which baby schema promotes human caregiving, regardless of kinship.

  17. Crossed Aphasia in a Patient with Anaplastic Astrocytoma of the Non-Dominant Hemisphere.

    PubMed

    Prater, Stephanie; Anand, Neil; Wei, Lawrence; Horner, Neil

    2017-09-01

    Aphasia describes a spectrum of speech impairments due to damage in the language centers of the brain. Insult to the inferior frontal gyrus of the dominant cerebral hemisphere results in Broca's aphasia - the inability to produce fluent speech. The left cerebral hemisphere has historically been considered the dominant side, a characteristic long presumed to be related to a person's "handedness". However, recent studies utilizing fMRI have shown that right hemispheric dominance occurs more frequently than previously proposed and despite a person's handedness. Here we present a case of a right-handed patient with Broca's aphasia caused by a right-sided brain tumor. This is significant not only because the occurrence of aphasia in right-handed-individuals with right hemispheric brain damage (so-called "crossed aphasia") is unusual but also because such findings support dissociation between hemispheric linguistic dominance and handedness.

  18. Influence of volatile anesthetics on muscarinic receptor adenylate cyclase coupling in brain and heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, B.L.

    In the present study, the influence of four volatile anesthetics (enflurane, isoflurane, diethyl ether, and chloroform) on (1) muscarinic receptor binding parameters and (2) muscarnic regulation of adenylate cyclase activity was examined using membranes isolated from rat brain and heart. Membranes were equilibrated with each of the four anesthetics for 30 minutes and then during the binding assay. The data obtained can be summarized as follows: (1) volatile anesthetics increased receptor affinity for a radiolabeled antagonists, ({sup 3}H)N-methylscopolamine (({sup 3}H)MS), by decreasing its rate of dissociation in brain stem, but not in cardiac, membranes, (2) volatile anesthetics decreased high affinitymore » ({sup 3}H)Oxotremorine-M binding, (3) volatile anesthetics depressed or eliminated the guanine nucleotide sensitivity of agonist binding. The influence of volatile anesthetics on muscarinic regulation of adenylate cyclase enzyme activity was studied using {alpha}({sup 32}P)ATP as the substrate.« less

  19. The Specialization of Function: Cognitive and Neural Perspectives

    PubMed Central

    Mahon, Bradford Z.; Cantlon, Jessica F.

    2014-01-01

    A unifying theme that cuts across all research areas and techniques in the cognitive and brain sciences is whether there is specialization of function at levels of processing that are ‘abstracted away’ from sensory inputs and motor outputs. Any theory that articulates claims about specialization of function in the mind/brain confronts the following types of interrelated questions, each of which carries with it certain theoretical commitments. What methods are appropriate for decomposing complex cognitive and neural processes into their constituent parts? How do cognitive processes map onto neural processes, and at what resolution are they related? What types of conclusions can be drawn about the structure of mind from dissociations observed at the neural level, and vice versa? The contributions that form this Special Issue of Cognitive Neuropsychology represent recent reflections on these and other issues from leading researchers in different areas of the cognitive and brain sciences. PMID:22185234

  20. Apoptotic cell death correlates with ROS overproduction and early cytokine expression after hypoxia-ischemia in fetal lambs.

    PubMed

    Alonso-Alconada, Daniel; Hilario, Enrique; Álvarez, Francisco José; Álvarez, Antonia

    2012-07-01

    Despite advances in neonatology, the hypoxic-ischemic injury in the perinatal period remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Using a sheep model of intrauterine asphyxia, we evaluated the correlation between reactive oxygen species (ROS) overproduction, cytokine expression, and apoptotic cell death. Fetal lambs were assigned to sham group, nonasphyctic animals; and hypoxia-ischemia (HI) group, lambs subjected to 60 minutes of HI) by partial cord occlusion and sacrificed 3 hours later. Different brain regions were separated to quantify the number of apoptotic cells and the same territories were dissociated for flow cytometry studies. Our results suggest that the overproduction of ROS and the early increase in cytokine production after HI in fetal lambs correlate in a significant manner with the apoptotic index, as well as with each brain region evaluated.

