Science.gov

Sample records for motile mammalian cilia

  1. Structure and function of mammalian cilia.

    PubMed

    Satir, Peter; Christensen, Søren T

    2008-06-01

    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease.

  2. Cyclic GMP and Cilia Motility

    PubMed Central

    Wyatt, Todd A.

    2015-01-01

    Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028

  3. Axoneme Structure from Motile Cilia.

    PubMed

    Ishikawa, Takashi

    2017-01-03

    The axoneme is the main extracellular part of cilia and flagella in eukaryotes. It consists of a microtubule cytoskeleton, which normally comprises nine doublets. In motile cilia, dynein ATPase motor proteins generate sliding motions between adjacent microtubules, which are integrated into a well-orchestrated beating or rotational motion. In primary cilia, there are a number of sensory proteins functioning on membranes surrounding the axoneme. In both cases, as the study of proteomics has elucidated, hundreds of proteins exist in this compartmentalized biomolecular system. In this article, we review the recent progress of structural studies of the axoneme and its components using electron microscopy and X-ray crystallography, mainly focusing on motile cilia. Structural biology presents snapshots (but not live imaging) of dynamic structural change and gives insights into the force generation mechanism of dynein, ciliary bending mechanism, ciliogenesis, and evolution of the axoneme.

  4. Ion channels and calcium signaling in motile cilia

    PubMed Central

    Doerner, Julia F; Delling, Markus; Clapham, David E

    2015-01-01

    The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI: http://dx.doi.org/10.7554/eLife.11066.001 PMID:26650848

  5. Electrical Signaling in Motile and Primary Cilia

    PubMed Central

    Kleene, Steven J.; Van Houten, Judith L.

    2014-01-01

    Cilia are highly conserved for their structure and also for their sensory functions. They serve as antennae for extracellular information. Whether the cilia are motile or not, they respond to environmental mechanical and chemical stimuli and send signals to the cell body. The information from extracellular stimuli is commonly converted to electrical signals through the repertoire of ion-conducting channels in the ciliary membrane, which results in changes in concentrations of ions, especially calcium ions, in the cilia. These changes, in turn, affect motility and the ability of the signaling pathways in the cilia and cell body to carry on the signal transduction. We review here the activities of ion channels in cilia in animals from protists to vertebrates. PMID:25892740

  6. Overview of structure and function of mammalian cilia.

    PubMed

    Satir, Peter; Christensen, Søren Tvorup

    2007-01-01

    Cilia are membrane-bounded, centriole-derived projections from the cell surface that contain a microtubule cytoskeleton, the ciliary axoneme, surrounded by a ciliary membrane. Axonemes in multiciliated cells of mammalian epithelia are 9 + 2, possess dynein arms, and are motile. In contrast, single nonmotile 9 + 0 primary cilia are found on epithelial cells, such as those of the kidney tubule, but also on nonepithelial cells, such as chondrocytes, fibroblasts, and neurons. The ciliary membranes of all cilia contain specific receptors and ion channel proteins that initiate signaling pathways controlling motility and/or linking mechanical or chemical stimuli, including sonic hedgehog and growth factors, to intracellular transduction cascades regulating differentiation, migration, and cell growth during development and in adulthood. Unique motile 9 + 0 cilia, found during development at the embryonic node, determine left-right asymmetry of the body.

