Sedlacek, J D; Komaravalli, S R; Hanley, A M; Price, B D; Davis, P M
2001-04-01
The Indian meal moth, Plodia interpunctella (Hübner), and Angoumois grain moth, Sitotroga cerealella (Olivier), are two globally distributed stored-grain pests. Laboratory experiments were conducted to examine the impact that corn (Zea mays L.) kernels (i.e., grain) of some Bacillus thuringiensis Berliner (Bt) corn hybrids containing CrylAb Bt delta-endotoxin have on life history attributes of Indian meal moth and Angoumois grain moth. Stored grain is at risk to damage from Indian meal moth and Angoumois grain moth; therefore, Bt corn may provide a means of protecting this commodity from damage. Thus, the objective of this research was to quantify the effects of transgenic corn seed containing CrylAb delta-endotoxin on Indian meal moth and Angoumois grain moth survival, fecundity, and duration of development. Experiments with Bt grain, non-Bt isolines, and non-Bt grain were conducted in environmental chambers at 27 +/- 1 degrees C and > or = 60% RH in continuous dark. Fifty eggs were placed in ventilated pint jars containing 170 g of cracked or whole corn for the Indian meal moth and Angoumois grain moth, respectively. Emergence and fecundity were observed for 5 wk. Emergence and fecundity of Indian meal moth and emergence of Angoumois grain moth were significantly lower for individuals reared on P33V08 and N6800Bt, MON 810 and Bt-11 transformed hybrids, respectively, than on their non-Bt transformed isolines. Longer developmental times were observed for Indian meal moth reared on P33V08 and N6800Bt than their non-Bt-transformed isolines. These results indicate that MON 810 and Bt-11 CrylAb delta-endotoxin-containing kernels reduce laboratory populations of Indian meal moth and Angoumois grain moth. Thus, storing Bt-transformed grain is a management tactic that warrants bin scale testing and may effectively reduce Indian meal moth and Angoumois grain moth populations in grain without application of synthetic chemicals or pesticides.
ERIC Educational Resources Information Center
Albrecht, Kay; Walsh, Katherine
1996-01-01
Describes an early childhood classroom project involving moths that teaches children about moths' development from egg to adult stage. Includes information about the moth's enemies, care, and feeding. Outlines reading, art, music and movement, science, and math activities centering around moths. (BGC)
Hearing diversity in moths confronting a neotropical bat assemblage.
Cobo-Cuan, Ariadna; Kössl, Manfred; Mora, Emanuel C
2017-09-01
The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz. We have analyzed the auditory characteristics of tympanate moths from Cuba, a neotropical island with high levels of bat diversity and a high incidence of echolocation frequencies above those commonly at the upper limit of moths' hearing sensitivity. Moths of the superfamilies Noctuoidea, Geometroidea and Pyraloidea were examined. Audiograms were determined by non-invasively measuring distortion-product otoacoustic emissions. We also quantified the frequency spectrum of the echolocation sounds to which this moth community is exposed. The hearing ranges of moths in our study showed best frequencies between 36 and 94 kHz. High sensitivity to frequencies above 50 kHz suggests that the auditory sensitivity of moths is suited to the sounds used by sympatric echolocating bat fauna. Biodiversity characterizes predators and prey in the Neotropics, but the bat-moth acoustic interaction keeps spectrally matched.
Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi
2015-01-01
The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...
Rapid identification of the Asian gypsy moth and its related species based on mitochondrial DNA.
Wu, Ying; Du, Qiuyang; Qin, Haiwen; Shi, Juan; Wu, Zhiyi; Shao, Weidong
2018-02-01
The gypsy moth- Lymantria dispar (Linnaeus)-is a worldwide forest defoliator and is of two types: the European gypsy moth and the Asian gypsy moth. Because of multiple invasions of the Asian gypsy moth, the North American Plant Protection Organization officially approved Regional Standards for Phytosanitary Measures No. 33. Accordingly, special quarantine measures have been implemented for 30 special focused ports in the epidemic areas of the Asian gypsy moth, including China, which has imposed great inconvenience on export trade. The Asian gypsy moth and its related species (i.e., Lymantria monocha and Lymantria xylina ) intercepted at ports are usually at different life stages, making their identification difficult. Furthermore, Port quarantine requires speedy clearance. As such, it is difficult to identify the Asian gypsy moth and its related species only by their morphological characteristics in a speedy measure. Therefore, this study aimed to use molecular biology technology to rapidly identify the Asian gypsy moth and its related species based on the consistency of mitochondrial DNA in different life stages. We designed 10 pairs of specific primers from different fragments of the Asian gypsy moth and its related species, and their detection sensitivity met the need for rapid identification. In addition, we determined the optimal polymerase chain reaction amplification temperature of the 10 pairs of specific primers, including three pairs of specific primers for the Asian gypsy moth ( L. dispar asiatic ), four pairs of specific primers for the nun moth ( L. monocha ), and three pairs of specific primers for the casuarina moth ( L. xylina ). In conclusion, using our designed primers, direct rapid identification of the Asian gypsy moth and its related species is possible, and this advancement can help improve export trade in China.
Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.
Management of shoot boring moths from genera Rhyacionia and Eucosma with attract and kill technology
R. Hoffman; D. Czokajlo; G. Daterman; J. McLaughlin; J. Webster; < i> et. al.< /i>
2003-01-01
LastCall (LC), an attract and kill bait matrix, was deployed for the management of shoot boring moths in pine plantations and seed orchards. The targeted moths were the Western pine shoot borer, Eucosma sonomana (WPSB), European pine shoot moth, Rhyacionia buoliana (EPSM), Ponderosa pine tip moth, Rhyacionia...
Kenneth W. McCravy; C. Wayne Berisford
2000-01-01
Parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), was studied for four consecutive generations in the Georgia coastal plain by collecting tip moth-infested shoots and rearing adult moths and parasitoids. Nineteen species of parasitoids were collected. Based on numbers of emerging adults, the overall tip moth parasitism rate...
Sex Pheromone of the Almond Moth and the Indian Meal Moth: cis-9, trans-12-Tetradecadienyl Acetate.
Kuwahara, Y; Kitamura, C; Takashi, S; Hara, H; Ishii, S; Fukami, H
1971-02-26
Female moths of different species but belonging to the same subfamily produce an identical compound as their sex pheromone. The sex pheromone of the almond moth, Cadra cautella (Walker), and the Indian meal moth, Plodia interpunctella (Hübner), has been isolated and identified as cis-9, trans-12-tetradecadienyl acetate.
The Gypsy Moth Event Monitor for FVS: a tool for forest and pest managers
Kurt W. Gottschalk; Anthony W. Courter
2007-01-01
The Gypsy Moth Event Monitor is a program that simulates the effects of gypsy moth, Lymantria dispar (L.), within the confines of the Forest Vegetation Simulator (FVS). Individual stands are evaluated with a susceptibility index system to determine the vulnerability of the stand to the effects of gypsy moth. A gypsy moth outbreak is scheduled in the...
Response of Adult Lymantriid Moths to Illumination Devices in the Russian Far East
William E. Wallner; Lee M. Humble; Robert E. Levin; Yuri N. Baranchikov; Ring T. Carde; Ring T. Carde
1995-01-01
In field studies in the Russian Far East, five types of illuminating devices were evaluated for attracting adult gypsy moth, Lymantria dispar (L.), pink gypsy moth, L. mathura Moore, and nun moth, L. monacha (L.). Our objective was to determine if light from commercial lamps suited to out-of-doors floodlighting could be modified to reduce their attractiveness to moths...
T.M. Withers; M.A. Keena
2001-01-01
The lymantriid forest defoliators, Lymantria monacha L. (nun moth) and Lymantria dispar L. (gypsy moth) are particularly severe pests in other countries in the world, but the ability of these moths to utilise and complete development on Pinus radiata D. Don had never been established. In laboratory trials, colonies of central European L. monacha and Russian far east (...
Kang, Chang-ku; Moon, Jong-yeol; Lee, Sang-im; Jablonski, Piotr G.
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis. PMID:24205118
The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community.
ter Hofstede, Hannah M; Goerlitz, Holger R; Ratcliffe, John M; Holderied, Marc W; Surlykke, Annemarie
2013-11-01
Insects with bat-detecting ears are ideal animals for investigating sensory system adaptations to predator cues. Noctuid moths have two auditory receptors (A1 and A2) sensitive to the ultrasonic echolocation calls of insectivorous bats. Larger moths are detected at greater distances by bats than smaller moths. Larger moths also have lower A1 best thresholds, allowing them to detect bats at greater distances and possibly compensating for their increased conspicuousness. Interestingly, the sound frequency at the lowest threshold is lower in larger than in smaller moths, suggesting that the relationship between threshold and size might vary across frequencies used by different bat species. Here, we demonstrate that the relationships between threshold and size in moths were only significant at some frequencies, and these frequencies differed between three locations (UK, Canada and Denmark). The relationships were more likely to be significant at call frequencies used by proportionately more bat species in the moths' specific bat community, suggesting an association between the tuning of moth ears and the cues provided by sympatric predators. Additionally, we found that the best threshold and best frequency of the less sensitive A2 receptor are also related to size, and that these relationships hold when controlling for evolutionary relationships. The slopes of best threshold versus size differ, however, such that the difference in threshold between A1 and A2 is greater for larger than for smaller moths. The shorter time from A1 to A2 excitation in smaller than in larger moths could potentially compensate for shorter absolute detection distances in smaller moths.
Evaluation of pheromone-baited traps for winter moth and Bruce spanworm (Lepidoptera: Geometridae).
Elkinton, Joseph S; Lance, David; Boettner, George; Khrimian, Ashot; Leva, Natalie
2011-04-01
We tested different pheromone-baited traps for surveying winter moth, Operophtera brumata (L.) (Lepidoptera: Geometridae), populations in eastern North America. We compared male catch at Pherocon 1C sticky traps with various large capacity traps and showed that Universal Moth traps with white bottoms caught more winter moths than any other trap type. We ran the experiment on Cape Cod, MA, where we caught only winter moth, and in western Massachusetts, where we caught only Bruce spanworm, Operophtera bruceata (Hulst) (Lepidoptera: Geometridae), a congener of winter moth native to North America that uses the same pheromone compound [(Z,Z,Z)-1,3,6,9-nonadecatetraene] and is difficult to distinguish from adult male winter moths. With Bruce spanworm, the Pherocon 1C sticky traps caught by far the most moths. We tested an isomer of the pheromone [(E,Z,Z)-1,3,6,9-nonadecatetraene] that previous work had suggested would inhibit captures of Bruce spanworm but not winter moths. We found that the different doses and placements of the isomer suppressed captures of both species to a similar degree. We are thus doubtful that we can use the isomer to trap winter moths without also catching Bruce spanworm. Pheromone-baited survey traps will catch both species.
Shedding light on moths: shorter wavelengths attract noctuids more than geometrids
Somers-Yeates, Robin; Hodgson, David; McGregor, Peter K.; Spalding, Adrian; ffrench-Constant, Richard H.
2013-01-01
With moth declines reported across Europe, and parallel changes in the amount and spectra of street lighting, it is important to understand exactly how artificial lights affect moth populations. We therefore compared the relative attractiveness of shorter wavelength (SW) and longer wavelength (LW) lighting to macromoths. SW light attracted significantly more individuals and species of moth, either when used alone or in competition with LW lighting. We also found striking differences in the relative attractiveness of different wavelengths to different moth groups. SW lighting attracted significantly more Noctuidae than LW, whereas both wavelengths were equally attractive to Geometridae. Understanding the extent to which different groups of moth are attracted to different wavelengths of light will be useful in determining the impact of artificial light on moth populations. PMID:23720524
Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks
Wills, Pallara Janardhanan; Anjana, Mohan; Nitin, Mohan; Varun, Raghuveeran; Sachidanandan, Parayil; Jacob, Tharaniyil Mani; Lilly, Madhavan; Thampan, Raghava Varman; Karthikeya Varma, Koyikkal
2016-01-01
Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients’ sera. We selected a cohort of patients (n = 155) with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6%) for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala. PMID:27073878
Innate preference and learning of colour in the male cotton bollworm moth, Helicoverpa armigera.
Satoh, Aya; Kinoshita, Michiyo; Arikawa, Kentaro
2016-12-15
We investigated colour discrimination and learning in adult males of the nocturnal cotton bollworm moth, Helicoverpa armigera, under a dim light condition. The naive moths preferred blue and discriminated the innately preferred blue from several shades of grey, indicating that the moths have colour vision. After being trained for 2 days to take nectar at a yellow disc, an innately non-preferred colour, moths learned to select yellow over blue. The choice distribution between yellow and blue changed significantly from that of naive moths. However, the dual-choice distribution of the trained moths was not significantly biased to yellow: the preference for blue is robust. We also tried to train moths to grey, which was not successful. The limited ability to learn colours suggests that H armigera may not strongly rely on colours when searching for flowers in the field, although they have the basic property of colour vision. © 2016. Published by The Company of Biologists Ltd.
An aerial-hawking bat uses stealth echolocation to counter moth hearing.
Goerlitz, Holger R; ter Hofstede, Hannah M; Zeale, Matt R K; Jones, Gareth; Holderied, Marc W
2010-09-14
Ears evolved in many nocturnal insects, including some moths, to detect bat echolocation calls and evade capture [1, 2]. Although there is evidence that some bats emit echolocation calls that are inconspicuous to eared moths, it is difficult to determine whether this was an adaptation to moth hearing or originally evolved for a different purpose [2, 3]. Aerial-hawking bats generally emit high-amplitude echolocation calls to maximize detection range [4, 5]. Here we present the first example of an echolocation counterstrategy to overcome prey hearing at the cost of reduced detection distance. We combined comparative bat flight-path tracking and moth neurophysiology with fecal DNA analysis to show that the barbastelle, Barbastella barbastellus, emits calls that are 10 to 100 times lower in amplitude than those of other aerial-hawking bats, remains undetected by moths until close, and captures mainly eared moths. Model calculations demonstrate that only bats emitting such low-amplitude calls hear moth echoes before their calls are conspicuous to moths. This stealth echolocation allows the barbastelle to exploit food resources that are difficult to catch for other aerial-hawking bats emitting calls of greater amplitude. Copyright © 2010 Elsevier Ltd. All rights reserved.
Moth tails divert bat attack: evolution of acoustic deflection.
Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y
2015-03-03
Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.
What causes male-biased sex ratios in the gypsy moth parasitoid Glyptapanteles flavicoxis?
R. W. Fuester; K. S. Swan; G. Ramaseshiah
2007-01-01
Glyptapanteles flavicoxis (Marsh) is an oligophagous, gregarious larval parasitoid of the Indian gypsy moth, Lymantria obfuscata (Walker), that readily attacks the European gypsy moth, Lymantria dispar (L.). This species is believed to have potential for inundative releases against gypsy moth populations, because...
Blomefield, T; Carpenter, J E; Vreysen, M J B
2011-06-01
The sterile insect technique (SIT) is a proven effective control tactic against lepidopteran pests when applied in an areawide integrated pest management program. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of sterile insects could be made more cost-effective through the importation of sterile moths produced in other production centers. For codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), this is an attractive option because mating studies have confirmed the absence of mating barriers between codling moth populations from geographically different areas. To assess the feasibility of long-distance transportation of codling moths, pupae and adult moths were transported in 2004 from Canada to South Africa in four shipments by using normal commercial transport routes. The total transport time remained below 67 h in three of the consignments, but it was 89 h in the fourth consignment. Temperature in the shipping boxes was fairly constant and remained between -0.61 and 0.16 degrees C for 76.8-85.7% of the time. The data presented indicate that transporting codling moths as adults and pupae from Canada to South Africa had little effect on moth emergence, longevity, and ability to mate, as assessed in the laboratory. These results provide support to the suggestion that the STT for codling moth in pome fruit production areas might be evaluated and implemented by the importation of irradiated moths from rearing facilities in a different country or hemisphere.
A diversity of moths (Lepidoptera) trapped with two feeding attractants
USDA-ARS?s Scientific Manuscript database
Feeding attractants for moths are useful as survey tools to assess moth species diversity, and for monitoring of the relative abundance of certain pest species. We assessed the relative breadth of attractiveness of two such lures to moths, at sites with varied habitats during 2006. Eighty-six of the...
Caripito itch: dermatitis from contact with Hylesia moths.
Dinehart, S M; Archer, M E; Wolf, J E; McGavran, M H; Reitz, C; Smith, E B
1985-11-01
Caripito itch, a pruritic dermatosis rarely seen in the United States, is caused by contact with moths of the genus Hylesia--specifically, with urticating abdominal hairs of the adult female moth. The purpose of this study was to investigate an outbreak of Caripito itch that occurred in thirty-four of thirty-five crew members of a British oil tanker who were exposed to Hylesia moths at the port of Caripito, Venezuela. Methods of investigation included general history and physical examination of all crew members, complete inspection of the ship, transparent-tape slide preparations from involved skin, cutaneous histopathologic studies, and entomologic examination of the moths. The patients had a typical papulourticarial eruption, primarily on exposed surfaces. Although Hylesia moths do not occur in the United States, primary care physicians and dermatologists, especially those located in port cities, should be aware of cutaneous lepidopterism caused by Hylesia moths.
Relative potencies of gypsy moth nucleopolyhedrovirus genotypes isolated from Gypchek
J.D. Podgwaite; R.T. Zerillo; J.M. Slavicek; N. Hayes-Plazolles
2011-01-01
Gypchek is a gypsy moth (Lymantria dispar L.) - specific biopesticide whose primary use is for treating areas where environmental concerns outweigh the use of broad-spectrum pesticides for gypsy moth management. Gypchek is a lyophilized powder produced from larvae that have been infected with the gypsy moth nucleopolyhedrovirus (LdMNPV). The product...
7 CFR 301.45-10 - Movement of live gypsy moths.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live gypsy moths. 301.45-10 Section 301.45... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Gypsy Moth § 301.45-10 Movement of live gypsy moths. Regulations requiring a permit for, and otherwise governing the movement of, live...
Ratcliffe, John M; Fullard, James H; Arthur, Benjamin J; Hoy, Ronald R
2009-06-23
Echolocating bats and eared moths are a model system of predator-prey interaction within an almost exclusively auditory world. Through selective pressures from aerial-hawking bats, noctuoid moths have evolved simple ears that contain one to two auditory neurons and function to detect bat echolocation calls and initiate defensive flight behaviours. Among these moths, some chemically defended and mimetic tiger moths also produce ultrasonic clicks in response to bat echolocation calls; these defensive signals are effective warning signals and may interfere with bats' ability to process echoic information. Here, we demonstrate that the activity of a single auditory neuron (the A1 cell) provides sufficient information for the toxic dogbane tiger moth, Cycnia tenera, to decide when to initiate defensive sound production in the face of bats. Thus, despite previous suggestions to the contrary, these moths' only other auditory neuron, the less sensitive A2 cell, is not necessary for initiating sound production. However, we found a positive linear relationship between combined A1 and A2 activity and the number of clicks the dogbane tiger moth produces.
Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills.
Doud, C W; Phillips, T W
2000-12-01
Studies were conducted at two flour mills where male Indian meal moths, Plodia interpunctella (Hübner), were captured using pheromone-baited traps. Objectives were to determine the distribution of male P. interpunctella at different locations in and around the mills throughout the season, and to monitor moth activity before and after one of the mills was fumigated with methyl bromide to assess efficacy of treatment. Commercially available sticky traps baited with the P. interpunctella sex pheromone were placed at various locations outside and within the larger of the two mills (mill 1). Moths were captured inside mill 1 after methyl bromide fumigations. The highest numbers of P. interpunctella were caught outside the facility and at ground floor locations near outside openings. Additional traps placed in the rooms above the concrete stored-wheat silos at mill 1 during the second year captured more moths than did traps within the mill's production and warehouse areas. In another study, moths were trapped at various distances from a smaller flour mill (mill 2) to determine the distribution of moths outdoors relative to the mill. There was a negative correlation between moth capture and distance from the facility, which suggested that moth activity was concentrated at or near the flour mill. The effectiveness of the methyl bromide fumigations in suppressing moth populations could not be assessed with certainty because moths captured after fumigation may have immigrated from outside through opened loading bay warehouse doors. This study documents high levels of P. interpunctella outdoors relative to those recorded inside a food processing facility. Potential for immigration of P. interpunctella into flour mills and other stored product facilities from other sources may be greater than previously recognized. Moth entry into a food processing facility after fumigation is a problem that should be addressed by pest managers.
Zhu, Hongyu; Kumar, Sunil; Neven, Lisa G
2017-07-01
Codling moth (Cydia pomonella L.) is an internal feeding pest of apples and can cause substantial economic losses to fruit growers due to larval feeding which in turn degrades fruit quality and can result in complete crop loss if left uncontrolled. Although this pest originally developed in central Asia, it was not known to occur in China until 1953. For the first three decades the spread of codling moth within China was slow. Within the last three decades, addition of new commercial apple orchards and improved transportation, this pest has spread to over 131 counties in seven provinces in China. We developed regional (China) and global ecological niche models using MaxEnt to identify areas at highest potential risk of codling moth establishment and spread. Our objectives were to 1) predict the potential distribution of codling moth in China, 2) identify the important environmental factors associated with codling moth distribution in China, and 3) identify the different stages of invasion of codling moth in China. Human footprint, annual temperature range, precipitation of wettest quarter, and degree days ≥10 °C were the most important predictors associated with codling moth distribution. Our analysis identified areas where codling moth has the potential to establish, and mapped the different stages of invasion (i.e., potential for population stabilization, colonization, adaptation, and sink) of codling moth in China. Our results can be used in effective monitoring and management to stem the spread of codling moth in China. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator
Warrant, Eric; Frost, Barrie; Green, Ken; Mouritsen, Henrik; Dreyer, David; Adden, Andrea; Brauburger, Kristina; Heinze, Stanley
2016-01-01
The nocturnal Bogong moth (Agrotis infusa) is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW) and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September), Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m). In hundreds of thousands, moths line the interior walls of these cool alpine caves where they “hibernate” over the summer months (referred to as “estivation”). Towards the end of the summer (February and March), the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes clear that the Bogong moth represents a new and very promising model organism for understanding the sensory basis of nocturnal migration in insects. PMID:27147998
USDA-ARS?s Scientific Manuscript database
Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
Multi-year evaluation of mating disruption treatments against gypsy moth
Patrick C. Tobin; Kevin W. Thorpe; Laura M. Blackburn
2007-01-01
Mating disruption is the use of synthetic pheromone flakes that are aerially applied to foliage with the goal of interfering with male gypsy moths? ability to locate females and mate. Mating disruption is the primary tactic against gypsy moth used in the Gypsy Moth Slow-the-Spread Project (STS) [Tobin et al. 2004. Amer. Entomol. 50:200].
A kairomone based attract-and-kill system effective against alfalfa looper (Lepidoptera: Noctuidae).
Camelo, Leonardo de A; Landolt, Peter J; Zack, Richard S
2007-04-01
A chemical lure derived from flowers that are visited by moths attracts male and female alfalfa loopers, Autographa californica (Speyer) (Lepidoptera: Noctuidae). This feeding attractant is dispensed from polypropylene bottles that provide controlled release for several weeks. A killing station was tested in the laboratory, in a screenhouse, and in the field in combination with this lure as an "attract-and-kill" system. Starved alfalfa looper adults (moths) were strongly attracted to the attract-and-kill station in a flight tunnel, and 90.9% of female moths and 87.6% of male moths that contacted the station died. In commercial fields of alfalfa hay, female moths captured in monitoring traps were reduced by 80-93% in plots receiving 125 attract-and-kill stations per hectare. In screenhouse trials using two attract-and-kill stations per screenhouse, oviposition on potted lettuce plants by starved female alfalfa looper moths was reduced by 98.5%. Moths were less likely to be attracted to lures when provided sugar before flight tunnel assays, and oviposition by fed moths was much less affected by attract-and-kill stations in screenhouse trials, compared with starved moths. This method has potential as a means to manage alfalfa looper populations in vegetable and other agricultural crops. However, consideration must be given to competing food and odor sources in the field.
The potential for trichogramma releases to suppress tip moth populations in pine plantations
David B. Orr; Charles P.-C Suh; Michael Philip; Kenneth W. McCravy; Gary L. DeBarr
1999-01-01
Because the Nantucket pine tip moth is a native pest, augmentation (mass-release) of native natural enemies may be the most promising method of tip moth biocontrol. The tip moth has several important egg, larval, and pupal parasitoids. Egg parasitoids are most effective as biocontrol agents because they eliminate the host before it reaches a damaging stage....
K.J. Garner; J.M. Slavicek
1996-01-01
The recent introduction of the Asian gypsy moth (Lymantria dispar L.) into North America has necessitated the development of genetic markers to distinguish Asian moths from the established North American population, which originated in Europe. We used RAPD-PCR to identify a DNA length polymorphism that is diagnostic for the two moth strains. The...
Effect of nucleopolyhedrosis virus on two avian predators of the gypsy moth
J. D. Podgwaite; P. R. Galipeau
1978-01-01
The nucleopolyhedrosis virus (NPV) of the gypsy moth was fed to black-capped chickadees and house sparrows in the form of NPV-infected gypsy moth larvae. Body weight and results of histological examination of organs of treated and control birds indicated that NPV had no apparent short term effect on these two important predators of the gypsy moth.
DNA analysis of the origins of winter moth in New England
Joseph Elkinton; Rodger Gwiazdowski; Marinko Sremac; Roy Hunkins; George. Boettner
2011-01-01
Elkinton et al recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....
Patrick C. Tobin; Laura M. Blackburn
2008-01-01
Gypsy moth (Lymantria dispar L.) spread is dominated by stratified dispersal, and, although spread rates are variable in space and time, the gypsy moth has invaded Wisconsin at a consistently higher rate than in other regions. Allee effects, which act on low-density populations ahead of the moving population that contribute to gypsy moth spread, have...
Gypsy moth role in forest ecosystems: the good, the bad, and the indifferent
Rose-Marie Muzika; Kurt W. Gottschalk
1995-01-01
Despite a century of attempts to control populations of the gypsy moth, it remains one of the most destructive forest pests introduced to North America. Research has yielded valuable, albeit sometimes conflicting information about the effects of gypsy moth on forests. Anecdotal accounts and scientific data indicate that impacts of gypsy moth defoliation can range from...
Marinko Sremac; Joseph Elkinton; Adam Porter
2011-01-01
Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...
Cherry Scallop Shell Moth Pest Alert
John Omer; Debra Allen-Reid
1996-01-01
The cherry scallop shell moth, Hydria prunivorata (Ferguson) is a defoliator of black cherry, and occasional other native cherries throughout its range in eastern North America. The moth?s name is derived from the pattern of alternating dark and light scalloped lines on the wings. The adults which emerge from late May to early August, have a wingspread of about 37mm....
USDA-ARS?s Scientific Manuscript database
Grape berry moth pheromone lures from four manufacturers, Alpha Scents, Inc. (West Linn, OR), ISCA Technologies (Riverside, CA), Suterra (Bend, OR), and Trécé, Inc. (Adair, OK), were evaluated for purity and efficacy of attracting grape berry moth and a non-target torticid moth in vineyards. The pe...
Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review.
MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M
2015-06-01
1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested.
Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in Eastern Massachusetts, USA
Simmons, Michael J.; Lee, Thomas D.; Ducey, Mark J.; Elkinton, Joseph S.; Boettner, George H.; Dodds, Kevin J.
2014-01-01
Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island (NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in New England are currently unknown. Using dendroecological techniques, this study related annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by up to 67% in the same year as defoliation, while earlywood production was reduced by up to 24% in the year following defoliation. Winter moth defoliation was not a strong predictor of radial growth in Acer species. This study is the first to document impacts of novel invasions of winter moth into New England. PMID:26462685
Joseph Elkinton; Natalie Leva; George Boettner; Roy Hunkins; Marinko. Sremac
2011-01-01
Elkinton et al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....
Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A; Guerrero, Angel
2012-01-01
In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the 'female calling plus male seduction' system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.
Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem
French, Steven P.; French, Marilynn G.; Knight, Richard R.
1994-01-01
The ecology of alpine aggregations of army cutworm moths (Euxoa auxiliaris) and the feeding behavior of grizzly bears (Ursus arctos horribilis) at these areas were studied in the Yellowstone ecosystem from 1988 to 1991. Army cutworm moths migrate to mountain regions each summer to feed at night on the nectar of alpine and subalpine flowers, and during the day they seek shelter under various rock formations. Grizzly bears were observed feeding almost exclusively on moths up to 3 months each summer at the 10 moth-aggregation areas we identified. Fifty-one different grizzly bears were observed feeding at 4 of these areas during a single day in August 1991. Army cutworm moths are a preferred source of nutrition for many grizzly bears in the Yellowstone ecosystem and represent a high quality food that is available during hyperphagia.
Artificial night lighting inhibits feeding in moths
van Grunsven, Roy H. A.; Veenendaal, Elmar M.
2017-01-01
One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations. PMID:28250209
Empirical tests of the role of disruptive coloration in reducing detectability
Fraser, Stewart; Callahan, Alison; Klassen, Dana; Sherratt, Thomas N
2007-01-01
Disruptive patterning is a potentially universal camouflage technique that is thought to enhance concealment by rendering the detection of body shapes more difficult. In a recent series of field experiments, artificial moths with markings that extended to the edges of their ‘wings’ survived at higher rates than moths with the same edge patterns inwardly displaced. While this result seemingly indicates a benefit to obscuring edges, it is possible that the higher density markings of the inwardly displaced patterns concomitantly reduced their extent of background matching. Likewise, it has been suggested that the mealworm baits placed on the artificial moths could have created differential contrasts with different moth patterns. To address these concerns, we conducted controlled trials in which human subjects searched for computer-generated moth images presented against images of oak trees. Moths with edge-extended disruptive markings survived at higher rates, and took longer to find, than all other moth types, whether presented sequentially or simultaneously. However, moths with no edge markings and reduced interior pattern density survived better than their high-density counterparts, indicating that background matching may have played a so-far unrecognized role in the earlier experiments. Our disruptively patterned non-background-matching moths also had the lowest overall survivorship, indicating that disruptive coloration alone may not provide significant protection from predators. Collectively, our results provide independent support for the survival value of disruptive markings and demonstrate that there are common features in human and avian perception of camouflage. PMID:17360282
RNA Interference in Moths: Mechanisms, Applications, and Progress
Xu, Jin; Wang, Xia-Fei; Chen, Peng; Liu, Fang-Tao; Zheng, Shuai-Chao; Ye, Hui; Mo, Ming-He
2016-01-01
The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses. PMID:27775569
Sex stimulant and attractant in the Indian meal moth and in the almond moth.
Brady, U E; Tumlinson, J H; Brownlee, R G; Silverstein, R M
1971-02-26
cis-9, trans-12-Tetradecadien-1-yl acetate was isolated from the female Indian meal moth, Plodia interpunctella (Hübner), and the female almond moth, Cadra cautella (Walker). It is the major if not the sole component of the sex stimulatory and attractant pheromone of female Plodia. It is present in the pheromone of the female Cadra along with at least one synergist.