  1. Functional brain networks for learning predictive statistics.

    PubMed

    Giorgio, Joseph; Karlaftis, Vasilis M; Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew; Kourtzi, Zoe

    2017-08-18

    Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. This skill relies on extracting regular patterns in space and time by mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the functional brain networks that mediate this type of statistical learning. Here, we test whether changes in the processing and connectivity of functional brain networks due to training relate to our ability to learn temporal regularities. By combining behavioral training and functional brain connectivity analysis, we demonstrate that individuals adapt to the environment's statistics as they change over time from simple repetition to probabilistic combinations. Further, we show that individual learning of temporal structures relates to decision strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI activation within and functional connectivity between brain networks relate to individual variability in strategy. In particular, extracting the exact sequence statistics (i.e., matching) relates to changes in brain networks known to be involved in memory and stimulus-response associations, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and striatal networks. Thus, our findings provide evidence that dissociable brain networks mediate individual ability in learning behaviorally-relevant statistics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-05-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  3. Digital Morphometrics: A New Upper Airway Phenotyping Paradigm in OSA.

    PubMed

    Schwab, Richard J; Leinwand, Sarah E; Bearn, Cary B; Maislin, Greg; Rao, Ramya Bhat; Nagaraja, Adithya; Wang, Stephen; Keenan, Brendan T

    2017-08-01

    OSA is associated with changes in pharyngeal anatomy. The goal of this study was to objectively and reproducibly quantify pharyngeal anatomy by using digital morphometrics based on a laser ruler and to assess differences between subjects with OSA and control subjects and associations with the apnea-hypopnea index (AHI). To the best of our knowledge, this study is the first to use digital morphometrics to quantify intraoral risk factors for OSA. Digital photographs were obtained by using an intraoral laser ruler and digital camera in 318 control subjects (mean AHI, 4.2 events/hour) and 542 subjects with OSA (mean AHI, 39.2 events/hour). The digital morphometric paradigm was validated and reproducible over time and camera distances. A larger modified Mallampati score and having a nonvisible airway were associated with a higher AHI, both unadjusted (P < .001) and controlling for age, sex, race, and BMI (P = .015 and P = .018, respectively). Measures of tongue size were larger in subjects with OSA vs control subjects in unadjusted models and controlling for age, sex, and race but nonsignificant controlling for BMI; similar results were observed with AHI severity. Multivariate regression suggests photography-based variables capture independent associations with OSA. Measures of tongue size, airway visibility, and Mallampati scores were associated with increased OSA risk and severity. This study shows that digital morphometrics is an accurate, high-throughput, and noninvasive technique to identify anatomic OSA risk factors. Morphometrics may also provide a more reproducible and standardized measurement of the Mallampati score. Digital morphometrics represent an efficient and cost-effective method of examining intraoral crowding and tongue size when examining large populations, genetics, or screening for OSA. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  4. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-03-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  5. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus).

    PubMed

    Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan

    2017-01-01

    This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations - SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans.

  6. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus)

    PubMed Central

    Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan

    2017-01-01

    This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations – SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans. PMID:27751987

  7. Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity

    PubMed Central

    Krajewska, Maryla; You, Zerong; Rong, Juan; Kress, Christina; Huang, Xianshu; Yang, Jinsheng; Kyoda, Tiffany; Leyva, Ricardo; Banares, Steven; Hu, Yue; Sze, Chia-Hung; Whalen, Michael J.; Salmena, Leonardo; Hakem, Razqallah; Head, Brian P.; Reed, John C.; Krajewski, Stan

    2011-01-01

    Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma. PMID:21957448

  8. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction.

    PubMed

    Shankar, Swetha; Kayser, Andrew S

    2017-06-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. Copyright © 2017 the American Physiological Society.

  9. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction

    PubMed Central

    Kayser, Andrew S.

    2017-01-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects’ decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. PMID:28250149

  10. Dissociating Medial Temporal and Striatal Memory Systems With a Same/Different Matching Task: Evidence for Two Neural Systems in Human Recognition.

    PubMed

    Sinha, Neha; Glass, Arnold Lewis

    2017-01-01

    The medial temporal lobe and striatum have both been implicated as brain substrates of memory and learning. Here, we show dissociation between these two memory systems using a same/different matching task, in which subjects judged whether four-letter strings were the same or different. Different RT was determined by the left-to-right location of the first letter different between the study and test string, consistent with a left-to-right comparison of the study and test strings, terminating when a difference was found. This comparison process results in same responses being slower than different responses. Nevertheless, same responses were faster than different responses. Same responses were associated with hippocampus activation. Different responses were associated with both caudate and hippocampus activation. These findings are consistent with the dual-system hypothesis of mammalian memory and extend the model to human visual recognition.

