NASA Astrophysics Data System (ADS)
Maruyama, Shingo; Anbusathaiah, Varatharajan; Fennell, Amy; Enderle, Mechthild; Takeuchi, Ichiro; Ratcliff, William D.
2014-11-01
We report on the evolution of the magnetic structure of BiFeO3 thin films grown on SrTiO3 substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.
NASA Astrophysics Data System (ADS)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar
2015-04-01
Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in
2015-04-14
Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less
Khatua, Dipak Kumar; V., Lalitha K.; Fancher, Chris M.; ...
2016-10-18
High energy synchrotron X-ray diffraction, in situ with electric field, was carried out on the morphotropic phase boundary composition of the piezoelectric alloy PbTiO 3-BiScO 3. We demonstrate a strong correlation between ferroelectric-ferroelastic domain reorientation, lattice strain and phase transformation. Lastly, we also show the occurrence of the three phenomena and persistence of their correlation in the weak field regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in
2014-07-28
We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less
Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics
NASA Astrophysics Data System (ADS)
Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen
2011-01-01
The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Chen, Jun; Fan, Longlong
Electric field-induced changes in the domain wall motion of (1-x)Bi(Mg 0.5Ti 0.5)O 3–xPbTiO 3 (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x =0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phasesmore » for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less
Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com
2016-05-23
In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of dopedmore » PZT.« less
NASA Astrophysics Data System (ADS)
Fu, Desheng; Suzuki, Hisao; Ogawa, Takeshi; Ishikawa, Kenji
2002-05-01
The piezoelectric responses of c-axis-oriented Pb(Zr0.53Ti0.47)O3 (PZT) thin films have been studied by measuring the stress-induced charge with an accurate charge integrator. These measurements reveal that the c-axis-oriented PZT films have high values of d33, which are several times those of ceramic materials. The intrinsic d33 values of poled films are about 680 and 800 pC/N for the c-axis-oriented films on Si and MgO single-crystal substrates, respectively. It shows that the thin-film deposition technique opens an approach for exploring the potential superior properties of PZT near the morphotropic phase boundary.
NASA Astrophysics Data System (ADS)
Daniels, John E.; Jo, Wook; Rödel, Jürgen; Jones, Jacob L.
2009-07-01
The electric-field-induced strain in 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 polycrystalline ceramic is shown to be the result of an electric-field-induced phase transformation from a pseudocubic to tetragonal symmetry. High-energy x-ray diffraction is used to illustrate the microstructural nature of the transformation. A combination of induced unit cell volumetric changes, domain texture, and anisotropic lattice strains are responsible for the observed macroscopic strain. This strain mechanism is not analogous to the high electric-field-induced strains observed in lead-based morphotropic phase boundary systems. Thus, systems which appear cubic under zero field should not be excluded from the search for lead-free piezoelectric compositions.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Ke, Xiaoqin; Yao, Yonggang; Yang, Sen; Ji, Yuanchao; Liu, Wenfeng; Yang, Yaodong; Zhang, Lixue; Hao, Yanshuang; Ren, Shuai; Zhang, Le; Ren, Xiaobing
2018-04-01
Obtaining superior physical properties for ferroic materials by manipulating the phase transitions is a key concern in solid state physics. Here, we investigated the dielectric permittivity, piezoelectric coefficient d33, storage modulus, and crystal symmetry of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba1-yCay)TiO3 (BZT-xBCyT) systems to demonstrate the gradual evolution process from successive phase transitions in BaTiO3 to the morphotropic phase boundary (MPB) regime in BZT-xBC0.3T. Furthermore, we analysed with a Landau-type theoretical model to show that the high field-sensitive response (dielectric permittivity) originates from a small polarization anisotropy and low energy barrier at the quadruple point. Together, the intermediate orthorhombic phase regime and the tetragonal-orthorhombic and orthorhombic-rhombohedral phase boundaries constitute the MPB. Our work not only reconciles the arguments regarding whether the structural state around the MPB corresponds to a single-phase regime or a multiple-phase-coexistence regime but also suggests an effective method to design high-performance functional ferroic materials by tailoring the successive phase transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Chen, Jun; Fan, Longlong
Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT ismore » larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Kaustuv; Neder, Reinhard; Chen, J.
We demore » monstrate that the morphotropic phase boundary of the lead-free ferroelectric system x BiNi 0.5 Zr 0.5 O 3 - ( 1 - x ) PbTiO 3 (NBT-xBT) can be uniquely distinguished by a reduced polarizationstate along with a non-uniform attening of the local potential function of A- and B-site cationsof the perovskite-type structure. This establishes a robust structure-property connections based onthe atomic-level structural correlations which elucidates the long-standing question: why the MPBof NBT-xBT does not excel as much as Pb-based materials do; and further help to develop strategyin designing ecient lead-free ferroelectric systems.« less
Datta, Kaustuv; Neder, Reinhard; Chen, J.; ...
2017-11-16
We demore » monstrate that the morphotropic phase boundary of the lead-free ferroelectric system x BiNi 0.5 Zr 0.5 O 3 - ( 1 - x ) PbTiO 3 (NBT-xBT) can be uniquely distinguished by a reduced polarizationstate along with a non-uniform attening of the local potential function of A- and B-site cationsof the perovskite-type structure. This establishes a robust structure-property connections based onthe atomic-level structural correlations which elucidates the long-standing question: why the MPBof NBT-xBT does not excel as much as Pb-based materials do; and further help to develop strategyin designing ecient lead-free ferroelectric systems.« less
NASA Astrophysics Data System (ADS)
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-01
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Perovskite solid solutions with multiferroic morphotropic phase boundaries and property enhancement
NASA Astrophysics Data System (ADS)
Algueró, M.; Amorín, H.; Fernández-Posada, C. M.; Peña, O.; Ramos, P.; Vila, E.; Castro, A.
2016-05-01
Recently, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of phases in the BiFeO3-BiCoO3 perovskite binary system, associated with the existence of a discontinuous morphotropic phase boundary (MPB) between multiferroic polymorphs of rhombohedral and tetragonal symmetries. This might be a general property of multiferroic phase instabilities, and a novel promising approach for room temperature magnetoelectricity. We review here our current investigations on the identification and study of additional material systems, alternative to BiFeO3-BiCoO3 that has only been obtained by high pressure synthesis. Three systems, whose phase diagrams were, in principle, liable to show multiferroic MPBs have been addressed: the BiMnO3-PbTiO3 and BiFeO3-PbTiO3 binary systems, and the BiFeO3-BiMnO3-PbTiO3 ternary one. A comprehensive study of multiferroism across different solid solutions was carried out based on electrical and magnetic characterizations, complemented with mechanical and electromechanical measurements. An in-depth structural analysis was also accomplished when necessary.
Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics
NASA Astrophysics Data System (ADS)
Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.
2016-06-01
The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.
Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics
Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN.
2016-01-01
The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement. PMID:27312287
Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics.
Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN
2016-06-17
The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Y., E-mail: y-sato@sigma.t.u-tokyo.ac.jp; Hirayama, T.; Ikuhara, Y.
2014-02-24
Crystalline structure is a fundamental characteristic of many materials, and drastic changes in properties may accompany crystal phase transitions. A prominent example of this is the morphotropic phase boundary of (Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3}) single crystal, a region that exhibits a high piezoelectric effect. Although the highest piezoelectricity is often attributed to a monoclinic crystal phase, formation of ferroelectric nanodomains (NDs) complicates understanding of this crystal structure. In this Letter, we report dedicated transmission electron microscopy and electron diffraction analysis to understand the crystal structure at the ND level. Splitting of diffraction spots, caused by very small lattice distortionmore » in the NDs, is important to understanding crystal structure and has been unambiguously observed. The results can be explained by monoclinic phase NDs. Combining these results with our previous findings on ND dynamics [Sato et al. Phys. Rev. Lett. 107, 187601 (2011)], monoclinic NDs can potentially make a considerable contribution to the piezoelectricity in these materials.« less
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-15
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200 pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Murtaza, Adil; Yang, Sen; Zhou, Chao; ...
2016-08-04
In this study, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb 1-xNd xCo 2 and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo 2-rich side is detected to be rhombohedral and that of NdCo 2-rich side is tetragonal below their respective Curie temperatures TC. The MPB composition Tb 0.35Nd 0.65Co 2 corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase ( T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb 0.35Nd 0.65Co 2 shows minimummore » magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb 1-xNd xCo 2 decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Finally, our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.« less
Wei, Songrui; Liao, Xiaoqi; Gao, Yipeng; Yang, Sen; Wang, Dong; Song, Xiaoping
2017-11-08
Extensive efforts have been made in searching enhanced functionalities near the so-called morphotropic phase boundaries (MPBs) in both ferroelectric and ferromagnetic materials. Due to the exchange anti-symmetry of the wave function of fermions, it is widely recognized that the exchange interaction plays a critical role in ferromagnetism. As a quantum effect, the exchange interaction is magnitudes larger than electric interaction, leading to a fundamental difference between ferroelectricity and ferromagnetism. In this paper, we establish an energetic model capturing the interplay among the anisotropy energy, magnetostatic energy and the exchange energy to investigate systematically the effects of the exchange energy on the behavior of the ferromagnetic MPB. For the first time, it is found that the exchange energy can narrow the width of MPB region in the composition temperature phase diagram for ferromagnetic MPB systems. As temperature increases, MPB region becomes wider because of the weakening of the exchange interaction. Our simulation results suggest that the exchange energy play a critical role on the unique behavior of ferromagnetic MPB, which is in contrast different from that of ferroelectric MPB.
John A. Schneeloch; Xu, Zhijun; Winn, B.; ...
2015-12-28
We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Cordero, Francesco
2015-01-01
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; University of Chinese Academy of Sciences, Beijing 100049; Long, Xifa, E-mail: lxf@fjirsm.ac.cn
2014-03-01
Graphical abstract: - Highlights: • Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-based ternary ferroelectric ceramics were prepared by solid-state synthesis method. • Morphotropic phase boundary region has been determined by XRD, di-/piezoelectric properties. • The compositions near MPB region exhibit excellent piezoelectric properties. - Abstract: A new compositional system of relaxor ferroelectrics was investigated based on the high piezoelectricity Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} ferroelectric perovskite family. Compositions were fabricated near an estimated morphotropic phase boundary (MPB) of the Pb(Lu{sub 1/2}Nb{sub 1/2})O{sub 3}–Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (PLZNT) ternary system by a two-step synthetic process. Their structures have been analyzed by means ofmore » X-ray diffraction technique. On the basis of X-ray powder diffraction, the morphotropic phase boundary (MPB) region for the ternary system was obtained. The Curie temperature T{sub C} of ternary system varied from 240 °C to 330 °C and the coercive fields E{sub c}s > 10 kV/cm. The values of piezoelectric coefficients d{sub 33} vary in the range of 260–450 pC/N with different PZN contents. It is worth noting that the optimum compositions were located at MPB region but near the tetragonal phase. The new PLZNT ceramics exhibit wider range of T{sub C}s and E{sub c}s, making it a promising material for high-powder ultrasound transducers using in a large temperature range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtaza, Adil; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Zhou, Chao
2016-08-01
In this work, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb{sub 1-x}Nd{sub x}Co{sub 2} and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo{sub 2}-rich side is detected to be rhombohedral and that of NdCo{sub 2}-rich side is tetragonal below their respective Curie temperatures T{sub C}. The MPB composition Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase (T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} shows minimummore » magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb{sub 1-x}Nd{sub x}Co{sub 2} decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.« less
2005-12-13
American Advanced Study Institute on Science and Technology of Ferroelectric Materials: Rosario Argentina, September 2002. a. Brief History of...zirconium-rich rhombohedral perovskite and the titani - composition. 8,) um-rich tetragonal perovskite phases. Within recent years, three factors have...of Physics. [DOI: 10.1063/1.1570517] The well-known elastoelectric coupling effects include When reviewing the history of flexoelectric investiga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khansur, Neamul H.; Daniels, John E.; Hinterstein, Manuel
2015-12-14
The microscopic contributions to the electric-field-induced macroscopic strain in a morphotropic 0.93(Bi{sub 1/2}Na{sub 1/2}TiO{sub 3})−0.07(BaTiO{sub 3}) with a mixed rhombohedral and tetragonal structure have been quantified using full pattern Rietveld refinement of in situ high-energy x-ray diffraction data. The analysis methodology allows a quantification of all strain mechanisms for each phase in a morphotropic composition and is applicable to use in a wide variety of piezoelectric compositions. It is shown that during the poling of this material 24%, 44%, and 32% of the total macroscopic strain is generated from lattice strain, domain switching, and phase transformation strains, respectively. The resultsmore » also suggest that the tetragonal phase contributes the most to extrinsic domain switching strain, whereas the lattice strain primarily stems from the rhombohedral phase. The analysis also suggests that almost 32% of the total strain is lost or is a one-time effect due to the irreversible nature of the electric-field-induced phase transformation in the current composition. This information is relevant to on-going compositional development strategies to harness the electric-field-induced phase transformation strain of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-based lead-free piezoelectric materials for actuator applications.« less
NASA Astrophysics Data System (ADS)
Datta, K.; Neder, R. B.; Chen, J.; Neuefeind, J. C.; Mihailova, B.
2017-11-01
We reveal that concurrent events of inherent entropy boosting and increased synchronization between A - and B -site cation vibrations of an A B O3 -type perovskite structure give rise to a larger piezoelectric response in a ferroelectric system at its morphotropic phase boundary (MPB). It is further evident that the superior piezoelectric properties of x BiNi0.5Zr0.5O3-(1 -x )PbTiO3 in comparison to x BiNi0.5Ti0.5O3-(1 -x )PbTiO3 are due to the absolute flattening of the local potentials for all ferroelectrically active cations with a higher spontaneous polarization at the MPB. These distinctive features are discovered from the analyses of neutron pair distribution functions and Raman scattering data at ambient conditions, which are particularly sensitive to mesoscopic-scale structural correlations. Altogether this uncovers more fundamental structure-property connections for ferroelectric systems exhibiting a MPB, and thereby has a critical impact in contriving efficient novel materials.
NASA Astrophysics Data System (ADS)
Gröting, Melanie; Albe, Karsten
2014-02-01
In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.
NASA Astrophysics Data System (ADS)
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier
2017-11-01
Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; ...
2017-11-10
Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang
Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less
NASA Astrophysics Data System (ADS)
Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish
2011-07-01
We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.
NASA Astrophysics Data System (ADS)
Wang, Yaojin; Wang, Ding; Yuan, Guoliang; Ma, He; Xu, Feng; Li, Jiefang; Viehland, D.; Gehring, Peter M.
2016-11-01
We have examined the effects of field cooling on the phase diagram of the relaxor system (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 (PZN-x PT ) for compositions near the morphotropic phase boundary (MPB). High-resolution diffraction measurements using Cu Kα x rays, which probe ≈3 μ m below the crystal surface, were made on field-cooled (FC) single-crystal specimens of PZN-4.5 %PT and PZN-6.5 %PT under electric fields of 1 and 2 kV/cm applied along [001] and combined with previous neutron diffraction data, which probe the entire crystal volume, for FC PZN-8 %PT [Ohwada et al., Phys. Rev. B 67, 094111 (2003), 10.1103/PhysRevB.67.094111]. A comparison to the zero-field-cooled (ZFC) PZN-x PT phase diagram reveals several interesting features: (1) The short-range monoclinic phase observed in the ZFC state on the low-PT side of the MPB is replaced by a monoclinic MA phase; (2) field cooling extends the tetragonal phase to higher temperatures and lower-PT concentrations; (3) the orthorhombic phase near the MPB is replaced by a monoclinic MC phase; (4) the vertical MPB in the ZFC phase diagram bends significantly towards the low-PT side in the FC state. These results demonstrate that both the phase stability and the nature of the MPB in PZN-PT within the near-surface regions are fragile in the presence of electric fields.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Denev, Sava; Zeches, Robert J.; Vlahos, Eftihia; Podraza, Nikolas J.; Melville, Alexander; Schlom, Darrell G.; Ramesh, R.; Gopalan, Venkatraman
2010-09-01
Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Yooun; Lee, Jin Hong; Xie, Lin
Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less
NASA Astrophysics Data System (ADS)
Rao, T. Lakshmana; Pradhan, M. K.; Ramakrishna, P. V.; Dash, S.
2018-05-01
Modified-PZT ceramics with a formula Pb0.9Ni0.1[(Zr0.52Ti0.48)]1-xSnxO3 located near the morphotropic phase boundary (MPB) were prepared by conventional solid state process to investigate effects of dilute doping of Ni and Sn in different sites of PZT. The single phase structure of the series of samples has been identified by x-ray diffraction technique. The optical band gap has been obtained from the UV-Vis spectra and found to be shrinkage with doping. The detail dielectric and impedance studies are being carried out to investigate the conduction mechanism of the samples. A significant enhancement in the electric polarization is observed for the maximum Sn doping in a modified PZT.
Enhanced conductivity at orthorhombic–rhombohedral phase boundaries in BiFeO 3 thin films
Heo, Yooun; Lee, Jin Hong; Xie, Lin; ...
2016-08-26
Enhanced properties in modern functional materials can often be found at structural transition regions, such as morphotropic phase boundaries (MPB), owing to the coexistence of multiple phases with nearly equivalent energies. Strain-engineered MPBs have emerged in epitaxially grown BiFeO 3 (BFO) thin films by precisely tailoring a compressive misfit strain, leading to numerous intriguing phenomena, such as a massive piezoelectric response, magnetoelectric coupling, interfacial magnetism and electronic conduction. Recently, an orthorhombic–rhombohedral (O–R) phase boundary has also been found in tensile-strained BFO. In this study, we characterise the crystal structure and electronic properties of the two competing O and R phasesmore » using X-ray diffraction, scanning probe microscope and scanning transmission electron microscopy (STEM). We observe the temperature evolution of R and O domains and find that the domain boundaries are highly conductive. Temperature-dependent measurements reveal that the conductivity is thermally activated for R–O boundaries. STEM observations point to structurally wide boundaries, significantly wider than in other systems. Furthermore, we reveal a strong correlation between the highly conductive domain boundaries and structural material properties. These findings provide a pathway to use phase boundaries in this system for novel nanoelectronic applications.« less
An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals
NASA Astrophysics Data System (ADS)
Bell, Andrew J.
2016-04-01
The recently proposed Equivalent Dipole Model for describing the electromechanical properties of ionic solids in terms of 3 ions and 2 bonds has been applied to PZT ceramics and lead-free single crystal piezoelectric materials, providing analysis in terms of an effective ionic charge and the asymmetry of the interatomic force constants. For PZT it is shown that, as a function of composition across the morphotropic phase boundary, the dominant bond compliance peaks at 52% ZrO2. The stiffer of the two bonds shows little composition dependence with no anomaly at the phase boundary. The effective charge has a maximum value at 50% ZrO2, decreasing across the phase boundary region, but becoming constant in the rhombohedral phase. The single crystals confirm that both the asymmetry in the force constants and the magnitude of effective charge are equally important in determining the values of the piezoelectric charge coefficient and the electromechanical coupling coefficient. Both are apparently temperature dependent, increasing markedly on approaching the Curie temperature.
NASA Astrophysics Data System (ADS)
Murtaza, Adil; Yang, Sen; Chang, Tieyan; Ghani, Awais; Khan, Muhammad Tahir; Zhang, Rui; Zhou, Chao; Song, Xiaoping; Suchomel, Matthew; Ren, Yang
2018-03-01
The spin reorientation (SR) and magnetoelastic properties of pseudobinary ferromagnetic T b1 -xN dxC o2 (0 ≤x ≤1.0 ) systems involving a morphotropic phase boundary (MPB) were studied by high-resolution synchrotron x-ray diffraction (XRD), magnetization, and magnetostriction measurements. The easy magnetization direction of the Laves phase lies along the 〈111 〉 axis with x <0.65 , whereas it lies along the 〈100 〉 axis for x >0.65 below Curie temperature (TC). The temperature-dependent magnetization curves showed SR; this can be explained by a two-sublattice model. Based on the synchrotron (XRD) and magnetization measurements, the SR phase diagram for a MPB composition of T b0.35N d0.65C o2 was obtained. Contrary to previously reported ferromagnetic systems involving MPB, the MPB composition of T b0.35N d0.65C o2 exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The anisotropic magnetostriction (λS) first decreased until x =0.8 and then continuously increased in the negative direction with further increase of Nd concentration. The decrease in magnetostriction can be attributed to the decrease of spontaneous magnetostriction λ111 and increase of λ100 with opposite sign to λ111. This paper indicates an anomalous type of MPB in the ferromagnetic T b1 -xN dxC o2 system and provides an active way to design novel functional materials with exotic properties.
Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M.; Bucio, Lauro; Villafuerte-Castrejón, María-Elena
2017-01-01
Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate–titanate for actuators is that of Bi0.50Na0.50TiO3 (BNT) based solid solutions. The pseudo-binary (1 − x)Bi0.50Na0.50TiO3–xBa1 − yCayTiO3 system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route. PMID:28773096
Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M; Bucio, Lauro; Villafuerte-Castrejón, María-Elena
2017-07-01
Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate-titanate for actuators is that of Bi 0.50 Na 0.50 TiO₃ (BNT) based solid solutions. The pseudo-binary (1 - x )Bi 0.50 Na 0.50 TiO₃- x Ba 1 - y Ca y TiO₃ system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route.
NASA Astrophysics Data System (ADS)
Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-01
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
Fernández-Posada, Carmen M; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-28
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO 3 -BiCoO 3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO 3 -BiMnO 3 -PbTiO 3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
NASA Astrophysics Data System (ADS)
Datta, K.; Neder, R. B.; Richter, A.; Göbbels, M.; Neuefeind, J. C.; Mihailova, B.
2018-05-01
The understanding of the atomistic origin of the morphotropic phase boundary (MPB) occurring in composition-temperature phase diagrams of ferroelectric solid solutions is a key topic in material science because materials often exhibit anomalous properties at the MPB. Here we reveal mesoscopic-scale structural correlations for a leading Pb-free ferroelectric system, (1 -x ) Na0.5Bi0.5TiO3-x BaTiO3 (NBT-x BT ), by examining atomic pair distribution functions and Raman scattering data at ambient conditions. We demonstrate that the amplification of the piezoelectric properties of NBT-x BT at the MPB are predominantly driven by an easy switchability resulting from a progressive decoupling between strain and polarization as the Ba content increases from zero to the critical MPB composition. It was observed that as Ba content increases towards MPB, competing local correlations, such as A-site chemical order, antiferrodistortive correlations of correlated BO6 tilts, and antipolar Bi shifts, are reduced, which in turn renders favorable conditions for easy switching of local dipoles under external fields. In addition, the evolving characteristics of the atomic dynamics as a function of composition suggest that the local potential functions of the cations are not completely flat at the MPB. Altogether, our results reveal atomistic mechanisms responsible for the observed elevated MPB properties in the case of NBT-x BT which imply that the so-called MPB of NBT-x BT should not be categorized as originally introduced for Pb-containing solid solutions.
Inverse effect of morphotropic phase boundary on the magnetostriction of ferromagnetic Tb1-xGdxCo2
NASA Astrophysics Data System (ADS)
Zhou, Chao; Ren, Shuai; Bao, Huixin; Yang, Sen; Yao, Yonggang; Ji, Yuanchao; Ren, Xiaobing; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Kobayashi, Keisuke
2014-03-01
The morphotropic phase boundary (MPB) has been utilized extensively in ferroelectrics and recently has attracted interest in ferromagnets [S. Yang, H. Bao, C. Zhou, Y. Wang, X. Ren, Y. Matsushita, Y. Katsuya, M. Tanaka, K. Kobayashi, X. Song, and J. Gao, Phys. Rev. Lett. 104, 197201 (2010), 10.1103/PhysRevLett.104.197201; R. Bergstrom, M. Wuttig, J. Cullen, P. Zavalij, R. Briber, C. Dennis, V. O. Garlea, and M. Laver, Phys. Rev. Lett. 111, 017203 (2013), 10.1103/PhysRevLett.111.017203] for obtaining enhanced large field-induced strain. Here we report that the MPB can also lead to weakening (the inverse effect as compared to the known MPB materials) of field-induced strain, as exhibited in the Tb1-xGdxCo2 system. With synchrotron x-ray diffractometry, the structure symmetry of TbCo2-rich compositions is detected to be rhombohedral below TC and that of GdCo2-rich compositions is tetragonal. The MPB composition Tb0.1Gd0.9Co2, corresponding to the two phases (rhombohedral and tetragonal) of coexistence, shows the exotic minimum (near zero) magnetostriction as well as the largest magnetic susceptibility among all samples. Further analysis suggests that whether MPB can enhance or weaken magnetostriction is determined by the degree of magnetic ordering of two end members that form ferromagnetic MPBs, which was not considered previously. Our work not only reveals a new type of ferromagnetic MPB, but also provides a new recipe for designing functional high-susceptibility and low-strain magnetic materials.
Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez Moyet, Richard; Rossetti, George A., E-mail: george.rossetti-jr@uconn.edu; Stace, Joseph
Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequencymore » up-conversion.« less
Luo, Nengneng; Zhang, Shujun; Li, Qiang; Xu, Chao; Yang, Zhanlue; Yan, Qingfeng; Zhang, Yiling; Shrout, Thomas R
2016-06-22
Four series of Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 (PMN-PIN-PZ-PT) quaternary ceramics with compositions located at the morphotropic phase boundary (MPB) regions were prepared. The MPBs of the multicomponent system were predicted using a linear combination rule and experimentally confirmed by X-ray powder diffraction and electrical measurement. The positions of MPBs in multicomponent systems were found in linear correlation with the tolerance factor and ionic radii of non-PT end-members. The phase structure, piezoelectric coefficient, electromechanical coupling coefficient, unipolar strains, and dielectric properties of as-prepared ceramics were systematically investigated. The largest d33s were obtained at S36.8, L37.4, M39.6, and N35.8, with the corresponding values of 580, 450, 420, and 530 pC/N, respectively, while the largest kps were found at S34.8, L37.4, M39.6, and N35.8, with the respective values of 0.54, 0.50, 0.47, and 0.53. The largest unipolar strain Smax and high-field piezoelectric strain coefficients d33* were also observed around the respective MPB regions. The rhombohedral-to-tetragonal phase transition temperature Trt increased with increasing PIN and PZ contents. Of particular importance is that high Trt of 140-197 °C was achieved in the M series with PZ and PIN contents being around 0.208 and 0.158, which will broaden the temperature usage range.
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun; ...
2017-03-28
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Crystal structure and phase transitions of sodium potassium niobate perovskites
NASA Astrophysics Data System (ADS)
Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.
2009-02-01
This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.
Low symmetry phase in Pb(Zr0.52Ti0.48)O3 epitaxial thin films with enhanced ferroelectric properties
NASA Astrophysics Data System (ADS)
Yan, Li; Li, Jiefang; Cao, Hu; Viehland, D.
2006-12-01
The authors report the structural and ferroelectric properties of Pb(Zr0.52Ti0.48)O3 (PZT) epitaxial thin films grown on (001), (110), and (111) SrRuO3/SrTiO3 substrates by pulsed laser deposition. A monoclinic C (Mc) phase has been found for (101) films, whereas (001) and (111) ones were tetragonal (T ) and rhombohedral (R), respectively. The authors find that the ferroelectric polarization of the Mc phase is higher than that in either the T or R ones. These results are consistent with predictions (i) of epitaxial phase diagrams and (ii) that the enhanced ferroelectric properties of morphotropic phase boundary PZT are related to a low symmetry monoclinic phase.
2006-03-31
crystals by the flux method and modified Bridgman technique, the growth results were hardly reproducible, and the quality of the crystals was still a serious... growth . 2.2.1.2.2) Solution Bridgman Growth A modified Bridgman method using excess of PbO as solvent was developed for the growth of PZNT91/9 crystals ...of growth , the grown crystal can be rotated via the A120 3 rod which was driven by a motor at a speed of 0 to 30 rmp. Figure 15(b) gives the
Boudys, M
1991-01-01
Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.
Large field-induced strains in a lead-free piezoelectric material.
Zhang, J X; Xiang, B; He, Q; Seidel, J; Zeches, R J; Yu, P; Yang, S Y; Wang, C H; Chu, Y-H; Martin, L W; Minor, A M; Ramesh, R
2011-02-01
Piezoelectric materials exhibit a mechanical response to electrical inputs, as well as an electrical response to mechanical inputs, which makes them useful in sensors and actuators. Lead-based piezoelectrics demonstrate a large mechanical response, but they also pose a health risk. The ferroelectric BiFeO(3) is an attractive alternative because it is lead-free, and because strain can stabilize BiFeO(3) phases with a structure that resembles a morphotropic phase boundary. Here we report a reversible electric-field-induced strain of over 5% in BiFeO(3) films, together with a characterization of the origins of this effect. In situ transmission electron microscopy coupled with nanoscale electrical and mechanical probing shows that large strains result from moving the boundaries between tetragonal- and rhombohedral-like phases, which changes the phase stability of the mixture. These results demonstrate the potential of BiFeO(3) as a substitute for lead-based materials in future piezoelectric applications.
Misfit strain phase diagrams of epitaxial PMN–PT films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakpash, N.; Khassaf, H.; Rossetti, G. A.
Misfit strain–temperature phase diagrams of three compositions of (001) pseudocubic (1 − x)·Pb (Mg{sub l/3}Nb{sub 2/3})O{sub 3} − x·PbTiO{sub 3} (PMN–PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN–PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN–PT compared to barium strontium titanate and lead zirconate titanate films.
Physics and Chemistry of Creating New Titanates with Perovskite Structure
NASA Astrophysics Data System (ADS)
Politova, E. D.; Kaleva, G. M.; Golubko, N. V.; Mosunov, A. V.; Sadovskaya, N. V.; Bel'kova, D. A.; Strebkov, D. A.; Stefanovich, S. Yu.; Kiselev, D. A.; Kislyuk, A. M.
2018-06-01
The phase formation, structural features, and dielectric, ferroelectric, and piezoelectric properties of ceramics with compositions from the region of the morphotropic phase boundary in the (Na0.5Bi0.5)TiO3-BaTiO3-Bi(Mg0.5Ti0.5)O3 system modified by different low-melting additives (Bi2O3, V2O5, KCl, NaCl-LiF, LiF, CuO, and MnO2) are studied. First-order phase transitions are detected near 700-800 and 400 K that display relaxor behavior and are indicative of the presence of polar regions in a nonpolar matrix. Prospects for improving the piezoelectric properties of the modified ceramic samples are confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuade, Ryan R.; Dolgos, Michelle R., E-mail: Michelle.Dolgos@oregonstate.edu
2016-10-15
Piezoelectric materials are increasingly being investigated for energy harvesting applications where (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) is an important lead-free piezoelectric material with potential to be used as an actuator in energy harvesting devices. Much effort has been put into modifying NBT-BT to tune the properties for specific applications, but there is currently no consensus regarding the structure-property relationships in this material, making targeted, rational design a major challenge. In this review, we will summarize the current body of knowledge of NBT-BT and discuss contradicting studies, unresolved problems, and future directions in the field. - Graphical abstract: This reviewmore » of (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) summarizes the large body of literature regarding the structure-property relationships of this complex material. We highlight structural studies of the average and local structures of both unpoled and poled samples of NBT-BT at its morphotropic phase boundary and discuss them in context of the observed piezoelectric properties. - Highlights: • Local and average structure of NBT-BT at morphotropic phase boundary is reviewed. • Average structure of poled and unpoled samples of NBT-BT is discussed. • Structure-property relationships in NBT-BT and future directions are summarized.« less
Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics
NASA Astrophysics Data System (ADS)
Xie, Rong-Jun; Akimune, Yoshio; Wang, Ruiping; Hirosaki, Naoto; Nishimura, Toshiyuki
2003-12-01
Highly dense piezoelectric ceramics of tungsten bronze-type (Sr1.9Ca0.1)1-0.5xBaxNaNb5O15 (where x=0.1--0.8) were prepared by spark plasma sintering. The crystallographic parameters, dielectric behaviors and piezoelectric properties of the sintered ceramics were investigated, and the effects of the Ba substitution on these electrical properties were discussed. The structural analysis and the electrical property measurements indicate a morphotropic phase boundary (MPB)-like phenomenon at x=0.4--0.5. In all compositions, a diffuse phase transition and a relaxor behavior are observed. The electrical properties are found to be crystallographically dependent.
NASA Astrophysics Data System (ADS)
Neurgaonkar, R. R.; Cross, L. E.
1984-02-01
SBN:50 and SBN:60 crystals have now been grown with improved optical quality using the Czochralski technique with automatic diameter control. The liquid phase epitaxial (LPE) growth of SBN:50 on SBN substrates has also been successfully demonstrated, with particularly good results for (100) and (110) film orientations. Electro-optic measurements on SBN:60 single crystals have shown a high value for r51 of 80 x 10 to the minus 12th power m/v, nearly a factor a 2 greater than for SBN:75. The tungsten bronze system Pb1-xBaxNb2O6 (PBN) has shown enhanced piezoelectric, dielectric and optical properties near the morphotropic boundary at x = 0.37. Substantial data on the physical properties of PBN single crystals is presented as a function of composition. Work on an appropriate flux system for LPE growth of PBN is in progress, with particular focus on the system Pb2V2O7 - PBN:60. Systematic work on the tungsten bronze system Ba2NaNb5O15 Sr2NaNb5O15 (BNN-SNN) and Pb2KNb5O15 - Ba2NaNb5O15 (PKN-BNN) has been undertaken, with both systems showing morphotropic boundary conditions with enhanced dielectric properties. Both systems look promising for future electro-optic development.
NASA Astrophysics Data System (ADS)
Lei, Chao; Chen, Kepi; Zhang, Xiaowen; Wang, Jun
2002-08-01
Relaxor-type ferroelectric ceramics, (1- x)Pb(Ni 1/3Nb 2/3)O 3- xPbTiO 3 ( x=0.28-0.42) were synthesized by the columbite precursor method. The phase structure and dielectric properties were investigated. X-ray diffraction results demonstrate that a region with both pseudocubic and tetragonal phase in existence lies in the composition range x=0.34-0.38, which is the morphotropic phase boundary (MPB). Examination of the dielectric behavior indicates that the ceramics exhibit abnormal high dielectric constant near the MPB composition. In addition, the transformation of (1- x)PNN- xPT from relaxor to normal ferroelectric behavior with the PT content increasing is successive.
Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.
Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing
2017-08-01
Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics
NASA Astrophysics Data System (ADS)
Stark, S.; Neumeister, P.; Balke, H.
2016-10-01
In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haumont, R.; Al-Barakaty, A.; Dkhil, B.
2005-03-01
X-ray and neutron diffraction techniques are combined with first-principles-based simulations to derive and understand the structural properties of Pb(Sc,Nb,Ti)O{sub 3} (PSN-PT) near its morphotropic phase boundary (MPB). An analysis of our measurements yields, at room and low temperatures, an overall tetragonal T--monoclinic M{sub C}--monoclinic M{sub B}--rhombohedral R path (when adopting the notations of Vanderbilt and Cohen, Phys. Rev. B 63, 94108 (2001) for the monoclinic phases) as the Ti composition decreases across the MPB. A composition- and temperature-dependent significant mixing between some of these phases is also measured and reported here. The overall T-M{sub C}-M{sub B}-R path, which has alsomore » been proposed for Pb(Mg,Nb,Ti)O{sub 3} [A. K. Singh and D. Pandey, Phys. Rev. B 67, 64102 (2003)] is rather complex since it involves a change in the polarization path: this polarization first rotates in a (100) plane for the T-M{sub C} part of the path and then in a (1-10) plane for the M{sub B}-R part of the path. Moreover, a comparison between these measurements and first-principles-based calculations raises the possibility that this complex path, and the associated M{sub C} and M{sub B} phases, can only occur if the samples exhibit a deviation from a perfectly homogeneous and disordered situation, e.g. possess nanoscale chemically-ordered regions. If not, homogeneously disordered PSN-PT is predicted to exhibit at low temperature the same polarization path as Pb(Zr,Ti)O{sub 3}, that is T-monoclinic M{sub A}-R which involves a 'single' polarization rotation in a (1-10) plane. Nanoscale inhomogeneity may thus play a key role on the macroscopic properties of PSN-PT, in particular, and of other heterovalent complex solid solutions, in general, near their MPB.« less
Defect-Induced Hedgehog Polarization States in Multiferroics
NASA Astrophysics Data System (ADS)
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing
2018-03-01
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
Defect-Induced Hedgehog Polarization States in Multiferroics.
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing
2018-03-30
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO_{3}. An array of charged NSNRs are produced in BiFeO_{3} thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
NASA Astrophysics Data System (ADS)
Sukkha, Usa; Muanghlua, Rangson; Niemcharoen, Surasak; Boonchoma, Banjong; Vittayakorn, Naratip
2010-08-01
The combination of antiferroelectric PbZrO3 (PZ) and relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 was prepared via the columbite precursor method. The basic characterizations were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear thermal expansion, differential scanning calorimetry (DSC) techniques, dielectric spectroscopy, and hysteresis measurement. The XRD result indicated that the solid solubility limit of the (1- x)PZ- xPZN system was about x=0.40. The crystal structure of (1- x)PZ- xPZN transformed from orthorhombic to rhombohedral symmetry when the concentration of PZN was increased. A ferroelectric intermediate phase began to appear between the paraelectric and antiferroelectric phases of pure PZ, with increasing PZN content. In addition, the temperature range of the ferroelectric phase increased with increasing PZN concentration. The morphotropic phase boundary (MPB) in this system was located close to the composition, x=0.20.
Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics
NASA Astrophysics Data System (ADS)
Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.
2014-09-01
Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.
Octahedral tilting, monoclinic phase and the phase diagram of PZT
NASA Astrophysics Data System (ADS)
Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.
2011-10-01
Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
First-principles Raman Spectra of Lead Titanate with Pressure
NASA Astrophysics Data System (ADS)
Schad, A.; Ganesh, P.; Cohen, R. E.; Ahart, M.
2010-03-01
PbTiO3 displays[1,2] a morphotropic phase boundary (MPB) under pressure at which electromechanical properties are maximal. Previously only complex solid-solutions were thought to exhibit such a boundary. To aid in the experimental study of the MPB region, we compute Raman scattering spectra of different phases of PbTiO3 with pressure using a DFT based first-principles approach and Density Functional Perturbation Theory (DFPT) [3]. The computed intensities and shifts with pressure agree very well with the experimental data measured on powder samples. Computations further allow comparison of Raman spectra and shifts in energetically competing phases raising the possibility of using calculations for experimental calibration of Raman spectra at any pressure. The results substantiate previous claims of a low-temperature monoclinic phase at the MPB at approximately 10 GPa in PbTiO3 as well as refute the possibility of an I4cm phase at higher pressures as suggested by other groups [4]. [1] Z. Wu and R. E. Cohen, Phys. Rev. Lett. 95, 037601 (2005), [2] M. Ahart et.al., Nature 451, 545 (2008), [3] P. Hermet et.al., J. Phys.:Condens. Matter 21, 215901 (2009) [4] P.E. Janolin et.al., Phys. Rev. Lett. 101, 237601 (2008).
Piezoelectric Properties of LiSbO3-Modified (K0.48Na0.52)NbO3 Lead-Free Ceramics
NASA Astrophysics Data System (ADS)
Wu, Jiagang; Wang, Yuanyu; Xiao, Dingquan; Zhu, Jianguo; Yu, Ping; Wu, Lang; Wu, Wenjuan
2007-11-01
Lead-free piezoelectric (1-x)(K0.48Na0.52)NbO3-xLiSbO3 [(1-x)KNN-xLS] ceramics were prepared by conventional sintering. A morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was identified in the composition range of 0.04
High-response piezoelectricity modeled quantitatively near a phase boundary
NASA Astrophysics Data System (ADS)
Newns, Dennis M.; Kuroda, Marcelo A.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.
2017-01-01
Interconversion of mechanical and electrical energy via the piezoelectric effect is fundamental to a wide range of technologies. The discovery in the 1990s of giant piezoelectric responses in certain materials has therefore opened new application spaces, but the origin of these properties remains a challenge to our understanding. A key role is played by the presence of a structural instability in these materials at compositions near the "morphotropic phase boundary" (MPB) where the crystal structure changes abruptly and the electromechanical responses are maximal. Here we formulate a simple, unified theoretical description which accounts for extreme piezoelectric response, its observation at compositions near the MPB, accompanied by ultrahigh dielectric constant and mechanical compliances with rather large anisotropies. The resulting model, based upon a Landau free energy expression, is capable of treating the important domain engineered materials and is found to be predictive while maintaining simplicity. It therefore offers a general and powerful means of accounting for the full set of signature characteristics in these functional materials including volume conserving sum rules and strong substrate clamping effects.
