Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
Finite cover method with mortar elements for elastoplasticity problems
NASA Astrophysics Data System (ADS)
Kurumatani, M.; Terada, K.
2005-06-01
Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.
García-Florentino, Cristina; Maguregui, Maite; Romera-Fernández, Miriam; Queralt, Ignasi; Margui, Eva; Madariaga, Juan Manuel
2018-05-01
Wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry has been widely used for elemental quantification of mortars and cements. In this kind of instrument, samples are usually prepared as pellets or fused beads and the whole volume of sample is measured at once. In this work, the usefulness of a dual energy dispersive X-ray fluorescence spectrometer (ED-XRF), working at two lateral resolutions (1 mm and 25 μm) for macro and microanalysis respectively, to develop quantitative methods for the elemental characterization of mortars and concretes is demonstrated. A crucial step before developing any quantitative method with this kind of spectrometers is to verify the homogeneity of the standards at these two lateral resolutions. This new ED-XRF quantitative method also demonstrated the importance of matrix effects in the accuracy of the results being necessary to use Certified Reference Materials as standards. The results obtained with the ED-XRF quantitative method were compared with the ones obtained with two WD-XRF quantitative methods employing two different sample preparation strategies (pellets and fused beads). The selected ED-XRF and both WD-XRF quantitative methods were applied to the analysis of real mortars. The accuracy of the ED-XRF results turn out to be similar to the one achieved by WD-XRF, except for the lightest elements (Na and Mg). The results described in this work proved that μ-ED-XRF spectrometers can be used not only for acquiring high resolution elemental map distributions, but also to perform accurate quantitative studies avoiding the use of more sophisticated WD-XRF systems or the acid extraction/alkaline fusion required as destructive pretreatment in Inductively coupled plasma mass spectrometry based procedures.
Amination of black liquor and the application in the ready-mixed wet mortar.
Zheng, Dafeng; Zheng, Tao; Chen, Ran; Li, Xiaokang; Qiu, Xueqing
2018-01-01
In order to extend the application of black liquor (BL), amino group was introduced in lignin through Mannich reaction. The structure of the aminated black liquor (ABL) was characterized with FT-IR, elemental analysis, the zeta potential and the inherent viscosity. The foam generated by ABL was more stable, for the surface tension was lower. The results of the mortar test indicated that the water-retention rate of the fresh mortar incorporated with 0.3 wt% ABL was 89.1%; the consistency loss was about 39.7% after 4 h. When the dosage was less than 0.3 wt%, ABL could increase the bond strength of the hardened mortars. The results showed that ABL could be used as an effective ready-mixed wet mortar admixture. This study not only provided a new method to develop new mortar admixture, but also alleviated the pollution of BL.
A mortar formulation including viscoelastic layers for vibration analysis
NASA Astrophysics Data System (ADS)
Paolini, Alexander; Kollmannsberger, Stefan; Rank, Ernst; Horger, Thomas; Wohlmuth, Barbara
2018-05-01
In order to reduce the transfer of sound and vibrations in structures such as timber buildings, thin elastomer layers can be embedded between their components. The influence of these elastomers on the response of the structures in the low frequency range can be determined accurately by using conforming hexahedral finite elements. Three-dimensional mesh generation, however, is yet a non-trivial task and mesh refinements which may be necessary at the junctions can cause a high computational effort. One remedy is to mesh the components independently from each other and to couple them using the mortar method. Further, the hexahedral mesh for the thin elastomer layer itself can be avoided by integrating its elastic behavior into the mortar formulation. The present paper extends this mortar formulation to take damping into account such that frequency response analyses can be performed more accurately. Finally, the proposed method is verified by numerical examples.
Investigation of Coupled model of Pore network and Continuum in shale gas
NASA Astrophysics Data System (ADS)
Cao, G.; Lin, M.
2016-12-01
Flow in shale spanning over many scales, makes the majority of conventional treatment methods disabled. For effectively simulating, a coupled model of pore-scale and continuum-scale was proposed in this paper. Based on the SEM image, we decompose organic-rich-shale into two subdomains: kerogen and inorganic matrix. In kerogen, the nanoscale pore-network is the main storage space and migration pathway so that the molecular phenomena (slip and diffusive transport) is significant. Whereas, inorganic matrix, with relatively large pores and micro fractures, the flow is approximate to Darcy. We use pore-scale network models (PNM) to represent kerogen and continuum-scale models (FVM or FEM) to represent matrix. Finite element mortars are employed to couple pore- and continuum-scale models by enforcing continuity of pressures and fluxes at shared boundary interfaces. In our method, the process in the coupled model is described by pressure square equation, and uses Dirichlet boundary conditions. We discuss several problems: the optimal element number of mortar faces, two categories boundary faces of pore network, the difference between 2D and 3D models, and the difference between continuum models FVM and FEM in mortars. We conclude that: (1) too coarse mesh in mortars will decrease the accuracy, while too fine mesh will lead to an ill-condition even singular system, the optimal element number is depended on boundary pores and nodes number. (2) pore network models are adjacent to two different mortar faces (PNM to PNM, PNM to continuum model), incidental repeated mortar nodes must be deleted. (3) 3D models can be replaced by 2D models under certain condition. (4) FVM is more convenient than FEM, for its simplicity in assigning interface nodes pressure and calculating interface fluxes. This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB10020302), the 973 Program (2014CB239004), the Key Instrument Developing Project of the CAS (ZDYZ2012-1-08-02), the National Natural Science Foundation of China (41574129).
Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
NASA Astrophysics Data System (ADS)
Tal, Yuval; Hager, Bradford H.
2017-09-01
This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.
Numerical Modelling of Connections Between Stones in Foundations of Historical Buildings
NASA Astrophysics Data System (ADS)
Przewlocki, Jaroslaw; Zielinska, Monika; Grebowski, Karol
2017-12-01
The aim of this paper is to analyse the behaviour of old building foundations composed of stones (the main load-bearing elements) and mortar, based on numerical analysis. Some basic aspects of historical foundations are briefly discussed, with an emphasis on their development, techniques, and material. The behaviour of a foundation subjected to the loads transmitted from the upper parts of the structure is described using the finite element method (FEM). The main problems in analysing the foundations of historical buildings are determining the characteristics of the materials and the degree of degradation of the mortar, which is the weakest part of the foundation. Mortar is graded using the damaged-plastic model. In this model, exceeding the bearing capacity occurs due to the degradation of materials. The damaged-plastic model is the most accurate model describing the work and properties of mortar because it shows exactly what happens with this material throughout its total load history. For a uniformly loaded fragment of the foundation, both stresses and strains were analysed. The results of the analysis presented in this paper contribute to further research in the field of understanding both behaviour and modelling in historical buildings’ foundations.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.
Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel
NASA Astrophysics Data System (ADS)
Criado, Maria; Provis, John L.
2018-06-01
The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escoda, J.; Departement Materiaux et Mecanique des Composants, Electricite de France, Moret-sur-Loing; Willot, F., E-mail: francois.willot@ensmp.f
2011-05-15
This study concerns the prediction of the elastic properties of a 3D mortar image, obtained by micro-tomography, using a combined image segmentation and numerical homogenization approach. The microstructure is obtained by segmentation of the 3D image into aggregates, voids and cement paste. Full-fields computations of the elastic response of mortar are undertaken using the Fast Fourier Transform method. Emphasis is made on highly-contrasted properties between aggregates and matrix, to anticipate needs for creep or damage computation. The representative volume element, i.e. the volume size necessary to compute the effective properties with a prescribed accuracy, is given. Overall, the volumes usedmore » in this work were sufficient to estimate the effective response of mortar with a precision of 5%, 6% and 10% for contrast ratios of 100, 1000 and 10,000, resp. Finally, a statistical and local characterization of the component of the stress field parallel to the applied loading is carried out.« less
Elemental analysis using ED-XRF and 14C dating of Cuman wall paintings samples
NASA Astrophysics Data System (ADS)
Brocchieri, J.; Sabbarese, C.; Marzaioli, F.; Passariello, I.; Terrasi, F.; De Maio, C.; Ferrara, L.
2018-04-01
The aim of the present research was to analyse pigments and mortars of fresco fragments located at Cuma (Naples, Italy). The ED-XRF technique and 14C dating were used to establish the nature of the pigments and the age of mortars, respectively. ED-XRF results allowed to determine the elemental composition of the pigments that identified the colours and, hence, the historical period of completion. The 14C dating, applied to mortars using a particular preparation, provided results that are in accordance with the archaeological information within the 2σ interval range.
MULTIGRID FOR THE MORTAR FINITE ELEMENT METHOD. (R825207)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars.
Pagnotta, Stefano; Lezzerini, Marco; Ripoll-Seguer, Laura; Hidalgo, Montserrat; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Poggialini, Francesco; Palleschi, Vincenzo
2017-04-01
The laser-induced breakdown spectroscopy (LIBS) technique was used for analyzing the composition of an ancient Roman mortar (5th century A.D.), exploiting an experimental setup which allows the determination of the compositions of binder and aggregate in few minutes, without the need for sample treatment. Four thousand LIBS spectra were acquired from an area of 10 mm 2 , with a 50 µm lateral resolution. The elements of interest in the mortar sample (H, C, O, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe) were detected and mapped. The collected data graphically shown as compositional images were interpreted using different statistical approaches for the determination of the chemical composition of the binder and aggregate fraction. The methods of false color imaging, blind separation, and self-organizing maps were applied and their results are discussed in this paper. In particular, the method based on the use of self-organizing maps gives well interpretable results in very short times, without any reduction in the dimensionality of the system.
NASA Astrophysics Data System (ADS)
Heumann, Holger; Rapetti, Francesca
2017-04-01
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.
Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar
NASA Astrophysics Data System (ADS)
Grasing, David; Desai, Sachi; Morcos, Amir
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Artillery/mortar type classification based on detected acoustic transients
NASA Astrophysics Data System (ADS)
Morcos, Amir; Grasing, David; Desai, Sachi
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
Artillery/mortar round type classification to increase system situational awareness
NASA Astrophysics Data System (ADS)
Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron
2008-04-01
Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.
A New Test Method for Determining the Strength and Fracture Toughness of Cement Mortar and Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Liu, Ken C; Naus, Dan J
2010-01-01
The Spiral Notch Torsion Fracture Toughness Test (SNTT) was developed recently to determine the intrinsic fracture toughness (KIC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 45 a pitch. KIC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments. Application of the method to metallic, ceramic, and graphite materials has been demonstrated. One importantmore » characteristic of SNTT is that neither a fatigue precrack or a deep notch are required for the evaluation of brittle materials, which significantly reduces the sample size requirement. In this paper we report results for a Portland cement-based mortar to demonstrate applicability of the SNTT method to cementitious materials. The estimated KIC of the tested mortar samples with compressive strength of 34.45 MPa was found to be 0.19 MPa m^(1/2).« less
Mortar and artillery variants classification by exploiting characteristics of the acoustic signature
NASA Astrophysics Data System (ADS)
Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir
2007-10-01
Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.
Defense Attache Saigon: RVNAF Quarterly Assessment, 4th Quarter FY74
1974-08-01
bombardments with mortars , rockets, and artillery against this outpost and other GVN outposts in the area. Ralliers indicated that elements of the 5th...lery/ mortar fire and mines to stall RVNAF attempts to regain control west of Ben Cat and to inflict casualties. (6) In the Phu Giao area, the 209th and...losses reported were 390 KIA and 12 DTN. Additionally 28 CS, 63 SA, a substantial number of rockets, mortar rounds, AT-3 missiles, mines and other
Analysis of Brick Masonry Wall using Applied Element Method
NASA Astrophysics Data System (ADS)
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, J.M.; Fita, I.C., E-mail: infifer@fis.upv.es; Soriano, L.
2013-08-15
In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration andmore » allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.« less
Unstructured Adaptive Meshes: Bad for Your Memory?
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob
2003-01-01
This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.
NASA Astrophysics Data System (ADS)
Heinemeier, Jan; Jungner, Högne; Lindroos, Alf; Ringbom, Åsa; von Konow, Thorborg; Rud, Niels
1997-03-01
A method for refining lime mortar samples for 14C dating has been developed. It includes mechanical and chemical separation of mortar carbonate with optical control of the purity of the samples. The method has been applied to a large series of AMS datings on lime mortar from three medieval churches on the Åland Islands, Finland. The datings show convincing internal consistency and confine the construction time of the churches to AD 1280-1380 with a most probable date just before AD 1300. We have also applied the method to the controversial Newport Tower, Rhode Island, USA. Our mortar datings confine the building to colonial time in the 17th century and thus refute claims of Viking origin of the tower. For the churches, a parallel series of datings of organic (charcoal) inclusions in the mortar show less reliable results than the mortar samples, which is ascribed to poor association with the construction time.
Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure
NASA Astrophysics Data System (ADS)
Sarrafi-Nour, Reza; Manoharan, Mohan; Johnson, Curtis A.
Many natural composite materials rely on organized architectures that span several length scales. The structures of natural shells such as nacre (mother-of-pearl) and conch are prominent examples of such organizations where the calcium carbonate platelets, the main constituent of natural shells, are held together in an organized fashion within an organic matrix. At one or multiple length scales, these organized arrangements often resemble a brick-and-mortar structure, with calcium carbonate platelets acting as bricks connected through the organic mortar phase.
Porosity estimation of aged mortar using a micromechanical model.
Hernández, M G; Anaya, J J; Sanchez, T; Segura, I
2006-12-22
Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.
Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolini, Luca, E-mail: luca.bertolini@polimi.it; Carsana, Maddalena, E-mail: maddalena.carsana@polimi.it; Gastaldi, Matteo, E-mail: matteo.gastaldi@polimi.it
The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniquesmore » throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico-aluminates were used in all periods. • Cocciopesto hydraulic mortars were used only in the Roman period. • Gypsum was found in most samples, which was maybe added intentionally.« less
Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.
Law, S L; Newman, J H; Ptak, F L
1990-02-01
A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.
NASA Astrophysics Data System (ADS)
Song, Yeo-Ul; Youn, Sung-Kie; Park, K. C.
2017-10-01
A method for three-dimensional non-matching interface treatment with a virtual gap element is developed. When partitioned structures contain curved interfaces and have different brick meshes, the discretized models have gaps along the interfaces. As these gaps bring unexpected errors, special treatments are required to handle the gaps. In the present work, a virtual gap element is introduced to link the frame and surface domain nodes in the frame work of the mortar method. Since the surface of the hexahedron element is quadrilateral, the gap element is pyramidal. The pyramidal gap element consists of four domain nodes and one frame node. Zero-strain condition in the gap element is utilized for the interpolation of frame nodes in terms of the domain nodes. This approach is taken to satisfy the momentum and energy conservation. The present method is applicable not only to curved interfaces with gaps, but also to flat interfaces in three dimensions. Several numerical examples are given to describe the effectiveness and accuracy of the proposed method.
Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham
2016-01-01
Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.
Using Mortar Mixing Pump for Magnesia Mortars Preparing and Transporting
NASA Astrophysics Data System (ADS)
Kiyanets, A. V.
2017-11-01
The article is devoted to the problem of preparation and transportation of magnesia mortars with the help of screw mortar mixing pumps. The urgency of the wide use of mortars on magnesia binders (Sorel’s cement) in construction is substantiated due to their high characteristics: strength, hardening speed, wear resistance, possibility of using organic and mineral aggregates, ecological purity and economic efficiency. The necessity for the development of a technique for calculating the main parameters of a mortar mixing pump for its application in the technology of preparation and transportation of magnesia mortars is demonstrated. The analysis of various types of modern mortar mixing pumps is given. The conclusions are drawn about the advantages and disadvantages of standard schemes. The description of the experiment for determination of the productivity of a mortar mixing pump is described depending on the plasticity (mobility) of the used magnesia mortar. The graph and description of the mathematical dependency of the productivity of the mortar mixing pump on the magnesia mortar plasticity are given. On the basis of the obtained dependency, as well as the already known formulas given in the article, a new method is proposed for calculating the main parameters of the screw mortar mixing pump in preparation and transportation of magnesia mortar: productivity, feed range, supply pressure, drive power.
Properties of wastepaper sludge in geopolymer mortars for masonry applications.
Yan, Shiqin; Sagoe-Crentsil, Kwesi
2012-12-15
This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo
2008-06-15
Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.
Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.
Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin
2010-06-15
Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry mortar is a special organic-inorganic composite material. The inorganic component is calcium carbonate, and the organic component is amylopectin, which is presumably derived from the sticky rice soup added to the mortar. A systematic study of sticky rice-lime mortar technology was conducted to help determine the proper courses of action in restoring ancient buildings. Lime mortars with varying sticky rice content were prepared and tested. The physical properties, mechanical strength, and compatibility of lime mortar were found to be significantly improved by the introduction of sticky rice, suggesting that sticky rice-lime mortar is a suitable material for repairing mortar in ancient masonry. Moreover, the amylopectin in the lime mortar was found to act as an inhibitor; the growth of the calcium carbonate crystals is controlled by its presence, and a compact structure results, which may explain the enhanced performance of this organic-inorganic composite compared to single-component lime mortar.
Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems
NASA Astrophysics Data System (ADS)
Zuchowski, Loïc; Brun, Michael; De Martin, Florent
2018-05-01
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.
NASA Astrophysics Data System (ADS)
Siegesmund, Siegfried; Middendorf, Bernhard
2008-12-01
The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3-4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.
NASA Astrophysics Data System (ADS)
Abd El Salam, S.; Maniatis, Y.
2009-04-01
The excavations of Gargaresc started in 1965 and were one of the most important archaeological sites in Tripoli because it includes a period of about 500 years starting from the 1stc. AD was and continuing until the 5th century AD. The Mithraic tomb is one of the most important outlying monuments of Oea, 200 yards south of the western end of Gargaresc oasis, on the left of the Tripoli-Zuara road between kilometers 5 & 6. The tomb is cut in an outcrop of soft sandstone. The wall paintings found were symbolic to the religion of that period; which contained a mixture of older religions and Christian, and presented the interaction between the artistic and religious elements of that time. Several optical, chemical and mineralogical methods were applied to identify the materials, composition and technology of the plasters and mortars, as well as, the pigments used in the tomb. These are: -OP: Optical microscopy was used as the initial examination of polished cross-sections to identify the structure and microstratigraphy of the plasters and mortars as well as the painted layers. -MCT: Micro-chemical tests were used to identify the type of the plasters and mortars- calcium aluminium silicate and water-soluble salt to identify sulphates, chlorides, carbonates, nitrites and nitrates. -SM: Standard methods for chemical analysis to identify the quantitative and qualitative nature of the plasters and mortars and their mixture. -SEM & EDS: Analytical Scanning electron microscope with energy dispersive x-ray analysis system to examine the micrmorphology and determine the chemical composition of the plasters, pigments and the inclusions. -XRD: X-ray powder diffraction to identify the mineralogical composition of the plasters, mortars and pigments. On the bases of all the data obtained, it was possible to establish the nature of the plasters, mortars and their binder. The examination and analysis gave a full picture about the materials and the approximate ratio of amount of additives to lime used for making the mortars and plasters. In addition the results showed the stratigraphy of the various layers applied. The lime plasters and mortars contained apart from lime as binder quartz grains, charcoal, ironstone, brick and some other inclusions. Furthermore the mineralogical analysis provided information on the main mineralogical phases present in the plasters and pigments. The use of gypsum was detected in some cases but it was identified as a result of conservation. The analytical results provided also information on the deterioration factors and alterations that have affected the materials of the wall paintings and present quite interesting challenges for conservation science.
Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter
2009-05-15
A simple and versatile solid phase extraction (SPE) method has been developed to determine the anionic species of As, Cr, Mo, Sb, Se and V in leachates of cement mortar and concrete materials in the pH range 3-13. The anionic fractions of these elements were extracted using a strong anion exchanger (SAX) and their concentrations were determined as the difference in element concentration between the sample and the SAX effluent. Inductively coupled plasma mass spectrometry (ICP-MS) was used off-line to analyse solutions before and after passing through the SAX. The extraction method has been developed by optimizing sorbent type, sorbent conditioning and sample percolation rate. Breakthrough volumes and effect of matrix constituents were also studied. It was found that a polymer-based SAX conditioned with a buffer close to the sample pH or in some cases deionised water gave the best retention of the analytes. Optimal conditions were also determined for the quantitative elution of analytes retained on the SAX. Extraction of the cement mortar and concrete leachates showed that most of the elements had similar distribution of anions in both leachate types, and that the distribution was strongly pH dependent. Cr, Mo and V exist in anionic forms in strongly basic leachates (pH>12), and significant fractions of anionic Se were also detected in these solutions. Cr, Mo, Se and V were not determined as anions by the present method in the leachates of pH<12. Anionic As and Sb were found in small fractions in most of the leachates.
The American Experience with Pacification in Vietnam. Volume 2: Elements of Pacification
1972-03-01
Regiment elmnts conducted coordinated mortar /ground attacks throughout Dai Loc district--recently an area of CAP concern. At the time of the attack...essentially they should be very light infantry forces equipped with automatic weapons, light mortars , grenade launchers, and rugged but light com...it lasted, a signifi- cant part of USOMI- effort was channeled toward its direct support. Piai:ers and commodities, such as fertilizer and cement
NASA Technical Reports Server (NTRS)
Pleasants, J. E.
1973-01-01
Mortars are used as one method for ejecting parachutes into the airstream to decelerate spacecraft and aircraft pilot escape modules and to effect spin recovery of the aircraft. An approach to design of mortars in the class that can accommodate parachutes in the 20- to 55-foot-diameter size is presented. Parachute deployment considerations are discussed. Comments are made on the design of a power unit, mortar tube, cover, and sabot. Propellant selection and breech characteristics and size are discussed. A method of estimating hardware weights and reaction load is presented. In addition, some aspects of erodible orifices are given as well as comments concerning ambient effects on performance. This paper collates data and experience from design and flight qualification of four mortar systems, and provides pertinent estimations that should be of interest on programs considering parachute deployment.
Krizova, Iva; Schultz, Julia; Nemec, Ivan; Cabala, Radomir; Hynek, Radovan; Kuckova, Stepanka
2018-01-01
Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.
Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste
NASA Astrophysics Data System (ADS)
Kismi, M.; Poullain, P.; Mounanga, P.
2012-07-01
The development of low-cost lightweight aggregate (LWA) mortars and concretes presents many advantages, especially in terms of lightness and thermal insulation performances of structures. Low-cost LWA mainly comes from the recovery of vegetal or plastic wastes. This article focuses on the characterization of the thermal conductivity of innovative lightweight cementitious composites made with fine particles of rigid polyurethane (PU) foam waste. Five mortars were prepared with various mass substitution rates of cement with PU-foam particles. Their thermal conductivity was measured with two transient methods: the heating-film method and the hot-disk method. The incorporation of PU-foam particles causes a reduction of up to 18 % of the mortar density, accompanied by a significant improvement of the thermal insulating performance. The effect of segregation on the thermal properties of LWA mortars due to the differences of density among the cementitious matrix, sand, and LWA has also been quantified. The application of the hot-disk method reveals a gradient of thermal conductivity along the thickness of the specimens, which could be explained by a non-uniform repartition of fine PU-foam particles and mineral aggregates within the mortars. The results show a spatial variation of the thermal conductivity of the LWA mortars, ranging from 9 % to 19 %. However, this variation remains close to or even lower than that observed on a normal weight aggregate mortar. Finally, a self-consistent approach is proposed to estimate the thermal conductivity of PU-foam cement-based composites.
Glass Masonry - Experimental Verification of Bed Joint under Shear
NASA Astrophysics Data System (ADS)
Fíla, J.; Eliášová, M.; Sokol, Z.
2017-10-01
Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.
Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel
2004-05-15
Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.
Application of micromechanics to the characterization of mortar by ultrasound.
Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G
2002-05-01
Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.
Simple Analysis of Historical Lime Mortars
ERIC Educational Resources Information Center
Pires, Joa~o
2015-01-01
A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…
Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.
Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing
2018-01-22
The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.
Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar
Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing
2018-01-01
The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens. PMID:29361798
NASA Astrophysics Data System (ADS)
Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui
This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.
Pérez-Nicolás, María; Alvarez, José Ignacio
2017-01-01
Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2) or vanadium (V-TiO2)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars. PMID:29036917
NASA Astrophysics Data System (ADS)
Zou, Z.; Scott, M. A.; Borden, M. J.; Thomas, D. C.; Dornisch, W.; Brivadis, E.
2018-05-01
In this paper we develop the isogeometric B\\'ezier dual mortar method. It is based on B\\'ezier extraction and projection and is applicable to any spline space which can be represented in B\\'ezier form (i.e., NURBS, T-splines, LR-splines, etc.). The approach weakly enforces the continuity of the solution at patch interfaces and the error can be adaptively controlled by leveraging the refineability of the underlying dual spline basis without introducing any additional degrees of freedom. We also develop weakly continuous geometry as a particular application of isogeometric B\\'ezier dual mortaring. Weakly continuous geometry is a geometry description where the weak continuity constraints are built into properly modified B\\'ezier extraction operators. As a result, multi-patch models can be processed in a solver directly without having to employ a mortaring solution strategy. We demonstrate the utility of the approach on several challenging benchmark problems. Keywords: Mortar methods, Isogeometric analysis, B\\'ezier extraction, B\\'ezier projection
NASA Astrophysics Data System (ADS)
Milani, G.; Bertolesi, E.
2017-07-01
A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.
Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.
Lu, Shuang; Ba, Heng-Jing
2010-01-01
A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.
Stolz, Carina M; Masuero, Angela B
2015-10-01
This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.
The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar
Fan, Cheng-Chih; Huang, Ran; Hwang, Howard; Chao, Sao-Jeng
2015-01-01
The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.
Discrete element modeling of microstructure of nacre
NASA Astrophysics Data System (ADS)
Chandler, Mei Qiang; Cheng, Jing-Ru C.
2018-04-01
The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick-mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress-strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.
NASA Astrophysics Data System (ADS)
Rihawy, M. S.; Alwazzeh, M.; Abbas, K.
2018-01-01
Ion beam analysis (IBA) techniques (Particle Induced X-ray Emission, PIXE and Elastic Backscattering Spectrometry, EBS), were applied to investigate chloride and sulfate ions diffusion into laboratory prepared mortar samples. Development and characterization of an automated in-vacuum macro PIXE/EBS system is thoroughly discussed. Depth profile information of both chloride and sulfate ions in laboratory prepared mortar samples, after immersion in sea water for nine months, was rapidly and easily obtained at fairly low cost and with standardless analysis, demonstrating the value of the application of IBA to elemental depth profiling in cementitious materials. Chloride and sulfate depth profiles were obtained for two sets of mortar samples, one prepared with different water/cement (W/C) ratios and the other with different sand/cement (S/C) ratios. Results showed higher diffusion rates of both chloride and sulfate ions when both ratios are increased. Additionally, the W/C ratio has a stronger influence in both sulfate and chloride penetration than the S/C ratio, and chloride ions penetrate faster than sulfates. Advantages and limitations of applying IBA techniques in this investigation are discussed. The comparison between PIXE and other X-ray based analytical techniques, namely X-ray fluorescence (XRF) and energy and wavelength dispersive X-rays (EDX/WDX), as well as other traditional wet chemical methods is reviewed, and industrial applications are discussed.
NASA Astrophysics Data System (ADS)
Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang
2016-04-01
Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.
Recycling red mud from the production of aluminium as a red cement-based mortar.
Yang, Xiaojie; Zhao, Jianfeng; Li, Haoxin; Zhao, Piqi; Chen, Qin
2017-05-01
Current management for red mud is insufficient and a new method is needed. A series of experiments have been carried out to develop a new approach for effective management of red mud. Mortars without or with 3%, 6% and 9% red mud were prepared and their fresh and hardened properties were measured to access the possibility of recycling the red mud in the production of red cement-based mortar. The mechanisms corresponding to their mechanical performance variations were explored by X-ray powder diffraction and scanning electron microscopy. The results show that the fresh mortars with red mud present an increase of viscosity as compared with the control. However, little difference is found when the content of red mud is altered. It also can be seen that red mud increases flow time and reduces the slump flow of the mortar. Meanwhile, it is found that mortar with red mud is provided with higher air content. Red mud is eligible to adjust the decorative mortar colour. Compressive strength of mortar is improved when less than 6% red mud is added. However, overall it has a slightly negative effect on tensile bond strength. It decreases the Ca(OH) 2 content and densifies the microstructure of hardened paste. The heavy metal concentrations in leachates of mortars with red mud are much lower than the values required in the standard, and it will not do harm to people's health and the environment. These results are important to recycle and effectively manage red mud via the production of red cement-based mortar.
Corrosion Sensor for Monitoring the Service Condition of Chloride-Contaminated Cement Mortar
Lu, Shuang; Ba, Heng-Jing
2010-01-01
A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures. PMID:22319347
Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára
2016-01-15
This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.
In-Situ Production of Calcium Carbonate Nanoparticles in Fresh Concrete Using Pre-carbonation Method
NASA Astrophysics Data System (ADS)
Qian, Xin
To reduce the carbon footprint of ordinary Portland cement (OPC)-based concrete, a novel technique, pre-carbonation process, has been developed to produce CaCO3 nanoparticles in fresh concrete. In this technique, gaseous CO2 is first absorbed into a slurry of calcium-rich minerals which is then blended with other ingredients to produce mortar/concrete. The objective of this work is to obtain an in-depth understanding of the underlying scientific mechanisms associated with the enhancement of strength and durability of the concrete induced by the new method. A comprehensive research plan has been carried out to study the carbonated slaked lime slurry and the effect of carbonated slaked lime slurry on the performance of OPC-based concrete, and to evaluate the potentials of the pre-carbonation method. Experimental studies show that carbonating the calcium-rich mineral slurry with CO2 can produce CaCO3 nanoparticles and Ca(HCO 3)2 in the slurry, and these carbonation products were dictated by four parameters of the pre-carbonation method: the duration and temperature of the carbonation, the concentration of the calcium source slurry, and the stirring method of the calcium source slurry during the carbonation. The mechanical properties and durability of the mortar/concrete made with the carbonated slurry were significantly improved, which can be attributed to major mechanisms induced by the pre-carbonation method: promoted hydration of the cement and denser microstructure of the mortar/concrete. Calorimetry testing showed that the hydration of OPC was greatly improved by the pre-carbonation because of the extra heterogenous nucleation sites provided by the CaCO3 nanoparticles. XRD and TGA results revealed that more ettringite was produced in the mortar/concrete with pre-carbonated slaked lime slurry. The overall volume of the hydration products of the cement was increased by the pre-carbonation, leading to denser microstructure of the mortar/concrete. It has been found that the pre-carbonation can be used to the OPC-supplementary cementitious materials (SCMs) blended cement mortar/concrete, as evidenced by the improved mechanical properties achieved by these mortars produced by using the pre-carbonation method. A preliminary study was also conducted to examine whether other calcium-rich minerals, such as Class C fly ash and limestone, can be used as calcium source in the pre-carbonation method.
Dynamic Fracture of Concrete. Part 1
1990-02-14
unnotched) by Mindess and the Charpy type impact tests by Shah. In both cases, dynamic finite element modeling with the adjusted constitutive equavm for the...Mindess and the Charpy type impact tests by Shah. In both cases, dynamic finite element modeling with the adjusted constitutive equations for the...Modeling Shah’s Charpy Impact Tests ................ 190 Figure 7.20 Specimen Configuration and Finite Element Model for Concrete and Mortar Beam Impact
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-10-28
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.
Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system
NASA Astrophysics Data System (ADS)
Acharya, Ragini
Numerical Simulation of interior ballistic processes in gun and mortar systems is a very difficult and interesting problem. The mathematical model for the physical processes in the mortar systems consists of a system of non-linear coupled partial differential equations, which also contain non-homogeneity in form of the source terms. This work includes the development of a three-dimensional mortar interior ballistic (3D-MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of experimental data. The 120mm mortar system consists of a flash tube contained within an ignition cartridge, tail-boom, fin region, charge increments containing granular propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase products and unburned granular propellants into the mortar tube through vent-holes on its surface. In view of the complexity of interior ballistic processes in the mortar propulsion system, the overall problem was solved in a modular fashion, i.e., simulating each physical component of the mortar propulsion system separately. These modules were coupled together with appropriate initial and boundary conditions. The ignition cartridge and mortar tube contain nitrocellulose-based ball propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-phase, which were simulated by considering both phases as an interpenetrating continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition cartridge were determined from a semi-empirical technique. For the tail-boom section, a transient one-dimensional two-phase compressible flow solver based on method of characteristics was developed. The mathematical model for the interior ballistic processes in the mortar tube posed an initial value problem with discontinuous initial conditions with the characteristics of the Riemann problem due to the discontinuity of the initial conditions. Therefore, the mortar tube model was solved by using a high-resolution Godunov-type shock-capturing approach was used where the discretization is done directly on the integral formulation of the conservation laws. A linearized approximate Riemann Solver was modified in this work for the two-phase flows to compute fully non-linear wave interactions and to directly provide upwinding properties in the scheme. An entropy fix based on Harten-Heyman method was used with van Leer flux limiter for total variation diminishing. The three dimensional effects were simulated by incorporating an unsplit multi-dimensional wave propagation method, which accounted for discontinuities traveling in both normal and oblique coordinate directions. For each component, the predicted pressure-time traces showed significant pressure wave phenomena, which closely simulated the measured pressure-time traces obtained at PSU. The pressure-time traces at the breech-end of the mortar tube were obtained at Aberdeen Test Center with 0, 2, and 4 charge increments. The 3D-MIB code was also used to simulate the effect of flash tube vent-hole pattern on the pressure-wave phenomenon in the ignition cartridge. A comparison of the pressure difference between primer-end and projectile-end locations of the original and modified ignition cartridges with each other showed that the early-phase pressure-wave phenomenon can be significantly reduced with the modified pattern. The flow property distributions predicted by the 3D-MIB for 0, 2, and 4 charge increment cases as well the projectile dynamics predictions provided adequate validation of theory by experiments.