  11. Dissociation between awareness and spatial coding: evidence from unilateral neglect.

    PubMed

    Treccani, Barbara; Cubelli, Roberto; Sellaro, Roberta; Umiltà, Carlo; Della Sala, Sergio

    2012-04-01

    Prevalent theories about consciousness propose a causal relation between lack of spatial coding and absence of conscious experience: The failure to code the position of an object is assumed to prevent this object from entering consciousness. This is consistent with influential theories of unilateral neglect following brain damage, according to which spatial coding of neglected stimuli is defective, and this would keep their processing at the nonconscious level. Contrary to this view, we report evidence showing that spatial coding and consciousness can dissociate. A patient with left neglect, who was not aware of contralesional stimuli, was able to process their color and position. However, in contrast to (ipsilesional) consciously perceived stimuli, color and position of neglected stimuli were processed separately. We propose that individual object features, including position, can be processed without attention and consciousness and that conscious perception of an object depends on the binding of its features into an integrated percept.

  12. The basal ganglia is necessary for learning spectral, but not temporal features of birdsong

    PubMed Central

    Ali, Farhan; Fantana, Antoniu L.; Burak, Yoram; Ölveczky, Bence P.

    2013-01-01

    Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control - motor implementation and timing - are acquired, and whether the learning processes underlying them differ, is not well understood. To address this we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analogue nucleus reflected changes to temporal, but not spectral structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill. PMID:24075977

  13. Morphometric discrimination of early life stage Lampetra tridentata and L richardsoni (Petromyzonidae) from the Columbia river basin

    USGS Publications Warehouse

    Meeuwig, M.H.; Bayer, J.M.; Reiche, R.A.

    2006-01-01

    The effectiveness of morphometric and meristic characteristics for taxonomic discrimination of Lampetra tridentata and L. richardsoni (Petromyzonidae) during embryological, prolarval, and early larval stages (i.e., age class 1) were examined. Mean chorion diameter increased with time from fertilization to hatch and was significantly greater for L. tridentata than for L. richardsoni at 1, 8, and 15 days postfertilization. Lampetra tridentata larvae had significantly more trunk myomeres than L. richardsoni; however, trunk myomere numbers were highly variable within species and deviated from previously published data. Multivariate examinations of prolarval and larval L. tridentata (7.2-11.0 mm; standard length) and L. richardsoni (6.6-10.8 mm) were conducted based on standard length and truss element lengths established from eight homologous landmarks. Principal components analysis indicated allometric relationships among the morphometric characteristics examined. Changes in body shape were indicated by groupings of morphometric characteristics associated with body regions (e.g., oral hood, branchial region, trunk region, and tail region). Discriminant function analysis using morphometric characteristics was successful in classifying a large proportion (>94.7%) of the lampreys sampled. 

  14. Inversion of Crater Morphometric Data to Gain Insight on the Cratering Process

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Lyons, Suzane N.

    1998-01-01

    In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex Craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/pg.

  15. Effects of Starvation in Rock Bream, Oplegnathus fasciatus and Olive Flounder, Paralichthys olivaceus

    PubMed Central

    Park, In-Seok; Gil, Hyun Woo; Yoo, Gwang Yeol; Oh, Ji Su

    2015-01-01

    We assessed the effects of various dietary conditions on the growth, phenotypic traits, and morphometric dimensions of rock bream, Oplegnathus fasciatus and on the morphometric dimensions of sectioned olive flounder, Paralichthys olivaceus. Rock bream in the fed group increased in body weight, standard length, and condition factor, but these parameters decreased significantly for fish in the starved group (P < 0.05). The head connection dimensions of fish in the fed group decreased, while for starved fish there was increase in external morphometric dimensions (P < 0.05). In both species, sectioned morphometric analysis revealed that fish in the fed group had a larger body circumference and cross-cut sectional area, and greater cross-cut section height, relative to the starved group (P < 0.05). PMID:27004266

  16. Dietary Ecology of Murinae (Muridae, Rodentia): A Geometric Morphometric Approach

    PubMed Central

    Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Álvarez-Sierra, M. Ángeles

    2013-01-01

    Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera. PMID:24236090

  17. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    PubMed

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  18. An automatic search of Alzheimer patterns using a nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Giraldo, Diana L.; García-Arteaga, Juan D.; Romero, Eduardo

    2013-11-01

    This paper presents a fully automatic method that condenses relevant morphometric information from a database of magnetic resonance images (MR) labeled as either normal (NC) or Alzheimer's disease (AD). The proposed method generates class templates using Nonnegative Matrix Factorization (NMF) which will be used to develop an NC/AD classi cator. It then nds regions of interest (ROI) with discerning inter-class properties. by inspecting the di erence volume of the two class templates. From these templates local probability distribution functions associated to low level features such as intensities, orientation and edges within the found ROI are calculated. A sample brain volume can then be characterized by a similarity measure in the ROI to both the normal and the pathological templates. These characteristics feed a simple binary SVM classi er which, when tested with an experimental group extracted from a public brain MR dataset (OASIS), reveals an equal error rate measure which is better than the state-of-the-art tested on the same dataset (0:9 in the former and 0:8 in the latter).