NASA Astrophysics Data System (ADS)
Yuan, Ruihao; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen
2017-07-01
We designed and synthesized a pseudo-binary Pb-free system, Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3, by combining a rhombohedral end (with only cubic to rhombohedral ferroelectric phase transition) and a tetragonal end (with only cubic to tetragonal ferroelectric phase transition). The established composition-temperature phase diagram is characterized by a tricritical point type morphotropic phase boundary (MPB), and the MPB composition has better ferroelectric, piezoelectric, and dielectric properties than the compositions deviating from MPB. Moreover, a full set of material constants (including elastic stiffness constants, elastic compliance constants, piezoelectric constants, dielectric constants, and electromechanical coupling factors) of the MPB composition are determined using a resonance method. The good piezoelectric performance of the MPB composition can be ascribed to the high dielectric constants, elastic softening, and large electromechanical coupling factor.
Structural and magnetic properties of morphotropic phase boundary involved Tb 1-xGd xFe 2 compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtaza, Adil; Yang, Sen; Zhou, Chao
2016-09-01
In the present paper, structural, magnetic and magnetostrictive properties of Tb 1-xGd xFe 2 (0 <= x <= 1.0) were studied. Synchrotron x-ray diffraction (XRD) results show the non-cubic symmetry of Tb 1-xGd xFe 2 at room temperature and composition-induced crystallographic phase transition from rhombohedral phase to tetragonal phase. The Gd concentration dependent lattice parameters, lattice distortion and change of easy magnetic direction were detected by synchrotron XRD. With the Gd concentration increases, Curie temperature Tc increases while room temperature magnetization and magnetostriction coefficient lambda(111) and the anisotropy of TbFe 2 decrease. The decrease in spontaneous magnetostriction coefficient lambda(111) withmore » increasing Gd substitution can be understood on the basis of the single-ion model; the corresponding decrease of magnetostriction for Tb 1-xGd xFe 2, and the large magnetostriction value occurs on the Tb-rich side, are ascribed to decrease of lambda(111)« less
Giant elastic tunability in strained BiFeO 3 near an electrically induced phase transition
Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; ...
2015-11-24
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO 3 (rhombohedral) ferroelectric thin films from ~10 3 nm 3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) onmore » the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO 3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.« less
Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition
Li, Q; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.
2015-01-01
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral−tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483
Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region.
Seshadri, Shruti B; Nolan, Michelle M; Tutuncu, Goknur; Forrester, Jennifer S; Sapper, Eva; Esteves, Giovanni; Granzow, Torsten; Thomas, Pam A; Nino, Juan C; Rojac, Tadej; Jones, Jacob L
2018-03-07
Large piezoelectric coefficients in polycrystalline lead zirconate titanate (PZT) are traditionally achieved through compositional design using a combination of chemical substitution with a donor dopant and adjustment of the zirconium to titanium compositional ratio to meet the morphotropic phase boundary (MPB). In this work, a different route to large piezoelectricity is demonstrated. Results reveal unexpectedly high piezoelectric coefficients at elevated temperatures and compositions far from the MPB. At temperatures near the Curie point, doping with 2 at% Sm results in exceptionally large piezoelectric coefficients of up to 915 pm/V. This value is approximately twice those of other donor dopants (e.g., 477 pm/V for Nb and 435 pm/V for La). Structural changes during the phase transitions of Sm-doped PZT show a pseudo-cubic phase forming ≈50 °C below the Curie temperature. Possible origins of these effects are discussed and the high piezoelectricity is posited to be due to extrinsic effects. The enhancement of the mechanism at elevated temperatures is attributed to the coexistence of tetragonal and pseudo-cubic phases, which enables strain accommodation during electromechanical deformation and interphase boundary motion. This work provides insight into possible routes for designing high performance piezoelectrics which are alternatives to traditional methods relying on MPB compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Xu, Han; Yang, Bin
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less
Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev
2015-02-25
A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics
NASA Astrophysics Data System (ADS)
Li, Jiangyu; Bhattacharya, Kaushik
2002-08-01
We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials.
Synthesis of PZT powder by conventional method at various conditions
NASA Astrophysics Data System (ADS)
Necira, Z.; Boutarfaia, A.; Abba, M.; Abdessalem, N.
2012-06-01
In this work, the formation of Pb(Zr1-xTix)O3 solid solutions with composition near the morphotropic phase boundary (MPB) using the conventional ceramic method have been studied by changing the thermal conditions such as temperature ramp rate and isothermal times during the calcination treatment performed between 700 and 900 °C. The perovskite phase formation and morphology of undoped Pb(Zr0.52Ti0.48)O3 (abbreviated PZT) and doped new material Pb0.98Gd0.02[(Zr0.52Ti0.48)0.98 (Mg1/3Nb2/3)0.01 (Ni1/3Sb2/3)0.01]O3 (abbreviated PZT-PGMNNS) specimens have been examined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) while the thermal evolution of the initial precursor was followed by TG-DTA. So the results of these studies have been discussed.
1984-02-01
110) film orientations. Electro - optic measurements on SBN:60 single crystals have shown a high value for r51 of 80 x 10 to the minus 12th power m/v...showing morphotropic boundary conditions with enhanced dielectric properties. Both systems look promising for future electro - optic development.
Edwards, David; Bastani, Yaser; Cao, Ye; ...
2016-01-19
The role of local strains is fundamental to the large effective piezoelectric and ferroelectric response of thin films. Therefore a method to investigate local strain-induced phenomena is imperative. Here, pressure induced domain reorganization is reported in lead zirconate titanate films with composition near the morphotropic phase boundary. An approach is thus demonstrated to simultaneously study the role of applied mechanical pressure on multiple local properties of the film. In particular, the modification of hysteresis loops collected at different tip pressures is consistent with first mostly ferroelastic and then ferroelectric dominated reorientation of domains under increasing applied pressure. The pressure inducedmore » domain writing is also investigated through phase field simulations where the applied pressure is generally found to increase the in-plane polarization of the domains with respect to the out-of-plane component, corroborating the experimental observations. The approach developed here has the potential to explore other hysteretic phenomena and phase transitions in a spatially resolved manner with varying local pressure.« less
Fernandez-Benavides, David Andres; Gutierrez-Perez, Aixa Ibeth; Benitez-Castro, Angelica Maria; Ayala-Ayala, Maria Teresa; Moreno-Murguia, Barbara
2018-01-01
We report a comprehensive comparative study of ferroelectric and piezoelectric properties of BNT-BKT-BT ceramics through the MPB (morphotropic phase boundary) zone, from the rhombohedral to the tetragonal phases in the system (97.5−x)(Bi0.5Na0.5)TiO3 + x(Bi0.5K0.5)TiO3 + 2.5(BaTiO3), where x = 0 to 24.5 mol %. The structural transitions were studied by XRD patterns and Raman spectra. The MPB was confirmed between x = 10 and 12.5 mol % BKT. The dielectric/ferroelectric/piezoelectric properties of the BNT-BKT-BT system are maximized in the MPB region exhibiting a dielectric constant of 1506, a remanent polarization of 34.4 μC/cm2, a coercive field = 36.9 kV/cm, and piezoelectric values of d33 = 109 pC/N, kt = 0.52, and kp = 0.24. Changes in microstructure as a function of BKT content are also presented and discussed. PMID:29494486
Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.
Hong, Woong-Ki; Park, Jong Bae; Yoon, Jongwon; Kim, Bong-Joong; Sohn, Jung Inn; Lee, Young Boo; Bae, Tae-Sung; Chang, Sung-Jin; Huh, Yun Suk; Son, Byoungchul; Stach, Eric A; Lee, Takhee; Welland, Mark E
2013-04-10
We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Yang, Bin, E-mail: binyang@hit.edu.cn; Sun, Enwei
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic M{sub C} phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, themore » lattice parameters of T and M{sub C} phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.
Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less
Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.
2017-05-16
Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less
Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3.
Graf, Monica Elisabet; Di Napoli, Solange; Barral, Maria Andrea Andrea; Saleh Medina, Leila; Negri, R Martín; Sepliarsky, Marcelo; Llois, Ana María
2018-05-23
In this work we study, by means of <i>ab initio</i> calculations, the structural, electronic and magnetic properties of Y-doped BiFeO<sub>3</sub> compounds. We determine that there is a morphotropic phase boundary at an yttrium concentration of (18 ± 2)%, where the structure changes from <i>R3c</i> to <i>Pnma</i>. This structural transition is driven by the chemical pressure induced by the dopant. By analyzing the evolution of the oxygen octahedral tilts we find an enhanced antiferrodistortive distortion when increasing the Y-doping, together with a reduction of the ferroelectric distorsion, that gives rise to a smaller value of the electric polarization. These cooperative effects should lead to a larger canting of the Fe magnetic moments and to a larger ferromagnetic response in the <i>R3c</i> phase, as it is observed in the experiments. . © 2018 IOP Publishing Ltd.
Dielectric and piezoelectric properties of lead-free (Bi,Na)TiO3-based thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.; Bharadwaja, S. S. N.; Trolier-McKinstry, S.
2010-02-01
Dielectric and piezoelectric properties of morphotropic phase boundary (Bi,Na)TiO3-(Bi,K)TiO3-BaTiO3 epitaxial thin films deposited on SrRuO3 coated SrTiO3 substrates were reported. Thin films of 350 nm thickness exhibited small signal dielectric permittivity and loss tangent values of 750 and 0.15, respectively, at 1 kHz. Ferroelectric hysteresis measurements indicated a remanent polarization value of 30 μC/cm2 with a coercive field of 85-100 kV/cm. The thin film transverse piezoelectric coefficient (e31,f) of these films after poling at 600 kV/cm was found to be -2.2 C/m2. The results indicate that these BNT-based thin films are a potential candidate for lead-free piezoelectric devices.
NASA Astrophysics Data System (ADS)
Xia, Zhiguo; Li, Qiang
2007-05-01
Piezoelectric ceramics with compositions of (0.90- x)Pb(Mg 1/3Nb 2/3)O 3- xPbTiO 3-0.10PbZrO 3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO 3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO 3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO 1) mode and rhombohedral phase R h mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, D.; Rodriguez, E. E.; Gao, J.
2014-11-17
We revisit the phase diagram of the relaxor ferroelectric PMN- xPT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- xPT were prepared with nominal compositions of x = 0:10, 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than thosemore » in the as-grown samples. Further, the diffraction patterns for x = 0:10, 0.20, and 0.30 are best refined using the monoclinic Cm space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- xPT vanishes on the Ti-rich side of the morphotropic phase boundary.« less
Pan, Zhao; Chen, Jun; Yu, Runze; ...
2016-09-15
Lead-free piezoelectrics have attracted increasing attention due to the awareness of lead toxicity to the environment. Here, a new Bi-based lead-free perovskite of (1-x)Bi(Zn 0.5Ti 0.5)O 3-xBiFeO 3 has been synthesized via high-pressure and high-temperature method. It exhibits interest-ing properties of giant polarization, morphotropic phase boundary (MPB), and monoclinic phase. In particular, large tetragonality ( c/a = 1.228) and giant spontaneous polariza-tion of 110 μC/cm 2 has been obtained in 0.6Bi(Zn 0.5Ti 0.5)O 3-0.4BiFeO 3, which is much higher than most available lead-free materials and conventional Pb(Zr,Ti)O 3. MPB is clearly identified to be constituted by tetragonal and monoclinic phasesmore » at x = 0.5. Notably, a single monoclinic phase has been observed at x = 0.6, which exhibits an intriguing high temperature property. In conclusion, the present results are helpful to explore new lead-free MPB systems in bismuth-based compounds.« less
NASA Astrophysics Data System (ADS)
Gallagher, John A.
2016-04-01
The desired operating range of ferroelectric materials with compositions near the morphotropic phase boundary is limited by field induced phase transformations. In [001]C cut and poled relaxor ferroelectric single crystals the mechanically driven ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation is hindered by antagonistic electrical loading. Instability around the phase transformation makes the current experimental technique for characterization of the large field behavior very time consuming. Characterization requires specialized equipment and involves an extensive set of measurements under combined electrical, mechanical, and thermal loads. In this work a mechanism-based model is combined with a more limited set of experiments to obtain the same results. The model utilizes a work-energy criterion that calculates the mechanical work required to induce the transformation and the required electrical work that is removed to reverse the transformation. This is done by defining energy barriers to the transformation. The results of the combined experiment and modeling approach are compared to the fully experimental approach and error is discussed. The model shows excellent predictive capability and is used to substantially reduce the total number of experiments required for characterization. This decreases the time and resources required for characterization of new compositions.
Dielectric and acoustical high frequency characterisation of PZT thin films
NASA Astrophysics Data System (ADS)
Conde, Janine; Muralt, Paul
2010-02-01
Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.
Combinatorial studies of (1-x)Na0.5Bi0.5TiO3-xBaTiO3 thin-film chips
NASA Astrophysics Data System (ADS)
Cheng, Hong-Wei; Zhang, Xue-Jin; Zhang, Shan-Tao; Feng, Yan; Chen, Yan-Feng; Liu, Zhi-Guo; Cheng, Guang-Xi
2004-09-01
Applying a combinatorial methodology, (1-x)Na0.5Bi0.5TiO3-xBaTiO3 (NBT-BT) thin-film chips were fabricated on (001)-LaAlO3 substrates by pulsed laser deposition with a few quaternary masks. A series of NBT-BT library with the composition of BT ranged from 0 to 44% was obtained with uniform composition and well crystallinity. The relation between the concentration of NBT-BT and their structural and dielectric properties were investigated by x-ray diffraction (XRD), evanescent microwave probe, atomic force microscopy, and Raman spectroscopy. An obvious morphotropic phase boundary (MPB) was established to be about 9% BT by XRD, Raman frequency shift, and dielectric anomaly, different from the well-known MPB of the materials. The result shows the high efficiency of combinatorial method in searching new relaxor ferroelectrics.
Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Lee, J.; Safari, A.; Pfeffer, R. L.
1992-10-01
Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.
Ultrahigh piezoelectricity in ferroelectric ceramics by design
NASA Astrophysics Data System (ADS)
Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R.; Zhang, Shujun
2018-03-01
Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity ɛ33/ɛ0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.
Ultrahigh piezoelectricity in ferroelectric ceramics by design.
Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R; Zhang, Shujun
2018-04-01
Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d 33 of up to 1,500 pC N -1 and dielectric permittivity ε 33 /ε 0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.
Effect of NiO substitution on the structural and dielectric behaviour of NaNbO3
NASA Astrophysics Data System (ADS)
George, R. T.; Joshi, D. C.; Nayak, S.; Tiwari, N.; Chauhan, R. N.; Pramanik, P.; Dar, T. A.; Ghosh, S.; Thota, S.
2018-02-01
The structural and dielectric properties of NiO substituted NaNbO3 ceramics are reported. The orthorhombic (Pmna) crystal structure of NaNbO3 transforms to a lower symmetry monoclinic phase (Pbma) after the dilute dispersion of NiO. X-ray photoelectron spectroscopy reveals pentavalent "Nb," monovalent "Na," and divalent "Ni" states along with the signatures of non-local screening effects. The antiferroelectric to paraelectric transition (TAFE) accompanied by a structural change from the orthorhombic to the tetragonal phase shifts by 55 °C toward the low-temperature side, whereas the morphotropic phase boundary (TO-M) moves toward a higher temperature by 28 °C for nominal substitutions ( x ≤0.10 ). The generalized Lyddane-Sachs-Teller expression (ε0/-S'ε∞)= (ωl/ωt ) 2 and thermodynamic free energy models are employed to explain the anomalous behaviour of the temperature dependence of relative dielectric permittivity ( εr (T)) across TAFE and TO-M. The frequency dependence of ac-conductivity σac(ω) follows the Jonscher power law (σac = σ(0) + Aωs), suggesting the dominance of the phonon-assisted hopping mechanism, whereas the frequency independent term (σ(0)) was explained by Funke's Jump-Relaxation Model.
PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability
NASA Astrophysics Data System (ADS)
Luo, Nengneng; Zhang, Shujun; Li, Qiang; Yan, Qingfeng; He, Wenhui; Zhang, Yiling; Shrout, Thomas R.
2014-05-01
The phase structure, piezoelectric, dielectric, and ferroelectric properties of (0.80 - x)PMN-0.10PFN-0.10PZ-xPT were investigated systematically. The morphotropic phase boundary (MPB) was confirmed to be 0.30 < x < 0.34. Both MPB compositions of x = 0.32 and x = 0.33 exhibit high piezoelectric coefficients d33 = 640 pC/N and 580 pC/N, electromechanical couplings kp of 0.53 and 0.52, respectively. Of particular importance is that the composition with x = 0.33 was found to process high field-induced piezoelectric strain coefficient d33* of 680 pm/V, exhibiting a minimal temperature-dependent behavior, being less than 8% in the temperature range of 25-165 °C, which can be further confirmed by d31, with a variation of less than 9%. The temperature-insensitive d33* values can be explained by the counterbalance of the ascending dielectric permittivity and descending polarization with increasing temperature. These features make the PMN-PT based quaternary MPB compositions promising for actuator applications demanding high temperature stability.
Effect of Fe doping on structural and impedance properties of PZTFN ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind, E-mail: arvindmse07311209.in@gmail.com; Pal, Vijayeta; Mishra, S. K.
2016-05-06
An attempts have been made to synthesis the ceramics Pb{sub 1-3x/2} Fe{sub x}(Zr{sub 0.52}Ti{sub 0.48}){sub 1-5y/4} NbyO{sub 3} abbreviated as (PFZTN) for x = 1-6 mol% and y = 5.5 mol% by a semi-wet route. In the present paper, we have investigated the effect of Fe doping on structural and electrical properties of the PFZTN ceramics. X-ray diffraction (XRD) patterns reveal that PFZTN ceramics are single phase in nature. However, for x = 0.05 and 0.06, a secondary phase appears as discernible from the XRD profiles. Rietveld analysis of the powder diffraction data shows the presence of coexistence of tetragonal (P4mm spacemore » group) and rhombohedral phases (R3c space group) occurs near the morphotropic phase boundary (MPB) at x ≥ = 0.05. The log-log plots show that the conductivity increases with increase of temperature. The ac conductivity becomes sensitive at high frequency region and shifted towards higher frequency side with increasing temperature. It is observed that the activation energy (Ea) decreases with increasing frequency. This complex perovskite structure can be used as a multilayer ceramic capacitors and electromechanical transducers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C. Q.; Peng, L.; Jiang, K.
2015-06-15
The phase transitions of Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} (Sr-modified PAN-PZT) ceramics with Sr compositions of x = 2%, 5%, 10% and 15% have been investigated using X-ray diffraction (XRD), temperature dependent dielectric permittivity and Raman scattering. The XRD analysis show that the phase transition occurs between Sr composition of 5% and 10%. Based on the broad dielectric peaks at 100 Hz, the diffused phase transition from tetragonal (T) to cubic (C) structure shifts to lower temperature with increasing Sr composition. The dramatic changes of wavenumber and full width at half-maximum (FWHM) for E(TO{sub 4})′more » softing mode can be observed at morphotropic phase boundary (MPB). Moreover, the MPB characteristic shows a wider and lower trend of temperature region with increasing Sr composition. It could be ascribed to the diminishment of the energy barrier and increment of A-cation entropy. Therefore, the Sr-modified PAN-PZT ceramics unambiguously undergo two successive structural transitions (rhombohedral-tetragonal-cubic phase) with temperature from 80 to 750 K. Correspondingly, the phase diagram of Sr-modified PAN-PZT ceramics can be well depicted.« less
First-Principles calculations of Piezoelectricity and Polarization Rotation in Pb(Zr_0.5Ti_0.5)O_3
NASA Astrophysics Data System (ADS)
Wu, Zhigang; Krakauer, Henry
2002-03-01
Recent experimental and theoretical work [1-3] indicates that polarization rotation via a monoclinic phase at the morphotropic phase boundary in PZT [1-3] is responsible for its large piezoelectric response. We investigate this using the first-principles LAPW+LO method within the local density functional approximation. Calculated internal coordinates of monoclinic PZT(50/50) are in good agreement with PZT(52/48) experimental data [4]. Bulk spontaneous polarization and piezoelectric stress tensor elements of chemically ordered PbZr_1/2Ti_1/2O3 (PZT 50/50) are determined from relaxed ground-state Berry's phase calculations while constraining the symmetry to monoclinic Cm. Large piezoelectric response is found as the polarization rotates within the Cm mirror plane. These first-principles results show that polarization rotation can explain the large measured piezoelectric constants in ceramic PZT. * Supported by ONR. [1] H. Fu and Cohen, Nature 403, 281 (2000). [2] B. Noheda, D.E. Cox, G. Shirane, S-E. Park, L.E. Cross and Z. Zhong Phys. Rev. Lett. 86, 3891 (2001). [3] L. Bellaiche, A. Garcia and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000). [4] B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox and G. Shirane, Phys. Rev. B 61, 8687 (2000).
Ferroelectric domain structure of anisotropically strained NaNbO3 epitaxial thin films
NASA Astrophysics Data System (ADS)
Schwarzkopf, J.; Braun, D.; Schmidbauer, M.; Duk, A.; Wördenweber, R.
2014-05-01
NaNbO3 thin films have been grown under anisotropic biaxial strain on several oxide substrates by liquid-delivery spin metalorganic chemical vapor deposition. Compressive lattice strain of different magnitude, induced by the deposition of NaNbO3 films with varying film thickness on NdGaO3 single crystalline substrates, leads to modifications of film orientation and phase symmetry, which are similar to the phase transitions in Pb-containing oxides near the morphotropic phase boundary. Piezoresponse force microscopy measurements exhibit large out-of-plane polarization components, but no distinctive domain structure, while C-V measurements indicate relaxor properties in these films. When tensile strain is provoked by the epitaxial growth on DyScO3, TbScO3, and GdScO3 single crystalline substrates, NaNbO3 films behave rather like a normal ferroelectric. The application of these rare-earth scandate substrates yields well-ordered ferroelectric stripe domains of the type a1/a2 with coherent domain walls aligned along the [001] substrate direction as long as the films are fully strained. With increasing plastic lattice relaxation, initially, a 2D domain pattern with still exclusively in-plane electric polarization, and finally, domains with in-plane and out-of-plane polar components evolve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Li, Binzhi; Bowman, Keith
The piezoelectric compositions (1 - x)Ba(Zr 0.2Ti 0.8)O 3–x(Ba 0.7Ca 0.3)TiO 3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributedmore » to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less
Structural changes concurrent with ferromagnetic transition
NASA Astrophysics Data System (ADS)
Yang, Sen; Bao, Hui-Xin; Zhou, Chao; Wang, Yu; Ren, Xiao-Bing; Song, Xiao-Ping; Yoshitaka, Matsushita; Yoshio, Katsuya; Masahiko, Tanaka; Keisuke, Kobayashi
2013-04-01
Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understanding the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.
NASA Astrophysics Data System (ADS)
Ye, Yin; Yu, Shuhui; Huang, Haitao; Zhou, Limin
2007-07-01
Polyethylene glycol (PEG)-assisted solid state reaction route is employed to prepare the relaxor-type ferroelectric powders and ceramics of (1-x)Pb(Ni 1/3Nb 2/3)O 3-xPbTiO 3 (PNN-PT) with the morphotropic phase boundary (MPB) composition at x=0.36 (0.64PNN-0.36PT). PEG additive with the molecular weight of 200 is introduced into PNN-PT oxide precursors in order to obtain the perovskite phase. The XRD and TG/DSC results demonstrate that the interactions between PbO and PEG favor the transformation from the lead-rich pyrochlore to the lead-deficient pyrochlore, thus facilitating the formation of the perovskite. Consequently, nearly pure perovskite 0.64PNN-0.36PT powders are synthesized at a relatively low temperature of 850 °C. A significant improvement of electric properties of the ceramics sintered at 1200 °C is achieved by PEG modification. The dielectric constant at room temperature and the maximum dielectric constant at T c reach 4987 and 24307, respectively, at a frequency of 1 kHz. The piezoelectric constant d 33 is 460 pC/N.
NASA Astrophysics Data System (ADS)
Tailor, H. N.; Ye, Z.-G.
2010-05-01
A solution chemical method utilizing ethylene glycol as solvent has been developed to prepare the ceramics of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3[(1-x)PMN-xPT] from a precursor powder that can be pressed and fired in one step to produce high quality ceramics with excellent piezoelectric properties. The ceramics reach a relative density of up to 97% of the theoretical value after direct calcinations. This high density is achieved without the need of additional sintering after calcination which is usually required in conventional solid state syntheses to produce ceramics. The ceramics exhibit a unipolar piezoelectric coefficient d33 of 848 pC/N, which is one of the highest values for any unmodified/untextured binary systems reported to date. Since the piezoelectric properties depend on composition and electric field, the effect of poling conditions was investigated. A critical temperature limit has been found, above which poling can dramatically impair the piezoelectric properties due to a field-induced increase in the monoclinic phase component around the morphotropic phase boundary.
NASA Astrophysics Data System (ADS)
Cornelius, T. W.; Mocuta, C.; Escoubas, S.; Merabet, A.; Texier, M.; Lima, E. C.; Araujo, E. B.; Kholkin, A. L.; Thomas, O.
2017-10-01
The compositional dependence of the piezoelectric properties of self-polarized PbZr1-xTixO3 (PZT) thin films deposited on Pt/TiO2/SiO2/Si substrates (x = 0.47, 0.49 and 0.50) was investigated by in situ synchrotron X-ray diffraction and electrical measurements. The latter evidenced an imprint effect in the studied PZT films, which is pronounced for films with the composition of x = 0.50 and tends to disappear for x = 0.47. These findings were confirmed by in situ X-ray diffraction along the crystalline [100] and [110] directions of the films with different compositions revealing asymmetric butterfly loops of the piezoelectric strain as a function of the electric field; the asymmetry is more pronounced for the PZT film with a composition of x = 0.50, thus indicating a higher built-in electric field. The enhancement of the dielectric permittivity and the effective piezoelectric coefficient at compositions around the morphotropic phase boundary were interpreted in terms of the polarization rotation mechanism and the monoclinic phase in the studied PZT thin films.
Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro; ...
2018-06-12
Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less
NASA Astrophysics Data System (ADS)
Wu, Jiagang; Xiao, Dingquan; Wang, Yuanyu; Zhu, Jianguo; Yu, Ping; Jiang, Yihang
2007-12-01
(1-x)(K0.42Na0.58)NbO3-xLiSbO3 [(1-x)KNN-xLS] lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was identified in the composition range of 0.04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro
Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less
NASA Astrophysics Data System (ADS)
Feng, Yu; Li, Wei-Li; Yu, Yang; Jia, He-Nan; Qiao, Yu-Long; Fei, Wei-Dong
2017-11-01
An approach to greatly enhance the piezoelectric properties (˜4 00 pC/N) of the tetragonal BaTi O3 polycrystal using a small number of A -site acceptor-donor substitutions [D. Xu et al., Acta Mater. 79, 84 (2014), 10.1016/j.actamat.2014.07.023] has been proposed. In this study, Pb (ZrTi ) O3 (PZT) based polycrystals with various crystal symmetries (tetragonal, rhombohedral, and so on) were chosen to investigate the piezoelectricity enhancement mechanism. X-ray diffraction results show that doping generates an intrinsic uniaxial compressive stress along the [001] pc direction in the A B O3 lattices. Piezoelectric maps in the parameter space of temperature and Ti concentration in the PZT and doped system show a more significant enhancement effect of L i+-A l3 + codoping in tetragonal PZT than in the rhombohedral phase. Phenomenological thermodynamic analysis indicates that the compressive stress results in more serious flattening of the free-energy profile in tetragonal PZT, compared with that in the rhombohedral phase. The chemical stress obtained by this acceptor-donor codoping can be utilized to optimize the piezoelectric performance on the tetragonal-phase site of the morphotropic phase boundary in the PZT system. The present study provides a promising route to the large piezoelectric effect induced by chemical-stress-driven flattening of the free-energy profile.
NASA Astrophysics Data System (ADS)
Hou, Dong; Usher, Tedi-Marie; Fulanovic, Lovro; Vrabelj, Marko; Otonicar, Mojca; Ursic, Hana; Malic, Barbara; Levin, Igor; Jones, Jacob L.
2018-06-01
Changes to the crystal structure of 0.70 Pb (M g1 /3N b2 /3 ) O3-0.30 PbTi O3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic C m at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF results show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. This study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-x PT piezoceramics.
NASA Astrophysics Data System (ADS)
Ullah, Aman; Gul, Hafiza Bushra; Ullah, Amir; Sheeraz, Muhammad; Bae, Jong-Seong; Jo, Wook; Ahn, Chang Won; Kim, Ill Won; Kim, Tae Heon
2018-01-01
A thermotropic phase boundary between non-ergodic and ergodic relaxor phases is tuned in lead-free Bi1/2Na1/2TiO3-based ceramics through a structural transition driven by compositional modification (usually named as "morphotropic approach"). The substitution of Bi(Ni1/2Ti1/2)O3 for Bi1/2(Na0.78K0.22)1/2TiO3 induces a transition from tetragonal to "metrically" cubic phase and thereby, the ergodic relaxor ferroelectric phase becomes predominant at room temperature. A shift of the transition temperature (denoted as TF-R) in the non-ergodic-to-ergodic phase transition is corroborated via temperature-dependent dielectric permittivity and loss measurements. By monitoring the chemical composition dependence of polarization-electric field and strain-electric field hysteresis loops, it is possible to track the critical concentration of Bi(Ni1/2Ti1/2)O3 where the (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Ni0.5Ti0.5)O3 ceramic undergoes the phase transition around room temperature. At the Bi(Ni0.5Ti0.5)O3 content of x = 0.050, the highest room-temperature electrostrictive coefficient of 0.030 m4/C2 is achieved with no hysteretic characteristic, which can foster the realization of actual electrostrictive devices with high operational efficiency at room temperature.
NASA Astrophysics Data System (ADS)
Ohbayashi, Kazushige; Matsuoka, Takayuki; Kitamura, Kazuaki; Yamada, Hideto; Hishida, Tomoko; Yamazaki, Masato
2017-06-01
We developed a (K,Na)NbO3-based lead-free piezoelectric ceramic with a KTiNbO5 system, (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Fe2O3-MgO (K1- x N x N-NTK-FM). K1- x N x N-NTK-FM ceramic exhibits a very dense microstructure and a coupling coefficient of k p = 0.59, which is almost comparable to that of conventional lead zirconate titanate (PZT). The (K,Na)NbO3-based ceramic has the Γ15 mode for a wide x range. The nanodomains of orthorhombic (K,Na)NbO3 with the M3 mode coexist within the tetragonal Γ15 mode (K,Na)NbO3 matrix. Successive phase transition cannot occur with increasing x. The maximum k p is observed at approximately the minimum x required to generate the M3 mode phase. Unlike the behavior at the morphotropic phase boundary (MPB) in PZT, the characteristics of K1- x N x N-NTK-FM ceramic in this region changed moderately. This gentle phase transition seems to be a relaxor, although the diffuseness degree is not in line with this hypothesis. Furthermore, piezoelectric properties change from “soft” to “hard” upon the M3 mode phase aggregation.
Electrically Induced Strain and Polarization Fatigue in Lead-Free Ceramics
NASA Astrophysics Data System (ADS)
Sommer, Daniel
Piezoelectric ceramics have traditionally been used in commercial applications such as actuators and sensors. By far the most popular piezoceramics currently in use are Pb(Zr,Ti)O3-based (PZT) ceramics. PZT ceramics are able to produce large strain and polarization with the application of an electric field, and this is due to the Morphotropic phase boundary (MPB). A MPB is associated with the boundary between tetragonal and rhombohedral perovskite phases. A disadvantage of PZT ceramics is that they contain ? 60 wt. % of lead. Since lead is toxic, this poses an environmental and health hazard because lead is released into the surroundings during fabrication and disposal. Because of this, there is a push to discover lead-free alternatives that have comparable properties to PZT but none of the health risks. One possibility is Bi 1/2(Na0.8K0.2)1/2Ti0.985 Ta0.015O3 (BNKT-1.5Ta). In addition to comparable electrical properties, any lead-free alternatives must have decent fatigue resistance to be useful for applications. This thesis focuses on the fatigue properties of BNKT-1.5Ta. The composition demonstrates high strain for a given applied electric field. To determine the fatigue resistance of BNKT-1.5Ta, data was gathered on how strain and polarization changed over number of cycles. Furthermore, fatigue tests at different temperatures were performed to ascertain if temperature affected fatigue life. X-ray diffraction (XRD) patterns and dielectric measurements were also collected to further examine any change in crystal structure and relative permittivity, respectively, before and after cycling.
Martínez, Félix L; Hinojosa, Juan; Doménech, Ginés; Fernández-Luque, Francisco J; Zapata, Juan; Ruiz, Ramon; Pardo, Lorena
2013-08-01
In this article, we show that the dielectric constant of lead-free ferroelectric ceramics based on the solid solution (1-x)(Bi(0.5)Na(0.5))TiO(3)-xBaTiO(3), with compositions at or near the morphotropic phase boundary (MPB), can be tuned by a local applied electric field. Two compositions have been studied, one at the MPB, with x = 0.06 (BNBT6), and another one nearer the BNT side of the phase diagram, with x = 0.04 (BNBT4). The tunability of the dielectric constant is measured at microwave frequencies between 100 MHz and 3 GHz by a nonresonant method and simultaneously applying a dc electric field. As expected, the tunability is higher for the composition at the MPB (BNBT6), reaching a maximum value of 60% for an electric field of 900 V/cm, compared with the composition below this boundary (BNBT4), which saturates at 40% for an electric field of 640 V/cm. The high tunability in both cases is attributed to the fine grain and high density of the samples, which have a submicrometer homogeneous grain structure with grain size of the order of a few hundred nanometers. Such properties make these ceramics attractive for microwave tunable devices. Finally, we have tested these ceramics for their application as infrared pyroelectric detectors and we have found that the pyroelectric figure of merit is comparable to traditional lead-containing pyroelectrics.
Effects of Dopant on Depoling Temperature in Modified BiScO3 - PbTiO3
NASA Technical Reports Server (NTRS)
Kowalski, Benjamin; Sehirlioglu, Alp
2014-01-01
In recent years there has been a renewed interest for high temperature piezoelectrics for both terrestrial and aerospace applications. These applications are limited in part by the operating temperature, which is usually taken as one half of the Curie temperature (Tc), and is 200C for one of the most widely used commercial piezoelectrics, Pb(Zr,Ti)O3 (PZT). In an effort to increase Tc, subsequent research into high temperature Bi(BB)O3 PbTiO3 piezoelectrics led to the discovery of the morphotropic phase boundary (MPB) in the high-Tc BiScO3 PbTiO3 (BS-PT) system with a Tc of 460C and a d33 of 460 pmV. The Tc marks the ferroelectric to paraelectric phase transformation and while, in general, a phase transformation leads to thermal depoling in piezoelectrics with low or moderate Tcs, for high Tc piezoelectrics thermally assisted dipole rotation can lead to randomization of domains at temperatures below Tc. It becomes necessary to determine the depoling temperature (Td) which dictates the actual working temperature range. By doping for Sc and Ti the Td can be shifted while maintaining similar electromechanical properties as a function of temperature. The effect of this B-site doping on depoling temperature has been explored through the characterization of microstructure and weakhigh field measurements.
High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications
Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan
2014-01-01
Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222
Dielectric properties of PVDF/0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 composites
NASA Astrophysics Data System (ADS)
Pandey, Bablu K.; Chandra, K. P.; Kolte, Jayant; Kulkarni, A. R.; Jayaswal, S. K.; Prasad, K.
2018-05-01
Ceramic powder of 0.50(Ba0.7Ca0.3)TiO3-0.50Ba(Zr0.2Ti0.8)O3(BCZT50) at morphotropic phase boundary composition was prepared usingsolid-statesynthesis technique followed by extensive high energy ball milling. The crystal symmetry, space group and unit cell dimensions were determined from the X-raydiffraction data of BCZT50 using FullProf software andthe average crystallite size was estimated using Williamson-Hall approach. FTIR spectra confirmed the formation of perovskite type solid solutions. The prepared ceramic powder was utilized to prepare lead-free (1- x)PVDF/xBCZT50 ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15, 0.20, 0.25 were prepared using melt- mixing technique. The distribution of BCZT50 particles in the PVDF matrix were examined using anoptical microscope. Filler concentration dependent real and imaginary parts of dielectric constant data followed exponential growth types of variation. The low value of tanδ(˜10-2) can be advantageous forsensing/detectionapplications.
Saito, Yasuyoshi; Takao, Hisaaki; Tani, Toshihiko; Nonoyama, Tatsuhiko; Takatori, Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya
2004-11-04
Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly <001> textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300 picocoulombs per newton (pC N(-1)), and texturing the material leads to a peak d33 of 416 pC N(-1). The textured material also exhibits temperature-independent field-induced strain characteristics.
NASA Astrophysics Data System (ADS)
Nigon, R.; Raeder, T. M.; Muralt, P.
2017-05-01
The accurate evaluation of ferroelectric thin films operated with interdigitated electrodes is quite a complex task. In this article, we show how to correct the electric field and the capacitance in order to obtain identical polarization and CV loops for all geometrical variants. The simplest model is compared with corrections derived from Schwartz-Christoffel transformations, and with finite element simulations. The correction procedure is experimentally verified, giving almost identical curves for a variety of gaps and electrode widths. It is shown that the measured polarization change corresponds to the average polarization change in the center plane between the electrode fingers, thus at the position where the electric field is most homogeneous with respect to the direction and size. The question of maximal achievable polarization in the various possible textures, and compositional types of polycrystalline lead zirconate titanate thin films is revisited. In the best case, a soft (110) textured thin film with the morphotropic phase boundary composition should yield a value of 0.95Ps, and in the worst case, a rhombohedral (100) textured thin film should deliver a polarization of 0.74Ps.
Lee, Byoung Wan; Oh, Soo Han; Ko, Jae-Hyeon; Li, Xiaobing; Luo, Haosu
2018-06-12
The elastic properties of unpoled and prepoled (Na 1/2 Bi 1/2 )TiO₃- x BaTiO₃ (NBT- x BT) single crystals near the morphotropic phase boundary were investigated as a function of temperature using Brillouin light scattering. The acoustic mode frequency and the related acoustic damping of unpoled NBT- x BT showed very broad minimum and maximum, respectively, consistent with typical relaxor behaviors. The frequency softening of the longitudinal acoustic mode together with the increase in acoustic damping was largest along the <100> direction, indicating that polarization fluctuations were most substantial along this crystallographic direction. The difference in acoustic behaviors between the unpoled NBT- x BTs with x = 0.05 and 0.08 were negligible, which means that the NBT- x BT system exhibits typical relaxor properties over a certain composition range of at least 5~8%. The obtained relaxation time of polar nanoregions in the paraelectric phase showed a gradual slowing-down character without any critical divergent behavior. The prepoling of NBT- x BT along the <100> direction induced drastic changes in both mode frequency and damping at ~110 °C when the poling field was larger than 1.4 kV/mm, corresponding to the depoling process from macroscopic/mesoscopic ferroelectric order to ergodic relaxor state upon heating. Phase coexistence of ferroelectric and relaxor states was observed at the intermediate poling field of 1.4 kV/mm.
NASA Astrophysics Data System (ADS)
Sreelalitha, K.; Thyagarajan, K.
2016-01-01
In the present study, we investigate the structural, morphological and magnetic properties of sol-gel spin-coated PZT thin films on alumina substrate. The morphotropic phase boundary (MPB) of PZT [Pb (Zr1-xTix)03] between the tetragonal and rhombohedral phases occurs at the Zr/Ti ratio of 52/48. At the MPB the physical properties of PZT are of far-reaching importance due to their possible crystalline phases. In this study Pb(Zr0.52Ti0.48)03 sols are prepared at room temperature and at 125 °C. The gels are coated onto alumina substrate using a spin-coating unit as two and three layers. The structural studies using XRD confirm the perovskite phase formation at an annealing temperature of 660 °C for both films. The structural parameter grain size, dislocation density, lattice parameters and strain were dependent on the sol temperature. The SEM morphology of the samples represents well-developed dense grain structure and thickness in micrometer ranges. The VSM analysis shows diamagnetic and ferromagnetic hysteresis loop. The ferromagnetism at low fields in PZT films is confirmed by studying the magnetic properties of powder made of the same gel. The effect of heat treatment on the gel preparation is observed on structural, morphological and magnetic properties of PZT thin films. The ferromagnetism in PZT can be attributed to oxygen vacancies. The squareness ratio of the films shows the application of the films as a high-density recording medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Li, Binzhi; Bowman, Keith
The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90°more » domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less
BiFeO3 epitaxial thin films and devices: past, present and future
NASA Astrophysics Data System (ADS)
Sando, D.; Barthélémy, A.; Bibes, M.