Simulation of Reacting Flow with a Discontinuous Spectral Element Method
NASA Astrophysics Data System (ADS)
Ghiasi, Zia; Mashayek, Farzad; Komperda, Jonathan
2013-11-01
While using high order methods is desirable in order to accurately capture the small scale mixing effects in reacting flows, the challenge is to develop and implement such methods for complex geometries. In this work, a high-order Discontinuous Spectral Element Method (DSEM) code, which solves for the Navier-Stokes equations, has been modified by adding the appropriate components to solve for scalar transport equations in order to simulate the chemical reaction. Dealing with discontinuous solution at element interfaces is a challenge that is met by patching the fluxes at mortars thus making them continuous on interfaces. The patching is performed using the Lax-Fredrichs numerical flux for scalars, whereas a generalized Riemann solver is used for the Navier-Stokes equations. Direct numerical simulation is conducted in a temporally developing mixing layer to validate the method for a single step reaction (F + rO --> [ 1 + r ] P). Next, the method is implemented to simulate a subsonic reacting flow in a slanted cavity combustor with gaseous fuel injectors to demonstrate the capability of the method to handle complex geometries. The results will be used for physical understanding of mixing and reaction in this type of combustors.
2009-06-01
Figure 2. Examples of surface vegetation at a firing point (inset) and near the crater of an 81-mm mortar projectile low-order detonation on an artillery... mortar impact range.......................... 7 Figure 3. Fort Richardson and surrounding areas...crater where an 81-mm mortar projectile had low-ordered on an impact range. If vegetation is removed or avoided during sampling, energetic residue
Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang
2016-03-01
By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.
Brancher, Luiza R.; Nunes, Maria Fernanda de O.; Grisa, Ana Maria C.; Pagnussat, Daniel T.; Zeni, Mára
2016-01-01
This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite. PMID:28787851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukada, K., E-mail: tsukada@cc.okayama-u.ac.jp; Kusaka, T.; Saari, M. M.
2014-05-07
We developed a magnetic measurement method to measure the moisture content and hydration condition of mortar as a magnetic mixture material. Mortar is a mixture of Portland cement, sand, and water, and these materials exhibit different magnetic properties. The magnetization–magnetic field curves of these components and of mortars with different moisture contents were measured, using a specially developed high-temperature-superconductor superconducting quantum interference device. Using the differences in magnetic characteristics, the moisture content of mortar was measured at the ferromagnetic saturation region over 250 mT. A correlation between magnetic susceptibility and moisture content was successfully established. After Portland cement and water aremore » mixed, hydration begins. At the early stage of the hydration/gel, magnetization strength increased over time. To investigate the magnetization change, we measured the distribution between bound and free water in the mortar in the early stage by magnetic resonance imaging (MRI). The MRI results suggest that the amount of free water in mortar correlates with the change in magnetic susceptibility.« less
The Effect of Mechanical Performance on PP Fiber to Polymer Mortar
NASA Astrophysics Data System (ADS)
Xie, Xinying; Kang, Xinnan; Jin, Yujie; Cai, Jingwei
2018-03-01
It introduces the purpose of of adding Polypropylene fiber. The paper The production process and test method of epoxy resin mortar with PP fiber are developed. The influence of PP fiber on mechanical properties of polymer mortar was studied in this paper, including the influence of PP fiber content on flexural strength, the ratio of flexural and compressive strength and so on. The experimental results are compared and analyzed. The reason is found, the conclusion of research is acquired.
NASA Astrophysics Data System (ADS)
Dassekpo, Jean-Baptiste Mawulé; Zha, Xiaoxiong; Zhan, Jiapeng; Ning, Jiaqian
Geopolymer is an energy efficient and sustainable material that is currently used in construction industry as an alternative for Portland cement. As a new material, specific mix design method is essential and efforts have been made to develop a mix design procedure with the main focus on achieving better compressive strength and economy. In this paper, a sequential addition of synthesis parameters such as fly ash-sand, alkaline liquids, plasticizer and additional water at well-defined time intervals was investigated. A total of 4 mix procedures were used to study the compressive performance on fly ash-based geopolymer mortar and the results of each method were analyzed and discussed. Experimental results show that the sequential addition of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), plasticizer (PL), followed by adding water (WA) increases considerably the compressive strengths of the geopolymer-based mortar. These results clearly demonstrate the high significant influence of sequential addition of synthesis parameters on geopolymer materials compressive properties, and also provide a new mixing method for the preparation of geopolymer paste, mortar and concrete.
Szabo, Jeffrey G; Muhammad, Nur; Heckman, Lee; Rice, Eugene W; Hall, John
2012-04-01
Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.
Studies on the reuse of waste printed circuit board as an additive for cement mortar.
Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su
2005-01-01
The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.
NASA Astrophysics Data System (ADS)
Zapała-Sławeta, Justyna; Owsiak, Zdzisława
2017-10-01
Lithium nitrate is known to have the highest potential to inhibit alkali silica reaction in concrete. It is well soluble in water and does not increase the pH of concrete pore solution. The extent to which the alkali silica reaction is mitigated is affected by the amount of the applied lithium ions, exposure conditions and by the kind of reactive aggregate. It is known that some lithium compounds such as lithium carbonate or lithium fluoride, when used in insufficient amount, may increase expansion due to alkali silica reaction. This effect was not detected in the presence of lithium nitrate. The aim of this study was to determine the effect of lithium nitrate on alkali silica reaction in mortars exposed to different conditions. Expansion studies were conducted in accordance with the accelerated mortar bar test (ASTM C1260) and the standard mortar bar test (ASTM C227). It was observed that the long-term expansion results are different from the values obtained in the accelerated mortar bar test. Lithium nitrate does not reduce ASR-induced expansion when mortars are stored under conditions specified in ASTM C 227. The microstructure of the mortar samples exposed to different conditions was examined and X-ray microanalysis was performed. The microstructure and compositions of the alkali-silica reaction products varied. The amount of alkali silica gel in mortars with lithium nitrate in which the expansion was high was greater than that in the mortar bars tested by accelerated method.
Muhammad, Nur; Heckman, Lee; Rice, Eugene W.; Hall, John
2012-01-01
Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone. PMID:22267659
Water transfer properties and shrinkage in lime-based rendering mortars
NASA Astrophysics Data System (ADS)
Arizzi, A.; Cultrone, G.
2012-04-01
Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.
The Study on Development of Light-Weight Foamed Mortar for Tunnel Backfill
NASA Astrophysics Data System (ADS)
Ma, Sang-Joon; Kang, Eun-Gu; Kim, Dong-Min
This study was intended to develop the Light-Weight Foamed Mortar which is used for NATM Composite lining backfill. In the wake of the study, the mixing method which satisfies the requirements for compressive strength, permeability coefficient, fluidity, specific gravity and settlement was developed and moreover field applicability was verified through the model test. Thus the mixing of Light-Weight Foamed Mortar developed in this study is expected to be applicable to NATM Composite lining, thereby making commitment to improving the stability and drainage performance of lining.
Immobilization in cement mortar of chromium removed from water using titania nanoparticles.
Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad
2016-05-01
Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ling, Tung-Chai; Poon, Chi-Sun
2011-08-30
Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production. Copyright © 2011 Elsevier B.V. All rights reserved.
A contact layer element for large deformations
NASA Astrophysics Data System (ADS)
Weißenfels, C.; Wriggers, P.
2015-05-01
In many contact situations the material behavior of one contact member strongly influences the force acting between the two bodies. Unfortunately standard friction models cannot reproduce all of these material effects at the contact layer and often continuum interface elements are used instead. These elements are intrinsically tied to the fixed grid and hence cannot be used in large sliding simulations. Due to the shortcomings of the standard contact formulations and of the interface elements a new type of a contact layer element is developed in this work. The advantages of this element are the direct implementation of continuum models into the contact formulation and the application to arbitrary large deformations. Showing a relation between continuum and contact kinematics based on the solid-shell concept the new contact element is at the end a natural extension of the standard contact formulations into 3D. Two examples show that the continuum behavior can be exactly reproduced at the contact surface even in large sliding situations using this contact layer element. For the discretization of the new contact element the Mortar method is chosen exemplary, but it can be combined with all kinds of contact formulations.
Characterization of materials formed by rice husk for construction
NASA Astrophysics Data System (ADS)
Portillo-Rodríguez, A. M.
2013-11-01
This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquariello, Vito, E-mail: vito.pasquariello@tum.de; Hammerl, Georg; Örley, Felix
2016-02-15
We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. Wemore » validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.« less
Numerical simulation of a shear-thinning fluid through packed spheres
NASA Astrophysics Data System (ADS)
Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol
2012-12-01
Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.
Mechanical properties of the rust layer induced by impressed current method in reinforced mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Care, S.; Nguyen, Q.T.; L'Hostis, V.
This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurementsmore » were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer.« less
A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Glen, E-mail: Glen.Hansen@inl.gov
2011-07-20
Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO{sub 2}) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less
A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glen Hansen
2011-07-01
Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear reactor fuel rod, which consists of cylindrical pellets of uranium dioxide (UO2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less
Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.
Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J
2016-12-15
To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Xiongyao; Liu, Yujian; Huang, Hongwei; Du, Jun; Zhang, Fengshou; Liu, Lanbo
2007-09-01
For shield tunnelling construction in soft soil areas, the coverage uniformity and quality of consolidation of the injected grout mortar behind the prefabricated tunnel segment is the main concern for tunnel safety and ground settlement. In this paper, ground-penetrating radar (GPR) was applied to evaluate the grout behind the tunnel lining segments in Shanghai, China. The dielectric permittivity of the grout material in Shanghai Metro tunnelling construction was measured in the laboratory. Combining physical modelling results with finite different time domain numerical modelling results, we suggest that the antenna with frequency 200 MHz is well suited to penetrate the reinforced steel bar network of the tunnel lining segment and testing grout patterns behind the segment. The electromagnetic velocity of the grout behind the segment of the tunnel is 0.1 m ns-1 by the analysis of field common-middle point data. A wave-translated method was put forward to process the GPR images. Furthermore, combining the information acquired by GPR with experience data, a GPR non-destructive test standard for the grout mortar evaluation in Shanghai Metro tunnel construction was brought forward. The grout behind the tunnel lining segment is classified into three types: uncompensated grout mortar with a thickness less than 10 cm, normal grout mortar with a thickness between 10 cm and 30 cm and overcompensated grout mortar, which is more than 30 cm thick. The classified method is easily put into practice.
NASA Astrophysics Data System (ADS)
Kandemir-Yucel, A.; Tavukcuoglu, A.; Caner-Saltik, E. N.
2007-01-01
The infrared thermography (IRT) and the ultrasonic velocity measurements (UVM) promise to be particularly important to assess the state of deterioration and the adequacy of the boundary and microclimatic conditions for timber elements. These non-destructive methods supported by laboratory analyses of timber samples were conducted on a 13th century monument, Aslanhane Mosque in Ankara, Turkey. The combined interpretation of the results was done to assess the condition of structural timber elements in terms of their state of preservation, the dampness problems and the recent incompatible repairs affecting them. Results indicated that moist areas in the structure were associated with roof drainage problems and the repairs undertaken with cement-based mortars and plasters and oil-based paints. Juxtaposition of the IRT and UVM together with laboratory analyses was found to be useful to assess the soundness of timber, enhanced the accuracy and effectiveness of the survey and facilitated to build up the urgent and long-term conservation programs.
[The Analysis of Traditional Lime Mortars from Zhejiang Province, China].
Liu, Xiao-bin; Cui, Biao; Zhang, Bing-jian
2016-01-01
The components of ancient mortars have always been an important research field in historic building conservation. It has been well known that using traditional mortars in conservation projects have many advantages, such as compatibility and stability. So, developing new binding materials based on traditional mortar has become an international study hotspot. With China's economic development, the protection of ancient buildings also began to put on the agenda, but the understanding on Chinese traditional mortar is limited, and rare literatures are reported. In the present work, the authors investigate seven ancient city wall sites in Zhejiang Province in situ, and subsequently laboratory analysis were carried out on collected mortar samples. The characterizations of mortar samples were made by multi-density gauge, XRD, FTIR, TG-DSC and wet chemical analysis. The experimental results showed that: the main component of masonry mortars is calcium carbonate, the content between 75% - 90%, and they should be made from relatively pure lime mortar. The raw materials of mortar samples were mainly calcareous quick lime, and sample from Taizhou city also contained magnesium quick lime. There are four city walls were built by sticky-rice mortars. It suggests that the technology of adding the sticky rice soup into mortar was universal in the Ming Dynasties. These mortars have lower density between 1.2 and 1.9 g x cm(-3); this outcome should be the result of long-term natural erosion. We have also analyzed other chemical and physical characteristics of these masonry mortars. The results can afford the basic data for the future repairmen programs, development of new protective materials, and comparative study of mortars.
Carbonates in leaching reactions in context of 14C dating
NASA Astrophysics Data System (ADS)
Michalska, Danuta; Czernik, Justyna
2015-10-01
Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly methodological character, illustrating the special preparation methods used for mortars with complicated (in context of radiocarbon dating) petrographic composition. The local geology combined with finding sources of raw materials for the production of mortars is important issue in final interpretation of the 14C measurement results.
Beyond the Factory Model: Oakland Teachers Learn How to Blend
ERIC Educational Resources Information Center
Jacobs, Joanne
2014-01-01
This article describes an Oakland Unified schools program of "blended learning" that is designed to reach students who are academically all over the map. Blended learning combines brick-and-mortar schooling with online education "with some element of student control over time, place, path, and/or pace" of learning. The program…
Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef
2017-09-19
Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.
Herbrand, Martin; Classen, Martin; Kueres, Dominik; Hegger, Josef
2017-01-01
Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented. PMID:28925962
NASA Astrophysics Data System (ADS)
Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli
2018-04-01
In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.
Detrimental effects of cement mortar and fly ash mortar on asthma progression.
Cho, Ara; Jang, Hong-Seok; Roh, Yoon Seok; Park, Hee Jin; Talha, A F S M; So, Seung-Young; Lim, Chae Woong; Kim, Bumseok
2013-11-01
Currently, concrete additive materials are used worldwide to improve properties of concrete production and to reduce the total cost of the materials used in the concrete. However, the effects of exposure to various gases emitted from mortar mixed with additive materials are poorly understood. To evaluate the pattern of gas emission from cement mortar and additives, the emission levels of gas including ammonia (NH3) and volatile organic compounds (VOCs) were measured from two different mortar types, Ordinary Portland Cement (OPC), and OPC with fly ash on various time points after manufacture. On days 1, 3, 10 and 30 after manufacture, moderate concentrations of NH3 (4, 9, 12 and 5 ppm) were measured in OPC mortar (24h, 150 mm × 150 mm × 50 mm), whereas higher concentrations of NH3 (73, 55, 20 and 5 ppm) were measured in OPC mortar with fly ash (24h, 150 mm × 150 mm × 50 mm). Furthermore, the concentration of VOCs was more than 10 ppm on 1, 3, and 10 days of age in OPC and OPC with fly ash mortars. To examine the mortars' allergic effects on the respiratory system, mice were sensitized with ovalbumin (OVA) and divided into four groups: normal, asthma control, OPC mortar and OPC mortar with fly ash. The mice were housed in corresponding group cage for 10 days with OVA challenges to induce asthma. Histopathologically, increased infiltration of lymphocytes was observed in the lung perivascular area of mice housed in OPC mortar and OPC mortar with fly ash cages compared to lungs of asthma control mice. Moreover, severe bronchial lumen obstruction and increased hypertrophy of bronchial epithelial cells (p<0.05) were observed in the OPC mortar with fly ash group compared to OPC mortar or asthma control groups. Lungs of the two mortar groups generally expressed higher levels of genes related with asthma, including IL-4, eotaxin and epidermal growth factor (EGF) compared to lungs of asthma control mice. Additionally, the OPC mortar with fly ash group showed higher expression of IL-5, 13 and monocyte chemoattractant protein-1 (MCP-1) compared to the asthma control group. These results indicate that OPC mortar and OPC mortar with fly ash might exacerbate asthma. Copyright © 2013 Elsevier B.V. All rights reserved.
Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.
Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes. PMID:25254256
NASA Astrophysics Data System (ADS)
Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.
2017-11-01
The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.
The Promotion Strategy of Green Construction Materials: A Path Analysis Approach.
Huang, Chung-Fah; Chen, Jung-Lu
2015-10-14
As one of the major materials used in construction, cement can be very resource-consuming and polluting to produce and use. Compared with traditional cement processing methods, dry-mix mortar is more environmentally friendly by reducing waste production or carbon emissions. Despite the continuous development and promotion of green construction materials, only a few of them are accepted or widely used in the market. In addition, the majority of existing research on green construction materials focuses more on their physical or chemical characteristics than on their promotion. Without effective promotion, their benefits cannot be fully appreciated and realized. Therefore, this study is conducted to explore the promotion of dry-mix mortars, one of the green materials. This study uses both qualitative and quantitative methods. First, through a case study, the potential of reducing carbon emission is verified. Then a path analysis is conducted to verify the validity and predictability of the samples based on the technology acceptance model (TAM) in this study. According to the findings of this research, to ensure better promotion results and wider application of dry-mix mortar, it is suggested that more systematic efforts be invested in promoting the usefulness and benefits of dry-mix mortar. The model developed in this study can provide helpful references for future research and promotion of other green materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramar, Sabina, E-mail: sabina.kramar@rescen.si; Zalar, Vesna; Urosevic, Maja
This study deals with the characterization of mortars collected from bath complex of the Roman villa rustica from an archeological site near Mosnje (Slovenia). The mortar layers of the mosaics, wall paintings and mortar floors were investigated. A special aggregate consisting of brick fragments was present in the mortars studied. The mineralogical and petrographic compositions of the mortars were determined by means of optical microscopy, X-ray powder diffraction and FTIR spectroscopy. Analysis of aggregate-binder interfaces using SEM-EDS revealed various types of reactivity rims. In order to assess the hydraulic characteristics of the mortars, the acid-soluble fractions were determined by ICP-OES.more » Furthermore, the results of Hg-porosimetry and gas sorption isotherms showed that mortars with a higher content of brick fragments particles exhibited a higher porosity and a greater BET surface area but a lower average pore diameter compared to mortars lacking this special aggregate. - Highlights: {yields} Mineral and microstructural characterizations of brick-lime mortars. {yields} Hydraulic character of mortars in Roman baths complex. {yields} Reaction rims were observed around brick fragments and dolomitic grains. {yields} Higher content of brick particles yielded a higher BET surface area. {yields} Addition of brick particles increased porosity and diminished pore size diameter.« less
Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate
NASA Astrophysics Data System (ADS)
Czarnecki, Slawomir
2017-10-01
This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.
Ancient mortars from Cape Verde: mineralogical and physical characterization
NASA Astrophysics Data System (ADS)
Rocha, Fernando; Costa, Cristiana; Velosa, Ana; Quintela, Ana; Terroso, Denise; Marques, Vera
2014-05-01
Times and locations of different building constructions means different knowledge, habits, different construction methods and materials. The study and safeguarding of the architectural heritage takes nowadays a progressive importance as a vehicle for transmission of cultures and history of nations. The coatings are of great importance in the durability of a building due to the protective role of the masonry. The compatibility between the materials with which they are executed (masonry, mortar and grout settlement) promotes the proper functioning of the wall and a consequent increase in durability. Therefore, it becomes important to study and characterize the mortar coating of buildings to know its characteristics and to use compatible materials in the rehabilitation and maintenance of buildings. This study aims to characterize the chemical, physical, mechanical and mineralogical mortar samples collected in buildings in three islands of Cape Verde, for the conservation, rehabilitation and preservation of them. The collected samples belong to buildings constructed in the end of XIX century and in the beginning of XX century. In order to characterize the mortar samples some tests was made, such as X-Ray Diffraction, X- Ray Fluorescence, acid attack and mechanical strength. The samples were divided into three groups depending on origin; so we have a first group collected on the island of Santiago, the second on the island of Saint Vincent and the third on the island of Santo Antao. The samples are all carbonated, but Santiago samples have a lower carbonates content. In terms of insoluble residue (from the acid attack) it was concluded that the samples have similar value ranging from 9 to 26%. The compressive strength of the mortars have a range between 1.36 and 4.55 MPa, which is related to the presence of more binder in samples with higher resistance. The chemical and mineralogical analyzes showed that these consist of lime mortars (binder), natural pozzolan and basaltic sands, which would be expected because these buildings are in a volcanic complex. The addition of pozzolans mortars confers resistance. It will be important in the conservation and maintenance of these buildings to use mortars with the same constituents of those proposed on this study, for greater durability of the coating of these buildings. These basic properties provide a basis for the development of adequate interventions, preserving the characteristics of the buildings.
The Viking mortar - Design, development, and flight qualification.
NASA Technical Reports Server (NTRS)
Brecht, J. P.; Pleasants, J. E.; Mehring, R. D.
1973-01-01
Approximately 25,400 ft above the local surface of Mars, a radar height sensor fires the Viking mortar, which ejects a 53-ft D sub o disk-gap-band (DGB) parachute. The parachute decelerates and stabilizes the Viking lander sufficiently for the terminal engine system to take over and effect a soft landing. The general design and environmental requirements for the mortar system are presented; various illustrations of the mortar components and how the mortar system functions also are presented. Primary emphasis is placed on manufacturing, developing, and qualification testing of the mortar system.
[Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].
Tang, Ming-fang; Yin, Yi-hua
2015-05-01
To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.
Cross-contamination in Porcelain Mortars.
Bauer-Brandl, A; Falck, A; Ingebrigtsen, L; Nilson, C
2001-01-01
Porcelain mortars and pestles are frequently used to comminute drug substances on a small scale and (in some cases) in the production of liquid and semisolid suspensions. Although it is generally accepted that removal of a drug substance from a rough surface by rinsing may be difficult and may lead to cross-contamination, no hard data support that theory. In this study, the amount of salicylic acid remaining on a porcelain mortar after different washing procedures was quantified and compared with the amount remaining on a plastic mortar. Drug residues in the "mg" range on the porcelain mortars made common rinsing procedures appear inappropriate, but no traces of drug were detected on plastic mortars. In addition, the quality of suspension ointments with respect to particle size and homogeneity produced by the two types of mortars was compared. Porcelain and plastic mortars appeared equally suitable for use in the production of semisolid suspensions.
NASA Astrophysics Data System (ADS)
Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.
2018-04-01
The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Shiyun, E-mail: tjzhongshiyun@163.com; Ni Kun; Li Jinmei
2012-07-15
Highlights: Black-Right-Pointing-Pointer The mortar with uncalcined FGD gypsum has suitable workability. Black-Right-Pointing-Pointer The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratiomore » (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO{sub 4}{sup 2-} from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO{sub 4}{sup 2-} releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO{sub 4}{sup 2-} from the mortar with 20% FGD gypsum is 9200 mg{center_dot}m{sup -2}, which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.« less
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-30
Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
NASA Astrophysics Data System (ADS)
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar
NASA Astrophysics Data System (ADS)
Wangsa, F. A.; Tjaronge, M. W.; Djamaluddin, A. R.; Muhiddin, A. B.
2017-11-01
This paper explored the suitability of fly ash, hydrated lime, and laterite soil with several activator (sodium hydroxide and sodium tiosulfate) to produce geopolymer mortar. Furthermore, the heat that released by hydrated lime was used instead of oven curing. In order to produce geopolymer mortar without oven curing, three variations of curing condition has been applied. Based on the result, all the curing condition showed that the hardener mortar can be produced and exhibited the increasing of compressive strength of geopolymer mortar from 3 days to 7 days without oven curing.
Influence of aggregate type and chemical admixtures on frost resistance of lightweight mortars
NASA Astrophysics Data System (ADS)
Klimek, Beata; Widomski, Marcin K.; Barnat-Hunek, Danuta
2017-07-01
The aim of studies presented in this paper covered analyses of type of lightweight aggregate as well as aeration and hydrophobic admixtures influence on absorbability and frost resistance of heat-insulating mortars applied in the energy-efficient construction. In the presented research, expanded perlite (EP) and expanded clay aggregate (ceramsite) were used as lightweight aggregates. The measurements of the basic mechanical and physical characteristics of tested mortars were performed, including, inter alia, compressive and flexural tensile strength, density, effective (open) and total porosity, absorbability, thermal conductivity as well as frost resistance after 25 cycles of freezing and thawing. Substitution of some part of sand fraction by the lightweight aggregates, expanded clay aggregate or perlite, resulted in changes in physical properties of the tested mortars. The observed decrease in density (specific weight), coefficient of heat transport and strength parameters were simultaneously accompanied by the increase in absorbability. Researches concerning frost resistance of mortars containing ceramsite and perlite showed the improved frost resistance of mortar utilizing perlite. Most of the tested mortars shoved satisfactory frost resistance, only samples of mortar containing ceramsite and aeration admixture were destroyed. The significant influence of aerating admixture on frost resistance of mortars was determined. Hydrophobic siloxanes addition failed to adequately protect the mortars against frost erosion, regardless the type of applied aggregate.
Modeling Adhesive Anchors in a Discrete Element Framework
Marcon, Marco; Vorel, Jan; Ninčević, Krešimir; Wan-Wendner, Roman
2017-01-01
In recent years, post-installed anchors are widely used to connect structural members and to fix appliances to load-bearing elements. A bonded anchor typically denotes a threaded bar placed into a borehole filled with adhesive mortar. The high complexity of the problem, owing to the multiple materials and failure mechanisms involved, requires a numerical support for the experimental investigation. A reliable model able to reproduce a system’s short-term behavior is needed before the development of a more complex framework for the subsequent investigation of the lifetime of fasteners subjected to various deterioration processes can commence. The focus of this contribution is the development and validation of such a model for bonded anchors under pure tension load. Compression, modulus, fracture and splitting tests are performed on standard concrete specimens. These serve for the calibration and validation of the concrete constitutive model. The behavior of the adhesive mortar layer is modeled with a stress-slip law, calibrated on a set of confined pull-out tests. The model validation is performed on tests with different configurations comparing load-displacement curves, crack patterns and concrete cone shapes. A model sensitivity analysis and the evaluation of the bond stress and slippage along the anchor complete the study. PMID:28786964
Alkali Silica Reaction In The Presence Of Metakaolin - The Significant Role of Calcium Hydroxide
NASA Astrophysics Data System (ADS)
Zapała-Sławeta, Justyna
2017-10-01
Reducing the internal corrosion, which is the result of reactions between alkalis and reactive aggregates is especially important in ensuring durability properties of concrete. One of the methods of inhibiting the reaction is using some mineral additives which have pozzolanic properties. This paper presents the efficacy of high-reactivity metakaolin in reducing expansion due to alkali-silica reaction. It was demonstrated that metakaolin in the amount from 5% to 20% by mass of Portland cement reduce linear expansion of mortar bars with opal aggregate. Nevertheless, the safe expansion level in the specimens, classified as non-destructive to concrete, was recorded for the mortars prepared with 20% addition of metakaolin. Depletion of free calcium hydroxide content was considered as one of the most beneficial effects of metakaolin in controlling alkali silica reaction. Based on thermogravimetric analysis (TGA) performed on mortar bars with and without metakaolin the differences in portlandite content were determined. Microstructural observation of the specimens containing metakaolin indicated the presence of a reaction products but fewer in number than those forming in the mortars without mineral additives.
del Valle-Zermeño, R; Formosa, J; Prieto, M; Nadal, R; Niubó, M; Chimenos, J M
2014-02-15
A granular material (GM) to be used as road sub-base was formulated using 80% of weathered bottom ash (WBA) and 20% of mortar. The mortar was prepared separately and consisted in 50% APC and 50% of Portland cement. A pilot-scale study was carried on by constructing three roads in order to environmentally evaluate the performance of GM in a real scenario. By comparing the field results with those of the column experiments, the overestimations observed at laboratory scale can be explained by the potential mechanisms in which water enters into the road body and the pH of the media. An exception was observed in the case of Cu, whose concentration release at the test road was higher. The long-time of exposure at atmospheric conditions might have favoured oxidation of organic matter and therefore the leaching of this element. The results obtained showed that immobilization of all heavy metals and metalloids from APC is achieved by the pozzolanic effect of the cement mortar. This is, to the knowledge of the authors, the only pilot scale study that is considering reutilization of APC as a safe way to disposal. Copyright © 2013 Elsevier B.V. All rights reserved.
The Promotion Strategy of Green Construction Materials: A Path Analysis Approach
Huang, Chung-Fah; Chen, Jung-Lu
2015-01-01
As one of the major materials used in construction, cement can be very resource-consuming and polluting to produce and use. Compared with traditional cement processing methods, dry-mix mortar is more environmentally friendly by reducing waste production or carbon emissions. Despite the continuous development and promotion of green construction materials, only a few of them are accepted or widely used in the market. In addition, the majority of existing research on green construction materials focuses more on their physical or chemical characteristics than on their promotion. Without effective promotion, their benefits cannot be fully appreciated and realized. Therefore, this study is conducted to explore the promotion of dry-mix mortars, one of the green materials. This study uses both qualitative and quantitative methods. First, through a case study, the potential of reducing carbon emission is verified. Then a path analysis is conducted to verify the validity and predictability of the samples based on the technology acceptance model (TAM) in this study. According to the findings of this research, to ensure better promotion results and wider application of dry-mix mortar, it is suggested that more systematic efforts be invested in promoting the usefulness and benefits of dry-mix mortar. The model developed in this study can provide helpful references for future research and promotion of other green materials. PMID:28793613
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-01
Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950
Petrography of Mayan mortar, Isla Mujeres, Quintana Roo, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bain, R.J.
1985-01-01
Along coastal regions of the Yucatan Peninsula Mayan builders used a mixture of beach sand, shell fragments, and clasts of rock as mortar for construction. With exposure to subaerial conditions, the aragonitic sand was converted into a semi-lithified mortar. Petrographic analysis of mortar samples collected from Mayan ruins on the south end of Isla Mujeres indicates that the mortar is cemented by blocky, meniscus style, low Mg calcite. In addition to the cement, low Mg calcite also occurs as blocky equant crystals either replacing grains or filling grain-moldic porosity. X-ray analysis of both modern beach sand and mortar shows themore » sand is composed of aragonite and high Mg calcite but lacks low Mg calcite. Mortar, on the other hand, consists of low Mg calcite, high Mg calcite, and aragonite however aragonite is much less abundant than in the sand. Aragonitic ooids, pellets and bioclasts of beach sand used in mortar were dissolved producing moldic porosity. At the same time, CaCO/sub 3/ derived from this process was precipitated as low Mg calcite which formed meniscus cement and filled moldic porosity within the walls of Mayan structures producing a remarkably hard mortar.« less
Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.
Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze
2012-07-01
Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.
Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics
Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze
2012-01-01
Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062
Mixing In a Compounding Pharmacy in the 21st Century.
Standridge, Rob
2015-01-01
When it comes to combining ingredients for topical preparations, compounding pharmacists utilize either the manual methods such as a spatula and pill tile or a mortar and pestle, typically an electronic mortar and pestle. If a topical preparation must be pre-ground or requires trituration, or any level of particle-size reduction, historically the manual method of combining ingredients in such a preparation would include the initial use of a mortar and pestle; however with micronized substances this is not as much a concern today as in the past. There is, of course, the concern of a lack of reproducibility, knowing that each compounder might utilize the equipment differently, would mix for varying times, and would also mix with varying amounts of physical pressure applied to the pestle. If the discipline of uniform usage is great enough in the lab, this method could probably produce consistent results, but, because of the preparation and cleanup time and the fact that newer technology is available, this method is not recommended as the common compounding method in a compounding pharmacy that does more than a handful of compounded topical preparations per week. This article is not meant to say these methods are not appropriate, but, rather, to point out that newer technology is available and might be preferable in order to provide a cleaner, more efficient, and more reproducible lab environment.
Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar.
Al-Salloum, Yousef; Abbas, H; Sheikh, Q I; Hadi, S; Alsayed, Saleh; Almusallam, Tarek
2017-02-01
Sporosarcina pasteurii , a common soil bacterium has been tested for microbial treatment of cement mortar. The present study also seeks to investigate the effects of growth medium, bacterial concentration and different buffers concerning the preparation of bacterial suspensions on the compressive strength of cement mortar. Two growth media, six different suspensions and two bacterial concentrations were used in the study. The influence of growth medium on calcification efficiency of S. pasteurii was insignificant. Significant improvement in the compressive as well as the tensile strength of cement mortar was observed. Microbial mineral precipitation visualized by Scanning Electron Microscopy (SEM) shows fibrous material that increased the strength of cement mortar. Formation of thin strands of fillers observed through SEM micrographs improves the pore structure, impermeability and thus the compressive as well as the tensile strengths of the cement mortar. The type of substrate and its molarity have a significant influence on the strength of cement mortar.
Strength of mortar containing rubber tire particle
NASA Astrophysics Data System (ADS)
Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.
2018-04-01
The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.
Towards proteomic analysis of milk proteins in historical building materials
NASA Astrophysics Data System (ADS)
Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M.