Flight duration and flight muscle ultrastructure of unfed hawk moths.
Wone, Bernard W M; Pathak, Jaika; Davidowitz, Goggy
2018-06-13
Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tympanal mechanics and neural responses in the ears of a noctuid moth
NASA Astrophysics Data System (ADS)
Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.
2011-12-01
Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.
Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review
MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M
2015-01-01
1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested. PMID:25914438
Proceedings, U. S. Department of Agriculture interagency gypsy moth research review 1990
Kurt W. Gottschalk; Mark J. Twery; Shirley I. Smith; [Editors
1991-01-01
Eight invited papers and 68 abstracts of volunteer presentations on gypsy moth biology, ecology, impacts, and management presented at the U. S. Department of Agriculture Interagency Gypsy Moth Research Review.
Photographic guide to crown condition of oaks: use for gypsy moth silviculture
Kurt W. Gottschalk; Russ W. MacFarlane
1993-01-01
Color photographs as guides to assessing crown condition of oaks are provided. Use of crown condition for gypsy moth vulnerability rating and silvicultural treatments to minimize gypsy moth impacts are presented.
C. Wayne Berisford; Donald M. Grosman; [Editors
2002-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) has become a more prevalent pest in the South as pine plantation management has intensified. The Pine Tip Moth Research Consortium was formed in 1995 to increase basic knowledge about the moth and to explore ways to reduce damage. A conference was held in 1999 at the Entomological Society...
Caterpillars and moths: Part I. Dermatologic manifestations of encounters with Lepidoptera.
Hossler, Eric W
2010-01-01
Caterpillars are the larval forms of moths and butterflies and belong to the order Lepidoptera. Caterpillars, and occasionally moths, have evolved defense mechanisms, including irritating hairs, spines, venoms, and toxins that may cause human disease. The pathologic mechanisms underlying reactions to Lepidoptera are poorly understood. Lepidoptera are uncommonly recognized causes of localized stings, eczematous or papular dermatitis, and urticaria. Part I of this two-part series on caterpillars and moths reviews Lepidopteran life cycles, terminology, and the epidemiology of caterpillar and moth envenomation. It also reviews the known pathomechanisms of disease caused by Lepidopteran exposures and how they relate to diagnosis and management. Part II discusses the specific clinical patterns caused by Lepidopteran exposures, with particular emphasis on groups of caterpillars and moths that cause a similar pattern of disease. It also discusses current therapeutic options regarding each pattern of disease.
A plant factory for moth pheromone production
Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P.; Stymne, Sten; Löfstedt, Christer
2014-01-01
Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486
Furukawa, Saori; Kawakita, Atsushi
2017-08-01
Mutualisms are interactions from which both partners benefit but may collapse if mutualists' costs and benefits are not aligned. Host sanctions are one mechanism whereby hosts selectively allocate resources to the more cooperative partners and thereby reduce the fitness of overexploiters; however, many mutualisms lack apparent means of host sanctions. In mutualisms between plants and pollinating seed parasites, such as those between leafflowers and leafflower moths, pollinators consume subsets of the seeds as larval food in return for their pollination service. Plants may select against overexploiters by selectively aborting flowers with a heavy egg load, but in many leafflower species, seeds are fully eaten in some fruits, suggesting that such a mechanism is not present in all species. Instead, the fruits of Breynia vitis-idaea have stalk-like structures (gynophore) through which early-instar moth larvae must bore to reach seeds. Examination of moth mortality in fruits with different gynophore lengths suggested that fruits with longer gynophore had higher moth mortality and, therefore, less seed damage. Most moth mortality occurred at the egg stage or as early larval instar before moths reached the seeds, consistent with the view that gynophore functions to prevent moth access to seeds. Gynophore length was unaffected by plant size, extent of moth oviposition, or geography; thus, it is most likely genetically controlled. Because gynophores do not elongate in related species whose pollinators oviposit directly into the ovary, the gynophore in B. vitis-idaea may have evolved as a defense to limit the cost of the mutualism.
Extremely high frequency sensitivity in a 'simple' ear.
Moir, Hannah M; Jackson, Joseph C; Windmill, James F C
2013-08-23
An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat-moth evolutionary war.
Mitchell, Everett R
2002-05-01
Experiments were conducted in plantings of cabbage in spring 1999 and 2000 to evaluate a novel, new matrix system for delivering sex pheromone to suppress sexual communication by diamondback moth, Plutella xylostella (L.). The liquid, viscous, slow-release formulation contained a combination of diamondback moth pheromone, a blend of Z-11-hexadecenyl acetate, 27%:Z-11-hexadecen-1-ol, 1%:Z-11-tetradecen-1-ol, 9%:Z-11-hexadecenal, 63%, and the insecticide permethrin (0.16% and 6% w/w of total formulated material, respectively). Field trapping experiments showed that the lure-toxicant combination was highly attractive to male moths for at least four weeks using as little as a 0.05 g droplet of formulated material per trap; and the permethrin insecticide had no apparent influence on response of moths to lure baited traps. Small field plots of cabbage were treated with the lure-toxicant-matrix combination using droplets of 0.44 and 0.05 g each applied to cabbage in a grid pattern at densities ranging from 990 to 4396 droplets/ha to evaluate the potential for disrupting sexual communication of diamondback moth. There was no significant difference in the level of suppression of sexual communication of diamondback moth, as measured by captures of males in pheromone-baited traps located in the treated plots, versus moths captured in untreated control plots, among the treatments regardless of droplet size (0.05 or 0.44 g) or number of droplets applied per ha. Plots treated with the smallest droplet size (0.05 g) and with the fewest number of droplets per ha (990) suppressed captures of male diamondback moths > 90% for up to 3 weeks post treatment. Although laboratory assays showed that the lure-toxicant combination was 100% effective at killing the diamondback moth, the mode of action in the field trials was not determined. The results indicate that the liquid, viscous, slow release formulation containing diamondback moth pheromone could be used to effectively suppress sexual communication of this pest in cabbage and other crucifers, although as many as three applications probably would be required for suppression over an entire growing season.
75 FR 81087 - South American Cactus Moth Quarantine; Addition of the State of Louisiana
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
.... After an incubation period following mating, the female South American cactus moth deposits an egg stick... plant. Within a short period of time, the South American cactus moth can destroy whole stands of cactus...
Continuous Influx of Genetic Material from Host to Virus Populations
Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane
2016-01-01
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors. PMID:26829124
Continuous Influx of Genetic Material from Host to Virus Populations.
Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane; Cordaux, Richard; Herniou, Elisabeth A
2016-02-01
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.
Hunter, Mark D; Kozlov, Mikhail V; Itämies, Juhani; Pulliainen, Erkki; Bäck, Jaana; Kyrö, Ella-Maria; Niemelä, Pekka
2014-06-01
Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations appear buffered at present from potential deleterious effects of climate change by other ecological forces. © 2014 John Wiley & Sons Ltd.
Using silviculture to minimize gypsy moth impacts
Kurt W. Gottschalk
1989-01-01
Silvicultural treatments can be used to minimize gypsy moth impacts on hardwood stands. There are two major strategies of these treatments: (1) to decrease susceptibility to defoliation by gypsy moth and (2) to strengthen the stand against mortality and encourage growth after defoliation.
Extremely high frequency sensitivity in a ‘simple’ ear
Moir, Hannah M.; Jackson, Joseph C.; Windmill, James F. C.
2013-01-01
An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat–moth evolutionary war. PMID:23658005
The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern
Jourdain, F.; Girod, R.; Vassal, J.M.; Chandre, F.; Lagneau, C.; Fouque, F.; Guiral, D.; Raude, J.; Robert, V.
2012-01-01
The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as “papillonite” in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first “papillonite” epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health. PMID:22550622
Camouflage through an active choice of a resting spot and body orientation in moths.
Kang, C-K; Moon, J-Y; Lee, S-I; Jablonski, P G
2012-09-01
Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species-specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths' crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth's cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.
Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming
2010-08-01
Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.
Interaction between gypsy moth (Lymantria dispar L.) and some competitive defoliators
Milka M. Glavendeki& #263;
2007-01-01
Insect defoliators liable to frequent or occasional outbreaks can endanger forestry production and disturb the stability of forest ecosystems. There were studied life cycles, parasitoids, predators and population dynamics of leaf rollers, the winter moths, noctuids and gypsy moth, which occur in oak forests.
Does thinning affect gypsy moth dynamics?
Andrew M. Liebhold; Rose-Marie Muzika; Kurt W. Gottschalk
1998-01-01
In northeastern U.S. forests there is considerable variation in susceptibility (defoliation potential) and vulnerability (tree mortality) to gypsy moth (Lymantria dispar [L.]). Thinning has been suggested as a way to reduce susceptibility and/or vulnerability. We evaluated how thinning affected the dynamics of gypsy moth populations by experimentally...
U.S. EPA, Pesticide Product Label, DECORATOR MOTHINE KILLS MOTHS, 04/18/1967
2011-04-14
... d --o-~~,. t'- I CA.\\.'-JI KILLS MOTHS (" 'f 'J 1\\ \\'i!!,\\.r!"'''f'··(I' • \\.,1 'il'lJI1t"\\I'I,.i;' 'j ... i , KILLS MOTHS eggs • larvae carpet beetles spiders • silverfish ...
Boyd E. Wickman; Richard R. Mason; Galen C. Trostle
1981-01-01
The Douglas-fir tussock moth (Orgyia pseudotsugata McDunnough) is an important defoliator of true firs and Douglas-fir in Western North America. Severe tussock moth outbreaks have occurred in British Columbia, Idaho, Washington, Oregon, Nevada, California, Arizona, and New Mexico, but the area subject to attack is more extensive
Monitoring and Managing Codling Moth Clearly and Precisely
USDA-ARS?s Scientific Manuscript database
Studies were conducted in two ‘Comice’ pear orchards treated with sex pheromone in southern Oregon to implement the use of site-specific management practices for codling moth. The density of monitoring traps was increased and insecticide sprays were applied based on moth catch thresholds. Only porti...
Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...
Defoliation potential of gypsy moth
David A. Gansner; David A. Drake; Stanford L. Arner; Rachel R. Hershey; Susan L. King; Susan L. King
1993-01-01
A model that uses forest stand characteristics to estimate the likelihood of gypsy moth (Lymantria dispar L.) defoliation has been developed. It was applied to recent forest inventory plot data to produce susceptibility ratings and maps showing current defoliation potential in a seven-state area where gypsy moth is an immediate threat.
Daniel T. Jennings; Robert E. Stevens
1982-01-01
The southwestern pine tip moth, Rhyacionia neomexicana (Dyar), injures young ponderosa pines (Pinus ponderosa Dougl. ex Laws) in the Southwest, central Rockies, and midwestern plains. Larvae feed on and destroy new, expanding shoots, often seriously reducing terminal growth of both naturally regenerated and planted pines. The tip moth is especially damaging to trees on...
Code of Federal Regulations, 2011 CFR
2011-01-01
... area if the results of two successive annual Federal or State delimiting trapping surveys of the area conducted in accordance with Section II, “Survey Procedures—Gypsy Moth,” of the Gypsy Moth Treatment Manual show that the average number of gypsy moths caught per trap in the second delimiting survey (when...
Parasitoid complex of the bird cherry ermine moth, Yponomeuta evonymellus, in Korea
USDA-ARS?s Scientific Manuscript database
The parasitoid complex of Yponomeuta evonymellus L. (Lepidoptera: Yponomeutidae), the bird cherry ermine moth, was sought in the Republic of Korea (South Korea) with the goal of identifying potential biological controls of the moth. 13 primary and two secondary parasitoids were found. Diadegma armil...
Kurt W. Gottschalk; Mark J. Twery; [Editors
1992-01-01
Contains abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum on gypsy moth.
Biology and population dynamics of the cactus moth, Cactoblastis cactorum
USDA-ARS?s Scientific Manuscript database
The cactus moth, Cactoblastis cactorum, was a successful biological control agent against prickly pear cacti in Australia in the 1920’s. Since then, it was introduced to other countries including the Carribean islands. In 1989, the cactus moth was reported in Florida and has continued to spread nort...
USDA-ARS?s Scientific Manuscript database
Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...
Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths
USDA-ARS?s Scientific Manuscript database
Two chitin synthase genes were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the coding sequences for the two ge...
Sex pheromones of the southern armyworm moth: isolation, identification, and synthesis.
Jacobson, M; Redfern, R E; Jones, W A; Aldridge, M H
1970-10-30
Two sex pheromones have been isolated from the female southern armyworm moth, Prodenia eridania (Cramer), and identified as cis-9-tetradecen-1-ol acetate, identical with the sex pheromone of the fall armyworm moth, Spodoptera frugiperda (J. E. Smith), and cis-9,trans-12-tetradecadien-1-ol acetate.
Guidelines for the use of GYPCHEK to control the gypsy moth
Franklin B. Lewis; Michael L. McManus; Noel F. Schneeberger
1979-01-01
This paper presents positive and negative attributes of GYPCHEK for evaluation by land managers contemplating gypsy moth control. Special precautions and procedures are outlined. Environmental and ecological considerations are discussed and results to be expected from the use of GYPCHEK in gypsy moth control are presented.
Overview: Pyraloidea adults (Insecta: Lepidoptera)
USDA-ARS?s Scientific Manuscript database
There are over 16,000 species of pyraloid or snout moths worldwide and many are pests of crops and stored products. The purpose of this video is twofold: to provide an overview of the current, modern classification of snout moths and to provide tools using morphology to identify adult snout moths t...
Alternate hosts of Blepharipa pratensis (Meigen)
Paul A. Godwin; Thomas M. Odell
1977-01-01
A current tactic for biological control of the gypsy moth, Lymantria dispar Linnaeus, is to release its parasites in forests susceptible to gypsy moth damage before the gypsy moth arrives. The basic assumption in these anticipatory releases is that the parasites can find and utilize native insects as hosts in the interim. Blepharipa...
Akite, Perpetra; Telford, Richard J; Waring, Paul; Akol, Anne M; Vandvik, Vigdis
2015-01-01
Forest-dependent biodiversity is threatened throughout the tropics by habitat loss and land-use intensification of the matrix habitats. We resampled historic data on two moth families, known to play central roles in many ecosystem processes, to evaluate temporal changes in species richness and community structure in three protected forests in central Uganda in a rapidly changing matrix. Our results show some significant declines in the moth species richness and the relative abundance and richness of forest-dependent species over the last 20–40 years. The observed changes in species richness and composition among different forests, ecological types, and moth groups highlight the need to repeatedly monitor biodiversity even within protected and relatively intact forests. PMID:25937916
Zaspel, Jennifer M.; Kononenko, Vladimir S.; Ignell, Rickard; Hill, Sharon R.
2016-01-01
The host preference of the economically important fruit piercing moth, Calyptra lata (Butler 1881), was studied when exposed to different fruits and the odors of those fruits in enclosed feeding assays and in a two-choice olfactometer. The fruits consisted of three ripe and locally available types: raspberries, cherries and plums. Moths were released in cages with the ripened fruit and observed for any feeding events, which were then documented. Moths fed on both raspberries and cherries, but not on plums. To test the role of olfactory cues in fruit preference, male moths were released singly in the two choice olfactometer, with one type of fruit odor released in one arm and background control air in the other. The behavior of the moths was recorded on video. Parameters scored were 1) time to take off, 2) flight duration and 3) total time to source contact. The moths showed a significant preference for raspberry odor, exhibited a neutral response to cherry odor and significantly avoided the odor of plums. These results indicate that Calyptra lata demonstrates selective polyphagic feeding behavior and uses olfactory cues from both preferred and non-preferred fruits to detect and locate potential food sources. The possible implications for pest control are discussed. PMID:27324579
Adams, C. G.; Schenker, J. H.; McGhee, P. S.; Gut, L. J.; Brunner, J. F.
2017-01-01
Abstract Novel methods of data analysis were used to interpret codling moth (Cydia pomonella) catch data from central-trap, multiple-release experiments using a standard codlemone-baited monitoring trap in commercial apple orchards not under mating disruption. The main objectives were to determine consistency and reliability for measures of: 1) the trapping radius, composed of the trap’s behaviorally effective plume reach and the maximum dispersive distance of a responder population; and 2) the proportion of the population present in the trapping area that is caught. Two moth release designs were used: 1) moth releases at regular intervals in the four cardinal directions, and 2) evenly distributed moth releases across entire approximately 18-ha orchard blocks using both high and low codling moth populations. For both release designs, at high populations, the mean proportion catch was 0.01, and for the even release of low populations, that value was approximately 0.02. Mean maximum dispersive distance for released codling moth males was approximately 260 m. Behaviorally effective plume reach for the standard codling moth trap was < 5 m, and total trapping area for a single trap was approximately 21 ha. These estimates were consistent across three growing seasons and are supported by extraordinarily high replication for this type of field experiment. Knowing the trapping area and mean proportion caught, catch number per single monitoring trap can be translated into absolute pest density using the equation: males per trapping area = catch per trapping area/proportion caught. Thus, catches of 1, 3, 10, and 30 codling moth males per trap translate to approximately 5, 14, 48, and 143 males/ha, respectively, and reflect equal densities of females, because the codling moth sex ratio is 1:1. Combined with life-table data on codling moth fecundity and mortality, along with data on crop yield per trapping area, this fundamental knowledge of how to interpret catch numbers will enable pest managers to make considerably more precise projections of damage and therefore more precise and reliable decisions on whether insecticide applications are justified. The principles and methods established here for estimating absolute codling moth density may be broadly applicable to pests generally and thereby could set a new standard for integrated pest management decisions based on trapping. PMID:28131989
Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés
Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor.
“This is not an apple”–yeast mutualism in codling moth
USDA-ARS?s Scientific Manuscript database
1. The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes lar...
Mortality Risks for Forest Trees Threatened with Gypsy Moth Infestation
Owen W. Herrick; David A. Gansner; David A. Gansner
1987-01-01
Presents guidelines for estimating potential tree mortality associated with gypsy moth defoliation. A tree's crown condition, crown position, and species group can be used to assign probabilities of death. Forest-land managers need such information to develop marking guides and implement silvicultural treatments for forest trees threatened with gypsy moth...
Sampling low-density gypsy moth populations
William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker
1991-01-01
The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...
Forecasting gypsy moth egg-mass density
Robert W. Campbell; Robert W. Campbell
1973-01-01
Several multiple regression models for gypsy moth egg-mass density were developed from data accumulated in eastern New England between 1911 and 1931. Analysis of these models indicates that: (1) The gypsy moth population system was relatively stable in either the OUTBREAK phase or the INNOCUOUS one; (2) Several naturally occurring processes that could terminate the...
Using silviculture to minimize gypsy moth impacts
Kurt W. Gottschalk
1991-01-01
Several studies are underway to test and evaluate the use of silvicultural treatments to minimize gypsy moth impacts. Treatment objectives are to change stand susceptibility to gypsy moth defoliation or stand vulnerability to damage after defoliation. Decision charts have been developed to help forest and land managers to select the appropriate treatment for their...
Sandra L. C. Fosbroke; Kurt W. Gottschalk; [Editors
2003-01-01
Contains 75 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
Kurt W., ed. Gottschalk
2008-01-01
Contains 60 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species.
Kurt W., ed. Gottschalk
2004-01-01
Contains 56 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
Sandra L.C. Fosbroke; Kurt W., Gottschalk
2001-01-01
Contains 68 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum of gypsy moth and other invasive species.
Kurt W. Gottschalk
2005-01-01
Contains 61 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U. S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
Pear Ester – from discovery to delivery, new tools to manage Codling Moth
USDA-ARS?s Scientific Manuscript database
The chemical ecology of codling moth, Cydia pomonella (L.), has been the subject of a world-wide research effort resulting in hundreds of publications in peer-reviewed journals. The initial focus of this work was characterization of the sexual behavior of the moth and identification of its sex phero...
The North Kaibab pandora moth outbreak, 1978-1984
J. M. Schmid; D. D. Bennett
1988-01-01
A pandora moth outbreak in Arizona was studied from 1979 to 1985 to determine the moth's life cycle, densities, and distribution of life stages, larval and adult behavior, effects of the defoliation, sampling procedures, importance of biotic mortality factors, and the effectiveness of insecticides. This report summarizes the available published and unpublished...
Hazard rating forest stands for gypsy moth
Ray R., Jr. Hicks
1991-01-01
A gypsy moth hazard exists when forest conditions prevail that are conducive to extensive damage from gypsy moth. Combining forest hazard rating with information on insect population trends provides the basis for predicting the probability (risk) of an event occurring. The likelihood of defoliation is termed susceptibility and the probability of damage (mortality,...
Effects of gypsy moth outbreaks on North American woodpeckers
Walter D. Koenig; Eric L. Walters; Andrew M. Liebhold
2011-01-01
We examined the effects of the introduced gypsy moth (Lymantria dispar) on seven species of North American woodpeckers by matching spatially explicit data on gypsy moth outbreaks with data on breeding and wintering populations. In general, we detected modest effects during outbreaks: during the breeding season one species, the Red-headed Woodpecker...
USDA-ARS?s Scientific Manuscript database
The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a major pest of pome fruit worldwide. The inclusion of semiochemicals, including the main sex pheromone (codlemone), in codling moth IPM programs has drastically reduced the amount of chemical insecticides needed to control this ...
Forest stand conditions after 13 years of gypsy moth infestation
David L. Feicht; Sandra L. C. Fosbroke; Mark J. Twery
1993-01-01
Of 603 central Pennsylvania plots that were established in 1978 to measure the short-term impact of repeated gypsy moth (Lymantria dispar) defoliation, 228 were selected for continued study in 1985. Individual observations of defoliation and tree vigor were continued through 1992. Although two gypsy moth outbreaks occurred across central Pennsylvania...
Samita Limbu; Melody Keena; Fang Chen; Gericke Cook; Hannah Nadel; Kelli Hoover
2017-01-01
Periodic introductions of the Asian subspecies of gypsy moth, Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky, in North America are threatening forests and interrupting foreign trade. Although Asian gypsy moth has similar morphology to that of European and North American gypsy moth, it has several...
USDA-ARS?s Scientific Manuscript database
Field studies evaluated the relative performance of a clear versus several colored delta traps baited with sex pheromone or a food bait for two key moth pests of stone fruits: oriental fruit moth, Graphollita molesta (Busck); and peach twig borer, Anarsia lineatella Zeller. Preliminary studies found...
Enzyme immunoassays for detection of gypsy moth nuclear polyhedrosis virus
Michael Ma
1985-01-01
Enzyme-linked immunosorbent assays (ELISA) were developed for detecting gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (NPV). They were used to detect the presence of NPV in hemoplymph samples collected from infected larvae. The incorporation of hybridoma antibodies with these procedures would make them even more specific for gypsy moth...
Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity
Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson
2009-01-01
Outbreaks of many forest-defoliating insects are synchronous over broad geographic areas and occur with a period of approximately 10 years. Within the range of the gypsy moth in North America, however, there is considerable geographic heterogeneity in strength of periodicity and the frequency of outbreaks. Furthermore, gypsy moth outbreaks exhibit two significant...
USDA Forest Service; Maine Forest Service; National Park Service
2002-01-01
The browntail moth, Euproctis chrysorrhoea, a native of Europe, was first found in North America in Somerville, Massachusetts, in the spring of 1897. The lack of natural control agents contributed to its rapid spread throughout the Northeast. By 1915, the moth's range included most of the area east of the Connecticut River and as far north as Nova Scotia....
Douglas-fir tussock moth: an annotated bibliography.
Robert W. Campbell; Lorna C. Youngs
1978-01-01
This annotated bibliography includes references to 338 papers. Each deals in some way with either the Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough), or a related species. Specifically, 210 publications and 82 unpublished documents make some reference, at least, to the Douglas-fir tussock moth; 55 are concerned with other species in...
78 FR 63369 - Gypsy Moth Generally Infested Areas; Additions in Wisconsin
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
.... APHIS-2012-0075] Gypsy Moth Generally Infested Areas; Additions in Wisconsin AGENCY: Animal and Plant... Wisconsin to the list of generally infested areas based on the detection of infestations of gypsy moth in...- 0075), we amended Sec. 301.45-3(a) by adding portions of Wisconsin to the list of generally infested...
Interactions between nuclear polyhedrosis virus and Nosema sp. infecting gypsy moth
L. S. Bauer; M. McManus; J. Maddox
1991-01-01
Nuclear polyhedrosis virus (NPV) is the only entomopathogen that plays an important role in the natural regulation of North American gypsy moth populations. Recent European studies suggest that populations of gypsy moth in Eurasia are regulated primarily by the interactions between NPV and several species of microsporidia. Researchers have proposed that the...
R. E. Webb; M. Shapiro; J. D. Podgwaite; D. D. Cohen; R. L. Ridgway
1991-01-01
The "Abington" isolate of the nuclear polyhedrosis virus (NPV) of the gypsy moth (Lymantria dispar L.) was compared with a formulation of Gypchek against a natural gypsy moth population in the Swallow Falls State Forest in Garrett County, MD.
Leading edge gypsy moth population dynamics
M. R. Carter; F. W. Ravlin; M. L. McManus
1991-01-01
Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...
Field Comparison of Spruce Budworm Pheromone Lures
David G. Grimble
1987-01-01
Four types of spruce budworm pheromone lures were tested to compare field longevity and efficiency. Biolures with three different pheromone release rates and Silk-PVC lures all caught male budworm moths throughout the moth flight period in proportion to the different release rates. Fumigant strips in traps to kill trapped moths were necessary.
Tip moth parasitoids and pesticides: Are they compatible?
Kenneth W. McCravy; Mark J. Dalusky; C. Wayne Berisford
1999-01-01
Effects of herbicide and insecticide applications on parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) were examined in 2-yr-old loblolly pine (Pinus taeda L.) plantations in Georgia. Total parasitism rates varied significantly among tip moth generations, but there were no differences in parasitism rates between herbicide-treated and untreated...
Gut content analysis of arthropod predators of codling moth in Washington apple orchards
USDA-ARS?s Scientific Manuscript database
More than 70% of pome fruits in the USA are produced in central Washington State. The codling moth, Cydia pomonella (L.) is consistently the most damaging pest. We used polymerase chain reaction (PCR) to amplify codling moth DNA in 2591 field-collected arthropod predators to estimate predation in s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jia; Zhang, Ziang; Weng, Zhankun
This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beammore » laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.« less
Insect cyborgs: a new frontier in flight control systems
NASA Astrophysics Data System (ADS)
Reissman, Timothy; Crawford, Jackie H.; Garcia, Ephrahim
2007-04-01
The development of a micro-UAV via a cybernetic organism, primarily the Manduca sexta moth, is presented. An observer to gather output data of the system response of the moth is given by means of an image following system. The visual tracking was implemented to gather the required information about the time history of the moth's six degrees of freedom. This was performed with three cameras tracking a white line as a marker on the moth's thorax to maximize contrast between the moth and the marker. Evaluation of the implemented six degree of freedom visual tracking system finds precision greater than 0.1 mm within three standard deviations and accuracy on the order of 1 mm. Acoustic and visual response systems are presented to lay the groundwork for creating a stochastic response catalog of the organisms to varied stimuli.
Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E
2013-09-01
The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.
Bates, Adam J.; Sadler, Jon P.; Grundy, Dave; Lowe, Norman; Davis, George; Baker, David; Bridge, Malcolm; Freestone, Roger; Gardner, David; Gibson, Chris; Hemming, Robin; Howarth, Stephen; Orridge, Steve; Shaw, Mark; Tams, Tom; Young, Heather
2014-01-01
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria. However, vulnerable species were more strongly negatively affected by urbanization than increasing species. Two hypotheses are proposed to explain this observation: (1) that the underlying factors causing declines in vulnerable species (e.g., possibilities include fragmentation, habitat deterioration, agrochemical pollution) across Britain are the same in urban areas, but that these deleterious effects are more intense in urban areas; and/or (2) that urban areas can act as ecological traps for some vulnerable species of moth, the light drawing them in from the surrounding landscape into sub-optimal urban habitats. PMID:24475197
Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen
2015-01-01
The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558
[Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].
Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A
2015-01-01
The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynn, S.R.; Swanson, M.C.; Reed, C.E.
1988-07-01
With an immunochemical method, we analyzed outdoor air samples during a 3-year period for concentrations of the predominant local species of moth, Pseudaletia unipuncta (Haworth). Airborne particulates were collected on fiberglass filter sheets with an Accu-Vol sampler located 1.5 m above ground on the southeastern Minnesota prairie. Filter eluates analyzed by RIA inhibition contained concentrations of moth protein peaking in June and August to September of each year, with levels comparable to reported immunochemically measured levels of pollen and mold allergens. These peaks also corresponded with total numbers of moths captured in light traps. Moth-allergen activity was distributed in particlemore » sizes ranging from 0.8 to greater than 4.1 micron when sized samples were obtained by use of an Andersen cascade impaction head. By RIA inhibition, there was cross-reactivity between P. unipuncta and insects of different genera, families, and orders, but not with pollens or molds. Forty-five percent of 257 patients with immediate positive skin tests to common aeroallergens had positive skin tests to one or more commercially available whole body insect extracts. Of 120 patients with allergic rhinitis believed to be primarily caused by ragweed sensitivity, 5% also had elevated specific IgE to moths. We conclude that airborne concentrations of Lepidoptera can be measured immunochemically and that moths may be a seasonal allergen in the United States.« less
Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal
2013-01-01
Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs—i.e., the lack of suitable coating materials and a process for large area, high volume applications—can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%. PMID:28788301
Documentation of the Douglas-fir tussock moth outbreak-population model.
J.J. Colbert; W. Scott Overton; Curtis. White
1979-01-01
Documentation of three model versions: the Douglas-fir tussock moth population-branch model on (1) daily temporal resolution, (2) instart temporal resolution, and (3) the Douglas-fir tussock moth stand-outbreak model; the hierarchical framework and the conceptual paradigm used are described. The coupling of the model with a normal-stand model is discussed. The modeling...
Impact of Kairomones on Moth Pest Management: Pear Ester and the Codling Moth
USDA-ARS?s Scientific Manuscript database
Codling moth (CM) is the major pest of apples, pears, and walnuts worldwide. Our focus is to develop novel, species-specific monitoring and control systems based on host-plant odors, kairomones. In 1998 ‘pear ester’ (PE), ethyl (2E, 4Z)-2,4-decadienoate, was identified as a powerful kairomonal attra...
Analysis of spatial density dependence in gypsy moth mortality
Andrew Liebhold; Joseph S. Elkinton
1991-01-01
The gypsy moth is perhaps the most widely studied forest insect in the world and much of this research has focused on various aspects of population dynamics. But despite this voluminous amount of research we still lack a good understanding of which, if any, natural enemy species regulate gypsy moth populations. The classical approach to analyzing insect population...
Determining the economic feasibility of salvaging gypsy moth-killed hardwoods
Chris B. LeDoux
1990-01-01
Oak sawlog and pulpwood losses in stands defoliated by gypsy moths have become a critical problem for some forest landowners. The salvage of gypsy moth-killed hardwoods can become an important source of pulpwood and sawlogs. This study documents a methodology and provides guidelines to determine defoliated oak stands that are economically salvageable. Stand data from...