2014-11-01
The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.
Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3
NASA Astrophysics Data System (ADS)
Beanland, Richard; Thomas, Pam A.
2014-05-01
Recent work has indicated that the symmetry of the lead-free piezoelectric perovskite Na0.5Bi0.5TiO3 can be changed from monoclinic to rhombohedral through the application of an electric field, which may have implications for the study and design of piezoelectric materials close to a morphotropic phase boundary. We have examined high-quality, single-crystal Na0.5Bi0.5TiO3 using transmission electron microscopy and have used digital electron diffraction to observe the symmetry of defect-free regions of material on length scales of a few nanometers. This unequivocally demonstrates that the material is rhombohedral with space group R3c on this length scale. We find that a model that allows disordered displacements of Bi atoms from their nominal sites in the R3c symmetry, while retaining this symmetry on average, gives a very significant improvement in fit to simulations. We use conventional transmission electron microscopy to enumerate the different types of defects that are observed in other regions of the crystal and find a complex microstructure of antiphase boundaries, domain walls, and tetragonal platelets. Their interaction leads to the formation of very high densities of nanotwins. We show that these are expected to have a variable monoclinic Cc symmetry that is driven by the constraint of continuity of the crystal across a domain wall.
Domain Wall Evolution in Phase Transforming Oxides
2015-01-14
configumtions under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between -1...configurations under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between...Extensive domain wall motion and deaging resistance in morphotropic 0.55Bi(Ni1/2Ti1/2)O3–0.45PbTiO3 polycrystalline ferroelectrics, Applied Physics Letters
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Khatua, Dipak Kumar; Mahale, Bhoopesh; Ranjan, Rajeev
2018-04-01
Domain switching and lattice strain are known to be important processes contributing to the large electromechanical response observed in perovskite-based piezoelectrics. However, there is a lack of clarity regarding the coupling between the two phenomena, and the factors which influence this coupling. Here, we report a systematic investigation to understand the factors influencing the coupling between domain switching and lattice strain in perovskite piezoelectrics by x-ray diffraction in situ with electric field. In a slight departure from the conventional approach, we employ a strategy which enables x-ray diffraction study in situ with electric field on randomly oriented piezoelectric grains in their unclamped (free) state. Experiments were carried out on two different systems (1 -x ) PbTi O3-(x ) BiSc O3 and (1 -x ) PbTi O3-(x ) PbZr O3 in their rhombohedral phase. We found that lattice strain along the nonpolar 〈100〉 R rhombohedral direction varies linearly with the non-180° domain switching fraction (η111). We introduce a parameter β to characterize the strength of coupling between the two phenomena and show that the coupling is enhanced when the system approaches the morphotropic phase boundary. We also demonstrate that the grain-to-grain interaction nearly doubles this coupling in a dense piezoelectric ceramic.
Slodczyk, Aneta; Colomban, Philippe
2010-01-01
Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1−x)PbMg1/3Nb2/3O3−xPbTiO3) solid solutions arise from the coexistence of different symmetries with long and short scales in the morphotropic phase boundary (MPB) region. This complex physical behavior requires the use of experimental techniques able to probe the local structure at the nanoregion scale. Since both Raman signature and thermal expansion behavior depend on the chemical bond anharmonicity, these techniques are very efficient to detect and then to analyze the subtitle structural modifications with an efficiency comparable to neutron scattering. Using the example of poled (field cooling or room temperature) and unpoled PMN-PT single crystal and textured ceramic, we show how the competition between the different sublattices with competing degrees of freedom, namely the Pb-Pb dominated by the Coulombian interactions and those built of covalent bonded entities (NbO6 and TiO6), determine the short range arrangement and the outstanding ferro- and piezoelectric properties. PMID:28883367
ac conductivity in Gd doped Pb(Zr0.53Ti0.47)O3 ceramics
NASA Astrophysics Data System (ADS)
Portelles, J.; Almodovar, N. S.; Fuentes, J.; Raymond, O.; Heiras, J.; Siqueiros, J. M.
2008-10-01
This study is focused in the conduction processes taking place in 0.6 wt % Gd doped lead zirconate titanate samples PbZr0.53Ti0.47O3:Gd (PZT53/47:Gd) in the vicinity of the morphotropic phase boundary. Doped samples show very large dielectric permittivity with respect to that of undoped ones near the transition temperature. The frequency dependent ac conductivity of PZT53/47:Gd ceramics was studied in the 30-450 °C temperature range. X-ray diffraction analyses indicate the incorporation of Gd atoms to the structure. The changes in the dielectric properties as functions of temperature of the doped samples are taken as additional evidence of the incorporation of Gd into the crystal structure. Gd acts as donor center promoting extrinsic n-type conduction. The ac conductivity behavior obeys Jonscher universal relation in the 100 Hz-1 MHz frequency range for temperatures between 30 and 300 °C. The measured conductivity values for Gd doped PZT53/47 are higher than those of pure PZT53/47. According to the correlated barrier hopping model, the preponderant conduction mechanism in the frequency-temperature response was recognized as small polarons hopping mechanism.
High Temperature Ferroelectrics for Actuators: Recent Developments and Challenges
NASA Technical Reports Server (NTRS)
Sehirlioglu, Alp; Kowalski, Benjamin
2014-01-01
A variety of piezoelectric applications have been driving the research in development of new high temperature ferroelectrics; ranging from broader markets such as fuel and gas modulation and deep well oil drilling to very specific applications such as thermoacoustic engines and ultrasonic drilling on the surface of Venus. The focus has been mostly on increasing the Curie temperature. However, greater challenges for high temperature ferroelectrics limit the operating temperature to levels much below the Curie temperature. These include enhanced loss tangent and dc conductivity at high fields as well as depoling due to thermally activated domain rotation. The initial work by Eitel et al. [Jpn. J. Appl. Phys., 40 [10, Part 1] 59996002 (2001)] increased interest in investigation of Bismuth containing perovskites in solid solution with lead titanate. Issues that arise vary from solubility limits to increased tetragonality; the former one prohibits processing of morphotropic phase boundary, while the latter one impedes thorough poling of the polycrystalline ceramics. This talk will summarize recent advances in development of high temperature piezoelectrics and provide information about challenges encountered as well as the approaches taken to improve the high temperature behavior of ferroelectrics with a focus on applications that employ the converse piezoelectric effect.
Preparation and properties of sol-gel derived PZT thin films for decoupling capacitor applications
NASA Astrophysics Data System (ADS)
Schwartz, R. W.; Dimos, D.; Lockwood, S. J.; Torres, V. M.
The use of ceramic thin films as decoupling capacitors offers the possibility of capacitor integration within the integrated circuit (IC) package and, potentially, directly onto the IC itself. Since these configurations minimize series inductance, higher operational speeds are possible. In the present study, the authors have investigated the dielectric and leakage characteristics of sol-gel PZT films. For compositions near the morphotropic phase boundary, dielectric constants of 1000, and loss tangents of about 0.02, are observed. The current-voltage behavior of the capacitors is characterized by a non-linear response, and significant asymmetry in both the leakage and breakdown characteristics as a function of bias sign is observed. Breakdown fields for PZT 53/47 thin films are typically approximately 800 kV/cm at 25 C. The authors have also studied the effects of La and Nb dopant additions and alternate firing strategies on film leakage characteristics. Donor doping at 2 - 5 mol % lowers leakage currents by a factor of 10(exp 3). For films prepared by a multilayering approach, firing each layer to crystallization results in leakage currents that are a factor of 10(exp 2) lower than films prepared by the standard process.
Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu
2013-01-01
Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Rama K.; Zhang, Shujun; Okatan, Mahmut Baris
Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO 3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond amore » threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior.« less
Vasudevan, Rama K.; Zhang, Shujun; Okatan, Mahmut Baris; ...
2015-08-19
Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO 3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond amore » threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior.« less
NASA Astrophysics Data System (ADS)
Kiguchi, Takanori; Fan, Cangyu; Shiraishi, Takahisa; Konno, Toyohiko J.
2017-10-01
The singularity of the structure in (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) (x = 0-50 mol %) epitaxial thin films of 100 nm thickness was investigated from the viewpoint of the localized residual strain in the nanoscale. The films were deposited on SrTiO3 (STO) (001) single-crystal substrates by chemical solution deposition (CSD) using metallo-organic decomposition (MOD) solutions. X-ray and electron diffraction patterns revealed that PMN-xPT thin films included a single phase of the perovskite-type structure with the cube-on-cube orientation relationship between PMN-xPT and STO: (001)Film ∥ (001)Sub, [100]Film ∥ [100]Sub. X-ray reciprocal space maps showed an in-plane tensile strain in all the compositional ranges considered. Unit cells in the films were strained from the rhombohedral (pseudocubic) (R) phase to a lower symmetry crystal system, the monoclinic (MB) phase. The morphotropic phase boundary (MPB) that split the R and tetragonal (T) phases was observed at x = 30-35 for bulk crystals of PMN-xPT, whereas the strain suppressed the transformation from the R phase to the T phase in the films up to x = 50. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis and its related local strain analysis revealed that all of the films have a bilayer morphology. The nanoscale strained layer formed only above the film/substrate semi-coherent interface. The misfit dislocations generated the localized and periodic strain fields deformed the unit cells between the dislocation cores from the R to an another type of the monoclinic (MA) phase. Thus, the singular and localized residual strains in the PMN-xPT/STO (001) epitaxial thin films affect the phase stability around the MPB composition and result in the MPB shift phenomena.
Processing and electrical properties of gallium-substituted lead zirconate titanate ceramics
NASA Astrophysics Data System (ADS)
Hajra, Sugato; Sharma, Pulkit; Sahoo, Sushrisangita; Rout, P. K.; Choudhary, R. N. P.
2017-12-01
In the present paper, the effect of gallium (Ga) substitution on structural, microstructural, electrical conductivity of Pb(ZrTi)O3 (PZT) in the morphotropic phase boundary (MPB) region (i.e., Pb0.96Ga0.04(Zr0.48Ti0.52)0.99O3 (PGaZT-4)) was investigated. Increased grain density increases the resistivity of the Ga-modified PZT system. Preliminary structural analysis using X-ray diffraction pattern and data showed the existence of two phases [major tetragonal (T) and minor monoclinic (M)]. Field emission scanning electron micrograph (FESEM) showed the distribution of spherical as well as platelet type grains with small pores. The behavior of dielectric constant with temperature of PGaZT-4 exhibited the suppression of the ferroelectric phase transition [i.e., disappearance of Curie temperature ( T c)]. The complex impedance spectroscopy (CIS) technique helped to investigate the impedance parameters of PGaZT-4 in MPB region in a wide range of temperature (250-500 °C) and frequency (1-1000 kHz) region. The impedance parameters of the material are found to be strongly dependent on frequency of AC electric field and temperature. The substitution of gallium at the Pb site of PZT generally enhances the dielectric constant and decreases loss tangent. The AC conductivity vs frequency ( f = ω2 π) in the region of dispersion follows the universal response of Jonscher's equation. Enhanced resistive characteristics were observed for Ga-substituted PZT in comparison to the pure PZT, which was well ensured from the studies of electrical parameters, such as impedance and AC conductivity.
Revathi, S; Kennedy, L John; Basha, S K Khadheer; Padmanabhan, R
2018-07-01
Nanostructured PbZr0.52Ti0.48O3 (PZT) powder was synthesized at 500 °C-800 °C using sol-gel route. X-ray diffraction and Rietveld analysis confirmed the formation of perovskite structure. The sample heat treated at 800 °C alone showed the formation of morphotropic phase boundary with coexistence of tetragonal and rhombohedral phase. The PZT powder and PVDF were used in 0-3 connectivity to form the PZT/PVDF composite film using solvent casting method. The composite films containing 10%, 50%, 70% and 80% volume fraction of PZT in PVDF were fabricated. The XRD spectra validated that the PZT structure remains unaltered in the composites and was not affected by the presence of PVDF. The scanning electron microscopy images show good degree of dispersion of PZT in PVDF matrix and the formation of pores at higher PZT loading. The quantitative analysis of elements and their composition were confirmed from energy dispersive X-ray analysis. The optical band gap of the PVDF film is 3.3 eV and the band gap decreased with increase in volume fraction of PZT fillers. The FTIR spectra showed the bands corresponding to different phases of PVDF (α, β, γ) and perovskite phase of PZT. The thermogravimetric analysis showed that PZT/PVDF composite films showed better thermal stability than the pure PVDF film and hydrophobicity. The dielectric constant was measured at frequency ranging from 1 Hz to 6 MHz and for temperature ranging from room temperature to 150 °C. The composite with 50% PZT filler loading shows the maximum dielectric constant at the studied frequency and temperature range with flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Eva-Maria; Schmitt, Ljubomira Ana; Hinterstein, Manuel
2014-05-28
Structure and phase transitions of (1-y)((1-x)Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3)-yK 0.5Na 0.5NbO 3 (x; y) piezoceramics (0.1 ≤ x ≤ 0.4; 0 ≤ y ≤ 0.05) were investigated by transmission electron microscopy, neutron diffraction, temperature-dependent x-ray diffraction, and Raman spectroscopy. The local crystallographic structure at room temperature (RT) does not change by adding K 0.5Na 0.5NbO 3 to Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3 for x = 0.2 and 0.4. The average crystal structure and microstructure on the other hand develop from mainly long-range polar order with ferroelectric domains to short-range order with polar nanoregions displaying amore » more pronounced relaxor character. The (0.1; 0) and (0.1; 0.02) compositions exhibit monoclinic Cc space group symmetry, which transform into Cc + P4bm at 185 and 130 °C, respectively. This high temperature phase is stable at RT for the morphotropic phase boundary compositions of (0.1; 0.05) and all compositions with x = 0.2. For the compositions of (0.1; 0) and (0.1; 0.02), local structural changes on heating are evidenced by Raman; for all other compositions, changes in the long-range average crystal structure were observed.« less
NASA Astrophysics Data System (ADS)
Vaxelaire, N.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Alvarez-Murga, M.; Vaughan, G. B. M.; Defay, E.; Gergaud, P.
2016-09-01
A direct quantification of a structural in-depth composition in the lead zirconate titanate Pb(Zr,Ti)O3 thin films of morphotropic composition has been conducted using the newly available X-ray nano-pencil beam (i.e., beam size of 100 nm × 1 μm) diffraction approach. We tested two samples with different Zr/Ti chemical gradients. Here, we demonstrate the presence of a significant microstructural gradient between the rhombohedral and tetragonal phases through PbZrxTi1-xO3 (PZT) films with a 100 nm in-depth resolution. The phase gradient extends over around 350 nm, and it is repeated through the PZT film three times, which corresponds to the number of thermal annealings. Moreover, this microstructural gradient is in agreement with the Zr/Ti chemical gradient observed by the secondary ion mass spectroscopy (SIMS). Indeed, the quantity of tetragonal phases rises in the Ti-rich zones as revealed by SIMS, and the quantity of rhombohedral phases rises in the Zr-rich zones. We also demonstrated a huge difference in the in-depth phase variation between the two tested samples. The gradient free sample still contains 4.7% of phase variation through the film and the amplified gradient contains 9.6% of phase variation through the film. Knowing that the gradient free sample shows better electric and piezoelectric coefficients, one can draw a correlation between the chemical composition, crystallographic homogeneity, and electro-mechanical properties of the film. The more close the film is to the morphotropic composition and the more it is crystallographically homogeneous, the higher the piezoelectric coefficients of the PZT are. Finally, the adequate knowledge of phase variation and its relation to the fabrication technique are crucial for the enhancement of the PZT electro-mechanical properties. Our methodology and findings open up new perspectives in establishing a relevant quantitative feedback to reach an ultimate electro-mechanical coupling in the sol-gel PZT thin films.
NASA Astrophysics Data System (ADS)
Kanuru, Sreenadha Rao; Baskar, K.; Dhanasekaran, R.; Kumar, Binay
2016-05-01
In this paper, one of the important, eco-friendly polycrystalline material, (1-x)(Na0.5Bi0.5)TiO3 (NBT) - xBaTiO3 (BT) of different compositions (x=0.07, 0.06 and 0.05 wt%) around the morphotropic phase boundary (MPB) were synthesized by solid state reaction technique. And the single crystals with 13×7×7 mm3, 12×12×7 mm3 and 10×7×4 mm3 dimensions were grown by self flux method. The morphology, crystal structure and unit-cell parameters have been studied and the monoclinic phase has been identified for 0.07 wt% of BT. Higher BT concentration changes the crystal habit and the mechanism has been studied clearly. Raman spectroscopy at room-temperature confirms the presence of functional groups. The quality of the as grown single crystals was examined by high resolution x-ray diffraction analysis. The dielectric properties of the as grown crystals were investigated in the frequency range of 20 Hz-2 MHz from room temperature to 450 °C. The broad dielectric peak and frequency dispersion demonstrates the relaxor behavior of grown crystals. The dielectric constant (εr), transition temperature (Tm), and depolarization temperature (Td) of the grown crystals are found to be comparatively good. The diffusive factor (γ) from Curie-Weiss law confirms the as grown NBT-BT single crystals are relaxor in nature.
In situ 2D diffraction as a tool to characterize ferroelectric and piezoelectric thin films
NASA Astrophysics Data System (ADS)
Khamidy, N. I.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Vaxelaire, N.
2017-08-01
In this paper the application of 2D x-ray diffraction (XRD2) as a technique to characterize in situ during electrical cycling the properties of a ferroelectric and piezoelectric thin film is discussed. XRD2 is one type of XRD on which a 2D detector is used instead of a point detector. This technique enables simultaneous recording of many sample information in a much shorter time compared to conventional XRD. The discussion is focused especially on the data processing technique of the huge data acquired. The methodology to calculate an effective piezoelectric coefficient, analyze the phase and texture, and estimate the domain size and shape is described in this paper. This methodology is then applied to a lead zirconate titanate (PZT) thin film at the morphotropic phase boundary (MPB) composition (i.e. Pb[Zr0.52Ti0.48]O3) with a preferred orientation of (1 0 0). The in situ XRD2 characterization was conducted in the European synchrotron radiation facility (ESRF) in Grenoble, France. Since a high-energy beam with vertical resolution as small as 100 nm was used, a cross-sectional scan of the sample was performed over the entire thickness of the film. From these experimental results, a better understanding on the piezoelectricity phenomena in PZT thin film at MPB composition were achieved, providing original feedback between the elaboration processes and functional properties of the film.
Synthesis and piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3-xSr2ZrTiO6 ceramics
NASA Astrophysics Data System (ADS)
Onishi, Ryo; Ogawa, Hirotaka; Iida, Daiki; Kan, Akinori
2017-10-01
The effects of Sr2ZrTiO6 (SZT) addition on the piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT)-xSZT ceramics were characterized in this study. The X-ray powder diffraction (XRPD) profiles and Raman spectra of the ceramics in the composition range of 0-0.02 implies the presence of morphotropic phase boundary (MPB) which consists of the rhombohedral and tetragonal phases. Moreover, the temperature dependence of dielectric loss indicated a presence of the ferroelectric-relaxor transition temperature (T F-R) of around 75 °C for x = 0.005 and the temperature dependence shifted to a lower temperature at x = 0.01. The temperature dependence of the P-E hysteresis loop of the ceramics at the compositions of x = 0.005-0.02 showed pinched hysteresis loops above T F-R. Regarding the piezoelectric constant (d 33), it was increased by SZT addition in the MPB region (x = 0-0.01) and the highest d 33 of 202 pC/N was obtained at the composition of x = 0.0025. The S-E unipolar loop was also evaluated, the strain of the ceramic increased up to x = 0.02; and the highest d33* = 436 pm/V was obtained at the composition of x = 0.02.
Comparison of the Thermal Degradation of Heavily Nb-Doped and Normal PZT Thin Films.
Yang, Jeong-Suong; Kang, YunSung; Kang, Inyoung; Lim, SeungMo; Shin, Seung-Joo; Lee, JungWon; Hur, Kang Heon
2017-03-01
The degradation of niobium-doped lead zirconate titanate (PZT) and two types of PZT thin films were investigated. Undoped PZT, two-step PZT, and heavily Nb-doped PZT (PNZT) around the morphotropic phase boundary were in situ deposited under optimum condition by RF-magnetron sputtering. All 2- [Formula: see text]-thick films had dense perovskite columnar grain structure and self-polarized (100) dominant orientation. PZT thin films were deposited on Pt/TiO x bottom electrode on Si wafer, and PNZT thin film was on Ir/TiW electrode with the help of orientation control. Sputtered PZT films formed on microelectromechanical system (MEMS) gyroscope and the degradation rates were compared at different temperatures. PNZT showed the best resistance to the thermal degradation, followed by two-step PZT. To clarify the effect of oxygen vacancies on the degradation of the film at high temperature, photoluminescence measurement was conducted, which confirmed that oxygen vacancy rate was the lowest in heavy PNZT. Nb-doping PZT thin films suppressed the oxygen deficit and made high imprint with self-polarization. This defect distribution and high internal field allowed PNZT thin film to make the piezoelectric sensors more stable and reliable at high temperature, such as reflow process of MEMS packaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Alikin, Denis; Turygin, Anton; Kholkin, Andrei; Shur, Vladimir
2017-01-01
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT). In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO3 (BFO) and (Ka0.5Na0.5)NbO3 (KNN). This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure–property relationship in these technologically important material families. PMID:28772408
Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.
2013-02-15
Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less
Effect of off-center ion substitution in morphotropic lead zirconate titanate composition
NASA Astrophysics Data System (ADS)
Bhattarai, Mohan K.; Pavunny, Shojan P.; Instan, Alvaro A.; Scott, James F.; Katiyar, Ram S.
2017-05-01
A detailed study of the effect of off-center donor ion (Sc3+) substitution on structural, microstructural, optical, dielectric, electrical, and ferroelectric properties of morphotropic composition of lead zirconate titanate electroceramics with the stoichiometric formula Pb0.85Sc0.10Zr0.53Ti0.47O3 (PSZT) and synthesized using a high energy solid-state reaction technique was carried out. Powder x-ray diffractometry was used to identify the stabilized tetragonal phase (space group P 4 m m ) with considerably reduced tetragonal strain, c /a = 1.005. An analysis of the thermal dependence of the Raman results indicated a smooth displacive (ferroelectric-paraelectric) phase transition as revealed by the observed disappearance of the soft modes A1 (1TO) and A1 (2TO) above 460 K. The dielectric response of Pt/PSZT/Pt metal-ferroelectric-metal capacitors was probed over a wide range of thermal excursions (85-600 K) and ac signal frequencies (102-106 Hz). Thermally activated dynamic and static conduction processes indicate hopping conduction mechanism ( Ea c t ≤ 0.015 eV) and the formation of small polarons caused by the electron and/or hole-lattice (phonon) interaction ( Ea c t ≥ 0.1 eV) at low (100-300 K) and high temperatures (300-600 K), respectively. The reduction in remnant polarization obtained is in good agreement with the largely reduced tetragonal strain observed in this sample, ( Pr ∝ √{c /a -1 } ). DC conduction is dominated by Poole-Frenkel mechanism that assumes a Coulombic attraction between detrapped electrons and positively charged stationary defect species in the polycrystalline matrix.
Electrical Properties of Barium and Zirconium Modified NBT Ferroelectric Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, K. Sambasiva; Tilak, B.; Swathi, A.
2011-11-22
Recently a new wave of interest has risen on relaxor ferroelectrics with complex perovskite structure due to their wide use in fabrication of multilayer ceramic capacitors, electrostrictive actuators, and electromechanical transducers. The polycrystalline 0.93(Bi{sub 0.5}Na{sub 0.5})Ba{sub 0.07}Z{sub 0.04}T{sub 0.96}O{sub 3}(0.07BNBZT) ceramic material, which is in the vicinity of the morphotropic phase boundary (MPB) has been prepared by using high temperature solid state reaction method. The tolerance factor has been estimated and found to be 0.815. XRD analysis revealed a rhombohedral perovskite type structure. SEM micrographs showed highly dense grains with rectangular shape. The average grain size is found to bemore » 1.51{mu}m. Dielectric studies in the material ha indicated relaxor behaviour with diffuse phase transition. High value of {epsilon}{sub m}>1958 is found at 1kHz, Tm (phase transition temperature) 335 deg. C, The diffuseness parameter was established to be 1.60 revealing the relaxor behaviour. Further, to confirm the relaxor behaviour in the material, Vogel-Fulcher (V-F) relation has been used. Estimated V-F parameters are found to be T{sub f} = 138 deg. C, E{sub a} = 0.080 eV and {nu}{sub o} = 2.32x10{sup 8} Hz. Cole-Cole analysis has shown a non-Debye type relaxation in the system. Conductivity studies in the material obeyed the Jonscher's power law in frequency range of (45Hz-5MHz) and temperature range of (35 deg. C - 600 deg. C). The electric conduction in the system may be due to hopping/mobility/ transportation of charge carriers.« less
NASA Astrophysics Data System (ADS)
Shieh, J.; Wu, K. C.; Chen, C. S.
2007-04-01
The polarization switching characteristics of lead-free a(Bi 1/2Na 1/2)TiO 3-bBaTiO 3-c(Bi 1/2K 1/2)TiO 3 (abbreviated as BNBK 100a/100b/100c) ferroelectric ceramics are investigated. This is achieved through examining their polarization and strain hystereses inside and outside the morphotropic phase boundary (MPB). The total induced electrostrain (ɛ 33,total) and apparent piezoelectric charge coefficient (d 33) first increase dramatically and then decrease gradually as the BNBK composition moves from the tetragonal phase to the MPB and then to the rhombohedral phase. The measured polarization hystereses indicate that the BNBK compositions situated near the rhombohedral side of the MPB typically possess higher coercive field (E c) and remanent polarization (P r), while the compositions situated near the tetragonal side of the MPB possess higher apparent permittivity. Adverse effects on the ferroelectric properties are observed when BNBK is doped with donor dopants such as La and Nb. On the contrary, intricate hysteresis behaviors are observed when acceptor dopant Mn is introduced into BNBK. Under an alternating electric field of +/-5.0 MVm -1, BNBK 85.4/2.6/12, a composition well within the MPB, exhibits an ɛ 33,total of ~0.14%, an apparent d 33 of 295 pCN -1, an E c of 2.5 MVm -1 and a Pr of 22.5 μCcm -2. These notable ferroelectric property values suggest a candidate material for lead-free actuator applications. The present study provides a systematic set of hysteresis measurements which can be used to characterize the switching behaviors of BNBK-based lead-free ferroelectrics.
NASA Astrophysics Data System (ADS)
Tennakoon, Sumudu P.
Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K - 750 K.
Electric field dependent local structure of (KxNa1-x) 0.5B i0.5Ti O3
NASA Astrophysics Data System (ADS)
Goetzee-Barral, A. J.; Usher, T.-M.; Stevenson, T. J.; Jones, J. L.; Levin, I.; Brown, A. P.; Bell, A. J.
2017-07-01
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (KxNa1-x) 0.5B i0.5Ti O3 , as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x =0.15 , 0.18 and at the morphotropic phase boundary composition x =0.20 . X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks in the 3-4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from <110 > to <112 > -type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x . Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. The combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.; ...
2017-07-31
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Jia, Tingting; Fan, Ziran; Yao, Junxiang; Liu, Cong; Li, Yuhao; Yu, Junxi; Fu, Bi; Zhao, Hongyang; Osada, Minoru; Esfahani, Ehsan Nasr; Yang, Yaodong; Wang, Yuanxu; Li, Jiang-Yu; Kimura, Hideo; Cheng, Zhenxiang
2018-06-20
Single-phase materials that combine electric polarization and magnetization are promising for applications in multifunctional sensors, information storage, spintronic devices, etc. Following the idea of a percolating network of magnetic ions (e.g., Fe) with strong superexchange interactions within a structural scaffold with a polar lattice, a solid solution thin film with perovskite structure at a morphotropic phase boundary with a high level of Fe atoms on the B site of perovskite structure is deposited to combine both ferroelectric and ferromagnetic ordering at room temperature with magnetoelectric coupling. In this work, a 0.85BiTi 0.1 Fe 0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film has been deposited by pulsed laser deposition (PLD). Both the ferroelectricity and the magnetism were characterized at room temperature. Large polarization and a large piezoelectric effective coefficient d 33 were obtained. Multifield coupling of the thin film has been characterized by scanning force microscopy. Ferroelectric domains and magnetic domains could be switched by magnetic field ( H), electric field ( E), mechanical force ( F), and, indicating that complex cross-coupling exists among the electric polarization, magnetic ordering and elastic deformation in 0.85BiTi 0.1 F e0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film at room temperature. This work also shows the possibility of writing information with electric field, magnetic field, and mechanical force and then reading data by magnetic field. We expect that this work will benefit information applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkar, Hitesh; Kumar, Ashok, E-mail: ashok553@nplindia.org
2016-05-23
Choice of proper dopants at A or B-site of ABO{sub 3} perovskite structure can modify the morphotropic phase boundary (MPB), and hence functional properties of polar systems. The chemical nature of donor or acceptor will significantly influence the fundamental properties. Lead-free ferroelectrics have vast potential to replace the lead-based ceramics. The (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}Ba{sub x}TiO{sub 3} (NBT-BT) (at x=0.08) near MPB with small substitution of trivalent cations (Al{sup 3+}) has been synthesized by solid state reaction route. The aim to choose the trivalent cations (Al{sup 3+}) was its relatively smaller radii than that of Bi{sup 3+} cations to developmore » the antipolar phases in the ferroelectric ceramic. Structural, morphological and elemental compositional analyses were studied by X-ray diffraction (XRD), Secondary electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDAX), respectively. Ferroelectric studies were carried out on various compositions of (Na{sub 0.46}Bi{sub 0.46-x}Al{sub x}Ba{sub 0.08})TiO{sub 3} (NBAT-BT) (x=0, 0.05, 0.07, 0.10) electroceramics. It was observed that with increase in concentration of Al the ferroelectricity state changes from soft to hard. Temperature dependent dielectric spectroscopy shows broad dielectric dispersion. The Al doping diminishes the relaxor behavior of NBT-BT ceramics. Impedance spectroscopy shows that electrical resistivity and relaxation frequency decreases with increase in Al-concentration. Modulus spectra indicate that Al significantly change the bulk capacitance of NBT-BT.« less
NASA Astrophysics Data System (ADS)
Liu, Gang; Jiang, Wentao; Liu, Kaihua; Liu, Xiaokui; Song, Chunlin; Yan, Yan; Jin, Li
2017-08-01
The effect of K2AlNbO5 compound acting as both donor and accepter on the phase, microstructures and electrical properties of the 0.9362(Bi0.5Na0.5)TiO3-0.0637BaTiO3-0.02(Bi0.5K0.5)TiO3 [(1- x)(0.9163BNT-0.0637BT-0.02BKT)- x(K2AlNbO5)] (BNKBT-1000 xKAN) ternary lead-free piezoelectric ceramics was systematically investigated. When doping content of K2AlNbO5 was varied from 0 to 0.009, the BNKBT-1000 xKAN ceramics showed a single perovskite structure, and the phase structure transferred from a rhombohedral-tetragonal coexistent morphotropic phase boundaries zone to a tetragonal zone. The x-ray photoelectron spectroscopy analysis indicated that the chemical valence of the Nb and Al element are 5+ and 3+, respectively. Strong relaxor characteristics were revealed by the temperature-dependent dielectric properties of the ceramics. Typical square polarization-electric field ( P- E) hysteresis loops were observed in the samples with doping content lower than 0.005. However, with further increasing the doping content ( x = 0.007 and 0.009), round P- E hysteresis loops were observed due to the high conductivity of these samples. Moreover, when the doping content was less than 0.005, the ceramic samples exhibited good piezoelectric properties. Specially, when the doping content was 0.001, the piezoelectric constant d 33 and electromechanical coupling coefficient k p of the sample were 197 pC/N and 22%, respectively. However, further addition would deteriorate both the dielectric and piezoelectric properties.
NASA Astrophysics Data System (ADS)
Quan, Ngo Duc; Hung, Vu Ngoc; Dung, Dang Duc
2017-10-01
Environmentally friendly lead-free Bi0.5(Na0.80K0.20)0.5(Ti1- x Zr x )O3 (BNKT- xZr) ferroelectric films with Zr4+ doping concentration x in the range from 0 to 0.05 have been grown on Pt/Ti/SiO2/Si substrates via chemical solution deposition. The effects of Zr4+ substitution on the crystal structure and ferroelectric properties of the films were investigated. X-ray diffraction data revealed that the BNKT- xZr films possessed rhombohedral and tetragonal symmetries at a morphotropic phase boundary when a small amount of Zr4+ doping was added. P- E hysteresis loops typical of ferroelectric materials were observed for all compositions. Zr4+ substituted for Ti4+ in the BNKT- xZr films and remarkably enhanced the ferroelectric properties. The remanent ( P r) and maximum polarization ( P m) reached their highest values of 14.0 μC/cm2 and 35.7 μC/cm2, respectively, at x = 0.02. These values, which are equivalent to the highest P r and P m values in previous reports on lead-free films with different compositions, compare well with those of Pb(Zr,Ti)O3 (PZT) films. Therefore, BNKT- xZr films with optimal Zr4+ concentration could substitute for PZT films in lead-free piezo-microelectromechanical systems (MEMS) devices.
Structure-property relationships of multiferroic materials: A nano perspective
NASA Astrophysics Data System (ADS)
Bai, Feiming
The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT concentration, an evolution of PNR→PND (polar nano domains)→ micron-domains→macro-domains was found. In addition, a domain hierarchy was observed for the compositions near a morphotropic phase boundary (MPB) on various length scales ranging from nanometer to millimeter. The existence of a domain hierarchy down to the nm scale fulfills the requirement of low domain wall energy, which is necessary for polarization rotation. Thus, upon applying an E-field along <001> direction(s) in a composition near the MPB, low symmetry phase transitions (monoclinic or orthorhombic) can easily be induced. For PMN-30%PT, a complete E-T (electric field vs temperature) diagram has been established. As for Fe-x at.% Ga alloys, short-range Ga-pairs serve as both magnetic and magnetoelastic defects, coupling magnetic domains with bulk elastic strain, and contributing to enhanced magnetostriction. Such short-range ordering was evidenced by a clear 2theta peak broadening on neutron scattering profiles near A2-DO3 phase boundary. In addition, a strong degree of preferred [100] orientation was found in the magnetic domains of Fe-12 at.%Ga and Fe-20 at.%Ga alloys with the A2 or A2+DO3 structures, which clearly indicates a deviation from cubic symmetry; however, no domain alignment was found in Fe-25 at.%Ga with the DO3 structure. Furthermore, an increasing degree of domain fluctuations was found during magnetization rotation, which may be related to short-range Ga-pairs cluster with a large local anisotropy constant, due to a lower-symmetry structure.
Lead Barium Potassium Sodium Niobate Ceramics for Piezoelectric Applications
NASA Astrophysics Data System (ADS)
Sambasiva Rao, K.; Vallisnath, N.; Prasad, T. N. V. K. V.; Ch. Varada Rajulu, K.; Tilak, B.; Lee, Joon Hyung
This paper reports a systematic study of tungsten bronze morphotropic phase boundary (MPB) system Pb2-2X-3Y/2Ba2xREyK1-xNaxNb5O15, where, x = 0.20, 0.25, 0.30, RE = Pr and Bi and y = 0.05 and their structure, microstructure, hysteresis, dielectric, piezoelectric, and Pyroelectric properties. Enhanced piezoelectric constants kp, kt, k31, d31, d33, g31, g33, S11 E as 30.8%, 47.6%, 18.9%, 57 × 10-12 C/N, 159 × 10-12 C/N, 6.89 × 10-3 mV/N, 19.23 × 10-3 mV/N, and 13.88 × 10-12 m2/N respectively are observed in the composition for which y = 0, and x = 0.30, which is above MPB. Also, a change in thickness, 0.0159 μm has been developed for a thickness of the sample 1.2 mm, d33 = 159 × 10-12 C/N and for an applied voltage of 100 V. The same material produces a length extension, 0.0475 μm for d31 = 57 × 10-12 C/N, l = 10 mm, t = 1.2 mm, for an applied voltage of 100 V. Thus the material may be useful for a piezoelectric transducer. Enhanced piezoelectric coefficients, d31 = 96 × 10-12 C/N and g33 = 12.95 × 10-3 mV/N are also observed in the composition for which RE = Pr and x = 0.25.
Dependence of the Thermal Conductivity of BiFeO3 Thin Films on Polarization and Structure
NASA Astrophysics Data System (ADS)
Ning, Shuai; Huberman, Samuel C.; Zhang, Chen; Zhang, Zhengjun; Chen, Gang; Ross, Caroline A.
2017-11-01
The role of the ferroelectric polarization state and crystal structure in determining the room-temperature thermal conductivity of epitaxial BiFeO3 thin films is investigated. The ferroelectric domain configuration is varied by changing the oxygen partial pressure during growth, as well as by polarizing the samples by the application of an in situ electric field during the thermal conductivity measurement. However, little or no dependence of thermal conductivity on the ferroelectric domain structure is observed. In contrast, the thermal conductivity significantly depends on the morphotropic phase structure, being about 2 /3 as large in tetragonal-like compared to rhombohedral-like BiFeO3 film. The substantial structural dependence of thermal conductivity found here may provide a route to reversible manipulation of thermal properties.
NASA Astrophysics Data System (ADS)
Politova, E. D.; Golubko, N. V.; Kaleva, G. M.; Mosunov, A. V.; Sadovskaya, N. V.; Bel'kova, D. A.; Stefanovich, S. Yu.
2018-03-01
The phase formation, specific features, and the dielectric properties of the ceramics of compositions from the region of morphotropic interface in the (Na0.5Bi0.5)TiO3-BaTiO3 system modified by Bi(Mg0.5Ti0.5)O3 and also low-melting additions KCl, NaCl-LiF, CuO, and MnO2 that favor the control of the stoichiometry and the properties of the ceramics have been studied. The ceramics are characterized by ferroelectric phase transitions that are observed as jumps at temperatures near 400 K and maxima at T m 600 K in the temperature dependences of the dielectric permittivity. The phase transitions at 400 K demonstrate the relaxor behavior indicating the existence of polar domains in the nonpolar matrix. An increase in the content of Bi(Mg0.5Ti0.5)O3 favor a decrease in the electrical conductivity and dielectric losses of the samples, and the relative dielectric permittivity at room temperature ɛrt is retained quite high, achieving the highest values ɛrt = 1080-1350 in the ceramics modified with KCl.
A modified barbell-shaped PNN-PZT-PIN piezoelectric ceramic energy harvester
NASA Astrophysics Data System (ADS)
Gao, Xiangyu; Wu, Jingen; Yu, Yang; Dong, Shuxiang
2017-11-01
The quaternary system of relaxor-ferroelectric based Pb(Ni1/3Nb2/3)O3-Pb(ZrxTi1-x)O3-Pb(In0.5Nb0.5)O3 (PNN-PZT-PIN) piezoelectric ceramic at the morphotropic phase boundary was investigated via the solid reaction method. The optimized ceramic with excellent electric properties of ɛr = 8084, d33 = 977 pC/N, kp = 0.61, and Ec = 3.0 kV/cm was fabricated into d33-mode discs with separated surface electrodes, which were arranged in a series connection and, then as a piezo-stack, assembled into a barbell-shaped energy harvester that could bear a strong mechanical vibration. It is found that under a vibration mass-induced bending moment, the energy harvester produces an open circuit voltage of 26.4 Vp-p at the acceleration of 2.5 g at a load of 1.56 MΩ, which is two times higher in comparison to one without surface electrode separation. Its power output is 30 μW at the acceleration of 1 g and 104 μW at 2.5 g, which are even six times higher than that of a previously reported barbell-shaped energy harvester at room-temperature with the same acceleration. The enhanced power output can be attributed to (i) the excellent piezoelectric response of PNN-PZT-PIN ceramic and (ii) harvesting positive and negative charges from the separated surface electrodes other than a full surface electrode on piezoelectric discs under bending moment. Furthermore, the practical test was performed within a car engine, which shows that the PNN-PZT-PIN piezoelectric ceramic is a promising candidate for vibration energy harvesting.
Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei
2012-12-01
In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.
NASA Astrophysics Data System (ADS)
de la Flor, G.; Malcherek, T.; Gorfman, S.; Mihailova, B.
2017-12-01
Hard-mode Raman spectroscopy was applied to analyze the temperature-induced transformation processes in perovskite-type (ABO3) single crystals of (1 -x ) Na0.5Bi0.5TiO3-x BaTiO3 (NBT-x BT ) in a wide temperature range between 100 and 1010 K and a composition range of x =0 -0.074 across the morphotropic phase boundary (MPB). The results show abundant uncoupled ferroic structural distortions even at 1010 K and coexistence of two types of mesoscopic-scale ferroic order at lower temperatures. Octahedral BO6 tilting is typical of pure NBT, while the incorporation of A-site Ba2 + suppresses the tilting and promotes the off centering of BO6 octahedra. The temperature evolution of the phonon modes clearly reveals the two macroscopically observed critical temperatures Tm and Td as well as, in the case of x ≠0 , two characteristic temperatures T' and T'' preceding the Tm and Td, respectively, which are attributed to mesoscopic-scale antiferroelectric and ferroelectric coupling processes within the A-site-cation subsystem. At x
Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics
NASA Astrophysics Data System (ADS)
Kawamura, Yasushi; Ohuchi, Hiromu
1994-09-01
Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).
Kálmán, Alajos; Fábián, László
2007-06-01
Recently Kálmán [(2005), Acta Cryst. B61, 536-547] revealed that semirigid molecules or their patterns held together e.g. by hydrogen bonds may perform non-crystallographic rotations (through 180, 90 degrees etc.) around themselves whenever a substitution, ring enlargement or isomerization destroys the existing close packing, i.e. the novel substituent or the enlarged ring can no longer fit in the hollows formed between the molecules. In other words, the old and new arrangements of such chemically similar molecules can be converted into each other by virtual rotations. However, when a semirigid molecule without substitution, but under the influence of solvents, temperature etc., is fully or partly rearranged in the solid state, the corresponding non-crystallographic rotation (hereinafter ncr) is real and gives rise to polymorphism. Such polymorphs are hallmarked by full or partial isostructurality and show that ncrs always occur together with isostructurality. First Kitaigorodskii [(1961), Organic Chemical Crystallography, New York: Consultants Bureau] reported on the structural similarity of three tetraaryltins, (p-RC(6)H(4))(4)Sn, R = H, CH(3), CH(3)O, which is terminated by the larger C(2)H(5)O group. A revisit to these structures revealed that the tetragonal --> monoclinic conversion termed by Kitaigorodskii as a ;morphotropic step' is also performed by an ncr. Similarly, other tetraaryltins in the literature are related by ncrs or the nc translation of the semirigid tetrahedra, or they remain isostructural. Since one of the definitions of morphotropism, a word of Greek origin, is 'turn of form', the ncrs of semirigid molecules can be denoted--following Kitaigorodskii--by this word, whereas its alternative definition in the morphological crystallography of ;unidirectional changes' [applied by Groth (1870). Ber. Chem. Ges. 3, 449-457] covers the non-crystallographic translations described first in this work.
P-V-T equation of state of clinohumite up to 25 GPa and 750 K
NASA Astrophysics Data System (ADS)
Qin, F.; Wu, X.; Jacobsen, S. D.; Zhang, D.
2016-12-01
The dense hydrous magnesium silicate (DHMS) minerals along the brucite-forsterite join have been proposed as the major carriers of water into the Earth's mantle. The natural occurrence of humite-group minerals makes knowledge of their phase relations and crystal chemistry under high pressure and temperature conditions important to geochemical and geophysical studies of volatile cycling between the crust and upper mantle. In natural high-grade metamorphic rocks and carbonates, clinohumite (P21/c) typically contains F at the hydroxyl site and Ti in one of the octahedral sites. Here, we have studied the thermal and compressional behaviors of clinohumite up to 25 GPa and 750 K. Synchrotron X-ray diffraction of single-crystal clinohumite was carried out at the 13 BMC beamline (GSECARS) of the Advanced Photon Source. Our experimental results clearly show that there is no indication of structural phase transition of clinohumite at high P-T conditions relevant to the subducted zone environments. Knowledge of humite-group crystal chemistry at high P-T conditions will also contribute more broadly to the field of mineralogy because of the morphotropic relationship with the minerals olivine and brucite.
Mukherji, Sutapa
2018-03-01
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
NASA Astrophysics Data System (ADS)
Mukherji, Sutapa
2018-03-01
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Lee, Yoju; Verstraete, Frank; Gendiar, Andrej
2016-08-01
The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.
Lack of ferroelectricity in PbTiO3 at high pressures
NASA Astrophysics Data System (ADS)
Cohen, R. E.; Ahart, Muhtar; Hemley, Russell J.
The classic ferroelectric PbTiO3 continues to surprise. It was believed that ferroelectrics would become paraelectric under pressure, and this was observed in Raman experiments on PbTiO3. We predicted a morphotropic phase transition under pressure and verified it experimentally. At higher pressures it become paraelectric, but DFT predicted higher pressure ferroelectricity, and this seemed confirmed by experiments. New Second Harmonic Generation (SHG) measurements on PbTiO3 to 100 GPa and down to 10 K find no evidence for ferroelectricity above 20 GPa. Our DFT computations show centrosymmetric I4mcm as most stable from 20-90 GPa; I4mcm is the ground state of SrTiO3, and the rotations quench the polar instability. We predict a polar I4cm structure above 90 GPa, but the double well depth is very small. This work has been supported by the US ONR, ERC Advanced Grant ToMCaT, EFREE, CDAC, NSF and the Carnegie Institution for Science.
Integral equation theory study on the phase separation in star polymer nanocomposite melts.
Zhao, Lei; Li, Yi-Gui; Zhong, Chongli
2007-10-21
The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afshar, Mehran, E-mail: m.afshar@mpie.de; Zaefferer, Stefan, E-mail: s.zaefferer@mpie.de
2015-03-15
In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amountmore » of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.« less
ERIC Educational Resources Information Center
Boulding, Kenneth E.
The international system exhibits very sharp phase boundaries, the most striking of which is the boundary between war and peace. A phase boundary for water would be the difference between water and ice, influenced by pressure and temperature. Similarly the phase boundary between war and peace is influenced by national strength and stress. Although…
Materials on the brink: unprecedented transforming materials
2013-09-10
2013 56.00 Shenqiang Ren\\, Manfred Wuttig. Spinodal synthesis of PZT /NFO magnetoelectric, Applied Physics Letters, (08 2007): 83501. doi: 02/06/2013... PZT . This material was discovered through a combinatorial search. Rabe et al. have used first principles methods to show that this morphotropic...temperature. James et al. have suggested a new strategy for energy recovery from waste heat using this alloy. • Discovery of a new fatigue -free shape
Detecting Phase Boundaries in Hard-Sphere Suspensions
NASA Technical Reports Server (NTRS)
McDowell, Mark; Rogers, Richard B.; Gray, Elizabeth
2009-01-01
A special image-data-processing technique has been developed for use in experiments that involve observation, via optical microscopes equipped with electronic cameras, of moving boundaries between the colloidal-solid and colloidal-liquid phases of colloidal suspensions of monodisperse hard spheres. During an experiment, it is necessary to adjust the position of a microscope to keep the phase boundary within view. A boundary typically moves at a speed of the order of microns per hour. Because an experiment can last days or even weeks, it is impractical to require human intervention to keep the phase boundary in view. The present image-data-processing technique yields results within a computation time short enough to enable generation of automated-microscope-positioning commands to track the moving phase boundary
NASA Astrophysics Data System (ADS)
Frederick, Joshua C.
Lead-based ferroelectric materials are of significant technological importance for sensing and actuation due to their high piezoelectric performance (i.e., the ability to convert an electrical signal to mechanical displacement, and vice versa). Traditionally, bulk ceramic or single crystals materials have filled these roles; however, emerging technologies stand to benefit by incorporating thin films to achieve miniaturization while maintaining high efficiency and sensitivity. Currently, chemical systems that have been well characterized in bulk form (e.g. Pb(Mg1/3Nb2/3)O3- xPbTiO3, or PMN-xPT) require further study to optimize both the chemistry and structure for deployment in thin film devices. Furthermore, the effect of internal electric fields is more significant at the length scales of thin films, resulting in self biases that require compensation to reveal their intrinsic dielectric response. To this end, the structure-property relations of epitaxial PMN-xPT films sputter deposited on a variety of substrates were investigated. Attention was paid to how the structure (i.e., strain state, crystal structure, domain configuration, and defects) gave rise to the ferroelectric, dielectric, and piezoelectric response. Three-dimensional visualization of the dielectric response as a simultaneous function of electric field and temperature revealed the true phase transition of the films, which was found to correspond to the strain state and defect concentration. A lead-buffered anneal process was implemented to enhance the ferroelectric and dielectric response of the films without altering their stoichiometry. It was discovered that PMN- xPT films could be domain-engineered to exhibit a mixed domain state through chemistry and substrate choice. Such films exhibited a monoclinic distortion similar to that of the bulk compositions near the morphotropic phase boundary. Finally, it was revealed that the piezoelectric response could be greatly enhanced by declamping the film from the substrate via a membrane fabrication technique. The membrane structures exhibited enhanced domain wall mobility, suggesting that domain wall motion is crucial for strong piezoelectric performance in PMN-xPT films. The findings can help guide strain- and domain-engineered relaxor ferroelectric thin films tailored for particular applications.
NASA Astrophysics Data System (ADS)
Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.
2018-05-01
The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.
NASA Astrophysics Data System (ADS)
Wouden, Alex; Cimbala, John; Lewis, Bryan
2014-11-01
While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.
Grain boundary phases in bcc metals
Frolov, T.; Setyawan, W.; Kurtz, R. J.; ...
2018-01-01
Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.
Symmetry-protected topological insulator and its symmetry-enriched topologically ordered boundary
NASA Astrophysics Data System (ADS)
Wang, Juven; Wen, Xiao-Gang; Witten, Edward
We propose a mechanism for achieving symmetry-enriched topologically ordered boundaries for symmetry-protected topological states, including those of topological insulators. Several different boundary phases and their phase transitions are considered, including confined phases, deconfined phases, symmetry-breaking, gapped and gapless phases. National Science Foundation PHY-1606531, Corning Glass Works Foundation Fellowship, NSF Grant DMR- 1506475 and NSFC 11274192, the BMO Financial Group and the John Templeton Foundation No. 39901.
Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study
NASA Astrophysics Data System (ADS)
Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin
2017-07-01
We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r <0 ) at the Fermi energy ɛ =0 , that gives rise to quantum phase transitions between local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r >0 ), we find the phase boundary for (a) 0
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Discovering the Role of Grain Boundary Complexions in Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmer, Martin P.
Grain boundaries are inherently an area of disorder in polycrystalline materials which define the transport and various other material properties. The relationship between the interfacial chemistry, structure and the material properties is not well understood. Among the various taxonomies for grain boundaries, Grain Boundary Complexion is a relatively new conceptual scheme that relates the structure and kinetic properties of grain boundaries. In this classification scheme, grain boundaries are considered to be distinct three dimensional (the thickness being considerably smaller as compared to the other two dimensions but nonetheless discernible) equilibrium thermodynamic phases abutted between two crystalline phases. The stability andmore » structure of these interfacial phases are dictated by various thermodynamic variables such as temperature, stress (pressure), interfacial chemistry (chemical potential) and most importantly by the energies of the adjoining crystal surfaces. These phases are only stable within the constraint of the adjoining grains. Although these interfacial phases are not stable in bulk form, they can transform from one complexion to another as a function of various thermodynamic variables analogous to the behavior of bulk phases. Examples of different complexions have been reported in various publications. However, a systematic investigation exploring the existence of grain boundary complexions in material systems other than alumina remains to be done. Although the role of interfacial chemistry on grain boundary complexions in alumina has been addressed, a clear understanding of the underlying thermodynamics governing complexion formation is lacking. Finally, the effects of grain boundary complexions in bulk material properties are widely unknown. Factors above urge a thorough exploration of grain boundary complexions in a range of different materials systems The purpose of the current program is to verify the existence of grain boundary complexion in a range of materials systems, and to characterize their structures, range of stability and selected physical properties. First, an Au-based bilayer interfacial phase was discovered at a bicrystal boundary in the Si-Au system. This bilayer transitioned abruptly to an intrinsic (“clean”) grain boundary phase, suggesting first-order phase behavior. This study represents the discovery of grain boundary complexions in a completely new system, i.e., a semiconductor-metal system, giving further support to the expectation that grain boundary complexions are a general phenomenon not limited to any particular class of materials. The TiO 2-CuO system exhibited four grain boundary interfacial phases: a monolayer, disordered bilayer, disordered trilayer, and non-wetting nanoscale amorphous drop (which likely resulted from dewetting of a nanoscale IGF). SiO 2 contamination was discovered in the TiO 2-CuO samples, and we hypothesize that this impurity may have caused an “order-disorder” transition to occur. In other words, we expect that pure TiO 2-CuO may have a higher tendency to exhibit ordered bilayer and trilayer complexions, which may also exhibit a well-defined order-disorder transition temperature. In this effort we have also identified unique complexion transitions in yttria and strontium titanate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kezhao; Ni, Longchang; Lei, Zhenglong, E-ma
The tensile deformation behavior of laser welded Ti{sub 2}AlNb joints was investigated using in situ analysis methods. The fracture mode of the single-B2-phase fusion zone was quasi-cleavage at room temperature and intergranular at 650 °C, while that of base metal was microvoid coalescence at both room temperature and 650 °C. Tensile deformation at room temperature was observed using in situ SEM tensile testing. In base metal, microcracks nucleated and propagated mainly within the O phase or along O/B2 phase boundaries. While both the cross- and multi-slips were found in the single-B2-phase fusion zone, a confocal laser scanning microscopy was usedmore » to observe the crack initiation and propagation process in situ at 650 °C. Cracks mainly formed along the B2/O phase boundaries in base metal, along the fragile grain boundaries of B2 phase in the fusion zone. The thermal simulation experiment and following TEM analysis indicated that the precipitation of continuous O-phase films along the B2 grain boundaries resulted in the high temperature brittleness of laser welded Ti{sub 2}AlNb joints. - Highlights: •Cracks formed within O phase or along B2/O boundaries in the base metal. •Cross- and multi-slips relieved stress in the fusion zone at room temperature. •Cracks mainly formed along the B2/O boundaries at 650 °C. •In the fusion zone, intergranular cracks were in situ observed at 650 °C. •O-phase films along B2 grain boundaries caused the high temperature brittleness.« less
The critical point and two-phase boundary of seawater, 200–500°C
Bischoff, James L.; Rosenbauer, Robert J.
1984-01-01
The two-phase boundary of seawater was determined by isothermal decompression of fully condensed seawater in the range of 200–500°C. The pressure at which phase separation occurred for each isotherm was determined by a comparison of the refractive index of fluid removed from the top and bottom of the reaction vessel. The critical point was determined to be in the range of 403–406°C, 285–302 bar and was located by the inflection in the two-phase boundary and by the relative volume of fluid and vapor as a function of temperature. The two-phase boundary of 3.2% NaCl solution was found to coincide exactly with that of seawater over the range tested in the present study. The boundary for both is described by a single seventh-order polynomial equation. The two-phase boundary defines the maximum temperature of seawater circulating at depth in the oceanic crust. Thus the boundary puts a limit of about 390°C for seawater circulating near the seafloor at active ocean ridges (2.5 km water depth), and about 465°C at the top of a magma chamber occurring at 2 km below the seafloor.
The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics
NASA Astrophysics Data System (ADS)
Li, Linhao; Li, Ming; Sinclair, Derek C.
2018-04-01
The solid solution (KxNa0.50-x)Bi0.50TiO3 (KNBT) between Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 (KBT) has been extensively researched as a candidate lead-free piezoelectric material because of its relatively high Curie temperature and good piezoelectric properties, especially near the morphotropic phase boundary (MPB) at x ˜ 0.10 (20 mol. % KBT). Here, we show that low levels of excess K2O in the starting compositions, i.e., (Ky+0.03Na0.50-y)Bi0.50TiO3.015 (y-series), can significantly change the conduction mechanism and electrical properties compared to a nominally stoichiometric KNBT series (KxNa0.50-x)Bi0.50TiO3 (x-series). Impedance spectroscopy measurements reveal significantly higher bulk conductivity (σb) values for y ≥ 0.10 samples [activation energy (Ea) ≤ 0.95 eV] compared to the corresponding x-series samples which possess bandgap type electronic conduction (Ea ˜ 1.26-1.85 eV). The largest difference in electrical properties occurs close to the MPB composition (20 mol. % KBT) where y = 0.10 ceramics possess σb (at 300 °C) that is 4 orders of magnitude higher than that of x = 0.10 and the oxide-ion transport number in the former is ˜0.70-0.75 compared to <0.05 in the latter (between 600 and 800 °C). The effect of excess K2O can be rationalised on the basis of the (K + Na):Bi ratio in the starting composition prior to ceramic processing. This demonstrates the electrical properties of KNBT to be sensitive to low levels of A-site nonstoichiometry and indicates that excess K2O in KNBT starting compositions to compensate for volatilisation can lead to undesirable high dielectric loss and leakage currents at elevated temperatures.
Gapped boundary phases of topological insulators via weak coupling
Seiberg, Nathan; Witten, Edward
2016-11-04
The standard boundary state of a topological insulator in 3 + 1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our models are weakly coupled and all the dynamics is explicit. We rederive some known boundary states of topological insulators and construct new ones. Consistency with the standard spin/charge relation of condensed matter physics places a nontrivial constraint on models
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog
2017-08-01
We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.
Electrode structure and methods of making same
Ruud, James Anthony; Browall, Kenneth Walter; Rehg, Timothy Joseph; Renou, Stephane; Striker, Todd-Michael
2010-04-06
A method of making an electrode structure is provided. The method includes disposing an electrocatalytic material on an electrode, applying heat to the electrocatalytic material to form a volatile oxide of the electrocatalytic material, and applying a voltage to the electrode to reduce the volatile oxide to provide a number of nano-sized electrocatalytic particles on or proximate to a triple phase boundary, where the number of nano-sized electrocatalytic particles is greater on or proximate to the triple phase boundary than in an area that is not on or proximate to the triple phase boundary, and where the triple phase boundary is disposed on the electrode.
Unraveling the origins of electromechanical response in mixed-phase Bismuth Ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Rama K; Okatan, M. B.; Liu, Y. Y.
The origin of giant electromechanical response in a mixed-phase rhombohedral-tetragonal BiFeO3 thin film is probed using sub-coercive scanning probe microscopy based multiple-harmonic measurements. Significant contributions to the strain arise from a second-order harmonic response localized at the phase boundaries. Strain and dissipation data, backed by thermodynamic calculations suggest that the source of the enhanced electromechanical response is the motion of phase boundaries. These findings elucidate the key role of labile phase boundaries, both natural and artificial, in achieving thin films with giant electromechanical properties.
Studies on the influence on flexural wall deformations on the development of the flow boundary layer
NASA Technical Reports Server (NTRS)
Schilz, W.
1978-01-01
Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Tae Wook; Tang, Ming; Chen, Long-Qing
Using a novel statistical approach that efficiently explores the space of possible defect configurations, our present study investigates the chemomechanical coupling between interfacial structural defects and phase boundary alignments within phase-separating electrode particles. Applied to the battery cathode material Li XFePO 4 as an example, the theoretical analysis reveals that small, defect-induced deviations from an ideal interface can lead to dramatic shifts in the orientations of phase boundaries between Li-rich and Li-lean phases, stabilizing otherwise unfavorable orientations. Significantly, this stabilization arises predominantly from configurational entropic factors associated with the presence of the interfacial defects rather than from absolute energetic considerations.more » The specific entropic factors pertain to the diversity of defect configurations and their contributions to rotational/orientational rigidity of phase boundaries. Comparison of the predictions with experimental observations indicates that the additional entropy contributions indeed play a dominant role under actual cycling conditions, leading to the conclusion that interfacial defects must be considered when analyzing the stability and evolution kinetics of the internal phase microstructure of strongly phase-separating systems. Possible implications for tuning the kinetics of (de)lithiation based on selective defect incorporation are discussed. Ultimately, this understanding can be generalized to the chemomechanics of other defective solid phase boundaries.« less
Heo, Tae Wook; Tang, Ming; Chen, Long-Qing; ...
2016-01-04
Using a novel statistical approach that efficiently explores the space of possible defect configurations, our present study investigates the chemomechanical coupling between interfacial structural defects and phase boundary alignments within phase-separating electrode particles. Applied to the battery cathode material Li XFePO 4 as an example, the theoretical analysis reveals that small, defect-induced deviations from an ideal interface can lead to dramatic shifts in the orientations of phase boundaries between Li-rich and Li-lean phases, stabilizing otherwise unfavorable orientations. Significantly, this stabilization arises predominantly from configurational entropic factors associated with the presence of the interfacial defects rather than from absolute energetic considerations.more » The specific entropic factors pertain to the diversity of defect configurations and their contributions to rotational/orientational rigidity of phase boundaries. Comparison of the predictions with experimental observations indicates that the additional entropy contributions indeed play a dominant role under actual cycling conditions, leading to the conclusion that interfacial defects must be considered when analyzing the stability and evolution kinetics of the internal phase microstructure of strongly phase-separating systems. Possible implications for tuning the kinetics of (de)lithiation based on selective defect incorporation are discussed. Ultimately, this understanding can be generalized to the chemomechanics of other defective solid phase boundaries.« less
Local piezoelectric behavior in PZT-based thin films for ultrasound transducers
NASA Astrophysics Data System (ADS)
Griggio, Flavio
Piezoelectric microelectromechanical systems (MEMS) are currently used in inkjet printers and precision resonators; numerous additional applications are being investigated for sensors, low-voltage actuators, and transducers. This work was aimed at improving piezoelectric MEMS by taking two approaches: 1) identifying factors affecting the piezoelectric response of ferroelectric thin films and 2) demonstrating integration of these films into a high frequency array transducer. It was found that there are several key factors influencing the piezoelectric response of thin films for a given material composition. First, large grain size improves the piezoelectric response. This was demonstrated using chemical solution deposited lead nickel niobate -- lead zirconate titanate (0.3)Pb(Ni 0.33Nb0.67)O3 - (0.7)Pb(Zr0.45Ti 0.55O3), (PNN-PZT) ferroelectric thin films. It was shown that this composition allows greater microstructural control than does PZT. Dielectric permittivities ranging from 1350 to 1520 and a transverse piezoelectric coefficient e31,f as high as -- 9.7 C/m 2 were observed for films of about 0.25 mum in thickness. The permittivity and piezoelectric response as well as extrinsic contributions to the dielectric constant increased by 14 and 12 % respectively for samples with grain sizes ranging from 110 to 270 nm. A second factor influencing the piezoelectric response is film composition with respect to the morphotropic phase boundary (MPB). The composition dependence of the dielectric and piezoelectric nonlinearities was characterized in epitaxially grown (0.3)Pb(Ni0.33Nb0.67)O3-(0.7)Pb(Zr xTi1-xO3) thin films deposited on SrTiO 3 to minimize the influence of large-angle grain boundaries. Tetragonal, MPB and rhombohedral films were prepared by changing the Zr/Ti ratio. The largest dielectric and piezoelectric nonlinearities were observed for the rhombohedral sample; this resulted from a higher domain wall mobility due to a smaller ferroelectric distortion and superior crystal quality. Thirdly, changes in the mechanical boundary conditions experienced by a ferroelectric thin film were found to influence both the properties and the length scale for correlated motion of domain walls. Microfabrication was employed to release the PZT films from the Si substrate. Nonlinear piezoelectric maps, by band excitation piezoforce microscopy, showed formation of clusters of higher nonlinear activities of similar size for clamped PZT films with different microstructures. However PZT films that had been released from the Si substrate showed a distinct increase in the correlation length associated with coupled domain wall motion, suggesting that the local mechanical boundary conditions, more than microstructure or composition govern the domain wall dynamics. Release of both the local and the global stress states in films produced dielectric nonlinearities comparable to those of bulk ceramics. The second research direction was targeted at demonstrating the functionality of a one dimensional transducer array. A diaphragm geometry was used for the transducer arrays in order to benefit from the unimorph-type displacement of the PZT-SiO2 layers. For this purpose, the PZT and remaining films in the stack were patterned using reactive ion etching and partially released from the underlying silicon substrate by XeF2 etching from the top. Admittance measurements on the fabricated structures showed resonance frequencies at ˜40 MHz for a 80 mum diameter-wide diaphragms with a PZT thickness of 1.74 mum. In-water transmit and receive functionalities were demonstrated. A bandwidth on receive of 80 % centered at 40 MHz was determined during pitch-mode tests.
The interface character distribution of cold-rolled and annealed duplex stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xiaoying, E-mail: fxy@sdut.edu.cn
The interface character distributions (ICDs) of cold-rolled and annealed duplex stainless steel specimens, previously solid-solution-heated (SHT) at 1573 K and 1323 K, are investigated using electron backscatter diffraction (EBSD) and five-parameter analysis (FPA). For the δ-ferrite phase, high concentrations of low angle grain boundaries (LAGBs) are developed, and the boundary planes are predominantly oriented on (111). High angle grain boundaries (HAGBs) with misorientations ranging from 50{sup o} to 60° are mostly pure tilt boundaries, and the boundary planes are primarily located on (112). For the austenite phase, very high density of coherent twin boundaries are introduced, implying that the boundarymore » planes are exactly oriented on (111). The phase boundary character distribution (PBPD) appears to be connected with the K-S and N-W orientation relationships (ORs) terminating on (110) {sub F}‖(111) {sub A} and (110){sub F}‖(hkl){sub A}, respectively. - Highlights: •Five-parameter analysis was used to determine interface character distribution. •ICD results of statistical meaning were achieved. •Initial microstructure has a significant effect on ICD. •Low and high angle GBs in δ phase prefer in (111) and (112) planes, respectively. •K-S phase boundaries terminate on (110){sub F}‖(111){sub A} while N-W ones on (110){sub F}‖(hkl){sub A}.« less
Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan
2014-03-01
Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; ...
2018-03-30
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, T.; Setyawan, W.; Kurtz, R. J.
We report a computational discovery of novel grain boundary structures and multiple grain boundary phases in elemental bcc tungsten. While grain boundary structures created by the - surface method as a union of two perfect half crystals have been studied extensively, it is known that the method has limitations and does not always predict the correct ground states. Here, we use a newly developed computational tool, based on evolutionary algorithms, to perform a grand-canonical search of high-angle symmetric tilt boundary in tungsten, and we find new ground states and multiple phases that cannot be described using the conventional structural unitmore » model. We use MD simulations to demonstrate that the new structures can coexist at finite temperature in a closed system, confirming these are examples of different GB phases. The new ground state is confirmed by first-principles calculations.Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perevalova, Olga; Konovalova, Elena, E-mail: knv123@yandex.ru; Koneva, Nina
2016-01-15
The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determinedmore » by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.« less
Interphase boundary misorientation in mantle rocks
NASA Astrophysics Data System (ADS)
Morales, L. F.; Mainprice, D.; Boudier, F. I.
2017-12-01
Interphase boundaries are planar defects that separate two different phases, which may have different compositions and/or crystalline structures. Depending on the degree of atomic structure matching between the two adjacent phases, the interphase boundaries can be classified in coherent, semicoherent and incoherent phase boundaries. Here we present the recent developments of interphase misorientation boundary analyses calculated from EBSD data in an olivine-antigorite schist from the Val Malenco (Italy) and a spinel lherzolite from the Horoman peridotite complex (Japan). The antigorite schist is strongly foliated and contains about 78% antigorite and 22% olivine, with minor amounts (<1%) of magnetite and chlorite. The antigorite CPO is characterized by a point maxima of poles to (100) parallel to lineation and poles to (001) to the foliation normal. Phase transformation relationships between olivine and antigorite are evident in phase boundary misorientation analysis, (100)ol||(001)atg being more frequent than [001]ol||[010]atg. From the interphase misorientation analyses, we have described two new phase transformation relationships between olivine and antigorite. The studied lherzolite contain 70% olivine, 15% enstatite, 13% diopside and 2% spinel. It has a porphyroclastic texture materialized by enstatite and olivine in a matrix of olivine. Both enstatite, diopside and spinel occur along discontinuous bands parallel to the foliation of the sample. Olivine bulk CPO can be described as a fibre-[100], while both enstatite and diopside show a (001) fibre texture. Interphase misorientation angle distribution between olivine-enstatite and olivine-diopside follow approximately the distribution expected for uniform texture, with some minor (but important) differences at high angle phase boundaries, particularly for olivine-diopside. The pair angle-misorientation axes for the olivine-enstatite show a relatively uniform distribution for different misorientation angle intervals. On the other hand there is a clear concentration of misorientation axes parallel to [010] of olivine in the case of olivine-diopside phase boundaries, possibly related to melt percolation. These differences demonstrate the potential use of interphase misorientation for the study of material processes in rocks.
Thermal Convection in a Creeping Solid With Melting/Freezing Interfaces at Either or Both Boundaries
NASA Astrophysics Data System (ADS)
Labrosse, S.; Morison, A.; Deguen, R.; Alboussiere, T.; Tackley, P. J.; Agrusta, R.
2017-12-01
Thermal convection in the solid mantles of the Earth, other terrestrial planets and icy satellites sets in while it is still crystallising from a liquid layer (see abstract by Morison et al, this conference). The existence of an ocean (water or magma) either or both below and above the solid mantle modifies the conditions applying at the boundary since matter can flow through it by changing phase. Adapting the boundary conditions developed for the dynamics of the inner core by Deguen et al (GJI 2013) to the plane layer and the spherical shell, we solve the linear stability problem and obtain weakly non-linear solutions as well as direct numerical solutions in both geometries, with a liquid-solid phase change at either or both boundaries. The phase change boundary condition is controlled by a dimensionless number, Φ , which when small, allows easy flow through the boundary while the classical non-penetrating boundary condition is recovered for large values. If both boundaries have a phase change, the preferred wavelength of the flow is large, i.e. λ ∝Φ -1/2 in a plane layer and degree 1 in a spherical shell, and the critical Rayleigh number is of order Φ . The heat transfer efficiency, as measured by the dependence of the Nusselt number on the Rayleigh number also increases indefinitely for decreasing values of Φ . If only one boundary has a phase change condition, the critical wavelength is increased by about a factor 2 and the critical Rayleigh number is decreased by about a factor 4. The dynamics is controlled entirely by the boundary layer opposite to the phase change interface and the geometry of the flow. This model provides a natural explanation for the emergence of degree 1 convection in thin ice layers and implies a style of early mantle dynamics on Earth very different from what is classically envisioned.
Lv, Hongqing; Shi, Jianqiang
2014-01-01
By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation. PMID:25143983
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang
2014-01-01
By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.
Internal loading of an inhomogeneous compressible Earth with phase boundaries
NASA Technical Reports Server (NTRS)
Defraigne, P.; Dehant, V.; Wahr, J. M.
1996-01-01
The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.
Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary con...
Improved toughness of refractory compounds. [with elimination of the grain boundary phase
NASA Technical Reports Server (NTRS)
Wright, T. R.; Niesz, D. E.
1974-01-01
The concept of grain-boundary-engineering through elimination of the grain-boundary silicate phase in silicon nitride was developed. The process involved removal of the silica from the nitride powder via a thermal treatment coupled with the use of nitride additives to compensate the remaining oxygen. Magnesium and aluminum nitrides are found to be the most effective additive for use as oxygen compensators. Strength decreases at elevated temperatures are not observed in the alumina containing material. The creep rate of a dual additive sialon composition was two orders of magnitude lower at 1400 C than commercial silicon nitride. A cursory analysis of the creep mechanism indicate that grain-boundary sliding is avoided through elimination of the grain-boundary silicate phase.
Thuvander, Mattias; Andersson, Marcus; Stiller, Krystyna
2013-09-01
Lath boundaries in a maraging stainless steel of composition 13Cr-8Ni-2Mo-2Cu-1Ti-0.7Al-0.3Mn-0.2Si-0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni₃(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R' phase. The film is perforated with Cu-rich 9R and η-Ni₃(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ'-Ni₃(Ti, Al, Si) and the Cr-rich α' phase were not observed at the lath boundaries. Copyright © 2012 Elsevier B.V. All rights reserved.
Shock induced phase transitions and current generation in ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Agrawal, Vinamra; Bhattacharya, Kaushik
2017-06-01
Ferroelectric materials are used as ferroelectric generators to obtain pulsed power by subjecting them to a shock loading. The impact induces a phase transition and at high impact speeds, dielectric breakdown. Depending on the loading conditions and the electromechanical boundary conditions, the current or voltage profiles obtained vary. We explore the phenomenon of large deformation dynamic behavior and the associated electro-thermo-mechanical coupling of ferroelectric materials in adiabatic environments. Using conservation laws, Maxwell's equations and second law of thermodynamics, we obtain a set of governing equations for the material and the driving force acting on the propagating phase boundary. We also account for the possibility of surface charges on the phase boundary in case of dielectric breakdown which introduces contribution of curvature of the phase boundary in the equations. Next, the governing equations are used to solve a plate impact problem. The Helmholtz energy of the material is chosen be a combination of piecewise quadratic potential in polarization and thermo-elastic material capable of undergoing phase transformation. We obtain current profiles for short circuit boundary conditions along with strain, particle velocity and temperature maps. US AFOSR through Center of Excellence in High Rate Deformation of Heterogeneous Materials FA 9550-12-1-0091.
Crystallization of the glassy phase of grain boundaries in silicon nitride
NASA Technical Reports Server (NTRS)
Jefferson, D. A.; Thomas, J. M.; Wen, S.
1984-01-01
Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.
Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP
NASA Astrophysics Data System (ADS)
Lynner, Colton; Long, Maureen D.
2014-05-01
Shear wave splitting of SK(K)S phases is often used to examine upper mantle anisotropy. In specific cases, however, splitting of these phases may reflect anisotropy in the lowermost mantle. Here we present SKS and SKKS splitting measurements for 233 event-station pairs at 34 seismic stations that sample D″ beneath Africa. Of these, 36 pairs show significantly different splitting between the two phases, which likely reflects a contribution from lowermost mantle anisotropy. The vast majority of discrepant pairs sample the boundary of the African large low shear velocity province (LLSVP), which dominates the lower mantle structure beneath this region. In general, we observe little or no splitting of phases that have passed through the LLSVP itself and significant splitting for phases that have sampled the boundary of the LLSVP. We infer that the D″ region just outside the LLSVP boundary is strongly deformed, while its interior remains undeformed (or weakly deformed).
Boundaries for martensitic transition of 7Li under pressure
Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; ...
2015-08-14
We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less
NASA Astrophysics Data System (ADS)
Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang
2018-03-01
We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.
Global phase diagram of the spinless Falicov-Kimball model in d = 3 : renormalization-group theory
NASA Astrophysics Data System (ADS)
Sariyer, Ozan S.; Hinczewski, Michael; Berker, A. Nihat
2011-03-01
The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The phase boundaries are second order, except for an intermediate interaction regime, where a first-order phase boundary between two CO phases occurs. The first-order phase boundary is delimited by special bicritical points. The cross-sections of the global phase diagram with respect to the chemical potentials of the localized and mobile electrons, at all representative interaction and hopping strengths, are calculated and exhibit three distinct topologies. The phase diagrams with respect to electron densities are also calculated. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.
Development of diapiric structures in the upper mantle due to phase transitions
NASA Technical Reports Server (NTRS)
Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.
1991-01-01
Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.
Moving walls and geometric phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it; INFN, Sezione di Bari, I-70126 Bari; Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it
2016-09-15
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.
NASA Astrophysics Data System (ADS)
Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki
2017-04-01
The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.
NASA Astrophysics Data System (ADS)
Bollati, Julieta; Tarzia, Domingo A.
2018-04-01
Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
NASA Technical Reports Server (NTRS)
Ahlborg, Nadia L.; Zhu, Dongming
2013-01-01
The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.
Identifying phase-space boundaries with Voronoi tessellations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Dipsikha; Gainer, James S.; Kilic, Can
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less
Identifying phase-space boundaries with Voronoi tessellations
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; ...
2016-11-24
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here in this paper we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be usedmore » to corroborate a new physics discovery based on a cut-and-count analysis.« less
Self-duality and phase structure of the 4D random-plaquette Z2 gauge model
NASA Astrophysics Data System (ADS)
Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo; Takeda, Koujin
2005-03-01
In the present paper, we shall study the 4-dimensional Z lattice gauge model with a random gauge coupling; the random-plaquette gauge model (RPGM). The random gauge coupling at each plaquette takes the value J with the probability 1-p and - J with p. This model exhibits a confinement-Higgs phase transition. We numerically obtain a phase boundary curve in the (p-T)-plane where T is the "temperature" measured in unit of J/k. This model plays an important role in estimating the accuracy threshold of a quantum memory of a toric code. In this paper, we are mainly interested in its "self-duality" aspect, and the relationship with the random-bond Ising model (RBIM) in 2-dimensions. The "self-duality" argument can be applied both for RPGM and RBIM, giving the same duality equations, hence predicting the same phase boundary. The phase boundary curve obtained by our numerical simulation almost coincides with this predicted phase boundary at the high-temperature region. The phase transition is of first order for relatively small values of p<0.08, but becomes of second order for larger p. The value of p at the intersection of the phase boundary curve and the Nishimori line is regarded as the accuracy threshold of errors in a toric quantum memory. It is estimated as p=0.110±0.002, which is very close to the value conjectured by Takeda and Nishimori through the "self-duality" argument.
NASA Astrophysics Data System (ADS)
Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei
2018-01-01
The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.
Phase transformations during aging of a nitrogen-strengthened austenitic stainless steel
NASA Astrophysics Data System (ADS)
Ritter, Ann M.; Henry, Michael F.
1985-10-01
An analytical electron microscopy study was undertaken in order to characterize intergranular and matrix precipitation accompanying intermediate temperature aging in NITRONIC 50, a nitrogen-strengthened austenitic stainless steel. Extensive precipitation on most grain boundaries had occurred after aging for 24 hours at 675 °C. The primary intergranular phase at that time was Cr-rich M23C6, and energy dispersive spectra taken on grain boundary segments between these carbides indicated Cr-depletion and Fe- and Ni-enhancement relative to the matrix. After aging for 336 and 1008 hours at 675 °C, M6C (eta-carbide) precipitates were also present on grain boundaries. These precipitates were distinguished from M23C6 on the basis of their lattice parameters and chemistries, with M6C containing less Cr and Fe, and more Ni, Mo, and Si than M23C6. The differences in chemistry were clarified by a statistical treatment of the spectra. The statistical analysis also showed that precipitates with a range of chemistries between M23C6 and M6C coexisted with these phases on the grain boundaries. Associated with this shift in precipitate stoichiometry was an increase in the average concentration of Cr and a decrease in the average concentration of Ni at the grain boundaries. Intergranular sigma phase was also observed after times 24 hours at 675 °C, with sigma precipitating on grain boundaries containing carbides. Intragranular precipitates observed to be stable up to 1008 hours at 675 °C included Z-phase, a complex nitride which had formed during solution annealing; M7C3 carbides, which nucleated at Z-phase/austenite interfaces; M23C6 carbides, which precipitated on incoherent twin boundaries; and Cr-rich MN precipitates, which nucleated on dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Brian James
There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake methodmore » to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.« less
NASA Astrophysics Data System (ADS)
Haxter, Stefan; Brouwer, Jens; Sesterhenn, Jörn; Spehr, Carsten
2017-08-01
Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.
On the small angle twist sub-grain boundaries in Ti3AlC2.
Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun
2016-04-01
Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al-Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Lin, Ye; Fang, Shumin; Su, Dong; ...
2015-04-10
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin
2015-01-01
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2−δ–Ce0.8Gd0.2O2−δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution. PMID:25857355
Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.
Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin
2015-04-10
Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2-δ-Ce0.8Gd0.2O2-δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic-electronic conductor composites through processing induced modifications of the grain boundary defect distribution.
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ye; Fang, Shumin; Su, Dong
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
A boundary condition for layer to level ocean model interaction
NASA Astrophysics Data System (ADS)
Mask, A.; O'Brien, J.; Preller, R.
2003-04-01
A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.
Single particle nonlocality, geometric phases and time-dependent boundary conditions
NASA Astrophysics Data System (ADS)
Matzkin, A.
2018-03-01
We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.
Generation of net sediment transport by velocity skewness in oscillatory sheet flow
NASA Astrophysics Data System (ADS)
Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin
2018-01-01
This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.