2009-07-01
The addition of proteinaceous binders to mortars and plasters has a long tradition. The protein additions were identified in many sacral and secular historical buildings. For this method of peptide mass mapping, three model mortar samples with protein additives were prepared. These samples were analysed fresh (1-2 weeks old) and after 9 months of natural ageing. The optimal duration of tryptic cleavage (2 h) and the lowest amount of material needed for relevant analysis of fresh and weathered samples were found; the sufficient amounts of weathered and fresh mortars were set to 0.05 and 0.005 g. The list of main tryptic peptides coming from milk additives (bovine milk, curd, and whey), their relative intensities and theoretical amino acid sequences assignment is presented. Several sequences have been "de novo" confirmed by mass spectrometry.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-04-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-12-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Ya; Cultural Relics and Archaeology Institute of Hunan, Changsha 410083; Fu, Xuan
Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role inmore » forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment.« less
NASA Astrophysics Data System (ADS)
Ergenç, Duygu; Freire, David; Fort, Rafael
2016-04-01
The chemical characterization of lime mortars used in Roman period has a great significance and plays a key role in the acquisition of knowledge with respect to construction technology, raw materials and, accordingly, in its conservation works. When it comes to cultural heritage studies, sampling is always complicated since the minimum damage is the primary concern. The use of non-destructive techniques and direct measurements with portable devices reduce the amount of samples and time consumed in analyses, consequently it could be stated that such techniques are extremely useful in conservation and restoration works. In this study, the portable XRF device was used to determine the composition of chemical elements which compose the Roman lime mortars in the archaeological site of Complutum, Alcalá de Henares (Madrid, Spain) which is listed as a World Heritage Site by UNESCO since 1998. Portable XRF devices have some detection limits below the ones of the laboratory equipment that are immovable and require sampling. In order to correlate the results, sampling and grinding were initially done to prepare the powders for the laboratory XRF analysis with the following elements: Si, Al, Fe, Ca, Mg, K, Ti, Nb, Zr, Sr, Rb, Pb, Zn and Cr. The analyses of the powdered samples were conducted with the laboratory equipment PHILIPS Magix Pro (PW-2440) from the Centre of Scientific Instrumentation CIC in the University of Granada, and the results were compared to the results gathered with X Ray Florescence (EDTRX) THERMO NITON model XL3T from the Petrophysics Laboratory Geosciences Institute IGEO (CSIC-UCM). Analyses were performed on the surfaces of the samples -without any previous preparation-, and on the powdered samples to compare the variations between both traditional XRF analyses and the portable XRF. A good correlation was found among the results obtained by the laboratory equipment, the portable device as well as the surface measurements. The results of this study enable to differentiate the types of lime mortars used in the site (Caementicium and Signinum) and in different buildings that form the Roman city. Acknowledgements: Thanks to the project CLIMORTEC (BIA2014-53911-R), to CEI-Moncloa of UCM-UPM-UCM and to Madrid Community for funding the Geomateriales2 (P2013/MIT2914) program
A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains
NASA Astrophysics Data System (ADS)
Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.
2018-02-01
A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.
Effect of Graphene Oxide on Mechanical Properties of Recycled Mortar
NASA Astrophysics Data System (ADS)
Fang, Changle; Long, Wujian; Wei, Jingjie; Xiao, Bingxu; Yan, Chen
2017-12-01
The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the mechanical properties of recycled mortar. It is showed that the recycled mortar with GO has a better mechanical properties than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration product.
Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar
Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu
2014-01-01
This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2 and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete. PMID:25506063
Wi, Seunghwan; Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin
2017-07-26
Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer-Emmett-Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties.
Strength and durability performance of alkali-activated rice husk ash geopolymer mortar.
Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu; Kwon, Seung-Jun
2014-01-01
This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.
46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND ...
46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND AMALGAMATION TABLES. NOTE FULTON IRON WORKS, SAM FRANCISCO 1908 STAMPED INTO THE MORTAR BOX. ALSO NOTE THE DIES RESTING ON THE OUTSIDE OF THE MORTAR BOX BY THE SECOND STAMP BATTERY FROM THE CAMERA POSITION. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
NASA Astrophysics Data System (ADS)
Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.
2018-06-01
Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.
Modification of Lime Mortars with Synthesized Aluminosilicates
NASA Astrophysics Data System (ADS)
Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota
2017-10-01
The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime mortar was developed based on SA. SA in lime composites turned out to be effective as structure-forming additive, both plastic and compressive strength increased after addition of SA.
Utilization of ground waste seashells in cement mortars for masonry and plastering.
Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn
2012-11-30
In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of chitosan ethers on fresh state properties of lime mortars
NASA Astrophysics Data System (ADS)
Vyšvařil, M.; Žižlavský, T.
2017-10-01
The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel
2015-07-15
Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less
Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young
2016-05-01
In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.
Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin
2018-04-05
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.
Research on Reasons for Repeated Falling of Tiles in Internal Walls of Construction
NASA Astrophysics Data System (ADS)
Xu, LiBin; Chen, Shangwei; He, Xinzhou; Zhu, Guoliang
2018-03-01
In view of the quality problem of repeated falling of facing tiles in some construction, the essay had a comparative trial in laboratory on cement mortar which is often used to paste tiles, special tile mortar and dry-hang glue, and measured durability of tile adhesive mortar through freezing and thawing tests. The test results indicated that ordinary cement mortar cannot meet standards due to reasons like big shrinkage and low adhesive. In addition, the ten times of freezing and thawing tests indicated that ordinary cement mortar would directly shell and do not have an adhesive force, and moreover, adhesive force of special tile mortar would reduce. Thus, for tiles of large size which are used for walls, dry-hang techniques are recommended to be used.
Hydrophobic Properties of Biofilm-Enriched Hybrid Mortar.
Grumbein, Stefan; Minev, Dionis; Tallawi, Marwa; Boettcher, Kathrin; Prade, Friedrich; Pfeiffer, Franz; Grosse, Christian Ulrich; Lieleg, Oliver
2016-10-01
A mortar hybrid material is presented in which biomineralization processes are stimulated by adding a biological component, i.e., bacterial biofilm, to standard mortar. A material is obtained that exhibits increased roughness on the microscale and the nanoscale. Accordingly, the hybrid mortar not only resists wetting but also suppresses the uptake of water by capillary forces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dietzel, Martin; Schön, Frerich; Heinrichs, Jens; Deditius, Artur P; Leis, Albrecht
2016-01-01
Ancient hydraulic lime mortar preserves chemical and isotopic signatures that provide important information about historical processing and its durability. The distribution and isotopic composition of calcite in a mortar of a well-preserved Punic-Roman cistern at Pantelleria Island (Italy) was used to trace the formation conditions, durability, and individual processing periods of the cistern mortar. The analyses of stable carbon and oxygen isotopes of calcite revealed four individual horizons, D, E, B-1 and B-2, of mortar from the top to the bottom of the cistern floor. Volcanic and ceramic aggregates were used for the production of the mortar of horizons E/D and B-1/B-2, respectively. All horizons comprise hydraulic lime mortar characterized by a mean cementation index of 1.5 ± 1, and a constant binder to aggregate ratio of 0.31 ± 0.01. This suggests standardized and highly effective processing of the cistern. The high durability of calcite formed during carbonation of slaked lime within the matrix of the ancient mortar, and thus the excellent resistance of the hydraulic lime mortar against water, was documented by (i) a distinct positive correlation of δ(18)Ocalcite and δ(13)Ccalcite; typical for carbonation through a mortar horizon, (ii) a characteristic evolution of δ(18)Ocalcite and δ(13)Ccalcite through each of the four mortar horizons; lighter follow heavier isotopic values from upper to lower part of the cistern floor, and (iii) δ(18)Ocalcite varying from -10 to -5 ‰ Vienna Pee Dee belemnite (VPDB). The range of δ(18)Ocalcite values rule out recrystallization and/or neoformation of calcite through chemical attack of water stored in cistern. The combined studies of the chemical composition of the binder and the isotopic composition of the calcite in an ancient mortar provide powerful tools for elucidating the ancient techniques and processing periods. This approach helps to evaluate the durability of primary calcite and demonstrates the importance of calcite as a proxy for chemical attack and quality of the ancient inorganic binder.
NASA Astrophysics Data System (ADS)
Batailly, Alain; Magnain, Benoît; Chevaugeon, Nicolas
2013-05-01
The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar elements (Fischer and Wriggers, Comput Methods Appl Mech Eng 195:5020-5036, 2006; McDevitt and Laursen, Int J Numer Methods Eng 48:1525-1547, 2000; Puso and Laursen, Comput Methods Appl Mech Eng 93:601-629, 2004), smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) (Belytschko et al., Int J Numer Methods Eng 55:101-125, 2002; Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method, ASME, New York, 1982; Legrand, Modèles de prediction de l'interaction rotor/stator dans un moteur d'avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes, 2005; Muñoz, Comput Methods Appl Mech Eng 197:979-993, 2008; Wriggers and Krstulovic-Opara, J Appl Math Mech (ZAMM) 80:77-80, 2000) and, the use of isogeometric analysis (Temizer et al., Comput Methods Appl Mech Eng 200:1100-1112, 2011; Hughes et al., Comput Methods Appl Mech Eng 194:4135-4195, 2005; de Lorenzis et al., Int J Numer Meth Eng, in press, 2011). In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management (Feng et al., Comput Mech 36:375-383, 2005). A comparative study focusing on the pros and cons of each method regarding geometrical precision and numerical stability for contact solution is proposed. The scope of this study is limited to 2D contact problems for which we consider several types of finite elements. Test cases are given in order to illustrate this comparative study.
STUDIES ON THE STANDARDISATION OF CURNAS PART – II TALIZADYA CURNA
Alam, Muzaffer; Dasan, K. K. S.; Meenakshi, N.; Rao, R. Bhima
1991-01-01
Talisadya churna was prepared by pounding the individual ingredients in mortar and pestle and mixie. The Curna prepared by pounding the ingredients in mortar and pestle showed higher exhaustive extraction in hexane and solubility in alcohol. The Curna prepared by grinding the ingredients in mixie showed less acid insoluble content, high volatile matter, water soluble matter, and exhaustive extraction in chloroform. Thin layer silica gel chromatography and test of organic functional groups did not show any difference in the Tulisadya curna prepared by either method. PMID:22556560
Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate
Yuan, Xiongzhou; Xu, Weiting; Sun, Wei; Xing, Feng; Wang, Weilun
2015-01-01
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.
[Study on the traditional lime mortar from the memorial archway in the southern Anhui province].
Wei, Guo-Feng; Sun, Sheng; Wang, Cheng-Xing; Zhang, Bing-Jian; Chen, Xi-Min
2013-07-01
The traditional lime mortar was investigated by means of scanning electron microscope (SEM), X-ray diffractometry and Fourier transform infrared spectrometry (FTIR). The results show that the mortar from the memorial archway in the southern Anhui province was the organic-inorganic composite materials composed of lime with tung oil or sticky rice. It was found that the excellent performance of the tung oil-lime mortar can be explained by the compact lamellar organic-inorganic composite structure that was produced by carbonization reaction of lime, cross-linking reactions of tung oil and oxygen and complexing reaction of Ca2+ and -COO-. The compact micro-structure of sticky rice-lime mortar, which was produced due to carbonation process of lime controlled by amylopectin, should be the cause of the good performance of this kind of organic-inorganic mortar.
Atta-ur-Rehman; Qudoos, Abdul; Kim, Hong Gi
2018-01-01
In this study, the effects of titanium dioxide (TiO2) nanoparticles on the sulfate attack resistance of ordinary Portland cement (OPC) and slag-blended mortars were investigated. OPC and slag-blended mortars (OPC:Slag = 50:50) were made with water to binder ratio of 0.4 and a binder to sand ratio of 1:3. TiO2 was added as an admixture as 0%, 3%, 6%, 9% and 12% of the binder weight. Mortar specimens were exposed to an accelerated sulfate attack environment. Expansion, changes in mass and surface microhardness were measured. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetry Analysis (TGA) and Differential Scanning Calorimetry (DSC) tests were conducted. The formation of ettringite and gypsum crystals after the sulfate attack were detected. Both these products had caused crystallization pressure in the microstructure of mortars and deteriorated the mortars. Our results show that the addition of nano-TiO2 accelerated expansion, variation in mass, loss of surface microhardness and widened cracks in OPC and slag-blended mortars. Nano-TiO2 containing slag-blended mortars were more resistant to sulfate attack than nano-TiO2 containing OPC mortars. Because nano-TiO2 reduced the size of coarse pores, so it increased crystallization pressure due to the formation of ettringite and gypsum thus led to more damage under sulfate attack. PMID:29495616
Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.
Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming
2014-04-30
The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂ - in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.
Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Tae
2009-08-15
The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled finemore » aggregates were examined by X-ray diffraction (XRD) technique. Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C-S-H into M-S-H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.« less
Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar
Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming
2014-01-01
The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625
Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties
Torres-Gómez, Ana Isabel; Ledesma, Enrique F.; Otero, Rocio; Fernández, José Maria; Jiménez, José Ramón; de Brito, Jorge
2016-01-01
This work evaluates the effects of using non-conforming fly ash (Nc-FA) generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA) and recycled sand from masonry waste (FRMA). The incorporation of powdered recycled masonry filler (R-MF) is also tested as an alternative to siliceous filler (Si-F). Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources’ consumption and to increase the recycling rate of Nc-FA and FRMA. PMID:28773849
Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties.
Torres-Gómez, Ana Isabel; Ledesma, Enrique F; Otero, Rocio; Fernández, José Maria; Jiménez, José Ramón; de Brito, Jorge
2016-08-25
This work evaluates the effects of using non-conforming fly ash (Nc-FA) generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA) and recycled sand from masonry waste (FRMA). The incorporation of powdered recycled masonry filler (R-MF) is also tested as an alternative to siliceous filler (Si-F). Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources' consumption and to increase the recycling rate of Nc-FA and FRMA.
NASA Astrophysics Data System (ADS)
Olivia, M.; Jingga, H.; Toni, N.; Wibisono, G.
2018-04-01
The invention of environmentally friendly, high performance, and green material such as biopolymers marked an emerging trend for sustainable construction over the past decades. Biopolymer comprises of natural monomers and synthesized by plants or other organisms. The sustainable, biodegradable, and renewable biopolymers were used in concrete mixes to improve their physical and mechanical properties and durability. The aim of this paper is to provide a brief an overview of the impact of biopolymer addition into concrete and mortar mixes. Many studies on the influence of biopolymer on the properties of concrete and mortar by adding biopolymers at a certain proportion (usually less than one wt.%) to the concrete or mortar mixes, and the heavy metal leaching, rheological, and mechanical properties of the mixes were conducted. Biopolymers included in this review are chitosan (CH), xanthan gum (XG), guar gum (GG), lignosulphonate (LS), and cellulose ethers (CE). Data from previous studies showed that the addition of certain types of biopolymer into concrete and mortar mixes improve workability, water retention, and compressive strength by up to 30 percent. Chitosan strengthens heavy metal encapsulation in the mortar and neutralizes the negative impact of heavy metal on the mortar properties and environment. To sum up, the use of biopolymers improve physical properties and leaching characteristics of mortar and concrete.
Effect of Graphene Oxide on the Damping Capability of Recycled Mortar
NASA Astrophysics Data System (ADS)
Wei, Jing-Jie; Long, Wu-Jian; Fang, Chang-Le; Li, Hao-Dao; Guo, Yue-Gui
2018-03-01
The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the damping capability of recycled mortar. The effect of GO on damping capability was examined by using dynamic mechanical analyzer (DMA), It is showed that the recycled mortar with GO has a better damping capability than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration products.
Recycled sand in lime-based mortars.
Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K
2014-12-01
The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.
Lee, Dongkyoung; Pyo, Sukhoon
2018-02-10
This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.
Effect of nylon fiber on mechanical properties of cement based mortar
NASA Astrophysics Data System (ADS)
Hanif, I. M.; Syuhaili, M. R. Noor; Hasmori, M. F.; Shahmi, S. M.
2017-11-01
An investigation has been carried out to study the effect of nylon fiber on the mechanical properties of cement based mortar after receiving large quantities of nylon waste. Subsequently, this research was conducted to compare the compressive, tensile and flexural strength of normal cement based mortar with nylon fiber cement based mortar. All samples using constant water-cement ratio of 0.63 and three different percentages of nylon fiber were added in the mixture during the samples preparation period which consists of 0.5%, 1.5% and 2.5% by total weight of cement based mortar. The results obtained with different nylon percentage marked an increases in compressive strength (up to 17%), tensile strength (up to 21%) and flexural strength (up to 13%) when compared with control cement based mortar samples. Therefore, the results obtained from this study shows that by using nylon fiber as additive material can improve the mechanical properties of the cement based mortar and at the same time produce a good sustainable product that can protects and conserve the marine environment.
Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar
2018-01-01
This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431
Reuse of ground waste glass as aggregate for mortars.
Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A
2005-01-01
This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.
Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar
Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin
2018-01-01
This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188
A Study on the Properties of Carbon Black Mortar Using Granulated Blast Furnace Slag and Polymer.
Jang, Hong-Seok; Jeon, Ui-Hyeon; So, Seung-Young
2015-11-01
White Portland Cement (WPC) and inorganic pigment have been used in colored concrete, but there are some physical problems such as increases in efflorescence, and poor workability and low economics. The aim of this study was to investigate the effects of GBFS and polymer (methyl cellulose) on the physical properties of carbon black mortar. For this purpose, a flow test, compressive strength test and color evaluation and was carried out on cement mortar mixed with polymer by changing the proportion of cement and ratio of GBFS. The results show that the addition of polymer influences significantly the color value efficiency in colored mortar. This is due to the reduction of overall amount of micro pore. This polymer films prevent the transport of soluble calcium towards the surface, and decreases efflorescence. And the flow of colored mortar was increased in proportion to the addition rate of the GBFS. In addition the strength of colored mortars with GBFS at the long-term aged (after 28 days) was higher than that of the general WPC mortar, although its strength was developed slowly at the early ages.
Luminescence quartz dating of lime mortars. A first research approach.
Zacharias, N; Mauz, B; Michael, C T
2002-01-01
Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.
Continuous monitoring of setting and hardening of mortar using FBG sensors
NASA Astrophysics Data System (ADS)
Lima, H.; Ribeiro, R.; Nogueira, R.; Silva, L.; Abe, I.; Pinto, J. L.
2007-05-01
The use of fibre Bragg grating sensors to study mortars' dimensional variations during the setting process is reported. When determining a mortar's potential to fissure, it's important to know its total retraction. This means it is necessary to know not only the mortar's retraction after hardened, but also to know how much it retracts during the plastic phase. This work presents a technique which allows to measure dimensional variations, either expansion or retraction, during the whole setting process. Temperature and strain evolution during both plastic and hardened phase of the mortar were obtained, allowing the determination of dimensional variations and setting times. Due to its high-speed, ease of implementation and low operation costs, this technique will allow to get a deeper knowledge of the effects of several additives on the mortar's behaviour, allowing to improve its mechanical properties through the determination of the proper chemical composition.
NASA Astrophysics Data System (ADS)
Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.
2017-10-01
Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.
Effect of fly ash calcination in geopolymer synthesis
NASA Astrophysics Data System (ADS)
Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia
2015-12-01
Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.
Low Density Supersonic Decelerator Parachute Decelerator System
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.
Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin
2017-01-01
Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer–Emmett–Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties. PMID:28773214
Effect of Various Interface Thicknesses on the Behaviour of Infilled frame Subjected to Lateral Load
NASA Astrophysics Data System (ADS)
Senthil, K.; Muthukumar, S.; Rupali, S.; Satyanarayanan, K. S.
2018-03-01
Two dimensional numerical investigations were carried out to study the influence of interface thickness on the behaviour of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The cement mortar, cork and foam was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The effect of lateral loads on infill masonry wall was also studied by varying arbitrary loads as 10, 20, 40 and 60 kN. The resistance of the frame with cement mortar was found maximum with the interface thickness 10 mm therefore, it is concluded that the maximum influence of interface thickness of 10 mm was found effective. The resistance of integral infill frame with cork and foam interface was found maximum with the interface thickness 6 mm and it is concluded that 6 mm thick interface among the chosen thickness was found effective.
An Experimental Investigation on the Ultimate Strength of Partially Infilled: Braced Steel Frames
NASA Astrophysics Data System (ADS)
Dubey, Shailendra Kumar Damodar; Kute, Sunil Y.
2017-12-01
Infilled walls are usually, considered as non-structural elements. However, these walls are effective in carrying lateral loads. In this regard, an experimental investigation was planned and conducted to study the effect of braced and partially infilled steel frames with cement mortar and concrete in comparison to the bare frames. All these frames were tested up to collapse and subjected only to horizontal loads to obtain an effective and possible solution for soft storey which are generally not infilled. In comparison to bare steel frames, partially infilled frames have an increase of lateral load capacity by 45-60%. Central bracing is more effective than that of the corner bracing. For the same load partially infilled frames have significantly less deflection than that of the bare frames. A reduced load factor is suggested for the design of soft storey columns with the partial infills. A mathematical model has been proposed to calculate the theoretical ultimate load for the braced, cement mortar and concrete partial infilled frames.
Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar.
Li, Xueying; Ma, Xinwei; Zhang, Shoujie; Zheng, Enzu
2013-04-09
This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145-173 mm for pastes and 131-136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength.
Reuse of de-inking sludge from wastepaper recycling in cement mortar products.
Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta
2011-08-01
This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca
2013-11-15
Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimensmore » without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.« less
Improvements of nano-SiO2 on sludge/fly ash mortar.
Lin, D F; Lin, K L; Chang, W C; Luo, H L; Cai, M Q
2008-01-01
Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.
Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong
2009-04-01
To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.
Recovery of hazardous semiconductor-industry sludge as a useful resource.
Lee, Tzen-Chin; Liu, Feng-Jiin
2009-06-15
Sludge, a solid waste recovered from wastewater of semiconductor-industries composes of agglomerates of nano-particles like SiO(2) and CaF(2). This sludge deflocculates in acidic and alkaline aqueous solutions into nano-particles smaller than 100 nm. Thus, this sludge is potentially hazardous to water resources when improperly dumped. It can cause considerable air-pollution when fed into rotary-kilns as a raw material for cement production. In this study, dried and pulverized sludge was used to replace 5-20 wt.% Portland cement in cement mortar. The compressive strength of the modified mortar was higher than that of plain cement mortar after curing for 3 days and more. In particular, the strength of mortar with 10 wt.% substitution improved by 25-35% after curing for 7-90 days. TCLP studies reveal no detectable release of heavy metals. Preliminary studies showed that nano-particles deflocculated from the sludge, when cured for up to 3 days retain in the modified mortar their nano-size, which become large-sized hydration compounds that contribute to the final mortar strength. Semiconductor sludge can thus be utilized as a useful resource to replace portion of cement in cement mortar, thereby avoiding their potential hazard on the environment.
Antimicrobial mortar surfaces for the improvement of hygienic conditions.
De Muynck, W; De Belie, N; Verstraete, W
2010-01-01
To evaluate the effectiveness of various antimicrobial mortar formulations in inhibiting the growth of a selection of pathogens of environmental and hygienic concern. Mortar prisms containing triclosan-incorporated fibres or different concentrations of silver copper zeolites were incubated with Escherichia coli, Listeria monocytogenes, Salmonella enterica or Staphylococcus aureus at 4 or 20 degrees C for 24 h. From plate counting, a substantial bactericidal effect (>4 log units) could only be observed for the mortar specimens containing more than 3% zeolites on cement weight base, the effect being more pronounced at 20 degrees C compared to 4 degrees C. No inhibitory effect could be observed for mortar specimens containing antimicrobial fibres. Adenosinetriphosphate (ATP) measurements allowed for a rapid indication of the occurrence of antimicrobial activity. In order to obtain a bactericidal effect on mortar surfaces, concentrations of silver copper zeolites of more then 3% are required. To our knowledge, this is the first study in which the effectiveness of various antimicrobial mortar mixtures towards the inhibition of pathogens has been evaluated in a quantitative way. Antimicrobial concrete mixtures can be used for the improvement of the hygienic conditions in a variety of environments.
40 KG Sample of Fish-Clay from Stevns Klint, Denmark
NASA Astrophysics Data System (ADS)
Gwozdz, R.; Hansen, H. J.; Rasmussen, K. L.
1992-07-01
In March 1986 a 50-m-long exposure of the cliff at Stevns Klint fell down and exposed about 40 square meters of Fish Clay. Due to this extraordinary event we were able to pick by hand about 50 kg black KT boundary layer material. After drying, the material was homogenized using a wooden pestle and an agate mortar. The powdered material was sieved through 200 mesh nylon gauze. The fraction larger than 200 mesh was collected and powdered again in an agate mortar. After four repetitions the amount of material with grain size less than 200 mesh was about 40 kg. The fraction larger than 200 mesh was reduced to about 7 kg. The 40-kg powder was mixed in a rotating polyethylene drum for three weeks. The material was analyzed by instrumental neutron activation analysis, atomic absorption and X-ray fluorescence analysis for about 40 elements. INAA was made on 20 aliquots with weight about 300 mg, 20 aliquots with weight about 80 mg, and 30 with weights between 10 and 20 mg. The preliminary results show that our KT boundary sample (1) is very homogeneous, (2) is very close in composition to other K-T boundary clays analyzed by us or described in the literature, and (3) has an Ir concentration of 32 +- 2 ng/g. We hope that our Fish Clay sample (termed by us "Mesozoic Midnight") after analysis in other laboratories and by other analytical methods may qualify as reference material in analytical work on boundary clay material.
Measurement and Modeling of the Ability of Crack Fillers to Prevent Chloride Ingress into Mortar.
Jones, Scott Z; Bentz, Dale P; Davis, Jeffrey M; Hussey, Daniel S; Jacobson, David L; Molloy, John L; Sieber, John R
2017-09-01
A common repair procedures applied to damaged concrete is to fill cracks with an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway for the ingress of water, chlorides, and other deleterious species. To effectively fulfill its mission of preventing chloride ingress, the polymer must not only fully fill the macro-crack, but must also intrude the damage zone surrounding the crack perimeter. Here, the performance of two commonly employed crack fillers, one epoxy, and one methacrylate, are investigated using a combined experimental and computer modeling approach. Neutron tomography and microbeam X-ray fluorescence spectrometry (μXRF) measurements are employed on pre-cracked and chloride-exposed specimens to quantify the crack filling and chloride ingress limiting abilities, respectively, of the two polymers. A two-dimensional model of chloride transport is derived from a mass balance and solved by the finite element method. Crack images provided by μXRF are used to generate the input microstructure for the simulations. When chloride binding and a time-dependent mortar diffusivity are both included in the computer model, good agreement with the experimental results is obtained. Both crack fillers significantly reduce chloride ingress during the 21 d period of the present experiments; however, the epoxy itself contains approximately 4 % by mass chlorine. Leaching studies were performed assess the epoxy as a source of deleterious ions for initiating corrosion of the steel reinforcement in concrete structures.
The use of shale ash in dry mix construction materials
NASA Astrophysics Data System (ADS)
Gulbe, L.; Setina, J.; Juhnevica, I.
2017-10-01
The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartz, W., E-mail: wojciech.bartz@ing.uni.wroc.pl; Filar, T.
Optical microscopic observations, scanning electron microscopy and microprobe with energy dispersive X-ray analysis, X-ray diffraction and differential thermal/thermogravimetric analysis allowed detailed characterization of rendering mortars from decorative details (figures of Saints) of a baroque building in Kozuchow (Lubuskie Voivodship, Western Poland). Two separate coats of rendering mortars have been distinguished, differing in composition of their filler. The under coat mortar has filler composed of coarse-grained siliceous sand, whereas the finishing one has much finer grained filler, dominated by a mixture of charcoal and Fe-smelting slag, with minor amounts of quartz grains. Both mortars have air-hardening binder composed of gypsum andmore » micritic calcite, exhibiting microcrystalline structure.« less
Wei, Guo-feng; Fang, Shi-qiang; Zhang, Bing-jian; Wang, Xiao-qi; Li, Zu-guang
2012-08-01
Liesegang patterns in traditional sticky rice-lime mortar undergoing carbonation were investigated by means of FTIR, XRD and SEM. Results indicate that well-developed Liesegang patterns only occur in the mortar prepared with aged lime and sticky rice. The smaller Ca(OH)2 particle size in aged lime and the control of the sticky rice for the crystallization of calcium carbonate lead to the small pores in this mortar. These small pores can make Ca2+ and CO3(2-) highly supersaturated, which explains the reason why Liesegang pattern developed in the sticky rice-aged lime mortar. The formed metastable aragonite proves that Liesegang pattern could be explained based on the post-nucleation theory.
Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar
Li, Xueying; Ma, Xinwei; Zhang, Shoujie; Zheng, Enzu
2013-01-01
This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145–173 mm for pastes and 131–136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength. PMID:28809222
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunther, Wolfgang; Lothenbach, Barbara; Skibsted, Jørgen, E-mail: jskib@chem.au.dk
2015-03-15
The effect of the Ca/Si ratio of the calcium–silicate–hydrate (C–S–H) phase on the interaction with sulfate ions is investigated for C–S–H phases (Ca/Si = 0.83, 1.25, 1.50) and mortar samples of blended Portland cements. It is shown that leaching of calcium from C–S–H and portlandite affects the composition of the pore solution and contributes to the developing crystallization pressure of ettringite. Sulfate profiles show that sulfate binding before cracking is similar for different Ca/Si ratios whereas the highest expansion rates are observed for the mortars with the highest Ca/Si ratios. After leaching in sulfate solutions, the C–S–H samples have beenmore » characterized by {sup 29}Si MAS NMR, thermogravimetric analysis, and elemental solution analysis. Generally, the exposure to sulfate solutions results in decalcification of the C–S–H, which increases with decreasing Ca/Si ratio. The data are in good agreement with thermodynamic modeling, indicating that equilibrium is almost achieved in the leached systems. Finally, the expansion of mortar samples exposed to sulfate solutions was much less at lower Ca/Si ratios of the cement blends. This reduced expansion can be related to the decrease of the supersaturation of the pore solution with respect to ettringite at lower Ca/Si ratios of the C–S–H and in the absence of portlandite.« less
Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology.
Marzaioli, Fabio; Lubritto, Carmine; Nonni, Sara; Passariello, Isabella; Capano, Manuela; Terrasi, Filippo
2011-03-15
Mortars represent a class of building and art materials that are widespread at archeological sites from the Neolithic period on. After about 50 years of experimentation, the possibility to evaluate their absolute chronology by means of radiocarbon ((14)C) remains still uncertain. With the use of a simplified mortar production process in the laboratory environment, this study shows the overall feasibility of a novel physical pretreatment for the isolation of the atmospheric (14)CO(2) (i.e., binder) signal absorbed by the mortars during their setting. This methodology is based on the assumption that an ultrasonic attack in liquid phase isolates a suspension of binder carbonates from bulk mortars. Isotopic ((13)C and (14)C), % C, X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses were performed to characterize the proposed methodology. The applied protocol allows suppression of the fossil carbon (C) contamination originating from the incomplete burning of the limestone during the quick lime production, providing unbiased dating for "laboratory" mortars produced operating at historically adopted burning temperatures.
The application of electrical resistance measurements to water transport in lime-masonry systems
NASA Astrophysics Data System (ADS)
Ball, R. J.; Allen, G. C.; Carter, M. A.; Wilson, M. A.; Ince, C.; El-Turki, A.
2012-03-01
The paper describes an experimental determination of impedance spectroscopy derived resistance measurements to record water transport in lime-masonry systems. It strongly supports the use of Sharp Front theory and Boltzmann's distribution law of statistical thermodynamics to corroborate the data obtained. A novel approach is presented for the application of impedance measurements to the water transport between freshly mixed mortars and clay brick substrates. Once placed, fresh mortar is dewatered by brick and during this time the volume fraction water content of the mortar is reduced. An equation is derived relating this change in water content to the bulk resistance of the mortar. Experimental measurements on hydraulic lime mortars placed in contact with brick prisms confirm the theoretical predictions. Further, the results indicate the time at which dewatering of a mortar bed of given depth is completed. The technique has then potential to be applied for in situ monitoring of dewatering as a means of giving insight into the associated changes in mechanical and chemical properties.
Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.
Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C
2008-09-01
The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.
NASA Astrophysics Data System (ADS)
Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason
Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.
A novel method for a multi-level hierarchical composite with brick-and-mortar structure
Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.
2013-01-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554
A novel method for a multi-level hierarchical composite with brick-and-mortar structure.
Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A
2013-01-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
A novel method for a multi-level hierarchical composite with brick-and-mortar structure
NASA Astrophysics Data System (ADS)
Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.
2013-07-01
The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.
Monitoring the self-healing process of biomimetic mortar using coda wave interferometry method
NASA Astrophysics Data System (ADS)
Liu, Shukui; Basaran, Zeynep; Zhu, Jinying; Ferron, Raissa
2014-02-01
Internal stresses might induce microscopic cracks in concrete, which can provide pathways for ingress of harmful chemicals and can lead to loss of strength. Recent research in concrete materials suggests that it might be possible to develop a smart cement-based material that is capable of self-healing by leveraging the metabolic activity of microorganisms to provide biomineralization. Limited research on biomineralization in cement-based systems has shown promising results that healing of cracks can occur on the surface of concrete and reduce permeability. This paper presents the results from an investigation regarding the potential for a cement-based material to repair itself internally through biomineralization. Compressive strength test and coda wave interferometry (CWI) analyses were conducted on mortar samples that were loaded to 70% of their compressive strength and cured in different conditions. Experimental results indicate that the damaged mortar samples with microorganisms showed significantly higher strength development and higher increase of ultrasonic wave velocity compared to samples without microorganisms at 7 and 28 days.
Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar
NASA Astrophysics Data System (ADS)
Chao, L. C.; Kuo, C. P.
2018-01-01
High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.
Hernandez-Bautista, E; Bentz, D P; Sandoval-Torres, S; de Cano-Barrita, P F J
2016-05-01
A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtained by isothermal calorimetry at 23 °C and 38 °C. Steam curing and semi-adiabatic experiments were carried out to obtain the temperature evolution and moisture profiles were assessed by magnetic resonance imaging. Three specimen geometries were simulated and the results were compared with experimental data. Comparisons of temperature had maximum residuals of 2.5 °C and 5 °C for semi-adiabatic and steam curing conditions, respectively. The model correctly predicts the evaporable water distribution obtained by magnetic resonance imaging.
Evaluation of automated cell disruptor methods for oomycetous and ascomycetous model organisms
USDA-ARS?s Scientific Manuscript database
Two automated cell disruptor-based methods for RNA extraction; disruption of thawed cells submerged in TRIzol Reagent (method QP), and direct disruption of frozen cells on dry ice (method CP), were optimized for a model oomycete, Phytophthora capsici, and compared with grinding in a mortar and pestl...
The Multiscale Robin Coupled Method for flows in porous media
NASA Astrophysics Data System (ADS)
Guiraldello, Rafael T.; Ausas, Roberto F.; Sousa, Fabricio S.; Pereira, Felipe; Buscaglia, Gustavo C.