  7. Realizing the Physics of Motile Cilia Synchronization with Driven Colloids

    NASA Astrophysics Data System (ADS)

    Bruot, Nicolas; Cicuta, Pietro

    2016-03-01

    Cilia and flagella in biological systems often show large scale cooperative behaviors such as the synchronization of their beats in "metachronal waves." These are beautiful examples of emergent dynamics in biology, and are essential for life, allowing diverse processes from the motility of eukaryotic microorganisms, to nutrient transport and clearance of pathogens from mammalian airways. How these collective states arise is not fully understood, but it is clear that individual cilia interact mechanically, and that a strong and long-ranged component of the coupling is mediated by the viscous fluid. We review here the work by ourselves and others aimed at understanding the behavior of hydrodynamically coupled systems, and particularly a set of results that have been obtained both experimentally and theoretically by studying actively driven colloidal systems. In these controlled scenarios, it is possible to selectively test aspects of living motile cilia, such as the geometrical arrangement, the effects of the driving profile and the distance to no-slip boundaries. We outline and give examples of how it is possible to link model systems to observations on living systems, which can be made on microorganisms, on cell cultures or on tissue sections. This area of research has clear clinical application in the long term, as severe pathologies are associated with compromised cilia function in humans.

  8. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease

    PubMed Central

    Lewis, Wesley R.; Malarkey, Erik B.; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C.; Porath, Jonathan D.; Birket, Susan E.; Saunier, Sophie; Antignac, Corinne; Leigh, Margaret W.; Zariwala, Maimoona A.; Drummond, Iain A.; Parant, John M.; Hildebrandt, Friedhelm; Yoder, Bradley K.

    2016-01-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants

  9. Adenylate cyclase regulates elongation of mammalian primary cilia

    SciTech Connect

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  10. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals.

    PubMed

    Jerber, Julie; Baas, Dominique; Soulavie, Fabien; Chhin, Brigitte; Cortier, Elisabeth; Vesque, Christine; Thomas, Joëlle; Durand, Bénédicte

    2014-02-01

    Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates.

  11. Motile and non-motile cilia in human pathology: from function to phenotypes.

    PubMed

    Mitchison, Hannah M; Valente, Enza Maria

    2017-01-01

    Ciliopathies are inherited human disorders caused by both motile and non-motile cilia dysfunction that form an important and rapidly expanding disease category. Ciliopathies are complex conditions to diagnose, being multisystem disorders characterized by extensive genetic heterogeneity and clinical variability with high levels of lethality. There is marked phenotypic overlap among distinct ciliopathy syndromes that presents a major challenge for their recognition, diagnosis, and clinical management, in addition to posing an on-going task to develop the most appropriate family counselling. The impact of next-generation sequencing and high-throughput technologies in the last decade has significantly improved our understanding of the biological basis of ciliopathy disorders, enhancing our ability to determine the possible reasons for the extensive overlap in their symptoms and genetic aetiologies. Here, we review the diverse functions of cilia in human health and disease and discuss a growing shift away from the classical clinical definitions of ciliopathy syndromes to a more functional categorization. This approach arises from our improved understanding of this unique organelle, revealed through new genetic and cell biological insights into the discrete functioning of subcompartments of the cilium (basal body, transition zone, intraflagellar transport, motility). Mutations affecting these distinct ciliary protein modules can confer different genetic diseases and new clinical classifications are possible to define, according to the nature and extent of organ involvement. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. Primary cilia and signaling pathways in mammalian development, health and disease

    PubMed Central

    VELAND, IBEN R.; AWAN, AASHIR; PEDERSEN, LOTTE B.; YODER, BRADLEY K.; CHRISTENSEN, SØREN T.