  19. Grey matter correlates of autistic traits in women with anorexia nervosa.

    PubMed

    Björnsdotter, Malin; Davidovic, Monika; Karjalainen, Louise; Starck, Göran; Olausson, Håkan; Wentz, Elisabet

    2018-03-01

    Patients with anorexia nervosa exhibit higher levels of behaviours typically associated with autism-spectrum disorder (ASD), but the neural basis is unclear. We sought to determine whether elevated autistic traits in women with anorexia nervosa may be reflected in cortical morphology. We used voxel-based morphometry (VBM) to examine regional grey matter volumes in high-resolution MRI structural brain scans in women with anorexia nervosa and matched healthy controls. The Autism-spectrum Quotient (AQ) scale was used to assess autistic traits. Women with anorexia nervosa ( n = 25) had higher AQ scores and lower bilateral superior temporal sulcus (STS) grey matter volumes than the control group ( n = 25). The AQ scores correlated negatively with average left STS grey matter volume in women with anorexia nervosa. We did not control for cognitive ability and examined only women with ongoing anorexia nervosa. Elevated autistic traits in women with anorexia nervosa are associated with morphometric alterations of brain areas linked to social cognition. This finding provides neurobiological support for the behavioural link between anorexia nervosa and ASD and emphasizes the importance of recognizing autistic traits in preventing and treating anorexia nervosa.

  20. Tracking Training-Related Plasticity by Combining fMRI and DTI: The Right Hemisphere Ventral Stream Mediates Musical Syntax Processing.

    PubMed

    Oechslin, Mathias S; Gschwind, Markus; James, Clara E

    2018-04-01

    As a functional homolog for left-hemispheric syntax processing in language, neuroimaging studies evidenced involvement of right prefrontal regions in musical syntax processing, of which underlying white matter connectivity remains unexplored so far. In the current experiment, we investigated the underlying pathway architecture in subjects with 3 levels of musical expertise. Employing diffusion tensor imaging tractography, departing from seeds from our previous functional magnetic resonance imaging study on music syntax processing in the same participants, we identified a pathway in the right ventral stream that connects the middle temporal lobe with the inferior frontal cortex via the extreme capsule, and corresponds to the left hemisphere ventral stream, classically attributed to syntax processing in language comprehension. Additional morphometric consistency analyses allowed dissociating tract core from more dispersed fiber portions. Musical expertise related to higher tract consistency of the right ventral stream pathway. Specifically, tract consistency in this pathway predicted the sensitivity for musical syntax violations. We conclude that enduring musical practice sculpts ventral stream architecture. Our results suggest that training-related pathway plasticity facilitates the right hemisphere ventral stream information transfer, supporting an improved sound-to-meaning mapping in music.

  1. Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice.

    PubMed

    Starbuck, John M; Dutka, Tara; Ratliff, Tabetha S; Reeves, Roger H; Richtsmeier, Joan T

    2014-08-01

    Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16)1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional micro-computed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. © 2014 Wiley Periodicals, Inc.

  2. Overlapping Trisomies for Human Chromosome 21 Orthologs Produce Similar Effects on Skull and Brain Morphology of Dp(16)1Yey and Ts65Dn Mice

    PubMed Central

    Ratliff, Tabetha S.; Reeves, Roger H.; Richtsmeier, Joan T.

    2014-01-01

    Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16) 1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional microcomputed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. PMID:24788405

  3. Speech acquisition predicts regions of enhanced cortical response to auditory stimulation in autism spectrum individuals.

    PubMed

    Samson, F; Zeffiro, T A; Doyon, J; Benali, H; Mottron, L

    2015-09-01

    A continuum of phenotypes makes up the autism spectrum (AS). In particular, individuals show large differences in language acquisition, ranging from precocious speech to severe speech onset delay. However, the neurological origin of this heterogeneity remains unknown. Here, we sought to determine whether AS individuals differing in speech acquisition show different cortical responses to auditory stimulation and morphometric brain differences. Whole-brain activity following exposure to non-social sounds was investigated. Individuals in the AS were classified according to the presence or absence of Speech Onset Delay (AS-SOD and AS-NoSOD, respectively) and were compared with IQ-matched typically developing individuals (TYP). AS-NoSOD participants displayed greater task-related activity than TYP in the inferior frontal gyrus and peri-auditory middle and superior temporal gyri, which are associated with language processing. Conversely, the AS-SOD group only showed enhanced activity in the vicinity of the auditory cortex. We detected no differences in brain structure between groups. This is the first study to demonstrate the existence of differences in functional brain activity between AS individuals divided according to their pattern of speech development. These findings support the Trigger-threshold-target model and indicate that the occurrence of speech onset delay in AS individuals depends on the location of cortical functional reallocation, which favors perception in AS-SOD and language in AS-NoSOD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Morphometric classification of Spanish thoroughbred stallion sperm heads.