2018-02-01
A multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed. The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The domain decomposition procedure is defined in terms of two independent spaces on the skeleton of the decomposition, corresponding to interface pressures and fluxes, that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. The well-posedness of the new domain decomposition procedure is established and its connection with the method of Douglas et al. (1993) [12], is identified, also allowing us to reinterpret the known procedure as an optimized Schwarz (or Two-Lagrange-Multiplier) method. The multiscale property of the new domain decomposition method is indicated, and its relation with the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method is discussed. Numerical simulations are presented aiming at illustrating several features of the new method. Initially we illustrate the possibility of switching from MMMFEM to MHM by suitably varying the Robin condition parameter in the new multiscale method. Then we turn our attention to realistic flows in high-contrast, channelized porous formations. We show that for a range of values of the Robin condition parameter our method provides better approximations for pressure and velocity than those computed with either the MMMFEM and the MHM. This is an indication that our method has the potential to produce more accurate velocity fields in the presence of rough, realistic permeability fields of petroleum reservoirs.
Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.
Xiao, Perry; Imhof, Robert E
2012-10-01
Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2006-01-01
The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...
NASA Astrophysics Data System (ADS)
Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina
2016-04-01
Porous materials (e.g. plasters, mortars, concrete, and the like) used in the building industry or in artworks fail to develop, after their genesis, salts such as nitrates, carbonates (e.g. potassium carbonate, magnesium carbonate, calcium carbonate), chlorides (e.g. sodium chloride) and/or others, which are a concurrent cause of material deterioration phenomena. In the case of ancient or cultural heritage buildings, severe damage to structures and works of art, such as fresco paintings are possible. In general, in situ alteration pattern in mortars and frescoes by crystallization of soluble salts from solutions is caused by capillar rise or circulation in damp walls. Older buildings can be more subject to capillary rise of ion-rich waters, which, as water evaporates, create salt crystals inside the walls. If this pattern reveals overwhelming upon other environmental decay factors, the extraction of salts is the first restoration to recover the artpiece after the preliminary assessment and mitigation of the causes of soaking. A new method and apparatus, patented by University of Genoa [1] improves the quality and durability of decontamination by soluble salts, compared with conventional application of sepiolite or cellulose wraps. The conventional application of cellulose or sepiolite requires casting a more or less thick layer of wrap on the mortar, soaking with distilled water, and waiting until dry. The soluble salts result trapped within the wrap. A set of artificial samples reproducing the stratigraphy of frescoes was contaminated with saline solution of known concentration. The higher quality of the extraction was demonstrated by trapping the salts within layers of Japanese paper juxtaposed to the mortar; the extraction with the dedicated apparatus was operated in a significantly shorter time than with wraps (some hours vs. several days). Two cycles of about 15 minutes are effective in the deep cleaning from contaminant salts. The decontamination was demonstrated by conducibility tests on the juxtaposed Japanese paper. In addition, after the conventional treatment, a considerable amount of soluble salts was further extracted demonstrating that traditional wraps operate just a shallow cleaning, and soluble salts are liable to emerge later as efflorescence affecting the conservation after restoration. The optimum cleaning was obtained by finishing the innovative extraction with sepiolite/cellulose wraps. As a whole, the novel method and apparatus enhance the time for restoration and the final quality before consolidation and protection. [1] "Apparatus and method for treating porous materials" - M. Ferretti, L. Gaggero, G. Torrielli, PCT/IB2015/055129 (2015)
Towards a large-scale scalable adaptive heart model using shallow tree meshes
NASA Astrophysics Data System (ADS)
Krause, Dorian; Dickopf, Thomas; Potse, Mark; Krause, Rolf
2015-10-01
Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
24 CFR 3285.306 - Design procedures for concrete block piers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...
Comparing the use of sewage sludge ash and glass powder in cement mortars.
Chen, Zhen; Poon, Chi Sun
2017-06-01
This study explored the suitability of using sewage sludge ash (SSA) and mixed-colored glass powder (MGP) as construction materials in cement mortars. Positive findings from this study may help promote the recycling of waste SSA and MGP in construction works. The results indicated that the SSA decreased while MGP improved the mortar workability. The SSA exhibited very low pozzolanic activity, but the cement mortar prepared with 20% SSA yielded strength values slightly superior to those of the glass mortars due to its water absorption ability. MGP can serve as a pozzolan and when 20% of cement was replaced by MGP, apparent compressive strength gains were found at later curing ages. The SSA could be used to mitigate ASR expansion while the MGP was superior in resisting drying shrinkage.
A Study of Array Direction HDPE Fiber Reinforced Mortar
NASA Astrophysics Data System (ADS)
Kamsuwan, Trithos
2018-02-01
This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.
Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar
NASA Astrophysics Data System (ADS)
Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.
2017-11-01
Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.
Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.
Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426
Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok
2012-01-15
Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.
Alternative design of pipe sleeve for liquid removal mechanism in mortar slab layer
NASA Astrophysics Data System (ADS)
Nazri, W. M. H. Wan; Anting, N.; Lim, A. J. M. S.; Prasetijo, J.; Shahidan, S.; Din, M. F. Md; Anuar, M. A. Mohd
2017-11-01
Porosity is one of the mortar’s characteristics that can cause problems, especially in the room space that used high amount of water, such as bathrooms. Waterproofing is one of the technology that normally used to minimize this problem which is preventing deep penetration of liquid water or moisture into underlying concrete layers. However, without the proper mechanism to remove liquid water and moisture from mortar system, waterproofing layer tends to be damaged after a long period of time by the static formation of liquid water and moisture at mortar layer. Thus, a solution has been proposed to drain out water that penetrated into the mortar layer. This paper introduces a new solution using a Modified Pipe Sleeve (MPS) that installed at the mortar layer. The MPS has been designed considering the percentage surface area of the pipe sleeve that having contact with mortar layer (2%, 4%, 6%, 8% and 10%) with angle of holes of 60°. Infiltration test and flow rate test have been conducted to identify the effectiveness of the MPS in order to drain out liquid water or moisture from the mortar layer. In this study shows that, MPS surface area 10%, angled 60°, function effectively as a water removal compared to other design.
Concretes and mortars with waste paper industry: Biomass ash and dregs.
Martínez-Lage, Isabel; Velay-Lizancos, Miriam; Vázquez-Burgo, Pablo; Rivas-Fernández, Marcos; Vázquez-Herrero, Cristina; Ramírez-Rodríguez, Antonio; Martín-Cano, Miguel
2016-10-01
This article describes a study on the viability of using waste from the paper industry: biomass boiler ash and green liquor dregs to fabricate mortars and concretes. Both types of ash were characterized by obtaining their chemical and mineralogical composition, their organic matter content, granulometry, adsorption and other common tests for construction materials. Seven different mortars were fabricated, one for reference made up of cement, sand, and water, three in which 10, 20, or 30% of the cement was replaced by biomass ash, and three others in which 10, 20, or 30% of the cement was replaced with dregs. Test specimens were fabricated with these mortars to conduct flexural and compression tests. Flexural strength is reduced for all the mortars studied. Compressive strength increases for the mortars fabricated with biomass ash and decreases for the mortar with dregs. Finally, 5 concretes were made, one of them as a reference (neither biomass ash nor dregs added), two of them with replacements of 10 and 20% of biomass ash instead of cement and another two with replacements of 10 and 20% of dregs instead of cement. The compressive and tensile splitting strength increase when a 10% of ash is replaced and decrease in all the other cases. The modulus of elasticity always decreases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-01-01
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability. PMID:28793563
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-09-17
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.
Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam
2017-05-05
The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties.
Basha, Sreenivasulu; Lingamgunta, Lakshman Kumar; Kannali, Jayakumar; Gajula, Swarna Kumari; Bandikari, Ramesh; Dasari, Sreenivasulu; Dalavai, Veena; Chinthala, Paramageetham; Gundala, Prasada Babu; Kutagolla, Peera; Balaji, Vinodh Kumar
2018-04-24
Concrete is a strong and fairly inexpensive building substance, but has several disadvantages like cracking that allows corrosion, thus reducing its lifespan. To mitigate these complications, long-lasting microbial self-healing cement is an alternative that is eco-friendly and also actively repairs cracks. The present paper describes the detailed experimental investigation on compressive strength of cement mortars, mixed with six alkaliphilic bacteria, isolated from subsurface mica mines of high alkalinity. The experiments showed that the addition of alkaliphilic isolates at different cell concentrations (10 4 and 10 6 cells/ml) enhanced the compressive strength of cement mortar, because the rapid growth of bacteria at high alkalinity precipitates calcite crystals that lead to filling of pores and densifying the concrete mix. Thus, Bacillus subtilis (SVUNM4) showed the highest compressive strength (28.61%) of cement mortar at 10 4 cells/ml compared to those of other five alkaliphilic isolates (Brevibacillus sp., SVUNM15-22.1%; P. dendritiformis, SVUNM11-19.9%; B. methylotrophicus, SVUNM9-16%; B. licheniformis, SVUNM14-12.7% and S. maltophilia, SVUNM13-9.6%) and controlled cement mortar as well. This method resulted in the filling of cracks in concrete with calcite (CaCO 3 ), which was observed by scanning electron microscopy (SEM). Our results showed that the alkaliphilic bacterial isolates used in the study are effective in self-healing and repair of concrete cracks.
Application of antifungal CFB to increase the durability of cement mortar.
Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl
2012-07-01
Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.
Extraction and labeling methods for microarrays using small amounts of plant tissue.
Stimpson, Alexander J; Pereira, Rhea S; Kiss, John Z; Correll, Melanie J
2009-03-01
Procedures were developed to maximize the yield of high-quality RNA from small amounts of plant biomass for microarrays. Two disruption techniques (bead milling and pestle and mortar) were compared for the yield and the quality of RNA extracted from 1-week-old Arabidopsis thaliana seedlings (approximately 0.5-30 mg total biomass). The pestle and mortar method of extraction showed enhanced RNA quality at the smaller biomass samples compared with the bead milling technique, although the quality in the bead milling could be improved with additional cooling steps. The RNA extracted from the pestle and mortar technique was further tested to determine if the small quantity of RNA (500 ng-7 microg) was appropriate for microarray analyses. A new method of low-quantity RNA labeling for microarrays (NuGEN Technologies, Inc.) was used on five 7-day-old seedlings (approximately 2.5 mg fresh weight total) of Arabidopsis that were grown in the dark and exposed to 1 h of red light or continued dark. Microarray analyses were performed on a small plant sample (five seedlings; approximately 2.5 mg) using these methods and compared with extractions performed with larger biomass samples (approximately 500 roots). Many well-known light-regulated genes between the small plant samples and the larger biomass samples overlapped in expression changes, and the relative expression levels of selected genes were confirmed with quantitative real-time polymerase chain reaction, suggesting that these methods can be used for plant experiments where the biomass is extremely limited (i.e. spaceflight studies).
PEO Ammunition Systems Portfolio Book 2012-2013
2011-02-02
assembly. Aluminum ogive contains firing pin, a rubber anti-creep spring and M550 fuze escapement assembly and is threaded to projectile body...51 The Mortar Weapons and Fire Control Family M95/M96 Mortar Fire Control System (MFCS) – Mounted...52 M150/M151 Mortar Fire Control System Dismounted (MFCS-D
Use of waste brick as a partial replacement of cement in mortar.
Naceri, Abdelghani; Hamina, Makhloufi Chikouche
2009-08-01
The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.
NMR relaxometry study of plaster mortar with polymer additives
NASA Astrophysics Data System (ADS)
Jumate, E.; Moldovan, D.; Fechete, R.; Manea, D.
2013-11-01
The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T2 relaxation rates corresponding to the bound water.
Use of waste brick as a partial replacement of cement in mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naceri, Abdelghani; Hamina, Makhloufi Chikouche
2009-08-15
The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by themore » X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.« less
Experimental study on compressive strength of sediment brick masonry
NASA Astrophysics Data System (ADS)
Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif
2018-02-01
The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.
New System of Shrinkage Measurement through Cement Mortars Drying
Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa
2017-01-01
Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297
Concrete/mortar water phase transition studied by single-point MRI methods.
Prado, P J; Balcom, B J; Beyea, S D; Armstrong, R L; Bremner, T W; Grattan-Bellew, P E
1998-01-01
A series of magnetic resonance imaging (MRI) water density and T2* profiles in hardened concrete and mortar samples has been obtained during freezing conditions (-50 degrees C < T < 11 degrees C). The single-point ramped imaging with T1 enhancement (SPRITE) sequence is optimal for this study given the characteristic short relaxation times of water in this porous media (T2* < 200 microseconds and T1 < 3.6 ms). The frozen and evaporable water distribution was quantified through a position based study of the profile magnitude. Submillimetric resolution of proton-density and T2*-relaxation parameters as a function of temperature has been achieved.
Nguyen, Tuan Anh; Nguyen, The Huyen; Pham, Thi Lua; Dinh, Thi Mai Thanh Dinh; Thai, Hoang; Shi, Xianming
2017-01-01
The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel in salt contaminated mortars was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. Researchers conducted electrochemical monitoring of the coated steel embedded in mortar over 100 days of immersion in 0.1 M NaOH solutions. The chloride permeability and microstructure of Portland cement mortar with admixed nano-materials (at 1% by weight of cement) were examined using an electromigration test and field emission scanning electron microscopy (FESEM). Electrochemical monitoring showed that nano Fe₂O₃ improved the corrosion resistance of the coated rebar. The incorporation of a small amount of nano Fe₂O₃ (1% by total weight of resin and hardener) into the epoxy coating reduced the corrosion current of the epoxy-coated steel in chloride-contaminated mortar (0.3% chloride by weight of cement). After 100 days of immersion, the nanoparticles reduced the corrosion current of epoxy-coated steel by a factor of 6. The FESEM test revealed that admixing of nano-materials not only led to denser cement mortar but also changed the morphology of cement hydration products. The test results of compressive strength showed that nanoparticles increased the strength of cement mortar. The electromigration test showed that the incorporation of nanoparticles improved the chloride penetration resistance of the mortar, as indicated by the reduced apparent diffusion coefficients of the chloride anion. When nano-SiO₂ and nano-Fe₂O₃ were admixed into fresh cement mortar at 1% by weight of cement, the value of D(Cl−) was decreased by 83%, from 7.35×10(−11) m²/s (control specimen) to 1.21×10(−11) m²/s and 1.36×10(−11) m²/s, respectively.
ERIC Educational Resources Information Center
Cole, R.; And Others
Many rural communities share these complaints: (1) an exodus of the best and brightest young people; (2) a changing and ambivalent self-concept about the identity and the future of the community; and (3) a scarcity of good jobs to act as the mortar that bonds the other elements together. The South Dakota Rural Schools and Community Development…
A Century of Sapphire Crystal Growth
2004-05-17
should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty for failing to comply with a collection of...and ruby were oxides of the elements aluminum and silicon.1 In 1817, J. L. Gay- Lussac found that pure aluminum oxide (also called alumina) could...thought to consist of Al2O3 and SiO2 •1817: Gay- Lussac : •1840: Rose: Found SiO2 in sapphire is from agate mortar used for grinding •1837-72: Gaudin
Kirgiz, Mehmet Serkan
2014-01-01
Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737
Modeling of Carbon Mortar Color Expression Using Artificial Neural Network.
Jang, Hong-Seok; Kim, Ju-Hee; Shuli, Xing; So, Seung-Young
2018-09-01
Colored concrete uses pigments and white Portland cement (WPC) to perform decorative functions together with structural function. Pigments are used in permanent coloring of concrete with colors different from the natural color of the cement or the aggregates with mixing WPC. In this study, an artificial neural networks study was carried out to predict the color evaluation of black mortar using pigment and carbon black. A data set of a laboratory work, in which a total of 9 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were nine different pigment and carbon black ratios. Each mortar was measured at ten locations on the surface and averaged. Color can be evaluated by measurements of tristimulus values L* , a* and b* , represented in the chromatic space CIELAB. The L* value is a measure of luminosity (0 darkness), from completely opaque (0) to completely transparent (100); a* is a measure of redness (-a* greenness) and b* of yellowness (-b* blueness). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of three input parameters that cover the pigment, carbon black and WPC and, an output parameter which is the color parameters of the black colored mortar. The results showed that ANN can be an alternative approach for the predicting the color parameters using mortar ingredients as input parameters.
Materials, used in historical buildings, analysis methods and solutions puroposals
NASA Astrophysics Data System (ADS)
Döndüren, M. Sami; Sişik, Ozlem
2017-10-01
Most of historical buildings are built with pressure principle and have the characteristics of masonry structures. Therefore, the structure components of buildings are constituted bearing walls, columns, buttresses, vaults and domes. Natural stone, cut stone, rubble stone brick or alternate materials were used in the bearing elements. Brick-dust and mortar with more binding feature were used as combination elements. In time, some problems were occurred in used materials and in structure as a result of various effects. Therefore, it is necessary to apply various applications in framework of repair and strengthening of buildings. In this study, restoration of historic buildings and the control of the adequacy of the bearing systems as one most important part of structure were examined. For this purpose, static analysis of Edirne-Merkez Demirtaş (Timurtaş) mosque located in Edirne was tested. Testes could give suggestions and be applied if buildings needed be revealed. The structure was modelled with finite element model of sap2000 package program and the forces generated under various loads and stresses, the occurred deformation due to that, overflow of allowable stress of this deformation and stresses were investigated. As the results of this study can be note that the maximum compressive stress at the construction is calculated as 1.1 MPa.
Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars.
De la Rosa, José M; Miller, Ana Z; Pozo-Antonio, J Santiago; González-Pérez, José A; Jiménez-Morillo, Nicasio T; Dionisio, Amelia
2017-12-15
The deposition of soot on building surfaces darkens their colour and leads to undesirable black crusts, which are one of the most serious problems on the conservation of built cultural heritage. As a preventive strategy, self-cleaning systems based on the use of titanium dioxide (TiO 2 ) coatings have been employed on building materials for degrading organic compounds deposited on building surfaces, improving their durability and performance. In this study, the self-cleaning effect of TiO 2 -containing mortars coated with diesel soot has been appraised under laboratory conditions. The mortar samples were manufactured using lime putty and two different doses of TiO 2 (2.5% and 5%). The lime mortars were then coated with diesel engine soot and irradiated with ultraviolet A (UVA) illumination for 30days. The photocatalytic efficiency was evaluated by visual inspection, field emission scanning electron microscopy (FESEM) and colour spectrophotometry. Changes in the chemical composition of the soot particles (including persistent organic pollutants) were assessed by analytical pyrolysis (Py-GC/MS) and solid state 13 C NMR spectroscopy. The FESEM and colour spectrophotometry revealed that the soot-coated TiO 2 -containing mortars promoted a self-cleaning effect after UVA irradiation. The combination of analytical pyrolysis and 13 C solid state NMR showed that the UVA irradiation caused the cracking of polycyclic aromatic structures and n-alkyl compounds of the diesel soot and its transformation into methyl polymers. Our findings also revealed that the inclusion of TiO 2 in the lime mortar formulations catalysed these transformations promoting the self-cleaning of the soot-stained mortars. The combined action of TiO 2 and UVA irradiation is a promising proxy to clean lime mortars affected by soot deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz
2018-03-01
The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.
Barnat-Hunek, Danuta; Widomski, Marcin K.; Szafraniec, Małgorzata; Łagód, Grzegorz
2018-01-01
The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate. PMID:29494525
A chemometric approach to the characterisation of historical mortars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampazzi, L.; Pozzi, A.; Sansonetti, A.
2006-06-15
The compositional knowledge of historical mortars is of great concern in case of provenance and dating investigations and of conservation works since the nature of the raw materials suggests the most compatible conservation products. The classic characterisation usually goes through various analytical determinations, while conservation laboratories call for simple and quick analyses able to enlighten the nature of mortars, usually in terms of the binder fraction. A chemometric approach to the matter is here undertaken. Specimens of mortars were prepared with calcitic and dolomitic binders and analysed by Atomic Spectroscopy. Principal Components Analysis (PCA) was used to investigate the featuresmore » of specimens and samples. A Partial Least Square (PLS1) regression was done in order to predict the binder/aggregate ratio. The model was applied to historical mortars from the churches of St. Lorenzo (Milan) and St. Abbondio (Como). The accordance between the predictive model and the real samples is discussed.« less
Fracture detection in concrete by glass fiber cloth reinforced plastics
NASA Astrophysics Data System (ADS)
Shin, Soon-Gi; Lee, Sung-Riong
2006-04-01
Two types of carbon (carbon fiber and carbon powder) and a glass cloth were used as conductive phases and a reinforcing fiber, respectively, in polymer rods. The carbon powder was used for fabricating electrically conductive carbon powder-glass fiber reinforced plastic (CP-GFRP) rods. The carbon fiber tows and the CP-GFRP rods were adhered to mortar specimens using epoxy resin and glass fiber cloth. On bending, the electrical resistance of the carbon fiber tow attached to the mortar specimen increased greatly after crack generation, and that of the CP-GFRP rod increased after the early stages of deflection in the mortar. Therefore, the CP-GFRP rod is superior to the carbon fiber tow in detecting fractures. Also, by reinforcing with a glass fiber cloth reinforced plastic, the strength of the mortar specimens became more than twice as strong as that of the unreinforced mortar.
Pore size distribution of OPC and SRPC mortars in presence of chlorides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B.
1995-07-01
The pore structure of chloride-free ordinary portland cement (OPC) and sulphate resistant portland cement (SRPC) mortars are compared with the corresponding mortars with NaCl and CaCl{sub 2} added during mixing. In both OPC and SRPC mortars the addition of chlorides reduced the total accessible pore volumes compared to the corresponding chloride-free mortars. Also, in the presence of chlorides, the number of coarse pores were increased. These changes in the pore structure are believed to be due to dense calcium silicate hydrate (C-S-H) gel morphology formed in the presence of chlorides. The SRPC showed greater changes in pore structures than themore » OPC with equivalent amounts of chlorides added. This may be due to the lower chloride binding capacity of the SRPC and hence the higher availability of free chlorides to modify the gel morphology.« less
Durability of traditional plasters with respect to blast furnace slag-based plaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerulli, T.; Pistolesi, C.; Maltese, C.
2003-09-01
Blast furnace slag is a residue of steel production. It is a latent hydraulic binder and is normally used to improve the durability of concrete and mortars. Slag could be also used as rendering mortar for masonry and old buildings. Today, cement and hydraulic lime are the most popular hydraulic binders used to make plasters. They are characterised by a low durability when exposed to the action of chemical and physical agents. The aim of this study was to provide a comparison between the physical-mechanical properties of some renders made with ordinary Portland cement, hydraulic lime, or slag. Furthermore, anmore » investigation was carried out to analyse mortar resistance to several aggressive conditions like acid attack, freezing and thawing cycles, abrasion, sulphate aggression, cycles in ultraviolet screening device, and salt diffusion. The specimens, after chemical attack, have been characterised from the chemical-physical [specific surface according to the BET (Brunauer-Emmet-Teller) method], crystal-chemical (X-ray diffraction, XRD), and morphological (scanning electron microscopy, SEM) points of view.« less
Hernandez-Bautista, E.; Bentz, D. P.; Sandoval-Torres, S.; de Cano-Barrita, P. F. J.
2015-01-01
A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtained by isothermal calorimetry at 23 °C and 38 °C. Steam curing and semi-adiabatic experiments were carried out to obtain the temperature evolution and moisture profiles were assessed by magnetic resonance imaging. Three specimen geometries were simulated and the results were compared with experimental data. Comparisons of temperature had maximum residuals of 2.5 °C and 5 °C for semi-adiabatic and steam curing conditions, respectively. The model correctly predicts the evaporable water distribution obtained by magnetic resonance imaging. PMID:27022208
Command History. 1968. Volume 1. Sanitized.
1968-01-01
752 Mobility ...... ..... ..... ................................ ..... 756 Artiilery/ Mortar /Rocket/Countermeasures...I- mortar attacks. I urge that we continue to impress upon corn .,anders at all level. the need to remain offensive- minded and to move troops out...in NVN and another month after joining the NVA 95th Regiment in the Konturn- Cambodia border area in July. After firing mortars at A. hamlet near Doc
ERIC Educational Resources Information Center
Turner, Daniel James
2012-01-01
This study examines the impact that involvement in Mortar Board National Senior Honor Society has on lifelong views of civic engagement and leadership. Mortar Board Senior Honor Society is a collegiate honor society established in 1918 that recognizes students for their outstanding contributions to their college or university community in the…
Influence of viscosity modifying admixtures on the rheological behavior of cement and mortar pastes
NASA Astrophysics Data System (ADS)
Bouras, R.; Kaci, A.; Chaouche, M.
2012-03-01
The influence of Viscosity-modifying admixtures (VMA) dosage rate on the steady state rheological properties, including the yield stress, fluid consistency index and flow behaviour index, of cementitious materials is considered experimentally. The investigation is undertaken both at cement paste and mortar scales. It is found that the rheological behaviour of the material is in general dependent upon shear-rate interval considered. At sufficiently low shear-rates the materials exhibit shear-thinning. This behaviour is attributed to flow-induced defloculation of the solid particles and VMA polymer disentanglement and alignment. At relatively high shear-rates the pastes becomes shear-thickening, due to repulsive interactions among the solid particles. There is a qualitative difference between the influence of VMA dosage at cement and mortar scales: at cement scale we obtain a monotonic increase of the yield stress, while at mortar scale there exists an optimum VMA dosage for which the yield stress is a minimum. The flow behaviour index exhibit a maximum in the case of cement pastes and monotonically decreases in the case of mortars. On the other hand, the fluid consistency index presents a minimum for both cement pastes and mortars.
NASA Astrophysics Data System (ADS)
Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed
2013-12-01
When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.
NMR relaxometry study of plaster mortar with polymer additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumate, E.; Manea, D.; Moldovan, D.
2013-11-13
The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can bemore » associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.« less
Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material
NASA Astrophysics Data System (ADS)
Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad
2016-06-01
Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-02-28
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.
NASA Astrophysics Data System (ADS)
Dahlan, K.; Haryati, E.; Aninam, Y. S.
2018-03-01
This study explores the effect of fine aggregate on mortar properties and its application as a nuclear shield. This study was based on a hypothesis that the types of aggregate applied as radiation shield determined the level of its effectiveness on preventing nuclear radiation. There are two types and sources of fine aggregate that was used as main ingredients for mortar production in this research, namely iron sand and river sand. Both types of sand were derived from the respective regions of Sarmi and Jayapura, Papua. The results showed that the mortar materials that were produced with the iron sand provided better results in dispelling radiation than that of river sand. The compressive strength of fine aggregate from the iron sand was 21.62 MPa, while the compressive strength of the river sand was 16.8 MPa. Measuring the attenuation coefficient of material, we found that the largest aggregated value of mortar with fine iron sand reached 0.0863 / cm. On the other hand, the smallest HVT (Half Value Thickness) was obtained from the iron sand mortar, at 8.03 cm.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-01-01
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603
Ultrawide low frequency band gap of phononic crystal in nacreous composite material
NASA Astrophysics Data System (ADS)
Yin, J.; Huang, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.
2014-06-01
The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results.
Benchmarks for single-phase flow in fractured porous media
NASA Astrophysics Data System (ADS)
Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru
2018-01-01
This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.
NASA Astrophysics Data System (ADS)
Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd
2017-08-01
Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.
NASA Astrophysics Data System (ADS)
Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.
2011-07-01
Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.
Flight qualification of mortar-actuated parachute deployment systems
NASA Technical Reports Server (NTRS)
Pleasants, J. E.
1975-01-01
A brief discussion outlines background of mortar use in parachute deployment systems. A description of the system operation is presented. Effects of the environment on performance are discussed as well as the instrumentation needed to assess this performance. Power unit qualification and lot qualification for shear pins and cartridges is delineated. Functional mortar system tests are described. Finally, bridle deployment and parachute deployment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Pingping; Poon, Chi Sun, E-mail: cecspoon@polyu.edu.hk; Tsang, Daniel C.W.
This paper presents a study on the use of pulverized fuel ash (PFA) to improve the water resistance of magnesium oxychloride cement (MOC). Strength retention coefficients and volume stability were tested to evaluate the water resistance of MOC, in which the addition of PFA resulted in a remarkable improvement. The characterization of hydration products before and after water immersion was carried out using quantitative X-ray diffraction (QXRD), thermogravimetric (TG), Fourier-transformed infrared spectroscopy (FTIR) and scanning electron microscope (SEM). With the Q-XRD analysis, it was shown that the addition of PFA could result in the great increase of the amount ofmore » amorphous phase during air curing. This amorphous gel was identified as a mixture of magnesium-chloride-silicate-hydrate gel (M-Cl-S-H gel) and magnesium-chloride-hydrate gel (M-Cl-H gel) by elemental mapping scanning. It suggested that PFA could not only react with MOC to form M-Cl-S-H gel, but also change the morphology of magnesium oxychloride. The generation of insoluble M-Cl-S-H gel and M-Cl-H gel and densification of the microstructure contributed to the improvement of the water resistance of MOC. The MOC mortar expanded during air curing due to the hydration of excess MgO. Water immersion led to more expansion of MOC mortar as a result of the continuously hydration of excess MgO and the formation of Mg(OH){sub 2}. Adding PFA could increase the expansion of MOC mortar during air curing, which may because the amorphous gel could remain more water and benefit to the hydration of MgO. While, the addition of PFA could decrease the expansion of cement mortar during water immersion perhaps due to the reduction of the content of excess MgO and the insoluble amorphous-gel-layer that protect the MgO from hydration. Moreover, CO{sub 2} curing could further improve the performance of the PFA-blended MOC due to the formation of a higher content of amorphous gel.« less
Strengthening and repair of RC beams with sugarcane bagasse fiber reinforced cement mortar
NASA Astrophysics Data System (ADS)
Syamir Senin, Mohamad; Shahidan, Shahiron; Maarof, M. Z. Md; Syazani Leman, Alif; Zuki, S. S. Mohd; Azmi, M. A. Mohammad
2017-11-01
The use of a jacket made of fiber reinforced cement mortar with tensile hardening behaviour for strengthening RC beams was investigated in this study. A full-scale test was conducted on beams measuring 1000mm in length. A 25mm jacket was directly applied to the surface of the beams to test its ability to repair and strengthen the beams. The beams were initially damaged and eventually repaired. Three types of beams which included unrepaired beams, beams repaired with normal mortar jacket and beams repaired with 10% sugarcane bagasse fiber mortar jacket were studied. The jacket containing 10% of sugarcane bagasse fiber enhanced the flexural strength of the beams.
The influence of fine aggregates on the 3D printing performance
NASA Astrophysics Data System (ADS)
Lin, J. C.; Wu, X.; Yang, W.; Zhao, R. X.; Qiao, L. G.
2018-01-01
Influences of nature Particle, size, grain shape and fineness modulus of fine aggregates on the 3D printing performance of cement-based mortar were investigated. Results showed that the working performance of the mortar is not only dependent on the fineness of the aggregate, but also the gradation and grain size of the aggregate. And the mechanical properties of the mortar are increasing with the increase of Mx in the same test condition. The research shows that it is effective to choose different properties of materials for different design requirements, and the fluidity of mortar must be decreased under assuring construction quality and the pumpability of 3D printing materials.
Methods for elimination of dampness in Building walls
NASA Astrophysics Data System (ADS)
Campian, Cristina; Pop, Maria
2016-06-01
Dampness elimination in building walls is a very sensitive problem, with high costs. Many methods are used, as: chemical method, electro osmotic method or physical method. The RECON method is a representative and a sustainable method in Romania. Italy has the most radical method from all methods. The technology consists in cutting the brick walls, insertion of a special plastic sheeting and injection of a pre-mixed anti-shrinking mortar.
Microscopic characterisation of old mortars from the Santa Maria Church in Evora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adriano, P., E-mail: padriano@lnec.pt; Santos Silva, A., E-mail: ssilva@lnec.pt; Veiga, R., E-mail: rveiga@lnec.pt
2009-07-15
Evora Cathedral (one of the most emblematic monuments of Evora - Portugal) has suffered several conservation and restoration interventions through the ages, without, however, any type of previous knowledge about mortars and materials used. This work was carried out in order to identify the mortar's composition in different locations, which were attributed to different construction or conservation periods. The characterisation methodology involved a multidisciplinary set of chemical, physical, microstructural and mechanical techniques, and gave special attention to the use of microstructural characterisation techniques, particularly petrographical analysis and scanning electron microscopy for the identification of the mortar's constituents as well asmore » in the evaluation of the state of conservation. The test results showed that two types of aerial binders were used, dolomitic and calcitic limes, the former being predominant. The aggregates used have a siliceous nature and are similar in composition to the granodiorites of the region around Evora. The mortars differ in the aggregate contents and, in some cases, crushed bricks were used as an additive.« less
Self-leveling mortar as a possible cause of symptoms associated with "sick building syndrome".
Lundholm, M; Lavrell, G; Mathiasson, L
1990-01-01
In newly constructed houses and buildings in which self-leveling mortar containing casein has been used, residents and office employees have noted a bad odor and have complained of headache, eye and throat irritation, and tiredness. These problems were suspected to result from the degradation products emitted from the mortar. Samples obtained from dry mortar powder and from mortar in buildings where casein was used and from control buildings were found to contain microorganisms (mean of 10(2) culture forming units/g). Environmental species were predominantly found, e.g., Bacillus, Clostridium, Micrococcus, and Propionibacterium. Fungi were found occasionally; no evidence of bacterial degradation was found. Headspace and gas chromatographic-mass spectrometric analysis of air from the newly constructed houses and from hydroxide-degraded casein revealed the presence of amines in the 0.003-0.013 ppm range and the presence of ammonia and sulfhydryl compounds, all of which in low concentrations can cause the symptoms observed. These substances, however, were not detected in control buildings.
Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cwirzen, A.; Penttala, V.; Vornanen, C.
2008-10-15
The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durabilitymore » of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete.« less
Sweetening Android Lemon Markets: Measuring and Curbing Malware in Application Marketplaces
2012-06-08
the main software distribution mechanism for modern mobile devices but are also emerging as a viable alternative to brick -and- mortar stores for...mechanism for modern mobile devices but are also emerging as a viable alternative to brick -and- mortar stores for personal computers. While most...through the Apple App Store , thereby entirely forgoing the traditional distribution channel – packaged opti- cal media sold in brick -and- mortar
Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón
2016-12-21
The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.
Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón
2016-01-01
The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications. PMID:28774151
Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu
2016-01-01
In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength. PMID:28773854
Use of rubble from building demolition in mortars.
Corinaldesi, V; Giuggiolini, M; Moriconi, G
2002-01-01
Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.
Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu
2016-08-27
In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na⁺ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.
Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan
2017-06-11
In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions.
Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan
2017-01-01
In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions. PMID:28772999
Fracture surfaces of granular pastes.
Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H
2013-11-01
Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.
Desert rose: building material of cupolas in the Souf in Algeria
NASA Astrophysics Data System (ADS)
Azil, C.; Djebri, B.; Rovero, L.
2018-05-01
In the Souf of Algeria, the roofs of all constructions are arranged like corbelled domes, built with local particular material to this region, which is the desert rose. These cupolas describe a unique landscape of historic centres. Such constructions include a widespread and precious heritage that deserves protection to save this urban landscape which constitutes an element of identity of heritage built upon the material as well as the immaterial of the local know-how. Unfortunately, these architectural elements have undergone alterations that devalue the urban landscape and destabilize the buildings. However, the structural system that provides stability and endurance to this day remains an open question. In this, paper, we describe the role of desert rose cupolas in the construction of a single urban landscape and we contribute to this knowledge. Then, we explain the role of the availability of the materials locals (desert rose and tafza) to appearance ad emergence of construction with cupolas typology. In addition, we describe these materials locals, and the method to them usage. In the end, we have traced the process of construction of these cupolas by corbelling which is mounted by successive courses of the desert rose and the plaster mortar.
1982-02-01
11-17 TACTICAL PROGRAMS 2.37.24.A HEAVY ANTITAIg/ASSAULT WEAPON SYSTEM (TOW...AIRBORNE,4) DIO SYSTEM (SINCGARS)................................ 11-328 6.37.47.A SOLDIER SUPPORT/SURVIVABILITY...enhanced illumination over the current 81mm mortar. The current smoke cartridges for the 81mm mortar and 4.2" battalion heavy mortar, in use since the
Ghosh, P; Mandal, S; Pal, S; Bandyopadhyaya, G; Chattopadhyay, B D
2006-04-01
In the biosphere, bacteria can function as geo-chemical agents, promoting the dispersion, fractionation and/or concentration of materials. Microbial mineral precipitation is resulted from metabolic activities of microorganisms. Based on this biomineralogy concept, an attempt has been made to develop bioconcrete material incorporating of an enrichment culture of thermophilic and anaerobic bacteria within cement-sand mortar/concrete. The results showed a significant increase in compressive strength of both cement-sand mortar and concrete due to the development of filler material within the pores of cement sand matrix. Maximum strength was observed at concentration 10(5)cell/ml of water used in mortar/concrete. Addition of Escherichia coil or media composition on mortar showed no such improvement in strength.
Stress-Strain Behavior of Cementitious Materials with Different Sizes
Zhou, Jikai; Qian, Pingping; Chen, Xudong
2014-01-01
The size dependence of flexural properties of cement mortar and concrete beams is investigated. Bazant's size effect law and modified size effect law by Kim and Eo give a very good fit to the flexural strength of both cement mortar and concrete. As observed in the test results, a strong size effect in flexural strength is found in cement mortar than in concrete. A modification has been suggested to Li's equation for describing the stress-strain curve of cement mortar and concrete by incorporating two different correction factors, the factors contained in the modified equation being established empirically as a function of specimen size. A comparison of the predictions of this equation with test data generated in this study shows good agreement. PMID:24744688
Influence of pore structure on compressive strength of cement mortar.
Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.
Influence of Pore Structure on Compressive Strength of Cement Mortar
Zhao, Haitao; Xiao, Qi; Huang, Donghui
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414
Metabolomic analysis using porcine skin: a pilot study of analytical techniques.
Wu, Julie; Fiehn, Oliver; Armstrong, April W
2014-06-15
Metabolic byproducts serve as indicators of the chemical processes and can provide valuable information on pathogenesis by measuring the amplified output. Standardized techniques for metabolome extraction of skin samples serve as a critical foundation to this field but have not been developed. We sought to determine the optimal cell lysage techniques for skin sample preparation and to compare GC-TOF-MS and UHPLC-QTOF-MS for metabolomic analysis. Using porcine skin samples, we pulverized the skin via various combinations of mechanical techniques for cell lysage. After extraction, the samples were subjected to GC-TOF-MS and/or UHPLC-QTOF-MS. Signal intensities from GC-TOF-MS analysis showed that ultrasonication (2.7x107) was most effective for cell lysage when compared to mortar-and-pestle (2.6x107), ball mill followed by ultrasonication (1.6x107), mortar-and-pestle followed by ultrasonication (1.4x107), and homogenization (trial 1: 8.4x106; trial 2: 1.6x107). Due to the similar signal intensities, ultrasonication and mortar-and-pestle were applied to additional samples and subjected to GC-TOF-MS and UHPLC-QTOF-MS. Ultrasonication yielded greater signal intensities than mortar-and-pestle for 92% of detected metabolites following GC-TOF-MS and for 68% of detected metabolites following UHPLC-QTOF-MS. Overall, ultrasonication is the preferred method for efficient cell lysage of skin tissue for both metabolomic platforms. With standardized sample preparation, metabolomic analysis of skin can serve as a powerful tool in elucidating underlying biological processes in dermatological conditions.
Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klyusov, A.A.
1988-08-20
Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution
Esmaeeli, Hadi S.; Farnam, Yaghoob; Bentz, Dale P.; Zavattieri, Pablo D.; Weiss, Jason
2016-01-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to −35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained. PMID:28082830
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.
Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason
2017-02-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.
NASA Astrophysics Data System (ADS)
Debska, Bernardeta; Licholai, Lech
2017-12-01
The results of the article are part of an extensive research on new building materials including cement-free polymer composites where the binder is epoxy resin modified with glycolyzates obtained from poly (ethylene terephthalate) waste (PET). The investigation conducted con-firmed that there is a possibility of using waste materials in the production of mortar. Since they have always been an environmental problem, their utilization will help to apply the principles of sustainable development in the processes of obtaining new materials. The article discusses the results of a study of flexural strength of polymer mortars. Mortar specimens modified with propylene glycol and PET waste based glycolyzate were exposed to a 10% NaCl solution and their strength parameters were then examined after one month, six months and twelve months of immersion in this aggressive medium. The same characteristics were also determined for specimens that were not exposed to the NaCl solution. The results were presented as the trend function. The sections of the curve corresponding to the particular periods of exposure in aggressive medium vary in shape. Due to this, an attempt was made to adjust the spline function to the experimental data. The composites obtained show a deterioration in their strength properties which grows with the extension of their exposure to a corrosive medium. However, the chemical corrosion resistance of the mortars under investigation can be considered very good as it is still much higher than that of conventional cement mortars. Even after a year exposure to a corrosive substance, the mortars obtained still show high mean flexural strength values which equal about 30 MPa.
Stealing the Sword: Limiting Terrorist Use of Advanced Conventional Weapons
2007-01-01
ammunition, are combined (see Figure 2.9 for a handgun concept that features four barrels , two with lethal and two with nonlethal ammunition). Other...Weapons Figure 2.9 A Four- Barreled Concept Handgun Mortar Systems Mortars have long been regarded as cheap, lightweight, short-range artillery. Mortars are...Terrorists? 37 manner).63 An example of an advance in lightweight materials for mor- tars is the development of the carbon fiber composite barrel in the
Application of natural seaweed modified mortar for sustainable concrete production
NASA Astrophysics Data System (ADS)
Siddique, M. N. I.; Zularisam, A. W.
2018-04-01
The effect of seaweed such as Eucheuma Cottonii (gel) and Gracilaria Sp. modified mortar on the properties of sustainable concrete was investigated. Pre-experiment and main-experiment was conducted to carry out this study. Pre-experiment was conducted to study the compressive strength of the sustainable concrete. The main-experiment studied the compressive and splitting strength. Results showed that seaweed modified mortar yielded satisfactory compressive and splitting strength of 30 MPa and 5 MPa at 28 days.
NASA Astrophysics Data System (ADS)
Lima, Nathan B.; Rogerio, V. A.; Belarmino, Marcia K. D. L.; Silva, Anderson I. S.; Ioras, Renan U. F.; Oliveira, Romilde A.; Lima, Nathalia B. D.
2018-07-01
A chemical rationalization of the processing and application of the roughcast and plaster mortar coatings was advanced. The results revealed that the structural and thermodynamic nature of the hydrogen-bonded complexes between the inorganic precursors and water molecules are associated with the physical properties of both coatings. In this sense, the workability and curing time of the roughcast and the plaster mortars studied, seemingly, are related to the nature of the water solvation in the main components of these materials: calcium hydroxide and silicon dioxide. In addition, PM7 and PM7/COSMO results indicate that the enthalpy of solvation of water by hydrogen bonds in calcium hydroxide is stronger when compared with silicon dioxide systems. Therefore, the presence of free hydrated lime (calcium hydroxide) in the precursor mixture of plaster mortar leads to the large workability and elapsed curing time of this material. On the other hand, the absence of free hydrated lime in the precursor mixture of the roughcast mortar leads to its poor workability and faster elapsed curing time. Further, fluorescence microscopy experiments revealed that the inorganic compounds present in the cement precursor were transformed into different materials, that exhibit red and blue fluorescence. Finally, mechanical tests showed a tensile strength average 0.67 MPa for the plaster mortar material, whereas for the roughcast material is 0.53 MPa.
Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Moral, Sergio; Luque, Luis; Canaveras, Juan-Carlos
Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO{sub 2} content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO{sub 2} concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thickermore » beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds.« less
On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement
Karim, Md. Rezaul; Hossain, Md. Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan
2014-01-01
Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement. PMID:28788277
Abdul-Majid, S; Othman, F
1994-03-01
Polyethylene and polyvinyl chloride pellets were introduced into concrete to improve its neutron attenuation characteristics while several types of heavy coarse aggregates were used to improve its gamma ray attenuation properties. Neutron and gamma ray attenuation were studied in concrete samples containing coarse aggregates of barite, pyrite, basalt, hematite, and marble as well as polyethylene and polyvinyl chloride pellets in narrow-beam geometry. The highest neutron attenuation was shown by polyethylene mortar, followed by polyvinyl chloride mortar; barite and pyrite concrete showed higher gamma ray attenuation than ordinary concrete. Broad-beam and continuous (infinite) medium geometries were used to study the neutron attenuation of samples containing polymers at different concentrations with and without heavy aggregates, the fitting equations were established, and from these the neutron removal coefficients were deduced. In a radiation field of neutrons and gamma rays, the appropriate concentration of polymer and heavy aggregate can be selected to give the optimum total dose attenuation depending on the relative intensities of each type of radiation. This would give much better design flexibility over ordinary concrete. The compressive strength tests performed on mortar and concrete samples showed that their value, in general, decreases as polymer concentration increases and that the polyvinyl chloride mortar showed higher values than the polyethylene mortar. For general construction purposes, the compression strength was considered acceptable in these samples.
On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement.
Karim, Md Rezaul; Hossain, Md Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan
2014-12-05
Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.
Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua
2017-11-10
As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.
Formulation and characterization of date palm fibers mortar by addition of silica fume
NASA Astrophysics Data System (ADS)
Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.
2018-05-01
This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.
NASA Astrophysics Data System (ADS)
Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng
2017-04-01
Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.
Pino, F; Fermo, P; La Russa, M; Ruffolo, S; Comite, V; Baghdachi, J; Pecchioni, E; Fratini, F; Cappelletti, G
2017-05-01
In the present work, two kinds of hybrid polymeric-inorganic coatings containing TiO 2 or SiO 2 particles and prepared starting from two commercial resins (Alpha®SI30 and Bluesil®BP9710) were developed and applied to two kinds of mortars (an air-hardening calcic lime mortar [ALM] and a natural hydraulic lime mortar [HLM]) to achieve better performances in terms of water repellence and consequently damage resistance. The two pure commercial resins were also applied for comparison purposes. Properties of the coated materials and their performance were studied using different techniques such as contact angle measurements, capillary absorption test, mercury intrusion porosimetry, surface free energy, colorimetric measurements and water vapour permeability tests. Tests were also performed to determine the weathering effects on both the commercial and the hybrid coatings in order to study their durability. Thus, exposures to UV radiation, to UV radiation/condensed water cycles and to a real polluted atmospheric environment have been performed. The effectiveness of the hybrid SiO 2 based coating was demonstrated, especially in the case of the HLM mortar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Myoung-Youl; Lee, Jae-Yong; Chung, Chul-Woo
2012-01-12
In this research, the possible applicability of fine aggregates blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to bemore » an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.« less
NASA Astrophysics Data System (ADS)
Himabindu, Ch.; Geethasri, Ch.; Hari, N.
2018-05-01
Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.
Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza
2003-04-01
A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.
Stability Analysis of a mortar cover ejected at various Mach numbers and angles of attack
NASA Astrophysics Data System (ADS)
Schwab, Jane; Carnasciali, Maria-Isabel; Andrejczyk, Joe; Kandis, Mike
2011-11-01
This study utilized CFD software to predict the aerodynamic coefficient of a wedge-shaped mortar cover which is ejected from a spacecraft upon deployment of its Parachute Recovery System (PRS). Concern over recontact or collision between the mortar cover and spacecraft served as the impetus for this study in which drag and moment coefficients were determined at Mach numbers from 0.3 to 1.6 at 30-degree increments. These CFD predictions were then used as inputs to a two-dimensional, multi-body, three-DoF trajectory model to calculate the relative motion of the mortar cover and spacecraft. Based upon those simulations, the study concluded a minimal/zero risk of collision with either the spacecraft or PRS. Sponsored by Pioneer Aerospace.
Verification of chloride adsorption effect of mortar with salt adsorbent
NASA Astrophysics Data System (ADS)
Hoshina, T.; Nakajima, N.; Sudo, H.; Date, S.
2017-11-01
In order to investigate the chloride adsorption effect of mortar mixed with chloride adsorbent, electrophoresis test using mortar specimen and immersion dry repeated test were conducted to evaluate chloride adsorption effect. As a result, it was confirmed that soluble salt content that causes corrosion of rebar in the specimen was reduced by the chloride adsorbent and corrosion inhibiting effect of the rebar was also obtained. It was also confirmed that by increasing dosage of the chloride adsorbent, the chloride adsorbing effect becomes larger as well..
Asphalt, Fleets, Bricks, and Mortar.
ERIC Educational Resources Information Center
Green, Tim; Williamson, Margie E.; Endris, William L., Jr.
2000-01-01
The new reporting model propounded in Governmental Accounting Board Statement No. 34 dictates that consumption of capital assets be reported through a charge in the governmentwide statement of activities for depreciation expense. The present method of "rolling forward" capital asset amounts will not suffice. (MLH)
VIEW OF MORTARED ROCK AND CONCRETE INLET TO COUCH LATERAL ...
VIEW OF MORTARED ROCK AND CONCRETE INLET TO COUCH LATERAL CANAL, UPSTREAM OF COLLINS ROAD. LOOKING NORTH/NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR
63. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), INTERIOR, ...
63. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), INTERIOR, LOOKING SOUTHEAST DOWN SCREENED WALKWAY ON NORTHWEST SIDE. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ
NASA Astrophysics Data System (ADS)
Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam
2015-09-01
The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.
NASA Astrophysics Data System (ADS)
Morillas, Héctor; Maguregui, Maite; Trebolazabala, Josu; Madariaga, Juan Manuel
2015-02-01
Bricks and mortar currently constitute one of the most important building materials used in the construction of most modern facades. The deterioration of these materials is caused primarily by the impact of numerous external stressors, while poor manufacturing quality, particularly of mortars, can also contribute to this process. In this work, the non-invasive Raman spectroscopy technique was used to identify the recently formed deterioration compounds (primarily sulfates and nitrates) in bricks, artificial stones, and joint mortars from detached houses in the Bilbao metropolitan area (Basque Country, North of Spain), as well as to investigate the deterioration processes taking place in these materials. Additionally, to confirm and in some cases complement the results obtained with Raman spectroscopy, SEM-EDS and XRD measurements were also carried out.
The dynamic behavior of mortar under impact-loading
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner
2007-06-01
Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.
Study on the ratio and properties of the slurry of light insulation masonry with volcanic slag
NASA Astrophysics Data System (ADS)
Liguang, Xiao; Dawei, Jiang
2017-12-01
Volcanic slag is a kind of natural high quality porous material, and it has a good thermal insulation effect, and it is an extremely rich natural resource. Therefore, this paper adopts the natural volcanic slag as the aggregate to build the insulation mortar mix design for the slag masonry, and tests the related performance of the mortar. The results show that adopts natural volcanic slag as the aggregate and the cement use fly ash to replace, and the appropriate uniform sealing pores were introduced into the mortar mix. The performance of the manufactured products can meet the requirements of JC/T890. The coefficient of thermal conductivity of lightweight masonry mortar is less than 0.14W/(m•K), and the frost resistance is greater than 100 times, and it is with a low price.
Durability of concrete materials in high-magnesium brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakeley, L.D.; Poole, T.S.; Burkes, J.P.
1994-03-01
Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence ofmore » salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.« less
NASA Astrophysics Data System (ADS)
Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura
2018-04-01
This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar
Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Ervin, Benjamin Lee
This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water surrounding, and mortar surrounding were also investigated using guided mechanical waves. Results are presented and discussed within the framework of a corrosion process degradation model and service life. A thorough review and discussion of the corrosion process, modeling the propagation of corrosion, nondestructive methods for monitoring corrosion in reinforced concrete, and guided mechanical waves have also been presented.
Román, Belén; González-Verdejo, Clara I; Peña, Francisco; Nadal, Salvador; Gómez, Pedro
2012-01-01
Quality and integrity of RNA are critical for transcription studies in plant molecular biology. In squash fruit and other high water content crops, the grinding of tissue with mortar and pestle in liquid nitrogen fails to produce a homogeneous and fine powered sample desirable to ensure a good penetration of the extraction reagent. To develop an improved pulverisation method to facilitate the homogenisation process of squash fruit tissue prior to RNA extraction without reducing quality and yield of the extracted RNA. Three methods of pulverisation, each followed by the same extraction protocol, were compared. The first approach consisted of the lyophilisation of the sample in order to remove the excess of water before grinding, the second one used a cryogenic mill and the control one a mortar grinding of frozen tissue. The quality of the isolated RNA was tested by carrying out a quantitative real time downstream amplification. In the three situations considered, mean values for A(260) /A(280) indicated minimal interference by proteins and RNA quality indicator (RQI) values were considered appropriate for quantitative real-time polymerase chain reaction (qRT-PCR) amplification. Successful qRT-PCR amplifications were obtained with cDNA isolated with the three protocols. Both apparatus can improve and facilitate the grinding step in the RNA extraction process in zucchini, resulting in isolated RNA of high quality and integrity as revealed by qRT-PCR downstream application. This is apparently the first time that a cryogenic mill has been used to prepare fruit samples for RNA extraction, thereby improving the sampling strategy because the fine powder obtained represents a homogeneous mix of the organ tissue. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
García-Florentino, Cristina; Maguregui, Maite; Marguí, Eva; Torrent, Laura; Queralt, Ignasi; Madariaga, Juan Manuel
2018-05-01
In this work, a Total Reflection X-ray fluorescence (TXRF) spectrometry based quantitative methodology for elemental characterization of liquid extracts and solids belonging to old building materials and their degradation products from a building of the beginning of 20th century with a high historic cultural value in Getxo, (Basque Country, North of Spain) is proposed. This quantification strategy can be considered a faster methodology comparing to traditional Energy or Wavelength Dispersive X-ray fluorescence (ED-XRF and WD-XRF) spectrometry based methodologies or other techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In particular, two kinds of liquid extracts were analysed: (i) water soluble extracts from different mortars and (ii) acid extracts from mortars, black crusts, and calcium carbonate formations. In order to try to avoid the acid extraction step of the materials and their degradation products, it was also studied the TXRF direct measurement of the powdered solid suspensions in water. With this aim, different parameters such as the deposition volume and the measuring time were studied for each kind of samples. Depending on the quantified element, the limits of detection achieved with the TXRF quantitative methodologies for liquid extracts and solids were set around 0.01-1.2 and 2-200 mg/L respectively. The quantification of K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Sn and Pb in the liquid extracts was proved to be a faster alternative to other more classic quantification techniques (i.e. ICP-MS), accurate enough to obtain information about the composition of the acidic soluble part of the materials and their degradation products. Regarding the solid samples measured as suspensions, it was quite difficult to obtain stable and repetitive suspensions affecting in this way the accuracy of the results. To cope with this problem, correction factors based on the quantitative results obtained using ED-XRF were calculated to improve the accuracy of the TXRF results.
Comparison of Glass Powder and Fly Ash Effect on the Fresh Properties of Self-Compacting Mortars
NASA Astrophysics Data System (ADS)
Öznur Öz, Hatice; Erhan Yücel, Hasan; Güneş, Muhammet
2017-10-01
This study is aimed to determine effects of glass powder on fresh properties of self-compacting mortars. Self-compacting mortars incorporating glass powder (SCMGPs) were designed with a water/binder ratio of 0.40 and a total binder content of 550 kg/m3. At first, the control mixture was produced with 20% fly ash and % 80 cement of the total binder content without using the glass powder. Then, glass powder was used in the proportions 5%, 10%, 15% and 20% instead of fly ash in the mortars. Mini-slump flow and mini-v funnel tests experimentally investigated on SCMGPs to compare the effect of fly ash and glass powder. With increasing the amount of glass powder used in SCMGPs increased the amount of superplasticizer used to obtain the desired mini-slump flow diameter. So, the use of glass powder reduced the flow ability of SCMGPs in comparison to fly ash. Additionally, the compressive strength and flexural strength of the mortar mixtures were determined at the 28th day. The test results indicated that the mechanical characteristics of SCMGPs improved when the fly ash was replaced with glass powder in SCMGPs.
Low Carbon Footprint mortar from Pozzolanic Waste Material
NASA Astrophysics Data System (ADS)
Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra
2017-04-01
Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.
NASA Astrophysics Data System (ADS)
Zaidan, Shihab A.; Omar, Mustafa H.
2018-05-01
One of the most important requirements for the manufacture of refractory mortars, especially those used in the construction of thermal systems (building or plastering), is the balance between thermal insulation properties and porosity. Where, increasing porosity of mortar to a large amount may be always undesirable, because the absorption of liquid and gases emitted from industrial system is decline the bonded with bricks and structural properties of mortars. Refractory mortars prepared from either fired bauxite or metakaolin clays with different percentages of kaolin (10, 20, 30, and 40 wt%). Bauxite rocks were fired at 1200 °C and metakaolin was obtained by firing kaolin up to 700 °C then crushed and grinded. Grog was added to mixture to reduce the shrinkage. Cylindrical specimens are prepared and then sintered at 1200 °C. All mixtures maintained a low thermal conductivity within the limits of thermal insulation material (less than 0.5 W/m K); it was done by controlling the porosity which reached a maximum value approximately 25%. The volumetric heat capacity and thermal diffusivity was ranged between (1-10 MJ/m3 K), (0.06-0.2 mm2/s), respectively.
NASA Astrophysics Data System (ADS)
Pelto, Jani; Leivo, Markku; Gruyaert, Elke; Debbaut, Brenda; Snoeck, Didier; De Belie, Nele
2017-10-01
Superabsorbent polymers have shown potential for use in mortar and concrete as self-healing agents. The main drawback is, however, that these superabsorbent polymers also absorb mixing water during the preparation and casting of mortar or concrete, leading to a loss in workability. To avoid the absorption of mixing water, superabsorbent polymers were coated using a fluid bed spraying process. The barrier coating consisted of three successive coating layers: polyvinylbutyral as primer/wetting layer, cyclo-olefin copolymer as a barrier layer and a sol-gel derived zirconium-silicon oxide as an adhesion-promoting topcoat layer. The coated SAPs were characterized, and their swelling determined to quantify the delay in uptake of water and Ca(OH)2 solution. The last was considered as the most important, as the SAPs will finally be applied in mortar or concrete having a pore solution with high pH. The results showed that swelling could be delayed to a large extent, but for a short time. Results showed that the self-sealing efficiency of mortars was not affected by coating the SAPs. Moreover, due to the reduced uptake of mixing water, the strength reduction, noticed when uncoated SAPs were added to the mortar, could partly be compensated.
Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa
2016-01-01
The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823
PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY
NASA Astrophysics Data System (ADS)
Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya
The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.
Compressive and bonding strength of fly ash based geopolymer mortar
NASA Astrophysics Data System (ADS)
Zailani, Warid Wazien Ahmad; Abdullah, Mohd Mustafa Al Bakri; Zainol, Mohd Remy Rozainy Mohd Arif; Razak, Rafiza Abd.; Tahir, Muhammad Faheem Mohd
2017-09-01
Geopolymer which is produced by synthesizing aluminosilicate source materials with an alkaline activator solution promotes sustainable and excellent properties of binder. The purpose of this paper is to determine the optimum binder to sand ratio of geopolymer mortars based on mechanical properties. In order to optimize the formulation of geopolymer mortar, various binder to sand ratios (0.25, 0.33, 0.5, 1.0, 2.0, 3.0, and 4.0) are prepared. The investigation on the effect of sand inclusion to the compressive and bonding strength of geopolymer mortar is approached. The experimental results show that the bonding strength performance of geopolymer is also depends on the various binder to sand ratio, where the optimum ratio 0.5 gives a highest strength of 12.73 MPa followed by 12.35 MPa, which corresponds the ratio 1.0 for geopolymer, while the compared value of OPC bonding strength is given by 9.3 MPa. The morphological structure at the interface zone is determined by Scanning Electron Microscope (SEM) and the homogenous bonding between geopolymer and substrate can be observed. Fly ash based geopolymers reveal a new category of mortar which has high potential to be used in the field of concrete repair and rehabilitation.
Modeling Heat and Moisture Transport in Steam-Cured Mortar: Application to Aashto Type Vi Beams.
Hernández-Bautista, E; Sandoval-Torres, S; de J Cano-Barrita, P F; Bentz, D P
2017-10-01
During steam curing of concrete, temperature and moisture gradients are developed, which are difficult to measure experimentally and can adversely affect the durability of concrete. In this research, a model of cement hydration coupled to moisture and heat transport was used to simulate the process of steam curing of mortars with water-to-cement ( w/c ) ratios by mass of 0.30 and 0.45, considering natural convection boundary conditions in mortar and concrete specimens of AASHTO Type VI beams. The primary variables of the model were moisture content, temperature, and degree of hydration. Moisture content profiles of mortar specimens (40 mm in diameter and 50 mm in height) were measured by magnetic resonance imaging. The degree of hydration was obtained by mass-based measurements of loss on ignition to 1000 °C. The results indicate that the model correctly simulates the moisture distribution and degree of hydration in mortar specimens. Application of the model to the steam curing of an AASHTO Type VI beam indicates temperature differences (between the surface and the center) higher than 20 °C during the cooling stage, and internal temperatures higher than 70 °C that may compromise the durability of the concrete.
Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa
2016-08-18
The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.
VIEW OF MORTARED ROCK FOOTING THAT ONCE SUPPORTED THE TWIN ...
VIEW OF MORTARED ROCK FOOTING THAT ONCE SUPPORTED THE TWIN FLUME'S OUTLET TO TUMALO FEED CANAL, WITH BRIDGE. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR
9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL ...
9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL POST ON UPSTREAM PARAPET WALL OF UPPER EMBANKMENT. VIEW TO SOUTH. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID
8. VIEW TO NORTH OF INTERIOR OF STAMPMILLING LEVEL; MORTAR ...
8. VIEW TO NORTH OF INTERIOR OF STAMPMILLING LEVEL; MORTAR MOUNT FOR MILL IS IMMEDIATELY BELOW AND TO LEFT OF ORE-HOPPER (UPPER-CENTER). - Steamboat Stampmill, Brush Creek Canyon, Jacksonville, Jackson County, OR
NASA Astrophysics Data System (ADS)
Morales Hernandez, Maria B.
The review of municipal solid waste (MSW) management scheme has indicated that the amount of MSW sent to incineration plants will increase in the UK in coming years. Therefore, the amount of municipal solid waste incineration (MSWI) residues generated will increase significantly. MSWI residues are divided into MSWI fly ash (MSWI-FA) and MSWI bottom ash (MSWI-BA). MSWI-FA is classified as hazardous residue thereby requires special treatment before disposal. MSWI-BA is mostly disposed in landfill sites. MSWI-BA fraction with particle size diameter below approximately 2mm has low engineering properties and may have an adverse effect on the environment due to its high porosity, solubility and leachability of possible toxic compounds. This research programme has investigated new potential uses and leaching behaviour of mortar containing MSWI-BA with particle size diameters below 2.36mm. Fraction of MSWI-BA with particle size diameters (φ) below 2.36 mm (φ <2.36) was divided into different sub-fractions to evaluate their influence on compressive strength of concrete when used as partial replacement of cement or sand. MSWI-BA fraction with φ <212mum (fine fraction) and 212mum < φ2.36mm (coarse fraction) used as partial replacement of cement and sand respectively, showed higher compressive strength compared with the other fractions examined. In addition, replacing sand with the coarse fraction of MSWI-BA exhibited similar or higher strength than the reference mix. Examination of physical and chemical properties of the fine and coarse fractions of MSWI-BA unbound indicated that both fractions had potential to be used as replacement of cement or sand. However, the evaluation of their leaching behaviour suggested that they should be bound in cement-based systems to avoid leaching of potential toxic elements. Evaluation of physical, mechanical and sulfate resistance properties of mortars containing 15% of the fine fraction of MSWI-BA as a partial replacement of cement and 50% of the coarse fraction as partial replacement of sand indicated potential uses in concrete production. In addition, the leachability of mortar specimens containing 15% and 50% of MSWI-BA as partial replacement of cement and sand respectively was significantly reduced when compared to unbound MSWI-BA fractions.
Study on basalt fiber parameters affecting fiber-reinforced mortar
NASA Astrophysics Data System (ADS)
Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.
2015-01-01
This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.
1997-12-31
The rutile form of titanium dioxide and granules of high density polyethylene (PEHD) and low density polyethylene (PELD) were used to prepare mortar matrices for immobilization of radioactive waste materials containing {sup 137}Cs. PELD, PEHD and TiO{sub 2} were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide. One type of PELD and two types of PEHD were used to replace 50 wt.% of stone granules normally used in the matrix, in order to decrease the porosity and density of the mortar matrix andmore » to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. TiO{sub 2} was also added to the mortar formulation, replacing 5 and 8 wt.% of the total cement weight. Cured samples were investigated under temperature stress conditions, where the temperature extremes were: T{sub min} = {minus}20 C, T{sub max} = +70 C. Samples were periodically immersed in distilled water at the ambient room temperature, after each freezing and heating treatment. Results of accelerated leaching experiments for these samples and samples prepared exclusively with polyethylenes replacing 100% of the stone granules and TiO{sub 2}, treated in nonaccelerated leaching experiments, were compared. Even using an accelerated ageing leach test that overestimates {sup 137}Cs leach rates, it can be deduced, that radionuclide leach rates from the radioactive waste mortar mixture forms were improved. Leach rates decreased from 5%, for the material prepared with stone aggregate, to 3.1 to 4.0%, for the materials prepared solely with PEHD, PELD or TiO{sub 2}, and to about 3% for all six types of the TiO{sub 2}-PEHD and TiO{sub 2}-PELD mixtures tested.« less
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Durability of Waste Glass Flax Fiber Reinforced Mortar
NASA Astrophysics Data System (ADS)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.
2011-01-01
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.
Effect of various superplasticizers on rheological properties of cement paste and mortars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, I.; Agarwal, S.K.
The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cementmore » paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.« less
Morillas, Héctor; Maguregui, Maite; Trebolazabala, Josu; Madariaga, Juan Manuel
2015-02-05
Bricks and mortar currently constitute one of the most important building materials used in the construction of most modern facades. The deterioration of these materials is caused primarily by the impact of numerous external stressors, while poor manufacturing quality, particularly of mortars, can also contribute to this process. In this work, the non-invasive Raman spectroscopy technique was used to identify the recently formed deterioration compounds (primarily sulfates and nitrates) in bricks, artificial stones, and joint mortars from detached houses in the Bilbao metropolitan area (Basque Country, North of Spain), as well as to investigate the deterioration processes taking place in these materials. Additionally, to confirm and in some cases complement the results obtained with Raman spectroscopy, SEM-EDS and XRD measurements were also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar
NASA Astrophysics Data System (ADS)
Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar
Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.
Characterization of Incorporation the Glass Waste in Adhesive Mortar
NASA Astrophysics Data System (ADS)
Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.
Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.
Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures
NASA Astrophysics Data System (ADS)
Kara, P.; Csetényi, L. J.; Borosnyói, A.
2016-04-01
In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.
NASA Astrophysics Data System (ADS)
Bilgen, Nejat; Olgun, Asim
This paper focuses on the spectroscopic and thermal analysis of the archaeological samples of mortar and plaster from middle Bronze Age and Achaemenid period in Seyitömer Höyük. The composition of the samples was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric thermal analysis (TG-DTA). The results showed that human used different types of raw materials in the preperation of the mortar and plaster in the Middle Bronze Age and Achaemenid period. The material used in middle Bronze Age contains muscovite whereas the material in Achaemenid period contains albite. Although, the chemical composition of the mortar and plaster used in the period were similar, the calcium content of the plaster is relatively higher than the one of the mortar indicating people's awareness of the binding properties of calcite.
NASA Astrophysics Data System (ADS)
Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.
2008-03-01
High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.
Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars
Colangelo, Francesco; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Cioffi, Raffaele
2013-01-01
The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight) and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too. PMID:28811418
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
NASA Astrophysics Data System (ADS)
Wedekind, Wanja; Protz, Andreas
2016-04-01
The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.
The potential use of silica sand as nanomaterials for mortar
NASA Astrophysics Data System (ADS)
Setiati, N. Retno
2017-11-01
The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.