    2010-01-01

    SUMMARY Although first described 1898 and long considered a vestigial organelle of little functional importance, the primary cilium has become one of the hottest research topics in modern cell biology and physiology. Primary cilia are non-motile sensory organelles present in a single copy on the surface of most growth-arrested or differentiated mammalian cells, and defects in their assembly or function are tightly coupled to many developmental defects, diseases and disorders. In normal tissues the primary cilium coordinates a series of signal transduction pathways, including Hedgehog, Wnt, PDGFRα and integrin signaling. In the kidney the primary cilium may function as a mechano-, chemo- and osmosensing unit that probes the extracellular environment and transmits signals to the cell via e.g. polycystins, which depend on ciliary localization for appropriate function. Indeed, hypomorphic mutations in the mouse ift88 (previously called Tg737) gene, which encodes a ciliogenic intraflagellar transport (IFT) protein, result in malformation of primary cilia, and in the collecting ducts of kidney tubules this is accompanied by development of autosomal recessive polycystic kidney disease (PKD; (1)). While PKD was one of the first diseases to be linked to dysfunctional primary cilia, defects in this organelle have subsequently been associated with many other phenotypes, including cancer, obesity, diabetes as well as a number of developmental defects. Collectively, these disorders of the cilium are now referred to as the ciliopathies. In this review we provide a brief overview of the structure and function of primary cilia and some of their roles in coordinating signal transduction pathways in mammalian development, health and disease. This review was written in conjunction with the Takis Anagnostopoulos Symposium on Renal and Epithelial Physiology and Physiopathology at Faculté de Médecine Necker in Paris, June 26-27, 2008. PMID:19276629

  13. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  14. The Kinesin-4 Protein KIF7 Regulates Mammalian Hedgehog Signaling by Organizing the Cilia Tip Compartment

    PubMed Central

    He, Mu; Subramanian, Radhika; Bangs, Fiona; Omelchenko, Tatiana; Liem, Karel F.; Kapoor, Tarun M.; Anderson, Kathryn V.

    2014-01-01

    Mammalian Hedgehog (Hh) signal transduction requires the primary cilium, a microtubule-based organelle, and the Gli/Sufu complexes that mediate Hh signaling are enriched at cilia tips. KIF7, a kinesin-4 family protein, is a conserved regulator of the Hh signaling pathway and a human ciliopathy protein. Here we show that KIF7 localizes to cilia tips, the site of microtubule plus-ends, where it limits cilia length and controls cilia structure. Purified recombinant KIF7 binds the plus-ends of growing microtubules in vitro, where it reduces the rate of microtubule growth and increases the frequency of microtubule catastrophe. KIF7 is not required for normal intraflagellar transport or for trafficking of Hh pathway proteins into cilia. Instead, a central function of KIF7 in the mammalian Hh pathway is to control cilia architecture and to create a single cilia tip compartment where Gli/Sufu activation can be correctly regulated. PMID:24952464

  15. Cryo-electron tomography of motile cilia and flagella.

    PubMed

    Ishikawa, Takashi

    2015-01-01

    Cryo-electron tomography has been a valuable tool in the analysis of 3D structures of cilia at molecular and cellular levels. It opened a way to reconstruct 3D conformations of proteins in cilia at 3-nm resolution, revealed networks of a number of component proteins in cilia, and has even allowed the study of component dynamics. In particular, we have identified the locations and conformations of all the regular inner and outer dyneins, as well as various regulators such as radial spokes. Since the mid 2000s, cryo-electron tomography has provided us with new knowledge, concepts, and questions in the area of cilia research. Now, after nearly 10 years of application of this technique, we are turning a corner and are at the stage to discuss the next steps. We expect further development of this technique for specimen preparation, data acquisition, and analysis. While combining this tool with other methodologies has already made cryo-electron tomography more biologically significant, we need to continue this cooperation using recently developed biotechnology and cell biology approaches. In this review, we will provide an up-to-date overview of the biological insights obtained by cryo-electron tomography and will discuss future possibilities of this technique in the context of cilia research.

  16. Sperm-Associated Antigen–17 Gene Is Essential for Motile Cilia Function and Neonatal Survival

    PubMed Central

    Teves, Maria Eugenia; Zhang, Zhibing; Costanzo, Richard M.; Henderson, Scott C.; Corwin, Frank D.; Zweit, Jamal; Sundaresan, Gobalakrishnan; Subler, Mark; Salloum, Fadi N.; Rubin, Bruce K.