Gypsy moth effects on mast production
Kurt W. Gottschalk
1990-01-01
Gypsy moth outbreaks can have drastic effects on many forest resources and uses. Because the gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...
USDA-ARS?s Scientific Manuscript database
Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...
Silvicultural treatments and logging costs for minimizing gypsy moth impacts
Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux
1991-01-01
Gypsy moth defoliation is a serious threat to eastern hardwood forests. Felling and skidding costs for harvesting timber in silvicultural thinnings designed to reduce the impacts of the moth were evaluated. Cost of felling the nonmerchantable component of the thinnings to achieve treatment objectives are reported, along with a discussion of the economic feasibility of...
USDA-ARS?s Scientific Manuscript database
Lures for monitoring codling moth, Cydia pomonella (L.), were tested in apple and walnut blocks treated with Cidetrak CM-DA Combo dispensers loaded with pear ester, ethyl (E, Z)-2,4-decadienoate (PE), and sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone). Total and female moth catches with combin...
What causes the patterns of gypsy moth defoliation?
Clive G. Jones
1991-01-01
Gypsy moth defoliation is typically observed to occur on xeric ridge tops before more mesic, lowland forest, in oak-dominated habitats in the Northeast. In subsequent years defoliation may also occur in mesic forests. What causes this pattern of defoliation? Differences in the degree of defoliation may be due to differences in the density of gypsy moth populations in...
James B. McGraw; Kurt W. Gottschalk
1991-01-01
The potential for defoliation of oak seedlings by gypsy moth is quite high. We were interested in examining the interactions between various natural stresses and resulting gypsy moth feeding preferences and the results of defoliation stress on the growth and photosynthetic responses of the oak seedlings.
Christopher J. Fettig; Mark J. Dalusky; C. Wayne Berisford
2000-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of Christmas tree and pine plantations throughout much of the Eastern United States. The moth completes two to five generations annually, and insecticide spray timing models are currently available for controlling populations where three or...
Forest susceptibility to the gypsy moth
Andrew M. Liebhold; Kurt W. Gottschalk; Douglas A. Mason; Renate R. Bush
1997-01-01
Since 1868 or 1869, when it was introduced near Boston, the gypsy moth has been slowly expanding its range to include the entire northeastern United States and portions of Virginia, West Virginia, North Carolina, Ohio, and Michigan (Liebhold et al. 1992, 1996). It is inevitable that the gypsy moth will continue to spread south and west over the next century.
Silvicultural guidelines for forest stands threatened by the gypsy moth
Kurt W. Gottschalk
1993-01-01
Ecological and silvicultural information on the interaction of gypsy moth and its host forest types is incorporated into silvicultural guidelines for minimizing the impacts of gypsy moth on forest stands threatened by the insect. Decision charts are used to match stand and insect conditions to the proper prescription that includes instructions for implementing it....
Gypsy moth in the southeastern U.S.: Biology, ecology, and forest management strategies
Bruce W. Kauffman; Wayne K. Clatterbuck; Andrew M. Liebhold; David R. Coyle
2017-01-01
The European gypsy moth (Lymantria dispar L.) is a non-native insect that was accidentally introduced to North America in 1869 when it escaped cultivation by a French amateur entomologist living near Boston, MA. Despite early efforts to eradicate the species, it became established throughout eastern Massachusetts. Since then, the gypsy moth has...
D. R. Smitley; L. S. Bauer; A. E. Hajek; F. J. Sapio; R. A. Humber
1995-01-01
In 1991, late instars of gypsy moth, Lymantria dispar (L.), were sampled and diagnosed for infections of the pathogenic fungus Entomophaga maimaiga Humber, Shimazu & Soper and for gypsy moth nuclear polyhedrosis virus (NPV) at 50 sites in Michigan. Approximately 1,500 larvae were collected and reared from these sites, and no...
Spread of Gypsy Moth (Lepidoptera: Lymantriidae) and Its Relationship to Defoliation
Patrick C. Tobin; Stefanie L. Whitmire
2005-01-01
Gypsy moth management is divided into three components: eradication, suppression, and transition zone management. All three components require knowledge of the boundaries that delimit these areas. Additional interest is also placed on the relationship between population spread and defoliation to prepare for the gypsy moth advance in new areas and minimize its impact....
Mark H. Eisenbies; Christopher Davidson; James Johnson; Ralph Amateis; Kurt Gottschalk
2007-01-01
Defoliation by the European gypsy moth (Lymantria dispar L.) and subsequent tree mortality have been well documented in the northeastern United States. In this study we evaluate tree mortality after initial defoliation in mixed pine?hardwood stands in the southeastern United States as the range of European gypsy moth expands.
Joseph P. Spruce; Steven Sader; Robert E. Ryan; James Smoot; Philip Kuper; al. et.
2011-01-01
This paper discusses an assessment of Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data products for detecting forest defoliation from European gypsy moth (Lymantria dispar). This paper describes an effort to aid the United States Department of Agriculture (USDA) Forest Service in developing and assessing MODIS-based gypsy moth defoliation...
J.D. Podgwaite; V.V. Martemyanov; J.M. Slavicek; S.A. Bakhavalov; S.V. Pavlushin; N. Hayes-Plazolles; R.T. Zerillo
2013-01-01
Gypchek is a gypsy nucleopolyhedrovirus (LdMNPV) product used for management of European gypsy moth (Lymantria dispar dispar L.) in the Unlted States, primarily in areas where the use of broad-spectrum pesticides is not appropriate. Similar LdMNPV products are used in Russia for control of a flighted-female strain of Asian gypsy moth (...
James R. Reilly; Ann E. Hajek; Andrew M. Liebhold; Ruth Plymale
2014-01-01
The fungal pathogen Entomophaga maimaiga Humber, Shimazu, and Soper is prevalent in gypsy moth [Lymantria dispar (L.)] populations throughout North America. To understand how weather-related variables influence gypsy mothâE. maimaiga interactions in the field, we measured fungal infection rates at 12 sites...
An experimental burn to restore a moth-killed boreal conifer forest, Krasnoyarsk Region, Russia
E.N. Valendik; J.C. Brissette; Ye. K. Kisilyakhov; R.J. Lasko; S.V. Verkhovets; S.T. Eubanks; I.V. Kosov; A. Yu. Lantukh
2006-01-01
Mechanical treatment and prescribed fire were used to restore a mixed conifer stand (Picea-Abies-Pinus) following mortality from an outbreak of Siberian moth (Dendrolimus superans sibiricus). Moth-killed stands often become dominated by Calamagrostis, a sod-forming grass. The large amount of woody debris and the sod hinder coniferous seedling establishment and...
Judd, Gary J R
2016-11-25
Studies were conducted in commercial apple orchards in British Columbia, Canada, to determine whether lures combining ethyl-( E , Z )-2,4-decadienoate, pear ester (PE), with either acetic acid (AA) or sex pheromone, ( E , E )-8,10-dodecadien-1-ol (codlemone), might improve monitoring of codling moth, Cydia pomonella (L.), in an area-wide programme integrating sterile insect technology (SIT) and mating disruption (MD). Catches of sterile and wild codling moths were compared in apple orchards receiving weekly delivery of sterile moths (1:1 sex ratio) using white delta traps baited with either AA or PE alone, and in combination. Sterile and wild codling moths responded similarly to these kairomone lures. For each moth sex and type (sterile and wild), AA-PE lures were significantly more attractive than AA or PE alone. Bisexual catches with AA-PE lures were compared with those of commercial bisexual lures containing 3 mg of codlemone plus 3 mg of PE (Pherocon CM-DA Combo lure, Trécé Inc., Adair, OK, USA), and to catches of males with standard codlemone-loaded septa used in SIT (1 mg) and MD (10 mg) programmes, respectively. CM-DA lures caught the greatest number of sterile and wild male moths in orchards managed with SIT alone, or combined with MD, whereas AA-PE lures caught 2-3× more females than CM-DA lures under both management systems. Sterile to wild (S:W) ratios for male versus female moths in catches with AA-PE lures were equivalent, whereas in the same orchards, male S:W ratios were significantly greater than female S:W ratios when measured with CM-DA lures. Male S:W ratios measured with CM-DA lures were similar to those with codlemone lures. CM-DA and codlemone lures appear to overestimate S:W ratios as measured by AA-PE lures, probably by attracting relatively more sterile males from long range. Using AA-PE lures to monitor codling moths in an SIT programme removes fewer functional sterile males and reduces the need for trap maintenance compared with using codlemone lures. AA-PE lures allow detection of wild female moths that may measure damage potential more accurately than detection of wild males. The short-range activity of AA-PE lures compared with that of codlemone-based lures appears to improve the ability to measure S:W ratios and the impact of SIT on population control near the site where wild moths are trapped.
Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés
2016-01-01
Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor. PMID:27681478
Antibacterial effects of the artificial surface of nanoimprinted moth-eye film.
Minoura, Kiyoshi; Yamada, Miho; Mizoguchi, Takashi; Kaneko, Toshihiro; Nishiyama, Kyoko; Ozminskyj, Mari; Koshizuka, Tetsuo; Wada, Ikuo; Suzutani, Tatsuo
2017-01-01
The antibacterial effect of a nanostructured film, known as "moth-eye film," was investigated. The moth-eye film has artificially formed nano-pillars, consisting of hydrophilic resin with urethane acrylate and polyethylene glycol (PEG) derivatives, all over its surface that replicates a moth's eye. Experiments were performed to compare the moth-eye film with a flat-surfaced film produced from the same materials. The JIS Z2801 film-covering method revealed that the two films produced a decrease in Staphylococcus aureus and Esherichia coli titers of over 5 and 3 logs, respectively. There was no marked difference in the antibacterial effects of the two surfaces. However, the antibacterial effects were reduced by immersion of the films in water. These results indicated that a soluble component(s) of the resin possessed the antibacterial activity, and this component was identified as PEG derivatives by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and Fourier transform infrared spectroscopy (FT-IR). When a small volume of bacterial suspension was dropped on the films as an airborne droplet model, both films showed antibacterial effects, but that of the moth-eye film was more potent. It was considered that the moth-eye structure allowed the bacteria-loaded droplet to spread and allow greater contact between the bacteria and the film surface, resulting in strong adherence of the bacteria to the film and synergistically enhanced bactericidal activity with chemical components. The antibacterial effect of the moth-eye film has been thus confirmed under a bacterial droplet model, and it appears attractive due to its antibacterial ability, which is considered to result not only from its chemical make-up but also from physical adherence.
Numerical and functional responses of forest bats to a major insect pest in pine plantations.
Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé
2014-01-01
Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
...We, the U.S. Fish and Wildlife Service (Service), announce a 12-month finding on a petition to list the rattlesnake-master borer moth (Papaipema eryngii) as an endangered or a threatened species under the Endangered Species Act of 1973, as amended (Act). After review of the best available scientific and commercial information, we find that listing the rattlesnake-master borer moth is warranted. Currently, however, listing the rattlesnake-master borer moth is precluded by higher priority actions to amend the Lists of Endangered and Threatened Wildlife and Plants. Upon publication of this 12-month petition finding, we will add the rattlesnake-master borer moth to our candidate species list. We will develop a proposed rule to list the rattlesnake- master borer moth as our priorities allow. In any interim period, we will address the status of the candidate taxon through our annual Candidate Notice of Review (CNOR).
Evolution of deceptive and true courtship songs in moths
Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie; Skals, Niels; Ishikawa, Yukio
2013-01-01
Ultrasonic mating signals in moths are argued to have evolved via exploitation of the receivers' sensory bias towards bat echolocation calls. We have demonstrated that female moths of the Asian corn borer are unable to distinguish between the male courtship song and bat calls. Females react to both the male song and bat calls by “freezing”, which males take advantage of in mating (deceptive courtship song). In contrast, females of the Japanese lichen moth are able to distinguish between the male song and bat calls by the structure of the sounds; females emit warning clicks against bats, but accept males (true courtship song). Here, we propose a hypothesis that deceptive and true signals evolved independently from slightly different precursory sounds; deceptive/true courtship songs in moths evolved from the sounds males incidentally emitted in a sexual context, which females could not/could distinguish, respectively, from bat calls. PMID:23788180
Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.
Battisti, Andrea; Larsson, Stig; Roques, Alain
2017-01-31
Processionary moths carry urticating setae, which cause health problems in humans and other warm-blooded animals. The pine processionary moth Thaumetopoea pityocampa has responded to global change (climate warming and increased global trade) by extending its distribution range. The subfamily Thaumetopoeinae consists of approximately 100 species. An important question is whether other processionary moth species will similarly respond to these specific dimensions of global change and thus introduce health hazards into new areas. We describe, for the first time, how setae are distributed on different life stages (adult, larva) of major groups within the subfamily. Using the available data, we conclude that there is little evidence that processionary moths as a group will behave like T. pityocampa and expand their distributional range. The health problems caused by setae strongly relate to population density, which may, or may not, be connected to global change.
Characteristics of Stands Susceptible and Resistant to Gypsy Moth Defoliation
David R. Houston
1983-01-01
Site conditions strongly influence where gypsy moth defohation will occur. In New England, where gypsy moths and foresta have interacted for over a century, some foreats have had a history of repeated defoliation while others have been defo1iated only rarely. The often defohated or susceptible forests characteristically grow on dry sitea such as rocky ridges or deep...
USDA-ARS?s Scientific Manuscript database
The gypsy moth, Lymantria dispar L., is one of the most destructive forest pests in the world. While the subspecies established in North America is the European gypsy moth (L. dispar dispar), whose females are flightless, the two Asian subspecies, L. dispar asiatica and L. dispar japonica, have flig...
Forecasting outbreaks of the Douglas-fir tussock moth from lower crown cocoon samples.
Richard R. Mason; Donald W. Scott; H. Gene Paul
1993-01-01
A predictive technique using a simple linear regression was developed to forecast the midcrown density of small tussock moth larvae from estimates of cocoon density in the previous generation. The regression estimator was derived from field samples of cocoons and larvae taken from a wide range of nonoutbreak tussock moth populations. The accuracy of the predictions was...
Preliminary results on predation of gypsy moth egg masses in Slovakia
Marek Turcani; Andrew Liebhold; Michael McManus; Julius Novotny
2003-01-01
Predation of gypsy moth egg masses was studied in Slovakia from 1999-2002. Predation on naturally laid egg masses was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. We also investigated the role of egg mass predation in gypsy moth population dynamics. The relative contribution of...
Relationships between overstory composition and gypsy moth egg-mass density
Robert W. Campbell
1974-01-01
Most of the silvicultural recommendations for reducing the hazard of gypsy moth outbreaks have been based in part on the premise that gypsy moth density levels are related closely to the proportion of favored food trees in the overstory. This premise did not prove to be true for a series of plots observed in eastern New England between 1911 and 1931.
Christopher Asaro; C. Wayne Berisford
2001-01-01
There is considerable interest in using pheromone trap catches of the Nantucket pine tip moth, Rhyacionia frustrana (Conistock), to estimate or predict population density and damage. At six sites in the Georgia Piedmont, adult tip moths were monitored through one or more years using pheromone traps while population density and damage for each tip...
Felling and skidding cost estimates for thinnings to reduce gypsy moth impacts
Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux
1991-01-01
The gypsy moth is a serious threat to the hardwood forests of the eastern United States. Although chemical treatments currently exist which can be used to help control the impacts of the moth, silvicultural control measures are just now being proposed and tested. Felling and skidding cost estimates for harvesting merchantable timber under two such proposed...
HOW to Identify and Minimize Red Pine Shoot Moth Damage
Steven Katovich; David J. Hall
1992-01-01
The red pine shoot moth, Dioryctria resinosella, feeds on newly expanding shoots and cones of red pine, Pinus resinosa. Damage has been reported from Maine, Michigan, Minnesota, Wisconsin, and southern Ontario. The red pine shoot moth is now considered a pest due to the large increase in the number and overall acreage of red pine plantations greater than 20 years of...
Kurt W., ed. Gottschalk
2007-01-01
Contains three abstracts and papers from the 2005 Forum and 70 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
The Homeowner and the Gypsy Moth: Guidelines for Control
Michael L. McManus; David R. Houston; William E. Wallner
1979-01-01
The gypsy moth is the most important defoliating insect of hardwood trees in the Eastern United States (fig. 1). Since the turn of the century, millions of dollars have been spent in efforts to control or eliminate gypsy moth populations and to retard natural and artificial spread. In the early decades of this century, outbreaks occurred only in New England; today...
A comparison of tree crown condition in areas with and without gypsy moth activity
KaDonna C. Randolph
2005-01-01
This study compared the crown condition of trees within and outside areas of gypsy moth defoliation in Virginia via hypothesis tests of mean differences for five U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis phase 3 crown condition indicators. Significant differences were found between the trees located within and outside gypsy moth...
A comparison of tree crown condition in areas with and without gypsy moth activity
KaDonna C. Randolph
2007-01-01
This study compared the crown condition of trees within and outside areas of gypsy moth defoliation in Virginia via hypothesis tests of mean differences for five U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis phase 3 crown condition indicators. Significant differences were found between the trees located within and outside gypsy moth...
Gypsy moth impacts on oak acorn production
Kurt W. Gottschalk
1991-01-01
Gypsy moth outbreaks can have drastic effects on many f a s t resources and uses. Because gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...
Effects of gypsy moth-oriented silvicultural treatments on vertebrate predator communities
Richard D. Greer; Robert C. Whitmore
1991-01-01
The impact of forest thinning, as an alternative gypsy moth management technique, on insectivorous birds and small mammals is being investigated in the West Virginia University Forest. The effects of thinning on predation of gypsy moth larvae and pupae by vertebrates are also being examined. Pre-thinning studies were conducted during the spring, summer, and fall of...
Landscape ecology of gypsy moth in the Northeastern United States
Andrew Liebhold; Joel Halverson; Gregory Elmes; Jay Hutchinson
1991-01-01
The gypsy moth was accidentally introduced to North America near Boston by E. Leopold Trouvelot in 1869. Since that time, the range of the gypsy moth has slowly spread and the generally infested region presently extends as far as Ohio, West Virginia, Virginia and North Carolina. A separate isolated but expanding population exists in Michigan. The goal of this study was...
Impact of pine tip moth attack on loblolly pine
Roy Hedden
1999-01-01
Data on the impact of Nantucket pine tip moth, Rhyacionia frustrana, attack on the height of loblolly pine, Pinus taeda, in the first three growing seasons after planting from three locations in eastern North Carolina (U.S.A.) was used to develop multiple linear regression models relating tree height to tip moth infestation level in each growing season. These models...
Gypsy Moth Host Interactions: A Concept of Room and Board
William E. Wallner
1983-01-01
The influence of host type and condition on the bioecology of gypsy moth are discussed from the viewpoint of room and board. Larval establishment was higher on preferred hosts; less than 5% migrated off them. Nonpreferred hosts lost 10-25% of larvae. Susceptibility of gypsy moth larvae to nucleopolyhedrosis virus increased following 1 or 2 years of defoliation....
Use of pheromone traps to predict infestation levels of the nantucket pine tip moth: Can it be done?
Christopher Asaro; C. Wayne Berisford
1999-01-01
Pheromone traps baited with synthetic baits are used in southeastern pine plantations to monitor the phenology of the Nantucket pine tip moth (Rhyacionia frustrana (Comstock)) for timing of insecticide applications. Trap catches of tip moths have been difficult to interpret because they decrease considerably relative to population density from the...
Comparison of methods for estimating the spread of a non-indigenous species
Patrick C. Tobin; Andrew M. Liebhold; E. Anderson Roberts
2007-01-01
Aim: To compare different quantitative approaches for estimating rates of spread in the exotic species gypsy moth, Lymantria dispar L., using county-level presence/absence data and spatially extensive trapping grids. Location: USA. Methods: We used county-level presence/absence records of the gypsy moth?s distribution in the USA, which are available beginning in 1900,...
Susceptibility of regeneration in clearcuts to defoliation by gypsy moth
Ray R., Jr. Hicks; Robert M. Fultineer; Barbara S. Ware; Kurt W. Gottschalk
1993-01-01
In 1991 and 1992, we observed gypsy moth defoliation of oak regeneration in clearcuts of varying sizes and ages. We established plots in the surrounding mature forests to document ambient gypsy moth population levels and placed subplots within the clearcuts designed to examine the effect of location relative to the clearcut edge. We found that the levels of defoliation...
USDA-ARS?s Scientific Manuscript database
The success of applying low rates (50 ha-1) of dispensers to achieve disruption of adult communication of codling moth, Cydia pomonella (L)., in walnuts, Juglans regia (L.),was evaluated with several methods. These included cumulative catches of male moths in traps baited with either sex pheromone (...
Fine structure of selected mouthpart sensory organs of gypsy moth larvae
Vonnie D.C. Shields
2011-01-01
Gypsy moth larvae, Lymantria dispar (L.), are major pest defoliators in most of the United States and destroy millions of acres of trees annually. They are highly polyphagous and display a wide host plant preference, feeding on the foliage of hundreds of plants, such as oak, maple, and sweet gum. Lepidopteran larvae, such as the gypsy moth, depend...
Harry O. III Yates; Nell A. Overgaard; Thomas W. Koerber
1981-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock),4 is a major forest insect pest in the United States. Its range extends from Massachusetts to Florida and west to Texas. It was found in San Diego County, California, in 1971 and traced to infested pine seedlings shipped from Georgia in 1967. The moth has since spread north and east in California and is now...
Tracking changes in the susceptibility of forest land infested with gypsy moth
David A. Gansner; John W. Quimby; Susan L. King; Stanford L. Arner; David A. Drake
1994-01-01
Does forest land subject to intensive outbreaks of gypsy moth (Lymantria dispar L.) become less susceptible to defoliation? A model for estimating the likelihood of gypsy moth defoliation has been developed and validated. It was applied to forest-inventory plot data to quantify trends in the susceptibility of forest land in south-central Pennsylvania during a period of...
Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success
Kevin W. Thorpe; Ksenia S. Tcheslavskaia; Patrick C. Tobin; Laura M. Blackburn; Donna S. Leonard; E. Anderson Roberts
2007-01-01
In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1-2 years after treatment to determine the effects of the treatment on suppression of...
The effects of gypsy moth defoliation on soil water chemistry
Thomas R., Jr. Eagle; Ray R., Jr. Hicks
1993-01-01
Twenty-eight plots were established in oak stands along the leading edge of gypsy moth migration into north-central West Virginia. Plots were arranged in a 3-chain square grid pattern in areas of varying aspect, percent slope, elevation, site index and species composition. Soft water, gypsy moth frass and leaf fragments generated by larval feeding were collected weekly...
J. J. Colbert; Phil Perry; Bradley Onken
1997-01-01
As the advancing front of the gypsy moth continues its spread throughout Ohio, silviculturists on the Wayne National Forest are preparing themselves for potential gypsy moth outbreaks in the coming decade. Through a cooperative effort between the Northeastern Forest Experiment Station and Northeastern Area, Forest Health Protection, the Wayne National Forest, Ohio, is...
R.A. Lautenschlager; J.D. Podgwaite
1977-01-01
The white-footed mouse, Peromyscus leucopus Rafinesque, and the short-tailed shrew, Blarina brevicauda Say, 2 small mammal predators of the gypsy moth, have demonstrated the ability to pass significant amounts of infectious nuclear polyhedrosis virus (NPV) through their alimentary tracts. Ninety-five percent of the gypsy moth...
Kurt W. Gottschalk; James M. Guldin; Jimmie J. Colbert
2004-01-01
A simulation was conducted to determine how growth of forests in the Interior Highlands would change under attack by the gypsy moth (Lymantria dispar L.). Simulations were conducted for three different outbreak intensities using the Gypsy Moth Stand-Damage Model. Forest Inventory and Analysis (FIA) inventory data were used as input for the simulation...
Allee effects and pulsed invasion by the gypsy moth
Derk M. Johnson; Andrew M. Liebhold; Patrick C. Tobin; Ottar N. Bjornstad
2006-01-01
Biological invasions pose considerable threats to the world's ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than $194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most...
Bt: One Option for Gypsy Moth Management
Deborah C. Mccullough; Leah S. Bauer
2000-01-01
Though the gypsy moth will never go away, you have a variety of options to help manage this pest during outbreaks. One option involves the use of Bt to protect tree foliage and reduce the annoyance caused by gypsy moth caterpillars during an outbreak. Bt or Btk refers to a microorganism called Bacillus Thuringeniesis var. kurstaki. Bt has been widely adopted for...
Outcrossing colonies of the Otis New Jersey gypsy moth strain and its effect on progeny development
John Allen Tanner; Charles P. Schwalbe
1991-01-01
The Otis New Jersey gypsy moth (Lymantria dispar L.) strain is considered the "white rat" of gypsy moth research. This strain has been laboratory reared for 34 generations. It currently consists of 35 subcolonies or cohorts that have been genetically isolated from one another for several generations. Usually, larvae that hatch at the same...
Slow the Spread: a national program to manage the gypsy moth
Patrick C. Tobin; Laura M. Blackburn
2007-01-01
The gypsy moth is a destructive, nonindigenous pest of forest, shade, and fruit trees that was introduced into the United States in 1869, and is currently established throughout the Northeast and upper Midwest. The Slow the Spread Program is a regional integrated pest management strategy that aims to minimize the rate of gypsy moth spread into uninfested areas. The...
Selection of active strains of the gypsy moth nuclearpolyhedrosis virus
M. Shapiro; E. Dougherty
1985-01-01
The gypsy moth Lymantria dispar (Linnaeus) has grown in economic importance as an insect pest over the past 75 years. From a localized infestation of a small geographical area of New England, the gypsy moth has spread to such an extent that is now found over much of the United States. Control measures are varied, but effective biological control is...
Regulatory Role of PBAN in Sex Pheromone Biosynthesis of Heliothine Moths
Jurenka, Russell; Rafaeli, Ada
2011-01-01
Both males and females of heliothine moths utilize sex-pheromones during the mating process. Females produce and release a sex pheromone for the long–range attraction of males for mating. Production of sex pheromone in females is controlled by the peptide hormone (pheromone biosynthesis activating neuropeptide, PBAN). This review will highlight what is known about the role PBAN plays in controlling pheromone production in female moths. Male moths produce compounds associated with a hairpencil structure associated with the aedaegus that are used as short-range aphrodisiacs during the mating process. We will discuss the role that PBAN plays in regulating male production of hairpencil pheromones. PMID:22654810
Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.
Schesser, J H
1976-01-01
Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg). PMID:984828
Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.
Schesser, J H
1976-10-01
Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg).
Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato
2018-02-12
Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.
Evenden, M L; Gries, R
2010-06-01
Sex pheromone monitoring lures from five different commercial sources were compared for their attractiveness to male diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) in canola, Brassica napus L., fields in western Canada. Lures that had the highest pheromone release rate, as determined by aeration analyses in the laboratory, were the least attractive in field tests. Lures from all the commercial sources tested released more (Z)-11-hexadecenal than (Z)-11-hexadecenyl acetate and the most attractive lures released a significantly higher aldehyde to acetate ratio than less attractive lures. Traps baited with sex pheromone lures from APTIV Inc. (Portland, OR) and ConTech Enterprises Inc. (Delta, BC, Canada) consistently captured more male diamondback moths than traps baited with lures from the other sources tested. In two different lure longevity field trapping experiments, older lures were more attractive to male diamondback moths than fresh lures. Pheromone release from aged lures was constant at very low release rates. The most attractive commercially available sex pheromone lures tested attracted fewer diamondback moth males than calling virgin female moths suggesting that research on the development of a more attractive synthetic sex pheromone lure is warranted.
Coherent array of branched filamentary scales along the wing margin of a small moth
NASA Astrophysics Data System (ADS)
Yoshida, Akihiro; Tejima, Shin; Sakuma, Masayuki; Sakamaki, Yositaka; Kodama, Ryuji
2017-04-01
In butterflies and moths, the wing margins are fringed with specialized scales that are typically longer than common scales. In the hindwings of some small moths, the posterior margins are fringed with particularly long filamentary scales. Despite the small size of these moth wings, these scales are much longer than those of large moths and butterflies. In the current study, photography of the tethered flight of a small moth, Phthorimaea operculella, revealed a wide array composed of a large number of long filamentary scales. This array did not become disheveled in flight, maintaining a coherent sheet-like structure during wingbeat. Examination of the morphology of individual scales revealed that each filamentary scale consists of a proximal stalk and distal branches. Moreover, not only long scales but also shorter scales of various lengths were found to coexist in each small section of the wing margin. Scale branches were ubiquitously and densely distributed within the scale array to form a mesh-like architecture similar to a nonwoven fabric. We propose that possible mechanical interactions among branched filamentary scales, mediated by these branches, may contribute to maintaining a coherent sheet-like structure of the scale array during wingbeat.
Reilly, James R; Hajek, Ann E; Liebhold, Andrew M; Plymale, Ruth
2014-06-01
The fungal pathogen Entomophaga maimaiga Humber, Shimazu, and Soper is prevalent in gypsy moth [Lymantria dispar (L.)] populations throughout North America. To understand how weather-related variables influence gypsy moth-E. maimaiga interactions in the field, we measured fungal infection rates at 12 sites in central Pennsylvania over 3 yr, concurrently measuring rainfall, soil moisture, humidity, and temperature. Fungal mortality was assessed using both field-collected larvae and laboratory-reared larvae caged on the forest floor. We found significant positive effects of moisture-related variables (rainfall, soil moisture, and relative humidity) on mortality due to fungal infection in both data sets, and significant negative effects of temperature on the mortality of field-collected larvae. Lack of a clear temperature relationship with the mortality of caged larvae may be attributable to differential initiation of infection by resting spores and conidia or to microclimate effects. These relationships may be helpful in understanding how gypsy moth dynamics vary across space and time, and in forecasting how the gypsy moth and fungus will interact as they move into warmer or drier areas, or new weather conditions occur due to climate change.
Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.
Kinoshita, Yuki; Ogata, Daiki; Watanabe, Yoshiaki; Riquimaroux, Hiroshi; Ohta, Tetsuo; Hiryu, Shizuko
2014-09-01
The prey pursuit behavior of Japanese horseshoe bats (Rhinolophus ferrumequinum nippon) was investigated by tasking bats during flight with choosing between two tethered fluttering moths. Echolocation pulses were recorded using a telemetry microphone mounted on the bat combined with a 17-channel horizontal microphone array to measure pulse directions. Flight paths of the bat and moths were monitored using two high-speed video cameras. Acoustical measurements of returning echoes from fluttering moths were first collected using an ultrasonic loudspeaker, turning the head direction of the moth relative to the loudspeaker from 0° (front) to 180° (back) in the horizontal plane. The amount of acoustical glints caused by moth fluttering varied with the sound direction, reaching a maximum at 70°-100° in the horizontal plane. In the flight experiment, moths chosen by the bat fluttered within or moved across these angles relative to the bat's pulse direction, which would cause maximum dynamic changes in the frequency and amplitude of acoustical glints during flight. These results suggest that echoes with acoustical glints containing the strongest frequency and amplitude modulations appear to attract bats for prey selection.