    PubMed

    Hidalgo, Manuel; Rodríguez, Inmaculada; Dorado, Jesús; Soler, Carles

    2008-01-30

    This work used semen samples collected from 12 stallions and assessed for sperm morphometry by the Sperm Class Analyzer (SCA) computer-assisted system. A discriminant analysis was performed on the morphometric data from that sperm to obtain a classification matrix for sperm head shape. Thereafter, we defined six types of sperm head shape. Classification of sperm head by this method obtained a globally correct assignment of 90.1%. Moreover, significant differences (p<0.05) were found between animals for all the sperm head morphometric parameters assessed.

  5. Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences

    PubMed Central

    Hu, Wei; Lee, Hwee Ling; Zhang, Qiang; Liu, Tao; Geng, Li Bo; Seghier, Mohamed L.; Shakeshaft, Clare; Twomey, Tae; Green, David W.; Yang, Yi Ming

    2010-01-01

    Previous neuroimaging studies have suggested that developmental dyslexia has a different neural basis in Chinese and English populations because of known differences in the processing demands of the Chinese and English writing systems. Here, using functional magnetic resonance imaging, we provide the first direct statistically based investigation into how the effect of dyslexia on brain activation is influenced by the Chinese and English writing systems. Brain activation for semantic decisions on written words was compared in English dyslexics, Chinese dyslexics, English normal readers and Chinese normal readers, while controlling for all other experimental parameters. By investigating the effects of dyslexia and language in one study, we show common activation in Chinese and English dyslexics despite different activation in Chinese versus English normal readers. The effect of dyslexia in both languages was observed as less than normal activation in the left angular gyrus and in left middle frontal, posterior temporal and occipitotemporal regions. Differences in Chinese and English normal reading were observed as increased activation for Chinese relative to English in the left inferior frontal sulcus; and increased activation for English relative to Chinese in the left posterior superior temporal sulcus. These cultural differences were not observed in dyslexics who activated both left inferior frontal sulcus and left posterior superior temporal sulcus, consistent with the use of culturally independent strategies when reading is less efficient. By dissociating the effect of dyslexia from differences in Chinese and English normal reading, our results reconcile brain activation results with a substantial body of behavioural studies showing commonalities in the cognitive manifestation of dyslexia in Chinese and English populations. They also demonstrate the influence of cognitive ability and learning environment on a common neural system for reading. PMID:20488886

  6. Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences.

    PubMed

    Hu, Wei; Lee, Hwee Ling; Zhang, Qiang; Liu, Tao; Geng, Li Bo; Seghier, Mohamed L; Shakeshaft, Clare; Twomey, Tae; Green, David W; Yang, Yi Ming; Price, Cathy J

    2010-06-01

    Previous neuroimaging studies have suggested that developmental dyslexia has a different neural basis in Chinese and English populations because of known differences in the processing demands of the Chinese and English writing systems. Here, using functional magnetic resonance imaging, we provide the first direct statistically based investigation into how the effect of dyslexia on brain activation is influenced by the Chinese and English writing systems. Brain activation for semantic decisions on written words was compared in English dyslexics, Chinese dyslexics, English normal readers and Chinese normal readers, while controlling for all other experimental parameters. By investigating the effects of dyslexia and language in one study, we show common activation in Chinese and English dyslexics despite different activation in Chinese versus English normal readers. The effect of dyslexia in both languages was observed as less than normal activation in the left angular gyrus and in left middle frontal, posterior temporal and occipitotemporal regions. Differences in Chinese and English normal reading were observed as increased activation for Chinese relative to English in the left inferior frontal sulcus; and increased activation for English relative to Chinese in the left posterior superior temporal sulcus. These cultural differences were not observed in dyslexics who activated both left inferior frontal sulcus and left posterior superior temporal sulcus, consistent with the use of culturally independent strategies when reading is less efficient. By dissociating the effect of dyslexia from differences in Chinese and English normal reading, our results reconcile brain activation results with a substantial body of behavioural studies showing commonalities in the cognitive manifestation of dyslexia in Chinese and English populations. They also demonstrate the influence of cognitive ability and learning environment on a common neural system for reading.