    2013-01-01

    Primary ciliary dyskinesia (PCD), resulting from defects in cilia assembly or motility, is caused by mutations in a number of genes encoding axonemal proteins. PCD phenotypes are variable, and include recurrent respiratory tract infections, bronchiectasis, hydrocephaly, situs inversus, and male infertility. We generated knockout mice for the sperm-associated antigen–17 (Spag17) gene, which encodes a central pair (CP) protein present in the axonemes of cells with “9 + 2” motile cilia or flagella. The targeting of Spag17 resulted in a severe phenotype characterized by immotile nasal and tracheal cilia, reduced clearance of nasal mucus, profound respiratory distress associated with lung fluid accumulation and disruption of the alveolar epithelium, cerebral ventricular expansion consistent with emerging hydrocephalus, failure to suckle, and neonatal demise within 12 hours of birth. Ultrastructural analysis revealed the loss of one CP microtubule in approximately one quarter of tracheal cilia axonemes, an absence of a C1 microtubule projection, and other less frequent CP structural abnormalities. SPAG6 and SPAG16 (CP proteins that interact with SPAG17) were increased in tracheal tissue from SPAG17-deficient mice. We conclude that Spag17 plays a critical role in the function and structure of motile cilia, and that neonatal lethality is likely explained by impaired airway mucociliary clearance. PMID:23418344

  17. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus.

    PubMed

    Ohata, Shinya; Nakatani, Jin; Herranz-Pérez, Vicente; Cheng, JrGang; Belinson, Haim; Inubushi, Toshiro; Snider, William D; García-Verdugo, Jose Manuel; Wynshaw-Boris, Anthony; Alvarez-Buylla, Arturo

    2014-08-06

    Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling, and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) E cells was significantly slower than that observed in control mice. Dvls were also required for the proper positioning of motile cilia on the apical surface. Tamoxifen-induced conditional removal of Dvls in adult mice also resulted in defects in intracellular rotational alignment and positioning of ependymal motile cilia. These results suggest that Dvls are continuously required for E cell planar polarity and may prevent hydrocephalus.

  18. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus

    PubMed Central

    Ohata, Shinya; Nakatani, Jin; Herranz-Pérez, Vicente; Cheng, JrGang; Belinson, Haim; Inubushi, Toshiro; Snider, William D.; García-Verdugo, Jose Manuel; Wynshaw-Boris, Anthony; Álvarez-Buylla, Arturo

    2014-01-01

    SUMMARY Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− E cells was significantly slower than that observed in control mice. Dvls were also required for the proper positioning of motile cilia on the apical surface. Tamoxifen-induced conditional removal of Dvls in adult mice also resulted in defects in intracellular rotational alignment and positioning of ependymal motile cilia. These results suggest that Dvls are continuously required for E cell planar polarity and may prevent hydrocephalus. PMID:25043421

  19. Motile cilia harbor serum response factor as a mechanism of environment sensing and injury response in the airway.

    PubMed

    Nordgren, Tara M; Wyatt, Todd A; Sweeter, Jenea; Bailey, Kristina L; Poole, Jill A; Heires, Art J; Sisson, Joseph H; Romberger, Debra J

    2014-05-01

    Nonmotile primary cilia are recognized as important sensory organelles during development and normal biological functioning. For example, recent work demonstrates that transcriptional regulators of the sonic hedgehog signaling pathway localize to primary cilia and participate in sensing and transducing signals regarding the cellular environment. In contrast, motile cilia are traditionally viewed as mechanical machinery, vital for the movement of solutes and clearance of bacteria and debris, but not participants in cellular sensing and signaling mechanisms. Recently, motile cilia were found to harbor receptors responsible for sensing and responding to environmental stimuli. However, no transcription factors are known to be regulated by cilia localization as a sensing mechanism in vertebrates. Using a mouse model of organic dust-induced airway inflammation, we found that the transcription factor serum response factor (SRF) localizes to motile cilia of airway epithelial cells and alters its localization in response to inflammatory stimuli. Furthermore, inhibition of SRF signaling using the small molecule CCG-1423 reduces organic dust-induced IL-8 release from bronchial epithelial cells and stimulates cilia beat frequency in ciliated mouse tracheal epithelial cells. Immunohistochemical analyses reveal that SRF localizes to the cilia of mouse brain ependymal and ovarian epithelial cells as well. These data reveal a novel mechanism by which a transcription factor localizes to motile cilia and modulates cell activities including cilia motility and inflammation response. These data challenge current dogma regarding motile cilia functioning and may lead to significant contributions in understanding motile ciliary signaling dynamics, as well as mechanisms involving SRF-mediated responses to inflammation and injury.