Sandvall, Brinkley K; Jacobson, Lauren; Miller, Erin A; Dodge, Ryan E; Alex Quistberg, D; Rowhani-Rahbar, Ali; Vavilala, Monica S; Friedrich, Jeffrey B; Keys, Kari A
2017-10-01
There is a paucity of clinical data on severe fireworks-related injuries, and the relationship between firework types, injury patterns, and magnitude of impairment is not well understood. Our objective was to describe the relationship between fireworks type, injury patterns, and impairment. Retrospective case series (2005-2015) of patients who sustained consumer fireworks-related injuries requiring hospital admission and/or an operation at a Level 1 Trauma/Burn Center. Fireworks types, injury patterns (body region, injury type), operation, and permanent impairment were examined. Data from 294 patients 1 to 61years of age (mean 24years) were examined. The majority (90%) were male. 119 (40%) patients were admitted who did not undergo surgery, 163 (55%) patients required both admission and surgery, and 12 (5%) patients underwent outpatient surgery. The greatest proportion of injuries was related to shells/mortars (39%). There were proportionally more rocket injuries in children (44%), more homemade firework injuries in teens (34%), and more shell/mortar injuries in adults (86%). Brain, face, and hand injuries were disproportionately represented in the shells/mortars group. Seventy percent of globe-injured patients experienced partial or complete permanent vision loss. Thirty-seven percent of hand-injured patients required at least one partial or whole finger/hand amputation. The greatest proportion of eye and hand injuries resulting in permanent impairment was in the shells/mortars group, followed by homemade fireworks. Two patients died. Severe fireworks-related injuries from homemade fireworks and shells/mortars have specific injury patterns. Shells/mortars disproportionately cause permanent impairment from eye and hand injury. Published by Elsevier Inc.
The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.
Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan
2017-05-24
Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.
The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis
Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan
2017-01-01
Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4–8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling. PMID:28772935
Application of biochar from food and wood waste as green admixture for cement mortar.
Gupta, Souradeep; Kua, Harn Wei; Koh, Hui Jun
2018-04-01
Landfilling of food waste due to its low recycling rate is raising serious concerns because of associated soil and water contamination, and emission of methane and other greenhouse gases during the degradation process. This paper explores feasibility of using biochar derived from mixed food waste (FWBC), rice waste (RWBC) and wood waste (mixed wood saw dust, MWBC) as carbon sequestering additive in mortar. RWBC is prepared from boiled plain rice, while FWBC is prepared from combination of rice, meat, and vegetables in fixed proportion. Carbon content in FWBC, RWBC and MWBC were found to be 71%, 66% and 87% by weight respectively. Results show that addition of 1-2wt% of FWBC and RWBC in mortar results in similar mechanical strength as control mix (without biochar). 1wt% of FWBC led to 40% and 35% reduction in water penetration and sorptivity respectively, indicating higher impermeability of mortar. Biochar from mixed wood saw dust performed better in terms of mechanical and permeability properties. Increase in compressive strength and tensile strength by up to 20% was recorded, while depth of water penetration and sorptivity was reduced by about 60% and 38% respectively compared to control. Both FWBC and MWBC were found to act as reinforcement to mortar paste, which resulted in higher ductility than control at failure under flexure. This study suggests that biochar from food waste and mixed wood saw dust has the potential to be successfully deployed as additive in cement mortar, which would also promote waste recycling, and sequester high volume carbon in civil infrastructure. Copyright © 2017 Elsevier B.V. All rights reserved.
7. Detail, beaded mortar joint, stepped wingwall coping at the ...
7. Detail, beaded mortar joint, stepped wingwall coping at the east portal of Tunnel 18, 135mm lens with electronic flash fill. - Southern Pacific Railroad Natron Cutoff, Tunnel No. 18, Milepost 410, Dorris, Siskiyou County, CA
8. SIDE VIEW OF NORTHEASTERN ROCKFACED DRESSED AND MORTARED STONE ...
8. SIDE VIEW OF NORTHEASTERN ROCKFACED DRESSED AND MORTARED STONE BRIDGE ABUTMENT (LEFT) AND DRESSED, DRY-LAID RETAINING WALL (RIGHT). FACING WEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA
18. Detail, typical quarryfaced ashlar blocks, convextooled mortar joints, on ...
18. Detail, typical quarry-faced ashlar blocks, convex-tooled mortar joints, on pillars in former porte porte cochere area, view to southeast, 135mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, ...
9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, SHOWING STEEL CROSSBEAMS, TORSIONAL DIAGONAL STRUTS, AND WOODEN STRINGERS. FACING SOUTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA
10. SIDE VIEW OF SOUTHEASTERN ROCKFACED DRESSED AND MORTARED STONE ...
10. SIDE VIEW OF SOUTHEASTERN ROCKFACED DRESSED AND MORTARED STONE BRIDGE ABUTMENT (RIGHT) AND DRESSED, DRY-LAID RETAINING WALL (LEFT). FACING NORTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA
Chemical Stockpile Disposal Program. Risk Analysis of the Onsite Disposal of Chemical Munitions.
1987-08-01
F-l7. Cartridge, mortar , 4.2-in., HT, M2/M2Al 0 F-20 M 4v M-Cs nAA PAA L4 vk I ,;t -,0 Fig. -18. .2-i. morars re stred n fibr tues wih I[w tue pr...Demilitarization PI periodic inspection PM periodic maintenance PMD projectile/ mortar disassembly PRA probabilistic risk assessment PUDA Pueblo Depot Activity RDC...Projectiles and Mortars .......... 3-8 ix * L L 3.2.4. Bombs ................... 3-8 ) 3.2.5. Spray Tanks .... ................ . 3-8 3.2.6. Bulk Agent
Scaling of strength and ductility in bioinspired brick and mortar composites
NASA Astrophysics Data System (ADS)
Wilbrink, David V.; Utz, Marcel; Ritchie, Robert O.; Begley, Matthew R.
2010-11-01
This paper provides scaling relationships between constituent properties and the uniaxial tensile response of synthetic "brick and mortar" composite materials inspired by nacre. The macroscopic strength and ductility (work of fracture) are predicted in terms of the brick properties (size, strength, and layout) and interface cohesive properties (e.g., maximum shear and normal stresses and separations). The results illustrate the trade-off between increasing strength and decreasing ductility with the increasing aspect ratio of the bricks. The models can be used to identify optimum mortar properties that maximize toughness for a given brick strength.
Application of AMDS mortar as a treatment agent for arsenic in subsurface environment
NASA Astrophysics Data System (ADS)
Choi, J.; Lee, H.; Choi, U. K.; Yang, I. J.
2014-12-01
Among the treatment technologies available for As in soil and groundwater, adsorption or precipitation using acid mine drainage (AMD) sludge has become a promised technique because of high efficiency, inexpensiveness and simple to handling. The adsorbents were prepared by addition of Cement, Joomoonjin sand, fly ash, and Ca(OH)2 to air dry AMD sludge. In this work, the adsorption of As (III) and As (V) on AMDS mortar has been studied as a function of kinetic, pH, and initial arsenic concentration. Results of batch study showed that 75-90% of both As (III) and As (V) were removed at pH 7. Arsenic adsorption capacities were the highest at neutral pH condition and the adsorption equilibrium time reached in 7 days using AMDS mortar. Additionally, the adsorption kinetic process is expressed well by pseudo-second-order model. The adsorption capacities of AMDS mortar for As(III) and As(V) were found 19.04 and 30.75 mg g-1, respectively. The results of As (III) adsorption isotherms were fitted well to the Freundlich model. Moreover, As (V) adsorption isotherms were fitted well to the Langmuir model rather than Freundlich model. Based on experimental results in this study, we could conclude that AMDS mortar can be effectively used for arsenic removal agent from subsurface environment.
Barbero, Ana M; Frasch, H Frederick
2017-08-28
The impact of the complex structure of the stratum corneum on transdermal penetration is not yet fully described by existing models. A quantitative and thorough study of skin permeation is essential for chemical exposure assessment and transdermal delivery of drugs. The objective of this study is to analyze the effects of heterogeneity, anisotropy, asymmetry, follicular diffusion, and location of the main barrier of diffusion on percutaneous permeation. In the current study, the solution of the transient diffusion through a two-dimensional-anisotropic brick-and-mortar geometry of the stratum corneum is obtained using the commercial finite element program COMSOL Multiphysics. First, analytical solutions of an equivalent multilayer geometry are used to determine whether the lipids or corneocytes constitute the main permeation barrier. Also these analytical solutions are applied for validations of the finite element solutions. Three illustrative compounds are analyzed in these sections: diethyl phthalate, caffeine and nicotine. Then, asymmetry with depth and follicular diffusion are studied using caffeine as an illustrative compound. The following findings are drawn from this study: the main permeation barrier is located in the lipid layers; the flux and lag time of diffusion through a brick-and-mortar geometry are almost identical to the values corresponding to a multilayer geometry; the flux and lag time are affected when the lipid transbilayer diffusivity or the partition coefficients vary with depth, but are not affected by depth-dependent corneocyte diffusivity; and the follicular contribution has significance for low transbilayer lipid diffusivity, especially when flux between the follicle and the surrounding stratum corneum is involved. This study demonstrates that the diffusion is primarily transcellular and the main barrier is located in the lipid layers. Published by Elsevier B.V.
An Online Adult-Learner Focused Program: An Assessment of Effectiveness
ERIC Educational Resources Information Center
Todd, Curtis L.; Ravi, Kokila; Akoh, Harry; Gray, Vance
2015-01-01
The landscape of higher education has significantly changed. Methods of instructional delivery, student profiles and degree offerings have transformed traditional brick and mortar institutions. Distance educational courses and programs, either fully online or hybrid, have been a major contributing factor in this shift. While a high percentage of…
ERIC Educational Resources Information Center
Markle, Ross Edward
2010-01-01
The impact of socioeconomic status (SES) on educational outcomes has been widely demonstrated in the fields of sociology, psychology, and educational research. Across these fields however, measurement models of SES vary, including single indicators (parental income, education, and occupation), multiple indicators, hierarchical models, and most…
Quantifying moisture transport in cementitious materials using neutron radiography
NASA Astrophysics Data System (ADS)
Lucero, Catherine L.
A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated. It has been found through this study that small pores, namely voids created by chemical shrinkage, gel pores, and capillary pores, ranging from 0.5 nm to 50 microm, fill quickly through capillary action. However, large entrapped and entrained air voids ranging from 0.05 to 1.25 mm remain empty during the initial filling process. In mortar exposed to calcium chloride solution, a decrease in sorptivity was observed due to an increase in viscosity and surface tension of the solution as proposed by Spragg et al 2011. This work however also noted a decrease in the rate of absorption due to a reaction between the salt and matrix which results in the filling of the pores in the concrete. The results from neutron imaging can help in the interpretation of standard absorption tests. ASTM C1585 test results can be further analyzed in several ways that could give an accurate indication of the durability of the concrete. Results can be reported in depth of penetration versus the square root of time rather than mm3 of fluid per mm2 of exposed surface area. Since a known fraction of pores are initially filling before reaching the edge of the sample, the actual depth of penetration can be calculated. This work is compared with an 'intrinsic sorptivity' that can be used to interpret mass measurements. Furthermore, the influence of shrinkage reducing admixtures (SRAs) on drying was studied. Neutron radiographs showed that systems saturated in water remain "wetter" than systems saturated in 5% SRA solution. The SRA in the system reduces the moisture diffusion coefficient due an increase in viscosity and decrease in surface tension. Neutron radiography provided spatial information of the drying front that cannot be achieved using other methods.
NASA Astrophysics Data System (ADS)
Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.
2006-12-01
Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.
Wang, Guangye; Huang, Wenjun; Song, Qi; Liang, Jinfeng
2017-11-01
This study aims to analyze the contact areas and pressure distributions between the femoral head and mortar during normal walking using a three-dimensional finite element model (3D-FEM). Computed tomography (CT) scanning technology and a computer image processing system were used to establish the 3D-FEM. The acetabular mortar model was used to simulate the pressures during 32 consecutive normal walking phases and the contact areas at different phases were calculated. The distribution of the pressure peak values during the 32 consecutive normal walking phases was bimodal, which reached the peak (4.2 Mpa) at the initial phase where the contact area was significantly higher than that at the stepping phase. The sites that always kept contact were concentrated on the acetabular top and leaned inwards, while the anterior and posterior acetabular horns had no pressure concentration. The pressure distributions of acetabular cartilage at different phases were significantly different, the zone of increased pressure at the support phase distributed at the acetabular top area, while that at the stepping phase distributed in the inside of acetabular cartilage. The zones of increased contact pressure and the distributions of acetabular contact areas had important significance towards clinical researches, and could indicate the inductive factors of acetabular osteoarthritis. Copyright © 2016. Published by Elsevier Taiwan.
Comparison of six extraction techniques for isolation of DNA from filamentous fungi.
van Burik, J A; Schreckhise, R W; White, T C; Bowden, R A; Myerson, D
1998-10-01
Filamentous fungi have a sturdy cell wall which is resistant to the usual DNA extraction procedures. We determined the DNA extraction procedure with the greatest yield of high quality fungal DNA and the least predilection for cross-contamination of equipment between specimens. Each of six extraction methods was performed using Aspergillus fumigatus hyphae. The six methods were: (1) glass bead pulverization with vortexing; (2) grinding with mortar and pestle followed by glass bead pulverization; (3) glass bead pulverization using 1% hydroxyacetyl trimethyl ammonium bromide (CTAB) buffer in a water bath sonicator; (4) water bath sonication in CTAB buffer; (5) grinding followed by incubation with CTAB; and (6) lyticase enzymatic cell lysis. Genomic DNA yields were measured by spectrophotometry and by visual reading of 2% agarose gels, with shearing assessed by the migration of the DNA on the gel. Genomic fungal DNA yields were highest for Method 1, followed by Methods 5 approximately = to 2 >3 approximately = to 4 approximately = to 6. Methods 2 and 5, both of which involved grinding with mortar and pestle, led to shearing of the genomic DNA in one of two trials each. We conclude that the use of glass beads with extended vortexing is optimal for extraction of microgramme amounts of DNA from filamentous fungal cultures.
Crean, Barry; Finnie, Cindy; Crosby, Anna
2013-06-01
Orally available ticagrelor in combination with low-dose aspirin (75-100 mg/day) is indicated for adult patients with acute coronary syndromes. However, patients with swallowing difficulties may be unable to consume the currently available 90-mg tablet. It is hypothesized that ticagrelor could be given to this patient cohort as a crushed dose administered either orally or via a naso-gastric (NG) tube. To investigate the potential use of crushed ticagrelor tablets (90- and 180-mg doses) for oral dose or NG tube administration. Ticagrelor tablets (90 or 180 mg [two 90-mg tablets]) were prepared to emulate oral and NG tube administration by similar methods. For the oral dose, ticagrelor tablets were crushed using a mortar and pestle and transferred to a dosing cup. 100 mL of water was added to the mortar, stirred, and the contents were transferred to the dosing cup and stirred to form a suspension. At this stage, where the suspension would normally be administered to a patient, it was collected for high performance liquid chromatography (HPLC) analysis. The mortar was then flushed with 100 mL of water, and the contents were again transferred to the dosing cup, stirred, and collected for HPLC analysis. For the NG dose, polyvinylchloride, polyurethane, and silicone size CH10 NG tubes were used. The tablets were crushed using a mortar and pestle, diluted with 50 mL of water, and stirred. At this stage, where the suspension would normally be administered to a patient through an NG tube using a syringe, it was collected for HPLC analysis. The mortar was then flushed with two additional 50 mL aliquots of water and the contents were passed through the NG tube. HPLC analysis examined the recoverability of ticagrelor in each of the dose suspensions and flushes and the stability of the suspension when held in a syringe for up to 2 h. One or two crushed 90-mg ticagrelor tablets, prepared for either oral or NG tube administration, delivers a mean dose of ≥97% of the original tablet. No degradation of the suspensions was detected after ticagrelor had been held in the syringe for up to 2 h. Although not an approved method of administration, these results suggest that ticagrelor tablets can be crushed and prepared for oral administration or for administration via an NG tube. From a clinical perspective, a syringe hold-time of up to 2 h should allow for enough time between preparation and administration (orally or via an NG tube) of the dispersed tablets to the patient. Future studies are required to test the effect of crushed dosing on pharmacokinetic and pharmacodynamic parameters.
DOT National Transportation Integrated Search
2017-12-11
Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...
Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunther, W., E-mail: Wolfgang.Kunther@empa.ch; Lothenbach, B.; Scrivener, K.
2013-02-15
This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposedmore » in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.« less
Study of ancient mortars from the Roman Villa of Pollio Felice in Sorrento (Naples)
NASA Astrophysics Data System (ADS)
Benedetti, D.; Valetti, S.; Bontempi, E.; Piccioli, C.; Depero, L. E.
The study of ancient mortars is an important aspect of building conservation: the choice of the materials has varied according to historical period, regional habits, and their specific function in the structure. Ancient mortars are composites, comprising hydraulic or aerial binding materials, and aggregates, passive or active, which may react with binding material. Moreover, they were modified during setting, hardening, and aging, according to processes not yet well known. In this paper, we present a study of ancient mortars from the Villa of Pollio Felice of Sorrento (Naples). The analysis has been performed by conventional techniques (grain-size distribution, lime-percentage analysis, optical and electron microscopy, and X-ray diffraction) and by means of a laboratory X-ray microdiffractometer equipped with an image plate detector. This system, applied for the first time to archaeological studies, can reach a spatial resolution of a few tenths of microns and it allows us to obtain separate phase identification of binder and filler particles.
Applying a biodeposition layer to increase the bond of a repair mortar on a mortar substrate.
Snoeck, D; Wang, J; Bentz, D P; De Belie, N
2018-02-01
One of the major concerns in infrastructure repair is a sufficient bond between the substrate and the repair material, especially for the long-term performance and durability of the repaired structure. In this study, the bond of the repair material on the mortar substrate is promoted via the biodeposition of a calcium carbonate layer by a ureolytic bacterium. X-ray diffraction and scanning electron microscopy were used to examine the interfaces between the repair material and the substrate, as well as the polymorph of the deposited calcium carbonate. The approximately 50 μm thick biodeposition film on the mortar surface mostly consisted of calcite and vaterite. Both the repair material and the substrate tended to show a good adherence to that layer. The bond, as assessed by slant shear specimen testing, was improved by the presence of the biodeposition layer. A further increase was found when engineering the substrate surface using a structured pattern layer of biodeposition.
Calcite-forming bacteria for compressive strength improvement in mortar.
Park, Sung-Jin; Park, Yu-Mi; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl
2010-04-01
Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of concrete mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of concrete mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and x-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the CaCO3 crystals. We used the isolates to improve the compressive strength of concrete mortar cubes and found that KNUC403 offered the best improvement in compressive strength.
Durability of waste glass flax fiber reinforced mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.
2011-01-17
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performancemore » of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.« less
Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Fulvio, Pasquale F; Mayes, Richard T
2011-01-01
Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.D.
Powder and granules of the high density polyethylene (PEHD) were used to prepare mortar based matrices for immobilization of radioactive waste materials containing {sup 137}Cs, as well as containers for solidified radioactive waste form. Seven types of matrices, differ due to the percentage of granules and filler material added, were investigated. PEHD powder and granules were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide, as well as mechanical characteristics either of mortar matrix and container. In this paper, only mechanical strength aspect ofmore » the investigated mortar and concrete container formulations, is presented. The equivalent diameter of the PEHD granules used was 2.0 mm. PEHD granules were used to replace 100 volume percent of stone granules, sifted size of 2.0 mm, normally used in the matrix preparation, in order to decrease the porosity and density of the mortar matrix and to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. PEHD powder, particle size of 250 micrometer, was added as filler to the mortar formulation, replacing 5, 8 and 10 wt% of the total cement weight in matrix formulation and 15 and 18 wt% of the total cement weight in container formulation. Cured samples were investigated on mechanical strength, using 150 MPa hydraulic press, in order to determine influence of added polyethylene granules and powder on samples resistance to mechanical forces that solidified waste materials and concrete containers may experience at the disposal site. Results of performed investigations have shown that samples prepared with polyethylene granules, replacing 100 wt% of the stone granules, have almost twice as much mechanical strength than samples prepared with stone aggregate. Samples prepared with PEHD granules and powder have mechanical strength resistance up to 13.5% higher than ones prepared with PEHD granules, solely. Improved Mechanical strength resistance of tested samples accommodates trend that functionally depends on the percentage of PEHD powder added in formulation.« less
Mars Smart Lander Parachute Simulation Model
NASA Technical Reports Server (NTRS)
Queen, Eric M.; Raiszadeh, Ben
2002-01-01
A multi-body flight simulation for the Mars Smart Lander has been developed that includes six degree-of-freedom rigid-body models for both the supersonically-deployed and subsonically-deployed parachutes. This simulation is designed to be incorporated into a larger simulation of the entire entry, descent and landing (EDL) sequence. The complete end-to-end simulation will provide attitude history predictions of all bodies throughout the flight as well as loads on each of the connecting lines. Other issues such as recontact with jettisoned elements (heat shield, back shield, parachute mortar covers, etc.), design of parachute and attachment points, and desirable line properties can also be addressed readily using this simulation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... that the concrete in the footings, piers, and walls, or the mortar in the masonry piers and walls, is... during steel erection. Note: This is not and will not be enforced for mortar in piers and walls until...
Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar
NASA Astrophysics Data System (ADS)
Dobiszewska, Magdalena; Beycioğlu, Ahmet
2017-10-01
Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement paste and mortar with basalt powder. The modification consists in that the powder waste was added as partial replacement of cement. Four types of common cement were examined, i.e. CEM I, CEM II/A-S, CEM II/A-V and CEM II/B-V. The percentages of basalt powder in this research are 0%, 1%, 2%, 3%, 4%, 6%, 8% and 10% by mass. Results showed that the addition of basalt powder improved the strength of cement mortar. The use of mineral powder as the partial substitution of cement allows the effective management of industrial waste and improves some properties of cement mortar.
Non-linear heterogeneous FE approach for FRP strengthened masonry arches
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele; Fedele, Roberto
2015-12-01
A fast and reliable non-linear heterogeneous FE approach specifically conceived for the analysis of FRP-reinforced masonry arches is presented. The approach proposed relies into the reduction of mortar joints to interfaces exhibiting a non-linear holonomic behavior, with a discretization of bricks by means of four-noded elastic elements. The FRP reinforcement is modeled by means of truss elements with elastic-brittle behavior, where the peak tensile strength is estimated by means of a consolidated approach provided by the Italian guidelines CNR-DT200 on masonry strengthening with fiber materials, where the delamination of the strip from the support is taken into account. The model is validated against some recent experimental results relying into circular masonry arches reinforced at both the intrados and the extrados. Some sensitivity analyses are conducted varying the peak tensile strength of the trusses representing the FRP reinforcement.
Ledesma, E F; Jiménez, J R; Ayuso, J; Fernández, J M; Brito, J de
2017-03-15
This article shows the results of an experimental study carried out in order to determine the maximum amount of electric arc furnace dust (EAFD) that can be incorporated into fluid cement-based mortars to produce mechanically stable monolithic blocks. The leaching performance of all mixes was studied in order to classify them according to the EU Council Decision 2003/33/EC. Two mortars were used as reference and three levels of EAFD incorporation were tested in each of the reference mortars. As the incorporation ratio of EAFD/cement increases, the mechanical strength decreases. This is due to the greater EAFD/cement and water/cement ratios, besides the presence of a double-hydrated hydroxide of Ca and Zn (CaZn 2 (OH) 6 ·2H 2 O) instead of the portlandite phase (Ca(OH) 2 ) in the mixes made with EAFD, as well as non-hydrated tricalcium silicate. A mass ratio of 2:1 (EAFD: cement-based mortar) can be added maintaining a stable mechanical strength. The mechanical stabilization process also reduced the leaching of metals, although it was not able to reduce the Pb concentration below the limit for hazardous waste. The high amount of EAFD mechanically stabilized in this experimental study can be useful to reduce the storage volume required in hazardous waste landfills. Copyright © 2016 Elsevier B.V. All rights reserved.
Pofale, Arun D; Nadeem, Mohammed
2012-01-01
This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.
Pozzolanic Activity Assessment of LUSI (LUmpur SIdoarjo) Mud in Semi High Volume Pozzolanic Mortar
Hardjito, Djwantoro; Antoni; Wibowo, Gunadi M.; Christianto, Danny
2012-01-01
LUSI mud obtained from the mud volcano in Sidoarjo, Indonesia, is a viable aluminosilicate material to be utilized as pozzolanic material. LUSI is an abbreviation of the local name of the mud, i.e., Lumpur Sidoarjo, meaning Sidoarjo mud. This paper reports the results of an investigation to assess the pozzolanic activity of LUSI mud, especially in semi high volume pozzolanic mortar. In this case, the amount of mud incorporated is between 30% to 40% of total cementitious material, by mass. The content of SiO2 in the mud is about 30%, whilst the total content of SiO2, Fe2O3 and Al2O3 is more than 70%. Particle size and degree of partial cement replacement by treated LUSI mud affect the compressive strength, the strength activity index (SAI), the rate of pozzolanic activity development, and the workability of mortar incorporating LUSI mud. Manufacturing semi high volume LUSI mud mortar, up to at least 40% cement replacement, is a possibility, especially with a smaller particle size of LUSI mud, less than 63 μm. The use of a larger percentage of cement replacement by LUSI mud does not show any adverse effect on the water demand, as the flow of the fresh mortar increased with the increase of percentage of LUSI mud usage.
NASA Astrophysics Data System (ADS)
Wardhono, A.
2018-01-01
The use of fly ash as cement replacement material can overcome the environmental issues, especially the global warming problem caused by the greenhouse effect. This is attributed to the CO2 gas produced during the cement manufacturing process, which 1 ton of cement is equivalent to 1 ton CO2. However, the major problem of fly ash is the requirement of activators to activate the polymer reactions. The most common activator used in non-cement or geopolymer material is the combination of sodium hydroxide (NaOH) and sodium silicate. This study aims to identify the effect of NaOH molarity as activator on strength development of non-cement class C fly ash geopolymer mortar. The molarity variations of NaOH were 6 Molar (M), 8M, 10M, 12M, 14M and 15M. The compressive strength test was performed at the age of 3, 7 and 28 days in accordance with ASTM standard, and the specimens were cured at room temperature. The results show that the highest compressive strength was achieved by geopolymer mortar with a molarity of 12M. It exhibits a higher strength to that normal mortar at 28 days. However, the use of NaOH molarity more than 12M tends to decrease the strength of non-cement geopolymer mortar specimens.
On the role of hydrophobic Si-based protective coatings in limiting mortar deterioration.
Cappelletti, G; Fermo, P; Pino, F; Pargoletti, E; Pecchioni, E; Fratini, F; Ruffolo, S A; La Russa, M F
2015-11-01
In order to avoid both natural and artificial stone decay, mainly due to the interaction with atmospheric pollutants (both gases such as NOx and SO2 and particulate matter), polymeric materials have been widely studied as protective coatings enable to limit the penetration of fluids into the bulk material. In the current work, an air hardening calcic lime mortar (ALM) and a natural hydraulic lime mortar (HLM) were used as substrates, and commercially available Si-based resins (Alpha®SI30 and Silres®BS16) were adopted as protective agents to give hydrophobicity features to the artificial stones. Surface properties of coatings and their performance as hydrophobic agents were studied using different techniques such as contact angle measurements, capillary absorption test, mercury intrusion porosimetry, surface free energy, colorimetric measurements and water vapour permeability tests. Finally, some exposure tests to UV radiation and to real polluted atmospheric environments (a city centre and an urban background site) were carried out during a wintertime period (when the concentrations of the main atmospheric pollutants are higher) in order to study the durability of the coating systems applied. The effectiveness of the two commercial resins in reducing salt formation (sulphate and nitrate), induced by the interaction of the mortars with the atmospheric pollutants, was demonstrated in the case of the HLM mortar. Graphical Abstract ᅟ.
Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel
2014-08-01
Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.
Biomass fly ash incorporation in cement based materials =
NASA Astrophysics Data System (ADS)
Rajamma, Rejini
In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe's energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly ashes were similar to a class C fly ash. The mortar results showed a good scope for biomass fly ashes as supplementary cementitious materials in lower dosages (<20%). The poor workability, concerns about the organic content, alkalis, chlorides and sulphates stand as the reasons for preventing the use of biomass fly ash in high content in the cement mortars. The results obtained from the durability tests have shown a clear reduction in expansion for the biomass fly ash mortars/concretes and the binder blend made with biomass fly ash (20%) and metakaolin (10%) inhibited the ASR reaction effectively. The biomass fly ash incorporation in lime mortars did not improve the mortar properties significantly though the carbonation was enhanced in the 15-20% incorporation. The biomass fly ash metakaolin blend worked well in the alkali activated complex binder application also. Portland cement free binders (with 30-40 MPa compressive strength) were obtained on the alkali activation of biomass fly ashes (60-80%) blended with metakaolin (20-40%).
The use of sulphur as a rigid binder and for the impregnation of concrete : state of the art.
DOT National Transportation Integrated Search
1982-01-01
Recent research has led to the development of durable modified-sulphur mortars, concretes, and coatings. All of the methods of using sulphur as a binder for rigid concrete rely on the reaction of one or more modifiers to stabilize, in the hardened st...
Cultural Resources Collection Analysis Albeni Falls Project, Northern Idaho.
1987-01-01
numerous pestles and mortars, bolas stones, nephrite adzes, notched pebbles or net weights, an atlatl weight, and several unique incised and carved...tools including flaked and ground stone was documented; bifacial tools, drills, gravers, scrapers, numerous pestles and mortars, bolas stones, nephrite...59 27 Pestles ............................................................ 60 28 Zoomorphic pestle (?) fragment
2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR ...
2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR BLOCKS WERE FOR THE MILL'S 3-STAMP BATTERIES ERECTED IN 1903, NORTH OF THE TWO 1901 BATTERIES WHICH WERE MOUNTED ON WOODEN TIMBERS - Wilbur-Womble Mill, Southern Edge Of Salt Spring Valley, Copperopolis, Calaveras County, CA
9. Detail view, greenhouse, fragment of Doric frieze located in ...
9. Detail view, greenhouse, fragment of Doric frieze located in the south wall (Note the decorative mortar work known as galleting in which small stones are imbedded on the surface of the mortar. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA
A high-order 3D spectral difference solver for simulating flows about rotating geometries
NASA Astrophysics Data System (ADS)
Zhang, Bin; Liang, Chunlei
2017-11-01
Fluid flows around rotating geometries are ubiquitous. For example, a spinning ping pong ball can quickly change its trajectory in an air flow; a marine propeller can provide enormous amount of thrust to a ship. It has been a long-time challenge to accurately simulate these flows. In this work, we present a high-order and efficient 3D flow solver based on unstructured spectral difference (SD) method and a novel sliding-mesh method. In the SD method, solution and fluxes are reconstructed using tensor products of 1D polynomials and the equations are solved in differential-form, which leads to high-order accuracy and high efficiency. In the sliding-mesh method, a computational domain is decomposed into non-overlapping subdomains. Each subdomain can enclose a geometry and can rotate relative to its neighbor, resulting in nonconforming sliding interfaces. A curved dynamic mortar approach is designed for communication on these interfaces. In this approach, solutions and fluxes are projected from cell faces to mortars to compute common values which are then projected back to ensures continuity and conservation. Through theoretical analysis and numerical tests, it is shown that this solver is conservative, free-stream preservative, and high-order accurate in both space and time.
Kawakami, Miki; Kitada, Rika; Kurita, Takuro; Tokumura, Tadakazu
2017-01-01
The aim of the present study was to develop a method for grinding tablets with a mortar and pestle while reducing drug loss because grinding tablets is known to be associated with reductions in tablet weight and loss of the active drug. Seven kinds of tablets were subjected to grinding. The proportion (%) of the amount of the active drug in the powder remaining on the surfaces of the mortar and pestle relative to the total amount of the drug recovered (the recovery percent) was calculated. The recovery percent of the 7 kinds of tablets ranged from 17.2-35.9%, and the tablets' recovery percent decreased as the tablet weight increased. When the grinding was performed with 1 g of lactose monohydrate or 1 g of D-mannitol moistened with water, the recovery percent of the tablets decreased to 2.6-9.9% and 3.8-9.9%, respectively. The effects of the weight of lactose monohydrate on the recovery percent of Allegra ® 60 mg tablets were examined. It was found that at least 0.6 g of lactose monohydrate was required to have a sufficient effect on drug recovery. Therefore, additives that have stronger effects at lower amounts were sought. As a result, calcium monohydrogen phosphate was found to have the strongest effect on drug recovery. The addition of 0.4 g calcium monohydrogen phosphate resulted in the recovery percent of 5.1%, which was significantly lower than that of 15.0% observed after the addition of 0.4 g lactose monohydrate, and lower than the 6.8% of 1 g lactose monohydrate.
Wiltshire, C J; Sutherland, S K; Fenner, P J; Young, A R
2000-01-01
To optimize venom extraction and to undertake preliminary biochemical studies of venom from the box jellyfish (Chironex fleckeri), the Irukandji jellyfish (Carukia barnesi), and the blubber jellyfish (Catostylus mosaicus). Lyophilized crude venoms from box jellyfish tentacles and whole Irukandji jellyfish were prepared in water by homogenization, sonication, and rapid freeze thawing. A second technique, consisting of grinding samples with a glass mortar and pestle and using phosphate-buffered saline, was used to prepare crude venom from isolated nematocysts of the box jellyfish, the bells of Irukandji jellyfish, and the oral lobes of blubber jellyfish. Venoms were compared by use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot test. Toxicity of some venoms was determined by intravenous median lethal dose assay in mice. Different venom extraction techniques produced significantly different crude venoms for both box and Irukandji jellyfish. Irukandji and blubber venom SDS-PAGE protein profiles were established for the first time. Analysis of Western blot tests revealed that box jellyfish antivenin reacted specifically with the venom of each jellyfish. Toxicity was found in Irukandji jellyfish venom derived by use of the mortar-and-pestle method, but not in the lyophilized venom. Glass mortar-and-pestle grinding and use of an appropriate buffer was found to be a simple and suitable method for the preparation of venom from each jellyfish species studied. This study contributes to biochemical investigations of jellyfish venoms, particularly the venom of the Irukandji jellyfish, for which there are, to our knowledge, no published studies. It also highlights the importance of optimizing venom extraction as the first step toward understanding the complex biological effects of jellyfish venoms.