  7. A modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury.

    PubMed

    Sweis, Brian M; Bachour, Salam P; Brekke, Julia A; Gewirtz, Jonathan C; Sadeghi-Bazargani, Homayoun; Hevesi, Mario; Divani, Afshin A

    2016-01-01

    The elevated plus maze (EPM) is used to assess anxiety in rodents. Beam-walking tasks are used to assess vestibulomotor function. Brain injury in rodents can disrupt performance on both of these tasks. Developing novel paradigms that integrate tasks like these can reduce the need for multiple tests when attempting to assess multiple behaviors in the same animal. Using adult male rats, we evaluated the use of a modified beam-walking (MBW) apparatus as a surrogate indicator for anxiety. We used a model of blast-induced traumatic brain injury (bTBI). A total of 39 rats were assessed before and at 3, 6, 24, 72, and 168h either post- bTBI (n=33) or no-injury (n=6) using both EPM and MBW. A novel anxiety index was calculated that encompassed peeks and re-emergences on MBW. The proposed MBW anxiety index was compared with the standard anxiety index calculated from exploration into different sections of EPM. Post- bTBI, rats had an increased anxiety index when measured using EPM. Similarly, they peeked or fully emerged less out of the safe box on MBW. It was found that this novel MBW anxiety index captured similar aspects of behavior when compared to the standard anxiety index obtained from EPM. Further, these effects were dissociated from the effects of bTBI on motor function simultaneously measured on MBW. Over the course of 168h post-bTBI, rats gradually recovered on both EPM and MBW. The MBW apparatus succeeded at capturing and dissociating two separate facets of rat behavior, motor function and anxiety, simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increasedmore » the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.« less

  9. Dissociable relations between amygdala subregional networks and psychopathy trait dimensions in conduct-disordered juvenile offenders.

    PubMed

    Aghajani, Moji; Colins, Olivier F; Klapwijk, Eduard T; Veer, Ilya M; Andershed, Henrik; Popma, Arne; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-11-01

    Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit-level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct-disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait-specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self-centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017-4033, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Affective context interferes with cognitive control in unipolar depression: An fMRI investigation

    PubMed Central

    Dichter, Gabriel S.; Felder, Jennifer N.; Smoski, Moria J.

    2009-01-01

    Background Unipolar major depressive disorder (MDD) is characterized by aberrant amygdala responses to sad stimuli and poor cognitive control, but the interactive effects of these impairments are poorly understood. Aim To evaluate brain activation in MDD in response to cognitive control stimuli embedded within sad and neutral contexts. Method Fourteen adults with MDD and fifteen matched controls participated in a mixed block/event-related functional magnetic resonance imaging (fMRI) task that presented oddball target stimuli embedded within blocks of sad or neutral images. Results Target events activated similar prefrontal brain regions in both groups. However, responses to target events embedded within blocks of emotional images revealed a clear group dissociation. During neutral blocks, the control group demonstrated greater activation to targets in the midfrontal gyrus and anterior cingulate relative to the MDD group, replicating previous findings of prefrontal hypo-activation in MDD samples to cognitive control stimuli. However, during sad blocks, the MDD group demonstrated greater activation in a number of prefrontal regions, including the mid-, inferior, and orbito-frontal gyri and the anterior cingulate, suggesting that relatively more prefrontal brain activation was required to disengage from the sad images to respond to the target events. Limitations A larger sample size would have provided greater statistical power, and more standardized stimuli would have increased external validity. Conclusions This double dissociation of prefrontal responses to target events embedded within neutral and sad context suggests that MDD impacts not only responses to affective events, but extends to other cognitive processes carried out in the context of affective engagement. This implies that emotional reactivity to sad events in MDD may impact functioning more broadly than previously understood. PMID:18706701

  11. Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome.

    PubMed

    Maeda, Yumi; Kettner, Norman; Kim, Jieun; Kim, Hyungjun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Libby, Alexandra; Mezzacappa, Pia; Mawla, Ishtiaq; Morse, Leslie R; Audette, Joseph; Napadow, Vitaly