  20. Robust estimation of the motile cilia beating frequency.

    PubMed

    Meste, O; Brau, F; Guyon, A

    2015-10-01

    The estimation of the cilia beating frequency (CBF) is of great interest in understanding how the CBF modulates liquid fluxes and how it is controlled by the ciliated cell intra- and/or extracellular medium composition in physiological processes. Motion artifacts and camera defaults may hinder the computation of the frequency variations during long-lasting experiments. We have developed a new analysis approach consisting of a preliminary corrective step (removal of a grid pattern on the image sequence and shift compensation), followed by a harmonic model of the observed cilia using a maximum likelihood estimator framework. It is shown that a more accurate estimation of the frequency can be obtained by averaging the squared Fourier transform of individual pixels followed by a particular summation over the different frequencies, namely the compressed spectrum. Robustness of the proposed method over traditional approaches is shown by several examples and simulations. The method is then applied to images of samples containing ciliated ependymal cells located in the third cerebral ventricle of mouse brains, showing that even small variations in CBF in response to changes in the amount of oxygenation, pH or glucose were clearly visible in the computed frequencies. As a conclusion, this method reveals a fine metabolic tuning of the cilia beating in ependimocytes lining the third cerebral ventricle. Such regulations are likely to participate in homeostatic mechanisms regulating CSF movements and brain energy supply.

  1. A bio-inspired inner-motile photocatalyst film: a magnetically actuated artificial cilia photocatalyst.

    PubMed

    Zhang, Dunpu; Wang, Wei; Peng, Fengping; Kou, Jiahui; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2014-05-21

    A new type of inner-motile photocatalyst film is explored to enhance photocatalytic performance using magnetically actuated artificial cilia. The inner-motile photocatalyst film is capable of generating flow and mixing on the microscale because it produces a motion similar to that of natural cilia when it is subjected to a rotational magnetic field. Compared with traditional photocatalyst films, the inner-motile photocatalyst film exhibits the unique ability of microfluidic manipulation. It uses an impactful and self-contained design to accelerate interior mass transfer and desorption of degradation species. Moreover, the special cilia-like structures increase the surface area and light absorption. Consequently, the photocatalytic activity of the inner-motile photocatalyst film is dramatically improved to approximately 3.0 times that of the traditional planar film. The inner-motile photocatalyst film also exhibits high photocatalytic durability and can be reused several times with ease. Furthermore, this feasible yet versatile platform can be extended to other photocatalyst systems, such as TiO2, P25, ZnO, and Co3O4 systems, to improve their photocatalytic performance.

  2. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  3. An outer arm Dynein conformational switch is required for metachronal synchrony of motile cilia in planaria.

    PubMed

    Rompolas, Panteleimon; Patel-King, Ramila S; King, Stephen M

    2010-11-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.

  4. A Structural Basis for How Motile Cilia Beat.

    PubMed

    Satir, Peter; Heuser, Thomas; Sale, Winfield S

    2014-12-01

    The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke-central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation.

  5. A Structural Basis for How Motile Cilia Beat

    PubMed Central

    Satir, Peter; Heuser, Thomas; Sale, Winfield S.