Kawakita, Atsushi; Kato, Makoto
2004-09-01
This paper reports obligate seed-parasitic pollination mutualisms in Breynia vitis-idea and B. fruticosa (Phyllanthaceae). The genus Breynia is closely related to Glochidion and Gomphidium (a subgenus of Phyllanthus), in which pollination by species-specific, seed-parasitic Epicephala moths (Gracillariidae) have been previously reported. At night, female Epicephala moths carrying numerous pollen grains on their proboscises visited female flowers of B. vitis-idea, actively pollinated flowers, and each subsequently laid an egg. Examination of field-collected flowers indicated that pollinated flowers of B. vitis-idea and B. fruticosa almost invariably had Epicephala eggs, suggesting that these moths are the primary pollinators of the two species. Single Epicephala larvae consumed a fraction of seeds within developing fruit in B. vitis-idea and all seeds in B. fruticosa. However, some of the fruits were left untouched, and many of these had indication of moth oviposition, suggesting that egg/larval mortality of Epicephala moths is an important factor assuring seed set in these plants. The overall similarity of the specialized floral structure among Breynia species may indicate that this pollination system is fairly widespread within the genus.
Jenner, W H; Kuhlmann, U; Mason, P G; Cappuccino, N
2010-02-01
Leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae), is an invasive alien species in eastern Canada, the larvae of which mine the green tissues of Allium spp. This study was designed to construct and analyse life tables for leek moth within its native range. Stage-specific mortality rates were estimated for the third leek moth generation at three sites in Switzerland from 2004 to 2006 to identify some of the principle factors that inhibit leek moth population growth in areas of low pest density. The contribution of natural enemies to leek moth mortality was measured by comparing mortality on caged and uncaged leeks. Total pre-imaginal mortality on uncaged plants was 99.6%, 99.1% and 96.4% in 2004, 2005 and 2006, respectively. Variation in mortality was greater among years than among sites. Total larval mortality was greater than that in the eggs and pupae. This was due largely to the high mortality (up to 83.3%) of neonates during the brief period between egg hatch and establishment of the feeding mine. Leek moth pupal mortality was significantly greater on uncaged than on caged leeks, indicating an impact by natural enemies, and this pattern was consistent over all three years of study. In contrast, the other life stages did not show consistently higher mortality rates on uncaged plants. This observation suggests that the pupal stage may be particularly vulnerable to natural enemies and, therefore, may be the best target for classical biological control in Canada.
Algimantas P. Valaitis; John D. Podgwaite
2011-01-01
Many strains of Bacillus thuringiensis (Bt) produce insecticidal proteins, also referred to as Cry toxins, in crystal inclusions during sporulation. When ingested by insects, the Cry toxins bind to receptors on the brush border midgut epithelial cells and create pores in the epithelial gut membranes resulting in the death of...
A.M. Liebhold; Marek Turcani; Naoto Kamata
2008-01-01
The native range of the gypsy moth Lymantria dispar (L.) spans the temperate forests of Eurasia. Across this region, a clinal female flight polymorphism exists; gypsy moth females in eastern Asia are mostly capable of directed flight, those in western and southern Europe are largely incapable of flight and populations distributed across the centre of...
The effects of tree species and site conditions on gypsy moth survival and growth in Michigan
John A. Witter; Michael E. Montgomery; Charley A. Chilcote; Jennifer L. Stoyenoff
1991-01-01
In 1987, we began a study to determine the relationships between gypsy moth growth and survival and forest site factors. The major objectives of this study were to determine the (1) relationships between gypsy moth survival and growth and different ecosystem conditions, (2) relationships among egg hatch, host phenology, and distribution of small larvae in the...
Kurt W., ed. Gottschalk
2005-01-01
Contains 61 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U. S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species. The online version contains two additional papers that were not available at...
Cost analysis and biological ramifications for implementing the gypsy moth Slow the Spread Program
Patrick C. Tobin
2008-01-01
The gypsy moth Slow the Spread Program aims to reduce the rate of gypsy moth, Lymantria dispar (L.), spread into new areas in the United States. The annual budget for this program has ranged from $10-13 million. Changes in funding levels can have important ramifications to the implementation of this program, and consequently affect the rate of gypsy...
Matthew P. Perkowski; John R. Brooks; Kurt W. Gottschalk
2008-01-01
Predictions based on the Gypsy Moth Event Monitor were compared to remeasurement plot data from stands receiving gypsy moth defoliation. These stands were part of a silvicultural treatment study located in northern West Virginia that included a sanitation thinning, a presalvage thinning and paired no-treatment controls. In all cases the event monitor under predicted...
Preliminary results on predation of gypsy moth pupae during a period of latency in Slovakia
Marek Turcani; Andrew M. Liebhold; Michael McManus; J& #250; lius Novotn& #253
2003-01-01
Predation of gypsy moth pupae was studied from 2000 -2003 in Slovakia. Predation on artificially reared pupae was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. The role of pupal predation in gypsy moth population dynamics was also investigated. The relative importance of predation of...
Effect of Nucleopolyhedrosis Virus on Selected Mammalian Predators of the Gypsy Moth
R.A. Lautenschlager; C.H. Kircher; J.D. Podgwaite
1977-01-01
Nucleopolyhedrosis virus (NPV) of the gypsy moth was fed to three mammalian predators of the insect: the white-footed mouse, the short-tailed shrew, and the Virginia opposum in the form of NPV-infected 5th instar gypsy moth larvae, polyhedral inclusion bodies (PIB's) mixed in dog food and PIB's mixed in a standard spray formulation. The total amount of NPV...
R.A. Lautenschlager; J.D. Podgwaite
1979-01-01
Five species of mammals and 3 species of birds passed polyhedral inclusion bodies (PIB) of the gypsy moth nucleopolyhedrosis virus (NPV) through their alimentary tracts in amounts great enough to kIll gypsy moth larvae. In bioassays. Opossums and raccoons passed roughly 5% of the PIB administered by intubation while white-footed mice, a short-tailed shrew, and southern...
Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana
Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer
2014-01-01
Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (Voc) and fill factor (FF).
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (V(oc)) and fill factor (FF).
User's guide to the stand-damage model: a component of the gypsy moth life system model
J. J. Colbert; George Racin
1995-01-01
The Stand-Damage Model (a component of the Gypsy Moth Life System Model) simulates the growth of a mixed hardwood forest and incorporates the effects of defoliation by gypsy moth or tree harvesting as prescribed by the user. It can be used to assess the damage from expected defoliation, view the differences between various degrees of defoliation, and describe the...
J.A. Andresen; D.G. McCullough; B.E. Potter; C.N. Koller; L.S. Bauer; C. W. Ramm
2001-01-01
Accurate prediction of winter survival of gypsy moth (Lymantria dispar L.) eggs and phenology of egg hatch in spring are strongly dependent on temperature and are critical aspects of gypsy moth management programs. We monitored internal temperatures of egg masses at three heights aboveground level and at the four cardinal aspects on oak tree stems at two different...
The Influence of Herbivory on the net rate of Increase of Gypsy Moth Abundance: A Modeling Analysis
Harry T. Valentine
1983-01-01
A differential equation model of gypsy moth abundance, average larval dry weight, and food abundance was used to analyze the effects of changes in foliar chemistry on the net per capita rate of increase in a gypsy moth population. If relative consumption rate per larva is unaffected by herbivory, a reduction in the nutritional value of foliage reduces the net rate of...
Max W. McFadden; Michael E. McManus
1991-01-01
The gypsy moth, Lymantria dispar L., was introduced from Europe into North America near Boston, Massachusetts, in 1869, and is now well established as a serious defoliator of forest, shade, and fruit trees over much of the eastern United States. Despite substantial efforts to eradicate, contain, or control this pest, the gypsy moth has persisted...
George H. Moeller; Raymond Marler; Roger E. McCay; William B. White
1977-01-01
The economic impacts of a gypsy moth infestation on homeowners and on managers of recreation areas (commercial, public, and quasi-public) were determined from data collected via interviews with 540 homeowners and 170 managers of recreation areas in New York and Pennsylvania. The approach to measuring the impact of gypsy moth was to determine the interaction of a...
Wang, Feng-Ying; Yang, Fan; Lu, Ming-Hong; Luo, Shan-Yu; Zhai, Bao-Ping; Lim, Ka-Sing; McInerney, Caitríona E.; Hu, Gao
2017-01-01
Many moths finish their long distance migration after consecutive nights, but little is known about migration duration and distance. This information is key to predicting migration pathways and understanding their evolution. Tethered flight experiments have shown that ovarian development of rice leaf folder (Cnaphalocrocis medinalis [Guenée]) moths was accelerated and synchronized by flight in the first three nights, whereby most females were then matured for mating and reproduction. Thus, it was supposed that this moth might fly three nights to complete its migration. To test this hypothesis, 9 year’s field data for C. medinalis was collected from Nanning, Guangxi Autonomous Region in China. Forward trajectories indicated that most moths arrived at suitable breeding areas after three nights’ flight. Thus, for C. medinalis this migration duration and distance was a reasonable adaptation to the geographic distribution of suitable habitat. The development of female moth ovaries after three consecutive night flights appears to be a well-balanced survival strategy for this species to strike between migration and reproduction benefits. Hence, an optimum solution of migration-reproduction trade-offs in energy allocation evolved in response to the natural selection on migration route and physiological traits. PMID:28051132
Han, Guangjie; Li, Chuanming; Liu, Qin; Xu, Jian
2015-10-01
Plutella xylostella granulovirus (PxGV) and Bacillus thuringiensis (Bt) are both entomo-pathogens to the diamondback moth, Plutella xylostella (L.). The purpose of the present study was to measure the effect of the combination of PxGV and Bt at sublethal dosages on the development and mortality of diamondback moth in a laboratory setting. Bt and PxGV exhibited synergistic effect on diamondback moth larval mortality and effectively controlled diamondback moth populations with low dose combination treatment. The combination of three parts per million Bt and 1.3 × 10(3) occlusion bodies per milliliter of PxGV revealed a higher larval mortality compared with the treatment of Bt or PxGV alone. Combination of Bt and PxGV at sublethal concentrations also increased larval duration, reduced oviposition and decreased adult longevity remarkably, resulting in the lowest population trend index among the treatments. The results suggested that the combination of Bt and PxGV at sublethal dosages might provide a valuable way to improve the control efficacy of diamondback moth compared with treatment of Bt or PxGV alone. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin
2017-07-01
Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.
A syndrome of mutualism reinforces the lifestyle of a sloth
Pauli, Jonathan N.; Mendoza, Jorge E.; Steffan, Shawn A.; Carey, Cayelan C.; Weimer, Paul J.; Peery, M. Zachariah
2014-01-01
Arboreal herbivory is rare among mammals. The few species with this lifestyle possess unique adaptions to overcome size-related constraints on nutritional energetics. Sloths are folivores that spend most of their time resting or eating in the forest canopy. A three-toed sloth will, however, descend its tree weekly to defecate, which is risky, energetically costly and, until now, inexplicable. We hypothesized that this behaviour sustains an ecosystem in the fur of sloths, which confers cryptic nutritional benefits to sloths. We found that the more specialized three-toed sloths harboured more phoretic moths, greater concentrations of inorganic nitrogen and higher algal biomass than the generalist two-toed sloths. Moth density was positively related to inorganic nitrogen concentration and algal biomass in the fur. We discovered that sloths consumed algae from their fur, which was highly digestible and lipid-rich. By descending a tree to defecate, sloths transport moths to their oviposition sites in sloth dung, which facilitates moth colonization of sloth fur. Moths are portals for nutrients, increasing nitrogen levels in sloth fur, which fuels algal growth. Sloths consume these algae-gardens, presumably to augment their limited diet. These linked mutualisms between moths, sloths and algae appear to aid the sloth in overcoming a highly constrained lifestyle. PMID:24452028
Identification of receptors of main sex-pheromone components of three Lepidopteran species.
Mitsuno, Hidefumi; Sakurai, Takeshi; Murai, Masatoshi; Yasuda, Tetsuya; Kugimiya, Soichi; Ozawa, Rika; Toyohara, Haruhiko; Takabayashi, Junji; Miyoshi, Hideto; Nishioka, Takaaki
2008-09-01
Male moths discriminate conspecific female-emitted sex pheromones. Although the chemical components of sex pheromones have been identified in more than 500 moth species, only three components in Bombyx mori and Heliothis virescens have had their receptors identified. Here we report the identification of receptors for the main sex-pheromone components in three moth species, Plutella xylostella, Mythimna separata and Diaphania indica. We cloned putative sex-pheromone receptor genes PxOR1, MsOR1 and DiOR1 from P. xylostella, M. separata and D. indica, respectively. Each of the three genes was exclusively expressed with an Or83b orthologous gene in male olfactory receptor neurons (ORNs) that are surrounded by supporting cells expressing pheromone-binding-protein (PBP) genes. By two-electrode voltage-clamp recording, we tested the ligand specificity of Xenopus oocytes co-expressing PxOR1, MsOR1 or DiOR1 with an OR83b family protein. Among the seven sex-pheromone components of the three moth species, the oocytes dose-dependently responded only to the main sex-pheromone component of the corresponding moth species. In our study, PBPs were not essential for ligand specificity of the receptors. On the phylogenetic tree of insect olfactory receptors, the six sex-pheromone receptors identified in the present and previous studies are grouped in the same subfamily but have no relation with the taxonomy of moths. It is most likely that sex-pheromone receptors have randomly evolved from ancestral sex-pheromone receptors before the speciation of moths and that their ligand specificity was modified by mutations of local amino acid sequences after speciation.
Response of postharvest tree nut lepidopteran pests to vacuum treatments.
Johnson, J A; Zettler, J L
2009-10-01
Industry concerns over insect resistance, regulatory action, and the needs of organic processors have renewed interest in nonchemical alternative postharvest treatments to fumigants used for California tree nuts. The development of inexpensive polyvinyl chloride containers capable of holding low pressures has increased the practicality of vacuum treatments for durable commodities such as tree nuts. To develop vacuum treatment protocols, we determined the relative tolerance to vacuum (50 mmHg) at 25 and 30 degrees C of different life stages of three postharvest pests of tree nuts: codling moth, Cydia pomonella (L.), navel orangeworm, Amyelois transitella (Walker), and Indianmeal moth, Plodia interpunctella (Hübner). At both temperatures, nondiapausing codling moth larvae were the least tolerant stage tested. LT95 values for diapausing Indianmeal moth larvae were similar to Indianmeal moth eggs at both temperatures. Indianmeal moth diapausing larvae and eggs were the most tolerant at 25 degrees C, whereas navel orangeworm eggs were most tolerant at 30 degrees C. Field tests using GrainPro Cocoons (GrainPro, Inc., Concord, MA) to treat shelled almonds, Prunus dulcis (Mill.) D. A. Webb, in bins at vacuum levels of 18-43 mmHg at average winter temperatures (6-10 degrees C) showed that diapausing codling moth larvae were the most tolerant under these conditions and that exposures of 7-13 d provided incomplete control. Summer field tests treating in-shell almonds in bags at average temperatures of 25-30 degrees C provided complete control with 48 h exposure to average vacuum levels of 50 mmHg, and navel orangeworm eggs were the most tolerant stage.
Braga, Laura; Diniz, Ivone Rezende
2015-06-01
Moths exhibit different levels of fidelity to habitat, and some taxa are considered as bioindicators for conservation because they respond to habitat quality, environmental change, and vegetation types. In this study, we verified the effect of two phytophysiognomies of the Cerrado, savanna and forest, on the diversity distribution of moths of Erebidae (Arctiinae), Saturniidae, and Sphingidae families by using a hierarchical additive partitioning analysis. This analysis was based on two metrics: species richness and Shannon diversity index. The following questions were addressed: 1) Does the beta diversity of moths between phytophysiognomies add more species to the regional diversity than the beta diversity between sampling units and between sites? 2) Does the distribution of moth diversity differ among taxa? Alpha and beta diversities were compared with null models. The additive partitioning of species richness for the set of three Lepidoptera families identified beta diversity between phytophysiognomies as the component that contributed most to regional diversity, whereas the Shannon index identified alpha diversity as the major contributor. According to both species richness and the Shannon index, beta diversity between phytophysiognomies was significantly higher than expected by chance. Therefore, phytophysiognomies are the most important component in determining the richness and composition of the community. Additive partitioning also indicated that individual families of moths respond differently to the effect of habitat heterogeneity. The integrity of the Cerrado mosaic of phytophysiognomies plays a crucial role in maintaining moth biodiversity in the region. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bombykol receptors in the silkworm moth and the fruit fly
Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A.; Leal, Walter S.
2010-01-01
Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the “empty neuron” system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor. PMID:20439725
Basukriadi, Adi; Wilkins, Richard M.
2014-01-01
Abstract An extract of a rotenone-containing plant yam bean, Pachyrhizus erosus (L.) Urban, seeds was tested against the diamondback moth, Plutella xylostella (L.) in a greenhouse to determine its potential as an oviposition deterrent and compared with coumarin and rutin, known as diamondback moth oviposition deterrent compounds, rotenone, and an extract of Peruvian cube root, at a concentration of 0.5% (w/v). Oviposition deterrent index (ODI) was used to determine effects of extracts or compounds in inhibiting oviposition of diamondback moth. Coumarin showed a stronger deterrent effect than the yam bean seed extract with a higher ODI value. On the contrary, rotenone, rutin, and the cube root extract, containing 6.7% (w/w) of rotenone, showed no significant deterrent effects having low or negative ODI values, suggesting that the deterrent effect of the yam bean seed extract is not due to rotenone content of the yam bean seeds. The extract of yam bean seed and coumarin partially deterred the moth from laying eggs on treated leaves in a concentration-dependent manner. The effective concentration for 50% deterrency of coumarin and the yam bean seed extract were 0.11 and 0.83% (w/v), respectively. However, the yam bean seed extract showed a residual deterrent effect on the moth even at 3 d after the treatment and is probably because of its low volatile nature. A long-term deterrency of the yam bean seed extract is an advantage over coumarins. Both the yam bean seed extract and coumarin deterred diamondback moth from laying eggs in total darkness, indicating their nonvisual deterrent effect. This made the extract an effective deterrence to diamondback moth in light and in darkness. To conclude, this study revealed the potential of the crude extract of the yam bean seed to prevent diamondback moth from ovipositing on its plant host. PMID:25525107
Basukriadi, Adi; Wilkins, Richard M
2014-01-01
An extract of a rotenone-containing plant yam bean, Pachyrhizus erosus (L.) Urban, seeds was tested against the diamondback moth, Plutella xylostella (L.) in a greenhouse to determine its potential as an oviposition deterrent and compared with coumarin and rutin, known as diamondback moth oviposition deterrent compounds, rotenone, and an extract of Peruvian cube root, at a concentration of 0.5% (w/v). Oviposition deterrent index (ODI) was used to determine effects of extracts or compounds in inhibiting oviposition of diamondback moth. Coumarin showed a stronger deterrent effect than the yam bean seed extract with a higher ODI value. On the contrary, rotenone, rutin, and the cube root extract, containing 6.7% (w/w) of rotenone, showed no significant deterrent effects having low or negative ODI values, suggesting that the deterrent effect of the yam bean seed extract is not due to rotenone content of the yam bean seeds. The extract of yam bean seed and coumarin partially deterred the moth from laying eggs on treated leaves in a concentration-dependent manner. The effective concentration for 50% deterrency of coumarin and the yam bean seed extract were 0.11 and 0.83% (w/v), respectively. However, the yam bean seed extract showed a residual deterrent effect on the moth even at 3 d after the treatment and is probably because of its low volatile nature. A long-term deterrency of the yam bean seed extract is an advantage over coumarins. Both the yam bean seed extract and coumarin deterred diamondback moth from laying eggs in total darkness, indicating their nonvisual deterrent effect. This made the extract an effective deterrence to diamondback moth in light and in darkness. To conclude, this study revealed the potential of the crude extract of the yam bean seed to prevent diamondback moth from ovipositing on its plant host. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Ratcliffe, John M; Fullard, James H
2005-12-01
We studied the efficiency and effects of the multiple sensory cues of tiger moths on echolocating bats. We used the northern long-eared bat, Myotis septentrionalis, a purported moth specialist that takes surface-bound prey (gleaning) and airborne prey (aerial hawking), and the dogbane tiger moth, Cycnia tenera, an eared species unpalatable to bats that possesses conspicuous colouration and sound-producing organs (tymbals). This is the first study to investigate the interaction of tiger moths and wild-caught bats under conditions mimicking those found in nature and to demand the use of both aerial hawking and gleaning strategies by bats. Further, it is the first to report spectrograms of the sounds produced by tiger moths while under aerial attack by echolocating bats. During both aerial hawking and gleaning trials, all muted C. tenera and perched intact C. tenera were attacked by M. septentrionalis, indicating that M. septentrionalis did not discriminate C. tenera from palatable moths based on potential echoic and/or non-auditory cues. Intact C. tenera were attacked significantly less often than muted C. tenera during aerial hawking attacks: tymbal clicks were therefore an effective deterrent in an aerial hawking context. During gleaning attacks, intact and muted C. tenera were always attacked and suffered similar mortality rates, suggesting that while handling prey this bat uses primarily chemical signals. Our results also show that C. tenera temporally matches the onset of click production to the ;approach phase' echolocation calls produced by aerial hawking attacking bats and that clicks themselves influence the echolocation behaviour of attacking bats. In the context of past research, these findings support the hypotheses that the clicks of arctiid moths are both an active defence (through echolocation disruption) and a reliable indicator of chemical defence against aerial-hawking bats. We suggest these signals are specialized for an aerial context.
Fang Chen; Juan Shi; Melody Keena
2016-01-01
Asian gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae), females are capable of flight, but little is known about what causes the variation in flight propensity that has been observed. The female flight propensity and capability of Asian gypsy moth from seven geographic populations (three from China, two from Russia, one from Japan, and one...
P. J. Martinat; J. D. Solomon; Theodor D. Leininger
1996-01-01
Hemileuca maia maia (Drury), the buck moth, is abundant in urban areas of the Gulf Coast region where it defoliates oaks. However, the extent to which the buck moth can survive on other tree species common in the southern urban forest has not been reported. In the laboratory, the authors studied the suitability and acceptability to larvae of 14 common tree species in...
N.G. Rappaport; J.L. Robertson
1981-01-01
Five insect molt inhibitors (MI's) were mixed with artificial diet and fed to 3rd and 6th stage western spruce budworm (Choristoneura occidentalis) larvae and 2nd stage Douglas-fir tussock moth (Orgyia pseudotsugata) larvae. In general, tussock moth larvae were more susceptible that western spruce budworm larvae to these MI...
K.-Y. Lee; F. M. Horodyski; A. P. Valaitis; D. L. Denlinger
2002-01-01
During the embryonic (pharate first instar) diapause of the gypsy moth, Lymantria dispar, a 55 kDa protein is highly up-regulated in the gut. We now identify that protein as hemolin, an immune protein in the immunoglobulin superfamily. We isolated a gypsy moth hemolin cDNA and demonstrated a high degree of similarity with hemolins from three other...
2008-01-01
Background Moths have evolved highly successful mating systems, relying on species-specific mixtures of sex pheromone components for long-distance mate communication. Acyl-CoA desaturases are key enzymes in the biosynthesis of these compounds and to a large extent they account for the great diversity of pheromone structures in Lepidoptera. A novel desaturase gene subfamily that displays Δ11 catalytic activities has been highlighted to account for most of the unique pheromone signatures of the taxonomically advanced ditrysian species. To assess the mechanisms driving pheromone evolution, information is needed about the signalling machinery of primitive moths. The currant shoot borer, Lampronia capitella, is the sole reported primitive non-ditrysian moth known to use unsaturated fatty-acid derivatives as sex-pheromone. By combining biochemical and molecular approaches we elucidated the biosynthesis paths of its main pheromone component, the (Z,Z)-9,11-tetradecadien-1-ol and bring new insights into the time point of the recruitment of the key Δ11-desaturase gene subfamily in moth pheromone biosynthesis. Results The reconstructed evolutionary tree of desaturases evidenced two ditrysian-specific lineages (the Δ11 and Δ9 (18C>16C)) to have orthologs in the primitive moth L. capitella despite being absent in Diptera and other insect genomes. Four acyl-CoA desaturase cDNAs were isolated from the pheromone gland, three of which are related to Δ9-desaturases whereas the fourth cDNA clusters with Δ11-desaturases. We demonstrated that this transcript (Lca-KPVQ) exclusively accounts for both steps of desaturation involved in pheromone biosynthesis. This enzyme possesses a Z11-desaturase activity that allows transforming the palmitate precursor (C16:0) into (Z)-11-hexadecenoic acid and the (Z)-9-tetradecenoic acid into the conjugated intermediate (Z,Z)-9,11-tetradecadienoic acid. Conclusion The involvement of a single Z11-desaturase in pheromone biosynthesis of a non-ditrysian moth species, supports that the duplication event leading to the origin of the Lepidoptera-specific Δ11-desaturase gene subfamily took place before radiation of ditrysian moths and their divergence from other heteroneuran lineages. Our findings uncover that this novel class of enzymes affords complex combinations of unique unsaturated fatty acyl-moieties of variable chain-lengths, regio- and stereo-specificities since early in moth history and contributes a notable innovation in the early evolution of moth-pheromones. PMID:18831750
[Sonographically detectable splenic disorders in dogs with malignant lymphoma].
Eberhardt, F; Köhler, C; Krastel, D; Winter, K; Alef, M; Kiefer, I
2015-01-01
To evaluate the frequency of different sonographic splenic disorders in dogs with different anatomic forms of malignant lymphoma. Additionally, the occurrence of the moth-eaten pattern in the parenchyma of the spleen in patients with diseases other than lymphoma should be investigated. Retrospective analysis of patient data collected from dogs histologically or cytologically diagnosed with malignant lymphoma and for which ultrasonographic images were available before the initiation of therapy. Patient data from dogs with a moth-eaten pattern within the splenic parenchyma were evaluated separately. Exclusion criterion was the administration of cytostatic agents prior to diagnosis. In 84% of 164 dogs with malignant lymphoma, an altered pattern of the spleen was diagnosed ultrasonographically. Ninety-four of these 137 patients had a moth-eaten pattern of the splenic parenchyma and 43 dogs displayed abnormalities in the form of splenomegaly, coarse echotexture or other changes of the parenchyma. When a moth-eaten pattern was diagnosed, the affected dogs suffered significantly more often from a multicentric lymphoma (95%) than from any other anatomical lymphoma form. Only one dog displayed a moth-eaten pattern of the splenic parenchyma without diagnosis of a malignant lymphoma. The positive predictive value of the moth-eaten pattern for malignant lymphoma was 99% and, in particular, for the multicentric lymphoma this was 95%. In total, 84% of the 164 dogs displayed a multicentric lymphoma, 5% a mediastinal or a cutaneous lymphoma, respectively, 4% a gastrointestinal lymphoma, and one animal had an ocular or renal lymphoma, respectively. Sonographic changes of the spleen are often diagnosed in dogs with malignant lymphoma, independent of the anatomical lymphoma form. When the moth-eaten pattern is observed, it is very likely that the affected dog suffers from a malignant lymphoma, most probably a multicentric lymphoma.
Cha, Dong H; Hesler, Stephen P; Linn, Charles E; Zhang, Aijun; Teal, Peter E A; Knight, Alan L; Roelofs, Wendell L; Loeb, Gregory M
2013-02-01
Oil-coated clear panel traps baited with a host plant-based kairomone lure have successfully been used for monitoring female grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), but low capture rates as well as difficulty in servicing these traps makes them unsuitable for commercial use. We compared the performance of different trap designs in a flight tunnel and in a vineyard by using a 7-component synthetic kairomone blend, with a focus on trap visual cues. In flight tunnel experiments, a clear delta trap performed better than other traps. When we tested clear delta, green delta, or clear wing traps baited with a cut grape shoot, >50% of female grape berry moths made complete upwind flights. However, the clear delta trap was the only design that resulted in female moths entering the trap. Similar results were observed when females were tested with different traps (clear delta, green delta, white delta, clear wing, or green wing traps) baited with the kairomone lure. Adding a visual pattern that mimicked grape shoots to the outside surface of the clear delta trap resulted in 66% of the females that made upwind flights entering the trap. However, the positive effect of adding a visual pattern to the trap was not observed in a vineyard setting, where clear delta traps with or without a visual pattern caught similar numbers of females. Still, the number of male and female grape berry moths captured in clear delta traps with or without a visual pattern was not significantly different from the number of male and female grape berry moths captured in panel traps, suggesting that the use of these delta traps could be a less cumbersome alternative to oil-coated panel traps for monitoring female grape berry moth.
Antibacterial effects of the artificial surface of nanoimprinted moth-eye film
Kaneko, Toshihiro; Nishiyama, Kyoko; Ozminskyj, Mari; Koshizuka, Tetsuo; Wada, Ikuo; Suzutani, Tatsuo
2017-01-01
The antibacterial effect of a nanostructured film, known as “moth-eye film,” was investigated. The moth-eye film has artificially formed nano-pillars, consisting of hydrophilic resin with urethane acrylate and polyethylene glycol (PEG) derivatives, all over its surface that replicates a moth’s eye. Experiments were performed to compare the moth-eye film with a flat-surfaced film produced from the same materials. The JIS Z2801 film-covering method revealed that the two films produced a decrease in Staphylococcus aureus and Esherichia coli titers of over 5 and 3 logs, respectively. There was no marked difference in the antibacterial effects of the two surfaces. However, the antibacterial effects were reduced by immersion of the films in water. These results indicated that a soluble component(s) of the resin possessed the antibacterial activity, and this component was identified as PEG derivatives by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and Fourier transform infrared spectroscopy (FT-IR). When a small volume of bacterial suspension was dropped on the films as an airborne droplet model, both films showed antibacterial effects, but that of the moth-eye film was more potent. It was considered that the moth-eye structure allowed the bacteria-loaded droplet to spread and allow greater contact between the bacteria and the film surface, resulting in strong adherence of the bacteria to the film and synergistically enhanced bactericidal activity with chemical components. The antibacterial effect of the moth-eye film has been thus confirmed under a bacterial droplet model, and it appears attractive due to its antibacterial ability, which is considered to result not only from its chemical make-up but also from physical adherence. PMID:28934372
John D. Palting
2013-01-01
The Sierra de Bacadéhuachi is a poorly sampled extension of the Sierra Madre Occidental (SMO) located in east-central Sonora near the town of Bacadéhuachi. Sampling of moths using mercury vapor and ultraviolet lights occurred in summer and fall 2011, and spring 2012 at Rincón de Guadalupe, located in pine-oak forest at 1680 m elevation. Approximately 400 taxa of moths...
Stable isotope signatures reflect dietary diversity in European forest moths.