Cao, Ye; Yang, Mr. Shuzhen; Jesse, Stephen; ...
2016-01-01
Many functional properties of ferroelectrics are underlain by structural instabilities, which render these materials very susceptible to small alternating applied fields (electric, mechanical, etc.) through certain constitutive coupling relations, e.g., elastic compliance and piezoelectric response, and often such instabilities can be shifted by static applied fields thus meaning tunable dynamic properties. Structural instabilities are naturally accommodated on the brink of morphotropic phase boundaries (MPB s) where multiple phases of small energy difference coexist in different crystallographic forms. Canonical MPB is realized through compositional mixture, as is typically exemplified by Pb(Zr1-xTix)O3 solid solutions and relaxor ferroelectrics of (1-x)PbMg1/3Nb2/3O3-xPbTiO3. More recently, amore » strain-driven MPB has been discovered in BiFeO3 (BFO) thin films epitaxially grown on LaAlO3 (LAO) crystal substrates (which imposes about -4.5% in-plane strains). Such an MPB is in between a rhombohedral (R) phase that bulk BFO exhibits and a so-called super-tetragonal (T) phase, which name hints at its giant lattice axial ratio (c/a ~ 1.23) and accordingly high electric polarization (~1.5 C m-2). The discovery of an MPB in BFO has revealed another facet of this multiferroic system, further adding opportunities to its many exotic functionalities such as domain wall conduction, magnetoelectric and photovoltaic effects As with other MPB s, large electric-field induced strains as well as more underlying lattice softening effects are observed near this MPB promising piezoelectric-based applications. In addition, T-phase BFO itself shows distinct properties, e.g., electronic band gap and optical absorption, from the R-phase and the resultant switching effects between them may also be exploitable. However, unlike conventional ferroelectric oxides where the phases across an MPB usually have subtle difference caused by rotations of an ion off-centering polarization, the BFO system bears multiple structural degrees of freedom, in particular antiferrodistortive modes of oxygen octahedral tilt, and a multitude of structural transition paths are thereby facilitated. Moreover, since the MPB of BFO is driven by epitaxial strain, it is sensitive to the strain relaxation related to film thickness and growth conditions, and above some critical thickness the films appear in the form of a hierarchical mixed-phase microstructure involving several coexistent polymorphs with distinct lattice distortion (monoclinic phases) and tilts. Elastic and electrical heterogeneities are necessary consequences of such complex microstructure, which couple to the intrinsic order parameters and expectedly have profound influence on the structural dynamics and material properties. All these make it a demanding task to obtain a deep understanding of this MPB system on par with its application prospect. The thin-film material form also brings in experimental restrictions to the MPB phase transition studies of BFO since many pertinent techniques fail to operate at the nanoscale or suffer from formidably weak signals. Therefore, static structural characterizations using e.g. X-ray diffraction, electron microscopy and Raman scattering have prevailed thus far. Recently, we adapted band-excitation piezoresponse spectroscopy (BEPS) to probe the bias-induced R/T phase transition dynamics of BFO/SrTiO3 (STO) thin films, and revealed the soft-mode elastic behavior of the transition. The efficacy of our method, along with standard piezoresponse force microscopy (PFM), can be significantly leveraged by integrating a variety of local and/or global excitations, e.g., tip pressure (10 s GPa attainable), heating, photo-irradiation, available to modern scanning probe platforms. This can thus afford unique opportunities to survey the structural dynamics of ferroelectric materials coupled to those field variables, enabling rapid discovery or validation of their functional properties. In this study, we focus on the T-phase BFO/LAO system; we have examined its phase transition behavior not only due to local coaction of tip bias and loading force, but also under device-level global electric fields in a coplanar capacitor. The intrinsic elastic softening phenomena near the structural transitions are comprehensively revealed by BEPS and corroborated by phase-field modeling. Our findings may open a new pathway for technological utilization of the MPB phase instabilities of BFO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Hua; Zhang, Jialin, E-mail: jialinzhang@hunnu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn
We study the geometric phase of a uniformly accelerated two-level atom coupled with vacuum fluctuations of electromagnetic fields in the presence of a perfectly reflecting plane. We find that the geometric phase difference between the accelerated and inertial atoms which can be observed by atom interferometry crucially depends on the polarizability of the atom and the distance to the boundary and it can be dramatically manipulated with anisotropically polarizable atoms. In particular, extremely close to the boundary, the phase difference can be increased by two times as compared to the case without any boundary. So, the detectability of the effectsmore » associated with acceleration using an atom interferometer can be significantly increased by the presence of a boundary using atoms with anisotropic polarizability.« less
Entanglement and area law with a fractal boundary in a topologically ordered phase
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Lidar, Daniel A.; Severini, Simone
2010-01-01
Quantum systems with short-range interactions are known to respect an area law for the entanglement entropy: The von Neumann entropy S associated to a bipartition scales with the boundary p between the two parts. Here we study the case in which the boundary is a fractal. We consider the topologically ordered phase of the toric code with a magnetic field. When the field vanishes it is possible to analytically compute the entanglement entropy for both regular and fractal bipartitions (A,B) of the system and this yields an upper bound for the entire topological phase. When the A-B boundary is regular we have S/p=1 for large p. When the boundary is a fractal of the Hausdorff dimension D, we show that the entanglement between the two parts scales as S/p=γ⩽1/D, and γ depends on the fractal considered.
Shear response of Σ3{112} twin boundaries in face-centered-cubic metals
NASA Astrophysics Data System (ADS)
Wang, J.; Misra, A.; Hirth, J. P.
2011-02-01
Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.
Pore and grain boundary migration under a temperature gradient: A phase-field model study
Biner, S. B.
2016-03-16
In this study, the collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Ying; Li, Meimei; Zhang, Xuan
2015-09-01
Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400°C to 1.88x10^15 ions/cm2 (~3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed strong spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300°C irradiation, in-situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix.more » Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350°C and 400°C.« less
Precipitation in AISI 316L(N) during creep tests at 550 and 600 °C up to 10 years
NASA Astrophysics Data System (ADS)
Padilha, A. F.; Escriba, D. M.; Materna-Morris, E.; Rieth, M.; Klimenkov, M.
2007-05-01
The precipitation behaviour in the gauge lengths and in the heads of initially solution annealed type 316L(N) austenitic stainless steel specimens tested in creep at 550 and 600 °C for periods of up to 85 000 h has been studied using several metallographic techniques. Three phases were detected: M 23C 6, Laves, and sigma phase. The volume fraction of the precipitated sigma phase was significantly higher than that of carbides and the Laves phase. M 23C 6 carbide precipitation occurred very rapidly and was followed by the sigma and Laves phases formation in the delta ferrite islands. Sigma and Laves phases precipitated at grain boundaries after longer times. Two different mechanisms of sigma phase precipitation have been proposed, one for delta ferrite decomposition and another for grain boundary precipitation. Small quantities of the Laves phase were detected in delta ferrite, at grain boundaries and inside the grains.
NASA Astrophysics Data System (ADS)
Chen, Wei-Ying; Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan
2015-09-01
Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 1019 ions/m2 (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350 °C and 400 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Yang, Mr. Shuzhen; Jesse, Stephen
Many functional properties of ferroelectrics are underlain by structural instabilities, which render these materials very susceptible to small alternating applied fields (electric, mechanical, etc.) through certain constitutive coupling relations, e.g., elastic compliance and piezoelectric response, and often such instabilities can be shifted by static applied fields thus meaning tunable dynamic properties. Structural instabilities are naturally accommodated on the brink of morphotropic phase boundaries (MPB s) where multiple phases of small energy difference coexist in different crystallographic forms. Canonical MPB is realized through compositional mixture, as is typically exemplified by Pb(Zr1-xTix)O3 solid solutions and relaxor ferroelectrics of (1-x)PbMg1/3Nb2/3O3-xPbTiO3. More recently, amore » strain-driven MPB has been discovered in BiFeO3 (BFO) thin films epitaxially grown on LaAlO3 (LAO) crystal substrates (which imposes about -4.5% in-plane strains). Such an MPB is in between a rhombohedral (R) phase that bulk BFO exhibits and a so-called super-tetragonal (T) phase, which name hints at its giant lattice axial ratio (c/a ~ 1.23) and accordingly high electric polarization (~1.5 C m-2). The discovery of an MPB in BFO has revealed another facet of this multiferroic system, further adding opportunities to its many exotic functionalities such as domain wall conduction, magnetoelectric and photovoltaic effects As with other MPB s, large electric-field induced strains as well as more underlying lattice softening effects are observed near this MPB promising piezoelectric-based applications. In addition, T-phase BFO itself shows distinct properties, e.g., electronic band gap and optical absorption, from the R-phase and the resultant switching effects between them may also be exploitable. However, unlike conventional ferroelectric oxides where the phases across an MPB usually have subtle difference caused by rotations of an ion off-centering polarization, the BFO system bears multiple structural degrees of freedom, in particular antiferrodistortive modes of oxygen octahedral tilt, and a multitude of structural transition paths are thereby facilitated. Moreover, since the MPB of BFO is driven by epitaxial strain, it is sensitive to the strain relaxation related to film thickness and growth conditions, and above some critical thickness the films appear in the form of a hierarchical mixed-phase microstructure involving several coexistent polymorphs with distinct lattice distortion (monoclinic phases) and tilts. Elastic and electrical heterogeneities are necessary consequences of such complex microstructure, which couple to the intrinsic order parameters and expectedly have profound influence on the structural dynamics and material properties. All these make it a demanding task to obtain a deep understanding of this MPB system on par with its application prospect. The thin-film material form also brings in experimental restrictions to the MPB phase transition studies of BFO since many pertinent techniques fail to operate at the nanoscale or suffer from formidably weak signals. Therefore, static structural characterizations using e.g. X-ray diffraction, electron microscopy and Raman scattering have prevailed thus far. Recently, we adapted band-excitation piezoresponse spectroscopy (BEPS) to probe the bias-induced R/T phase transition dynamics of BFO/SrTiO3 (STO) thin films, and revealed the soft-mode elastic behavior of the transition. The efficacy of our method, along with standard piezoresponse force microscopy (PFM), can be significantly leveraged by integrating a variety of local and/or global excitations, e.g., tip pressure (10 s GPa attainable), heating, photo-irradiation, available to modern scanning probe platforms. This can thus afford unique opportunities to survey the structural dynamics of ferroelectric materials coupled to those field variables, enabling rapid discovery or validation of their functional properties. In this study, we focus on the T-phase BFO/LAO system; we have examined its phase transition behavior not only due to local coaction of tip bias and loading force, but also under device-level global electric fields in a coplanar capacitor. The intrinsic elastic softening phenomena near the structural transitions are comprehensively revealed by BEPS and corroborated by phase-field modeling. Our findings may open a new pathway for technological utilization of the MPB phase instabilities of BFO.« less
NASA Astrophysics Data System (ADS)
Chen, Wei; Zhang, Junfeng; Gao, Mingyi; Shen, Gangxiang
2018-03-01
High-order modulation signals are suited for high-capacity communication systems because of their high spectral efficiency, but they are more vulnerable to various impairments. For the signals that experience degradation, when symbol points overlap on the constellation diagram, the original linear decision boundary cannot be used to distinguish the classification of symbol. Therefore, it is advantageous to create an optimum symbol decision boundary for the degraded signals. In this work, we experimentally demonstrated the 64-quadrature-amplitude modulation (64-QAM) coherent optical communication system using support-vector machine (SVM) decision boundary algorithm to create the optimum symbol decision boundary for improving the system performance. We investigated the influence of various impairments on the 64-QAM coherent optical communication systems, such as the impairments caused by modulator nonlinearity, phase skew between in-phase (I) arm and quadrature-phase (Q) arm of the modulator, fiber Kerr nonlinearity and amplified spontaneous emission (ASE) noise. We measured the bit-error-ratio (BER) performance of 75-Gb/s 64-QAM signals in the back-to-back and 50-km transmission. By using SVM to optimize symbol decision boundary, the impairments caused by I/Q phase skew of the modulator, fiber Kerr nonlinearity and ASE noise are greatly mitigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi-Gang Feng
2012-05-31
The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less
Cavitation During Superplastic Forming
Campbell, John
2011-01-01
Cavitation is the opening of pores during superplastic forming, typically at grain boundary triple points or on second phase grain boundary particles during slip of grain boundaries. Theories for the initiation of cavitation are reviewed. It seems that cavitation is unlikely to occur by processes intrinsic to metals such as dislocation mechanisms or point defect condensation. It is proposed that cavitation can only occur at non-bonded interfaces such as those introduced extrinsically (i.e., from the outside) during the original casting of the metal. These defects, known as oxide bifilms, are naturally introduced during pouring of the liquid metal, and are frozen into the solid, often pushed by dendritic growth into grain boundaries where they are difficult to detect because of their extreme thinness, often measured in nanometres. Their unbonded central interface acts as a crack and can initiate cavitation. Second phase precipitates probably do not nucleate and grow on grain boundaries but grow on bifilms in the boundaries, explaining the apparent association between boundaries, second phase particles and failure initiation. Improved melting and casting techniques can provide metal with reduced or zero bifilm population for which cavitation would not be possible, promising significant improvements in superplastic behaviour. PMID:28824142
Cavitation During Superplastic Forming.
Campbell, John
2011-07-08
Cavitation is the opening of pores during superplastic forming, typically at grain boundary triple points or on second phase grain boundary particles during slip of grain boundaries. Theories for the initiation of cavitation are reviewed. It seems that cavitation is unlikely to occur by processes intrinsic to metals such as dislocation mechanisms or point defect condensation. It is proposed that cavitation can only occur at non-bonded interfaces such as those introduced extrinsically (i.e., from the outside) during the original casting of the metal. These defects, known as oxide bifilms, are naturally introduced during pouring of the liquid metal, and are frozen into the solid, often pushed by dendritic growth into grain boundaries where they are difficult to detect because of their extreme thinness, often measured in nanometres. Their unbonded central interface acts as a crack and can initiate cavitation. Second phase precipitates probably do not nucleate and grow on grain boundaries but grow on bifilms in the boundaries, explaining the apparent association between boundaries, second phase particles and failure initiation. Improved melting and casting techniques can provide metal with reduced or zero bifilm population for which cavitation would not be possible, promising significant improvements in superplastic behaviour.
[delta] precipitation in an Al-Li-Cu-Mg-Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, K.S.; Mukhopadhyay, A.K.; Gokhale, A.A.
1994-05-15
AlLi based [delta] phase has an NaTl structure (i.e., a diamond cubic) with a = 0.637nm and is an equilibrium phase in the binary Al-Li system. In heat treated binary Al-Li alloys of appropriate compositions, [delta] phase can format grain boundaries as well as within the grains. In commercially heat treated Al-Li-Cu alloys of 2090 specification, the grain boundary precipitate [delta] of the binary Al-Li system is replaced by a combination of T[sub 2](Al[sub 6]CuLi[sub 3]), R(Al[sub 5]CuLi[sub 3]) and T[sub 1](Al[sub 2]CuLi) phases. In similarly treated Al-Li-Cu-Mg alloys of 8090 specification, the copper rich T[sub 2] phase, present inmore » the form of Al[sub 6]CuLi[sub 3[minus]x]Mg[sub x], is known to be the major coarse g.b. precipitate. The presence of an Al-Li-Cu-Mg based C phase at the grain boundaries of the commercially heat treated 8090 alloys has also been documented. No detailed study has yet been carried out to verify whether the [delta] phase can be present at the grain boundaries of the commercially heat treated 8090 alloys. Given the correlations between the g.b. phase morphology, g.b. phase chemistry, and the stress corrosion cracking resistance of these alloys, it is important that the g.b. precipitates be examined and identified. In this paper results using TEM are presented to show that the [delta] phase can be present in varying amounts at the grain boundaries in an 8090 alloy when heat treated in the temperature range of 170--350 C. An examination is also made of the [delta] precipitation within the grain to establish that the T[sub 2]/[alpha]-Al interface is the dominant nucleation site for the noncoherent [delta] phase.« less
Accurate diblock copolymer phase boundaries at strong segregations
NASA Astrophysics Data System (ADS)
Matsen, M. W.; Whitmore, M. D.
1996-12-01
We examine the lamellar/cylinder and cylinder/sphere phase boundaries for strongly segregated diblock copolymer melts using self-consistent-field theory (SCFT) and the standard Gaussian chain model. Calculations are performed with and without the conventional unit-cell approximation (UCA). We find that for strongly segregated melts, the UCA simply produces a small constant shift in each of the phase boundaries. Furthermore, the boundaries are found to be linear at strong segregations when plotted versus (χN)-1, which allows for accurate extrapolations to χN=∞. Our calculations using the UCA allow direct comparisons to strong-segregation theory (SST), which is accepted as the χN=∞ limit of SCFT. A significant discrepancy between the SST and SCFT results indicate otherwise, suggesting that the present formulation of SST is incomplete.
NASA Astrophysics Data System (ADS)
Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk
2015-11-01
We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.
Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.
2011-01-01
The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.
NASA Astrophysics Data System (ADS)
Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping
2017-09-01
Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.
Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.
Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B
2018-02-28
The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).
Sun, Enwei; Cao, Wenwu
2014-01-01
In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-xTixO3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe “PureWave”. The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239
Sun, Enwei; Cao, Wenwu
2014-08-01
In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1- x )Pb(Mg 1/3 Nb 2/3 )O 3 - x PbTiO 3 (PMN-PT), (1- x )Pb(Zn 1/3 Nb 2/3 )O 3 - x PbTiO 3 (PZN-PT) and (1- x - y )Pb(In 1/2 Nb 1/2 )O 3 - y Pb(Mg 1/3 Nb 2/3 )O 3 - x PbTiO 3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr 1- x Ti x O 3 (PZT) ceramics, the piezoelectric coefficient d 33 is increased by a factor of 5 and the electromechanical coupling factor k 33 is increased from < 70% to > 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe "PureWave". The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls.
Phase boundary of hot dense fluid hydrogen
Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo
2015-01-01
We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442
Boundary of Phase Co-existence in Docosahexaenoic Acid System
NASA Astrophysics Data System (ADS)
Lor, Chai; Hirst, Linda S.
2011-11-01
Docosahexaenoic acid (DHA) is a highly polyunsaturated fatty acid (PUFA) that exhibits six double bonds in the hydrocarbon tail. It induces phase separation of the membrane into liquid order and liquid disorder in mixtures containing other lipids with more saturation and cholesterol. With the utilization of atomic force microscopy, phase co-existence is observed in lipid mixtures containing DHA on a single supported lipid bilayer. The boundary of phase co-existence with decreasing DHA concentration is explored. The elastic force, thickness, and roughness of the different phases are investigated.
NASA Astrophysics Data System (ADS)
Zhang, Jialin; Chen, Qian; Li, Jiaji; Zuo, Chao
2017-02-01
The transport of intensity equation (TIE) is a powerful tool for direct quantitative phase retrieval in microscopy imaging. However, there may be some problems when dealing with the boundary condition of the TIE. The previous work introduces a hard-edged aperture to the camera port of the traditional bright field microscope to generate the boundary signal for the TIE solver. Under this Neumann boundary condition, we can obtain the quantitative phase without any assumption or prior knowledge about the test object and the setup. In this paper, we will demonstrate the effectiveness of this method based on some experiments in practice. The micro lens array will be used for the comparison of two TIE solvers results based on introducing the aperture or not and this accurate quantitative phase imaging technique allows measuring cell dry mass which is used in biology to follow cell cycle, to investigate cell metabolism, or to address effects of drugs.
Three-phase boundary length in solid-oxide fuel cells: A mathematical model
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.
NASA Astrophysics Data System (ADS)
Ambrose, T. K.; Wallis, D.; Hansen, L. N.; Waters, D. J.; Searle, M. P.
2017-12-01
Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. Such studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of of minor phases in strain localisation at plate boundaries remains to be tested by direct observation. To test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected across the base of the Oman-UAE ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily pyroxene), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength, suggesting that the fraction of strain accommodated by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate that viscosity and strain rate respectively decrease and increase by approximately an order of magnitude towards the base of the ophiolite. Our data indicate that this rheological weakening was primarily the result of more abundant secondary phases near the base of the ophiolite. Our interpretations are consistent with those of previous studies on experimentally deformed rocks and smaller-scale natural shear zones that indicate minor phases can strongly influence strain localisation. However, our study demonstrates for the first time that minor phases can control strain localisation at the scale of a major plate boundary.
NASA Astrophysics Data System (ADS)
Hiraga, T.; Miyazaki, T.; Tasaka, M.; Yoshida, H.
2011-12-01
Using very fine-grained aggregates of forsterite containing ~10vol% secondary mineral phase such as periclase and enstatite, we have been able to demonstrate their superplascity, that is, achievement of more than a few 100 % tensile strain (Hiraga et al. 2010). Superplastic deformation is commonly considered to proceed via grain boundary sliding (GBS) which results in grain switching in the samples. Hiraga et al. (2010) succeeded in detecting the operation of GBS from observing the coalescence of grains of secondary phase in superplastically deformed samples. The secondary phase pins the motion of grain boundaries of the primary phase; however, the reduction of the number of the grains of secondary phase due to their coalescence allows grain growth of the primary phase. We analyzed the relationships between grain size of the primary and secondary phases, between strain and grain size, and between strain and the number of coalesced grains in the superplastically deformed samples. The results supports participation of all the grains of the primary phase in grain switching process indicating that the grain boundary sliding accommodates almost entire strain during the deformation. Mechanical properties of these materials such as their stress and grain size exponents of 1-2 do not conflict this conclusion. We applied the relationships obtained from analyzing superplastic materials to the microstructure of the natural samples, which has been considered to have deformed via grain boundary sliding, that is, ultramylonite. The microstructure of greenschist-grade ultramylonite reported by Fliervoet et al. (1997) was analyzed. Distributions of the mineral phases (i.e., quartz, plagioclase, K-feldspar and biotite) show distinct coalescence of the same mineral phases in the direction almost perpendicular to the foliation of the rock. The number of coalesced grains indicates that the strain that rock experienced is > 2. [reference] Hiraga et al. (2010) Nature 468, 1091-1094; Fliervoet et al. (1997) Journal of Structural Geology 19, 1495-1520
NASA Astrophysics Data System (ADS)
Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.
2017-12-01
Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and structure allows for better modeling of the rheology of multiphase aggregates and better understanding of diffusive transport and storage of incompatible elements along grain boundaries.
NASA Astrophysics Data System (ADS)
Terasaki, Hidenori; Moriguchi, Koji; Tomio, Yusaku; Yamagishi, Hideki; Morito, Shigekazu
2017-12-01
The effect of carbon content on the density of variant-pair boundaries was investigated in 9Ni steel using an electron backscatter diffraction patterns method. The changes in the density of variant-pair boundaries were correlated with the nondestructive measured values of shear modulus of the austenite phase at the phase transformation point. Furthermore, the effective grain size was correlated with the shear modulus and the density of variant-pair boundaries. These relations are discussed from the viewpoint of self-accommodation of elastic strain energy and the nucleation event in the bainite and martensitic transformations.
Competing exchanges and spin-phonon coupling in Eu(1-x)R(x)MnO3 (R=Y, Lu).
Mota, D A; Barcelay, Y Romaguera; Tavares, P B; Chaves, M R; Almeida, A; Oliveira, J; Ferreira, W S; Moreira, J Agostinho
2013-06-12
This work is focused on the phase diagrams and physical properties of Y-doped and Lu-doped EuMnO3. The differences in the corresponding phase boundaries in the (x,T) phase diagram could be overcome by considering a scaling of the Y(3+) and Lu(3+) concentrations to the tolerance factor. This outcome evidences that the tolerance factor is in fact a more reliable representative of the lattice deformation induced by doping. The normalization of the phase boundaries using the tolerance factor corroborates previous theoretical outcomes regarding the key role of competitive FM and AFM exchanges in determining the phase diagrams of manganite perovskites. However, significant differences in the nature and number of phases at low temperatures and concentrations could not be explained by just considering the normalization to the tolerance factor. The vertical phase boundary observed just for Lu-doped EuMnO3, close to 10% Lu, is understood by considering a low temperature Peierls-type spin-phonon coupling, which stabilizes the AFM-4 phase in Lu-doped EuMnO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Brien, C. J.; Barr, C. M.; Price, P. M.
There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less
O’Brien, C. J.; Barr, C. M.; Price, P. M.; ...
2017-10-31
There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions
NASA Astrophysics Data System (ADS)
Liu, H.; Leng, W.
2017-12-01
Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.
NASA Astrophysics Data System (ADS)
Jin, Hyung-Ha; Lim, Sangyeob; Kwon, Junhyun
2017-10-01
Microstructural changes in austenitic stainless steel caused by hydrogen ion irradiation were investigated using transmission electron microscopy (TEM). It has been confirmed that the irradiation induced the formation of martensite along the grain boundary; the martensite phase exhibited a crystal orientation relationship with the adjacent austenite phase. The results of this study also indicate that the concentration of Cr in the martensite phase is lower compared to that in the austenite matrix. The TEM results showed the development of asymmetric radiation-induced segregation (RIS) near the grain boundary, which leads to local changes in the chemical composition such as reduction of Cr near the grain boundary. The asymmetric RIS serves as a prerequisite for the formation of the martensite under hydrogen irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baidakov, Vladimir G., E-mail: baidakov@itp.uran.ru; Tipeev, Azat O.
The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting linemore » comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.« less
Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory
NASA Astrophysics Data System (ADS)
Tuinier, R.; de Kruif, C. G.
1999-05-01
Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.
Equilibrium polymerization models of re-entrant self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-04-01
As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.
Role of Hf on Phase Formation in Ti45Zr(38-x)Hf(x)Ni17 Liquids and Solids
NASA Technical Reports Server (NTRS)
Wessels, V.; Sahu, K. K.; Gangopadhyay, A. K.; Huett, V. T.; Canepari, S.; Goldman, A. I.; Hyers, R. W.; Kramer, M. J.; Rogers, J. R.; Kelton, K. F.;
2008-01-01
Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti45Zr38-xHfxNi17 alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 ) FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue.
Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
Park, Tuson; Ronning, F; Yuan, H Q; Salamon, M B; Movshovich, R; Sarrao, J L; Thompson, J D
2006-03-02
With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.
Solid-state diffusion-controlled growth of the phases in the Au-Sn system
NASA Astrophysics Data System (ADS)
Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke
2018-01-01
The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.
The deconfining phase transition in and out of equilibrium
NASA Astrophysics Data System (ADS)
Bazavov, Oleksiy
Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2013-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor)
2017-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, water, or a water-based lubricant. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Harry F., Jr. (Inventor)
2016-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
Holographic P -wave superconductors in 1 +1 dimensions
NASA Astrophysics Data System (ADS)
Alkac, Gokhan; Chakrabortty, Shankhadeep; Chaturvedi, Pankaj
2017-10-01
We study (1 +1 )-dimensional P -wave holographic superconductors described by three- dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3/CFT2 correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled (1 +1 )-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate which breaks spontaneously both the U (1 ) and S O (1 ,1 ) symmetries. We numerically compute both the free energy and the ac conductivity for the superconducting phase of the boundary field theory. Our numerical computations clearly establish that the superconducting phase of the boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.
Phase-field model with plastic flow for grain growth in nanocrystalline material
NASA Astrophysics Data System (ADS)
Steinbach, Ingo; Song, Xiaoyan; Hartmaier, Alexander
2010-01-01
A phase-field model is presented which considers the accumulation of structural defects in grain boundaries by an isotropic eigenstrain associated with the grain boundaries. It is demonstrated that the elastic energy caused by dilatation of the grain boundary with respect to the bulk crystal contributes largely to the grain boundary energy. The sign of this contribution can be both positive and negative dependent on the local stress state in the grain boundary. Self-diffusion of atoms is taken into account to relax the stress caused by the dilatation of the grain boundary. Application of the model to discontinuous grain growth in pure nanocrystalline cobalt material is presented. Linear grain growth is found in the nanocrystalline state, which is explained by the interpretation of grain boundary motion as a diffusive process defining an upper limit of the grain boundary velocity independent of the grain boundary curvature but dependent on temperature. The transition to regular grain growth at a critical temperature, as observed experimentally, is explained by the drop of theoretical grain boundary velocity due to its mean curvature during coarsening of the nanograin structure below the maximum velocity.
Classical topological paramagnetism
NASA Astrophysics Data System (ADS)
Bondesan, R.; Ringel, Z.
2017-05-01
Topological phases of matter are one of the hallmarks of quantum condensed matter physics. One of their striking features is a bulk-boundary correspondence wherein the topological nature of the bulk manifests itself on boundaries via exotic massless phases. In classical wave phenomena, analogous effects may arise; however, these cannot be viewed as equilibrium phases of matter. Here, we identify a set of rules under which robust equilibrium classical topological phenomena exist. We write simple and analytically tractable classical lattice models of spins and rotors in two and three dimensions which, at suitable parameter ranges, are paramagnetic in the bulk but nonetheless exhibit some unusual long-range or critical order on their boundaries. We point out the role of simplicial cohomology as a means of classifying, writing, and analyzing such models. This opens an experimental route for studying strongly interacting topological phases of spins.
Topological Luttinger liquids from decorated domain walls
NASA Astrophysics Data System (ADS)
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Local phase space and edge modes for diffeomorphism-invariant theories
NASA Astrophysics Data System (ADS)
Speranza, Antony J.
2018-02-01
We discuss an approach to characterizing local degrees of freedom of a subregion in diffeomorphism-invariant theories using the extended phase space of Donnelly and Freidel [36]. Such a characterization is important for defining local observables and entanglement entropy in gravitational theories. Traditional phase space constructions for subregions are not invariant with respect to diffeomorphisms that act at the boundary. The extended phase space remedies this problem by introducing edge mode fields at the boundary whose transformations under diffeomorphisms render the extended symplectic structure fully gauge invariant. In this work, we present a general construction for the edge mode symplectic structure. We show that the new fields satisfy a surface symmetry algebra generated by the Noether charges associated with the edge mode fields. For surface-preserving symmetries, the algebra is universal for all diffeomorphism-invariant theories, comprised of diffeomorphisms of the boundary, SL(2, ℝ) transformations of the normal plane, and, in some cases, normal shearing transformations. We also show that if boundary conditions are chosen such that surface translations are symmetries, the algebra acquires a central extension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, David I., E-mail: d.i.woodward@warwick.ac.uk; Lees, Martin R.; Thomas, Pam A.
2012-08-15
The phase transitions between various structural modifications of the natrotantite-structured system xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} have been investigated and a phase diagram constructed as a function of temperature and composition. This shows three separate phase transition types: (1) paraelectric-ferroelectric, (2) rhombohedral-monoclinic and (3) a phase transition within the ferroelectric rhombohedral zone between space groups R3c and R3. The parent structure for the entire series has space group R3{sup Macron }c. Compositions with x>0.75 are rhombohedral at all temperatures whereas compositions with x<0.75 are all monoclinic at room temperature and below. At x=0.75, rhombohedral and monoclinic phases coexistmore » with the phase boundary below room temperature being virtually temperature-independent. The ferroelectric phase boundary extends into the monoclinic phase field. No evidence was found for the R3-R3c phase boundary extending into the monoclinic phase field and it is concluded that a triple point is formed. - Graphical abstract: Phase diagram for xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} solid solution showing changes in crystal symmetry as a function of temperature and composition. The crystal structure is depicted. Highlights: Black-Right-Pointing-Triangle Ferroelectric, rhombohedral Ag{sub 2}Nb{sub 4}O{sub 11} in solid solution with monoclinic Na{sub 2}Nb{sub 4}O{sub 11}. Black-Right-Pointing-Triangle Three phase boundaries were studied as a function of composition and temperature. Black-Right-Pointing-Triangle Both rhombohedral and monoclinic variants exhibit ferroelectricity. The parent phase of the series has space group R3{sup Macron }c.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach providedmore » in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available.« less
Microstructural Evaluations of Baseline HSR/EPM Disk Alloys
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Garg, Anita; Ellis, David L.
2004-01-01
Six alloys representing two classes of powder metallurgy nickel-based superalloys were examined by transmission electron microscopy (TEM) and phase extraction. Alloys KM4, CH98, IN-100 and 456 are based on a Ni-18Co-12Cr composition while alloys Rene' 88 DT and SR 3 have lower Al and Co and higher Cr contents. The lambda size distributions were determined from quantitative image analysis of the TEM images. The volume fraction of lambda and carbides and the composition of the phases were determined by a combination of phase extraction and TEM. The results showed many similarities in lambda size distributions, grain boundary serrations, and grain boundary carbide frequencies between alloys KM4, CH98, 456, Rene' 88 DT and SR 3 when heat treated to give an approximate grain size of ASTM 6. The density of grain boundary carbides in KM4 was shown to substantially increase as the grain size increased. IN-100 and 456 subjected to a serration cooling heat treatment had much more complex lambda size distributions with very large intergranular and intragranular secondary lambda as well as finer than average cooling and aging lambda. The grain boundary carbides in IN-100 were similar to the other alloys, but 456 given the serration cooling heat treatment had a more variable density of grain boundary carbides. Examination of the phases extracted from the matrix showed that there were significant differences in the phase chemistries and elemental partitioning ratios between the various alloys.
Phase separation in the six-vertex model with a variety of boundary conditions
NASA Astrophysics Data System (ADS)
Lyberg, I.; Korepin, V.; Ribeiro, G. A. P.; Viti, J.
2018-05-01
We present numerical results for the six-vertex model with a variety of boundary conditions. Adapting an algorithm for domain wall boundary conditions, proposed in the work of Allison and Reshetikhin [Ann. Inst. Fourier 55(6), 1847-1869 (2005)], we examine some modifications of these boundary conditions. To be precise, we discuss partial domain wall boundary conditions, reflecting ends, and half turn boundary conditions (domain wall boundary conditions with half turn symmetry). Dedicated to the memory of Ludwig Faddeev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, T.; Setyawan, W.; Kurtz, R. J.
Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.
Intra-variant substructure in Ni–Mn–Ga martensite: Conjugation boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muntifering, B.; Pond, R. C.; Kovarik, L.
2014-06-01
The microstructure of a Ni–Mn–Ga alloy in the martensitic phase was investigated using transmission electron microscopy. Inter-variant twin boundaries were observed separating non-modulated tetragonal martensite variants. In addition, intra-variant boundary structures, referred to here as “conjugation boundaries”, were also observed. We propose that conjugation boundaries originate at the transformation interface between austenite and a nascent martensite variant. In the alloy studied, deformation twinning was observed, consistent with being the mode of lattice-invariant deformation, and this can occur on either of two crystallographically equivalent conjugate View the MathML source{101}(101⁻) twinning systems: conjugation boundaries separate regions within a single variant in whichmore » the active modes were distinct. The defect structure of conjugation boundaries and the low-angle of misorientation across them are revealed in detail using high-resolution microscopy. Finally, we anticipate that the mobility of such boundaries is lower than that of inter-variant boundaries, and is therefore likely to significantly affect the kinetics of deformation in the martensitic phase.« less
NASA Astrophysics Data System (ADS)
Ambrose, Tyler K.; Wallis, David; Hansen, Lars N.; Waters, Dave J.; Searle, Michael P.
2018-06-01
Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. These small-scale studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of minor phases in strain localisation at an actual plate boundary remains to be tested by direct observation. In order to test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected along a ∼1 km transect across the base of the Oman-United Arab Emirates (UAE) ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily orthopyroxene, as well as clinopyroxene, hornblende, and spinel), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength (both of which generally decrease towards the metamorphic sole), suggesting that the fraction of strain produced by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions, the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate an order of magnitude decrease in the viscosity of olivine towards the base of the ophiolite, which suggests strain was localised near the subduction interface. Our data indicate that this rheological weakening was primarily the result of more abundant minor phases near the base of the ophiolite. Our interpretations are consistent with those of previous studies on experimentally deformed rocks and smaller-scale natural shear zones that indicate minor phases can exert the primary control on strain localisation. However, our study demonstrates for the first time that minor phases can control strain localisation at the scales relevant to a major plate boundary.
NASA Astrophysics Data System (ADS)
Li, Chun-Xia; Luo, Hu-Bin; Hu, Qing-Miao; Yang, Rui; Yin, Fu-Xing; Umezawa, Osamu; Vitos, Levente
2013-04-01
The crystallographic structure and stability of the α″ phase relative to the α and β phases in Ti-x M (M=Ta, Nb, V, Mo) alloys are investigated by using the first-principles exact muffin-tin orbital method in combination with the coherent potential approximation. We show that, with increasing concentration of the alloying elements, the structure of the orthorhombic-α″ phase evolutes from the hcp-α to the bcc-β phase, i.e., the lattice parameters b/a and c/a as well as the basal shuffle y decreases from those corresponding to the α phase to those of the β phase. The compositional α/α″ and α″/β phase boundaries are determined by comparing the total energies of the phases. The predicted α/α″ phase boundaries are about 10.2, 10.5, 11.5, 4.5 at% for Ti-V, Ti-Nb, Ti-Ta, and Ti-Mo, respectively, in reasonable agreement with experiments. The α″/β phase boundaries are higher than the experimental values, possibly due to the absence of temperature effect in the first-principles calculations. Analyzing the electronic density of states, we propose that the stability of the α″ phase is controlled by the compromise between the strength of the covalent and metallic bonds.
A generalized expression for lag-time in the gas-phase permeation of hollow tubes
NASA Technical Reports Server (NTRS)
Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.
1975-01-01
A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.
Thermal regulation of methane hydrate dissociation: Implications for gas production models
Circone, S.; Kirby, S.H.; Stern, L.A.
2005-01-01
Thermal self-regulation of methane hydrate dissociation at pressure, temperature conditions along phase boundaries, illustrated by experiment in this report, is a significant effect with potential relevance to gas production from gas hydrate. In surroundings maintained at temperatures above the ice melting point, the temperature in the vicinity of dissociating methane hydrate will decrease because heat flow is insufficient to balance the heat absorbed by the endothermic reaction: CH4??nH2O (s) = CH4 (g) + nH2O (l). Temperature decreases until either all of the hydrate dissociates or a phase boundary is reached. At pressures above the quadruple point, the temperature-limiting phase boundary is that of the dissociation reaction itself. At lower pressures, the minimum temperature is limited by the H2O solid/liquid boundary. This change in the temperature-limiting phase boundary constrains the pressure, temperature conditions of the quadruple point for the CH4-H2O system to 2.55 ?? 0.02 MPa and 272.85 ?? 0.03 K. At pressures below the quadruple point, hydrate dissociation proceeds as the liquid H2O produced by dissociation freezes. In the laboratory experiments, dissociation is not impeded by the formation of ice byproduct per se; instead rates are proportional to the heat flow from the surroundings. This is in contrast to the extremely slow dissociation rates observed when surrounding temperatures are below the H2O solid/liquid boundary, where no liquid water is present. This "anomalous" or "self" preservation behavior, most pronounced near 268 K, cannot be accessed when surrounding temperatures are above the H2O solid/liquid boundary. ?? 2005 American Chemical Society.
Cai, Xiaoming; Lang, Li-Jun; Chen, Shu; Wang, Yupeng
2013-04-26
We study the competition of disorder and superconductivity for a one-dimensional p-wave superconductor in incommensurate potentials. With the increase in the strength of the incommensurate potential, the system undergoes a transition from a topological superconducting phase to a topologically trivial localized phase. The phase boundary is determined both numerically and analytically from various aspects and the topological superconducting phase is characterized by the presence of Majorana edge fermions in the system with open boundary conditions. We also calculate the topological Z2 invariant of the bulk system and find it can be used to distinguish the different topological phases even for a disordered system.
Correa, Alfredo A; Bonev, Stanimir A; Galli, Giulia
2006-01-31
At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at approximately 850 GPa and approximately 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, molten carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.
Microstructure control of Al-Cu films for improved electromigration resistance
Frear, D.R.; Michael, J.R.; Romig, A.D. Jr.
1994-04-05
A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200 C to 300 C for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H[sub 2] in N[sub 2] by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200 C and 300 C have [theta]-phase Al[sub 2] Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of [theta]-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the [theta]-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process. 5 figures.
Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia
2006-01-23
At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at ≈ 850 GPa and ≈ 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, moltenmore » carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Lastly, our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.« less
Criteria for guaranteed breakdown in two-phase inhomogeneous bodies
NASA Astrophysics Data System (ADS)
Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.
2017-08-01
Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Hao; Chason, Eric; Guduru, Pradeep R.