    2016-05-01

    Paresthesia-dominant and pain-dominant subgroups have been noted in carpal tunnel syndrome (CTS), a peripheral neuropathic disorder characterized by altered primary somatosensory/motor (S1/M1) physiology. We aimed to investigate whether brain morphometry dissociates these subgroups. Subjects with CTS were evaluated with nerve conduction studies, whereas symptom severity ratings were used to allocate subjects into paresthesia-dominant (CTS-paresthesia), pain-dominant (CTS-pain), and pain/paresthesia nondominant (not included in further analysis) subgroups. Structural brain magnetic resonance imaging data were acquired at 3T using a multiecho MPRAGE T1-weighted pulse sequence, and gray matter cortical thickness was calculated across the entire brain using validated, automated methods. CTS-paresthesia subjects demonstrated reduced median sensory nerve conduction velocity (P = 0.05) compared with CTS-pain subjects. In addition, cortical thickness in precentral and postcentral gyri (S1/M1 hand area) contralateral to the more affected hand was significantly reduced in CTS-paresthesia subgroup compared with CTS-pain subgroup. Moreover, in CTS-paresthesia subjects, precentral cortical thickness was negatively correlated with paresthesia severity (r(34) = -0.40, P = 0.016) and positively correlated with median nerve sensory velocity (r(36) = 0.51, P = 0.001), but not with pain severity. Conversely, in CTS-pain subjects, contralesional S1 (r(9) = 0.62, P = 0.042) and M1 (r(9) = 0.61, P = 0.046) cortical thickness were correlated with pain severity, but not median nerve velocity or paresthesia severity. This double dissociation in somatotopically specific S1/M1 areas suggests a neuroanatomical substrate for symptom-based CTS subgroups. Such fine-grained subgrouping of CTS may lead to improved personalized therapeutic approaches, based on superior characterization of the linkage between peripheral and central neuroplasticity.

  12. Neural correlates of humor detection and appreciation.

    PubMed

    Moran, Joseph M; Wig, Gagan S; Adams, Reginald B; Janata, Petr; Kelley, William M

    2004-03-01

    Humor is a uniquely human quality whose neural substrates remain enigmatic. The present report combined dynamic, real-life content and event-related functional magnetic resonance imaging (fMRI) to dissociate humor detection ("getting the joke") from humor appreciation (the affective experience of mirth). During scanning, subjects viewed full-length episodes of the television sitcoms Seinfeld or The Simpsons. Brain activity time-locked to humor detection moments revealed increases in left inferior frontal and posterior temporal cortices, whereas brain activity time-locked to moments of humor appreciation revealed increases in bilateral regions of insular cortex and the amygdala. These findings provide evidence that humor depends critically upon extant neural systems important for resolving incongruities (humor detection) and for the expression of affect (humor appreciation).

  13. Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.

    PubMed

    Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2017-12-01

    Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (<40, 40-60, >60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.

  14. Morphometric and kinematic sperm subpopulations in split ejaculates of normozoospermic men

    PubMed Central

    Santolaria, Pilar; Soler, Carles; Recreo, Pilar; Carretero, Teresa; Bono, Araceli; Berné, José M; Yániz, Jesús L

    2016-01-01

    This study was designed to analyze the sperm kinematic and morphometric subpopulations in the different fractions of the ejaculate in normozoospermic men. Ejaculates from eight normozoospermic men were collected by masturbation in three fractions after 3–5 days of sexual abstinence. Analyses of sperm motility by computer-assisted sperm analysis (CASA-Mot), and of sperm morphometry by computer-assisted sperm morphometry analysis (CASA-Morph) using fluorescence were performed. Clustering and discriminant procedures were performed to identify sperm subpopulations in the kinematic and morphometric data obtained. Clustering procedures resulted in the classification of spermatozoa into three kinematic subpopulations (slow with low ALH [35.6% of all motile spermatozoa], with circular trajectories [32.0%], and rapid with high ALH [32.4%]), and three morphometric subpopulations (large-round [33.9% of all spermatozoa], elongated [32.0%], and small [34.10%]). The distribution of kinematic sperm subpopulations was different among ejaculate fractions (P < 0.001), with higher percentages of spermatozoa exhibiting slow movements with low ALH in the second and third portions, and with a more homogeneous distribution of kinematic sperm subpopulations in the first portion. The distribution of morphometric sperm subpopulations was also different among ejaculate fractions (P < 0.001), with more elongated spermatozoa in the first, and of small spermatozoa in the third, portion. It is concluded that important variations in the distribution of kinematic and morphometric sperm subpopulations exist between ejaculate fractions, with possible functional implications. PMID:27624985

  15. EEG and chaos: Description of underlying dynamics and its relation to dissociative states

    NASA Technical Reports Server (NTRS)

    Ray, William J.