Adams, Marc-Oliver; Seifert, Carlo Lutz; Lehner, Lisamarie; Truxa, Christine; Wanek, Wolfgang; Fiedler, Konrad
2016-01-01
Information on larval diet of many holometabolous insects remains incomplete. Carbon (C) and nitrogen (N) stable isotope analysis in adult wing tissue can provide an efficient tool to infer such trophic relationships. The present study examines whether moth feeding guild affiliations taken from literature are reflected in isotopic signatures. Non-metric multidimensional scaling and permutational analysis of variance indicate that centroids of dietary groups differ significantly. In particular, species whose larvae feed on mosses or aquatic plants deviated from those that consumed vascular land plants. Moth δ(15)N signatures spanned a broader range, and were less dependent on species identity than δ(13)C values. Comparison between moth samples and ostensible food sources revealed heterogeneity in the lichenivorous guild, indicating only Lithosia quadra as an obligate lichen feeder. Among root-feeding Agrotis segetum, some specimens appear to have developed on crop plants in forest-adjacent farm land. Reed-feeding stem-borers may partially rely on intermediary trophic levels such as fungal or bacterial growth. Diagnostic partitioning of moth dietary guilds based on isotopic signatures alone could not be achieved, but hypotheses on trophic relationships based on often vague literature records could be assessed with high resolution. Hence, the approach is well suited for basic categorization of moths where diet is unknown or notoriously difficult to observe (i.e. Microlepidoptera, lichen-feeders).
Amarasekare, Kaushalya G.; Shearer, Peter W.
2017-01-01
This study focused on conservation biological control of pear psylla, Cacopsylla pyricola, in the Pacific Northwest, USA. We hypothesized that insecticides applied against the primary insect pest, codling moth Cydia pomonella, negatively impact natural enemies of pear psylla, thus causing outbreaks of this secondary pest. Hence, the objective of this study was to understand how codling moth management influences the abundance of pear psylla and its natural enemy complex in pear orchards managed under long-term codling moth mating disruption programs. We conducted this study within a pear orchard that had previously been under seasonal mating disruption for codling moth for eight years. We replicated two treatments, “natural enemy disrupt” (application of two combination sprays of spinetoram plus chlorantraniliprole timed against first-generation codling moth) and “natural enemy non-disrupt” four times in the orchard. Field sampling of psylla and natural enemies (i.e., lacewings, coccinellids, spiders, Campylomma verbasci, syrphid flies, earwigs) revealed that pear psylla populations remained well below treatment thresholds all season despite the reduced abundance of key pear psylla natural enemies in the natural enemy disrupt plots compared with the non-disrupt treatment. We speculate that pear psylla are difficult to disrupt when pear orchards are under long-term codling moth disruption. PMID:28974000
Baughman, William B; Nelson, Peter N; Grieshop, Matthew J
2015-06-01
We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.
General and specific gypsy moth predators
Ronald M. Weseloh
1991-01-01
General larval predators of low-density gypsy moth, Lymantria dispar (L.), populations have been assessed by exposing caterpillars tethered by threads. Most mortality occurred on tree trunks and in leaf litter.
Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.
1985-03-01
Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.
Laura M. Blackburn; Donna S. Leonard; Patrick C. Tobin
2011-01-01
The Slow the Spread Program operates along the expanding population front of the gypsy moth, from Minnesota to North Carolina. The primary objective of the program is to eliminate newly-founded colonies that form ahead of the leading edge to reduce the gypsy moth's rate of spread and delay the costs associated with infestation and outbreaks. Although the majority...
Stelinski, L L; McGhee, P; Haas, M; Il'ichev, A L; Gut, L J
2007-08-01
Several application parameters of microencapsulated (MEC) sex pheromone formulations were manipulated to determine their impact on efficacy of disruption for codling moth, Cydia pomonella (L.); oriental fruit moth, Grapholita molesta (Busck); obliquebanded leafroller, Choristoneura rosaceana (Harris); and redbanded leafroller, Argyrotaenia velutinana (Walker). Depending on the experiment, the formulations evaluated were those formerly manufactured by 3M Canada (London, ON, Canada) or those that are currently available from Suterra LLC (Bend, OR). The efficacy of MEC formulations applied by air-blast sprayer evenly throughout the entire canopy of 2-3-m-tall apple (Malus spp.) trees was equivalent to treatments in which targeted applications of MECs were made to the lower or upper 1.5 m of the canopy (at equivalent overall rates) for oriental fruit moth and both leafroller species. The realized distribution of deposited microcapsules within the tree canopy corresponded well with the intended heights of application within the canopy. The additional coapplication of the pine resin sticker Nu-Film 17 increased efficacy but not longevity of MEC formulations for oriental fruit moth; this adjuvant had no added effects for codling moth or leafroller formulations. Increasing the rate of active ingredient (AI) per hectare by 20-30-fold (range 2.5-75.0 g/ha) did not improve the disruption efficacy of MECs for codling moth or either leafroller species when both low and high rates were applied at equivalent frequencies per season. A low-rate, high-frequency (nine applications per season) application protocol was compared with a standard protocol in which two to three applications were made per season, once before each moth generation for each species. The low-rate, high-frequency protocol resulted in equivalent or better disruption efficacy for each moth species, despite using two-fold less total AI per hectare per season with the former treatment. The low-rate, frequent-application protocol should make the use of MEC formulations of synthetic pheromone more economical and perhaps more effective.
Sun, Jingyao; Wang, Xiaobing; Wu, Jinghua; Jiang, Chong; Shen, Jingjing; Cooper, Merideth A; Zheng, Xiuting; Liu, Ying; Yang, Zhaogang; Wu, Daming
2018-04-03
Sub-wavelength antireflection moth-eye structures were fabricated with Nickel mold using Roll-to-Plate (R2P) ultraviolet nanoimprint lithography (UV-NIL) on transparent polycarbonate (PC) substrates. Samples with well replicated patterns established an average reflection of 1.21% in the visible light range, 380 to 760 nm, at normal incidence. An excellent antireflection property of a wide range of incidence angles was shown with the average reflection below 4% at 50°. Compared with the unpatterned ultraviolet-curable resin coating, the resulting sub-wavelength moth-eye structure also exhibited increased hydrophobicity in addition to antireflection. This R2P method is especially suitable for large-area product preparation and the biomimetic moth-eye structure with multiple performances can be applied to optical devices such as display screens, solar cells, or light emitting diodes.
Ortega-Baes, P; Saravia, M; Sühring, S; Godínez-Alvarez, H; Zamar, M
2011-01-01
The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E. terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella
Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.
2014-01-01
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella.
Duménil, Claire; Judd, Gary J R; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T
2014-09-26
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.
J. J. Colbert; G. E. Racin
1991-01-01
The model is composed of four major subsystems that are driven by weather. The stand subsystem incorporates the effects of damage by the gypsy moth into annual tree diameter and height growth as well as tree mortality.
Kuussaari, Mikko; Saarinen, Matias; Korpela, Eeva-Liisa; Pöyry, Juha; Hyvönen, Terho
2014-01-01
Mobility is a key factor determining lepidopteran species responses to environmental change. However, direct multispecies comparisons of mobility are rare and empirical comparisons between butterflies and moths have not been previously conducted. Here, we compared mobility between butterflies and diurnal moths and studied species traits affecting butterfly mobility. We experimentally marked and released 2011 butterfly and 2367 moth individuals belonging to 32 and 28 species, respectively, in a 25 m × 25 m release area within an 11-ha, 8-year-old set-aside field. Distance moved and emigration rate from the release habitat were recorded by species. The release experiment produced directly comparable mobility data in 18 butterfly and 9 moth species with almost 500 individuals recaptured. Butterflies were found more mobile than geometroid moths in terms of both distance moved (mean 315 m vs. 63 m, respectively) and emigration rate (mean 54% vs. 17%, respectively). Release habitat suitability had a strong effect on emigration rate and distance moved, because butterflies tended to leave the set-aside, if it was not suitable for breeding. In addition, emigration rate and distance moved increased significantly with increasing body size. When phylogenetic relatedness among species was included in the analyses, the significant effect of body size disappeared, but habitat suitability remained significant for distance moved. The higher mobility of butterflies than geometroid moths can largely be explained by morphological differences, as butterflies are more robust fliers. The important role of release habitat suitability in butterfly mobility was expected, but seems not to have been empirically documented before. The observed positive correlation between butterfly size and mobility is in agreement with our previous findings on butterfly colonization speed in a long-term set-aside experiment and recent meta-analyses on butterfly mobility. PMID:25614794
Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella.
Carabajal Paladino, Leonela Z; Nguyen, Petr; Síchová, Jindra; Marec, František
2014-01-01
We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms.
Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella
2014-01-01
Background We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Results Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. Conclusions We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms. PMID:25471491
Impact of small mammal predators on gypsy moth
Joseph S. Elkinton; Harvey R. Smith; Andrew M. Liebhold
1991-01-01
Research in western Massachusetts, on Cape Cod, and on Bryant Mountain in Vermont conducted over the past decade has confirmed the importance of mortality during the late larval and pupal stages to gypsy moth population dynamics.
Can alien plants support generalist insect herbivores?
Douglas W. Tallamy; Meg Ballard; Vincent D' Amico
2010-01-01
Simple rearing experiments were conducted to address two questions relevant to understanding how generalist lepidopteran herbivores interact with alien plants. Yellow-striped armyworm (Spodoptera ornithogalli), luna moth (Actias luna), bagworm (Thyridopteryx ephemeraeformis) and white-marked tussock moth (
78 FR 24665 - Gypsy Moth Generally Infested Areas; Additions in Wisconsin
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... forest, shade, and commercial trees such as nursery stock and Christmas trees. The gypsy moth regulations... tree growers, and 2 nurseries. We expect that most if not all of these businesses are small according...
Carpenterworm Moths and Cerambycid Hardwood Borers Caught in Light Traps
J. D. Solomon; L. Newsome; W. N. Darwin
1972-01-01
A portable, battery-operated light trap was used in hardwood stands in Mississippi. Ten species of hardwood borers were captured with carpenterworm moths being taken in the greatest numbers. Many cerambycid borers were also captured.
Tingle, F C; Heath, R R; Mitchell, E R
1989-01-01
Mated femaleHeliothis subflexa (Gn.) (HS) moths 1-7 days old responded positively in a Plexiglas flight tunnel to an attractant extracted with methanol from fresh whole-leaf washes of groundcherry,Physalis angulata L. Response to the groundcherry extract, as indicated by plume-tracking (i.e., upwind flight toward the odor source) and contact with the chemical dispenser did not change significantly during the first 5 hr of scotophase. Overall, ca. 50% of the responding moths also landed on the chemical dispenser; ca. 50% of the moths that landed also deposited eggs. There were no significant differences in the behavioral responses of females mating only once and those that had mated two or more times. Virgin females and male moths were significantly less responsive to the groundcherry attractant than mated females. The flight tunnel bioassay described provides an excellent system for evaluating plant allelochemics associated with host-plant selection.
Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.
Liu, Xiaojun; Da, Yun; Xuan, Yimin
2017-08-07
In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.
Leong, Stephen Chan Teck; Kueh, Roland Jui Heng
2011-01-01
Seasonal population of the fruit-piercing moths Eudocima spp. was monitored throughout the citrus growing seasons in a citrus orchard and in site adjacent to secondary forest from July 2007 to June 2009. The moth was detected practically throughout the year with activity lowest during the wet months (September-February) when fruits are still available and while highest during the dry months (May-June) which also coincided with the main fruiting season. The effects of an nC24 horticultural mineral oil (HMO) on the citrus fruit damage caused by fruit-piecing moths was also determined. The percent fruit damage was significantly lowest (P≤0.05) in HMO-treated plots (8.4), followed by Dimethoate-treated plots (11.6) and untreated plots (22.5). However, there was no significant difference between HMO and Dimethoate treated plots indicating HMO is effective in reducing percent fruit damage. PMID:22203789
Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C
2008-02-01
Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production.
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S.
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3–10 in a molecular weight range of 11–170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6–8. PMID:27239343
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence.
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3-10 in a molecular weight range of 11-170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6-8.
Evaluation of acetylated moth bean starch as a carrier for controlled drug delivery
Singh, Akhilesh V.; Nath, Lila K.
2012-01-01
The present investigation concerns with the development of controlled release tablets of lamivudine using acetylated moth bean starch. The acetylated starch was synthesized with acetic anhydride in pyridine medium. The acetylated moth bean starch was tested for acute toxicity and drug–excipient compatibility study. The formulations were evaluated for physical characteristics like hardness, friability, % drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi kinetic model and the release mechanism study proved that the formulation showed a combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (Tmax, Cmax, AUC, Vd, T1/2 and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir®, which proved controlled release potential of acetylated moth bean starch. PMID:22210486
Svenssona, Glenn P.; Löfstedt, Christer; Skals, Niels
2007-01-01
Nocturnal moths often use sex pheromones to find mates and ultrasonic hearing to evade echolocating bat predators. Male moths, when confronted with both pheromones and sound, thus have to trade off reproduction and predator avoidance depending on the relative strengths of the perceived conflicting stimuli. The ultrasonic hearing of Plodia interpunctella was investigated. A threshold curve for evasive reaction to ultrasound of tethered moths was established, and the frequency of best hearing was found to be between 40 and 70 kHz. Flight tunnel experiments were performed where males orienting in a sex pheromone plume were stimulated with 50 kHz pulses of different intensities. Pheromone-stimulated males showed increased defensive response with increased intensity of the sound stimulus, and the acoustic cue had long-lasting effects on their pheromone-mediated flight, revealing a cost associated with vital evasive behaviours. PMID:20331396
Liu, Yongqiang; Gao, Yu; Liang, Gemei; Lu, Yanhui
2017-01-01
Methomyl is currently used as a toxicant for the attracticide BioAttract in cotton and vegetables in China. However, methomyl is highly toxic to non-target organisms and a more environmental friendly acceptable alternative is required. Larvae of three lepidopteran insects Helicoverpa armigera, Agrotis ipsilon and Spodoptera litura are important pests of these crops in China. In the present study, the toxicity of 23 commonly used insecticides were tested on H. armigera, then tested the susceptibility of A. ipsilon and S. litura moths to the insecticides which were the most toxic to H. armigera, and the acute toxicity of the most efficacious insecticides were further investigated under laboratory conditions. Chlorantraniliprole, emamectin benzoate, spinetoram, spinosad and methomyl exhibited high levels of toxicity to H. armigera moths with a mortality of 86.67%, 91.11%, 73.33%, 57.78% and 80.00%, respectively, during 24 h period at the concentration of 1 mg a.i. L-1. Among these five insecticides, A. ipsilon and S. litura moths were more sensitive to chlorantraniliprole, emamectin benzoate and methomyl. The lethal time (LT50) values of chlorantraniliprole and methomyl were shorter than emamectin benzoate for all three lepidopteran moth species at 1000 mg a.i. L-1 compared to concentrations of 500, 100 and 1 mg a.i L-1. Chlorantraniliprole was found to have similar levels of toxicity and lethal time on the three lepidopteran moths tested to the standard methomyl, and therefore, can be used as an alternative insecticide to methomyl in the attracticide for controlling these pest species.
Liu, Yongqiang; Gao, Yu; Liang, Gemei
2017-01-01
Methomyl is currently used as a toxicant for the attracticide BioAttract in cotton and vegetables in China. However, methomyl is highly toxic to non-target organisms and a more environmental friendly acceptable alternative is required. Larvae of three lepidopteran insects Helicoverpa armigera, Agrotis ipsilon and Spodoptera litura are important pests of these crops in China. In the present study, the toxicity of 23 commonly used insecticides were tested on H. armigera, then tested the susceptibility of A. ipsilon and S. litura moths to the insecticides which were the most toxic to H. armigera, and the acute toxicity of the most efficacious insecticides were further investigated under laboratory conditions. Chlorantraniliprole, emamectin benzoate, spinetoram, spinosad and methomyl exhibited high levels of toxicity to H. armigera moths with a mortality of 86.67%, 91.11%, 73.33%, 57.78% and 80.00%, respectively, during 24 h period at the concentration of 1 mg a.i. L-1. Among these five insecticides, A. ipsilon and S. litura moths were more sensitive to chlorantraniliprole, emamectin benzoate and methomyl. The lethal time (LT50) values of chlorantraniliprole and methomyl were shorter than emamectin benzoate for all three lepidopteran moth species at 1000 mg a.i. L-1 compared to concentrations of 500, 100 and 1 mg a.i L-1. Chlorantraniliprole was found to have similar levels of toxicity and lethal time on the three lepidopteran moths tested to the standard methomyl, and therefore, can be used as an alternative insecticide to methomyl in the attracticide for controlling these pest species. PMID:28658277
Estimating the Effect of Gypsy Moth Defloiation Using MODIS
NASA Technical Reports Server (NTRS)
deBeurs, K. M.; Townsend, P. A.
2008-01-01
The area of North American forests affected by gypsy moth defoliation continues to expand despite efforts to slow the spread. With the increased area of infestation, ecological, environmental and economic concerns about gypsy moth disturbance remain significant, necessitating coordinated, repeatable and comprehensive monitoring of the areas affected. In this study, our primary objective was to estimate the magnitude of defoliation using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for a gypsy moth outbreak that occurred in the US central Appalachian Mountains in 2000 and 2001. We focused on determining the appropriate spectral MODIS indices and temporal compositing method to best monitor the effects of gypsy moth defoliation. We tested MODIS-based Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and two versions of the Normalized Difference Infrared index (NDIIb6 and NDIIb7, using the channels centered on 1640 nm and 2130 nm respectively) for their capacity to map defoliation as estimated by ground observations. In addition, we evaluated three temporal resolutions: daily, 8-day and 16-day data. We validated the results through quantitative comparison to Landsat based defoliation estimates and traditional sketch maps. Our MODIS based defoliation estimates based on NDIIb6 and NDIIb7 closely matched Landsat defoliation estimates derived from field data as well as sketch maps. We conclude that daily MODIS data can be used with confidence to monitor insect defoliation on an annual time scale, at least for larger patches (greater than 0.63 km2). Eight-day and 16-day MODIS composites may be of lesser use due to the ephemeral character of disturbance by the gypsy moth.
Karlsen, Stein Rune; Jepsen, Jane Uhd; Odland, Arvid; Ims, Rolf Anker; Elvebakk, Arve
2013-11-01
The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores.
NASA Astrophysics Data System (ADS)
Jeram, Sarik; Ge, Jian; Jiang, Peng; Phillips, Blayne
2016-01-01
Silicon moth-eye antireflective structures have emerged to be an excellent approachfor reducing the amount of light that is lost upon incidence on a given surface of optics made of silicon. This property has been exploited for a wide variety of products ranging from eyeglasses and flat-panel displays to solar panels. These materials typically come in the form of coatings that are applied to an optical substrate such as glass. Moth-eye coatings, made of a periodic array of subwavelength pillars on silicon substrates or other substrates, can produce the desired antireflection (AR) performance for a broad wavelength range and over a wide range of incident angles. In the field of astronomy, every photon striking a detector is significant - and thus, losses from reflectivity at the various optical interfaces before a detector can have significant implications to the science at hand. Moth-eye AR coatings on these optical interfaces may minimize their reflection losses while maximizing light throughput for a multitude of different astronomical instruments. In addition, moth-eye AR coatings, which are patterned directly on silicon surfaces, can significantly enhance the coating durability. At the University of Florida, we tested two moth-eye filters designed for use in the near-infrared regime at 1-8 microns by examining their optical properties, such as transmission, the scattered light, and wavefront quality, and testing the coatings at cryogenic temperatures to characterize their viability for use in both ground- and space-based infrared instruments. This presentation will report our lab evaluation results.
Miluch, C E; Dosdall, L M; Evenden, M L
2014-12-01
Optimization of male moth trapping rates in sex pheromone-baited traps plays a key role in managing Plutella xylostella (L.). We investigated various ways to increase the attractiveness of pheromone-baited traps to P. xylostella in canola agroecosystems in AB, Canada. Factors tested included pheromone blend and dose, addition of a green leaf volatile to the pheromone at different times during the season, lure type, trap color, and height. The industry standard dose of 100 μg of pheromone (four-component blend) per lure (ConTech Enterprises Inc., Delta, British Columbia [BC], Canada) captured the most moths in the two lure types tested. Traps baited with pheromone released from gray rubber septa captured more males than those baited with red rubber septa. Traps baited with lures in which Z11-16: Ac is the main component attracted significantly more moths than those in which Z11-16: Ald is the main component. The addition of the green leaf volatile, (Z)-3-hexenyl acetate, to pheromone at a range of doses, did not increase moth capture at any point during the canola growing season. Unpainted white traps captured significantly more male moths than pheromone-baited traps that were painted yellow. Trap height had no significant effect on moth capture. Recommendations for monitoring P. xylostella in canola agroecosystems of western Canada include using a pheromone blend with Z11-16: Ac as the main component released from gray rubber septa at a dose of 100 μg. © 2014 Entomological Society of America.
Derks, Martijn F L; Smit, Sandra; Salis, Lucia; Schijlen, Elio; Bossers, Alex; Mateman, Christa; Pijl, Agata S; de Ridder, Dick; Groenen, Martien A M; Visser, Marcel E; Megens, Hendrik-Jan
2015-07-29
The winter moth (Operophtera brumata) belongs to one of the most species-rich families in Lepidoptera, the Geometridae (approximately 23,000 species). This family is of great economic importance as most species are herbivorous and capable of defoliating trees. Genome assembly of the winter moth allows the study of genes and gene families, such as the cytochrome P450 gene family, which is known to be vital in plant secondary metabolite detoxification and host-plant selection. It also enables exploration of the genomic basis for female brachyptery (wing reduction), a feature of sexual dimorphism in winter moth, and for seasonal timing, a trait extensively studied in this species. Here we present a reference genome for the winter moth, the first geometrid and largest sequenced Lepidopteran genome to date (638 Mb) including a set of 16,912 predicted protein-coding genes. This allowed us to assess the dynamics of evolution on a genome-wide scale using the P450 gene family. We also identified an expanded gene family potentially linked to female brachyptery, and annotated the genes involved in the circadian clock mechanism as main candidates for involvement in seasonal timing. The genome will contribute to Lepidopteran genomic resources and comparative genomics. In addition, the genome enhances our ability to understand the genetic and molecular basis of insect seasonal timing and thereby provides a reference for future evolutionary and population studies on the winter moth. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.L.; Quinn, C.F.; Marcus, M.A.
2006-11-20
Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was foundmore » to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.« less
Gypsy moth larval defense mechanisms against pathogenic microorganisms
Kathleen S. Shields; Tariq M. Butt
1991-01-01
We investigated the response of gypsy moth, Lymantria dispar, larval hemocytes to L. dispar nuclear polyhedrosis virus (LdMNPV) administered per os and by injection, and to injected hyphal bodies and natural protoplasts of some entomopathogenic, entomophthoralean fungi.
John Hainze; David Hall
The red pine shoot moth recently caused significant damage to red pine plantations in Minnesota, Wisconsin and Michigan. Trees of all ages have been attacked, but the most severe damage has occurred in 20-40 year old plantations growing on sandy soils.
Code of Federal Regulations, 2013 CFR
2013-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2012 CFR
2012-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2011 CFR
2011-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2014 CFR
2014-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Multi-species mating disruption in cranberries
USDA-ARS?s Scientific Manuscript database
Cranberries in Wisconsin are often attacked by three moth species, known commonly as Sparganothis fruitworm, cranberry fruitworm, and black-headed fireworm. These moth species require multiple insecticide applications each season in Wisconsin. With the loss of certain broad-spectrum insecticides and...
Forecasting defoliation by the gypsy moth in oak stands
Robert W. Campbell; Joseph P. Standaert
1974-01-01
A multiple-regression model is presented that reflects statistically significant correlations between defoliation by the gypsy moth, the dependent variable, and a series of biotic and physical independent variables. Both possible uses and shortcomings of this model are discussed.
Measurement of pheromone concentration using a portable electroantennogram
Kevin W. Thorpe; Alexei A. Sharov; Ksenia S. Tcheslavskaia
2003-01-01
Mating disruption is an increasingly important tactic against the gypsy moth in the United States. Since the full implementation of the federal Slow-the-Spread of the Gypsy Moth program in 2000, mating disruption has become the predominant method used.
“Heliobase” - Jumpstarting Heliothine Genomics
USDA-ARS?s Scientific Manuscript database
Heliothine moths are major polyphagous pests of commodity crops such as maize, cotton, soybeans and vegetables throughout the world. Control of larvae of the North American pest moth Heliothis virescens, also known as the budworm, and other closely related heliothines would be fundamentally advance...
History of research on modelling gypsy moth population ecology
J. J. Colbert
1991-01-01
History of research to develop models of gypsy moth population dynamics and some related studies are described. Empirical regression-based models are reviewed, and then the more comprehensive process models are discussed. Current model- related research efforts are introduced.
Floral attractants for monitoring pest moths
USDA-ARS?s Scientific Manuscript database
Many species of moths, including pest species, are known to be attracted to volatile compounds emitted by flowers. Some of the flower species studied included glossy abelia, night-blooming jessamine, three species of Gaura, honeysuckle, lesser butterfly orchid, and Oregongrape. The volatiles relea...
Microbial control of the gypsy moth in recently infested states: experiences and expectations
Timothy C. Tigner
1985-01-01
Experiences and expectations concerning microbial control of the gypsy moth in recently infested states are summarized. Initial experience included mixed results, but expectations remain optimistic. Public sentiment assures continued pressure for improvement in microbial control technology.
DDT spray for control of the ponderosa pine tip moth (Rhyacionia zozana [Kearfott])
Robert E. Stevens
1965-01-01
A water emulsion spray of DDT applied by hand sprayer to young trees infested with eggs and early-instar larvae of the ponderosa pine tip moth halted further larval activity and effectively prevented all damage.
Cracking complex taxonomy of Costa Rican moths: Anacrusis Zeller (Lepidoptera: Tortricidae)
USDA-ARS?s Scientific Manuscript database
Remarkably similar forewing patterns, striking sexual dimorphism, and rampant sympatry all combine to present a taxonomically and morphologically bewildering complex of five species of Anacrusis tortricid moths in Central America: Anacrusis turrialbae Razowski, Anacrusis piriferana (Zeller), Anacrus...
Weiblen, R Joseph; Florea, Catalin M; Busse, Lynda E; Shaw, L Brandon; Menyuk, Curtis R; Aggarwal, Ishwar D; Sanghera, Jasbinder S
2015-10-15
It has been experimentally observed that moth-eye antireflective microstructures at the end of As2S3 fibers have an increased laser damage threshold relative to thin-film antireflective coatings. In this work, we computationally study the irradiance enhancement in As2S3 moth-eye antireflective microstructures in order to explain the increased damage threshold. We show that the irradiance enhancement occurs mostly on the air side of the interfaces and is minimal in the As2S3 material. We give a physical explanation for this behavior.
Ioriatti, Claudio; Anfora, Gianfranco; Angeli, Gino; Civolani, Stefano; Schmidt, Silvia; Pasqualini, Edison
2009-03-01
Emamectin benzoate is a novel macrocyclic lactone insecticide derived from naturally occurring avermectin molecules isolated by fermentation from the soil microorganism Streptomyces avermitilis Kim & Goodfellow. The present study aims to evaluate the toxicity of emamectin benzoate to codling moth, Cydia pomonella (L.), and oriental fruit moth, C. molesta (Busck), under laboratory and semi-field conditions. Dose response bioassays showed that emamectin benzoate had a high level of intrinsic toxicity to early-stage larvae of both species, and that contact activity might contribute significantly to mortality. In the semi-field trials, residual toxicity lasted for more than 1 week. Ovicidal activity was recorded only for C. pomonella (approximately 30%), irrespective of the concentrations tested. Field trials confirmed the efficacy of emamectin benzoate on codling moth when applied at 7 day intervals. Fruit damage, both from the first and second generations, was comparable with that on treatment with chlorpyrifos-ethyl, used as a chemical reference. Emamectin benzoate may be considered a valuable tool for the control of codling moth as a component of an IPM programme. Its collective advantages are: high efficacy, lack of cross-resistance with currently used products, control of secondary pests such as oriental fruit moth and selective toxicity that spares beneficials. 2008 Society of Chemical Industry
Lee, Wu-Jung; Moss, Cynthia F
2016-05-01
It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency modulated chirp signals from all angles of orientation and across the wingbeat cycle. High-speed stereo videography was combined with pulse compression sonar processing to characterize the echo information available to foraging bats. Contrary to previous suggestions, the results show that the tail echoes are weak and do not dominate the sonar returns, compared to the large, planar wings and the moth body. However, the distinctive twisted morphology of the tails create persistent echoes across all angles of orientation, which may induce erroneous sonar target localization and disrupt accurate tracking by echolocating bats. These findings thus suggest a refinement of the false target hypothesis to emphasize sonar localization errors induced by the twisted tails, and highlight the importance of physics-based approaches to study the sensory information involved in the evolutionary arms race between moths and their bat predators.
Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
Chapman, Jason W; Reynolds, Don R; Mouritsen, Henrik; Hill, Jane K; Riley, Joe R; Sivell, Duncan; Smith, Alan D; Woiwod, Ian P
2008-04-08
Numerous insect species undertake regular seasonal migrations in order to exploit temporary breeding habitats [1]. These migrations are often achieved by high-altitude windborne movement at night [2-6], facilitating rapid long-distance transport, but seemingly at the cost of frequent displacement in highly disadvantageous directions (the so-called "pied piper" phenomenon [7]). This has lead to uncertainty about the mechanisms migrant insects use to control their migratory directions [8, 9]. Here we show that, far from being at the mercy of the wind, nocturnal moths have unexpectedly complex behavioral mechanisms that guide their migratory flight paths in seasonally-favorable directions. Using entomological radar, we demonstrate that free-flying individuals of the migratory noctuid moth Autographa gamma actively select fast, high-altitude airstreams moving in a direction that is highly beneficial for their autumn migration. They also exhibit common orientation close to the downwind direction, thus maximizing the rectilinear distance traveled. Most unexpectedly, we find that when winds are not closely aligned with the moth's preferred heading (toward the SSW), they compensate for cross-wind drift, thus increasing the probability of reaching their overwintering range. We conclude that nocturnally migrating moths use a compass and an inherited preferred direction to optimize their migratory track.
The Peripheral Olfactory Repertoire of the Lightbrown Apple Moth, Epiphyas postvittana
Thrimawithana, Amali H.; Crowhurst, Ross N.; Newcomb, Richard D.
2015-01-01
The lightbrown apple moth, Epiphyas postvittana is an increasingly global pest of horticultural crops. Like other moths, E. postvittana relies on olfactory cues to locate mates and oviposition sites. To detect these cues, moths have evolved families of genes encoding elements of the peripheral olfactory reception system, including odor carriers, receptors and degrading enzymes. Here we undertake a transcriptomic approach to identify members of these families expressed in the adult antennae of E. postvittana, describing open reading frames encoding 34 odorant binding proteins, 13 chemosensory proteins, 70 odorant receptors, 19 ionotropic receptors, nine gustatory receptors, two sensory neuron membrane proteins, 27 carboxylesterases, 20 glutathione-S-transferases, 49 cytochrome p450s and 18 takeout proteins. For the odorant receptors, quantitative RT-PCR corroborated RNAseq count data on steady state transcript levels. Of the eight odorant receptors that group phylogenetically with pheromone receptors from other moths, two displayed significant male-biased expression patterns, one displayed significant female-biased expression pattern and five were expressed equally in the antennae of both sexes. In addition, we found two male-biased odorant receptors that did not group with previously described pheromone receptors. This suite of olfaction-related genes provides a substantial resource for the functional characterization of this signal transduction system and the development of odor-mediated control strategies for horticultural pests. PMID:26017144
Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution
Ebert, Dieter
2016-01-01
The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of ‘city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. PMID:27072407
Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution.