    2014-01-01

    The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke–central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation. PMID:26955066

  6. Lipopolysaccharide (LPS) disrupts particle transport, cilia function and sperm motility in an ex vivo oviduct model

    PubMed Central

    O’Doherty, A. M.; Di Fenza, M.; Kölle, S.

    2016-01-01

    The oviduct functions in the transportation of gametes to the site of fertilization (the ampulla) and is the site of early embryonic development. Alterations of this early developmental environment, such as the presence of sexually transmitted pathogens, may affect oviduct function leading to reduced fertilization rates and contribute to compromised embryonic development. In this study, sperm interactions, particle transport speed (PTS) and cilia beat frequency (CBF) in the ampulla following exposure to lipopolysaccharide (LPS), a constituent of the sexually transmitted pathogens Chlamydia trachomatis and Chlamydia abortus, was investigated. Three complementary experiments were performed to analyse; (1) bound sperm motility and cilia function (2) transport velocity in the oviduct and (3) the expression of genes related to immune function and inflammatory response (CASP3, CD14, MYD88, TLR4 and TRAF6). The motility of bound sperm was significantly lower in ampullae that were exposed to LPS. CBF and PTS significantly increased after treatment with LPS for 2 hours. Finally, gene expression analysis revealed that CASP3 and CD14 were significantly upregulated and TLR4 trended towards increased expression following treatment with LPS. These findings provide an insight on the impact of LPS on the oviduct sperm interaction, and have implications for both male and female fertility. PMID:27079521

  7. Loss of ASP but not ROPN1 reduces mammalian ciliary motility

    PubMed Central

    Fiedler, Sarah E.; Sisson, Joseph H.; Wyatt, Todd A.; Pavlik, Jacqueline A.; Gambling, Todd M.; Carson, Johnny L.; Carr, Daniel W.

    2011-01-01

    Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins (ASP, ROPN1, SP17, and CABYR) share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease. PMID:22021175

  8. Loss of ASP but not ROPN1 reduces mammalian ciliary motility.

    PubMed

    Fiedler, Sarah E; Sisson, Joseph H; Wyatt, Todd A; Pavlik, Jacqueline A; Gambling, Todd M; Carson, Johnny L; Carr, Daniel W

    2012-01-01

    Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins [AKAP-associated sperm protein (ASP), ropporin (ROPN1), sperm protein 17 (SP17) and calcium binding tyrosine-(Y)-phosphorylation regulated protein (CABYR)] share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease.

  9. Modulation of mammalian sperm motility by quercetin.

    PubMed

    Nass-Arden, L; Breitbart, H

    1990-04-01

    The flavonoid quercetin inhibits collective motility of ejaculated ram spermatozoa in the first 2 hr of incubation; during the next 3-4 hr motility is stimulated. To explain this interesting effect, we followed the influence of quercetin on sperm glycolysis, extracellular pH, ATP content, mitochondrial respiration, and lipid peroxidation. The collective motility of untreated cells is decreased to about 40% of the original motility during two hours of incubation. During this time, the rate of glycolysis is constant, respiration rate is increasing, there is no change in ATP content, the rate of lipid peroxidation is very slow, and the extracellular pH became very acidic (pH 5.5). It is concluded that motility is decreased due to this acidification. This acidification is prevented to some extent by quercetin, which indirectly inhibits glycolysis. Quercetin inhibits motility due to the inhibition of the plasma membrane calcium pump, as we showed previously (Breitbart et al., J Biol Chem 260:11548-11553, 1985). The motility of untreated cells is arrested after 3.5 hr of incubation, whereas quercetin-treated cells show high motility, which continues for additional 2-3 hr. After 3.5 hr, the control cells show no glycolytic activity, ATP content and respiration rates are decreased, and rate of lipid peroxidation is highly increased. At this time, quercetin-treated cells show no glycolytic activity, only a small decrease in ATP content and respiratory rate, and a very low rate of lipid peroxidation. Based on these data it is concluded that sperm motility after 3.5 hr of incubation is dependent mainly on mitochondrial respiration.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3.