NASA Astrophysics Data System (ADS)
Panchmatia, Parth
Numerous laboratory and field studies have demonstrated that concrete incorporating air cooled blast furnace slag (ACBFS) aggregate showed a higher degree of infilling of voids with ettringite as opposed to concrete prepared using naturally mined carbonate aggregates when exposed to similar environmental conditions. This observation prompted some to link the deterioration observed in the ACBFS aggregate concrete structures to the compromised freeze-thaw resistance due to infilling of air voids. Concerns about the release of sulfur from ACBFS aggregate into the pore solution of concrete had been presented as the reason for the observed ettringite deposits in the air voids. However, literature quantifying the influence of ACBFS aggregate on the chemistry of the pore solution of concrete is absent. Therefore, the main purpose of this research was to quantify the effects of ACBFS aggregate on the chemistry of the pore solution of mortars incorporating them. Coarse and crushed ACBFS aggregates were submerged in artificial pore solutions (APSs) representing pore solutions of 3-day, 7-day, and 28-day hydrated plain, binary, and ternary paste systems. The change in the chemistry of these artificial pore solutions was recorded to quantify the chemical contribution of ACBFS aggregate to the pore solution of concrete. It was observed that the sulfate concentration of all APSs increased once they were in contact with either coarse or crushed ACBFS aggregate. After 28 days of contact, the increase in sulfate concentration of the APSs ranged from 4.85 - 12.23 mmol/L and 14.21 - 16.87 mmol/L for contact with coarse and crushed ACBFS aggregate, respectively. More than 40% of the total sulfate that was released by the ACBFS aggregate occurred during the first 72 hours (3 days) of its contact with the APSs. There was little or no difference in the amount of sulfate released from ACBFS aggregate in the different types of APSs. In other words, the type of binder solution from which pore solution was extracted had no effect on the amount of sulfate that was released when it was in contact with ACBFS aggregate. The relatively quick release of sulfur from ACBFS aggregate into the APSs prompted investigation of the chemical composition of the pore solution of mortar (at early stages of hydration) incorporating ACBFS aggregate. The chemical composition of the pore solutions obtained from mortars prepared using ACBFS aggregate and plain and binary paste matrices was compared those of mortars prepared using Ottawa sand and plain and binary paste matrices. After 7 days of hydration, the sulfur (S) concentration of the pore solution extracted from mortars prepared using ACBFS aggregate was 3.4 - 5.6 times greater than that obtained from corresponding mortars (i.e. mortars with the same paste matrix) prepared using Ottawa sand. Binary mortars containing fly ash (FA) showed the lowest S content after 7 days of hydration amongst all mortars prepared using ACBFS aggregate. On the other hand, binary mortars prepared using slag cement (SC) and ACBFS aggregate had the highest S concentration after 7 days of hydration. These effects on the S concentration in the pore solutions can be explained by the difference in the chemical makeup of the binders, and not because of different rate of release of S from ACBFS into the pore solution. In addition, TGA analysis of 7-day hydrated mortars revealed that the ettringite, monosulfate, and calcium hydroxide content was lower in mortars prepared using ACBFS aggregate as opposed to those prepared using Ottawa sand. This could be because of the low degree of hydration in mortars with ACBFS aggregate because of the high sulfate concentration in its pore solution. The properties of the interfacial transition zone (ITZ), i.e. the zone in the vicinity of the aggregate surface, depends on the property of the aggregate such as its porosity and texture. Therefore, it is expected that the properties of ITZ around the ACBFS particle, which is porous and proven to contribute sulfate, be different from the ITZ around the naturally mined siliceous aggregate. Image analysis conducted on backscattered images obtained using scanning electron microscope revealed that the ITZ of naturally mined siliceous aggregate was more porous compared to the ITZ of ACBFS aggregate. In addition, calcium hydroxide deposits were more frequent and larger in size in the ITZ around siliceous sand than in the case of the ITZ around the ACBFS aggregate.
NASA Astrophysics Data System (ADS)
Watanabe, Kenzo; Yokozeki, Kosuke; Torichigai, Takeshi; Sakai, Etsuo
The experiments have been conducted in order to investigate the mechanical and chemical properties of mortar with three different binders under the several conditions in accelerated carbonation curing. As the results, the depth of carbonation varied among each mix proportion. It is proven that by increasing CO2 density in the mortar having γ-2CaO.SiO2, the CaCO3 production will increase, which leads to the increase of filling ability in the pore of mortar. Furthermore, as a result from the calculation of Tritium permeation, it shows that the permeation decreases with an increase of CO2 density.
39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. ...
39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. THE STAMP AN MORTAR BOX ARE ON THE LEFT AND THE FEEDER WITH ITS FEEDER DISK IS ON THE RIGHT. NOTE THE COLLAR ON THE CENTER STAMP STEM (UPPER LEFT CORNER OF THE IMAGE) THAT ACTIVATES THE LEVER IN THE CENTER OF THE PHOTO. THE COLLAR IS POSITIONED SUCH THAT WHEN THE LEVEL OF THE MATERIAL REACHES A LOW POINT IN THE MORTAR BOX IT PUSHES DOWN ON THE LEVER WHICH IN TURN ACTIVATES THE AUTOMATIC FEEDER DRIVE MECHANISM WHICH THEM DELIVERS ORE INTO THE BACKSIDE OF THE MORTAR BOX. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy
Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu
2014-01-01
A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved. PMID:28788452
Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy.
Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu
2014-01-03
A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.
NASA Astrophysics Data System (ADS)
Ing, Doh Shu; Azed, Muhammad Aizat; Chin, Siew Choo
2017-11-01
Population growth that increase every year has led to the increasing amount of waste generated annually. The content of heavy metal Cadmium (Cd), Lead (Pb) and Zinc (Zn) represent the biggest concentrations of heavy metals in sewage sludge waste which can be the source of pollution. Furthermore, the excessive disposal of eggshells waste to landfills may attract rats and worms due to the organic protein matrix that may pose health problem to the public. In the last decade, the demand on cement mortar brick has increased has resulted in higher cement production. However, cement plant is one of the major contributors of carbon dioxide emission. Hence, this research focuses on the production of environmental friendly cement with sewage sludge since there is occurrence of pozolonic material in Sewage Sludge Ash (SSA). From the initial finding, the major components of SSA are Silicon Dioxide (SiO2), Calcium oxide (CaO), Aluminium Oxide (Al2O3), Iron (III) Oxide (Fe2O3), Sodium Oxide (Na2O), Potassium oxide (K2O), Magnesium Oxide (MgO) and Iron (II) Oxide (FeO). Sewage sludge needed to be incinerated to remove the heavy metal before it can be used as cement replacement in mortar brick production. The sewage sludge were treated using two methods namely incineration and microwave. Both types of sewage sludge were then added with eggshell powder as additive. Eggshell powder act as additive in this research due to its high content of calcium carbonate and has nearly same composition of limestone used in the production of cement. Different percentages of Eggshell Powder (ESP) (0%, 5%, 10%, 15%) and 10% fixed of Microwaved Sewage Sludge Ash (MSSA) and Incinerated Sewage Sludge Ash (ISSA) as optimum dosage partially replacing the cement used to test the brick mortar properties in term of compressive strength, flexural strength and also water absorption. Result showed that ISSA with 5% of ESP is the most optimum brick with highest compressive strength and flexural strength compared to MSSA brick. While, MSSA brick with 10% of ESP shown the best result in water absorption. But, the water absorption rate for 10% ESP in ISSA is still within acceptable range.
This report describes the performance evaluation of a fiber reinforced geopolymer spray-applied mortar, which has potential as a structural alternative to traditional open cut techniques used in large-diameter sewer pipes. Geopolymer is a sustainable green material that incorpor...
Do Schools Still Need Brick-and-Mortar Libraries?
ERIC Educational Resources Information Center
Johnson, Doug; Mastrion, Keith
2009-01-01
Do all schools need brick-and-mortar libraries? In this article, Johnson and Mastrion share their contradictory thoughts to the question. Johnson says some schools don't need library facilities or programs or librarians. These schools' teachers and administrators: (1) feel no need for a collaborative learning space; (2) feel the ability to process…
2015-06-12
market. However, in 2004, Netflix changed the home video entertainment landscape from brick and mortar rental outlets to the DVD-by-mail business...competing companies had very different organizational structures and leadership styles. Amazon stayed true to an online brick and mortar platform
Farinha, Catarina Brazão; de Brito, Jorge; Veiga, Rosário; Fernández, J M; Jiménez, J R; Esquinas, A R
2018-03-20
The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.
Self-leveling morter as a possible cause of symptoms associated with sick building syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundholm, M.; Lavrell, G.; Mathiasson, L.
In newly constructed houses and buildings in which self-leveling mortar containing casein has been used, residents and office employees have noted a bad odor and have complained of headache, eye and throat irritation, and tiredness. These problems were suspected to result from the degradation products emitted from the mortar. Samples obtained from dry mortar powder and from mortar in buildings where casein was used and from control buildings were found to contain microorganisms (mean of 10{sup 2} culture forming units/g). Environmental species were predominantly found, e.g., Bacillus, Clostridium, Micrococcus, and Propionibacterium. Fungi were found occasionally; no evidence of bacterial degradationmore » was found. Headspace and gas chromatographic-mass spectrometric analysis of air from the newly constructed houses and from hydroxide-degraded casein revealed the presence of amines in the 0.003-0.013 ppm range and the presence of ammonia and sulfhydryl compounds, all of which in low concentrations can cause the symptoms observed. These substances, however, were not detected in control buildings.« less
Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A
2016-05-06
This study investigates the engineering performance and CO₂ footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e. , normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO₂ footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.
de Brito, Jorge; Veiga, Rosário
2018-01-01
The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation. PMID:29558418
Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A.
2016-01-01
This study investigates the engineering performance and CO2 footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO2 footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average. PMID:28773465
Overview of the Mars Science Laboratory Parachute Decelerator Subsystem
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan
2007-01-01
In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaohui; Jacobsen, Stefan; He Jianying
2009-08-15
The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less
Modeling Framework for Fracture in Multiscale Cement-Based Material Structures
Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas
2017-01-01
Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948
Use of polypropylene fibers coated with nano-silica particles into a cementitious mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppola, B., E-mail: bcoppola@unisa.it; Di Maio, L.; Scarfato, P.
Fiber reinforced cementitious composite (FRCC) materials have been widely used during last decades in order to overcome some of traditional cementitious materials issues: brittle behaviour, fire resistance, cover spalling, impact strength. For composite materials, fiber/matrix bond plays an important role because by increasing fiber/matrix interactions is possible to increase the behaviour of the entire material. In this study, in order to improve fiber to matrix adhesion, two chemical treatments of polypropylene fibers were investigated: alkaline hydrolysis and nano-silica sol-gel particles deposition. Treatmtents effect on fibers morphology and mechanical properties was investigated by scanning electron microscopy (SEM) and tensile tests. SEMmore » investigations report the presence of spherical nano-silica particles on fiber surface, in the case of sol-gel process, while alkaline hydrolysis leads to an increase of fibers roughness. Both treatments have negligible influence on fibers mechanical properties confirming the possibility of their use in a cementitious mortar. Pullout tests were carried out considering three embedded length of fibers in mortar samples (10, 20 and 30 mm, respectively) showing an increase of pullout energy for treated fibers. The influence on fiber reinforced mortar mechanical properties was investigated by three-point flexural tests on prismatic specimens considering two fibers length (15 and 30 mm) and two fibers volume fractions (0.50 and 1.00 %). A general increase of flexural strength over the reference mix was achieved and an overall better behaviour is recognizable for mortars containing treated fibers.« less
Reuse of aluminosilicate waste materials to synthesize geopolymer
NASA Astrophysics Data System (ADS)
Walmiki Samadhi, Tjokorde; Wibowo, Nanda Tri; Athaya, Hana
2017-08-01
Geopolymer, a solid alkali-aluminosilicate bonding phase produced by reactions between aluminosilicate solids and concentrated alkali solution, is a potential substitute for ordinary Portland cement (OPC). Geopolymer offers environmental advantages since it can be prepared from various inorganic waste materials, and that its synthesis may be undertaken in mild conditions. This research studies the mechanical and physical characteristics of three-component geopolymer mortars prepared from coal fly ash (FA), rice husk ash (RHA), and metakaolin or calcined kaolin (MK). The ternary aluminosilicate blend formulations are varied according to an extreme vertices mixture experimental design with the RHA content limited to 15% mass. Temperature for initial heat curing of the mortars is combined into the experimental design as a 2-level process variable (30 °C and 60 °C). Compressive strengths of the mortars are measured after setting periods of 7 and 14 d. Higher heat curing temperature increases the strength of the mortar. Compositional shift towards RHA from either MK or FA reduces the strength. The highest strength is exhibited by FA-dominated composition (15.1 MPa), surpassing that of OPC mortar. The compressive strengths at 7 and 14 d are represented by a linear mixture model with a synergistic interaction between FA content and heat curing temperature. Geopolymer with the highest strength contains only FA heat-cured at 60 °C. Further studies are needed to be undertaken to confirm the relationship between biomass ash amorphosity and oxide composition to its geopolymerization reactivity, and to optimize the curing conditions.
NASA Astrophysics Data System (ADS)
Armwood, Catherine K.
In this project, 26 fiber-reinforced mortar (FRM) mixtures are evaluated for their workability and strength characteristics. The specimens tested include two control mixtures and 24 FRMs. The mixtures were made of two types of binders; Type N Portland cement lime (Type N-PCL) and Natural Hydrated Lime 5 (NHL5); and 6 fiber types (5 synthetic fibers and one organic). When tested in flexure, the results indicate that majority of the synthetic fiber mixtures enhanced the performance of the mortar and the nano-nylon and horse hair fibers were the least effective in improving the mortar's modulus of rupture, ductility, and energy absorption. Four FRMs that improved the mortar's mechanical properties most during the flexural strength test were then used to conduct additional experiments. The FRM's compressive strength, as well as flexural and shear bond strength with clay and concrete masonry units were determined. Those four mixtures included Type N-PCL as the binder and 4 synthetic fibers. They were evaluated at a standard laboratory flow rate of 110% +/- 5% and a practical field flow rate of 130% +/- 5%. Results indicate that the use of fibers decreases the compressive strength of the mortar most of the time. However, the bond strength test results were promising: 81% of the FRM mixtures increased the flexural bond strength of the prism. The mixtures at 110 +/- 5% flow rate bonded better with concrete bricks and those ate 130+/-5% flow rate bonded better with clay bricks. The results of the shear bond strength show 50% of the FRM mixtures improved the shear bond strength. The FRM mixtures at 110+/-5% flow rate bonded with clay units provided the most improvement in shear bond strength compared to control specimen results. Along with detailed discussions and derived conclusions of these experiments, this dissertation includes recommendations for the most feasible FRM for different applications.
An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.
Akçaözoğlu, Semiha; Atiş, Cengiz Duran; Akçaözoğlu, Kubilay
2010-02-01
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependent on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.
An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcaoezoglu, Semiha, E-mail: sakcaozoglu@nigde.edu.t; Atis, Cengiz Duran; Akcaoezoglu, Kubilay
2010-02-15
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water-binder (w/b) ratio and PET-binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules usedmore » in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.« less
On Gravitational Radiation: A Nonlinear Wave Theory in a Viscoelastic Kerr-Lambda Spacetime
NASA Astrophysics Data System (ADS)
Gamble, Ronald
This project presents the experimental results concerning the mix design, fresh and hardened properties of an ultra-high strength concrete that has already been developed for high performance construction applications but now needs to be evaluated for a 3D printing process. The concrete is designed to be extruded through a nozzle and pump system, and have layers printed to analyze deformation within printed layers. The key factors for printable concrete are, the ability to be extruded through a pump and nozzle (flowability) and buildability. The flow of mortar will be studied by looking at the rheological properties of the mix and assessing the acceptable range of shear strength. Three different water to cement ratios and varying dosages of superplasticizers were incorporated to optimize a workable mortar/concrete mix to be applied for 3D printing. A Brookfield DV-III Ultra programmable rheometer was used to determine the viscosity and yield strength of the mortar mixes; these values were used to calculate the shear strength of the printable concrete. Compressive strengths of optimal mixtures were taken to assess the feasibility of 3D printed concrete as compared to traditional means. Compression test was conducted on a High Capacity Series Compression Testing Machine with 2" x 2" mortars cubes. The results indicated that the mortars that have shear ranges between of 0.3 - 0.9 kPa could be used in a 3D printer. The compressive strength of the concrete made with a 25% water/cement ratio and 10% superplasticizer dosage reached 62.8 MPa, which qualifies it as ultrahigh strength mortar. An optimum mix will be validated by printing the most filaments until deformation occurs. The end goal of this project is to develop an optimal concrete to produce the strength needed for 3D printed concrete. Using our predesigned ultra-high strength concrete mix ingredients, we will optimize that mix to have the same performance characteristics and be used in 3D printing applications.
NASA Astrophysics Data System (ADS)
Zoghlami, Karima; Lopez-Arce, Paula; Navarro, Antonia; Zornoza-Indart, Ainara; Gómez, David
2017-04-01
Monuments and historical buildings of Bizerte show a disturbing state of degradation. In order to propose a compatible materials for the restauration works such as stone of substitution and restauration mortars, a geological context was analysed with the objectif to localize historical quarries accompanied by a sedimentological study to identify the exploited geological formations. Petrophysical and chemical caracterisation of both stone and mortars have been carried out. With the aim to determine the origin of the erosion and the degree of stone decay, a combination of micro-destructive and non-destructive techniques have been used on-site and in-lab. Moisture measurements, ultrasonic velocity propagation and water absorption by Karsten pipe test together with polarized light and fluorescence optical microscopy, mercury intrusion porosimetry and ion chromatography analyses were carried out to perform petrophysical characterization of stone samples and determination of soluble salts. For the characterization of mortars, granulometric study was performed to determine the nature of components and their grain size distribution. Thin sections of mortar samples were examined for the petrographical and mineralogical characterization. X-ray diffraction (XRD) analysis of finely pulverized samples was performed in order to identify the mineral crystalline phases of the mortars. Thermal analyses [thermogravimetry (TG)] were performed in order to determine the nature of the binder and its properties. Porosity was determined following UNE-EN 1936 (2007) standart test. Geological and petrographical study showed that historical buildings are essentially built with high porous bioclastic calcarenite partially cemented by calcite which is Würm in age and outcrops all along the northern coast of Bizerte where several historical quarries were identified. Occasionally, two other types of lithologies were used as building stones and they correspond to two varieties of oligocene sandstones (brown quartz-arenite cemented by iron oxide and ochre-green colored sandstone cemented by calcite) and an eocene white limestone corresponding to a fine-grained globigerine wackstone according to Dunham classification. Results of the petrophysical study show that small variations in the petrographic characteristics of the building geomaterials, such as type and degree of cementation, porous network configuration and presence or absence of soluble salts leads to differential stone weathering. Results of study's mortars show that original and restoration mortars have similar mineralogical composition but different grain size distribution and proportion of binder/agregats. They differ equally by the nature of raw materials as demonstrated by the thermal analyses. The study show that little variation of these parameters can affect the durability and the performance of mortars and can accelerate the degradation process of the building stones, especially the oligocene and eocene lithotypes.
DOT National Transportation Integrated Search
2010-04-01
The primary purpose of this study was to assess the condition of piles that had been encapsulated in fiberglass and mortar jackets on four bridges that are part of the Hampton Roads Bridge-Tunnel (HRBT). Since these four bridges contain a total of ap...
Higher Education: Handbook of Theory and Research. Volumes III [and] IV.
ERIC Educational Resources Information Center
Smart, John C., Ed.
Two volumes of a handbook on theory and research in higher education are presented. The 11 papers included in Volume III are as follows: "Qualitative Research Methods in Higher Education" (R. Crowson); "Bricks and Mortar: Architecture and the Study of Higher Education" (J. Thelin and J. Yankovich); "Enrollment Demand Models and Their Policy Uses…
ERIC Educational Resources Information Center
Barrett, Bob
2012-01-01
While many students and instructors are transitioning from the brick-and-mortar classrooms to virtual classrooms, labs, and simulations, this requires a higher-level of expertise, control, and perseverance by the instructor. Traditional methods of teaching, leading, managing, and organizing learn activities has changed in terms of the virtual…
ERIC Educational Resources Information Center
Harris, Ronald A.; Nikitenko, Gleb O.
2014-01-01
Teaching graduate students in an intensive adult-learning format presents a special challenge for quantitative analytical competencies. Students often lack necessary background, skills and motivation to deal with quantitative-skill-based course work. This study compares learning outcomes for graduate students enrolled in three course sections…
NASA Astrophysics Data System (ADS)
Cafiero, M.; Lloberas-Valls, O.; Cante, J.; Oliver, J.
2016-04-01
A domain decomposition technique is proposed which is capable of properly connecting arbitrary non-conforming interfaces. The strategy essentially consists in considering a fictitious zero-width interface between the non-matching meshes which is discretized using a Delaunay triangulation. Continuity is satisfied across domains through normal and tangential stresses provided by the discretized interface and inserted in the formulation in the form of Lagrange multipliers. The final structure of the global system of equations resembles the dual assembly of substructures where the Lagrange multipliers are employed to nullify the gap between domains. A new approach to handle floating subdomains is outlined which can be implemented without significantly altering the structure of standard industrial finite element codes. The effectiveness of the developed algorithm is demonstrated through a patch test example and a number of tests that highlight the accuracy of the methodology and independence of the results with respect to the framework parameters. Considering its high degree of flexibility and non-intrusive character, the proposed domain decomposition framework is regarded as an attractive alternative to other established techniques such as the mortar approach.
2016-03-11
Police Training Center, February 2013 School Building’s Exterior Brick Wall with Gaps in Mortar Source: SIGAR, January 20, 2013 SIGAR 16-22...Deterioration Due to Water Penetration ........................................................... 6 School Building’s Exterior Brick Wall with Gaps in... Mortar ........................................................................ 6 Stairs of Different Heights and Crumbling at Garm Ser Site
62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING ...
62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING AT NORTHWEST FACADE. ACCESS TO ROOF ALLOWS MAINTENANCE OF VENTILATION EQUIPMENT WHICH IS PLACED OUTSIDE BUILDING TO MINIMIZE EXPLOSION HAZARD. NO. 2 VISIBLE ON WALL OF BUILDING STANDS FOR EXPLOSION HAZARD WITH FRAGMENTATION. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ
Comparison of shrinkage related properties of various patch repair materials
NASA Astrophysics Data System (ADS)
Kristiawan, S. A.; Fitrianto, R. S.
2017-02-01
A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.
Technology Evaluation Report: Non-destructive ...
Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.
Santos, Josilene C; Tomal, Alessandra; Mariano, Leandro; Costa, Paulo R
2015-06-01
The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Peridynamic Approach for Nanoscratch Simulation of the Cement Mortar
NASA Astrophysics Data System (ADS)
Zhao, Jingjing; Zhang, Qing; Lu, Guangda; Chen, Depeng
2018-03-01
The present study develops a peridynamic approach for simulating the nanoscratch procedure on the cement mortar interface. In this approach, the cement and sand are considered as discrete particles with certain mechanical properties on the nanoscale. Besides, the interaction force functions for different components in the interface are represented by combining the van der Waals force and the peridynamic force. The nanoscratch procedures with the indenter moving along certain direction either parallel or perpendicular to the interface are simulated in this paper. The simulation results show the damage evolution processes and the final damage distributions of the cement mortar under different scratching speed and depth of the indenter, indicating that the interface between cement and sand is a weak area.
Ancient techniques for new materials
NASA Technical Reports Server (NTRS)
2000-01-01
NASA is looking to biological techniques that are millions of years old to help it develop new materials and technologies for the 21st century. Sponsored by NASA, Jeffrey Brinker of the University of New Mexico is studying how multiple elements can assemble themselves into a composite material that is clear, tough, and impermeable. His research is based on the model of how an abalone builds the nacre, also called mother-of-pearl, inside its shell. The mollusk layers bricks of calcium carbonate (the main ingredient in classroom chalk) and mortar of biopolymer to form a new material (top and bottom left) that is twice as hard and 1,000 times as tough as either of the original building materials.
Assessment of historical masonry pillars reinforced by CFRP strips
NASA Astrophysics Data System (ADS)
Fedele, Roberto; Rosati, Giampaolo; Biolzi, Luigi; Cattaneo, Sara
2014-10-01
In this methodological study, the ultimate response of masonry pillars strengthened by externally bonded Carbon Fiber Reinforced Polymer (CFRP) was investigated. Historical bricks were derived from a XVII century rural building, whilst a high strength mortar was utilized for the joints. The conventional experimental information, concerning the overall reaction force and relative displacements provided by "point" sensors (LVDTs and clip gauge), were herein enriched with no-contact, full-field kinematic measurements provided by 2D Digital Image Correlation (2D DIC). Experimental information were critically compared with prediction provided by an advanced three-dimensional models, based on nonlinear finite elements under the simplifying assumption of perfect adhesion between the reinforcement and the support.
2000-12-15
NASA is looking to biological techniques that are millions of years old to help it develop new materials and technologies for the 21st century. Sponsored by NASA, Jeffrey Brinker of the University of New Mexico is studying how multiple elements can assemble themselves into a composite material that is clear, tough, and impermeable. His research is based on the model of how an abalone builds the nacre, also called mother-of-pearl, inside its shell. The mollusk layers bricks of calcium carbonate (the main ingredient in classroom chalk) and mortar of biopolymer to form a new material (top and bottom left) that is twice as hard and 1,000 times as tough as either of the original building materials.
Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure
NASA Astrophysics Data System (ADS)
Wesołowska, Maria; Kaczmarek, Anna
2017-10-01
Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.
Qualitative risk assessment during polymer mortar test specimens preparation - methods comparison
NASA Astrophysics Data System (ADS)
Silva, F.; Sousa, S. P. B.; Arezes, P.; Swuste, P.; Ribeiro, M. C. S.; Baptista, J. S.
2015-05-01
Polymer binder modification with inorganic nanomaterials (NM) could be a potential and efficient solution to control matrix flammability of polymer concrete (PC) materials without sacrificing other important properties. Occupational exposures can occur all along the life cycle of a NM and “nanoproducts” from research through scale-up, product development, manufacturing, and end of life. The main objective of the present study is to analyse and compare different qualitative risk assessment methods during the production of polymer mortars (PM) with NM. The laboratory scale production process was divided in 3 main phases (pre-production, production and post-production), which allow testing the assessment methods in different situations. The risk assessment involved in the manufacturing process of PM was made by using the qualitative analyses based on: French Agency for Food, Environmental and Occupational Health & Safety method (ANSES); Control Banding Nanotool (CB Nanotool); Ecole Polytechnique Fédérale de Lausanne method (EPFL); Guidance working safely with nanomaterials and nanoproducts (GWSNN); Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, Italy method (ISPESL); Precautionary Matrix for Synthetic Nanomaterials (PMSN); and Stoffenmanager Nano. It was verified that the different methods applied also produce different final results. In phases 1 and 3 the risk assessment tends to be classified as medium-high risk, while for phase 2 the more common result is medium level. It is necessary to improve the use of qualitative methods by defining narrow criteria for the methods selection for each assessed situation, bearing in mind that the uncertainties are also a relevant factor when dealing with the risk related to nanotechnologies field.
NASA Astrophysics Data System (ADS)
Binal, Adil
2017-10-01
In the historic masonry structures, hard and large rock fragments were used as the construction materials. The hydraulic binder material prepared to keep this used material in its entirety is a different material than the cement used today. Khorasan mortar made by using aggregate and lime exhibits a more flexible structure than the concrete. This feature allows the historic building to be more durable. There is also a significant industrial value because of the use of Khorasan mortar in the restoration of historic masonry structures. Therefore, the calculation of the ideal mixture of Khorasan mortar and the determination of its mechanical and physical properties are of great importance regarding preserving historic buildings. In this study, the mixtures of different lime and brick fractions were prepared. It was determined that Khorasan mortar shows the highest compressive strength in mixtures with water/lime ratio of 0.55 and lime/aggregate ratio of 0.66. By keeping the mixing ratio constant, it was observed that the strengths of the samples kept in the humidity chamber for different curing times increased day by day. The early strength values of samples with the high lime/aggregate ratio (l/a: 0.83) were higher than those with the low lime/aggregate ratio (l/a: 0.5). For the samples with low lime/aggregate ratio, there was an increase in the strength values depending on the curing period. As the cure duration increases, a chemical reaction takes place between the lime and the brick fracture, and as a result of this reaction, the strength values are increased.
NASA Astrophysics Data System (ADS)
Shajil, N.; Srinivasan, S. M.; Santhanam, M.
2012-04-01
Fibers can play a major role in post cracking behavior of concrete members, because of their ability to bridge cracks and distribute the stress across the crack. Addition of steel fibers in mortar and concrete can improve toughness of the structural member and impart significant energy dissipation through slow pull out. However, steel fibers undergo plastic deformation at low strain levels, and cannot regain their shape upon unloading. This is a major disadvantage in strong cyclic loading conditions, such as those caused by earthquakes, where self-centering ability of the fibers is a desired characteristic in addition to ductility of the reinforced cement concrete. Fibers made from an alternative material such as shape memory alloy (SMA) could offer a scope for re-centering, thus improving performance especially after a severe loading has occurred. In this study, the load-deformation characteristics of SMA fiber reinforced cement mortar beams under cyclic loading conditions were investigated to assess the re-centering performance. This study involved experiments on prismatic members, and related analysis for the assessment and prediction of re-centering. The performances of NiTi fiber reinforced mortars are compared with mortars with same volume fraction of steel fibers. Since re-entrant corners and beam columns joints are prone to failure during a strong ground motion, a study was conducted to determine the behavior of these reinforced with NiTi fiber. Comparison is made with the results of steel fiber reinforced cases. NiTi fibers showed significantly improved re-centering and energy dissipation characteristics compared to the steel fibers.
An Extensible Sensing and Control Platform for Building Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Anthony; Berges, Mario; Martin, Christopher
2016-04-03
The goal of this project is to develop Mortar.io, an open-source BAS platform designed to simplify data collection, archiving, event scheduling and coordination of cross-system interactions. Mortar.io is optimized for (1) robustness to network outages, (2) ease of installation using plug-and-play and (3) scalable support for small to large buildings and campuses.
45. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. ...
45. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. MORTARS, BOSSES, MOST SHOES, STEMS, TAPPETS, CAMS AND BULL WHEELS ARE CLEARLY VISIBLE ON THE UPPER MORTAR BLOCKS (BELOW CENTER) UNION IRON WORKS, SAN FRANCISCO C-L. SEE CA-290-18 FOR A SIMILAR B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
Fatigue behaviour analysis for the durability prequalification of strengthening mortars
NASA Astrophysics Data System (ADS)
Bocca, P.; Grazzini, A.; Masera, D.
2011-07-01
An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).
Flexural behavior of the fibrous cementitious composites (FCC) containing hybrid fibres
NASA Astrophysics Data System (ADS)
Ramli, Mahyuddin; Ban, Cheah Chee; Samsudin, Muhamad Fadli
2018-02-01
In this study, the flexural behavior of the fibrous cementitious composites containing hybrid fibers was investigated. Waste materials or by product materials such as pulverized fuel ash (PFA) and ground granulated blast-furnace slag (GGBS) was used as supplementary cement replacement. In addition, barchip and kenaf fiber will be used as additional materials for enhance the flexural behavior of cementitious composites. A seven mix design of fibrous cementitious composites containing hybrid fiber mortar were fabricated with PFA-GGBS as cement replacement at 50% with hybridization of barchip and kenaf fiber between 0.5% and 2.0% by total volume weight. The FCC with hybrid fibers mortar will be fabricated by using 50 × 50 × 50 mm, 40 × 40 × 160 mm and 350 × 125 × 30 mm steel mold for assessment of mechanical performances and flexural behavior characteristics. The flexural behavior and mechanical performance of the PFA-GGBS with hybrid fiber mortar block was assessed in terms of load deflection response, stress-strain response, crack development, compressive and flexural strength after water curing for 28 days. Moreover, the specimen HBK 1 and HBK 2 was observed equivalent or better in mechanical performance and flexural behavior as compared to control mortar.
Isotopic analysis for degradation diagnosis of calcite matrix in mortar.
Dotsika, E; Psomiadis, D; Poutoukis, D; Raco, B; Gamaletsos, P
2009-12-01
Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (delta(13)C and delta(18)O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO(2) and water during calcite formation and degradation processes. Isotopic change of the initial delta(13)C and delta(18)O in carbonate matrix was caused by alteration of the primary source of CO(2) and H(2)O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO(2) from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter delta(18)O and delta(13)C in lime mortar.
NASA Astrophysics Data System (ADS)
Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin
2018-02-01
This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.
Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.
Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J
2009-02-01
The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.
Assessment and prediction of drying shrinkage cracking in bonded mortar overlays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo
2013-11-15
Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less
Estimation of corrosion damage in steel reinforced mortar using waveguides
NASA Astrophysics Data System (ADS)
Reis, Henrique; Ervin, Benjamin L.; Kuchma, Daniel A.; Bernhard, Jennifer
2005-05-01
Corrosion of reinforced concrete is a chronic infrastructure problem, particularly in areas with deicing salt and marine exposure. To maintain structural integrity, a testing method is needed to identify areas of corroding reinforcement. For purposes of rehabilitation, the method must also be able to evaluate the degree, rate and location of damage. Towards the development of a wireless embedded sensor system to monitor and assess corrosion damage in reinforced concrete, reinforced mortar specimens were manufactured with seeded defects to simulate corrosion damage. Taking advantage of waveguide effects of the reinforcing bars, these specimens were then tested using an ultrasonic approach. Using the same ultrasonic approach, specimens without seeded defects were also monitored during accelerated corrosion tests. Both the ultrasonic sending and the receiving transducers were mounted on the steel rebar. Advantage was taken of the lower frequency (<250 kHz) fundamental flexural propagation mode because of its relatively large displacements at the interface between the reinforcing steel and the surrounding concrete. Waveform energy (indicative of attenuation) is presented and discussed in terms of corrosion damage. Current results indicate that the loss of bond strength between the reinforcing steel and the surrounding concrete can be detected and evaluated.