Altermatt, Florian; Ebert, Dieter
2016-04-01
The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of 'city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. © 2016 The Author(s).
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
Robert A. Fusco; Jean-Claude Martin
2003-01-01
Low volume undiluted applications of Bacillus thuringiensis are common and efficacious against coniferous forest pests such as pine processionary moth and spruce budworm, but have not been common practice against deciduous forest pests due to coverage issues.
Forest stand losses to gypsy moth in the Poconos
David A. Gansner; Owen W. Herrick
1978-01-01
A Study of forest stand losses associated with the gypsy moth outbreak of the early 1970's in the Pocono Mountain Region of northeastern Pennsylvania, showed that while most of the stands incurred little or no loss, a few suffered heavy damage
Tree condition and mortality following defoliation by the gypsy moth
Robert W. Campbell; Harry T. Valentine; Harry T. Valentine
1972-01-01
Relationships between expected defoliation and the subsequent condition and mortality rate among the defoliated trees are almost always important factors in deciding if, when, and where to take control action against a defoliator such as the gypsy moth, Porthetria dispar (L. )
USDA-ARS?s Scientific Manuscript database
The banded sunflower moth, Cochylis hospes Walsingham, is an important insect pest of cultivated sunflower. Eggs are deposited on the bracts of sunflower heads. Larvae develop through five instars within the heads and are present in fields from mid-July to mid-September. Larvae feed initially on the...
2009 Sunflower Insect Pest Problems and Insecticide Update
USDA-ARS?s Scientific Manuscript database
Sunflowers (Helianthus annuus L.) are native to North America and a number of insect pests cause economic losses to sunflower production. Head-infesting insects include the red sunflower seed weevil, Smicronyx fulvus LeConte, banded sunflower moth, Cochylis hospes Walsingham, sunflower moth, Homoeos...
Shortleaf pine hybrids: growth and tip moth damage in southeast Mississippi
Larry H. Lott; Maxine T. Highsmith; C. Dana Nelson
2007-01-01
It is well known that shortleaf pine (Pinus echinata Mill.), loblolly pine (Pinus taeda L.), and Virginia pine (Pinus virginiana Mill.) sustain significantly more Nantucket pine tip moth (Rhyacionia frustrana Comst.) damage than do slash pine (Pinus elliotti var. ...
Interactions between microbial agents and gypsy moth parasites
Ronald M. Weseloh
1985-01-01
The parasite Cotesia melanoscelus attacks small gypsy moth larvae more successfully than large ones, and Bacillus thuringiensis retards the growth of caterpillars it does not kill. Together, both factors lead to higher parasitism by C. melanoscelus in areas sprayed with B. thuringiensis than...
T. M. Odell; P. A. Godwin; W. B. White
1974-01-01
A radiographic technique has been developed for observing and quantifying development and mortality of Blepharipa scutellata ( Robineau-Desvoidy), Parasetigena agilis (Robineau-Desvoidy), and Compsilura concinnata (Meigen), tachinid parasites of the gypsy moth, Porthetria dispar (L.). Puparia...
Kim, Seong-Ryul; Kwak, Woori; Kim, Hyaekang; Kim, Kee-Young; Kim, Su-Bae; Choi, Kwang-Ho; Kim, Seong-Wan; Hwang, Jae-Sam; Kim, Minjee; Kim, Iksoo; Goo, Tae-Won
2018-01-01
Abstract Background Antheraea yamamai, also known as the Japanese oak silk moth, is a wild species of silk moth. Silk produced by A. yamamai, referred to as tensan silk, shows different characteristics such as thickness, compressive elasticity, and chemical resistance compared with common silk produced from the domesticated silkworm, Bombyx mori. Its unique characteristics have led to its use in many research fields including biotechnology and medical science, and the scientific as well as economic importance of the wild silk moth continues to gradually increase. However, no genomic information for the wild silk moth, including A. yamamai, is currently available. Findings In order to construct the A. yamamai genome, a total of 147G base pairs using Illumina and Pacbio sequencing platforms were generated, providing 210-fold coverage based on the 700-Mb estimated genome size of A. yamamai. The assembled genome of A. yamamai was 656 Mb (>2 kb) with 3675 scaffolds, and the N50 length of assembly was 739 Kb with a 34.07% GC ratio. Identified repeat elements covered 37.33% of the total genome, and the completeness of the constructed genome assembly was estimated to be 96.7% by Benchmarking Universal Single-Copy Orthologs v2 analysis. A total of 15 481 genes were identified using Evidence Modeler based on the gene prediction results obtained from 3 different methods (ab initio, RNA-seq-based, known-gene-based) and manual curation. Conclusions Here we present the genome sequence of A. yamamai, the first genome sequence of the wild silk moth. These results provide valuable genomic information, which will help enrich our understanding of the molecular mechanisms relating to not only specific phenotypes such as wild silk itself but also the genomic evolution of Saturniidae. PMID:29186418
Yuvaraj, Jothi Kumar; Corcoran, Jacob A.; Andersson, Martin N.; Newcomb, Richard D.; Anderbrant, Olle; Löfstedt, Christer
2017-01-01
Abstract Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to β-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles. PMID:29126322
White, Peter J. T.; Glover, Katharine; Stewart, Joel; Rice, Amanda
2016-01-01
The universal mercury vapor black light trap is an effective device used for collecting moth specimens in a wide variety of habitats; yet, they can present challenges for researchers. The mercury vapor trap is often powered by a heavy automotive battery making it difficult to conduct extensive surveys in remote regions. The mercury vapor trap also carries a considerable financial cost per trap unit, making trapping challenging with low research budgets. Here, we describe the development and trapping properties of a lighter, simply constructed, and less expensive trap. The LED funnel trap consists of a funnel, soda bottles with plastic vanes, and is powered by rechargeable 9-V batteries. Two strips of low-wavelength LEDs are used as attractants. We tested the trapping parameters of this trap design compared to a standard mercury vapor trap over 10 trap nights in a suburban woodlot in the summer of 2015. The mercury vapor trap caught significantly more moth individuals than the LED trap (average of 78 vs 40 moths per trap night; P < 0.05), and significantly more species than the LED trap (23 vs 15 per trap night; P < 0.05); the mercury vapor trap caught a total of 104 macromoth species over the duration of the study, compared to a total of 87 by the LED trap. Despite the lower yields, the low cost of the LED trap (<$30 ea.) makes it superior to the mercury vapor trap in cost-acquisition per moth species and per moth individual trapped. The LED trap may be a viable alternative to the standard mercury vapor trap, facilitating insect trapping in more diverse settings. PMID:26936923
Wei, Shu-Jun; Shi, Bao-Cai; Gong, Ya-Jun; Jin, Gui-Hua; Chen, Xue-Xin; Meng, Xiang-Feng
2013-01-01
The diamondback moth Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is one of the most destructive insect pests of cruciferous plants worldwide. Biological, ecological and genetic studies have indicated that this moth is migratory in many regions around the world. Although outbreaks of this pest occur annually in China and cause heavy damage, little is known concerning its migration. To better understand its migration pattern, we investigated the population genetic structure and demographic history of the diamondback moth by analyzing 27 geographical populations across China using four mitochondrial genes and nine microsatellite loci. The results showed that high haplotype diversity and low nucleotide diversity occurred in the diamondback moth populations, a finding that is typical for migratory species. No genetic differentiation among all populations and no correlation between genetic and geographical distance were found. However, pairwise analysis of the mitochondrial genes has indicated that populations from the southern region were more differentiated than those from the northern region. Gene flow analysis revealed that the effective number of migrants per generation into populations of the northern region is very high, whereas that into populations of the southern region is quite low. Neutrality testing, mismatch distribution and Bayesian Skyline Plot analyses based on mitochondrial genes all revealed that deviation from Hardy-Weinberg equilibrium and sudden expansion of the effective population size were present in populations from the northern region but not in those from the southern region. In conclusion, all our analyses strongly demonstrated that the diamondback moth migrates within China from the southern to northern regions with rare effective migration in the reverse direction. Our research provides a successful example of using population genetic approaches to resolve the seasonal migration of insects. PMID:23565158
Hegazi, E M; Khafagi, W E; Konstantopoulou, M A; Schlyter, F; Raptopoulos, D; Shweil, S; Abd El-Rahman, S; Atwa, A; Ali, S E; Tawfik, H
2010-10-01
The leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae), is a damaging pest for many fruit trees (e.g., apple [Malus spp.], pear [Pyrus spp.] peach [Prunus spp.], and olive [Olea]). Recently, it caused serious yield losses in newly established olive orchards in Egypt, including the death of young trees. Chemical and biological control have shown limited efficiency against this pest. Field tests were conducted in 2005 and 2006 to evaluate mating disruption (MD) for the control of the leopard moth, on heavily infested, densely planted olive plots (336 trees per ha). The binary blend of the pheromone components (E,Z)-2,13-octadecenyl acetate and (E,Z)-3,13-octadecenyl acetate (95:5) was dispensed from polyethylene vials. Efficacy was measured considering reduction of catches in pheromone traps, reduction of active galleries of leopard moth per tree and fruit yield in the pheromone-treated plots (MD) compared with control plots (CO). Male captures in MD plots were reduced by 89.3% in 2005 and 82.9% in 2006, during a trapping period of 14 and 13 wk, respectively. Application of MD over two consecutive years progressively reduced the number of active galleries per tree in the third year where no sex pheromone was applied. In all years, larval galleries outnumbered moth captures. Fruit yield from trees where sex pheromone had been applied in 2005 and 2006 increased significantly in 2006 (98.8 +/- 2.9 kg per tree) and 2007 (23 +/- 1.3 kg per tree) compared with control ones (61.0 +/- 3.9 and 10.0 +/- 0.6 kg per tree, respectively). Mating disruption shows promising for suppressing leopard moth infestation in olives.
The effect of various doses of pheromone on mating disruption in gypsy moth population
Ksenia Tcheslavskaia; Alexei A. Sharov; Kevin W. Thorpe; Carlyle C. Brewster
2003-01-01
An experiment was conducted in June-August 2001 in the Cumberland and Appomattox- Buckingham State Forests, Virginia to evaluate the effects of various doses of synthetic pheromone (racemic disparlure) on mating disruption of the gypsy moth, Lymantria dispar (L.).
Monitoring Indianmeal moth in the presence of mating disruption
USDA-ARS?s Scientific Manuscript database
Mating disruption with female sex pheromone offers a least-toxic, worker-friendly alternative to fumigation and fogging for control of the Indianmeal moth, an important postharvest pest. Commercial formulations are available for control of this pest with mating disruption, but loss of information fr...
Entomophaga maimaiga panzootic in northeastern gypsy moth populations
Ann E. Hajek; Joseph S. Elkinton
1991-01-01
The fungal pathogen causing extensive mortality in gypsy moth larval populations during the 1989 field season has been identified as Entomophaga maimaiga. Identification was based on morphology and in vitro culture requirements, as well as results from allozyme and restriction fragment linked polymorphism analyses. E....
Moth pheromone receptors and deceitful parapheromones
USDA-ARS?s Scientific Manuscript database
The insect’s olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less ...
A simple technique for collecting chyle from the gypsy moth, Lymantria dispar L.
Frank S. Kaczmarek; Normand R. Dubois
1979-01-01
A procedure for rapidly obtaining significant quantities of chyle is described. The amount and composition of chyle collected from larvae of the gypsy moth, Lymantria dispar (L.), varied according to the instar examined and the age within the instar.
Nun Moth: Potential New Pest (Pest Alert)
Melody Keena; Kathleen Shields
1998-01-01
The nun moth, Lymantria monacha (L.)(Lymantriidae), is a Eurasian pest of conifers that could be accidentally introduced into North America. Its establishment in this country would be disastrous because it feeds on a variety of vegetation and can migrate and colonize a variety of sites.
78 FR 23740 - Gypsy Moth Program; Record of Decision
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... April 2013. Kevin Shea, Acting Administrator, Animal and Plant Health Inspection Service. [FR Doc. 2013... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2012-0113] Gypsy Moth Program; Record of Decision AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION...
Citizen science: Plant and insect phenology with regards to degree-days
USDA-ARS?s Scientific Manuscript database
Daily minimum and maximum temperatures collected from grower-collaborators were used to calculate site specific degree-days. Using our new understanding of Sparganothis phenology, plant phenology were examined relative to moth phenology, allowing us to predict moth development in parallel with plant...
Identification of a nucleopolyhedrovirus in winter moth populations from Massachusetts
John P. Burand; Anna Welch; Woojin Kim; Vince D' Amico; Joseph S. Elkinton
2011-01-01
The winter moth, Operophtera brumata, originally from Europe, has recently invaded eastern Massachusetts. This insect has caused widespread defoliation of many deciduous tree species and severely damaged a variety of crop plants in the infested area including apple, strawberry, and especially blueberry.
The disease complex of the gypsy moth. II. Aerobic bacterial pathogens
J.D. Podgwaite; R.W. Campbell
1972-01-01
Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...
Response of light brown apple moth to oxygenated phosphine fumigation
USDA-ARS?s Scientific Manuscript database
The light brown apple moth (LBAM), Epiphyas postvittana (Walker), poses a serious threat to California agriculture and is currently quarantined by several major trading partners. Fumigation is the only tool to assure pest-free postharvest vegetable and fruit products. However, current fumigants for ...
A major gene controls mimicry and crypsis in butterflies and moths
Nadeau, Nicola J.; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan; Saenko, Suzanne V.; Wallbank, Richard W. R.; Wu, Grace C.; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J.; Hines, Heather; Salazar, Camilo; Merrill, Richard; Dowling, Andrea; ffrench-Constant, Richard; Llaurens, Violaine; Joron, Mathieu; McMillan, W. Owen; Jiggins, Chris D.
2016-01-01
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and if there is any commonality across the 160,000 moth and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping using population genomics and gene expression analyses, which regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle regulators3, suggesting that it most likely regulates pigmentation patterning through regulation of scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects. PMID:27251285
Short-chain alkanes synergise responses of moth pests to their sex pheromones.
Gurba, Alexandre; Guerin, Patrick M
2016-05-01
The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.
Moths on the Flatbed Scanner: The Art of Joseph Scheer
Buchmann, Stephen L.
2011-01-01
During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale. PMID:26467835
The gene cortex controls mimicry and crypsis in butterflies and moths.
Nadeau, Nicola J; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan A; Saenko, Suzanne V; Wallbank, Richard W R; Wu, Grace C; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J; Hines, Heather; Salazar, Camilo; Merrill, Richard M; Dowling, Andrea J; ffrench-Constant, Richard H; Llaurens, Violaine; Joron, Mathieu; McMillan, W Owen; Jiggins, Chris D
2016-06-02
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.
Gypsy moths and American dog ticks: Space partners
NASA Technical Reports Server (NTRS)
Hayes, D. K.; Morgan, N. O.; Webb, R. E.; Goans, M. D.
1984-01-01
An experiment intended for the space shuttle and designed to investigate the effects of weightlessness and total darkness on gypsy moth eggs and engorged American dog ticks is described. The objectives are: (1) to reevaluate the effects of zero gravity on the termination of diapause/hibernation of embryonated gypsy moth eggs, (2) to determine the effect of zero gravity on the ovipositions and subsequent hatch from engorged female American dog ticks that have been induced to diapause in the laboratory, and (3) to determine whether morphological or biochemical changes occur in the insects under examination. Results will be compared with those from a similar experiment conducted on Skylab 4.
Assessing MODIS-based Products and Techniques for Detecting Gypsy Moth Defoliation
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hargrove, William; Smoot, James C.; Prados, Don; McKellip, Rodney; Sader, Steven A.; Gasser, Jerry; May, George
2008-01-01
The project showed potential of MODIS and VIIRS time series data for contributing defoliation detection products to the USFS forest threat early warning system. This study yielded the first satellite-based wall-to-wall 2001 gypsy moth defoliation map for the study area. Initial results led to follow-on work to map 2007 gypsy moth defoliation over the eastern United States (in progress). MODIS-based defoliation maps offer promise for aiding aerial sketch maps either in planning surveys and/or adjusting acreage estimates of annual defoliation. More work still needs to be done to assess potential of technology for "now casts"of defoliation.
Christopher Asaro; Brian T. Sullivan; M.J. Dalusky; C. Wayne Berisford
2004-01-01
Ovipositing female Nantucket pine tip moth, Rhyacionia frustrana, prefer loblolly pine, Pinus taeda L., to slash pine, Pinus elliottii Englem. except during the first spring following planting of seedlings. Host discrimination by R. frustrana increases as seedlings develop, suggesting that...
COMPARISON OF SAMPLING TECHNIQUES USED IN STUDYING LEPIDOPTERA POPULATION DYNAMICS
Four methods (light traps, foliage samples, canvas bands, and gypsy moth egg mass surveys) that are used to study the population dynamics of foliage-feeding Lepidoptera were compared for 10 species, including gypsy moth, Lymantria dispar L. Samples were collected weekly at 12 sit...
Reed Watkins: A Passion for Plume Moths
USDA-ARS?s Scientific Manuscript database
Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....
USDA-ARS?s Scientific Manuscript database
Screened potted cactus plants (Opuntia ficus-indica (L.) Mill.) containing pairs of adult male and female cactus moths, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), were placed in a cactus field in St. Marks, Florida to measure oviposition patterns under field-realistic conditions. Results...
Mapping forest risk associated with the gypsy moth
Andrew M. Liebhold; Randall S. Morin; Andrew Lister; Kurt W. Gottschalk; Eugene Luzader; Daniel Twardus
2003-01-01
The gypsy moth was originally introduced near Boston in 1868 or 1869; it has been slowly expanding its range mostly to the south and west. Its slow spread through the Northeast can be attributed to the limited dispersal capabilities of this insect (females do not fly).
Irradiation for quarantine control of the invasive light brown apple moth, Epiphyas
USDA-ARS?s Scientific Manuscript database
The effects of irradiation on egg, larval, and pupal development, and adult reproduction in light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), were examined. Eggs, neonates, early instars, late instars, early pupae and late pupae were irradiated at target doses of 60, ...
77 FR 75007 - Importation of Sand Pears From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
..., pear fruit moth. Alternaria gaisen Nagano, the cause of black spot of pear. Amphitetranychus viennensis... requirements, Rice, Vegetables. Accordingly, we are amending 7 CFR part 319 as follows: PART 319--FOREIGN... quarantine pests: Acrobasis pyrivorella, pear fruit moth; Alternaria gaisen Nagano, the cause of black spot...
USDA Forest Service Southern Region and Northern Area State & Private Forestry
2001-01-01
The gypsy moth has been an important pest of hardwoods in the Northeastern United States since its introduction in 1869. Established populations exist in all or parts of 19 states from Maine to Wisconsin and south to Illinois and generally in a southeasterly line from Illinois to northeastern North Carolina.
Managing Codling Moth Clearly and Precisely with Semiochemicals
USDA-ARS?s Scientific Manuscript database
Site-specific management practices for codling moth were implemented in ‘Comice’ pear orchards treated with aerosol puffers releasing sex pheromone in southern Oregon during 2008 and 2009. The density of monitoring traps baited with sex pheromone and pear ester was increased and insecticide sprays w...
Development of an artificial diet for winter moth, Operophtera brumata
Emily Hibbard; Joseph Elkinton; George. Boettner
2011-01-01
The winter moth, Operophtera brumata, is an invasive pest that was introduced to North America in the 1930s. First identified in Nova Scotia, this small geometrid native to Europe has spread to New England. It has caused extensive defoliation of deciduous trees and shrubs.
Maximizing pine tip moth control: Timing is everything
Christopher J. Fetting
1999-01-01
The impact of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), has become of increasing concern as standard silvicultural practices have intensified in southern pine production. The associated silvicultural manipulations of site preparation, herbaceous weed control, release, bedding and fertilization have shortened rotation lengths and increased volume...
Huang, Juan; Gut, Larry J; Miller, James R
2013-10-01
The behavior of codling moth, Cydia pomonella (L.), responding to three attract-and-kill devices was compared in flight tunnel experiments measuring attraction and duration of target contact. Placing a 7.6 by 12.6 cm card immediately upwind of a rubber septum releasing pheromone, dramatically increased the duration on the target to > 60 s. In this setting, nearly all the males flew upwind, landed on the card first, and spent the majority of time searching the card. In contrast, male codling moths spent < 15 s at the source if given the lure only. In a forced contact bioassay, knockdown rate or mortality of male codling moths increased in direct proportion to duration of contact on a lambda-cyhalothrin-loaded filter paper. When this insecticide-treated paper was placed immediately upwind of the lure in the flight tunnel, > 90% of males contacting the paper were knocked down 2 h after voluntary exposure. These findings suggest that past attempts to combine insecticide directly with sex pheromones into a small paste, gel, or other forms of dollops are ill-advised because moths are likely over-exposed to pheromone and vacate the target before obtaining a lethal dose of insecticide. It is better to minimize direct contact with the concentrated pheromone while enticing males to extensively search insecticide-treated surface nearby the lure.
Kryukov, Vadim Yu; Kryukova, Natalia A; Tyurin, Maksim V; Yaroslavtseva, Olga N; Glupov, Viktor V
2017-03-15
Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Stelinski, Lukasz; Holdcraft, Robert; Rodriguez-Saona, Cesar
2014-06-19
Female moths are known to detect their own sex pheromone-a phenomenon called "autodetection". Autodetection has various effects on female moth behavior, including altering natural circadian rhythm of calling behavior, inducing flight, and in some cases causing aggregations of conspecifics. A proposed hypothesis for the possible evolutionary benefits of autodetection is its possible role as a spacing mechanism to reduce female-female competition. Here, we explore autodetection in two species of tortricids (Grapholita molesta (Busck) and Choristoneura rosaceana (Harris)). We find that females of both species not only "autodetect," but that learning (change in behavior following experience) occurs, which affects behavior for at least 24 hours after pheromone pre-exposure. Specifically, female calling in both species is advanced at least 24 hours, but not 5 days, following pheromone pre-exposure. Also, the propensity of female moths to initiate flight and the duration of flights, as quantified by a laboratory flight mill, were advanced in pre-exposed females as compared with controls. Pheromone pre-exposure did not affect the proportion of mated moths when they were confined with males in small enclosures over 24 hours in laboratory assays. We discuss the possible implications of these results with respect to management of these known pest species with the use of pheromone-based mating disruption.
Cao, Shuang-Shuang; Du, Yu-Zhou
2014-09-15
The mitogenome of Chilo auricilius (Lepidoptera: Pyraloidea: Crambidae) was a circular molecule made up of 15,367 bp. Sesamia inferens, Chilo suppressalis, Tryporyza incertulas, and C. auricilius, are closely related, well known rice stem borers that are widely distributed in the main rice-growing regions of China. The gene order and orientation of all four stem borers were similar to that of other insect mitogenomes. Among the four stem borers, all AT contents were below 83%, while all AT contents of tRNA genes were above 80%. The genomes were compact, with only 121-257 bp of non-coding intergenic spacer. There are 56 or 62-bp overlapping nucleotides in Crambidae moths, but were only 25-bp overlapping nucleotides in the noctuid moth S. inferens. There was a conserved motif 'ATACTAAA' between trnS2 (UCN) and nad1 in Crambidae moths, but this same region was 'ATCATA' in the noctuid S. inferens. And there was a 6-bp motif 'ATGATAA' of overlapping nucleotides, which was conserved in Lepidoptera, and a 14-bp motif 'TAAGCTATTTAAAT' conserved in the three Crambidae moths (C. suppressalis, C. auricilius and T. incertulas), but not in the noctuid. Finally, there were no stem-and-loop structures in the two Chilo moths. Copyright © 2014 Elsevier B.V. All rights reserved.
Phyllis A.W. Martin; Robert R. Jr. Farrar; Michael B. Blackburn
2011-01-01
We tested 50 lepidopteran-toxic Bacillus thuringiensis Berliner (Bt) strains with diverse phenotypes for the ability to survive repeated passages through larvae of the gypsy moth, Lymantria dispar (L.), without intervening growth on artificial media. These experiments have revealed a remarkable correlation...
Predicting the rate of change in timber value for forest stands infested with gypsy moth
David A. Gansner; Owen W. Herrick
1982-01-01
Presents a method for estimating the potential impact of gypsy moth attacks on forest-stand value. Robust regression analysis is used to develop an equation for predicting the rate of change in timber value from easy-to-measure key characteristics of stand condition.
USDA-ARS?s Scientific Manuscript database
Black and pale swallow-wort (Vincetoxicum nigrum and V. rossicum, Apocynaceae: Asclepiadoideae) are twining vines from Europe that have become invasive in the northeastern USA and southeastern Canada. Hypena opulenta (Christoph) (Lepidoptera: Erebidae), a defoliating forest moth from the Ukraine, ha...
Richard A. Werner; Bruce H. Baker
1977-01-01
The spear-marked black moth, Rheumaptera hastata (L.) (Lepidoptera: Geometridae) is a serious defoliator of paper birch (Betula papyrifera Marsh.) in interior Alaska. Epidemic populations have occurred at 15- to 17- year intervals, persisted for 2 years, and then collapsed. Recorded outbreaks occurred in 1941, acreage unknown; from 1957 to 1958, 5 million acres (2...
Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism
USDA-ARS?s Scientific Manuscript database
Diapausing 5th instars of codling moth, Cydia pomonella, are serious quarantine pests of in-shell walnuts. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling this pest in walnuts...
Variation in gypsy moth, with comparisons to other Lymantria spp.
Paul W. Schaefer
1991-01-01
Specimens of gypsy moth, Lymantria dispar (L.) sensu lato were displayed in museum trays. Many specimens were quarantine laboratory reared during the 1989 season to provide samples (wing venation, frozen adults, prepupal haemolymph, larval feeding behavior, egg mass hair color, head capsule coloration and larval development) for...
Understanding predation: implications toward forest management
Harvey R. Smith
1991-01-01
It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.
USDA-ARS?s Scientific Manuscript database
Three species of goat moths are recorded at the Hanford Nuclear Site and Hanford National Monument in south central Washington State. They are: Comadia bertholdi (Grote), 1880, Givira cornelia (Neumoegen & Dyar), 1893, and Prionoxystus robiniae (Peck), 1818. The general habitat of the Hanford area...
USDA-ARS?s Scientific Manuscript database
The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequenci...
Predicting tree mortality following gypsy moth defoliation
D.E. Fosbroke; R.R. Hicks; K.W. Gottschalk
1991-01-01
Appropriate application of gypsy moth control strategies requires an accurate prediction of the distribution and intensity of tree mortality prior to defoliation. This prior information is necessary to better target investments in control activities where they are needed. This poster lays the groundwork for developing hazard-rating systems for forests of the...
Gypcheck environmentally safe viral insecticide for gypsy moth control
Richard Reardon; John Podgwaite; Roger Zerillo
2012-01-01
This handbook is an update of handbook FHTET-2009-01, Gypchek - Bioinsecticide for the Gypsy Moth, printed in July, 2009. This update contains information on virus production, safety evaluations, results of efficacy and deposition evaluations, commercial production, and a copy of the revised registration label, material safety data sheet, and...
Vermont management in focal areas
Judy Rosovsky; Bruce L. Parker; Luke Curtis
1991-01-01
Following the 1979 outbreak of gypsy moths Lymantria dispar L. in Vermont, state personnel began monitoring a number of focal areas for signs of increase in gypsy moth populations. In 1986 data from this early warning system indicated an incipient outbreak. We took advantage of this increase to test an experimental management technique. Would...
New turf for gypsy moth; there's more at risk downrange
David A. Gansner; Owen W. Herrick; Paul S. DeBald; Jesus A. Cota
1983-01-01
Data collected from 600 field plots in central Pennsylvania forests threatened by gypsy moth point to a greater potential for damage downrange. Though greater than in the Poconos, losses are not expected to be spectacular. Still, some forest landowners will suffer heavy tree mortality to the pest.
Dennis R. Souto; Kathleen S. Shields
2000-01-01
Although many insects and diseases are associated with hemlock, we will, ironically, draw our first conclusion, that hemlocks are very sensitive to the stress of insect defoliation, from a tale of gypsy moth defoliation. The unprecedented gypsy moth (Lymantria dispar L.) outbreak of 1981, when nearly 13 million acres were defoliated in the Northeast...
Recent field research using microbial insecticides against gypsy moth
Lawrence P. Abrahamson; Donald A. Eggen
1985-01-01
Field research since 1978 using different formulations, dosages, and spray volumes of Bacillus thuringiensis Berliner (Bt) against the gypsy moth are reviewed. Problems associated with inconsistent results are discussed, with an emphasis on timing of application. Recommendations for proper use of Bt are presented along with suggestions for further...
William Wallner
1989-01-01
The gypsy moth is the most important hardwood defoliating insect in North America. Since its inadvertent introduction into Massachusetts in 1869, it has spread naturally south and west at approximately 5 miles per year. Long distance spread has occurred from human activities such as moving household belongings, camping equipment, motor homes, or other articles...
THE EFFECT OF BACULOVIRUS INFECTION ON ECDYSTEROID TITER IN GYPSY MOTH LARVAE (LYMANTRIA DISPAR).
Insect baculovirus carries a gene refered to as egt. This gene encodes an enzyme known as ecdysteroid UDP-glucosyl transferase which catalyzes the sugar conjugation of ecdysteroids. Using a gypsy moth embryonic cell line EGT activity of Lymantria dispar nuclear polyhedrosis virus...
Mapping the defoliation potential of gypsy moth
David A. Gansner; Stanford L. Arner; Rachel Riemann Hershey; Susan L. King
1993-01-01
A model that uses forest stand characteristics to estimate the likelihood of gypsy moth (Lymantria dispar) defoliation has been developed. It was applied to recent forest inventory plot data to produce susceptibility ratings and a map showing defoliation potential for counties in Pennsylvania and six adjacent states on new frontiers of infestation.
USDA-ARS?s Scientific Manuscript database
Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains. To evaluate the genetic diversity of Lymantria dispar nucleopolyhedrovirus (LdMNPV) at the genomic level, the genomes of three isolates of...
Effects of defoliation by gypsy moth
Mark J. Twery
1991-01-01
Defoliation of trees by the gypsy moth (Lymantria dispar L.) has many and varied effects. It causes economic losses through lost forest production and reduced aesthetic qualities of the forest. However, defoliation may improve habitat for many species of wildlife and contribute to increased diversity of eastern forests. Effects on water resources,...
Tree mortality risk of oak due to gypsy moth
K.W. Gottschalk; J.J. Colbert; D.L. Feicht
1998-01-01
We present prediction models for estimating tree mortality resulting from gypsy moth, Lymantria dispar, defoliation in mixed oak, Quercus sp., forests. These models differ from previous work by including defoliation as a factor in the analysis. Defoliation intensity, initial tree crown condition (crown vigour), crown position, and...