Here, we have previously observed a large transient stress in Sn film anodes at the beginning of the Sn-Li 2Sn 5 phase transformation. To understand this behavior, we use numerical modeling to simulate the kinetics of the 1-D moving boundary and Li diffusion in the Sn anodes. A mixture of diffusion-controlled and interface-controlled kinetics is found. The Li concentration in the Li 2Sn 5 phase remains near a steady-state profile as the phase boundary propagates, whereas the Li diffusion in Sn is more complicated. Li continuously diffuses into the Sn layer and produces a supersaturation; the Li can then diffusemore » toward the Sn/Li 2Sn 5 interface and contribute to further phase transformation. Finally, the evolution of Li concentration in the Sn induces strain which involves rate-dependent plasticity and elastic unloading, resulting in the complex stress evolution that is observed. In the long term, the measured stress is dominated by the stress in the growing Li 2Sn 5 phase.« less
Chen, Chun-Hao; Chason, Eric; Guduru, Pradeep R.
2017-08-02
Here, we have previously observed a large transient stress in Sn film anodes at the beginning of the Sn-Li 2Sn 5 phase transformation. To understand this behavior, we use numerical modeling to simulate the kinetics of the 1-D moving boundary and Li diffusion in the Sn anodes. A mixture of diffusion-controlled and interface-controlled kinetics is found. The Li concentration in the Li 2Sn 5 phase remains near a steady-state profile as the phase boundary propagates, whereas the Li diffusion in Sn is more complicated. Li continuously diffuses into the Sn layer and produces a supersaturation; the Li can then diffusemore » toward the Sn/Li 2Sn 5 interface and contribute to further phase transformation. Finally, the evolution of Li concentration in the Sn induces strain which involves rate-dependent plasticity and elastic unloading, resulting in the complex stress evolution that is observed. In the long term, the measured stress is dominated by the stress in the growing Li 2Sn 5 phase.« less
NASA Astrophysics Data System (ADS)
Sahlaoui, Habib; Sidhom, Habib
2013-07-01
The phase precipitation in industrial AISI 316L stainless steel during aging for up to 80,000 hours between 823 K and 1073 K (550 °C and 800 °C) has been studied using transmission electron microscopy, scanning transmission electron microscopy, and carbon replica energy-dispersive X-ray microanalysis. Three phases were identified: Chromium carbides (M23C6), Laves phase ( η), and σ-phase (Fe-Cr). M23C6 carbide precipitation occurred firstly and was followed by the η and σ-phases at grain boundaries when the aging temperature is higher than 873 K (600 °C). Precipitation and growth of M23C6 create chromium depletion zones at the grain boundaries and also retard the σ-phase formation. Thus, the σ-phase is controlled by the kinetic of chromium bulk diffusion and can appear only when the chromium reaches, at grain boundaries and at the M23C6/ γ and M23C6/ η/ γ interfaces, content higher than a critical value obtained by self-healing. An analytical model, based on equivalent chromium content, has been established in this study and successfully validated to predict the time-temperature-precipitation diagram of the σ-phase. The obtained diagram is in good agreement with the experimental results.
The Pliocene Model Intercomparison Project - Phase 2
NASA Astrophysics Data System (ADS)
Haywood, Alan; Dowsett, Harry; Dolan, Aisling; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark; Hunter, Stephen; Lunt, Daniel; Pound, Matthew; Salzmann, Ulrich
2016-04-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate, and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilised for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilise state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land/ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.
Lattice Boltzmann simulations of multiple-droplet interaction dynamics.
Zhou, Wenchao; Loney, Drew; Fedorov, Andrei G; Degertekin, F Levent; Rosen, David W
2014-03-01
A lattice Boltzmann (LB) formulation, which is consistent with the phase-field model for two-phase incompressible fluid, is proposed to model the interface dynamics of droplet impingement. The interparticle force is derived by comparing the macroscopic transport equations recovered from LB equations with the governing equations of the continuous phase-field model. The inconsistency between the existing LB implementations and the phase-field model in calculating the relaxation time at the phase interface is identified and an approximation is proposed to ensure the consistency with the phase-field model. It is also shown that the commonly used equilibrium velocity boundary for the binary fluid LB scheme does not conserve momentum at the wall boundary and a modified scheme is developed to ensure the momentum conservation at the boundary. In addition, a geometric formulation of the wetting boundary condition is proposed to replace the popular surface energy formulation and results show that the geometric approach enforces the prescribed contact angle better than the surface energy formulation in both static and dynamic wetting. The proposed LB formulation is applied to simulating droplet impingement dynamics in three dimensions and results are compared to those obtained with the continuous phase-field model, the LB simulations reported in the literature, and experimental data from the literature. The results show that the proposed LB simulation approach yields not only a significant speed improvement over the phase-field model in simulating droplet impingement dynamics on a submillimeter length scale, but also better accuracy than both the phase-field model and the previously reported LB techniques when compared to experimental data. Upon validation, the proposed LB modeling methodology is applied to the study of multiple-droplet impingement and interactions in three dimensions, which demonstrates its powerful capability of simulating extremely complex interface phenomena.
Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates
NASA Astrophysics Data System (ADS)
Cross, A. J.; Skemer, P. A.
2016-12-01
Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, D. V., E-mail: Dmitri.Alexandrov@usu.ru; Ivanov, A. A.
2009-05-15
The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square rootmore » of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.« less
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
Collective Traffic-like Movement of Ants on a Trail: Dynamical Phases and Phase Transitions
NASA Astrophysics Data System (ADS)
Kunwar, Ambarish; John, Alexander; Nishinari, Katsuhiro; Schadschneider, Andreas; Chowdhury, Debashish
2004-11-01
The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.
Boundary perturbations coupled to core 3/2 tearing modes on the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Tobias, B.; Yu, L.; Domier, C. W.; Luhmann, N. C., Jr.; Austin, M. E.; Paz-Soldan, C.; Turnbull, A. D.; Classen, I. G. J.; the DIII-D Team
2013-09-01
High confinement (H-mode) discharges on the DIII-D tokamak are routinely subject to the formation of long-lived, non-disruptive magnetic islands that degrade confinement and limit fusion performance. Simultaneous, 2D measurement of electron temperature fluctuations in the core and edge regions allows for reconstruction of the radially resolved poloidal mode number spectrum and phase of the global plasma response associated with these modes. Coherent, n = 2 excursions of the plasma boundary are found to be the result of coupling to an n = 2, kink-like mode which arises locked in phase to the 3/2 island chain. This coupling dictates the relative phase of the displacement at the boundary with respect to the tearing mode. This unambiguous phase relationship, for which no counter-examples are observed, is presented as a test for modeling of the perturbed fields to be expected outside the confined plasma.
NASA Astrophysics Data System (ADS)
Li, M. P.; Sun, Q. P.
2018-01-01
We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2015-01-01
Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.
Exact phase boundaries and topological phase transitions of the X Y Z spin chain
NASA Astrophysics Data System (ADS)
Jafari, S. A.
2017-07-01
Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.
Quantum phase transitions between a class of symmetry protected topological states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming
2015-07-01
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice modelsmore » as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.« less
Quantum phase transitions between a class of symmetry protected topological states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Jiang, Hong -Chen; Lu, Yuan -Ming
2015-04-30
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, H d+1(G,U(1)), contains at least one Z 2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z 2n or Z groups can be induced on the boundary of a (d+1)-dimensional G x Z T 2-symmetric SPT by a Z T 2 symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realizedmore » in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.« less
PHASEGO: A toolkit for automatic calculation and plot of phase diagram
NASA Astrophysics Data System (ADS)
Liu, Zhong-Li
2015-06-01
The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.
Microstructural study of the polymorphic transformation in pentacene thin films.
Murakami, Yosuke; Tomiya, Shigetaka; Koshitani, Naoki; Kudo, Yoshihiro; Satori, Kotaro; Itabashi, Masao; Kobayashi, Norihito; Nomoto, Kazumasa
2009-10-02
We have observed, by high-resolution cross-sectional transmission electron microscopy, the first direct evidence of polymorphic transformation in pentacene thin films deposited on silicon oxide substrates. Polymorphic transformation from the thin-film phase to the bulk phase occurred preferentially near polycrystalline grain boundaries, which exhibit concave surfaces. This process is thought to be driven by compressive stress caused by the grain boundaries. In addition to this stress, lattice mismatch between the two phases also results in structural defect formation.
Shassere, Benjamin; Yamamoto, Yukinori; Poplawsky, Jonathan; ...
2017-08-07
We have develooped a new Fe-Cr-Al (FCA) alloy system with good oxidation resistance and creep strength at high temperature. The alloy system is a candidate for use in future fossil-fueled power plants. The creep strength of these alloys at 973 K (700 °C) was found to be comparable with traditional 9 pct Cr ferritic–martensitic steels. A few FCA alloys with general composition of Fe-30Cr-3Al-.2Si-xNb (x = 0, 1, or 2) with a ferrite matrix and Fe 2Nb-type Laves precipitates were prepared. The detailed microstructural characterization of samples, before and after creep rupture testing, indicated precipitation of the Laves phase withinmore » the matrix, Laves phase at the grain boundaries, and a 0.5 to 1.5 μm wide precipitate-free zone (PFZ) parallel to all the grain boundaries. In these alloys, the areal fraction of grain boundary Laves phase and the width of the PFZ controlled the cavitation nucleation and eventual grain boundary ductile failure. Finally, we used a phenomenological model to compare the creep strain rates controlled by the effects of the particles on the dislocations within the grain and at grain boundaries. (The research sponsored by US-DOE, Office of Fossil Energy, the Crosscutting Research Program).« less
Electronic structure and switching behavior of the metastable silicene domain boundary
NASA Astrophysics Data System (ADS)
Oh, Youngtek; Cho, Yeonchoo; Kwon, Hyeokshin; Lee, Junsu; Jeon, Insu; Ko, Wonhee; Kim, Hyo Won; Ku, JiYeon; Kim, Gunn; Suh, Hwansoo; Hwang, Sung Woo
2017-06-01
Silicene, a silicon allotrope with a buckled honeycomb lattice, has been extensively studied in the search for materials with graphene-like properties. Here, we study the domain boundaries of a silicene 4 × 4 superstructure on an Ag(111) surface at the atomic resolution using scanning tunneling microscopy (STM) and spectroscopy (STS) along with density functional theory calculations. The silicene domain boundaries (β-phases) are formed at the interface between misaligned domains (α-phases) and show a bias dependence, forming protrusions or depressions as the sample bias changes. In particular, the STM topographs of the silicene-substrate system at a bias of ˜2.0 V show brightly protruding domain boundaries, which can be explained by an energy state originating from the Si 3s and 3pz orbitals. In addition, the topographs depicting the vicinity of the domain boundaries show that the structure does not follow the buckled geometry of the atomic ball-and-stick model. Inside the domain, STS data showed a step-up at ˜0.4 V, which originated from the Si 3p orbitals. We found this step-up to have shifted, which may be attributed to the strain effect at the interface regions between silver and silicene and between the domain and its boundary upon performing spatially resolved STS measurements. The metastable characteristic of the domain boundary (β-phase) causes changes, such as creation or annihilation, in the buckling structures (switching behavior). The observed low activation energy for the buckling change between distinct states may find applications in the electronic control of properties related to domain boundary structures in silicene.
Zero-G experiments in two-phase fluids flow regimes
NASA Technical Reports Server (NTRS)
Heppner, D. B.; King, C. D.; Littles, J. W.
1975-01-01
The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.
Localizing sources of acoustic emission during the martensitic transformation
NASA Astrophysics Data System (ADS)
Niemann, R.; Kopeček, J.; Heczko, O.; Romberg, J.; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.
2014-06-01
Acoustic avalanches are a general feature of solids under stress, e.g., evoked by external compression or arising from internal processes like martensitic phase transformations. From integral measurements, it is usually concluded that nucleation, phase boundary pinning, or interface incompatibilities during this first-order phase transition all may generate acoustic emission. This paper studies the local sources of acoustic emission to enlight the microscopic mechanisms. From two-dimensional spatially resolved acoustic emission measurement and simultaneous optical observation of the surface, we can identify microstructural events at the phase boundary that lead to acoustic emission. A resolution in the 100-μm range was reached for the location of acoustic emission sources on a coarse-grained Ni-Mn-Ga polycrystal. Both, the acoustic activity and the size distribution of the microstructural transformation events, exhibit power-law behavior. The origin of the acoustic emission are elastically incompatible areas, such as differently oriented martensitic plates that meet each other, lamellae growing up to grain boundaries, and grain boundaries in proximity to transforming grains. Using this result, we propose a model to explain the decrease of the critical exponent under a mechanical stress or magnetic field.
Zuo, Chao; Chen, Qian; Li, Hongru; Qu, Weijuan; Asundi, Anand
2014-07-28
Boundary conditions play a crucial role in the solution of the transport of intensity equation (TIE). If not appropriately handled, they can create significant boundary artifacts across the reconstruction result. In a previous paper [Opt. Express 22, 9220 (2014)], we presented a new boundary-artifact-free TIE phase retrieval method with use of discrete cosine transform (DCT). Here we report its experimental investigations with applications to the micro-optics characterization. The experimental setup is based on a tunable lens based 4f system attached to a non-modified inverted bright-field microscope. We establish inhomogeneous Neumann boundary values by placing a rectangular aperture in the intermediate image plane of the microscope. Then the boundary values are applied to solve the TIE with our DCT-based TIE solver. Experimental results on microlenses highlight the importance of boundary conditions that often overlooked in simplified models, and confirm that our approach effectively avoid the boundary error even when objects are located at the image borders. It is further demonstrated that our technique is non-interferometric, accurate, fast, full-field, and flexible, rendering it a promising metrological tool for the micro-optics inspection.
Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N
2017-06-07
An empirical model for the evolution of β-phase (Mg 2 Al 3 ) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.
Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng
2015-01-01
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells. PMID:26066315
Grain boundaries structures and wetting in doped silicon, nickel and copper
NASA Astrophysics Data System (ADS)
Meshinchi Asl, Kaveh
This thesis reports a series of fundamental investigations of grain boundary wetting, adsorption and structural (phases) transitions in doped Ni, Cu and Si with technological relevance to liquid metal embrittlement, liquid metal corrosion and device applications. First, intrinsically ductile metals are prone to catastrophic failure when exposed to certain liquid metals, but the atomic level mechanism for this effect is not fully understood. A nickel sample infused with bismuth atoms was characterized and a bilayer interfacial phase that is the underlying cause of embrittlement was observed. In a second related study, we showed that addition of minor impurities can significantly enhance the intergranular penetration of bismuth based liquids in polycrystalline nickel and copper, thereby increasing the liquid metal corrosion rates. Furthermore, we extended a concept that was initially proposed in the Rice-Wang model for grain boundary embrittlement to explain our observations of the impurity-enhanced intergranular penetration of liquid metals. Finally, a grain-boundary transition from a bilayer to an intrinsic is observed in the Si-Au system. This observation directly shows that a grain boundary can exhibit a first-order "phase" transition, which often implies abrupt changes in properties.
NASA Astrophysics Data System (ADS)
Halios, Christos H.; Barlow, Janet F.
2018-03-01
The study of the boundary layer can be most difficult when it is in transition and forced by a complex surface, such as an urban area. Here, a novel combination of ground-based remote sensing and in situ instrumentation in central London, UK, is deployed, aiming to capture the full evolution of the urban boundary layer (UBL) from night-time until the fully-developed convective phase. In contrast with the night-time stable boundary layer observed over rural areas, the night-time UBL is weakly convective. Therefore, a new approach for the detection of the morning-transition and rapid-growth phases is introduced, based on the sharp, quasi-linear increase of the mixing height. The urban morning-transition phase varied in duration between 0.5 and 4 h and the growth rate of the mixing layer during the rapid-growth phase had a strong positive relationship with the convective velocity scale, and a weaker, negative relationship with wind speed. Wind shear was found to be higher during the night-time and morning-transition phases than the rapid-growth phase and the shear production of turbulent kinetic energy near the mixing-layer top was around six times larger than surface shear production in summer, and around 1.5 times larger in winter. In summer under low winds, low-level jets dominated the UBL, and shear production was greater than buoyant production during the night-time and the morning-transition phase near the mixing-layer top. Within the rapid-growth phase, buoyant production dominated at the surface, but shear production dominated in the upper half of the UBL. These results imply that regional flows such as low-level jets play an important role alongside surface forcing in determining UBL structure and growth.
A model of irreversible jam formation in dense traffic
NASA Astrophysics Data System (ADS)
Brankov, J. G.; Bunzarova, N. Zh.; Pesheva, N. C.; Priezzhev, V. B.
2018-03-01
We study an one-dimensional stochastic model of vehicular traffic on open segments of a single-lane road of finite size L. The vehicles obey a stochastic discrete-time dynamics which is a limiting case of the generalized Totally Asymmetric Simple Exclusion Process. This dynamics has been previously used by Bunzarova and Pesheva (2017) for an one-dimensional model of irreversible aggregation. The model was shown to have three stationary phases: a many-particle one, MP, a phase with completely filled configuration, CF, and a boundary perturbed MP+CF phase, depending on the values of the particle injection (α), ejection (β) and hopping (p) probabilities. Here we extend the results for the stationary properties of the MP+CF phase, by deriving exact expressions for the local density at the first site of the chain and the probability P(1) of a completely jammed configuration. The unusual phase transition, characterized by jumps in both the bulk density and the current (in the thermodynamic limit), as α crosses the boundary α = p from the MP to the CF phase, is explained by the finite-size behavior of P(1). By using a random walk theory, we find that, when α approaches from below the boundary α = p, three different regimes appear, as the size L → ∞: (i) the lifetime of the gap between the rightmost clusters is of the order O(L) in the MP phase; (ii) small jams, separated by gaps with lifetime O(1) , exist in the MP+CF phase close to the left chain boundary; and (iii) when β = p, the jams are divided by gaps with lifetime of the order O(L 1 / 2) . These results are supported by extensive Monte Carlo calculations.
Switching moving boundary models for two-phase flow evaporators and condensers
NASA Astrophysics Data System (ADS)
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Grain boundary diffusion behaviors in hot-deformed Nd2Fe14B magnets by PrNd-Cu low eutectic alloys
NASA Astrophysics Data System (ADS)
Tang, Xu; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Yin, Wenzong; Lee, Don; Yan, Aru
2018-01-01
High coercivity of hot-deformed Nd2Fe14B magnets was obtained by grain boundary diffusion. Comparable squareness and similar magnetic properties for samples diffusing from side and pole surfaces show little discrepancies if quantities of the infiltrated PrNd-Cu low eutectic alloys is enough to obtain sufficient diffusion. However, the microstructures and higher characteristic peak ratios show preferable orientation of grains near surfaces of the sample diffused from side surfaces than that from pole surfaces. Amorphous Nd-rich phases and crystal Fe-rich phases were both observed in the diffused magnets. The enhancement of coercivity is considered to be resulted from grain boundary optimization and magnetic isolation which is caused by the thickened nonmagnetic intergranular phases.
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1988-01-01
This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.
NASA Astrophysics Data System (ADS)
Bumiller, Elissa
The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results, quantitative insights into the IGC susceptibility of AA5xxx alloys is gained. As the aspect ratio increases, the concentration of metal ions in the fissure solution increases, thus driving up the ability to form corrosion product, whether precipitate or gelatinous product. As the theta beta increases, the IGC rates increase for a constant potential. By a combination of aspect ratio, φp, thetabeta, and likely fissure chemistry, the potential drop within the fissure is fully described and the IGC penetration rate can be predicted.
Mechanisms of devitrification of grain boundary glassy phases in Si3N4 materials
NASA Technical Reports Server (NTRS)
Hench, L. L.
1982-01-01
Changes in the grain boundary (g.b.) phases of Si3N4 are analyzed, the effects of composition and thermal history on devitrification of the g.b. phases are determined, devitrification of the g.b. phases of Si3N are related to mechanical behavior and oxidation sensitivity of the material. The phase relationships that occur within the grain boundaries of Si3N4 containing various densification aids are reviewed. Comparisons of the effects of MgO, Y2O3, CeO2, and Y2O3 + AL2O3 are made in terms of the phase equilibria of the Si3N4 + SiO2 + additive compositional system. Two new equilibrium phase diagrams for the Si3N4-SiO2 and Y2O3 and Si3N4-SiO2-Ce2O3 systems are preented. The effects of Y2O3 vs CeO2 densification aids on the fracture surfaces of Si3N4 are compared. Auger electron spectroscopy shows that both oxides are concentrated within the fracture surface. Scanning electron microscopy shows evidence that Si3N4 with CeO2 formed an intergranular structure of fine grained oxynitride reaction products, as predicted by phase quilibria, whereas the Y2O3 containing sample shows evidence of an intergranular glassy phase.
NASA Astrophysics Data System (ADS)
Riedel, M. R.
2007-12-01
Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999) Grain Boundary Migration in Metals, CRC Press, 385 pp., New York. Riedel MR, Karato S (1997) Grain-Size Evolution in Subducted Oceanic Lithosphere Associated with the Olivine- Spinel Transformation and Its Effects on Rheology. EPSL 148: 27-43. Liou JG, Hacker BR, Zhang RY (2000) Into the forbidden zone. Science 287, 1215-1216.
NASA Astrophysics Data System (ADS)
Salje, Ekhard K. H.; Carpenter, Michael A.; Nataf, Guillaume F.; Picht, Gunnar; Webber, Kyle; Weerasinghe, Jeevaka; Lisenkov, S.; Bellaiche, L.
2013-01-01
The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90° ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found a good fit of the squared RUS frequency [˜Δ (C11-C12)] to a Vogel-Fulcher process with an activation energy of ˜0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90more » K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.« less
Influence of Homogenization on Microstructural Response and Mechanical Property of Al-Cu-Mn Alloy.
Wang, Jian; Lu, Yalin; Zhou, Dongshuai; Sun, Lingyan; Li, Renxing; Xu, Wenting
2018-05-29
The evolution of the microstructures and properties of large direct chill (DC)-cast Al-Cu-Mn alloy ingots during homogenization was investigated. The results revealed that the Al-Cu-Mn alloy ingots had severe microsegregation and the main secondary phase was Al₂Cu, with minimal Al₇Cu₂Fe phase. Numerous primary eutectic phases existed in the grain boundary and the main elements were segregated at the interfaces along the interdendritic region. The grain boundaries became discontinuous, residual phases were effectively dissolved into the matrix, and the segregation degree of all elements was reduced dramatically during homogenization. In addition, the homogenized alloys exhibited improved microstructures with finer grain size, higher number density of dislocation networks, higher density of uniformly distributed θ' or θ phase (Al₂Cu), and higher volume fraction of high-angle grain boundaries compared to the nonhomogenized samples. After the optimal homogenization scheme treated at 535 °C for 10 h, the tensile strength and elongation% were about 24 MPa, 20.5 MPa, and 1.3% higher than those of the specimen without homogenization treatment.
Microstructure control of Al-Cu films for improved electromigration resistance
Frear, Darrel R.; Michael, Joseph R.; Romig, Jr., Alton D.
1994-01-01
A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200.degree. C. to 300.degree. C. for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H.sub.2 in N.sub.2 by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200.degree. C. and 300.degree. C. have .theta.-phase Al.sub.2 Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of .theta.-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the .theta.-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process.
Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.
Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I
2006-11-02
Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).
Zhang, Li; Popov, Dmitry; Meng, Yue; ...
2016-01-01
Seifertite SiO₂ likely exists as a minor phase near the core–mantle boundary. By simulating the pressure and temperature conditions near the core–mantle boundary, seifertite was synthesized as a minor phase in a coarse-grained, polycrystalline sample coexisting with the (Mg,Fe)SiO₃ post-perovskite (pPv) phase at 129 GPa and 2500 K. Here we report the first in situ single-crystal structure determination and refinement of seifertite at high pressure and after a temperature quench from laser heating. We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had differentmore » orientations. Observed systematic absences of reflections from the six individual grains allowed only one space group: Pbcn. The refined results of seifertite are in good agreement with the predictions from previous first-principles calculations at high pressure. This approach provides a method for structure determination of a minor phase in a mineral assemblage synthesized under P-T conditions representative of the deep Earth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Popov, Dmitry; Meng, Yue
Seifertite SiO₂ likely exists as a minor phase near the core–mantle boundary. By simulating the pressure and temperature conditions near the core–mantle boundary, seifertite was synthesized as a minor phase in a coarse-grained, polycrystalline sample coexisting with the (Mg,Fe)SiO₃ post-perovskite (pPv) phase at 129 GPa and 2500 K. Here we report the first in situ single-crystal structure determination and refinement of seifertite at high pressure and after a temperature quench from laser heating. We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had differentmore » orientations. Observed systematic absences of reflections from the six individual grains allowed only one space group: Pbcn. The refined results of seifertite are in good agreement with the predictions from previous first-principles calculations at high pressure. This approach provides a method for structure determination of a minor phase in a mineral assemblage synthesized under P-T conditions representative of the deep Earth.« less
Phase-relationships between scales in the perturbed turbulent boundary layer
NASA Astrophysics Data System (ADS)
Jacobi, I.; McKeon, B. J.
2017-12-01
The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.
An Automatic Phase-Change Detection Technique for Colloidal Hard Sphere Suspensions
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth; Rogers, Richard B.
2005-01-01
Colloidal suspensions of monodisperse spheres are used as physical models of thermodynamic phase transitions and as precursors to photonic band gap materials. However, current image analysis techniques are not able to distinguish between densely packed phases within conventional microscope images, which are mainly characterized by degrees of randomness or order with similar grayscale value properties. Current techniques for identifying the phase boundaries involve manually identifying the phase transitions, which is very tedious and time consuming. We have developed an intelligent machine vision technique that automatically identifies colloidal phase boundaries. The algorithm utilizes intelligent image processing techniques that accurately identify and track phase changes vertically or horizontally for a sequence of colloidal hard sphere suspension images. This technique is readily adaptable to any imaging application where regions of interest are distinguished from the background by differing patterns of motion over time.
3D Boundary Element Analysis for Composite Joints with discrete Damage. Part 1.
1996-11-15
WHS/DIOR, Oct 94 Fracture Analysis Consultants, Inc. 121 Eastern Heights Dr. Ithaca, New York 14850 (607) 257-4970 SBIR Topic AF96 -150 3D Boundary...41 1 F33615-96-C-5070 SBIR Topic AF96 -150: Phase I Final Report Sunmmry Report WL/MLBM solicited Phase I SBIR proposals to develop a capability...materials; no precomputations are required. 2 F33615-96-C-5070 SBIR Topic AF96 -150: Phase I Final Report Task 6. We have developed a fully 3D Galerkin BEM
Application of constrained equilibrium thermodynamics to irradiated alloy systems
NASA Astrophysics Data System (ADS)
Holloway, James Paul; Stubbins, James F.
1984-05-01
Equilibrium thermodynamics are applied to systems with an excess of point defects to calculate the relative stability of phases. It is possible to model systems with supersaturation levels of vacancies and interstitials, such as those found under irradiation. The calculations reveal the extent to which phase compositional boundaries could shift when one phase or both in a two phase system contain an excess of point defects. Phase boundary shifts in the Ni-Si, Fe-Ni, Ni-Cr, and Fe-Cr systems are examined as a function of the number of excess defects in each phase. It is also found that the critical temperature of the sigma phase in the Fe-Cr system and the fcc-bcc transition in the Fe-Ni are sensitive to excess defect concentrations. These results may apply to local irradiation-induced phase transformations in the presence of solute segregation.
NASA Astrophysics Data System (ADS)
Liu, Jiang; Wen, Guanghua; Tang, Ping
2017-12-01
The formation of coarse prior austenite grain is a key factor to promote transverse crack, and the susceptibility to the transverse crack can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate two types of double phase-transformation technologies. The distribution and morphology of ferrites under different cooling conditions were analyzed, and the effects of ferrite distribution and morphology on the double phase-transformation technologies were explored to obtain the suitable double phase-change technology for the continuous casting process. The results indicate that, under the thermal cycle TH0 [the specimens were cooled down to 913 K (640 °C) at a cooling rate of 5.0 K/s (5.0 °C/s)], the width of prior austenite grain boundaries was thick, and the dislocation density at grain boundaries was high. It had strong inhibition effect on crack propagation; under the thermal cycle TH1 [the specimens were cooled down to 1073 K (800 °C) at a cooling rate of 5.0 K/s (5.0 °C/s) and then to 913 K (640 °C) at a cooling rate of 1.0 K/s (1.0 °C/s)], the width of prior austenite grain boundary was thin, and the dislocation density at grain boundaries was low. It was beneficial to crack propagation. After the first phase change, the developed film-like ferrite along the austenite grain boundaries improved the nucleation conditions of new austenitic grains and removed the inhibition effect of the prior austenite grain boundaries on the austenite grain size.
Subband-Based Group Delay Segmentation of Spontaneous Speech into Syllable-Like Units
NASA Astrophysics Data System (ADS)
Nagarajan, T.; Murthy, H. A.
2004-12-01
In the development of a syllable-centric automatic speech recognition (ASR) system, segmentation of the acoustic signal into syllabic units is an important stage. Although the short-term energy (STE) function contains useful information about syllable segment boundaries, it has to be processed before segment boundaries can be extracted. This paper presents a subband-based group delay approach to segment spontaneous speech into syllable-like units. This technique exploits the additive property of the Fourier transform phase and the deconvolution property of the cepstrum to smooth the STE function of the speech signal and make it suitable for syllable boundary detection. By treating the STE function as a magnitude spectrum of an arbitrary signal, a minimum-phase group delay function is derived. This group delay function is found to be a better representative of the STE function for syllable boundary detection. Although the group delay function derived from the STE function of the speech signal contains segment boundaries, the boundaries are difficult to determine in the context of long silences, semivowels, and fricatives. In this paper, these issues are specifically addressed and algorithms are developed to improve the segmentation performance. The speech signal is first passed through a bank of three filters, corresponding to three different spectral bands. The STE functions of these signals are computed. Using these three STE functions, three minimum-phase group delay functions are derived. By combining the evidence derived from these group delay functions, the syllable boundaries are detected. Further, a multiresolution-based technique is presented to overcome the problem of shift in segment boundaries during smoothing. Experiments carried out on the Switchboard and OGI-MLTS corpora show that the error in segmentation is at most 25 milliseconds for 67% and 76.6% of the syllable segments, respectively.
Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karve, A.A.; Rizwan-uddin; Dorning, J.J.
1995-09-01
A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less
High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase
NASA Astrophysics Data System (ADS)
Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.
2009-03-01
Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of transition zone and top of the lower mantle, when sediments are subducted into the deep mantle. It is also suggested that CAS phase may be stable at the depth of the upper part of the lower mantle, when partial melting of basalt occurs at the depth.
Roles of strain and domain boundaries on the phase transition stability of VO2 thin films
NASA Astrophysics Data System (ADS)
Jian, Jie; Chen, Aiping; Chen, Youxing; Zhang, Xinghang; Wang, Haiyan
2017-10-01
The fundamental phase transition mechanism and the stability of the semiconductor-to-metal phase transition properties during multiple thermal cycles have been investigated on epitaxial vanadium dioxide (VO2) thin films via both ex situ heating and in situ heating by transmission electron microscopy (TEM). VO2 thin films were deposited on c-cut sapphire substrates by pulsed laser deposition. Ex situ studies show the broadening of transition sharpness (ΔT) and the width of thermal hysteresis (ΔH) after 60 cycles. In situ TEM heating studies reveal that during thermal cycles, large strain was accumulated around the domain boundaries, which was correlated with the phase transition induced lattice constant change and the thermal expansion. It suggests that the degradation of domain boundary structures in the VO2 films not only caused the transition property reduction (e.g., the decrease in ΔT and ΔH) but also played an important role in preventing the film from fracture during thermal cycles.
High-temperature phase relations and thermodynamics in the iron-lead-sulfur system
NASA Astrophysics Data System (ADS)
Eric, R. Hurman; Ozok, Hakan
1994-01-01
The PbS activities in FeS-PbS liquid mattes were obtained at 1100 °C and 1200 °C by the dew-point method. Negative deviations were observed, and the liquid-matte solutions were modeled by the Krupkowski formalism. The liquid boundaries of the FeS-PbS phase diagram were derived from the model equations yielding a eutectic temperature of 842 °C at X Pbs = 0.46. A phase diagram of the pseudobinary FeS-PbS was also verified experimentally by quenching samples equilibrated in evacuated and sealed silica capsules. No terminal solid solution ranges could be found. Within the Fe-Pb-S ternary system, the boundaries of the immiscibility region together with the tie-line distributions were established at 1200 °C. Activities of Pb were measured by the dew-point technique along the metal-rich boundary of the miscibility gap. Activities of Fe, Pb, and S, along the miscibility gap were also calculated by utilizing the bounding binary thermodynamics, phase equilibria, and tie-lines.
Dedon, Liv R; Chen, Zuhuang; Gao, Ran; Qi, Yajun; Arenholz, Elke; Martin, Lane W
2018-05-02
Complex-oxide materials tuned to be near phase boundaries via chemistry/composition, temperature, pressure, etc. are known to exhibit large susceptibilities. Here, we observe a strain-driven nanoscale phase competition in epitaxially constrained Bi 0.7 La 0.3 FeO 3 thin films near the antipolar-nonpolar phase boundary and explore the evolution of the structural, dielectric, (anti)ferroelectric, and magnetic properties with strain. We find that compressive and tensile strains can stabilize an antipolar PbZrO 3 -like Pbam phase and a nonpolar Pnma orthorhombic phase, respectively. Heterostructures grown with little to no strain exhibit a self-assembled nanoscale mixture of the two orthorhombic phases, wherein the relative fraction of each phase can be modified with film thickness. Subsequent investigation of the dielectric and (anti)ferroelectric properties reveals an electric-field-driven phase transformation from the nonpolar phase to the antipolar phase. X-ray linear dichroism reveals that the antiferromagnetic-spin axes can be effectively modified by the strain-induced phase transition. This evolution of antiferromagnetic-spin axes can be leveraged in exchange coupling between the antiferromagnetic Bi 0.7 La 0.3 FeO 3 and a ferromagnetic Co 0.9 Fe 0.1 layer to tune the ferromagnetic easy axis of the Co 0.9 Fe 0.1 . These results demonstrate that besides chemical alloying, epitaxial strain is an alternative and effective way to modify subtle phase relations and tune physical properties in rare earth-alloyed BiFeO 3 . Furthermore, the observation of antiferroelectric-antiferromagnetic properties in the Pbam Bi 0.7 La 0.3 FeO 3 phase could be of significant scientific interest and great potential in magnetoelectric devices because of its dual antiferroic nature.
The Formation of Boundary Clinopyroxenes and Associated Glass Veins in Type B1 CAIs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paque, J M; Beckett, J R; Ishii, H A
2008-05-18
We used focused ion beam thin section preparation and scanning transmission electron microscopy (FIB/STEM) to examine the interfacial region between spinel and host melilite for three spinel grains, two from the mantle and one from the core of an Allende type B1 inclusion, and a second pair of spinel grains from a type B1 inclusion from the Leoville carbonaceous chondrite. The compositions of boundary clinopyroxenes decorating spinel surfaces are generally consistent with those of coarser clinopyroxenes from the same region of the inclusion, suggesting little movement of spinels between mantle and core regions after the formation of boundary clinopyroxenes. Themore » host melilite displays no anomalous compositions near the interface, and anorthite or other late-stage minerals are not observed, suggesting that crystallization of residual liquid was not responsible for the formation of boundary clinopyroxenes. Allende spinels display either direct spinel-melilite contact or an intervening boundary clinopyroxene between the two phases. In the core, boundary clinopyroxene is mantled by a thin (1-2 {micro}m thick) layer of normally zoned (X{sub Ak} increasing away from the melilite-clinopyroxene contact) melilite with X{sub Ak} matching that of the host melilite at the melilite-melilite contact. In the mantle, X{sub Ak} near boundary spinels is constant. Spinels in a Leoville type B1 inclusion are more complex with boundary clinopyroxene, as observed in Allende, but also variable amounts of glass ({approx}1 {micro}m width), secondary calcite, perovskite, and an unknown Mg-, Al-, OH-rich and Ca-, Si-poor crystalline phase that may be a layered double hydrate. Glass compositions are consistent to first order with a precursor consisting mostly of Mg-carpholite or sudoite with some aluminous diopside. One possible scenario of formation for the glass veins is that open system alteration of melilite produced a porous, hydrated aggregate of Mg-carpholite or sudoite + aluminous diopside that was shock melted and quenched to a glass. The unknown crystalline phase may be a shocked remnant of the precursor phase assemblage but is more likely to have formed later by alteration of the glass. Calcite appears to be an opportunistic fracture filling that postdated all major shock events. Boundary clinopyroxenes probably share a common origin with coarser-grained pyroxenes from the same region of the inclusion. In the mantle, these crystals may represent clinopyroxene crystallized in Ti-rich liquids caused by the direct dissolution of perovskite and an associated Sc-Zr-rich phase or as a reaction product between dissolving perovskite and liquid (i.e., indirect dissolution of perovskite). In the core, any perovskite and associated Ti-enriched liquids that may have originally been present disappeared before the growth of boundary clinopyroxene.« less
A Cosserat crystal plasticity and phase field theory for grain boundary migration
NASA Astrophysics Data System (ADS)
Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut
2018-06-01
The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.
Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride
NASA Technical Reports Server (NTRS)
Pierce, L. A.; Mieskowski, D. M.; Sanders, W. A.
1986-01-01
Si3N4 specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn
Bi{sub 1−x}(Sr{sub 0.7}Ca{sub 0.3}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics were prepared by a standard solid state reaction process, and the influence of Sr/Ca ratio on structure and properties for Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was discussed by comparing with Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}-modified BiFeO{sub 3} ceramics. Rietveld analysis of X-ray diffraction data revealed that the crystal structure changed from rhombohedral R3c (x ≤ 0.4) to orthorhombic Pnma (x = 0.6) with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and biphasic structure (R3c + Pnma) was determined at x = 0.5, while that for Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was at x = 0.4. This indicated thatmore » the morphotropic phase boundary in Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system shifted toward (Sr,Ca)TiO{sub 3} side with increasing Sr/Ca ratio. The Raman spectrometric analysis and selected area electron diffraction analysis also confirmed this transition. The dielectric relaxation could be well fitted by Arrhenius law, and the different activation energies were attributed to the different origins of the dielectric relaxations with increasing temperature. The current density-field (J-E) curves indicated that the leakage current was reduced to about five orders of magnitude with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution. The P-E hysteresis loops obtained by three different methods indicated the enhanced ferroelectricity at x = 0.4, and it could be attributed to the decrement of leakage current. Meanwhile, the magnetization was enhanced with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and the maximum remanent magnetization was determined at x = 0.2. The enhanced magnetization originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}.« less
HELP - A Multimaterial Eulerian Program in Two Space Dimensions and Time
1976-04-01
ASSUMPTIONS 3-1 3.2 STRENGTH PHASE (SPHASE) 3-1 3.2.1 Definition of Strain Rate Derivatives for Cells at a Grid Boundary 3-3 3.2.2 Definition...of Interpolated Strain Rates and Stresses for Cells at a Grid Boundary 3-4 3.2.3 Definition of Velocities and Deviator Stresses at Grid Boundaries...Grid Boundaries 3-9 3.4.2 Change of Momentum for Cells at Reflective Grid Boundaries in TPHASE.. 3-10 3.4.3 Correction to Theoretical Energy for
NASA Astrophysics Data System (ADS)
Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich
2016-03-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.
NASA Technical Reports Server (NTRS)
Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew;
2016-01-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.
Acta Aeronautica et Astronautica Sinica.
1987-04-07
quantity of cocrystallized 7’-phase will be formed between the crystal boundaries and crystalline 97 branches; therefore the status of grain boundaries... cocrystallized Y’-phase under the high temperature stress [4]. In order to balance the medium and high temperature properties, the concentration of Hf in...will become large. 3. The influence of heat treatment. In the microscopic structures of DZ-22 alloy, there are 13 vol.% cocrystal ?’- and many large
Advanced Gradient Heating Facility (AGHF)
NASA Technical Reports Server (NTRS)
1998-01-01
This section of the publication includes papers entitled: (1) Coupled growth in hypermonotectics; (2) Directional solidification of refined Al-4 wt.% Cu alloys; (3) Effects of convection on interface curvature during growth of concentrated ternary compounds; (4) Directional solidification of Al-1.5 wt.% Ni alloys; (5) Interactive response of advancing phase boundaries to particles; (6) INTeractive Response of Advancing Phase boundaries to Particles-INTRAPP; and (7) Particle engulfment and pushing by solidifying interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, Allison; Harder, Ross J.; Kanan, Matthew W.
Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325more » nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.« less
NASA Astrophysics Data System (ADS)
Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng
2016-05-01
Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00223d
Lateralization of the Huggins pitch
NASA Astrophysics Data System (ADS)
Zhang, Peter Xinya; Hartmann, William M.
2004-05-01
The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shassere, Benjamin; Yamamoto, Yukinori; Poplawsky, Jonathan
We have develooped a new Fe-Cr-Al (FCA) alloy system with good oxidation resistance and creep strength at high temperature. The alloy system is a candidate for use in future fossil-fueled power plants. The creep strength of these alloys at 973 K (700 °C) was found to be comparable with traditional 9 pct Cr ferritic–martensitic steels. A few FCA alloys with general composition of Fe-30Cr-3Al-.2Si-xNb (x = 0, 1, or 2) with a ferrite matrix and Fe 2Nb-type Laves precipitates were prepared. The detailed microstructural characterization of samples, before and after creep rupture testing, indicated precipitation of the Laves phase withinmore » the matrix, Laves phase at the grain boundaries, and a 0.5 to 1.5 μm wide precipitate-free zone (PFZ) parallel to all the grain boundaries. In these alloys, the areal fraction of grain boundary Laves phase and the width of the PFZ controlled the cavitation nucleation and eventual grain boundary ductile failure. Finally, we used a phenomenological model to compare the creep strain rates controlled by the effects of the particles on the dislocations within the grain and at grain boundaries. (The research sponsored by US-DOE, Office of Fossil Energy, the Crosscutting Research Program).« less
Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Tung; Réthoré, Julien; Yvonnet, Julien; Baietto, Marie-Christine
2017-08-01
A new multi-phase-field method is developed for modeling the fracture of polycrystals at the microstructural level. Inter and transgranular cracking, as well as anisotropic effects of both elasticity and preferential cleavage directions within each randomly oriented crystal are taken into account. For this purpose, the proposed phase field formulation includes: (a) a smeared description of grain boundaries as cohesive zones avoiding defining an additional phase for grains; (b) an anisotropic phase field model; (c) a multi-phase field formulation where each preferential cleavage direction is associated with a damage (phase field) variable. The obtained framework allows modeling interactions and competition between grains and grain boundary cracks, as well as their effects on the effective response of the material. The proposed model is illustrated through several numerical examples involving a full description of complex crack initiation and propagation within 2D and 3D models of polycrystals.
Strain and defect engineering on phase transition of monolayer black phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yan; Shi, Xiaoyang; Li, Mingjia
Under biaxial strain, SW-2 defect can move inward the phase boundary of α-P and β-P remarkably and promote the phase transition from α-P to β-P, serving as an excellent ‘phase transition catalyzer’.
Strain and defect engineering on phase transition of monolayer black phosphorene
Chen, Yan; Shi, Xiaoyang; Li, Mingjia; ...
2018-01-01
Under biaxial strain, SW-2 defect can move inward the phase boundary of α-P and β-P remarkably and promote the phase transition from α-P to β-P, serving as an excellent ‘phase transition catalyzer’.
STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy.
Unocic, Kinga A; Chen, Yimeng; Shin, Dongwon; Pint, Bruce A; Marquis, Emmanuelle A
2018-06-01
A thermally grown scale formed on a cast NiCrAl model alloy doped with lanthanum, hafnium, and titanium was examined after isothermal exposure at 1100 °C for 100 h in dry flowing O 2 to understand the dopant segregation along scale grain boundaries. The complex scale formed on the alloy surface was composed of two types of substrates: phase-dependent, thin (<250 nm) outer layers and a columnar-grained ∼3.5 μm inner alumina layer. Two types of oxides formed between the inner and outer scale layers: small (3-15 nm) La 2 O 3 and larger (≤50 nm) HfO 2 oxide precipitates. Nonuniform distributions of the hafnium, lanthanum, and titanium dopants were observed along the inner scale grain boundaries, with hafnium dominating in most of the grain boundaries of α-Al 2 O 3. The concentration of reactive elements (RE) seemed to strongly depend on the grain boundary structure. The level of titanium grain boundary segregation in the inner scale decreased toward the model alloy (substrate), confirming the fast outward diffusion of titanium. Hafnium was also observed at the metal-scale interface and in the γ' (Ni 3 Al) phase of the alloy. High-resolution scanning transmission electron microscopy (STEM) confirmed the substitution of REs for aluminum atoms at the scale grain boundaries, consistent with both the semiconducting band structure and the site-blocking models. Both STEM and atom probe tomography allowed quantification of REs along the scale grain boundaries across the scale thickness. Analysis of the scale morphology after isothermal exposure in flowing oxygen revealed a myriad of new precipitate phases, RE segregation dependence on grain boundary type, and atomic arrangement along scale grain boundaries, which is expected to influence the scale growth rate, stability, and mechanical properties. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phase separation of comb polymer nanocomposite melts.
Xu, Qinzhi; Feng, Yancong; Chen, Lan
2016-02-07
In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation is consistent with that of chain PNCs. The miscibility window for this condition gradually narrows while the other parameters of the PNCs system are held constant. These results indicate that the present PRISM theory can give molecular-level details of the underlying mechanisms of the comb PNCs. It is hoped that the results can be used to provide useful guidance for the future design control of novel, thermodynamically stable comb PNCs.
Effects of Intergranular Gas Bubbles on Thermal Conductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Chockalingam; Paul C. Millett; M. R. Tonks
2012-11-01
Model microstructures obtained from phase-field simulations are used to study the effective heat transfer across bicrys- tals with stationary grain boundary bubble populations. We find that the grain boundary coverage, irrespective of the intergranular bubble radii, is the most relevant parameter to the thermal resistance, which we use to derive effec- tive Kapitza resistances that are dependent on the grain boundary coverage and Kaptiza resistance of the intact grain boundary. We propose a model to predict thermal conductivity as a function of porosity, grain-size, Kaptiza resistance of the intact grain boundary, and grain boundary bubble coverage.
NASA Technical Reports Server (NTRS)
Meertens, Charles M.; Rocken, Christian; Perin, Barbara; Walcott, Richard
1993-01-01
The NASA/DOSE 'Kinematics of the New Zealand Plate Boundary' experiment is a four-year cooperative Global Positioning System (GPS) experiment involving 6 universities and institutions in New Zealand and the United States. The investigation covers two scales, the first on the scale of plates (approximately 1000 km) and the second is on the scale of the plate boundary zone (approximately 50 km). In the first portion of the experiment, phase A, the objective is to make direct measurements of tectonic plate motion between the Australian and Pacific plates using GPS in order to determine the Euler vector of this plate pair. The phase A portion of this experiment was initiated in December 1992 with the first-epoch baseline measurements on the large scale network. The network will be resurveyed two years later to obtain velocities. The stations which were observed for phase A are shown and listed. Additional regional stations which will be used for this study are listed and are part of either CIGNET or other global tracking networks. The phase A portion of the experiment is primarily the responsibility of the UNAVCO investigators. Therefore, this report concentrates on phase A. The first year of NASA funding for phase A included only support for the field work. Processing and analysis will take place with the second year of funding. The second part of the experiemnt measured relative motion between the Australian and Pacific plates across the pate boundary zone between Hokitika and Christchurch on the South Island of New Zealand. The extent and rate of deformation will be determined by comparisons with historical, conventional surveys and by repeated GPS measurements to be made in two years. This activity was the emphasis of the LDGO portion of the study. An ancillary experiment, phase C, concentrated on plate boundary deformation in the vicinity of Wellington and was done as part of training during the early portion of the field campaign. Details of the objectives of the field investigations are given in the appendix. An overview of the 1992 GPS field program is also given in the appendix.
Design of electromagnetic refractor and phase transformer using coordinate transformation theory.
Lin, Lan; Wang, Wei; Cui, Jianhua; Du, Chunlei; Luo, Xiangang
2008-05-12
We designed an electromagnetic refractor and a phase transformer using form-invariant coordinate transformation of Maxwell's equations. The propagation direction of electromagnetic energy in these devices can be modulated as desired. Unlike the conventional dielectric refractor, electromagnetic fields at our refraction boundary do not conform to the Snell's law in isotropic materials and the impedance at this boundary is matched which makes the reflection extremely low; and the transformation of the wave front from cylindrical to plane can be realized in the phase transformer with a slab structure. Two dimensional finite-element simulations were performed to confirm the theoretical results.
Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids
NASA Astrophysics Data System (ADS)
Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko
2013-09-01
An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.
Structure of interfaces at phase coexistence. Theory and numerics
NASA Astrophysics Data System (ADS)
Delfino, Gesualdo; Selke, Walter; Squarcini, Alessio
2018-05-01
We compare results of the exact field theory of phase separation in two dimensions with Monte Carlo simulations for the q-state Potts model with boundary conditions producing an interfacial region separating two pure phases. We confirm in particular the theoretical predictions that below critical temperature the surplus of non-boundary colors appears in drops along a single interface, while for q > 4 at critical temperature there is formation of two interfaces enclosing a macroscopic disordered layer. These qualitatively different structures of the interfacial region can be discriminated through a measurement at a single point for different system sizes.
Melt-Vapor Phase Diagram of the Te-S System
NASA Astrophysics Data System (ADS)
Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.
2018-03-01
The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.
High-temperature deformation and microstructural analysis for Si3N4-Sc2O3
NASA Technical Reports Server (NTRS)
Cheong, Deock-Soo; Sanders, William A.
1990-01-01
It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at triple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase.
High-temperature deformation and microstructural analysis for silicon nitride-scandium(III) oxide
NASA Technical Reports Server (NTRS)
Cheong, Deock-Soo; Sanders, William A.
1992-01-01
It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at tripple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase.
Kelvin-Helmholtz instability of a thin liquid sheet: Effect of the gas-boundary layer
NASA Astrophysics Data System (ADS)
Tirumkudulu, Mahesh
2017-11-01
It is well known that when a thin liquid sheet moves with respect to a surrounding gas phase, the liquid sheet is susceptible to the Kelvin-Helmholtz instability. Here, flow in both the liquid and the gas phases are assumed to be inviscid. In this work, we include exactly via a perturbation analysis, the influence of the growing boundary layer in the gas phase in the base flow and show that both temporal and spatial growth rates obtained from the linear stability analysis are significantly reduced due to the presence of the boundary layer. These results are in line with the simulation results of Lozano et al. and Tammisola et al.. We conclude with the implication of these results on the break-up of radially expanding liquid sheets. Funding from IIT Bombay, CSIR India, and Trinity College, Cambridge University is acknowledged.
NASA Astrophysics Data System (ADS)
Yu, Nengjun; Zhu, Minggang; Song, Liwei; Fang, Yikun; Song, KuiKui; Wang, Qiang; Li, Wei
2018-04-01
High maximum energy product ((BH)max) Sm(CobalFe0.18Cu0.07Zr0.03)7.7 magnet (type-A) and high temperature Sm(CobalFe0.1Cu0.09Zr0.03)7.2 magnet (type-B) were prepared by a traditional powder metallurgical technology. A record (BH)max of 98.7 kJ/m3 with a coercivity (Hcj) of 501.5 kA/m at 773 K was achieved for the type-B magnet, which is much higher than that of type-A magnet (63.7 kJ/m3). The microstructures of the magnets were revealed by high-resolution transmission electron microscope. The average cell size of the type-A and B magnet are 110 nm and 90 nm, respectively. Moreover, the type-B magnet shows a wider cell boundary than the type-A magnet. Additionally, the element distribution of the cell/cell boundary interfaces was measured by energy-dispersive spectroscopy. The cell phase of the type-A magnet contains a higher Fe content as about 17 at%, comparing with that of the type-B magnet (∼8.9 at%). On the other hand, the Cu content of the cell boundary phase is 18 at% almost twice higher than the type-B magnet (8.6 at%). Theoretical Hcj temperature dependence of these two kinds of magnets indicates that the lower Cu content in the cell boundary phase and the appropriate Fe content in the cell phase are the key factors for the high Hcj for the type-B magnet at elevated temperature.
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi
1998-06-01
We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.
Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations
Schuetrumpf, B.; Nazarewicz, W.
2015-10-21
Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at subsaturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100-m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite three-dimensional boxes assuming periodic boundary conditions. The resulting solutions are affected by spurious finite-size effects. To remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice quantum chromodynamics applications. In this work, we study the effectivenessmore » of TABC in the context of pasta phase simulations within nuclear density functional theory. We demonstrated that by applying TABC reliable results can be obtained from calculations performed in relatively small volumes. By studying various contributions to the total energy, we gain insights into pasta phases in mid-density range. Future applications will include the TABC extension of the adaptive multiresolution 3D Hartree-Fock solver and Hartree-Fock-Bogoliubov TABC applications to superfluid pasta phases and complex nucleonic topologies as in fission.« less
NASA Astrophysics Data System (ADS)
Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun
2017-09-01
Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.
NASA Astrophysics Data System (ADS)
Tsuruta, K.; Mito, M.; Deguchi, H.; Kishine, J.; Kousaka, Y.; Akimitsu, J.; Inoue, K.
2018-03-01
The phase diagram of a cubic chiral magnet MnSi with multiple Dzyaloshinskii-Moriya (DM) vectors as a function of temperature T and dc magnetic field Hdc was investigated using intensity mapping of the odd-harmonic responses of ac magnetization (M1 ω and M3 ω), and the responses at phase boundaries were evaluated according to a prescription [J. Phys. Soc. Jpn. 84, 104707 (2015), 10.7566/JPSJ.84.104707]. By evaluating M3 ω/M1 ω appearing at phase boundaries, the robustness of noncollinear spin texture in both the helimagnetic (HM) and the skyrmion lattice (SkL) phases of MnSi was discussed. The robustness of vortices-type solitonic texture SkL in MnSi is smaller than those of both the single DM HM and chiral soliton lattice phases of a monoaxial chiral magnet Cr1 /3NbS2 , and furthermore the robustness of the multiple DM HM phase in MnSi is smaller than that of its SkL. Through magnetic diagnostics over the wide T -Hdc range, we found a new paramagnetic (PM) region with ac magnetic hysteresis, where spin fluctuations have been observed via electrical magnetochiral effect. The anomalies observed in the previous ultrasonic attenuation measurement correspond to the peak positions of out-of-phase M1 ω. The appearance of a new PM region occurs at a characteristic magnetic field, above which indeed the SkL phase appears. It has us suppose that the new PM region could be a phase with spin fluctuation like the skyrmion gas phase.
Multiple Positive Solutions in the Second Order Autonomous Nonlinear Boundary Value Problems
NASA Astrophysics Data System (ADS)
Atslega, Svetlana; Sadyrbaev, Felix
2009-09-01
We construct the second order autonomous equations with arbitrarily large number of positive solutions satisfying homogeneous Dirichlet boundary conditions. Phase plane approach and bifurcation of solutions are the main tools.
Evolution of Grain Boundary Precipitates in an Al-Cu-Li Alloy During Aging
NASA Astrophysics Data System (ADS)
Ott, Noémie; Kairy, Shravan K.; Yan, Yuanming; Birbilis, Nick
2017-01-01
The grain boundary microstructure of Al-Cu-Li alloy AA2050 was investigated for different isothermal aging times to rationalize intergranular corrosion (IGC) characteristics. In the underaged condition, the dominant grain boundary precipitates are fine T1 (Al2CuLi). Extended aging revealed that grain boundaries were decorated by large T1 precipitates and S' phase (Al2CuMg), with S' growth not dimensionally constrained. Such a transition in the precipitate type at grain boundaries is a unique feature of the Al-Cu-Li system.
NASA Astrophysics Data System (ADS)
Barrera, Enriqueta; Keller, Gerta
1990-12-01
High-resolution δ13C and δ18O records have been generated from analyses of the planktonic foraminiferal species Heterohelix globulosa and the benthonic foraminiferal taxon Lenticulina spp from 3 m of a cored section spanning the Cretaceous/Tertiary (K/T) boundary at Brazos River, Texas. These are the first stable isotope records across the K/T boundary based on monospecific and monogeneric foraminiferal samples. They show a gradual decrease in δ13C values of about 2.5 permil beginning at the K/T boundary, as defined by the first appearance of Tertiary planktonic foraminifera, and continuing 17-20 cm above the boundary, approximately 40,000 years later. Gradual 13C depletion contrasts with the sudden δ13C drop at the K/T boundary observed in many deep-sea sections. The surface-to-bottom δ13C gradient decreased to less than zero approximately 25,000-30,000 years after the K/T boundary and remained negative for at least the next 140,000 years. Concomitant with change in δ13C values is a gradual decrease of about 2.5 permil in δ18C values which has not been observed at other localities. This 18O depletion suggests changes in temperature and/or salinity in the earliest Paleocene Gulf of Mexico. No extinction of foraminiferal species is associated with the K/T boundary or the onset of 18O and 13C depletions. Instead, two phases of Cretaceous species extinctions occur. One extinction phase is below the K/T boundary and below the tsunami bed of Bourgeois et al. [1988] and may be linked to sea level regression and environmental perturbations. The second extinction phase coincides with the minimum in δ13C and δ18O values in the Early Danian (Zone P0/Pla) and appears directly related to environmental changes reflected in the isotopic record. H. globulosa, which is commonly present in Maastrichtian and Danian sediments, exhibits significantly lower 18O/16O and 13C/12C ratios in Tertiary sediments relative to specimens from Maastrichtian sediments, demonstrating the survival of this important Cretaceous taxon after the K/T boundary event.
Detergent-Specific Membrane Protein Crystallization Screens
NASA Technical Reports Server (NTRS)
Wiener, Michael
2007-01-01
A suite of reagents has been developed for three-dimensional crystallization of integral membranes present in solution as protein-detergent complexes (PDCs). The compositions of these reagents have been determined in part by proximity to the phase boundaries (lower consolute boundaries) of the detergents present in the PDCs. The acquisition of some of the requisite phase-boundary data and the preliminary design of several of the detergent- specific screens was supported by a NASA contract. At the time of expiration of the contract, a partial set of preliminary screens had been developed. This work has since been extended under non-NASA sponsorship, leading to near completion of a set of 20 to 30 different and unique detergent- specific 96-condition screens.
Mixed conduction and grain boundary effect in lithium niobate under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinglin; Center for High Pressure Science and Technology Advanced Research, Changchun 130012; Liu, Cailong
2015-03-30
The charge transport behavior of lithium niobate has been investigated by in situ impedance measurement up to 40.6 GPa. The Li{sup +} ionic conduction plays a dominant role in the transport process. The relaxation process is described by the Maxwell-Wagner relaxation arising at the interfaces between grains and grain boundaries. The grain boundary microstructure rearranges after the phase transition, which improves the bulk dielectric performance. The theoretical calculations show that the decrease of bulk permittivity with increasing pressure in the Pnma phase is caused by the pressure-induced enhancement of electron localization around O atoms, which limits the polarization of Nb-O electricmore » dipoles.« less
Non-analyticity of holographic Rényi entropy in Lovelock gravity
NASA Astrophysics Data System (ADS)
Puletti, V. Giangreco M.; Pourhasan, Razieh
2017-08-01
We compute holographic Rényi entropies for spherical entangling surfaces on the boundary while considering third order Lovelock gravity with negative cosmological constant in the bulk. Our study shows that third order Lovelock black holes with hyperbolic event horizon are unstable, and at low temperatures those with smaller mass are favoured, giving rise to first order phase transitions in the bulk. We determine regions in the Lovelock parameter space in arbitrary dimensions, where bulk phase transitions happen and where boundary causality constraints are met. We show that each of these points corresponds to a dual boundary conformal field theory whose Rényi entropy exhibits a kink at a certain critical index n.
Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; ...
2008-02-27
[1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less
Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
NASA Astrophysics Data System (ADS)
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven
2008-02-01
Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.
Universal entanglement spectra of gapped one-dimensional field theories
NASA Astrophysics Data System (ADS)
Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei
2017-03-01
We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.
Magnetic phase boundaries of CsMnF3: XY-to-Ising crossover and the virtual bicritical point
NASA Astrophysics Data System (ADS)
Shapira, Y.; Oliveira, N. F., Jr.; Chang, T. S.
1980-02-01
The ordering temperature Tc of the easy-plane hexagonal antiferromagnet CsMnF3 was measured as a function of magnetic field H, up to 120 kOe. Tc was determined from the thermal expansion anomaly at constant H. At H=0, TN≡Tc(0)=51.4 K. When H--> is in the hexagonal plane, the boundary Tc(H) is bow shaped: with increasing H, Tc first increases, then passes through a maximum, and later decreases. The maximum Tc is ~37 mK above TN, and it occurs at H≅29.5 kOe. The bow-shaped phase boundary is attributed to the XY-to-Ising crossover which is induced by the magnetic field, as discussed by Fisher, Nelson, and Kosterlitz. Fits to the phase boundary Tc(H) give a crossover exponent φ=1.185+/-0.03 for one sample and φ=1.184+/-0.025 for another, compared to the theoretical value φ(n=2)=1.175+/-0.015. When H--> is perpendicular to the hexagonal plane, Tc decreases monotonically with increasing H, but the decrease is not in accordance with mean-field theory, which predicts a decrease proportional to H2. The deviation from mean-field behavior is attributed to a virtual bicritical point (VBP) with Heisenberg symmetry, which exists mathematically at a negative value of H2. Although the VBP cannot be observed directly, it affects the behavior in the observable region of H2>=0. Physically, a magnetic field applied perpendicular to the easy plane enhances the Heisenberg-to-XY symmetry breaking, which at H=0 is solely due to the weak easy-plane uniaxial anisotropy. The enhanced symmetry breaking causes a non-mean-field dependence of Tc on H. An equation derived on this basis gives a good description of the phase boundary Tc(H). This equation contains three adjustable parameters, two of which can also be estimated without recourse to the phase boundary Tc(H). The values for these two parameters obtained from a best fit to Tc(H) agree with the independent estimates.
Applications of Space-Time Duality
NASA Astrophysics Data System (ADS)
Plansinis, Brent W.
The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms periodically at finite propagation lengths. Numerical simulations are performed for the specific case where the moving boundary is produced through cross-phase modulation. In this case, the Kerr nonlinearity causes the boundary to change during propagation, leading to unique temporal and spectral behavior.
NASA Astrophysics Data System (ADS)
Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal
2017-12-01
Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.
ESR imaging investigations of two-phase systems.
Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert
2007-06-01
The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.
Carbon under extreme conditions: phase boundaries from first-principles theory
NASA Astrophysics Data System (ADS)
Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia
2006-03-01
We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first principles calculations. Maxima are found in both melting lines, with a triple point located at ˜850 GPa and ˜7400 K. Our results show that hot, compressed diamond is a semiconductor which undergoes metalization upon melting. On the contrary, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/ and BC8/liquid boundaries, molten carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Our data provide constraints to the carbon equation of state, which is of critical importance to devise models of, e.g., Neptune, Uranus and white dwarf stars, as well as of extra-solar carbon planets. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Millett, P.C.; Tonks, M.R.
2013-07-01
In this study, the intergranular fracture behavior of UO{sub 2} was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt Σ5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at themore » propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior. (authors)« less
Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongfeng Zhang; Paul C Millett; Michael R Tonks
2013-10-01
In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagatingmore » crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.« less
NASA Astrophysics Data System (ADS)
Noguchi, Yuki; Yamamoto, Takashi; Yamada, Takayuki; Izui, Kazuhiro; Nishiwaki, Shinji
2017-09-01
This papers proposes a level set-based topology optimization method for the simultaneous design of acoustic and structural material distributions. In this study, we develop a two-phase material model that is a mixture of an elastic material and acoustic medium, to represent an elastic structure and an acoustic cavity by controlling a volume fraction parameter. In the proposed model, boundary conditions at the two-phase material boundaries are satisfied naturally, avoiding the need to express these boundaries explicitly. We formulate a topology optimization problem to minimize the sound pressure level using this two-phase material model and a level set-based method that obtains topologies free from grayscales. The topological derivative of the objective functional is approximately derived using a variational approach and the adjoint variable method and is utilized to update the level set function via a time evolutionary reaction-diffusion equation. Several numerical examples present optimal acoustic and structural topologies that minimize the sound pressure generated from a vibrating elastic structure.
NASA Astrophysics Data System (ADS)
Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.
2018-01-01
The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.
The growth mechanism of grain boundary carbide in Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang
2013-07-15
The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less
Mixing in Shear Coaxial Jets (Briefing Charts)
2013-08-01
relevant boundary layers 9. Thermodynamic states (2 phase, 1 phase) 10. Transverse Acoustic mode from chamber/siren, f=f(c, geometry St=fDij/Uij 11...stability theory for inviscid instability of a hyperbolic tangent velocity profile for free boundary layers • U(y)=0.5[1 + tanh(y)] • Chigier and Beer , 1964...acoustics Natural OJ excited IJ excited From Chigier NA. and Beer JM, The Flow Region Near the Nozzle in Double Concentric Jets, J of
NASA Astrophysics Data System (ADS)
Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin
2011-11-01
The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).
Zhang, Yu; Wang, Xiaopeng; Kong, Fantao; Chen, Yuyong
2017-09-15
A crack-free Ti-43Al-9V-0.2Y alloy sheet was successfully fabricated via hot-pack rolling at 1200 °C. After hot-rolling, the β/γ lamellar microstructure of the as-forged TiAl alloy was completely converted into a homogeneous duplex microstructure with an average γ grain size of 10.5 μm. The dynamic recrystallization (DRX) of the γ phase was systematically investigated. A recrystallization fraction of 62.5% was obtained for the γ phase in the TiAl alloy sheet, when a threshold value of 0.8° was applied to the distribution of grain orientation spread (GOS) values. The high strain rate and high stress associated with hot-rolling are conducive for discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX), respectively. A certain high-angle boundary (HAGB: θ = 89° ± 3°<100>), which is associated with DDRX, occurs in both the recrystallized and deformed γ grains. The twin boundaries play an important role in the DDRX of the γ phase. Additionally, the sub-structures and sub-boundaries originating from low-angle boundaries in the deformed grains also indicate that CDRX occurs. The mechanical properties of the alloy sheet were determined at both room and elevated temperatures. At 750 °C, the alloy sheet exhibited excellent elongation (53%), corresponding to a failure strength of 467 MPa.
Stress Corrosion Cracking Issues in Light Metals for Automotive Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Russell H.; Danielson, Michael J.; Baer, Donald R.
The Partnership for New Generation Vehicle has the goal of producing lightweight automobiles that achieve 80 mpg. To accomplish this will require liberal use of Al and Mg alloys such as AA5083 and AZ91D. The corrosion and stress corrosion of alloy AA5083 is controlled by the precipitation of the b-phase (Al3Mg2) at grain boundaries and by the precipitation of the g-phase (Mg17Al12) in AZ91D. The b-phase is anodic to the Al matrix while the g-phase is cathodic to the Mg matrix. The effects of crack propagation along grain boundaries with electrochemically active particles is a key factor in the SCCmore » performance of these materials.« less
NASA Astrophysics Data System (ADS)
Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.
2012-10-01
Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.
Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.
Sasaki, T T; Ohkubo, T; Hono, K; Une, Y; Sagawa, M
2013-09-01
The Nd-rich phases in pressless processed fine grained Nd-Fe-B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdOx, Ia3 type phase, which is isostructural to Nd₂O₃, dhcp-Nd and Nd₁Fe₄B₄. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase. Copyright © 2013 Elsevier B.V. All rights reserved.
Jacobsen, Matthew K.; Velisavljevic, Nenad; Kono, Yoshio; ...
2017-04-05
Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Furthermore, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M. K.; Velisavljevic, N.; Kono, Y.
2017-04-01
Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Further, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less
Yoshida, Hiroaki; Kobayashi, Takayuki; Hayashi, Hidemitsu; Kinjo, Tomoyuki; Washizu, Hitoshi; Fukuzawa, Kenji
2014-07-01
A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which correctly realizes the internal boundary condition at the interface between two phases with different transport properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis, which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the analytical solutions of the problems numerically validates the proposed scheme.
Scale effect of slip boundary condition at solid–liquid interface
Nagayama, Gyoko; Matsumoto, Takenori; Fukushima, Kohei; Tsuruta, Takaharu
2017-01-01
Rapid advances in microelectromechanical systems have stimulated the development of compact devices, which require effective cooling technologies (e.g., microchannel cooling). However, the inconsistencies between experimental and classical theoretical predictions for the liquid flow in microchannel remain unclarified. Given the larger surface/volume ratio of microchannel, the surface effects increase as channel scale decreases. Here we show the scale effect of the boundary condition at the solid–liquid interface on single-phase convective heat transfer characteristics in microchannels. We demonstrate that the deviation from classical theory with a reduction in hydraulic diameters is due to the breakdown of the continuum solid–liquid boundary condition. The forced convective heat transfer characteristics of single-phase laminar flow in a parallel-plate microchannel are investigated. Using the theoretical Poiseuille and Nusselt numbers derived under the slip boundary condition at the solid–liquid interface, we estimate the slip length and thermal slip length at the interface. PMID:28256536
Molecular chirality and domain shapes in lipid monolayers on aqueous surfaces
NASA Astrophysics Data System (ADS)
Krüger, Peter; Lösche, Mathias
2000-11-01
The shapes of domain boundaries in the mesoscopic phase separation of phospholipids in aqueous surface monolayers are analyzed with particular attention to the influence of molecular chirality. We have calculated equilibrium shapes of such boundaries, and show that the concept of spontaneous curvature-derived from an effective pair potential between the chiral molecules-yields an adequate description of the contribution of chirality to the total energy of the system. For enantiomeric dipalmitoylphosphatidylcholine in pure monolayers, and in mixtures with impurities that adsorb preferentially at the (one-dimensional) boundary line between the isotropic and anisotropic fluid phases, such as cyanobiphenyl (5CB), a total energy term that includes line tension, electrostatic dipole-dipole interaction, and spontaneous curvature is sufficient to describe the shapes of well-separated domain boundaries in full detail. As soon as interdomain distances fall below the domain sizes upon compression of a monolayer, fluctuations take over in determining its detailed structural morphology. Using Minkowski measures for the well-studied dimyristoyl phosphatidic acid (DMPA)/cholesterol system, we show that calculations accounting for line tension, electrostatic repulsion, and molecular chirality yield boundary shapes that are of the same topology as the experimentally observed structures. At a fixed molecular area in the phase coexistence region, the DMPA/cholesterol system undergoes an exponential decay of the line tension λ with decreasing subphase temperature T.
Theoretical analysis of shock induced depolarization and current generation in ferroelectrics
NASA Astrophysics Data System (ADS)
Agrawal, Vinamra; Bhattacharya, Kaushik
Ferroelectric generators are used to generate large magnitude current pulse by impacting a polarized ferroelectric material. The impact causes depolarization of the material and at high impact speeds, dielectric breakdown. Depending on the loading conditions and the electromechanical boundary conditions, the current or voltage profiles obtained vary. In this study, we explore the large deformation dynamic response of a ferroelectric material. Using the Maxwell's equations, conservation laws and the second law of thermodynamics, we derive the governing equations for the phase boundary propagation as well as the driving force acting on it. We allow for the phase boundary to contain surface charges which introduces the contribution of curvature of phase boundary in the governing equations and the driving force. This type of analysis accounts for the dielectric breakdown and resulting conduction in the material. Next, we implement the equations derived to solve a one dimensional impact problem on a ferroelectric material under different electrical boundary conditions. The constitutive law is chosen to be piecewise quadratic in polarization and quadratic in the strain. We solve for the current profile generated in short circuit case and for voltage profile in open circuited case. This work was made possible by the financial support of the US Air Force Office of Scientific Research through the Center of Excellence in High Rate Deformation Physics of Heterogeneous Materials (Grant: FA 9550-12-1-0091).
NASA Astrophysics Data System (ADS)
Jiang, Luan; Ling, Shan; Li, Qiang
2016-03-01
Cardiovascular diseases are becoming a leading cause of death all over the world. The cardiac function could be evaluated by global and regional parameters of left ventricle (LV) of the heart. The purpose of this study is to develop and evaluate a fully automated scheme for segmentation of LV in short axis cardiac cine MR images. Our fully automated method consists of three major steps, i.e., LV localization, LV segmentation at end-diastolic phase, and LV segmentation propagation to the other phases. First, the maximum intensity projection image along the time phases of the midventricular slice, located at the center of the image, was calculated to locate the region of interest of LV. Based on the mean intensity of the roughly segmented blood pool in the midventricular slice at each phase, end-diastolic (ED) and end-systolic (ES) phases were determined. Second, the endocardial and epicardial boundaries of LV of each slice at ED phase were synchronously delineated by use of a dual dynamic programming technique. The external costs of the endocardial and epicardial boundaries were defined with the gradient values obtained from the original and enhanced images, respectively. Finally, with the advantages of the continuity of the boundaries of LV across adjacent phases, we propagated the LV segmentation from the ED phase to the other phases by use of dual dynamic programming technique. The preliminary results on 9 clinical cardiac cine MR cases show that the proposed method can obtain accurate segmentation of LV based on subjective evaluation.
NASA Astrophysics Data System (ADS)
Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin
2014-03-01
Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.
Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO
NASA Astrophysics Data System (ADS)
Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.
2012-12-01
One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.
The magnetic nature of umbra-penumbra boundary in sunspots
NASA Astrophysics Data System (ADS)
Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.
2018-03-01
Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.
NASA Astrophysics Data System (ADS)
Aaronson, H. I.
2006-03-01
Interphase boundary structure developed during precipitation from solid solution and during massive transformations is considered in diverse alloy systems in the presence of differences in stacking sequence across interphase boundaries. Linear misfit compensating defects, including misfit dislocations, structural disconnections, and misfit disconnections, are present over a wide range of crystallographie when both phases have metallic bonding. Misfit dislocations have also been observed when both phases have covalent bonding ( e.g., US: β US2 by Sole and van der Walt). These defects are also found when one phase is ionic and the other is metallic (Nb∶Al2O3 by Rühle et al.), albeit when the latter is formed by vapor deposition. However, when bonding is metallic in one phase but significantly covalent in the other, the structure of the interphase boundary appears to depend upon the strength of the covalent bonding relative to that in the metallically bonded phase. When this difference is large, growth can take place as if it were occurring at a free surface, resulting in orientation relationships that are irrational and conjugate habit planes that are ill matched ( e.g., ZrN: α Zr-N by Li et al. and Xe(solid):Al-Xe by Kishida and Yamaguchi). At lower levels of bonding directionality and strength, crystallography is again irrational, but now edge-to-edge-based low-energy structures can replace linear misfit compensating defects (γm:TiAl:αTi-Al by Reynolds et al.). In the perhaps still smaller difference case of Widmanstätten cementite precipitated from austenite, one orientation relationship yields plates with linear misfit compensating defects at their broad faces whereas another (presumably nucleated at different types of site) produces laths with poorly defined shapes and interfacial structures. Hence, Hume-Rothery-type bonding considerations can markedly affect interphase boundary structure and thus the mechanisms, kinetics, and morphology of growth.
Structure and transport at grain boundaries in polycrystalline olivine: An atomic-scale perspective
NASA Astrophysics Data System (ADS)
Mantisi, Boris; Sator, Nicolas; Guillot, Bertrand
2017-12-01
Structure and transport properties at grain boundaries in polycrystalline olivine have been investigated at the atomic scale by molecular dynamics simulation (MD) using an empirical ionocovalent interaction potential. On the time scale of the simulation (a few tens of nanoseconds for a system size of ∼650,000 atoms) grain boundaries and grain interior were identified by mapping the atomic displacements along the simulation run. In the investigated temperature range (1300-1700 K) the mean thickness of the grain boundary phase is evaluated between 0.5 and 2 nm, a value which depends on temperature and grain size. The structure of the grain boundary phase is found to be disordered (amorphous-like) and is different from the one exhibited by the supercooled liquid. The self-diffusion coefficients of major elements in the intergranular region range from ∼10-13 to 10-10 m2/s between 1300 and 1700 K (with DSigb < DOgb < DFegb < DMggb) and are only one order of magnitude smaller than those evaluated in the supercooled melt. In using a newly derived expression for the bulk self-diffusion coefficient it is concluded that the latter one is driven by the grain boundary contribution as long as the grain size is smaller than a centimeter. In assuming that the electrical conduction at grain boundaries is purely ionic, the macroscopic grain boundary conductivity is found to be two orders of magnitude lower than in molten olivine, and one order of magnitude higher than the lattice conductivity. A consequence is that the conductivity of the olivine polycrystal is dominated by the grain interior contribution as soon as the grain size is larger than a micrometer or so. The grain boundary viscosity has been evaluated from the Green-Kubo relation expressing the viscosity as function of the stress tensor time correlation function. In spite of a slow convergence of the calculation by MD, the grain boundary viscosity was estimated about ∼105 Pa s at 1500 K, a value in agreement with high-temperature viscoelastic relaxation data. An interesting information gained from MD is that sliding at grain boundaries is essentially controlled by the internal friction between the intergranular phase and the grain edges.
NASA Astrophysics Data System (ADS)
Kojitani, Hiroshi; Yamazaki, Monami; Kojima, Meiko; Inaguma, Yoshiyuki; Mori, Daisuke; Akaogi, Masaki
2018-06-01
Heat capacity (C P) of rutile and α-PbO2 type TiO2 (TiO2-II) were measured by the differential scanning calorimetry and thermal relaxation method. Using the results, standard entropies at 1 atm and 298.15 K of rutile and TiO2-II were determined to be 50.04(4) and 46.54(2) J/mol K, respectively. Furthermore, thermal expansivity (α) determined by high-temperature X-ray diffraction measurement and mode Grüneisen parameters obtained by high-pressure Raman spectroscopy suggested the thermal Grüneisen parameter (γ th) for TiO2-II of 1.7(1). By applying the obtained low-temperature C P and γ th, the measured C P and α data of TiO2-II were extrapolated to higher temperature region using a lattice vibrational model calculation, as well as rutile. Internally consistent thermodynamic data sets of both rutile and TiO2-II assessed in this study were used to thermodynamically calculate the rutile‒TiO2-II phase equilibrium boundary. The most plausible boundary was obtained to be P (GPa) = 0.0074T (K) - 1.7. Our boundary suggests that the crystal growth of TiO2-II observed below 5.5 GPa and 900 K in previous studies advanced in its stability field. The phase boundary calculation also suggested small, exothermic phase transition enthalpy from rutile to TiO2-II at 1 atm and 298.15 K of - 0.5 to - 1.1 kJ/mol. This implies that the thermodynamic stability of rutile at 1 atm above room temperature is due to larger contribution of entropy term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meiser, Jerome; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de
Using classical molecular dynamics simulations and the Meyer-Entel interaction potential, we study the martensitic transformation pathway in a pure iron bi-crystal containing a symmetric tilt grain boundary. Upon cooling the system from the austenitic phase, the transformation starts with the nucleation of the martensitic phase near the grain boundary in a plate-like arrangement. The Kurdjumov-Sachs orientation relations are fulfilled at the plates. During further cooling, the plates expand and merge. In contrast to the orientation relation in the plate structure, the complete transformation proceeds via the Pitsch pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Tao, E-mail: tzhou1118@163.com; Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com; Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn
2012-01-15
Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial tomore » the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.« less
Classical impurities and boundary Majorana zero modes in quantum chains
NASA Astrophysics Data System (ADS)
Müller, Markus; Nersesyan, Alexander A.
2016-09-01
We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.
Multidimensional phase space methods for mass measurements and decay topology determination
NASA Astrophysics Data System (ADS)
Altunkaynak, Baris; Kilic, Can; Klimek, Matthew D.
2017-02-01
Collider events with multi-stage cascade decays fill out the kinematically allowed region in phase space with a density that is enhanced at the boundary. The boundary encodes all available information as regards the spectrum and is well populated even with moderate signal statistics due to this enhancement. In previous work, the improvement in the precision of mass measurements for cascade decays with three visible and one invisible particles was demonstrated when the full boundary information is used instead of endpoints of one-dimensional projections. We extend these results to cascade decays with four visible and one invisible particles. We also comment on how the topology of the cascade decay can be determined from the differential distribution of events in these scenarios.
NASA Astrophysics Data System (ADS)
Mak, H. M.; Ng, C. O.