NASA Astrophysics Data System (ADS)
Setyowati, Erni; Hardiman, Gagoek; Purwanto
2018-02-01
This research aims to determine the acoustical properties of concrete material made of polyurethane and oyster shell waste as both fine aggregate and coarse aggregate comparing to other concrete mortar. Architecture needs aesthetics materials, so the innovation in architectural material should be driven through the efforts of research on materials for building designs. The DOE methods was used by mixing cement, oyster shell, sands, and polyurethane by composition of 160 ml:40 ml:100 ml: 120 ml respectively. Refer to the results of previous research, then cement consumption is reduced up to 20% to keep the concept of green material. This study compared three different compositions of mortars, namely portland cement concrete with gravel (PCG), polyurethane concrete of oyster shell (PCO) and concrete with plastics aggregate (PCP). The methods of acoustical tests were conducted refer to the ASTM E413-04 standard. The research results showed that polyurethane concrete with oyster shell waste aggregate has absorption coefficient 0.52 and STL 63 dB and has a more beautiful appearance when it was pressed into moulding. It can be concluded that polyurethane concrete with oyster shell aggregate (PCO) is well implemented in architectural acoustics-components.
Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge
2016-05-04
Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.
Improved CPAS Photogrammetric Capabilities for Engineering Development Unit (EDU) Testing
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Bretz, David R.
2013-01-01
This paper focuses on two key improvements to the photogrammetric analysis capabilities of the Capsule Parachute Assembly System (CPAS) for the Orion vehicle. The Engineering Development Unit (EDU) system deploys Drogue and Pilot parachutes via mortar, where an important metric is the muzzle velocity. This can be estimated using a high speed camera pointed along the mortar trajectory. The distance to the camera is computed from the apparent size of features of known dimension. This method was validated with a ground test and compares favorably with simulations. The second major photogrammetric product is measuring the geometry of the Main parachute cluster during steady-state descent using onboard cameras. This is challenging as the current test vehicles are suspended by a single-point attachment unlike earlier stable platforms suspended under a confluence fitting. The mathematical modeling of fly-out angles and projected areas has undergone significant revision. As the test program continues, several lessons were learned about optimizing the camera usage, installation, and settings to obtain the highest quality imagery possible.
Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge
2016-01-01
Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study’s objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect. PMID:28773460
Repair and Rehabilitation of Dams: Case Studies
1999-09-01
with fiber - reinforced , acrylic- polymer modi- fied concrete (FRAPMC) and eliminating leakage into the trunnion recesses. FRAPMC consists of mortar...coarse aggregate, and reinforcement fibers . It is mixed in a mortar mixer as a two-component system consisting of a liquid polymer emulsion of...seat was removed and replaced with fiber - reinforced , acrylic- polymer modified concrete (FRAPMC). New bridge seats were installed, allowing for more
Sheikhi, A; van de Ven, T G M
2017-08-11
A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule. The bricks (CNC) reinforce the metallogel, compete with dextran in reacting with AZC, and decouple long-time dextran dynamics from network formation, while the mortar (AZC) imparts bimodality to the dextran diffusion.
Phenomenology and Signal Processing for UXO/Clutter Discrimination
2009-08-01
29 Figure 25. (a) Pasion -Oldenburg model fit to the EMI response of a 4.2 inch mortar aligned transverse to the primary field...b) Comparison between the two-component and Pasion - Oldenburg model fits to the 4.2 inch mortar response...30 Figure 26. Pasion -Oldenburg exponent γ compared to the magnetic crossover time τM for model fits to EMI data collected
Achieving Data Quality within the Logistics Modernization Program
2012-09-01
called blended learning. Instead of solely using the traditional brick -and- mortar classroom, blended learning fuses traditional learning with a...students who attend traditional brick -and- mortar schools (Means, Toyama, Murphy, Bakia, Jones, 2010). As described by Plifka (2011), blended...missions of JMC component organizations whose BOM data was used in this research. 1. Blue Grass Army Depot Located in Richmond, Kentucky, Blue Grass Army
2008-10-01
ER D C/ CR R EL T R -0 8 -1 9 Energetic Residues from Blow-in-Place Detonation of 60-mm and 120-mm Fuzed High-Explosive Mortar Cartridges...Figure 4. Sample filtration setup. ............................................................................................................. 8 ...15 Table 8 . HE munitions BIP and live-fire detonation energetics residues data. .................................. 17 ERDC/CRREL TR-08
NASA Astrophysics Data System (ADS)
Tunstall, Lori Elizabeth
Air voids are deliberately introduced into concrete to provide resistance against frost damage. However, our ability to control air distribution in both traditional and nontraditional concrete is hindered by the limited amount of research available on air-entraining agent (AEA) interaction with both the solid and solution components of these systems. This thesis seeks to contribute to the information gap in several ways. Using tensiometry, we are able to quantify the adsorption capacity of cement, fly ash, and fly ash carbon for four commercial AEAs. These results indicate that fly ash interference with air entrainment is due to adsorption onto the glassy particles tucked inside carbon, rather than adsorption onto the carbon itself. Again using tensiometry, we show that two of the AEA show a stronger tendency to micellize and to interact with calcium ions than the others, which seems to be linked to the freezing behavior in mortars, since mortars made with these AEA require smaller dosages to achieve similar levels of protection. We evaluate the frost resistance of cement and cement/fly ash mortars by measuring the strain in the body as it is cooled and reheated. All of the mortars show some expansion at temperatures ≥ -42 °C. Many of the cement mortars are able to maintain net compression during this expansion, but none of the fly ash mortars maintain net compression once expansion begins. Frost resistance improves with an increase in AEA dosage, but no correlation is seen between frost resistance and the air void system. Thus, another factor must contribute to frost resistance, which we propose is the microstructure of the shell around the air void. The strain behavior is attributed to ice growth surrounding the void, which can plug the pores in the shell and reduce or eliminate the negative pore pressure induced by the ice inside the air void; the expansion would then result from the unopposed crystallization pressure, but this must be verified by future work. If the shell has numerous, tiny pores it is more difficult to eliminate suction, since more ice is needed to plug all the pores.
NASA Astrophysics Data System (ADS)
Carmona-Quiroga, Paula María; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, María Teresa; Martínez-Ramírez, Sagrario
2010-11-01
Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ("Protectosil Antigraffiti" marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur accumulation in hydrated cement mortar is provided by means of EDX. In case of a second anti-graffiti considered, Protectosil, no influence of the anti-graffiti treatment on the SO 2 uptake of any of the building materials was observed.
Ghanei, Amir; Jafari, Faezeh; Mehrinejad Khotbehsara, Mojdeh; Mohseni, Ehsan; Cui, Hongzhi
2017-01-01
In this study, the effects of nano-CuO (NC) on engineering properties of fibre-reinforced mortars incorporating metakaolin (MK) were investigated. The effects of polypropylene fibre (PP) were also examined. A total of twenty-six mixtures were prepared. The experimental results were compared with numerical results obtained by adaptive neuro-fuzzy inference system (ANFIS) and Primal Estimated sub-GrAdient Solver for SVM (Pegasos) algorithm. Scanning Electron Microscope (SEM) was also employed to investigate the microstructure of the cement matrix. The mechanical test results showed that both compressive and flexural strengths of cement mortars decreased with the increase of MK content, however the strength values increased significantly with increasing NC content in the mixture. The water absorption of samples decreased remarkably with increasing NC particles in the mixture. When PP fibres were added, the strengths of cement mortars were further enhanced accompanied with lower water absorption values. The addition of 2 wt % and 3 wt % nanoparticles in cement mortar led to a positive contribution to strength and resistance to water absorption. Mixture of PP-MK10NC3 indicated the best results for both compressive and flexural strengths at 28 and 90 days. SEM images illustrated that the morphology of cement matrix became more porous with increasing MK content, but the porosity reduced with the inclusion of NC. In addition, it is evident from the SEM images that more cement hydration products adhered onto the surface of fibres, which would improve the fibre–matrix interface. The numerical results obtained by ANFIS and Pegasos were close to the experimental results. The value of R2 obtained for each data set (validate, test and train) was higher than 0.90 and the values of mean absolute percentage error (MAPE) and the relative root mean squared error (PRMSE) were near zero. The ANFIS and Pegasos models can be used to predict the mechanical properties and water absorptions of fibre-reinforced mortars with MK and NC. PMID:29065559
[Blending powdered antineoplastic medicine in disposable ointment container].
Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki
2014-01-01
On dispensing powdered antineoplastic medicines, it is important to prevent cross-contamination and environmental exposure. Recently, we developed a method for blending powdered medicine in a disposable ointment container using a planetary centrifugal mixer. The disposable container prevents cross-contamination. In addition, environmental exposure associated with washing the apparatus does not arise because no blending blade is used. In this study, we aimed to confirm the uniformity of the mixture and weight loss of medicine in the blending procedure. We blended colored lactose powder with Leukerin(®) or Mablin(®) powders using the new method and the ordinary pestle and mortar method. Then, the blending state was monitored using image analysis. Blending variables, such as the blending ratio (1:9-9:1), container size (35-125 mL), and charging rate (20-50%) in the container were also investigated under the operational conditions of 500 rpm and 50 s. At a 20% charging rate in a 35 mL container, the blending precision of the mixtures was not influenced by the blending ratio, and was less than 6.08%, indicating homogeneity. With an increase in the charging rate, however, the blending precision decreased. The possible amount of both mixtures rose to about 17 g with a 20% charging rate in a 125 mL container. Furthermore, weight loss of medicines with this method was smaller than that with the pestle and mortar method, suggesting that this method is safer for pharmacists. In conclusion, we have established a precise and safe method for blending powdered medicines in pharmacies.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1970-01-01
A 40-foot-nominal-diameter (12.2-meter) modified ringsail parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. The 41-pound (18.6-kg) test parachute system was deployed from a 239.5-pound (108.6-kg) instrumented payload by means of a deployment mortar when the payload was at an altitude of 171,400 feet (52.3 km), a Mach number of 2.95, and a free-stream dynamic pressure of 9.2 lb/sq ft (440 N/m(exp 2)). The parachute deployed properly, suspension line stretch occurring 0.54 second after mortar firing with a resulting snatch-force loading of 932 pounds (4146 newtons). The maximum loading due to parachute opening was 5162 pounds (22 962 newtons) at 1.29 seconds after mortar firing. The first near full inflation of the canopy at 1.25 seconds after mortar firing was followed immediately by a partial collapse and subsequent oscillations of frontal area until the system had decelerated to a Mach number of about 1.5. The parachute then attained a shape that provided full drag area. During the supersonic part of the test, the average axial-force coefficient varied from a minimum of about 0.24 at a Mach number of 2.7 to a maximum of 0.54 at a Mach number of 1.1. During descent under subsonic conditions, the average effective drag coefficient was 0.62 and parachute-payload oscillation angles averaged about &loo with excursions to +/-20 degrees. The recovered parachute was found to have slight damage in the vent area caused by the attached deployment bag and mortar lid.
Optimization of superplasticizer in portland pozzolana cement mortar and concrete
NASA Astrophysics Data System (ADS)
Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.
2018-02-01
Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.
Dynamic tensile fracture of mortar at ultra-high strain-rates
NASA Astrophysics Data System (ADS)
Erzar, B.; Buzaud, E.; Chanal, P.-Y.
2013-12-01
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.
Potential Standards and Methods for the National Guard’s Homeland Response Force
2011-09-01
rapidly determine a missile launch and probable impact area ( Opall -Rome, 2009). Since 2006, Color Red coverage has expanded throughout the country...Manportable Air Defense (MANPAD) systems, land mines , advanced communication systems, mortars, unmanned air systems (UAS), frequency-hopping...Consequence Management Response Force (CCMRF). Internal document. Opall -Rome, B. (2009, January19). In Israel: Anti-sniper gear spots rockets
NASA Technical Reports Server (NTRS)
Soltysik, B.; Pawelek, A.; Witkowska, E.
1983-01-01
Phosphate binders, particularly acidic phosphates of Al and Cr, are used for binding Al silicate refractories used for lining of burners, SiC refractories, and refractory mortars. The binders have apparent d. 2.13-2.18 g/cu cm, porosity 21.4-23.8%, compressive strength 223 71 kg/ sq cm, total shrinkage 0.2-0.8%, and refractoriness 1240 deg.
18. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. ...
18. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. MORTARS, BOSSES, MOST SHOES, STEMS, TAPPETS, CAMS AND BULL WHEELS ARE CLEARLY VISIBLE AND INTACT. NAMEPLATE CASTING IS CLEARLY VISIBLE ON THE UPPER MORTAR BLOCKS (BELOW CENTER) UNION IRON WORKS, SAN FRANCISCO C-L, SEE CA-290-45 (CT) FOR A SIMILAR COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
Compressive and flexural strength of high strength phase change mortar
NASA Astrophysics Data System (ADS)
Qiao, Qingyao; Fang, Changle
2018-04-01
High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.
[Study on Archaeological Lime Powders from Taosi and Yinxu Sites by FTIR].
Wei, Guo-feng; Zhang, Chen; Chen, Guo-liang; He, Yu-ling; Gao, Jiang-tao; Zhang, Bing-jian
2015-03-01
Archaeological lime powders samples from Taosi and Yinxu sites, natural limestone and experimentally prepared lime mortar were investigated by means of Fourier transform infrared spectrometry (FTIR) to identify the raw material of lime powders from Taosi and Yinxu sites. Results show that ν2/ν4 ratio of calcite resulted from carbonation reaction of man-made lime is around 6.31, which is higher than that of calcite in natural limestone and reflects the difference in the disorder of calcite crystal structure among the natural limestone and prepared lime mortar. With additional grinding, the values of v2 and ν4 in natural limestone and prepared lime mortar decrease. Meanwhile, the trend lines of ν2 versus ν4 for calcite in experimentally prepared lime mortar have a steeper slope when compared to calcite in natural limestone. These imply that ν2/ν4 ratio and the slope of the trend lines of ν2 versus ν4 can be used to determine the archaeological man-made lime. Based on the experiment results, it is possible that the archaeological lime powder from Taosi and Yinxu sites was prepared using man-made lime and the ancient Chinese have mastered the calcining technology of man-made lime in the late Neolithic period about 4 300 years ago.
Ortega, José Marcos; Esteban, María Dolores; Sánchez, Isidro; Climent, Miguel Ángel
2017-10-31
Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO₂ emissions, the clinker replacement by ground granulated blast-furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement.
NASA Astrophysics Data System (ADS)
Mu, Song; Zhou, Huaxin; Shi, Liang; Liu, Jianzhong; Cai, Jingshun; Wang, Feng
2017-10-01
Mostly urban underground sewage is the acidic corrosion environment with a high concentration of aggressive ions and microbe, which resulted in performance deterioration and service-life decrease of sewage concrete pipe. In order to effectively protect durability of the concrete pipe, the present paper briefly analysed the main degradation mechanism of concrete pipe attacked by urban underground sewage, and proposed that using penetrating and strengthening surface sealer based on inorganic chemistry. In addition, using index of compressive strength, weight loss and appearance level to investigate the influence of the sealer on corrosion resistance of mortar samples after different dry-wet cycles. Besides, comparative research on effect of the sealer, aluminate cement and admixture of corrosion resistance was also addressed. At last, the SEM technology was used to reveal the improvement mechanism of different technologies of corrosion resistance. The results indicated that the sealer and aluminate cement can significantly improve corrosion resistance of mortar. Besides, the improvement effect can be described as the descending order: the penetrating and strengthening surface sealer > aluminate cement > admixture of corrosion resistance. The mortar sample treated with the sealer displayed the condensed and sound microstructure which proved that the sealer can improve the corrosion resistance to urban underground sewage.
Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel
2017-09-25
Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.
Integration of launch/impact discrimination algorithm with the UTAMS platform
NASA Astrophysics Data System (ADS)
Desai, Sachi; Morcos, Amir; Tenney, Stephen; Mays, Brian
2008-04-01
An acoustic array, integrated with an algorithm to discriminate potential Launch (LA) or Impact (IM) events, was augmented by employing the Launch Impact Discrimination (LID) algorithm for mortar events. We develop an added situational awareness capability to determine whether the localized event is a mortar launch or mortar impact at safe standoff distances. The algorithm utilizes a discrete wavelet transform to exploit higher harmonic components of various sub bands of the acoustic signature. Additional features are extracted via the frequency domain exploiting harmonic components generated by the nature of event, i.e. supersonic shrapnel components at impact. The further extrapolations of these features are employed with a neural network to provide a high level of confidence for discrimination and classification. The ability to discriminate between these events is of great interest on the battlefield. Providing more information and developing a common picture of situational awareness. Algorithms exploit the acoustic sensor array to provide detection and identification of IM/LA events at extended ranges. The integration of this algorithm with the acoustic sensor array for mortar detection provides an early warning detection system giving greater battlefield information for field commanders. This paper will describe the integration of the algorithm with a candidate sensor and resulting field tests.
The role of material engineering within the concept of an integrated water resources management
NASA Astrophysics Data System (ADS)
Breiner, Raphael; Müller, Harald S.
2016-09-01
By means of a case study, the successful implementation of a rheologically optimised cement-based mortar for the construction as well as for the rehabilitation of rain water cisterns is presented in this paper. The material was developed within the scope of a German-Indonesian joint project ["Integrated Water Resources Management" (IWRM)], funded by the German Federal Ministry of Education and Research. Comprehensive rheological investigations are presented which provide the database for the optimization of the mortar with regard to its intended range of application. For the selection of the source materials, special emphasis was placed on the ready availability at low cost. The rheological properties of the fresh mortar allow an easy workability by hand while the hardened mortar shows a durable and tight appearance at the same time. The developed material can be used as a coating for walls, floors and ceilings of cisterns, for the local rehabilitation of damaged areas only or even as a construction material for complete new cisterns. The future multiplication of the IWRM project results within the region was assured by a local capacity development when the presented material concept was applied in practise in Indonesia for the construction of sustainable rain water cisterns in Gunung Kidul.
Plastering mortar with antibacterial and antifungal properties studied by 1H NMR relaxometry
NASA Astrophysics Data System (ADS)
Jumate, E.; Aciu, C.; Manea, D. L.; Moldovan, D.; Chelcea, R.; Fechete, R.
2017-12-01
The Plastering mortars, with good antibacterial (in particular Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Penicillium chrysogenum) properties, were studied by 1D NMR relaxometry and internal humidity measurements. Three recipes based on plastering mortar with variable content (0, 5 and 10 %) of Ag/ZnO nanopowders and with adequate physical characteristics regarding the mechanical strengths (CS IV), good adhesion to the substrate and low water absorption by capillarity (W2) were considered. The distributions of transverse relaxation times T2 were measured at 2 h after preparation (for mortar pasta) and then for the same samples at 2, 7, and 28 days during the hydration of mineralogical components. The T2 distributions are characterized by four components associated with hydration water and water in three types of pores of different dimension. The dimension of pores formed during hydration process are strongly dependent on the Ag/ZnO nanopowders content but finally at 28 days the pores distributions, as resulted from the T2 distributions, looks similar. Finally, the transverse relaxation ratio was linearly correlated to the compressive strength and the hydration behaviour during 132 days measured with a dedicated humidity sensor embedded inside sampled was discussed.
Pilot Deployment of the LDSD Parachute via a Supersonic Ballute
NASA Technical Reports Server (NTRS)
Tanner, Christopher L.; O'Farrell, Clara; Gallon, John C.; Clark, Ian G.; Witkowski, Allen; Woodruff, Paul
2015-01-01
The Low Density Supersonic Decelerator (LDSD) Project required the use of a pilot system due to the inability to mortar deploy its main supersonic parachute. A mortar deployed 4.4 m diameter supersonic ram-air ballute was selected as the pilot system for its high drag coefficient and stability relative to candidate supersonic parachutes at the targeted operational Mach number of 3. The ballute underwent a significant development program that included the development of a new liquid methanol-based pre-inflation system to assist the ballute inflation process. Both pneumatic and pyrotechnic mortar tests were conducted to verify orderly rigging deployment, bag strip, inflation aid activation, and proper mortar performance. The ballute was iteratively analyzed between fluid and structural analysis codes to obtain aerodynamic and aerothermodynamic estimates as well as estimates of the ballute's structural integrity and shape. The ballute was successfully flown in June 2014 at a Mach number of 2.73 as part of the first LDSD supersonic flight test and performed beyond expectations. Recovery of the ballute indicated that it did not exceed its structural or thermal capabilities. This flight set a historical precedent as it represented the largest ballute to have ever been successfully flown at this Mach number by a NASA entity.
Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl
2012-11-01
Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.
A Novel Face-on-Face Contact Method for Nonlinear Solid Mechanics
NASA Astrophysics Data System (ADS)
Wopschall, Steven Robert
The implicit solution to contact problems in nonlinear solid mechanics poses many difficulties. Traditional node-to-segment methods may suffer from locking and experience contact force chatter in the presence of sliding. More recent developments include mortar based methods, which resolve local contact interactions over face-pairs and feature a kinematic constraint in integral form that smoothes contact behavior, especially in the presence of sliding. These methods have been shown to perform well in the presence of geometric nonlinearities and are demonstratively more robust than node-to-segment methods. These methods are typically biased, however, interpolating contact tractions and gap equations on a designated non-mortar face, which leads to an asymmetry in the formulation. Another challenge is constraint enforcement. The general selection of the active set of constraints is brought with difficulty, often leading to non-physical solutions and easily resulting in missed face-pair interactions. Details on reliable constraint enforcement methods are lacking in the greater contact literature. This work presents an unbiased contact formulation utilizing a median-plane methodology. Up to linear polynomials are used for the discrete pressure representation and integral gap constraints are enforced using a novel subcycling procedure. This procedure reliably determines the active set of contact constraints leading to physical and kinematically admissible solutions void of heuristics and user action. The contact method presented herein successfully solves difficult quasi-static contact problems in the implicit computational setting. These problems feature finite deformations, material nonlinearity, and complex interface geometries, all of which are challenging characteristics for contact implementations and constraint enforcement algorithms. The subcycling procedure is a key feature of this method, handling active constraint selection for complex interfaces and mesh geometries.
NASA Astrophysics Data System (ADS)
Haryati, E.; Dahlan, K.
2018-03-01
According to the SNI, the type of concrete for use as nuclear radiation shielding is concrete or mortar that contains hematite, ilmenite, magnetite, barite, or ferrophosphorus synthesis. This study is focused on the characterization of iron sand from and river sand from Papua. The purpose of this research was to determine the specific content of gravity and minerals in iron sand and river sand from Papua. The specific gravities of the sands were measured by manual experiment in a laboratory, while their mineral content were calculated using XRF and SEM - EDS method. The result showed that the specific gravities of iron sand and river sand were 2.66 and 2.50, respectively. The XRF method revealed that the iron sand contained 41.68% Silica, 33.84% Iron, and 24.48% other minerals. The river sand on the other hand contained 58.98% Silica (Si), 26.87% Iron (Fe), and 14.15% other minerals. The SEM -EDS method showed that the iron sand was composed of 39.99 % SiO2, 21.67 % FeO, and, and 38.34 % others; while the river sand contained 39.28% SiO2, 17.45 % FeO, and 43.27 % others. The result showed that both sands have the potentials to be isolated from hematite minerals or magnetite.
An Investigation at Low Speed of the Spin Instability of Mortar-Shell Tails
NASA Technical Reports Server (NTRS)
Bird, John D.; Lichtenstein, Jacob H.
1957-01-01
An investigation was made in the Langley stability tunnel to study the influence of number of fins, fin shrouding, and fin aspect ratio on the spin instability of mortar-shell tail surfaces. It was found that the 12-fin tails tested spun less rapidly throughout the angle-of-yaw range than did the 6-fin tails and that fin shrouding reduced the spin encountered by a large amount.
Schoenen, D; Thofern, E
1981-12-01
The observation of a microbial growth in form of macrocolonies upon the joints of a tiled drinking water reservoir caused the microbiological testing of different pure mineral and some plastic containing cement mortar. Besides the conditions allowing the growth of macrocolonies on tiled plates with a construction like in a reservoir were examined.
Area Handbook Series: Bulgaria. A Country Study
1992-06-01
officials met with Western officials to stress Bulgaria’s com- mitment to economic and political reform and cement relations with the United States and the...towed guns; and 350 mortars , including the self-propelled 120mm Tun- dzha produced in Bulgaria. The ground forces had 64 launchers for surface-to...remained largely unknown during that period, however. The Tundzha mortar and a few types of armored com- bat vehicles were produced domestically
Possibilities of municipal solid waste incinerator fly ash utilisation.
Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon
2015-08-01
Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Dekayir, Abdelilah; Amouric, Marc; Olives, Juan; Parron, Claude; Nadiri, Abdelilah; Chergui, Abdelkader; El Hajraoui, M. Abdeljalil
2004-09-01
In Volubilis, Roman mosaics are very beautiful and reveal, from the bottom to the surface, three layers: ( i) 'hedgehog' layer, ( ii) coarse grain mortar layer (rudus + nucleus) and ( iii) tesselatum. Mineralogical analysis of coarse grain mortar sampled in Flavius Germanus mosaic shows that it consisted of quartz and calcite, with some feldspar and probably mica and dolomite. Fine-grained mortar in tesselatum is made from a mixture of calcite and quartz only. Limestone tesserae (white, pink and brown) show petrographic facies that change from micritic to oolithic limestone. Conversely, black and brick red tesserae are respectively made of marble, red sandstone and from fire clay. Other colours as yellow, blue, green and grey are obtained from artificial glass with different chemical compositions. To cite this article: A. Dekayir et al., C. R. Geoscience 336 (2004).
NASA Astrophysics Data System (ADS)
Kumavat, Hemraj Ramdas
2016-09-01
The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.
Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars.
Durán-Herrera, A; Campos-Dimas, J K; Valdez-Tamez, P L; Bentz, D P
2016-07-01
In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity ( k ) of the composite. Mortars were produced for three different water/binder ratios by mass ( w/b ), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kg f /cm 2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator.
Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkaya, Ozlem Aslan; Boeke, Hasan, E-mail: hasanboke@iyte.edu.tr
Serapis temple, which was constructed in the Roman period in the city of Pergamon (Bergama/Turkey), is one of the most important monuments of the world heritage. In this study, the characteristics of bricks and mortars used in the temple have been determined in order to define the necessary characteristics of the intervention materials, which will be used in the conservation works of the temple. Several analyses were carried out to determine their basic physical properties, raw material compositions, mineralogical and microstructural properties using X-ray diffraction, Scanning Electron Microscope and a Thermo Gravimetric Analyzer. Analysis results indicated that the mortars aremore » stiff, compact and hydraulic due to the use of natural pozzolanic aggregates. The Roman bricks are of low density, high porosity and were produced from raw materials containing calcium poor clays fired at low temperatures.« less
Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars
Durán-Herrera, A.; Campos-Dimas, J. K.; Valdez-Tamez, P.L.; Bentz, D. P.
2015-01-01
In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity (k) of the composite. Mortars were produced for three different water/binder ratios by mass (w/b), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kgf/cm2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator. PMID:27453717
Sulfate and acid resistant concrete and mortar
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.
Sulfate and acid resistant concrete and mortar
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-06-30
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.
Ludvig, Péter; Calixto, José M.; Ladeira, Luiz O.; Gaspar, Ivan C.P.
2011-01-01
Carbon nanotubes (CNTs) and nanofibers (CNFs) were synthesized on clinker and silica fume particles in order to create a low cost cementitious nanostructured material. The synthesis was carried out by an in situ chemical vapor deposition (CVD) process using converter dust, an industrial byproduct, as iron precursor. The use of these materials reduces the cost, with the objective of application in large-scale nanostructured cement production. The resulting products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) and were found to be polydisperse in size and to have defective microstructure. Some enhancement in the mechanical behavior of cement mortars was observed due to the addition of these nano-size materials. The contribution of these CNTs/CNFs to the mechanical strength of mortar specimens is similar to that of high quality CNTs incorporated in mortars by physical mixture. PMID:28880007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffó, Gustavo, E-mail: duffo@cnea.gov.ar; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires
2015-08-15
The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cementmore » ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.« less
NASA Astrophysics Data System (ADS)
Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.
Jain, M; Bøtter-Jensen, L; Murray, A S; Jungner, H
2002-01-01
In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites and particularly in nuclear installations. These materials contain natural dosemeters such as quartz, which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar in a wall of a low-level radioactive-waste storage facility containing distributed sources of 60Co and 137Cs has been investigated. Dose-depth proliles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose recorded by environmental TLDs.
Mignon, Arn; Devisscher, Dries; Vermeulen, Jolien; Vagenende, Maxime; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra
2017-07-15
Smart pH-responsive superabsorbent polymers (SAPs) could be useful for self-healing of cracks in mortar. They will swell minimally during the alkaline conditions of mixing, leading to only small macro-pores but will swell stronger with a lower pH when water enters the cracks. As such, polysaccharides (alginate, chitosan and agarose) were methacrylated and cross-linked with amine-based monomers (dimethylaminoethyl methacrylate and dimethylaminopropyl methacrylamide) to induce a varying pH-sensitivity. These materials showed a strong cross-linking efficiency and induced moisture uptake capacities up to 122% at 95% relative humidity with a negligible hysteresis. Additionally, interesting pH-responsive swelling capacities were obtained, especially for SAPs based on chitosan and agarose with values up to 110gwater/gSAP. Most of these materials showed limited hydrolysis in cement filtrate solutions, making them very promising for use in mortar. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic tensile fracture of mortar at ultra-high strain-rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.
2013-12-28
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less
NASA Astrophysics Data System (ADS)
Arshadi, Amir
Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were compared. Indirect tensile fatigue tests were conducted on asphalt mixture samples. A comparison between experimental results and the results from simulation shows that the model developed in this study is capable of predicting the effect of asphalt binder properties and aggregate micro-structure on mechanical behavior of asphalt concrete under loading.
High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes
NASA Technical Reports Server (NTRS)
Barth, Timothy (Editor); Deconinck, Herman (Editor)
1999-01-01
The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.
Li, Yuan-Qing; Yu, Ting; Yang, Tian-Yi; Zheng, Lian-Xi; Liao, Kin
2012-07-03
Bio-inspired multifunctional composite films based on reduced poly(vinyl alcohol)/graphene oxide (R-PVA/GO) layers are prepared by a facile solution casting method followed by a reduction procedure. The resulting films with nacre-like, bricks-and-mortar microstructure have excellent mechanical properties, electrical conductivity, and biocompatibility. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bio-inspired heterogeneous composites for broadband vibration mitigation.
Chen, Yanyu; Wang, Lifeng
2015-12-08
Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known "brick and mortar" microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.
Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi
2009-10-01
Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was emitted to the sewer atmosphere, then oxidized to corrosive compounds in the upper and middle parts of the manhole, and only the upper part of the mortar specimens were corroded, because in the middle part of the manhole the generated corrosive compounds (e.g., sulfuric acid) was reduced in the deeper parts of the biofilm.
NASA Astrophysics Data System (ADS)
Habibullah, Parvaiz; Siddiqui, Ghazala; Saleem, Yasir
2017-05-01
Seashells are comprised largely of a brittle ceramic material (calcite, the stuff of chalk) in the form of microscopic slates. Shells, such as the abalones, reinforced with a kind of protein mortar in efforts to evaluate on how seashells repair themselves. We have identified the protein and mechanism on how the protein mortar stretches itself into ligaments that bridge the gap, with the help of scanning electron microscope (SEM).
Charcoal Regeneration. Part 1. Mechanism of TNT Adsorption
1977-11-01
cycle and particle size 29 6 Electron spectra of virgin FS300 as received 30 ii=_ 7 Electron spectrum of TNT standard 31 8 Electron spectrum of TNT in...ground in a mortar and pestle and passed through a series of US standard sieves. The ground charcoal passing through a 325 sieve (average particle...every case were crushed manually in a mortar and pestle and dis- persed ultrasonically in order to obtain a dispersion suitable for measurement. Mass
2005 9th Annual Army Small Business Conference
2005-11-03
field commanders who conduct acquisitions. All the Army’s major commands located in the United States will be represented. The conference...Engineer Squad Vehicle i r i l Mobile Gun System il yst Medical Evacuation Vehicle i l v ti i l Reconnaissance Vehicle iss i l Mortar Carrier rt r rri r...Manned Systems Unmanned Air Vehicles Class I ARV-A (L) Small (Manpackable) UGV Non-Line of Sight Cannon Non-Line of Sight Mortar Medical Treatment and
Applying a System-of-Systems Engineering Perspective to Current and Future Army Acquisitions
2015-06-01
of detecting short- and long-range rockets and mortars. They currently provide detection capability for the C-RAM ( Higgins 2007). The weapon system... Higgins 2007). This is where the Army Air Defense came into play. The decision makers demonstrated understanding that the FAAD C2 and AMDWS...from the mortars 28 will endanger civilians. As stated in Higgins ’ study, “At the tactical level, the clearing of fires before the gun could
Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams
NASA Astrophysics Data System (ADS)
Choi, Eunsoo; Kim, Dong Joo; Hwang, Jin-Ha; Kim, Woo Jin
2016-08-01
This study investigated the prestressing effect of cold-drawn short NiTi shape memory alloy (SMA) fibres in steel reinforced mortar beams. The SMA fibres were mixed with 1.5% volume content in a mortar matrix with the compressive strength of 50 MPa. The SMA fibres had an average length of 34 mm, and they were manufactured with a dog-bone shape: the diameters of the end- and middle-parts were 1.024 and 1.0 mm, respectively. Twenty mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Two types of tests were conducted. One was to investigate the prestressing effect of the SMA fibres, and the beams with the SMA fibres were heated at the bottom. The other was to assess the bending behaviour of the beams prestressed by the SMA fibres. The SMA fibres induced upward deflection and cracking at the top surface by heating at the bottom; thus, they achieved an obvious prestressing effect. The beams that were prestressed by the SMA fibres did not show a significant difference in bending behaviour from that of the SMA fibre reinforced beams that were not subjected to heating. Stress analysis of the beams indicated that the prestressing effect decreased in relation to the cooling temperature.
Esteban, María Dolores
2017-01-01
Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO2 emissions, the clinker replacement by ground granulated blast–furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement. PMID:29088107
Strength Performance of Blended Ash Based Geopolymer Mortar
NASA Astrophysics Data System (ADS)
Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.
2018-03-01
Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.