USDA-ARS?s Scientific Manuscript database
Diatraea lineolata and Diatraea saccharalis (Lepidoptera: Crambidae) are moths with stemboring larvae that feed and develop on economically important grasses. This study investigated whether these moths have diverged from a native host plant, corn, onto introduced crop plants including sorghum, suga...
USDA-ARS?s Scientific Manuscript database
Sunflower pericarps provide a barrier against seed-feeding by larvae of the sunflower moth, Homoeosoma electellum. Pericarp hardening is thought to be accelerated by a phytomelanin layer beneath the hypodermis, but among germplasm with phytomelanin, broad variation in sunflower pericarp strength exi...
Vectoring gypsy moth nuclear polyhedrosis virus by Apanteles melanoscelus (Hym.:Braconidae)
B. Raimo; R.C. Reardon; J.D. Podgwaite
1977-01-01
Gypsy moth Lymantria dispar L. larvae were exposed to Apanteles melanoscelus (Ratzeburg) females contaminated with nuclear polyhedrosis virus. Three methods of contamination (ovipositor, total body surface, and exposure to infected hosts) and two exposure periods (2 and 24 hours) were tested. A significantly greater incidence of...
Response of gypsy moth larvae to homologous and heterologous nuclear polyhedrosis virus
Kathleen S. Shields; Edward M. Dougherty
1991-01-01
The gypsy moth, Lymantria dispar, is not particularly susceptible to baculoviruses other than the nuclear polyhedrosis virus originally isolated from the species (LdMNPV). The multiple enveloped nuclear polyhedrosis virus of Autographa californica (AcMNPV), a very virulent baculovirus that replicates in a large number of...
Microsporidian pathogens in European gypsy moth populations
Michael L. McManus; Leellen Solter
2003-01-01
The significance of microsporidian pathogens as mortality agents of gypsy moth (Lymantria dispar L.) in Europe frequently is overlooked. Collections of isolates from 10 different countries suggest that three genera and several biotypes are extant. It is important that the taxonomic placement and phylogeny of currently described genera and species be...
Efficacy and safety of nitric oxide fumigation for controlling codling moth in apples
USDA-ARS?s Scientific Manuscript database
Nitric oxide (NO) fumigation under ultralow oxygen (ULO) conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were...
Overview: Identification characters of Lepidoptera eggs (Insecta)
USDA-ARS?s Scientific Manuscript database
There are 160,000 species of described Lepidoptera, or moths and butterflies, on Earth. The egg stage is the least known biological stage of moths and butterflies and there have been very few comparative studies. The purpose of this video is to provide the few, major characteristics of Lepidoptera...
Coping with the gypsy moth on new frontiers of infestation
David A. Gansner; Owen W. Herrick; Garland N. Mason; Kurt W. Gottschalk
1987-01-01
Forest managers on new frontiers of infestation are searching for better ways to cope with the gypsy moth (Lymantria dispar). Presented herea are information and guidelines for remedial action to minimize future losses. Methods for assessing potential stand defoliation (susceptibility) and mortality (vulnerability), monitoring insect populations, and...
Combining Pear Ester with Codlemone Improves Management of Codling Moth
USDA-ARS?s Scientific Manuscript database
Several management approaches utilizing pear ester combined with codlemone have been developed in the first 10 years after the discovery of this ripe pear fruit volatile’s kairomonal activity for larvae and both sexes of codling moth. These include a lure that consistently outperforms other high loa...
USDA-ARS?s Scientific Manuscript database
A study of the insects associated with the tree Pourouma bicolor Martius (Cecropiaceae) in Panama, resulted in the discovery of a new phycitine moth genus and species, Vorapourouma basseti (Lepidoptera: Pyralidae). The immatures were collected by beating vegetation using the Fort Sherman Canopy Cran...
USDA-ARS?s Scientific Manuscript database
The Noctuidae is one of the most specious moth families and contains the genera Helicoverpa and Heliothis. Their major sex pheromone component is (Z)-11-hexadecenal except for Helicoverpa assulta and Helicoverpa gelotopoeon both of which utilize (Z)-9-hexadecenal. The minor components of heliothine ...
Field transmission of a microsporidian pathogen of gypsy moth, Lymantria dispar
Thomas Kolling; Andreas Linde
2007-01-01
The quantification of the transmission of entomopathogens is important for the evaluation of their establishment and potential as biological control agents, however, only few field or semi-field studies were performed. The microsporidium Vairimorpha sp. was isolated from a gypsy moth (Lymantria dispar) population in Bulgaria and is...
Computer analysis and mapping of gypsy moth levels in Pennsylvania using LANDSAT-1 digital data
NASA Technical Reports Server (NTRS)
Williams, D. L.
1975-01-01
The effectiveness of using LANDSAT-1 multispectral digital data and imagery, supplemented by ground truth and aerial photography, was investigated as a new method of surveying gypsy moth (Porthetria dispar (L.)) (Lepidoptera; Lymantriidae) defoliation, which has greatly increased in Pennsylvania in recent years. Since the acreage and severity of gypsy moth defoliation reaches a peak from mid-June through the first few days of July, the July 8, 1973, LANDSAT-1 scene was chosen for analysis. Results indicate that LANDSAT-1 data can be used to discriminate between defoliated and healthy vegetation in Pennsylvania and that digital processing methods can be used to map the extent and degree of defoliation.
Historical Gypsy Moth Defoliation Frequency
Gypsy moth populations may exist for many years at low densities such that it may be difficult to find any life stages. Then, for reasons that are not completely understood, populations may rise to very high densities and substantial defoliation of the canopy may occur. These data shows the historical frequency (1972-2002) pattern of gypsy moth defoliation as it spreads south and west from the New England states. forested areas with repeated annual defoliation become more stressed and are at increased risk of permanent damage. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Skowron Volponi, Marta A; McLean, Donald James; Volponi, Paolo; Dudley, Robert
2018-05-01
Clearwing moths are known for their physical resemblance to hymenopterans, but the extent of their behavioural mimicry is unknown. We describe zigzag flights of sesiid bee mimics that are nearly indistinguishable from those of sympatric bees, whereas sesiid wasp mimics display faster, straighter flights more akin to those of wasps. In particular, the flight of the sesiids Heterosphecia pahangensis , Aschistophleps argentifasciata and Pyrophleps cruentata resembles both Tetragonilla collina and T. atripes stingless bees and, to a lesser extent, dwarf honeybees Apis andreniformis , whereas the sesiid Pyrophleps sp. resembles Tachysphex sp. wasps. These findings represent the first experimental evidence for behavioural mimicry in clearwing moths. © 2018 The Author(s).
Bioassays of TH6038 and difluron applied to western spruce budworm and Douglas-fir Tussock moth
Nancy L. Gillette; Jacqueline L. Robertson; Robert L. Lyon
1978-01-01
Two insects molt inhibitors, TH6038 N-[[4-cholorphenyl)amino]carbonyl]-2,6-dichlorobenzamide) and difluron (N-[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide), were tested for topical and feeding toxicity to the western spruce budworm, Choristoneura occidentalis Freeman, and the Douglas-fir tussock moth, Orgyia pseudotsugata...
Phyllis A.W. Martin; Elizabeth A. Mongeon; Michael B. Blackburn; Dawn E. Gundersen-Rindal
2011-01-01
Bacillus thuringiensis Berliner (Bt) has been applied for gypsy moth (Lymantria dispar L.) control in forests in the northeastern U.S. for many years. The subspecies of Bt that is used (urstaki) is not common in U.S. soil. We attempted to recover Bt from...
The Importance of Pear Ester in Codling Moth Monitoring and Management
USDA-ARS?s Scientific Manuscript database
Following the discovery of the attractiveness of pear ester for adult and larvae of codling moth research has developed this ripe pear volatile to improve the monitoring and management of this key pest of apple, pear, and walnut. A lure loaded with pear ester and codlemone has become the most widely...
Apple volatiles synergize the response of codling moth to pear ester
USDA-ARS?s Scientific Manuscript database
This work was undertaken to identify host volatiles from apples and investigate whether these can be used to enhance the efficacy of pear ester, ethyl (2E,4Z)-2,4-decadienoate, for monitoring female and male codling moth, Cydia pomonella L. Volatiles from immature apple trees were collected in the f...
Young Scientists Explore Butterflies and Moths. Book 4 Primary Level.
ERIC Educational Resources Information Center
Penn, Linda
Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities focus on butterflies and moths and their stages of development. The first section contains exercises on recognizing insect body…
The De Havilland "Tiger Moth"a low wing monoplane
NASA Technical Reports Server (NTRS)
1927-01-01
With a speed of 186.5 M.P.H. and an operational altitude of 20,000 feet the De Havilland Tiger Moth has caused comment as it was introduced just before the King's Cup race of 1927. It is a single seater with unusual control configuration due to the cramped cockpit area.
Effectiveness of artificial bark flaps in mediating migration of late-instar gypsy moth larvae
Michael L. McManus; Harvey R. Smith
1984-01-01
Field studies demonstrated that migrating larval instars of the gypsy moth, Lymantria dispar (L.), preferred resting locations placed on tree boles at 4.6 m over those placed at 1.5 and 3 m. More larvae were found beneath bark flaps than beneath flaps of hard black plastic.
K. W. Thorpe; R. L. Ridgway; R. E. Webb
1991-01-01
Egg mass survey data from operational gypsy moth (Lymantria dispar L.) management programs in five Maryland county parks and the Beltsville Agricultural Research Center (BARC) have demonstrated that improved survey protocols are needed to increase the precision and accuracy of the surveys.
Global gypsy--the moth that gets around
W.E. Wallner
1998-01-01
It is difficult to document the total economic impacts of exotic insect pests on eastern U.S. forests. Annual losses to a single introduced pest, the gypsy moth, Lymantria dispar L., have exceeded $30 million from 1980 to 1996. The complicated behavior and actions of humans in accelerating the spread of this "global gypsy" are discussed....
Mesoscale landscape model of gypsy moth phenology
Joseph M. Russo; John G. W. Kelley; Andrew M. Liebhold
1991-01-01
A recently-developed high resolution climatological temperature data base was input into a gypsy moth phenology model. The high resolution data were created from a coupling of 30-year averages of station observations and digital elevation data. The resultant maximum and minimum temperatures have about a 1 km resolution which represents meteorologically the mesoscale....
Combined Sprays of Sex Pheromone and Insecticides to Attract and Kill Codling Moth
USDA-ARS?s Scientific Manuscript database
Field trials were conducted to evaluate the potential of an "attract-and-kill" approach for control of codling moth by adding half-rates of microencapsulated (MEC) lambda-cyhalothrin or acetamiprid to a sex pheromone formulation in Turkey and the USA in 2006. Two apple orchards were divided into six...
The disease complex of the gypsy moth. 1. Major components
R.W. Campbell; J.D. Podgwaite
1971-01-01
A study was undertaken to elucidate the impact of the various components of disease on natural populations of the gypsy moth, Porthetria dispar. Diseased larvae from both sparse and dense populations were examined and categorized on the basis of etiologic and nonetiologic mortality factors. Results indicated a significantly higher incidence of...
USDA-ARS?s Scientific Manuscript database
Delayed planting is recommended to reduce damage from sunflower insect pests in the United States, including the sunflower moth, Homoeosoma electellum (Hulst) and banded sunflower moth, Cochylis hospes Walsingham. However, in some locations, planting earlier or growing later-maturing hybrids could i...
USDA-ARS?s Scientific Manuscript database
The banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is a significant seed-feeding pest of sunflowers in North America. Though some wild Helianthus spp., interspecific crosses, and H. annuus cultivars (that precede hybrid sunflower breeding) have low susceptibility to ba...
Impacts of Insect Defoliation in Cottonwood Plantations in Mississippi
Theodor D. Leininger; Nathan M. Schiff; Jackie Henne-Kerr
2004-01-01
In spring 2001, a notodontid moth, Gluphisia septentrionis Wlkr., defoliated about 2,000 acres of 9- and 10- year-old eastern cottonwood (Populus deltoides Bartr.) trees in west central Mississippi. The farm manager had never seen cottonwood defoliated by that species of moth, because it was not considered a pest in Mississippi....
Codling moth establishment in China: stages of invasion and potential future distribution
USDA-ARS?s Scientific Manuscript database
Codling moth (Cydia pomonella L.) is an internal feeding pest of apples and can cause substantial economic losses to fruit growers due to larval feeding which in turn degrades fruit quality and can result in complete crop loss if left uncontrolled. Although this pest originally developed in central ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
...] Notice of Availability of a Draft Response to Petitions for the Reclassification of Light Brown Apple... two petitions we received requesting the reclassification of light brown apple moth [Epiphyas.... SUPPLEMENTARY INFORMATION: Background Light brown apple moth (Epiphyas postvittana [Walker]) (LBAM) is a plant...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: The banana moth, Opogona sacchari Bojer, is a ployphagous agricultural pest in many tropical areas of the world. The identification of an attractant for male O. sacchari could offer new methods for detection, study and control. RESULTS: A male electroantennographically active compound w...
Forest type affects predation on gypsy moth pupae
A.M. Liebhold; K.F. Raffa; A.L. Diss; A.L. Diss
2005-01-01
Predation by small mammals has previously been shown to be the largest source of mortality in low-density gypsy moth, Lymantria dispar (L.), populations in established populations in north-eastern North America. Fluctuations in predation levels are critical in determining changes in population densities. We compared small mammal communities and levels of predation on...
Synthetic pheromones disrupt male Dioryctria spp. moths in a loblolly pine seed orchard
Gary L. DeBarr; James L. Hanula; Christine G. Niwa; John C Nord
2000-01-01
Synthetic sex pheromones released in a loblolly pine, Pinus taeda L. (Pinaceae), seed orchard interfered with the ability of male coneworm moths, Dioryctria Zeller spp. (Lepidoptera: Pyralidae), to locate traps baited with sex pheromones or live females. Pherocon 1 C® traps baited with synthetic pheromones or live conspecific...
USDA-ARS?s Scientific Manuscript database
Male and female moth catches of Grapholita molesta (Busck) in traps were evaluated in stone and pome fruit orchards untreated or treated with sex pheromones for mating disruption in Uruguay, Argentina, Chile, USA, and Italy from 2015 - 2017. Trials evaluated various blends loaded into either membran...
USDA-ARS?s Scientific Manuscript database
Oil-coated clear panel traps baited with a host plant-based kairomone lure are effective in monitoring female grape berry moth (GBM), Paralobesia viteana (Clemens) (Lepidoptera:Tortricidae), but servicing these traps in a vineyard is cumbersome. In this study, we compared the performance of six diff...
Leah S. Bauer
1999-01-01
In June, those large, black, hairy caterpillars really begin to get your attention as they devour your trees, pelt you car with unpleasent dropping, and lounge about on your porch. I am describing the gysy moth, of course, an annoying caterpillar because of its voracious appette, large size, and abundance in many parts of eastern North America.
Gypsy moth impacts in pine-hardwood mixtures
Kurt W. Gottschalk; Mark J. Twery
1989-01-01
Gypsy moth has affected pine-hardwood mixtures, especially oak-pine stands, since the late 1800's. Several old and new studies on impacts in mixed stands are reviewed. When pines are heavily defoliated, considerable growth loss and mortality can occur. Mortality is heaviest in understory white pine trees, Impact information is used to suggest silvicultural...
C. Wayne Berisford; Todd J. Lanigan; Michael E. Montgomery
1991-01-01
Survival, development time and pupal weights of gypsy moth, Lymantria dispar L., which had fed on southern tree hosts were determined. Five species of oaks, Quercus spp.; sweetgum, Liquidambar styracflua L.; and river birch, Betula nigra L., were found to be acceptable hosts. Survival and...
Variation in the suitability of tree species for the gypsy moth
Michael E. Montgomery
1991-01-01
Lymantria dispar L. is a polyphagous defoliator that feeds on a variety of trees and shrubs. These hosts vary considerably in their nutritional value for the gypsy moth. Classifications patterned after that of Mosher (1915) are used to group potential hosts into categories that correspond to suitable, marginal, and inadequate. Within species...
76 FR 38599 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
.... Animal and Plant Health Inspection Service Title: Gypsy Moth Identification Worksheet. OMB Control Number... gypsy moth is one of the most destructive pests of fruit and ornamental trees as well as hardwood... considered to pose an even greater threat to trees and forested areas. In order to determine the presence and...
Algimantas P. Valaitis
2011-01-01
There is evidence that the gypsy moth, Lymantria dispar, midgut epithelial brush border membrane has membrane-bound glycoconjugates, such as BTR-270 and aminopeptidase N (APN), which function as high affinity binding sites (receptors) for the insecticidal proteins produced by Bacillus thuringiensis (Bt). As gypsy...
Catherine Papp Herms; Deborah G. McCullough; Leah S. Bauer; Robert A. Haack; Norman R. Dubois
1997-01-01
We investigated the phenological and physiological susceptibility of the endangered Karner blue butterfly (Lycaeides melissa samuelis) to Bacillus thuringiensis var. kurstaki (Bt), a product widely used for gypsy moth (Lymantria dispar) suppression in Michigan and other infested states. We...
A technique for marking first-stage larvae of the gypsy moth for dispersal studies
Thomas M. Odell; Ian H. von Lindern
1976-01-01
Zinc cadmium sulfide fluorescent particles can be used to mark first stage larvae of the gypsy moth, Porthetria dispar (L.), without effecting changes in their development and behavior. Marked larvae dispersed readily; so the technique could be used to correlate dispersed larvae with any particular source point.
USDA-ARS?s Scientific Manuscript database
Neotephritis finalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N...
Siberian Moth: Potential New Pest
Yuri Baranchikov; Michael Montgomery; Daniel Kucera
1997-01-01
The Siberian moth, Dendrolimus superans Butler (Family Lasiocampidae), is the most destructive defoliator of conifer forests in Northern Asia. Outbreaks defoliate millions of acres and occur at intervals of 8 to 11 years. The larvae feed on most conifers in the pine family, but outbreaks occur in fir, spruce, Siberian pine, and larch forests. The...
Pathways of nucleopolyhedrosis virus infection in the gypsy moth, Lymantria dispar
K. S. Shields
1985-01-01
Gypsy moth nucleopolyhedrosis virus polyhedral inclusion bodies dissolve slowly in host digestive fluids, in vitro. Infectious viral material is in the hemocoel two hours after ingestion of inclusion bodies. Hemocytes produce and release nucleocapsids throughout the course of infection, but in the fat body, nearly all nucleocapsids are enveloped and...
Regression estimators for late-instar gypsy moth larvae at low pupulation densities
W.E. Wallnr; A.S. Devito; Stanley J. Zarnoch
1989-01-01
Two regression estimators were developed for determining densities of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), larvae from burlap band and pyrethrin spray counts on oak trees in Vermont, Massachusetts, Connecticut, and New York. Studies were conducted by marking larvae on individual burlap banded trees within 15...
USDA-ARS?s Scientific Manuscript database
Larvae of certain species of moths that can severely damage a number of agricultural crops, including vegetables. Pheromone-baited traps are used to detect and monitor the adult moths of these pests. Researchers at the USDA-ARS laboratory in Wapato, Washington developed a chemical attractant for th...
Symposium on formulation and application of microbials for spruce budworm and gypsy moth control
J. A. Armstrong; W. G. Yendol
1985-01-01
This panel of experts from Canada and the United States has been brought together to discuss control techniques and strategies employed against these important defoliators - the spruce budworm and the gypsy moth. In selecting the panel we have chosen people with experience ranging from research to control.
USDA-ARS?s Scientific Manuscript database
Bacillus thuringiensis is an entomopathogenic bacterium that can kill a variety of pest insects, but seldom causes epizootics because it replicates poorly in insects. By attempting to repeatedly pass lepidopteran-active B. thuringiensis strains through gypsy moth larvae, we found that only those str...
Parasite records for the Douglas-fir tussock moth.
Torolf R. Torgersen
1981-01-01
This is an annotated assemblage of parasite and hyperparasite records for the Douglas-fir tussock moth. Species in more than 50 genera in the Hymenoptera and Diptera are included. These records are from published literature, unpublished reports, and other miscellaneous sources. These last sources include specimens reared by the author, species identification files (...
USDA-ARS?s Scientific Manuscript database
Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) has been formulated and applied to control outbreaks of the gypsy moth, L. dispar. To classify and determine the degree of genetic variation among isolates of L. dispar NPVs from different parts of the range of the gypsy moth, partial sequence...
John S. Strazanac; George E. Seidel; Vicki Kondo; Cynthia J. Fritzler; Linda Butler
2007-01-01
Current measures for gypsy moth (Lymantria dispar L.) control emphasize the use of pheromones, growth regulators, and biopesticides. One of the biopesticides, Bacillus thuringiensis kurstaki (Btk), will continue to be necessary for immediate control of gypsy moth and other forest lepidopteran outbreaks. Although...
Identification to Lepidoptera Superfamily-under the microscope (Insecta)
USDA-ARS?s Scientific Manuscript database
There are 160,000 species of described Lepidoptera, or moths and butterflies, on Earth, although it is estimated that the number is closer to 500,000 species. Many moths from all over the world are intercepted at U.S. ports on a wide variety of economically important commodities. The purpose of t...
Storage of resting spores of the gypsy moth fungal pathogen, Entomophaga maimaiga
Ann E. Hajek; Micheal M. Wheeler; Callie C. Eastburn; Leah S. Bauer
2001-01-01
The fungal pathogen, Entomophaga maimaiga causes epizootics in populations of the important North American forest defoliator gypsy moth (Lymantria dispar). Increasing use of thisfungus for biological control is dependent on our ability to produce and manipulate the long-lived overwintering resting spores (azygospores). E. maimaiga resting spores undergo obligate...
USDA-ARS?s Scientific Manuscript database
Light brown apple moth, Epiphyas postvittana, eggs were subjected to oxygenated phosphine fumigation treatments on cut flowers to determine efficacy and safety. Five cut flower species: roses, lilies, tulips, gerbera daisy, and pompon chrysanthemums, were fumigated in separate groups with 2500 ppm ...
USDA-ARS?s Scientific Manuscript database
Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from pheromone glands (PGs) of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that...
Anthropogenic drivers of gypsy moth spread
Kevin M. Bigsby; Patrick C. Tobin; Erin O. Sills
2011-01-01
The gypsy moth, Lymantria dispar (L.), is a polyphagous defoliator introduced to Medford, Massachusetts in 1869. It has spread to over 860,000 km2 in North America, but this still only represents 1/4 of its susceptible host range in the United States. To delay defoliation in the remaining susceptible host range, the government...
Interactions between an injected polydnavirus and per os baculovirus in gypsy moth larvae
V. D' Amico; J.D. Podgwaite; R. Zerillo; P. Taylor; R. Fuester
2013-01-01
Larval gypsy moths, Lymantria dispar (Lepidoptera:Lymantriidae) were co-infected with the L. dispar nucleopolyhedrovirus (LdMNPV) and the Cotesia melanoscela (Hymenoptera:Braconidae) polydnavirus (CmeBV). CmeBV was given along with a parasitoid egg and calyx products in a stinging event, or in the form of an...
Economic analysis of light brown apple moth using GIS and quantitative modeling
Glenn Fowler; Lynn Garrett; Alison Neeley; Roger Magarey; Dan Borchert; Brian Spears
2011-01-01
We conducted an economic analysis of the light brown apple moth (LBAM), (piphyas postvittana (Walker)), whose presence in California has resulted in a regulatory program. Our objective was to quantitatively characterize the economic costs to apple, grape, orange, and pear crops that would result from LBAM's introduction into the continental...
USDA Forest Service Northern Area State & Private Forestry and Region 8; Region 8
1995-01-01
The gypsy moth has been a primary defoliator of hardwoods in the Northeastern United States since its introduction in 1869. Although Pennsylvania, New Jersey, New York, and New England are generally infested, isolated infestations have been noted in some North Central, Southern, and Western Seacoast States and are now subject to eradication by the USDA Animal and Plant...
Effects of Nantucket pine tip moth insecticide spray schedules on loblolly pine seedlings
Christopher J. Fettig; Kenneth W. McCravy; C. Wayne Berisford
2000-01-01
Frequent and prolonged insecticide applications to control the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera:Torticidae) (NPTM), although effective, may be impractical and uneconomica1, for commercial timber production. Timed insecticide sprays of permethrin (Polmce 3.2® EC) were applied to all possible combinations of spray...
Book Review: “A Guide to the Lepidoptera of Japan”
USDA-ARS?s Scientific Manuscript database
The caterpillars of butterflies and moths are among the most destructive pests of agricultural, ornamental, and forest plants. This paper is a review of new book on the butterflies and moths of Japan, which includes a section on pest species. The subject is highly relevant to U.S. agriculture becaus...
The effects of thinning and gypsy moth defoliation on wood volume growth in oaks
Mary Ann Fajvan; Jim Rentch; Kurt Gottschalk
2008-01-01
Stem dissection and dendroecological methods were used to examine the effects of thinning and defoliation by gypsy moth (Lymantria dispar L.) on wood volume increment in oaks (Quercus rubra L., Q. alba L., Q. prinus L.). A model was developed to evaluate radial volume increment growth at three...
Mammoth lakes revisited—50 years after a Douglas-fir tussock moth outbreak.
Boyd E. Wickman; G. Lynn Starr
1990-01-01
For five decades after an outbreak of Douglas-fir tussock moth (Orgyia pseudotsugata (McDunnough)), radial growth of defoliated white fir trees (Abies concolor (Gord. & Glend.) Lindl.), was significantly greater than that of nondefoliated host trees nearby. The increased growth probably was due to the thinning effect of...
Use of molecular probes to detect parasites and retrotransposons in gypsy moths
John H. Werren; Thomas O' Dell
1991-01-01
Retrotransposon screen: Gypsy moth families containing straggling and nonstraggling individuals were divided into categories of straggling, medium, and nonstraggling individuals, from which DNA was extracted. Four families were tested by southern hybridization and probing with ribosomal sequences designed to detect R1 and R2 retrotransposon insertions. Results showed...
Louis F. Wilson
1978-01-01
The eastern pineshoot borer Eucosma gloriola Heinrich 2, also known as the white pine tip moth, American pine shoot moth, white pine shoot borer, and Tordeuse americaine, du pin, injures young conifers in Northeastern North America. Because it infests the new shoots of sapling conifers, this insect is particularly destructive on planted trees destined for the Christmas...
Amy C. Morey; Robert C. Venette; William D. Hutchison
2013-01-01
We artificially selected for increased freeze tolerance in the invasive light brown apple moth. Our results suggest that, by not accounting for adaptation to cold, current models of potential geographic distributions could underestimate the areas at risk of exposure to this species.
USDA-ARS?s Scientific Manuscript database
Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae). The nAChRs mediate the fast actions of the neurotransmitter acetylcholine in synaptic tr...
NASA Astrophysics Data System (ADS)
Honson, Nicolette S.; Plettner, Erika
2006-06-01
Males of the gypsy moth, Lymantria dispar, are attracted by a pheromone released by females. Pheromones are detected by olfactory neurons housed in specialized sensory hairs located on the antennae of the male moth. Once pheromone molecules enter the sensilla lymph, a highly abundant pheromone-binding protein (PBP) transports the molecule to the sensory neuron. The PBPs are members of the insect odorant-binding protein family, with six conserved cysteine residues. In this study, the disulfide bond connectivities of the pheromone-binding proteins PBP1 and PBP2 from the gypsy moth were found to be cysteines 19-54, 50-109, and 97-118 for PBP1, and cysteines 19-54, 50-110, and 97-119 for PBP2, as determined by cyanylation reactions and cyanogen bromide chemical cleavage. We have discovered that the second disulfide linkage is the most easily reduced of the three, and this same linkage is missing among four cysteine-containing insect odorant-binding proteins (OBPs). We are the first to identify the unique steric and electronic properties of this second disulfide linkage.
Jeong, Hyung Uk; Mun, Hye Yeon; Oh, Hyung Keun; Kim, Seung Bum; Yang, Kwang Yeol; Kim, Iksoo; Lee, Hyang Burm
2010-08-01
To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10 x 6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165 x 83 x 124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.
Li, Zhao-Qun; Ma, Long; Yin, Qian; Cai, Xiao-Ming; Luo, Zong-Xiu; Bian, Lei; Xin, Zhao-Jun; He, Peng; Chen, Zong-Mao
2018-01-01
Moths can biosynthesize sex pheromones in the female sex pheromone glands (PGs) and can distinguish species-specific sex pheromones using their antennae. However, the biosynthesis and transportation mechanism for Type II sex pheromone components has rarely been documented in moths. In this study, we constructed a massive PG transcriptome database (14.72 Gb) from a moth species, Ectropis grisescens, which uses type II sex pheromones and is a major tea pest in China. We further identified putative sex pheromone biosynthesis and transportation-related unigenes: 111 cytochrome P450 monooxygenases (CYPs), 25 odorant-binding proteins (OBPs), and 20 chemosensory proteins (CSPs). Tissue expression and phylogenetic tree analyses showed that one CYP (EgriCYP341-fragment3), one OBP (EgriOBP4), and one CSP (EgriCSP10) gene displayed an enriched expression in the PGs, and that EgriOBP2, 3, and 25 are clustered in the moth pheromone-binding protein clade. We considered these our candidate genes. Our results yielded large-scale PG sequence information for further functional studies. PMID:29317471
Gamma irradiation as a phytosanitary treatment for fresh pome fruits produced in Patagonia
NASA Astrophysics Data System (ADS)
Pérez, J.; Lires, C.; Horak, C.; Pawlak, E.; Docters, A.; Kairiyama, E.
2009-07-01
Argentina produces 1.8 million tons/year of apples ( Malus domestica L.) and pears ( Pyrus communis L.) in the Patagonia region. Cydia pomonella, codling moth, and Grapholita molesta, Oriental fruit moth, ( Lepidoptera: Tortricidae) are quarantine pests in pome fruits. Irradiation is a promising phytosanitary treatment because a dose of 200 Gy completely prevents pest adult emergence. A pilot irradiation process of commercially packaged 'Red Delicious' apples and 'Packham's Triumph' pears was performed in an irradiation facility with a Cobalt 60 source. Quality analyses were carried out at 0, 2, 4, 6 and 8 months of storage (1 °C, RH 99%) to evaluate fruit tolerance at 200, 400 and 800 Gy. Irradiation at 200 and 400 Gy had no undesirable effects on fruit quality (pulp firmness, external colour, soluble solids content (SSC), titratable acidity (TA) and sensory evaluations). Irradiation of 'Red Delicious' apples and 'Packham's Triumph' pears can be applied as a commercial quarantine treatment with a minimum absorbed dose of 200 Gy (to control codling moth and Oriental fruit moth) and <800 Gy (according to quality results).