2010-11-01
The present work aims to study low-Reynolds-number flow through a microchannel with superhydrophobic surfaces, which contain a periodic array of parallel ribs on the upper and lower walls. Mimicking impregnation, the liquid is allowed to penetrate the grooves between the ribs which are filled with an inviscid gas. The array of ribs and grooves gives a heterogeneous wall boundary condition to the channel flow, with partial-slip boundary condition on the solid surface and no-shear boundary condition on the liquid-gas interface. Using the method of eigenfunction expansions and domain decomposition, semi-analytical models are developed for four configurations. Two of them are for longitudinal flow and the others are for transverse flow. For each flow orientation, in-phase and out-phase alignments of ribs between the upper and lower walls are analyzed. The effect of the phase alignments of ribs is appreciable when the channel height is sufficiently small. In-phase alignment gives rise to a larger effective slip length in longitudinal flow. On the contrary, out-phase alignment will yield a larger effective slip length in transverse flow. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through Project HKU 7156/09E.
Impact induced depolarization of ferroelectric materials
NASA Astrophysics Data System (ADS)
Agrawal, Vinamra; Bhattacharya, Kaushik
2018-06-01
We study the large deformation dynamic behavior and the associated nonlinear electro-thermo-mechanical coupling exhibited by ferroelectric materials in adiabatic environments. This is motivated by a ferroelectric generator which involves pulsed power generation by loading the ferroelectric material with a shock, either by impact or a blast. Upon impact, a shock wave travels through the material inducing a ferroelectric to nonpolar phase transition giving rise to a large voltage difference in an open circuit situation or a large current in a closed circuit situation. In the first part of this paper, we provide a general continuum mechanical treatment of the situation assuming a sharp phase boundary that is possibly charged. We derive the governing laws, as well as the driving force acting on the phase boundary. In the second part, we use the derived equations and a particular constitutive relation that describes the ferroelectric to nonpolar phase transition to study a uniaxial plate impact problem. We develop a numerical method where the phase boundary is tracked but other discontinuities are captured using a finite volume method. We compare our results with experimental observations to find good agreement. Specifically, our model reproduces the observed exponential rise of charge as well as the resistance dependent Hugoniot. We conclude with a parameter study that provides detailed insight into various aspects of the problem.
The Forced Soft Spring Equation
ERIC Educational Resources Information Center
Fay, T. H.
2006-01-01
Through numerical investigations, this paper studies examples of the forced Duffing type spring equation with [epsilon] negative. By performing trial-and-error numerical experiments, the existence is demonstrated of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions. Subharmonic boundaries are…
Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle.
Yamashita, Tomoko; Nishimura, Kazuhiro; Saiki, Ryotaro; Okudaira, Hiroyuki; Tome, Mayuko; Higashi, Kyohei; Nakamura, Mizuho; Terui, Yusuke; Fujiwara, Kunio; Kashiwagi, Keiko; Igarashi, Kazuei
2013-06-01
The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.
The phase diagram of ammonium nitrate.
Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-14
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
The phase diagram of ammonium nitrate
NASA Astrophysics Data System (ADS)
Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-01
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
Entanglement spectrum and boundary theories with projected entangled-pair states
NASA Astrophysics Data System (ADS)
Cirac, J. Ignacio; Poilblanc, Didier; Schuch, Norbert; Verstraete, Frank
2011-06-01
In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated with their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using projected entangled-pair states. This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various specific models: a deformed AKLT model [I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.59.799 59, 799 (1987)], an Ising-type model [F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.220601 96, 220601 (2006)], and Kitaev’s toric code [A. Kitaev, Ann. Phys.APNYA60003-491610.1016/S0003-4916(02)00018-0 303, 2 (2003)], both in finite ladders and in infinite square lattices. In the second case, some of those models display quantum phase transitions. We find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield nonlocal Hamiltonians. Because our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.
NASA Astrophysics Data System (ADS)
Eason, Paul Duane
The Mo(Si,Al)2 C40 compound was chosen for investigation as a possible high temperature structural material. To produce the C40 phase, several processing routes were explored with emphasis on obtaining microstructure/property relationships (i.e. control of grain size and minimization of secondary phases). To facilitate processing of single phase material, the phase equilibria of the Mo-Si-Al ternary system were reevaluated with respect to the phases adjacent to the C40 compound. An anomalous environmental degradation appeared to be the primary obstacle to further study of the compound and was investigated accordingly. Several processing routes were assessed for the production of dense, nearly single-phase Mo(Si,Al)2. Hot powder compaction was chosen as the method of sample production as is the case with many refractory silicide based materials. Therefore, variations in the processing techniques came from the choice of precursor materials and methods of powder production. Mechanical alloying, arc-melting and comminution, and blending of both elemental and compound powders were all employed to produce charges for hot uniaxial pressing. The final compacts were compared on the basis of density, grain size and presence of secondary phases. Establishment of a Mo-Si-Al ternary isothermal phase diagram at 1400°C was performed. Multiphase alloy compositions were selected to identify the phase boundaries of the C40, C54, T1 and Mo3Al8 phase fields, as well as to verify the existence of the C54 phase at 1400°C. The alloys were equilibrated by heat treatment and analyzed for phase identification and quantitative compositional information. The environmental degradation phenomenon was approached as a classical "pest" with an emphasis of study on grain boundary chemistry and atmospheric dependence of attack. Both Auger spectroscopy and electron microscopy revealed carbon-impurity-induced grain boundary segregation responsible for the embrittlement and material loss. Means of preventing the attack by alloying techniques used in traditional alloys were explored.
Gapless edges of 2d topological orders and enriched monoidal categories
NASA Astrophysics Data System (ADS)
Kong, Liang; Zheng, Hao
2018-02-01
In this work, we give a mathematical description of a chiral gapless edge of a 2d topological order (without symmetry). We show that the observables on the 1+1D world sheet of such an edge consist of a family of topological edge excitations, boundary CFT's and walls between boundary CFT's. These observables can be described by a chiral algebra and an enriched monoidal category. This mathematical description automatically includes that of gapped edges as special cases. Therefore, it gives a unified framework to study both gapped and gapless edges. Moreover, the boundary-bulk duality also holds for gapless edges. More precisely, the unitary modular tensor category that describes the 2d bulk phase is exactly the Drinfeld center of the enriched monoidal category that describes the gapless/gapped edge. We propose a classification of all gapped and chiral gapless edges of a given bulk phase. In the end, we explain how modular-invariant bulk rational conformal field theories naturally emerge on certain gapless walls between two trivial phases.
Lead-free piezoelectrics based on potassium-sodium niobate with giant d(33).
Zhang, Binyu; Wu, Jiagang; Cheng, Xiaojing; Wang, Xiaopeng; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie
2013-08-28
High-performance lead-free piezoelectrics (d33 > 400 pC/N) based on 0.96(K0.5Na0.5)0.95Li0.05Nb1-xSbxO3-0.04BaZrO3 with the rhombohedral-tetragonal (R-T) phase boundary have been designed and prepared. The R-T phase boundary lies the composition range of 0.04 ≤ x ≤ 0.07, and the dielectric and piezoelectric properties of the ceramics with the compositions near the phase boundary are significantly enhanced. In addition, the ceramic with x = 0.07 has a giant d33 of ~425 pC/N, which is comparable to that (~416 pC/N) of textured KNN-based ceramics (Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Nature 2004, 432, 84). The underlying physical mechanisms for enhanced piezoelectric properties are addressed. We believe that the material system is the most promising lead-free piezoelectric candidates for the practical applications.
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Bolster, Diogo
2017-04-01
We introduce a simple and efficient lattice Boltzmann method for immiscible multiphase flows, capable of handling large density and viscosity contrasts. The model is based on a diffuse-interface phase-field approach. Within this context we propose a new algorithm for specifying the three-phase contact angle on curved boundaries within the framework of structured Cartesian grids. The proposed method has superior computational accuracy compared with the common approach of approximating curved boundaries with stair cases. We test the model by applying it to four benchmark problems: (i) wetting and dewetting of a droplet on a flat surface and (ii) on a cylindrical surface, (iii) multiphase flow past a circular cylinder at an intermediate Reynolds number, and (iv) a droplet falling on hydrophilic and superhydrophobic circular cylinders under differing conditions. Where available, our results show good agreement with analytical solutions and/or existing experimental data, highlighting strengths of this new approach.
Degenerate and chiral states in the extended Heisenberg model on the kagome lattice
NASA Astrophysics Data System (ADS)
Gómez Albarracín, F. A.; Pujol, P.
2018-03-01
We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Zuo, Chao; Idir, Mourad
A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less
Huang, Lei; Zuo, Chao; Idir, Mourad; ...
2015-04-21
A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less
NASA Technical Reports Server (NTRS)
Weaver, J. S.; Chipman, D. W.; Takahashi, T.
1979-01-01
Phase stability and elasticity data have been used to calculate the Gibbs free energy, enthalpy, and entropy changes at 298 K and 1 bar associated with the quartz-coesite and coesite-stishovite transformations in the system SiO2. For the quartz-coesite transformation, these changes disagree by a factor of two or three with those obtained by calorimetric techniques. The phase boundary for this transformation appears to be well determined by experiment; the discrepancy, therefore, suggests that the calorimetric data for coesite are in error. Although the calorimetric and phase stability data for the coesite-stishovite transformation yield the same transition pressure at 298 K, the phase-boundary slopes disagree by a factor of two. At present, it is not possible to determine which of the data are in error. Thus serious inconsistencies exist in the thermodynamic data for the polymorphic transformations of silica.
Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen; ...
2017-10-30
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Chen-Wiegart, Yu-Chen K.
2017-10-30
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
Nag, Tanay; Rajak, Atanu
2018-04-01
We investigate the effect of a time-reversal-breaking impurity term (of strength λ_{d}) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p-wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λ_{d} and eventually saturates with an exponential damping factor [∼exp(-λ_{d})] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λ_{d} for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λ_{d} and finally, for higher values of λ_{d}, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.
NASA Astrophysics Data System (ADS)
Nag, Tanay; Rajak, Atanu
2018-04-01
We investigate the effect of a time-reversal-breaking impurity term (of strength λd) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p -wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λd and eventually saturates with an exponential damping factor [˜exp(-λd) ] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λd for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λd and finally, for higher values of λd, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.
Zhang, Yu; Wang, Xiaopeng; Kong, Fantao
2017-01-01
A crack-free Ti-43Al-9V-0.2Y alloy sheet was successfully fabricated via hot-pack rolling at 1200 °C. After hot-rolling, the β/γ lamellar microstructure of the as-forged TiAl alloy was completely converted into a homogeneous duplex microstructure with an average γ grain size of 10.5 μm. The dynamic recrystallization (DRX) of the γ phase was systematically investigated. A recrystallization fraction of 62.5% was obtained for the γ phase in the TiAl alloy sheet, when a threshold value of 0.8° was applied to the distribution of grain orientation spread (GOS) values. The high strain rate and high stress associated with hot-rolling are conducive for discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX), respectively. A certain high-angle boundary (HAGB: θ = 89° ± 3°<100>), which is associated with DDRX, occurs in both the recrystallized and deformed γ grains. The twin boundaries play an important role in the DDRX of the γ phase. Additionally, the sub-structures and sub-boundaries originating from low-angle boundaries in the deformed grains also indicate that CDRX occurs. The mechanical properties of the alloy sheet were determined at both room and elevated temperatures. At 750 °C, the alloy sheet exhibited excellent elongation (53%), corresponding to a failure strength of 467 MPa. PMID:28914797
The response of ionospheric convection in the polar cap to substorm activity
NASA Technical Reports Server (NTRS)
Lester, M.; Lockwood, M.; Yeoman, T. K.; Cowley, S. W. H.; Luehr, H.; Bunting, R.; Farrugia, C. J.
1995-01-01
We report multi-instrument observations during an isolated substorm on 17 October 1989. The European Incoherent Scatter (EISCAT) radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71 deg Lambda - 78 deg Lambda. Sub-Auroral Magnetometer Network (SAMNET) and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. Interplanetary Monitoring Platform-8 (IMP-8) magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux in the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71 deg Lambda by the time of the expansion phase onset. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the distant neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase.
Flux Quantization in Aperiodic and Periodic Networks
NASA Astrophysics Data System (ADS)
Behrooz, Angelika
The normal - superconducting phase boundary, T_{c}(H), of a periodic wire network shows periodic oscillations with period H _{o} = phi_ {o}/A due to flux quantization around the individual plaquettes (of area A) of the network. The magnetic flux quantum is phi_{o } = hc/2e. The phase boundary also shows fine structure at fields H = (p/q)H_{o} (p,q integers), where the flux vortices can form commensurate superlattices on the periodic substrate. We have studied the phase boundary of quasicrystalline, quasiperiodic and random networks. We have found that if a network is composed of two different tiles, whose areas are relatively irrational then the T_ {c}(H) curve shows large scale structure at fields that approximate flux quantization around the tiles, i.e. when the ratio of fluxoids contained in the large tiles to those in the small tiles is a rational approximant to the irrational area ratio. The phase boundaries of quasicrystalline and quasiperiodic networks show fine structure indicating the existence of commensurate vortex superlattices on these networks. No such fine structure is found on the random array. For a quasicrystal whose quasiperiodic long-range order is characterized by the irrational number tau the commensurate vortex lattices are all found at H = H_{o}| n + mtau| (n,m integers). We have found that the commensurate superlattices on quasicrystalline as well as on crystalline networks are related to the inflation symmetry. We propose a general definition of commensurability.
ERIC Educational Resources Information Center
Fay, Temple H.
2010-01-01
Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…
Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-01-01
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715
Grain boundary plane orientation fundamental zones and structure-property relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.
2015-10-26
Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less
Equilibrium composition of interphase boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynblatt, P.
1990-01-01
Two modeling approaches have been used to investigate segregation effects at interphase boundaries. The first approach is based on the nearest neighbor bond model, used in conjunction with the regular solution approximation, and is an extension of an earlier framework developed to address segregation phenomena at free surfaces. In order to model a semicoherent interphase boundary, we have employed a second modeling approach, based on Monte Carol simulation, in conjunction with the embedded atom method (EAM). The EAM is a powerful new method for describing interatomic interactions in metallic systems. It includes certain many-body interactions that depend on the localmore » environment of an atom. The Monte Carol approach has been applied to semicoherent interphase boundaries in Cu-Ag-Au alloys dilute in Au. These alloys consist of coexisting Cu-rich and Ag-rich phases, which differ in lattice constant by about 12%, such that good matching across in interface occurs when nine structural units of the Cu-rich phase are opposed to eight structural units of the Ag-rich phase. Thus far, interfaces with two different orientations have been studied: {l brace}001{r brace}-Cu//{l brace}001{r brace}-Ag, {l angle}110{r angle}-Cu//{l angle}110{r angle}-Ag; and {l brace}111{r brace}-Cu//{l brace}111{r brace}-Ag, {l angle}110{r angle}-Cu//{l angle}110{r angle}-Ag. These two interfaces will be referred to as the (001) and (111) interphase boundaries, for short. 18 refs.« less
Phase-field-crystal model for ordered crystals
NASA Astrophysics Data System (ADS)
Alster, Eli; Elder, K. R.; Hoyt, Jeffrey J.; Voorhees, Peter W.
2017-02-01
We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C11. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.
The investigation of the lateral interaction effect's on traffic flow behavior under open boundaries
NASA Astrophysics Data System (ADS)
Bouadi, M.; Jetto, K.; Benyoussef, A.; El Kenz, A.
2017-11-01
In this paper, an open boundaries traffic flow system is studied by taking into account the lateral interaction with spatial defects. For a random defects distribution, if the vehicles velocities are weakly correlated, the traffic phases can be predicted by considering the corresponding inflow and outflow functions. Conversely, if the vehicles velocities are strongly correlated, a phase segregation appears inside the system's bulk which induces the maximum current appearance. Such velocity correlation depends mainly on the defects densities and the probabilities of lateral deceleration. However, for a compact defects distribution, the traffic phases are predictable by using the inflow in the system beginning, the inflow entering the defects zone and the outflow function.
Temporal and Spatial Response of a Turbulent Boundary Layer to Forcing by Synthetic Jets
NASA Astrophysics Data System (ADS)
Hanson, Ronald; Ganapathisubramani, Bharathram; Lavoie, Philippe
2016-11-01
In this experimental study we examine the spatial and temporal response of a turbulent boundary layer affected by a single, and pair of, synthetic jet actuator(s). The spatial signature of the boundary layer mean-flow has been previously shown to result from large vortical motions caused by the interaction between the synthetic jets and the cross flow. By means of hot-wire measurements, phase-locked to the synthetic jet input, the propagation of the unsteady disturbance can be quantified over the actuation cycle of a synthetic jet. Using long samples both the phase-locked variation of the periodic (actuation cycle) and turbulent fluctuations are examined. It is shown that both the mean flow and turbulence characteristics are markedly different across the span, owing to the three dimensionality of the upstream input. Further, the disturbance shape and phase of the phase-locked disturbance varies significantly with forcing level, in part owing to the disruption of the mean velocity. Particular focus is given to the interaction occurring between the near-wall and outer region scales, which vary across the span, with respect to various forcing conditions. The financial support of Airbus is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Gry, Cecile
2017-08-01
Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com
In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases andmore » a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.« less
beta Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System
NASA Astrophysics Data System (ADS)
Scotto D'Antuono, Daniel
The 5xxx series aluminum alloys are commonly used for structural applications due to their high strength to weight ratio, corrosion resistance, and weldability. This material system is a non-heat treatable aluminum and derives its strength from a super saturation of magnesium (3%>), and from cold rolling. While these materials have many admiral properties, they can undergo a process known as sensitization when exposed to elevated temperatures (50-280°C) for extended periods of time. During this process, magnesium segregates toward the grain boundaries and forms the secondary precipitate β phase (Al3Mg2). When exposed to harsh environments such as sea water, a galvanic couple is formed between the Al matrix and the β phase precipitates. The precipitates become anodic to the matrix and preferentially dissolve leaving gaps along the boundary network, ultimately leading to stress corrosion cracking. While this problem has been known to occur for some time now, questions relating to nucleation sites, misorientation dependence, effect of prior strain, and preferred temperature regimes remain unanswered. The work contained in this thesis attempted to better understand the kinetics, growth, and misorientation dependence, of β phase precipitation using in situ transmission electron microscopy experiments which allowed for direct visualization of the precipitation process. Orientation imaging using a Nanomegas/ASTAR system (OIM in TEM) coupled with the in situ experiments, along with elemental STEM EELs mapping were used to better understand the diffusion of Mg and found low angle boundaries as potential sites for nucleation. The resulting STEM EELs experiments also showed that Mg is much more stable at the grain boundaries than previously thought. Concurrent bulk ex-situ studies were used to compare various heat treatments, as well as to failed in service material showing that the low temperature treatments yield the metastable β’ phase more readily than the β equilibrium phase. The work here has identified the size, location, and kinetics of β phase formation as well as the effects of pre-strain (cold rolling) and boundary misorientation on precipitation showing that increases in dislocations speeds up sensitization and increases nucleation sites but does not increase overall precipitate size. This work also compared precipitate type (β vs. β’) showing that the metastable β’ phase is more common in low temperature treated material and the main precipitate found in failed in service material. A comparison between the corrosion effects of the two precipitation showed that lower temperature treatments have a higher degree of sensitization further delineating between the two forms.
Wave phenomena in a high Reynolds number compressible boundary layer
NASA Technical Reports Server (NTRS)
Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.
1985-01-01
Growth of unstable disturbances in a high Reynolds number compressible boundary layer is numerically simulated. Localized periodic surface heating and cooling as a means of active control of these disturbances is studied. It is shown that compressibility in itself stabilizes the flow but at a lower Mach number, significant nonlinear distortions are produced. Phase cancellation is shown to be an effective mechanism for active boundary layer control.
NASA Astrophysics Data System (ADS)
Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.
2017-10-01
We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Robert
The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate themore » contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).« less
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection
NASA Technical Reports Server (NTRS)
Karma, Alain; Trivedi, Rohit
1999-01-01
Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.
Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette
2013-01-01
During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070
RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.
Allan, Matthew; Mauer, Lisa J
2017-12-01
Several common deliquescent crystalline food ingredients (including glucose and citric acid) are capable of forming crystal hydrate structures. The propensity of such crystals to hydrate/dehydrate or deliquesce is dependent on the environmental temperature and relative humidity (RH). As an anhydrous crystal converts to a crystal hydrate, water molecules internalize into the crystal structure resulting in different physical properties. Deliquescence is a solid-to-solution phase transformation. RH-temperature phase diagrams of the food ingredients alpha-d-glucose and citric acid, along with sodium sulfate, were produced using established and newly developed methods. Each phase diagram included hydrate and anhydrate deliquescence boundaries, the anhydrate-hydrate phase boundary, and the peritectic temperature (above which the hydrate was no longer stable). This is the first report of RH-temperature phase diagrams of glucose and citric acid, information which is beneficial for selecting storage and processing conditions to promote or avoid hydrate formation or loss and/or deliquescence. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.
1998-01-01
An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.
Magnetic field effect on the liquidus boundary of Bi-Mn binary system
NASA Astrophysics Data System (ADS)
Mitsui, Yoshifuru; Koyama, Keiichi; Oikawa, Katsunari; Watanabe, Kazuo
2014-10-01
The magnetic field effect (MFE) on liquidus boundary of Bi-Mn binary system was investigated by differential thermal analysis (DTA) and the computer coupling of phase diagram method (CALPHAD). The liquidus boundary for Bi-18at.%Mn and Bi-24at.%Mn rose clearly by the application of the magnetic fields. The MFE for liquidus boundary temperature Tliq changed from ΔTliq∝B2 to ΔTliq∝B because of the large increase of the peritectic temperature from BiMn and BiMn1.08 by the application of magnetic field.
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; ...
2017-06-19
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain q ~→χ ~ 0 2→ℓ ~→χ ~ 0 1 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant massesmore » squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, Σ¯ , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the Σ¯ maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.« less
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Dipsikha; Gainer, James S.; Kilic, Can
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain q ~→χ ~ 0 2→ℓ ~→χ ~ 0 1 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant massesmore » squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, Σ¯ , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the Σ¯ maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.« less
Effect of initial densities in the lattice Boltzmann model for non-ideal fluid with curved interface
NASA Astrophysics Data System (ADS)
Gong, Jiaming; Oshima, Nobuyuki
2017-06-01
The effect of initial densities in a free energy based two-phase-flow lattice Boltzmann method for non-ideal fluids with a curved interface was investigated in the present work. To investigate this effect, the initial densities in the liquid and gas phases coming from the saturation points and the equilibrium state were adopted in the simulation of a static droplet in an open and a closed system. For the purpose of simplicity and easier comparison, the closed system is fabricated by the implementation of the periodic boundary condition at the inlet and outlet of a gas channel, and the open system is fabricated by the implementation of a constant flux boundary condition at the inlet and a free-out boundary condition at the outlet of the same gas channel. By comparing the simulation results from the two types of initial densities in the open and closed systems, it is proven that the commonly used saturation initial densities setting is the reason for droplet mass and volume variation which occurred in the simulation, particularly in the open system with a constant flux boundary condition. Such problems are believed to come from the curvature effect of the surface tension and can be greatly reduced by adopting the initial densities in the two phases from equilibrium state.
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
NASA Astrophysics Data System (ADS)
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.
Feasibility of generating an artificial burst in a turbulent boundary layer, phase 2
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
Various drag accounts for about half of the total drag on commercial aircraft at subsonic cruise conditions. Two avenues are available to achieve drag reduction: either laminar flow control or turbulence manipulation. The present research deals with the latter approach. The primary objective of Phase 2 research was to investigate experimentally the feasibility of substantially reducing the skin-friction drag in a turbulent boundary layer. The method combines the beneficial effects of suction and a longitudinally ribbed surface. At a sufficiently large spanwise separation, the streamwise grooves act as a nucleation site causing a focusing of low-speed streaks over the peaks. Suction is then applied intermittently through longitudinal slots located at selected locations along those peaks to obliterate the low-speed regions and to prevent bursting. Phase 2 research was divided into two tasks. In the first, selective suction from a single streamwise slot was used to eliminate either a single burst-like event or a periodic train of artificially generated bursts in laminar and turbulent boundary layers that develop on a flat plate towed in a water channel. The results indicate that equivalent values of the suction coefficient as low as 0.0006 were sufficient to eliminate the artificially generated bursts in a laminar boundary layer.
NASA Technical Reports Server (NTRS)
Schopper, M. R.
1982-01-01
The hot-wire anemometer amplitude data contained in the 1977 report of P. J. Shapiro entitled, ""The Influence of Sound Upon Laminar Boundary'' were reevaluated. Because the low-Reynolds number boundary layer disturbance data were misinterpreted, an effort was made to improve the corresponding disturbance growth rate curves. The data are modeled as the sum of upstream and downstream propagating acoustic waves and a wave representing the Tollmien-Schlichting (TS) wave. The amplitude and phase velocity of the latter wave were then adjusted so that the total signal reasonably matched the amplitude and phase angle hot-wire data along the plate laminar boundary layer. The revised rates show growth occurring further upstream than Shapiro found. It appears that the premature growth is due to the adverse pressure gradient created by the shape of the plate. Basic elements of sound propagation in ducts and the experimental and theoretical acoustic-stability literature are reviewed.
Transport phenomena in the micropores of plug-type phase separators
NASA Technical Reports Server (NTRS)
Fazah, M. M.
1995-01-01
This study numerically investigates the transport phenomena within and across a porous-plug phase separator. The effect of temperature differential across a single pore and of the sidewall boundary conditions, i.e., isothermal or linear thermal gradient, are presented and discussed. The effects are quantified in terms of the evaporation mass flux across the boundary and the mean surface temperature. A two-dimensional finite element model is used to solve the continuity, momentum, and energy equations for the liquid. Temperature differentials across the pore interface of 1.0, and 1.5 K are examined and their effect on evaporation flux and mean surface temperature is shown. For isothermal side boundary conditions, the evaporation flux across the pore is directly proportional and linear with Delta T. For the case of an imposed linear thermal gradient on the side boundaries, Biot numbers of 0.0, 0.15, and 0.5 are examined. The most significant effect of Biot number is to lower the overall surface temperature and evaporation flux.
Probing the statistics of transport in the Hénon Map
NASA Astrophysics Data System (ADS)
Alus, O.; Fishman, S.; Meiss, J. D.
2016-09-01
The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant "boundary circles." We briefly report recent results of the distribution of rotation numbers of boundary circles for the Hénon quadratic map and show that the probability of occurrence of small integer entries of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large integer entries occur with probabilities distributed proportionally to the random case. The probability distributions of ratios of fluxes through island chains is reported as well. These island chains are neighbours in the sense of the Meiss-Ott Markov-tree model. Two distinct universality families are found. The distributions of the ratio between the flux and orbital period are also presented. All of these results have implications for models of transport in mixed phase space.
2011-11-01
Deformation is highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i...highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i matrix-type...phase at different thicknesses. 7328 R.R. Unocic et al. / Acta Materialia 59 (2011) 7325–7339 the image. A number of carbide and/or boride phases are
NASA Technical Reports Server (NTRS)
Ha Minh, H.; Viegas, J. R.; Rubesin, M. W.; Spalart, P.; Vandromme, D. D.
1989-01-01
The turbulent boundary layer under a freestream whose velocity varies sinusoidally in time around a zero mean is computed using two second order turbulence closure models. The time or phase dependent behavior of the Reynolds stresses are analyzed and results are compared to those of a previous SPALART-BALDWIN direct simulation. Comparisons show that the second order modeling is quite satisfactory for almost all phase angles, except in the relaminarization period where the computations lead to a relatively high wall shear stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chisolm, Eric D.
I explain how to evaluate a multiphase EOS at a given density and energy, which is the standard case in hydrodynamic simulations, when the EOS is provided in the form of individual EOS for each phase and tabulated phase boundaries.
Micromagnetic simulations with periodic boundary conditions: Hard-soft nanocomposites
Wysocki, Aleksander L.; Antropov, Vladimir P.
2016-12-01
Here, we developed a micromagnetic method for modeling magnetic systems with periodic boundary conditions along an arbitrary number of dimensions. The main feature is an adaptation of the Ewald summation technique for evaluation of long-range dipolar interactions. The method was applied to investigate the hysteresis process in hard-soft magnetic nanocomposites with various geometries. The dependence of the results on different micromagnetic parameters was studied. We found that for layered structures with an out-of-plane hard phase easy axis the hysteretic properties are very sensitive to the strength of the interlayer exchange coupling, as long as the spontaneous magnetization for the hardmore » phase is significantly smaller than for the soft phase. The origin of this behavior was discussed. Additionally, we investigated the soft phase size optimizing the energy product of hard-soft nanocomposites.« less
The oxidation of Ni-rich Ni-Al intermetallics
NASA Technical Reports Server (NTRS)
Doychak, Joseph; Smialek, James L.; Barrett, Charles A.
1988-01-01
The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.
Su, Nan-Yao; Lee, Sang-Hee
2008-04-01
Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.
Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements
NASA Astrophysics Data System (ADS)
Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun
2016-11-01
It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.
NASA Astrophysics Data System (ADS)
Shi, Qianying; An, Ning; Huo, Jiajie; Ding, Xianfei; Zheng, Yunrong; Feng, Qiang
2017-11-01
In current study, two sets of Ni-based alloys (Ni-Cr-Mo and Ni-Cr-Re series) containing 0 to 15 at. pct of Co addition were investigated to understand the formation behavior of TCP phases. Significant difference on the formation behavior of TCP phases and corresponding Co effect was found in two series alloys. TCP precipitates ( P and µ phase) were observed in both grain interiors and boundaries in Ni-Cr-Mo series alloys. Higher levels of Co addition increased the supersaturation of Mo in the γ matrix, which explained that Co addition promoted µ phase formation. In contrast, the TCP precipitates ( σ phase) formed by the manner of discontinuous precipitation transformation in the grain boundaries in Ni-Cr-Re series alloys. More Co additions suppressed the formation of σ phase, which was mainly attributed to the decreased supersaturation of Re in thermodynamically metastable γ matrix. The information obtained from simplified alloy systems in this study is helpful for the design of multicomponent Ni-based superalloys.
Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.
Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S
2013-05-02
We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.
NASA Astrophysics Data System (ADS)
Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus
2018-01-01
The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.
NASA Astrophysics Data System (ADS)
Li, Z.; Hudson, M. K.; Chen, Y.
2013-12-01
The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on THEMIS measurements to express the boundary flux as three fit functions of solar wind parameters in a response window, that depend on energy and which solar parameter is used: speed, density, or both (Shin and Lee, 2013). The Dartmouth radial diffusion model has been run using LANL geosynchronous satellite measurements as the outer boundary for a one-month interval in July to August 2004 and the calculated phase space density (PSD) is compared with GPS measurements at the GPS orbit (L=4.16), at magnetic equatorial plane crossings, as a test of the model. We also used the outer boundary generated from the Shin and Lee model and examined this boundary condition by computing the error relative to the simulation using a LANL geosynchronous spacecraft data-driven outer boundary. The calculation shows that there is overestimation and underestimation at different times, however the new boundary condition can be used to drive the radial diffusion model generally, producing the phase space density increase and dropout during a storm with a relatively small error. Having this new method based on a solar wind parametrized data set, we can run the radial diffusion model for storms when particle measurements are not available at the outer boundary. We chose the Whole Heliosphere Interval (WHI) as an example and compared the result with MHD/test-particle simulations (Hudson et al., 2012), obtaining much better agreement with PSD based on GPS measurements at L=4.16 using the diffusion model, which incorporates atmospheric losses.
Fractal boundary basins in spherically symmetric ϕ4 theory
NASA Astrophysics Data System (ADS)
Honda, Ethan
2010-07-01
Results are presented from numerical simulations of the flat-space nonlinear Klein-Gordon equation with an asymmetric double-well potential in spherical symmetry. Exit criteria are defined for the simulations that are used to help understand the boundaries of the basins of attraction for Gaussian “bubble” initial data. The first exit criterion, based on the immediate collapse or expansion of bubble radius, is used to observe the departure of the scalar field from a static intermediate attractor solution. The boundary separating these two behaviors in parameter space is smooth and demonstrates a time-scaling law with an exponent that depends on the asymmetry of the potential. The second exit criterion differentiates between the creation of an expanding true-vacuum bubble and dispersion of the field leaving the false vacuum; the boundary separating these basins of attraction is shown to demonstrate fractal behavior. The basins are defined by the number of bounces that the field undergoes before inducing a phase transition. A third, hybrid exit criterion is used to determine the location of the boundary to arbitrary precision and to characterize the threshold behavior. The possible effects this behavior might have on cosmological phase transitions are briefly discussed.
NASA Astrophysics Data System (ADS)
Wang, Qing; Dong, Chuang; Liaw, Peter K.
2015-08-01
Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.
NASA Astrophysics Data System (ADS)
Rai, Man Mohan
2018-05-01
The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x/D. Both these effects are examined in detail, and the important contributors are identified.
Nucleation and Growth of Tetrataenite (FeNi) in Meteorites
NASA Astrophysics Data System (ADS)
Goldstein, J. I.; Williams, D. B.; Zhang, J.
1992-07-01
The mineral tetrataenite (ordered FeNi) has been observed in chondrites, stony irons, and iron meteorites (1). FeNi is an equilibrium phase in the Fe-Ni phase diagram (Figure 1) and orders to tetrataenite at ~320 degrees C (2). The phase forms at temperatures at or below the eutectoid temperature (~400 degrees C) where taenite (gamma) transforms to kamacite (alpha) plus FeNi (gamma"). An understanding of the formation of tetrataenite can lead to a new method for determining cooling rates at low temperatures (<400 degrees C) for all types of meteorites. In a recent study of plessite in iron meteorites (3), two transformation sequences for the formation of tetrataenite were observed. In either sequence, during the cooling process, the taenite (gamma) phase initially undergoes a diffusionless transformation to a martensite (alpha, bcc) phase without a composition change. The martensite then decomposes either above or below the eutectoid temperature (~400 degrees C) during cooling or upon subsequent reheating. During martensite decomposition above the eutectoid, the taenite (gamma) phase nucleates by the reaction alpha(sub)2 ---> alpha + gamma and grows under volume diffusion control. The Ni composition of the taenite increases continuously following the equilibrium gamma/alpha + gamma boundary while the Ni composition of the kamacite matrix decreases following the alpha/alpha + gamma phase boundary (2), see Figure 1. Below the eutectoid temperature, the precipitate composition follows the equilibrium gamma"/alpha + gamma" boundary and reaches ~52 wt% Ni, the composition of FeNi, gamma". The kamacite (alpha) matrix composition approaches ~4 to 5 wt% Ni. The ordering transformation starts at ~320 degrees C forming the tetrataenite phase. During martensite decomposition below the eutectoid temperature, FeNi should form directly by the reaction alpha2 --> alpha + gamma" (FeNi). If this transformation sequence occurs, then the composition of kamacite and tetrataenite should also be given by the alpha/alpha + gamma" and gamma"/alpha + gamma" boundaries of the Fe-Ni phase diagram (Figure 1). However, the Ni content of kamacite and tetrataenite in black plessite, which forms below 400 degrees C, is ~10 wt% in kamacite and ~57 to 60 wt% in tetrataenite, much higher than the values given by the equilibrium phase diagram (3). It has been observed experimentally (4) that the Ni composition of the gamma phase formed by martensite decomposition below 400 degrees C lies along a metastable extension of the high temperature gamma/alpha + gamma phase boundary, Figure 2. Therefore, the FeNi phase formed by alpha(sub)2 decomposition below 400 degrees C has a non-equilibrium Ni content, >50 to 56 wt%. The growth or thickening of the FeNi phase occurs by some combination of interface and diffusion control (3). References: (1) Clarke R. S. and Scott E. R. D. (1980) Amer. Mineral. 65, 624-630. (2) Reuter K. B., Williams D. B., and Goldstein J. I. (1989) Met. Trans. 20A, 719-725. (3) Zhang J., Williams D. B. and Goldstein J. I. (1992) Submitted to Geochim. Cosmochim. Acta. (4) Zhang J., Williams L). B. and Goldstein J. I. (1992) Submitted to Met. Trans. Figure 1, which in the hard copy appears here, is an Fe-Ni phase diagram (2). Figure 2, which in the hard copy appears here, shows measured FeNi composition from heat-treated alloys (4).
Phase transitions in MgSiO3 at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Ono, S.
2017-12-01
As olivine, pyroxene and garnet are major minerals in the upper mantle, understanding the dynamics and evolution of the mantle requires knowledge of MgSiO3, which is an end-member of pyroxene. Therefore, phase relations in MgSiO3 have been repeatedly investigated by a number of authors. However, the transition sequence of the MgSiO3 mineral remains as yet unconfirmed. The discrepancy among researchers is likely due to the accuracy of phase boundary determinations related with the stability field of two phases, wadsleyite + stishovite or ringwoodite + stishovite.High-pressure experiments were carried out using multi-anvil high-pressure apparatus installed at the synchrotron facilities of KEK and SPring-8 in Japan. Experimental details were described elsewhere [e.g., 1,2]. A mixture of the powdered MgSiO3 and gold was used. Experimental pressures were determined from the unit cell volumes of gold. All recovered samples were investigated by an electron microprobe analyzer to identify the stable phase in each experimental run.Experimental runs were performed at pressures between 15 and 21 GPa. Two types of recovered samples, single (MgSiO3) and two phases (Mg2SiO4 + SiO2), were confirmed. The single phase was high-pressure clinoenstatite or akimotoite, and two phases were wadsleyite + stishovite or ringwoodite + stishovite. According to experimental data, two reaction boundaries were determined. The reaction boundary between high-pressure clinoenstatite and wadsleyite + stishovite has a positive dP/dT gradient, 0.0064 GPa/K [3]. In contrast, the reaction boundary between ringwoodite + stishovite and akimotoite has a negative dP/dT gradient, -0.0012 GPa/K [4]. This study indicates that the stability field of wadsleyite + stishovite expands to a low temperature region corresponding to the P-T path in the subducted slab. Moreover, a triple point of wadsleyite + stishovite-ringwoodite + stishovite-akimotoite is located at a temperature slightly lower than the geotherm. These experimental results can reconcile the inconsistency recorded between previous studies regarding the phase relation in MgSiO3.[1] Ono et al., Phys. Chem. Minerals, 40, 811-816 (2013)[2] Ono et al., Phys. Earth Planet. Inter., 264, 1-6 (2017)[3] Ono et al., (under review)[4] Ono et al., Phys. Chem. Minerals, 44, 425-430 (2017)
Grain boundary premelting and activated sintering in binary refractory alloys
NASA Astrophysics Data System (ADS)
Shi, Xiaomeng
Quasi-liquid intergranular film (IGF) which has been widely observed in ceramic systems can persist into sub-solidus region whereby an analogy to Grain boundary (GB) premelting can be made. In this work, a grain boundary (GB) premelting/prewetting model in a metallic system was firstly built based on the Benedictus' model and computational thermodynamics, predicting that GB disordering can start at 60-85% of the bulk solidus temperatures in selected systems. This model quantitatively explains the long-standing mystery of subsolidus activated sintering in W-Pd, W-Ni, W-Co, W-Fe and W-Cu, and it has broad applications for understanding GB-controlled transport kinetics and physical properties. Furthermore, this study demonstrates the necessity of developing GB phase diagrams as a tool for materials design. Subsequently, Grain boundary (GB) wetting and prewetting in Ni-doped Mo are systematically evaluated via characterizing well-quenched specimens and thermodynamic modeling. In contrast to prior reports, the delta-NiMo phase does not wet Mo GBs in the solid state. In the solid-liquid two-phase region, the Ni-rich liquid wets Mo GBs completely. Furthermore, high-resolution transmission electron microscopy demonstrates that nanometer-thick quasi-liquid IGFs persist at GBs into the single-phase region where the bulk liquid phase is no longer stable; this is interpreted as a case of GB prewetting. An analytical thermodynamic model is developed and validated, and this model can be extended to other systems. Furthermore, the analytical model was refined based upon Beneditus' model with correction in determining interaction contribution of interfacial energy. A calculation-based GB phase diagram for Ni-Mo binary system was created and validated by comparing with GB diffusivities determined through a series of controlled sintering experiments. The dependence of GB diffusivity on doping level and temperature was examined and compared with model-predicted GB phase diagram. The consistency between GB phase diagram and GB diffusivity was evidently observed. This study revealed the existence of quasi-liquid IGF in Ni-Mo and re-confirmed our prior hypothesis proposed through work in Ni-W system. It also demonstrated further the necessity of a GB phase diagram as a new tool to guide the materials processing or design, such as selection of sintering aid and heat-treatment.
Experimental verification of free-space singular boundary conditions in an invisibility cloak
NASA Astrophysics Data System (ADS)
Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile
2016-04-01
A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.
Analyzing phase diagrams and phase transitions in networked competing populations
NASA Astrophysics Data System (ADS)
Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.
2011-03-01
Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.