    1994-01-01

    The goal of this work is the identification of states especially as related to the process of error production and lapses of awareness as might be experienced during aviation. Given the need for further articulation of the characteristics of 'error prone state' or 'hazardous state of awareness,' this NASA grant focused on basic ground work for the study of the psychophysiology of these states. In specific, the purpose of this grant was to establish the necessary methodology for addressing three broad questions. The first is how the error prone state should be conceptualized, and whether it is similar to a dissociative state, a hypnotic state, or absent mindedness. Over 1200 subjects completed a variety of psychometric measures reflecting internal states and proneness to mental lapses and absent mindedness; the study suggests that there exists a consistency of patterns displayed by individuals who self-report dissociative experiences such that those individuals who score high on measures of dissociation also score high on measures of absent mindedness, errors, and absorption, but not on scales of hypnotizability. The second broad question is whether some individuals are more prone to enter these states than others. A study of 14 young adults who scored either high or low on the dissociation experiences scale performed a series of six tasks. This study suggests that high and low dissociative individuals arrive at the experiment in similar electrocortical states and perform cognitive tasks (e.g., mental math) in a similar manner; it is in the processing of internal emotional states that differences begin to emerge. The third question to be answered is whether recent research in nonlinear dynamics, i.e., chaos, offer an addition and/or alternative to traditional signal processing methods, i.e., fast Fourier transforms, and whether chaos procedures can be modified to offer additional information useful in identifying brain states. A preliminary review suggests that current nonlinear dynamical techniques such as dimensional analysis can be successfully applied to electrocortical activity. Using the data set developed in the study of the young adults, chaos analyses using the Farmer algorithm were performed; it is concluded that dimensionality measures reflect information not contained in traditional EEG Fourier analysis.

  16. Measurement of Workload: Physics, Psychophysics, and Metaphysics

    NASA Technical Reports Server (NTRS)

    Gopher, D.

    1984-01-01

    The present paper reviews the results of two experiments in which workload analysis was conducted based upon performance measures, brain evoked potentials and magnitude estimations of subjective load. The three types of measures were jointly applied to the description of the behavior of subjects in a wide battery of experimental tasks. Data analysis shows both instances of association and dissociation between types of measures. A general conceptual framework and methodological guidelines are proposed to account for these findings.

  17. Invisible Bleeding: The Command Team’s Role in the Identification, Understanding, and Treatment of Traumatic Brain Injury and Post Traumatic Stress Disorder

    DTIC Science & Technology

    2013-04-11

    of loss of or a decreased level of consciousness (LOC) -Any loss of memory for events immediately before or after the injury [post-traumatic amnesia ...diagnosis and is unlikely to change within the medical community. Symptoms of PTSD and TBI Symptom ASD and PTSD TBI Dissociation Emotional... Amnesia Present Present Reexperiencing Recurrent images Present Present Nightmares Present NA Distress on reminders

  18. Formation of Neural Networks in 3D Scaffolds Fabricated by Means of Laser Microstereolithography.

    PubMed

    Vedunova, M V; Timashev, P S; Mishchenko, T A; Mitroshina, E V; Koroleva, A V; Chichkov, B N; Panchenko, V Ya; Bagratashvili, V N; Mukhina, I V

    2016-08-01

    We developed and tested new 3D scaffolds for neurotransplantation. Scaffolds of predetermined architectonic were prepared using microstereolithography technique. Scaffolds were highly biocompatible with the nervous tissue cells. In vitro studies showed that the material of fabricated scaffolds is not toxic for dissociated brain cells and promotes the formation of functional neural networks in the matrix. These results demonstrate the possibility of fabrication of tissue-engineering constructs for neurotransplantation based on created scaffolds.

  19. Separate Brain Circuits Support Integrative and Semantic Priming in the Human Language System.

    PubMed

    Feng, Gangyi; Chen, Qi; Zhu, Zude; Wang, Suiping

    2016-07-01

    Semantic priming is a crucial phenomenon to study the organization of semantic memory. A novel type of priming effect, integrative priming, has been identified behaviorally, whereby a prime word facilitates recognition of a target word when the 2 concepts can be combined to form a unitary representation. We used both functional and anatomical imaging approaches to investigate the neural substrates supporting such integrative priming, and compare them with those in semantic priming. Similar behavioral priming effects for both semantic (Bread-Cake) and integrative conditions (Cherry-Cake) were observed when compared with an unrelated condition. However, a clearly dissociated brain response was observed between these 2 types of priming. The semantic-priming effect was localized to the posterior superior temporal and middle temporal gyrus. In contrast, the integrative-priming effect localized to the left anterior inferior frontal gyrus and left anterior temporal cortices. Furthermore, fiber tractography showed that the integrative-priming regions were connected via uncinate fasciculus fiber bundle forming an integrative circuit, whereas the semantic-priming regions connected to the posterior frontal cortex via separated pathways. The results point to dissociable neural pathways underlying the 2 distinct types of priming, illuminating the neural circuitry organization of semantic representation and integration. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Quantitative in vivo receptor binding. III. Tracer kinetic modeling of muscarinic cholinergic receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.

    1985-10-01

    A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less

Top