Yang, Ke; Huang, Ling-Qiao; Ning, Chao
2017-01-01
Male moths possess highly sensitive and selective olfactory systems that detect sex pheromones produced by their females. Pheromone receptors (PRs) play a key role in this process. The PR HassOr14b is found to be tuned to (Z)−9-hexadecenal, the major sex-pheromone component, in Helicoverpa assulta. HassOr14b is co-localized with HassOr6 or HassOr16 in two olfactory sensory neurons within the same sensilla. As HarmOr14b, the ortholog of HassOr14b in the closely related species Helicoverpa armigera, is tuned to another chemical (Z)−9-tetradecenal, we study the amino acid residues that determine their ligand selectivity. Two amino acids located in the intracellular domains F232I and T355I together determine the functional difference between the two orthologs. We conclude that species-specific changes in the tuning specificity of the PRs in the two Helicoverpa moth species could be achieved with just a few amino acid substitutions, which provides new insights into the evolution of closely related moth species. PMID:29063835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.
2003-10-01
The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damagemore » levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.« less
Monitoring populations of saddled prominent (Lepidoptera: Notodontidae) with pheromone-baited traps.
Spear-O'Mara, Jennifer; Allen, Douglas C
2007-04-01
Field trials with three types of pheromone traps were performed in eight northern hardwood stands in northern New York state to develop a population-monitoring tool for the saddled prominent, Heterocampa guttivitta (Walker) (Lepidoptera: Notodontidae). Lure specificity and the relationship between pheromone trap catch and subsequent egg density were examined. A study of moth emergence in relation to temperature was designed to determine whether moth activity throughout the flight season can be predicted using a growing degree-day (DD) model. Pherocon 1C wing traps were significantly more effective than the green Unitrap bucket style. Catch was not affected by position when traps were > or =20 m from an opening (road), and lures were specific to saddled prominent. Lure specificity was examined using green Multipher bucket traps, which effectively attracted and held moths. In the first year of the study, number of viable eggs per 10 leaf clusters was significantly correlated (r2 = 0.59) with average moth catch/trap in pheromone-baited Pherocon traps. When differences in stand density (basal area) and relative abundance of sugar maple (percentage of total stems per hectare), the principle host, were accounted for, the multiple regression model also was significant and r2 = 0. 83. Neither model, however, was significant the second year. Using a base temperature of 5.5 degrees C and on-site temperature data, the peak of moth flight occurred at 316 +/- 8 DD and end of flight occurred at 533 +/- 9 DD.
Tang, Rui; Zhang, Jin Ping; Zhang, Zhong Ning
2012-01-01
Volatile organic compounds (VOCs) were collected from damaged and intact mulberry leaves (Morus alba L., Moraceae) and from Hyphantria cunea larvae by headspace absorption with Super Q columns. We identified their constituents using gas chromatography-mass spectrometry, and evaluated the responses of male H. cunea antennae to the compounds using gas chromatography-flame ionization detection coupled with electroantennographic detection. Eleven VOC constituents were found to stimulate antennae of male H. cunea moths: β-ocimene, hexanal, cis-3-hexenal, limonene, trans-2-hexenal, cyclohexanone, cis-2-penten-1-ol, 6-methyl-5-hepten-2-one, 4-hydroxy-4-methyl-2-pentanone, trans-3-hexen-1-ol, and 2,4-dimethyl-3-pentanol. Nine of these chemicals were released by intact, mechanically-damaged, and herbivore-damaged leaves, while cis-2-penten-1-ol was released only by intact and mechanically-damaged leaves and β-ocimene was released only by herbivore-damaged leaves. Results from wind tunnel experiments conducted with volatile components indicated that male moths were significantly more attracted to herbivory-induced volatiles than the solvent control. Furthermore, male moths' attraction to a sex pheromone lure was increased by herbivory-induced compounds and β-ocimene, but reduced by cis-2-penten-1-ol. A proof long-range field trapping experiment showed that the efficiency of sex pheromone lures in trapping male moths was increased by β-ocimene and reduced by cis-2-penten-1-ol. PMID:23166622
Lang, Andreas; Dolek, Matthias; Theißen, Bernhard; Zapp, Andreas
2011-01-01
Butterflies and moths (Lepidoptera) have been suggested for the environmental monitoring of genetically modified (GM) crops due to their suitability as ecological indicators, and because of the possible adverse impact of the cultivation of current transgenic crops. The German Association of Engineers (VDI) has developed guidelines for the standardized monitoring of Lepidoptera describing the use of light traps for adult moths, transect counts for adult butterflies, and visual search for larvae. The guidelines suggest recording adults of Crambid Snout Moths during transect counts in addition to butterflies, and present detailed protocols for the visual search of larvae. In a field survey in three regions of Germany, we tested the practicability and effort-benefit ratio of the latter two VDI approaches. Crambid Snout Moths turned out to be suitable and practical indicators, which can easily be recorded during transect counts. They were present in 57% of the studied field margins, contributing a substantial part to the overall Lepidoptera count, thus providing valuable additional information to the monitoring results. Visual search of larvae generated results in an adequate effort-benefit ratio when searching for lepidopteran larvae of common species feeding on nettles. Visual search for larvae living on host plants other than nettles was time-consuming and yielded much lower numbers of recorded larvae. Beating samples of bushes and trees yielded a higher number of species and individuals. This method is especially appropriate when hedgerows are sampled, and was judged to perform intermediate concerning the relationship between invested sampling effort and obtained results for lepidopteran larvae. In conclusion, transect counts of adult Crambid Moths and recording of lepidopteran larvae feeding on nettles are feasible additional modules for an environmental monitoring of GM crops. Monitoring larvae living on host plants other than nettles and beating samples of bushes and trees can be used as a supplementary tool if necessary or desired. PMID:26467735
Zhu, Wei; Zhang, Huan; Li, Xuan; Meng, Qian; Shu, Ruihao; Wang, Menglong; Zhou, Guiling; Wang, Hongtuo; Miao, Lin; Zhang, Jihong; Qin, Qilian
2016-02-01
Ghost moths (Lepidoptera: Hepialidae) are cold-adapted stenothermal species inhabiting alpine meadows on the Tibetan Plateau. They have an optimal developmental temperature of 12-16 °C but can maintain feeding and growth at 0 °C. Their survival strategies have received little attention, but these insects are a promising model for environmental adaptation. Here, biochemical adaptations and energy metabolism in response to cold were investigated in larvae of the ghost moth Hepialus xiaojinensis. Metabolic rate and respiratory quotient decreased dramatically with decreasing temperature (15-4 °C), suggesting that the energy metabolism of ghost moths, especially glycometabolism, was sensitive to cold. However, the metabolic rate at 4 °C increased with the duration of cold exposure, indicating thermal compensation to sustain energy budgets under cold conditions. Underlying regulation strategies were studied by analyzing metabolic differences between cold-acclimated (4 °C for 48 h) and control larvae (15 °C). In cold-acclimated larvae, the energy generating pathways of carbohydrates, instead of the overall consumption of carbohydrates, was compensated in the fat body by improving the transcription of related enzymes. The mobilization of lipids was also promoted, with higher diacylglycerol, monoacylglycerol and free fatty acid content in hemolymph. These results indicated that cold acclimation induced a reorganization on metabolic structure to prioritise energy metabolism. Within the aerobic process, flux throughout the tricarboxylic acid (TCA) cycle was encouraged in the fat body, and the activity of α-ketoglutarate dehydrogenase was the likely compensation target. Increased mitochondrial cristae density was observed in the midgut of cold-acclimated larvae. The thermal compensation strategies in this ghost moth span the entire process of energy metabolism, including degration of metabolic substrate, TCA cycle and oxidative phosphorylation, and from an energy budget perspective explains how ghost moths sustain physiological activity in cold environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bangels, E; Beliën, T
2012-01-01
Codling moth (Cydia pomonella) is one of the most important pests in apple and pear. In 2010 mating disruption became a key pest management tactic in Flemish pip fruit orchards, largely due to a government subsidy and demonstrating projects aiming to widen the area treated by pheromones as large as possible. As a consequence, the mating disruption strategy was applied at approximately 7.500 ha, or half of the pip fruit area, in 2010 and 2011. The sudden large-scale implementation of this technique changed the codling moth management landscape. Here we present a case study of a commercially managed orchard that suffered from high codling moth pressures for many years, as did the surrounding area. The RAK3 mating disruption system was introduced at this location in 2010, and was continued in 2011. Systematic detailed codling moth flight data for this location are available for many years. In addition, comprehensive data on damage levels of chemically untreated windows spread all over the test orchard in a randomized block design were obtained in successive years, enabling us to thoroughly evaluate the effect of the changed codling moth management strategy. Data from 2011 included damage levels in chemically treated windows when the entire orchard was applied once at the flight peak of Cydia pomonella. In 2009, before introduction of mating disruption, a mean of 8.25 +/- 5.54% of the fruits were infested at harvest when assessed in completely untreated windows. After two years of mating disruption, supported with a full chemical support in 2010, except for the untreated assessment windows, and only one application on the flight peak of 2011, damage was reduced to less than 0.03% at harvest. This is a valuable case study to demonstrate the benefits of the mating disruption approach.
Rojas, Julio C; Kolomiets, Michael V; Bernal, Julio S
2018-01-01
Selecting optimal host plants is critical for herbivorous insects, such as fall armyworm (Spodoptera frugiperda), an important maize pest in the Americas and Africa. Fall armyworm larvae are presumed to have limited mobility, hence female moths are presumed to be largely responsible for selecting hosts. We addressed host selection by fall armyworm moths and neonate and older (3rd-instar) larvae, as mediated by resistance and herbivory in maize plants. Thus, we compared discrimination among three maize cultivars with varying degrees of resistance to fall armyworm, and between plants subjected or not to two types of herbivory. The cultivars were: (i) susceptible, and deficient in jasmonic acid (JA) production and green leaf volatiles (GLV) emissions (inbred line B73-lox10); (ii) modestly resistant (B73), and; (iii) highly resistant (Mp708). The herbivory types were: (i) ongoing (= fall armyworm larvae present), and; (ii) future (= fall armyworm eggs present). In choice tests, moths laid more eggs on the highly resistant cultivar, and least on the susceptible cultivar, though on those cultivars larvae performed poorest and best, respectively. In the context of herbivory, moths laid more eggs: (i) on plants subject to versus free of future herbivory, regardless of whether plants were deficient or not in JA and GLV production; (ii) on plants subject versus free of ongoing herbivory, and; (iii) on plants not deficient in compared to deficient in JA and GLV production. Neonate larvae dispersed aerially from host plants (i.e. ballooned), and most larvae colonized the modestly resistant cultivar, and fewest the highly resistant cultivar, suggesting quasi-directional, directed aerial descent. Finally, dispersing older larvae did not discriminate among the three maize cultivars, nor between maize plants and (plastic) model maize plants, suggesting random, visually-oriented dispersal. Our results were used to assemble a model of host selection by fall armyworm moths and larvae, including recommendations for future research.
Summerville, Keith S
2013-07-01
A common measure of ecosystem resilience is the time course to recovery for a system that has been previously disturbed. The goal of this study was to assess whether forest lepidopteran communities displayed three different forms of resilience following experimental timber harvest. Specifically, I examined whether moth species assemblages returned to pre-logging composition (compositional resilience), species richness (structural resilience), and guild diversity (functional resilience) after forest management. Lepidoptera were sampled from 16 forest stands managed with one of four harvest treatments: no logging, clear-cutting, shelterwood harvests, and group selection harvests. Moths were sampled from all forest stands one year prior to harvest in 2007 and immediately postharvest in 2009-2011. Moth community composition only appeared to be resilient to timber harvest in stands managed with shelterwood methods (15% biomass removed) or in the unlogged stands within managed concession units. Both total species richness and species richness of Quercus-feeding moths also appeared to recover to a near original condition three years post-shelterwood logging. In contrast, moth assemblages in clear-cut stands and group selection stands (80% biomass removed) remained impoverished. Tests of functional resilience suggested that richness of species known to be pollinators was largely unaffected by timber management, and the number of moth species known to feed on herbaceous vegetation doubled in stands logged using group selection methods. Dietary specialists were disproportionately abundant in the unlogged stands postharvest, suggesting that species with more narrow dietary niches have the lowest resilience to timber management. These results suggest that most methods of forest management have short-term negative impacts on woody-plant-feeding Lepidoptera, but that the effects are limited to a few years when the harvest method involves shelterwood cuts. Herbaceous-feeding Lepidoptera appear to quickly colonize stands managed with group selection or clear-cutting, so loss of species richness in stands managed with either of these treatments may be less than predicted based on level of timber being removed. Recovery of moth assemblages in more highly disturbed stands will require longer time periods and techniques such as group selection harvests, where upwards of 80% of the standing bole is removed, may not be consistent with conservation goals.
Vogt, Richard G; Große-Wilde, Ewald; Zhou, Jing-Jiang
2015-07-01
Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies, Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from olfactory (moth) to visual (butterfly) communication, at least regarding long distance mate recognition. These findings will be clarified by additional lepidopteran genomic data, but the observation that moths and butterflies share most of the PBP/GOBP genes suggests that they also share common chemosensory-based behavioral pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kaasch, Michael; Kaasch, Joachim
Two of the most important life scientists in the GDR were the botanist, plant biochemist and pharmacist Kurt MOTHES (1900-1983) and the geneticist and plant breeder Hans STUBBE (1902-1989). Both started their successful careers during the period of NS dictatorship. MOTHES was a full professor of botany at the University of K6nigsberg from 1935 to 1945. After working at the Kaiser Wilhelm Institute for Plant Breeding Research in Mincheberg and at the Kaiser Wilhelm Institute for Biology in Berlin-Dahlem, STUBBE oversaw the establishment of a Kaiser Wilhelm Institute for Crop Plant Research near Vienna in 1943, which was moved to Stecklenberg in the Harz Mountains in 1945 and later to Gatersleben. While MOTHEs was being held as a Soviet prisoner of war from 1945 to 1949, STUBBE was able to set up his institute in Gatersleben in the eastern part of Germany and held influential positions at Martin Luther University in Halle (Saale) as a professor for genetics and as the founding dean of the Faculty of Agriculture. After his release from war captivity, MOTHES, with STUBBE'S support, was able to continue his research at STUBBE'S institute in Gatersleben as the head of the Department for Chemical Physiology. There MOTHES was offered espe- cially favourable conditions by East German standards which led him to turn down other job offers, like the position of professor of botany at the University of Leipzig which was vacant at the time. In addition, MOTHES was also of- fered teaching opportunities in the Faculty of Natural Sciences at the University of Halle, again thanks to STUBBE'S support. In 1951 STUBBE became a founding member and president of the German Academy of Agricultural Sciences at Berlin, and in 1954 MOTHEs became president of the German Academy of Sciences Leopoldina. Both were also influential members of the German Academy of Sciences at Berlin (later the GDR's Academy of Sciences). This article investigates how their collaboration developed into an ever-increasing competitiveness which came to a head as an embroiled dispute resulting from differences in scientific and scientific policy views. In the process a battle was fought over research resources so that, what was at first an apparently personal quarrel, affected the course of research promotion at an institutional level in the area of life sciences in the GDR. Despite several attempts at mediation, old age finally forced the adversaries to put aside their differences.
Automated moth flight analysis in the vicinity of artificial light.
Gaydecki, P
2018-05-10
Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.
Biological efficacy of Gypchek against a low-density leading-edge gypsy moth population
R.E. Webb; G.B. White; T. Sukontarak; J.D. Podgwaite; D. Schumacher; R.C. Reardon
2004-01-01
The USDA's Slow-the-Spread (STS) program seeks to retard the continued spread of the gypsy moth using ecologically desirable treatments such as Gypchek. At "trace" population levels, evaluation of treatment success by defoliation reduction, egg mass reduction, burlap counts, or larval collection is not feasible. We adapted the "bugs-in-bags"...
USDA-ARS?s Scientific Manuscript database
Studies were conducted with hand-applied combo dispensers loaded with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone), and the pear volatile, (E,Z)-2,4-decadienoate (pear ester) for control of codling moth, Cydia pomonella (L.) in apple, Malus domestica Bordkhausen during 2012. Two types of...
Christopher Asaro; Christopher J. Fettig; Kenneth W. McCravy; John T. Nowak; C. Wayne Berisford
2003-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock), an important pest of intensively-managed loblolly pine, Pinus taeda L., was first noted in the scientific literature in 1879. This pest gained notoriety with the establishment of loblolly pine monocultures throughout the southeastern United States during the 1950s. Current intensive forest management...
USDA-ARS?s Scientific Manuscript database
Codling moth (CM), Cydia pomonella, larvae cause severe damage apples, pears and walnuts worldwide by internal feeding and the introduction of molds and spoilage micro-organisms. CM neonate larvae are attracted to and arrested by a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the “pear es...
Pheromone traps and other methods in assessing pine beauty moth (Panolis flammea Schiff.)
Algimantas Ziogas
2003-01-01
The objective of this research was to evaluate different methodologies for quantifying pine beauty moth (Panolis flammea Schiff.) populations in pine stands of Southern part of Lithuania. Evaluations were conducted in selected pine stands by assessing the following: pupae (in the litter); larvae (falling from trees after chemical knock down); and...
USDA-ARS?s Scientific Manuscript database
Based on the examination of 3,457 pinned specimens, we document 263 species of leaf-roller moths (Lepidoptera: Tortricidae) from the Commonwealth of Virginia. The vast majority of specimens examined are from five unrelated efforts: a survey of George Washington Memorial Parkway National Park, Fairfa...
Area-Wide Analysis of Hardwood Defoliator Effects on Tree Conditions in the Allegheny Plateau
Randall S. Morin; Andrew M. Liebhold; Kurt W. Gottschalk
2004-01-01
The effects of defoliation caused by three foliage feeding insects, the gypsy moth (Lymantria dispar), the cherry scallopshell moth (Hydria prunivorata), and the elm spanworm (Ennomos subsignarius), on tree mortality and crown conditions were evaluated using data collected from 1984 to 1999 in the Allegheny National Forest located in northwestern Pennsylvania. While...
Interpretation of gypsy moth frontal advance using meteorology in a conditional algorithm
K.L. Frank; P.C. Tobin; Jr. Thistle; Laurence S. Kalkstein
2013-01-01
The gypsy moth, Lymantria dispar, is a nonnative species that continues to invade areas in North America. It spreads generally through stratified dispersal where local growth and diffusive spread are coupled with long-distance jumps ahead of the leading edge. Long distance jumps due to anthropogenic movement of life stages is a well-documented...
Early warning system for Douglas-fir tussock moth outbreaks in the Western United States.
Gary E. Daterman; John M. Wenz; Katharine A. Sheehan
2004-01-01
The Early Warning System is a pheromone-based trapping system used to detect outbreaks of Douglas-fir tussock moth (DFTM, Orgyia pseudotsugata) in the western United States. Millions of acres are susceptible to DFTM defoliation, but Early Warning System monitoring focuses attention only on the relatively limited areas where outbreaks may be...
Pine beauty moth (Panolis flammea Schiff.) outbreak management: suppression versus natural enemies
Paulius Zolubas
2003-01-01
Pine beauty moth (Panolis flammea Schiff.) is one of the most serious defoliators that periodically threatens Scotch pine forests on poor sandy soils in Lithuania. Population increase of this pest began in 1999. Because a maximum of only 15% defoliation was predicted in particular areas, no additional funding was required for suppressing the...
A simple device for dehairing insect egg masses
Benjamin J. Cosenza; Edwin A. Boger; Normand R. Dubois; Franklin B. Lewis
1963-01-01
The egg masses of some lepidopterous insects are covered by a mat of hairs that for some research purposes must be removed. Doing this by hand is tedious. Besides, the hairs on the egg masses of certain insects such as the gypsy moth (Porthetria dispar [L.] and the browntail moth Nygmia phaeorrhoea [Donov.]) can cause severe...
Interactions of forest management practices and tip moth damage
John T. Nowak
1999-01-01
Intensive forest management practices have been shown to increase tree growth and shorten rotation time. However, they may also increase the need for insect pest management because of higher infestation levels and lower action thresholds. The Nantucket pine tip moth (Rhyacionia frustrana [Comstock]) is one insect that is expected to become more important with more...
USDA-ARS?s Scientific Manuscript database
RNA interference (RNAi) has gained popularity in several fields of research, silencing targeted genes by degradation of RNA. The objective of this study was to develop RNAi for use as a molecular tool in the control of the invasive pest Lymantria dispar (Lepidoptera: Erebidae), gypsy moth, which ha...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... List the Sand Verbena Moth as Endangered or Threatened AGENCY: Fish and Wildlife Service, Interior... Wildlife Service, announce a 90-day finding on a petition to list the sand verbena moth, Copablepharon... review, we find the petition presents substantial information indicating that listing the sand verbena...
A monitoring system for gypsy moth management
F. William Ravlin; S. J. Fleischer; M. R. Carter; E. A. Roberts; M. L. McManus
1991-01-01
Within the last ten years considerable research has been directed toward the development of a gypsy moth monitoring system for project planning at a regional level and for making control decisions at a local level. Pheromones and pheromone-baited traps have been developed and widely used and several egg mass sampling techniques have also been developed. Recently these...
Instar development of the Douglas-fir tussock moth in relation to field temperatures.
Roy C. Beckwith; David G. Grimble; Julie C. Weatherby
1993-01-01
Instar development is recorded for the Douglas-fir tussock moth (Orgyia pseudotsugata) for two different elevations in the Boise National Forest, Idaho, in 1991. The percentage of the population by instars is associated with accumulated degree-days after eclosion, which can be used to predict the proper timing for spray application. For all...
William E. Miller; Arthur R. Hastings; John F. Wootten
1961-01-01
In the United States, the European pine shoot moth has caused much damage in young, plantations of red pine. It has been responsible for reduced planting of red pine in many areas. Although attacked trees rarely if ever die, their growth is inhibited and many are, deformed. Scotch pine and Austrian pine (Pinus nigra Arnold) are usually not so badly damaged. Swiss...
The cost of gypsy moth sex in the city
Kevin M. Bigsby; Mark J. Ambrose; Patrick C. Tobin; Erin O. Sills
2014-01-01
Since its introduction in the 1860s, gypsy moth, Lymantria dispar (L.), has periodically defoliated large swaths of forest in the eastern United States. Prior research has suggested that the greatest costs and losses from these outbreaks accrue in residential areas, but these impacts have not been well quantified. We addressed this lacuna with a case...
USDA-ARS?s Scientific Manuscript database
Oil-coated clear panel traps baited with a host plant-based kairomone lure are effective in monitoring female grape berry moth (GBM), Paralobesia viteana (Clemens) (Lepidoptera:Tortricidae), but servicing these traps in a vineyard is cumbersome. In this study, we compared the performance of differen...
"Slow the spread" a national program to contain the gypsy moth
Alexei A. Sharov; Donna Leonard; Andrew M. Liebhold; E. Anderson Roberts; Willard Dickerson; Willard Dickerson
2002-01-01
Invasions by alien species can cause substantial damage to our forest resources. The gypsy moth (Lymantria dispar) represents one example of this problem, and we present here a new strategy for its management that concentrates on containment rather than suppression of outbreaks. The "Slow the Spread" project is a combined federal and state...
USDA-ARS?s Scientific Manuscript database
Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...
USDA-ARS?s Scientific Manuscript database
Polyvinyl chloride polymer (pvc) dispensers loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), were compared with similar dispensers and a commercial dispenser (Isomate®-C Plus) loaded with codle...
USDA-ARS?s Scientific Manuscript database
Aerosol insecticides (also known as ULV or fogging treatments) delivered through an ultra-low volume application system, are available commercially to control insect pests such as Plodia interpunctella Hübner, the Indianmeal moth. However, little is known about the susceptibility of eggs of P. inter...
Christopher B. Davidson; Kurt W. Gottschalk; James E. Johnson
1999-01-01
This review presents information related to defoliation by the European gypsy moth (Lymantria dispar L.) and subsequent tree mortality in the eastern United States. The literature describing defoliation-induced tree mortality is extensive, yet questions still remain concerning (1) the association between initial stand composition and subsequent tree...
Short-term effects of gypsy moth defoliation on nongame birds
Robert C. Whitmore; Richard D. Greer
1991-01-01
The response of a nongame bird community to tree defoliation and mortality caused by gypsy moths was studied during the summers of 1984, 1985, 1987, and 1988 in deciduous forest habitat of eastern West Virginia. Birds and structural vegetation characteristics were sampled on 42 permanent stations. The 1984 and 1985 stations were considered undefoliated because whole...
Roger W. Fuester
1991-01-01
Cotesia melanoscelus (Ratzeburg) is a bivoltine, solitary, endoparasite of larvae of the gypsy moth, Lymantria dispar (L.). Imported from Europe after the turn of the century, it readily became established and now occurs throughout the generally infested area. Rates of parasitization are highly variable, particularly during the...
Summary of experimental releases of exotic microsporidia: conclusions and recommendations
J. V. Maddox; M. R. Jeffords; M. L. McManus; R. E. Webb
1991-01-01
During a 1985 European expedition, 5 species of microsporidia were obtained from gypsy moth collected in Portugal Czechoslovakia, and Bulgaria. From 1986-1989, we released all 5 species of these microsporidia into gypsy moth populations in isolated woodlots in Maryland. This presentation is a summary of the conclusions and recommendations based on the results of our...
Pupal abnormalities among laboratory-reared gypsy moths
Richard W. Hansen
1991-01-01
Gypsy moth cohorts from 10 near-wild strains (one to six previous generations in culture), six wild strains (field-collected egg masses), and the standard "New Jersey" lab strain (34th and 35th generation in culture) were reared on Otis wheat germ-based artificial diet, in a constant environment. Rearings were begun with newly-hatched first instars; pupae...
Epizootiology of gypsy moth nuclear polyhedrosis virus
Joseph S. Elkinton; John P. Burand; Kathleen D. Murray; Stephen A. Woods
1991-01-01
Recent experimental findings demonstrate that two distinct waves of mortality of gypsy moth larvae from nuclear polyhedrosis virus (NPV) occurs during larval development. The evidence suggests that early instars acquire lethal doses of NPV from the surface of the egg mass and the cadavers of these larvae produce inoculum that causes a second wave of mortality among...
Effects of gypsy moth infestation on aesthetic preferences and behavior intentions
Samuel M. Brock; Steve Hollenhorst; Wayne Freimund
1991-01-01
Using the Scenic Beauty Estimator (SBE) approach, within-stand color photographs were taken of 27 forested sites representative of the Central Appalachian Plateau. These sites had been repeatedly infested by gypsy moth (Lymantria dispar) (GM) to varying degrees since 1985, with resulting tree mortality from 6% - 97%. Eighty-one slides (3 slides/site...
USDA-ARS?s Scientific Manuscript database
Natural phenology and development of the cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) was studied under field conditions in St. Marks National Wildlife Refuge, St. Marks, FL. from July 2006 to September 2007. Cactus pads (Opuntia stricta Haw. [Cactaceae]) were visually surveyed...
Rating forest stands for gypsy moth defoliation
Owen W. Herrick; David A. Gansner; David A. Gansner
1986-01-01
The severity of future defoliation can be estimated from the percentages of basal area in oaks (Quercus), black oak (Q. velutina) and chestnut oak (a prinus), and in trees with good crowns, along with the average diameter of the stand. With information on these variables, the defoliation potential of any hardwood forest stand in an approaching gypsy moth (Lymantria...
Environmental persistence of the nucleopolyhedrosis virus of the gypsy moth, Lymantria dispar L
J.D. Podgwaite; Kathleen Stone Shields; R.T. Zerillo; R.B. Bruen
1979-01-01
A bioassay technique was used to estimate the concentrations of infectious gypsy moth nucleopolyhedrosis virus (NPV) that occur naturaIly in leaf, bark, litter, and soil samples taken from woodland plots in Connecticut and Pennsylvania. These concentrations were then compared to those in samples taken sequentially after treatment of these plots with NPV. Results...
Overall aspects of Bt in forest service cooperative gypsy moth suppression projects
Noel F. Schneeberger
1985-01-01
Improvements in Bt performance and cost, coupled with public concerns over human health risks have elevated Bt to a viable alternative to chemical insecticides. Operational use of Bt in recent years has demonstrated that while foliage protection can generally be achieved in most situations, gypsy moth population reduction cannot. Efforts are needed to improve Bt...
F. D. Obenchain
1985-01-01
Reuter Laboratories announces additions to its line of microbial insecticides with the 1984-85 introduction of a Bacillus thuringiensis, Berliner, variety Kurstaki (HD-1, H-3A3B) wettable powder formulation. Gypsy moth nucleopolyhedrosis virus, in experimental production since 1982, is scheduled for commercial introduction as a...
Contact toxicity of 40 insecticides tested on pandora moth larvae
Robert L. Lyon
1971-01-01
Forty insecticides and an antifeeding compound were tested on pandora moth larvae (Coloradia pandora Blake) in the second and third instars. A total of 21 insecticides were more toxic at LD90 than DDT, providing a good choice of candidates for field testing. Ten exceeded DDT in toxicity tenfold or more. These were, in...
Predicting the female flight capability of gypsy moths by using DNA markers
Melody A. Keena; Marie-José Côté; Phyllis S. Grinberg; William E. Wallner
2011-01-01
Gypsy moths (Lymantria dispar L.) from different geographic origins have different biological and behavioral traits that can affect the risk of establishment and spread in new areas. One behavioral trait of major concern is the capacity of females from some geographic origins to fly, thus increasing the potential rate of spread and making detection...
Robert L. Talerico; Michael Montgomery
1983-01-01
The Canada/U.S. Spruce Budworms Program in cooperation with the Center for Biological Control of Northeastern Forest Insects and Diseases of the Northeastern Forest Experiment Station co-sponsored this Forest Defoliator-Host Interaction Workshop.This invitational workshop was limited to investigators of the spruce bud worms and gypsy moth in the Forest Service,...
Christopher J. Fettig; John T. Nowak; Donald M. Grosman; C. Wayne Berisford
2003-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of pine plantations throughout the Southern United States. The objectives of this study were to predict the phenology of R. frustrana populations throughout the Western Gulf region, and to provide optimal spray periods for...
Identification of a non-LTR retrotransposon from the gypsy moth
K.J. Garner; J.M. Slavicek
1999-01-01
A family of highly repetitive elements, named LDT1, has been identified in the gypsy moth, Lymantria dispar. The complete element is 5.4 kb in length and lacks long-terminal repeats, The element contains two open reading frames with a significant amino acid sequence similarity to several non-LTR retrotransposons. The first open reading frame contains...
Predictability of gypsy moth defoliation in central hardwoods: a validation study
David E. Fosbroke; Ray R., Jr. Hicks
1993-01-01
A model for predicting gypsy moth defoliation in central hardwood forests based on stand characteristics was evaluated following a 5-year outbreak in Pennsylvania and Maryland. Study area stand characteristics were similar to those of the areas used to develop the model. Comparisons are made between model predictive capability in two physiographic provinces. The tested...
Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand
1999-01-01
The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...
Estimating the Benefits of Gypsy Moth Control on Timberland
David A. Gansner; Owen W. Herrick; Owen W. Herrick
1987-01-01
A recent study of forest stand losses to gypsy moth has provided basic information for evaluating the benefits of control on new frontiers of infestation. Protecting highly susceptible trees from impending attack can prevent a potential loss of 15 percent in their timber value and 2.8 percent in their compound rate of value growth.