    PubMed

    Kong, Ji Na; Hardin, Kara; Dinkins, Michael; Wang, Guanghu; He, Qian; Mujadzic, Tarik; Zhu, Gu; Bielawski, Jacek; Spassieva, Stefka; Bieberich, Erhard

    2015-12-01

    Cilia are important organelles formed by cell membrane protrusions; however, little is known about their regulation by membrane lipids. We characterize a novel activation mechanism for glycogen synthase kinase-3 (GSK3) by the sphingolipids phytoceramide and ceramide that is critical for ciliogenesis in Chlamydomonas and murine ependymal cells, respectively. We show for the first time that Chlamydomonas expresses serine palmitoyl transferase (SPT), the first enzyme in (phyto)ceramide biosynthesis. Inhibition of SPT in Chlamydomonas by myriocin led to loss of flagella and reduced tubulin acetylation, which was prevented by supplementation with the precursor dihydrosphingosine. Immunocytochemistry showed that (phyto)ceramide was colocalized with phospho-Tyr-216-GSK3 (pYGSK3) at the base and tip of Chlamydomonas flagella and motile cilia in ependymal cells. The (phyto)ceramide distribution was consistent with that of a bifunctional ceramide analogue UV cross-linked and visualized by click-chemistry-mediated fluorescent labeling. Ceramide depletion, by myriocin or neutral sphingomyelinase deficiency (fro/fro mouse), led to GSK3 dephosphorylation and defective flagella and cilia. Motile cilia were rescued and pYGSK3 localization restored by incubation of fro/fro ependymal cells with exogenous C24:1 ceramide, which directly bound to pYGSK3. Our findings suggest that (phyto)ceramide-mediated translocation of pYGSK into flagella and cilia is an evolutionarily conserved mechanism fundamental to the regulation of ciliogenesis.

  11. The PDZ Protein Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) Regulates Planar Cell Polarity and Motile Cilia Organization

    PubMed Central

    Stolz, Donna B.; Tsang, Michael; Friedman, Peter A.; Romero, Guillermo

    2016-01-01

    Directional flow of the cerebrospinal fluid requires coordinated movement of the motile cilia of the ependymal epithelium that lines the cerebral ventricles. Here we report that mice lacking the Na+/H+ Exchanger Regulatory Factor 1 (NHERF1/Slc9a3r1, also known as EBP50) develop profound communicating hydrocephalus associated with fewer and disorganized ependymal cilia. Knockdown of NHERF1/slc9a3r1 in zebrafish embryos also causes severe hydrocephalus of the hindbrain and impaired ciliogenesis in the otic vesicle. Ultrastructural analysis did not reveal defects in the shape or organization of individual cilia. Similar phenotypes have been described in animals with deficiencies in Wnt signaling and the Planar Cell Polarity (PCP) pathway. We show that NHERF1 binds the PCP core genes Frizzled (Fzd) and Vangl. We further show that NHERF1 assembles a ternary complex with Fzd4 and Vangl2 and promotes translocation of Vangl2 to the plasma membrane, in particular to the apical surface of ependymal cells. Taken together, these results strongly support an important role for NHERF1 in the regulation of PCP signaling and the development of functional motile cilia. PMID:27055101

  12. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    PubMed Central

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  13. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx.

    PubMed

    Tabler, Jacqueline M; Rigney, Maggie M; Berman, Gordon J; Gopalakrishnan, Swetha; Heude, Eglantine; Al-Lami, Hadeel Adel; Yannakoudiadkis, Basil Z; Fitch, Rebecca D; Carter, Christopher; Vokes, Steven; Liu, Karen J; Tajbakhsh, Shahragim; Egnor, Se Roian; Wallingford, John B

    2017-02-13

    Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights into the molecular genetics of form and function in the mammalian vocal apparatus.

  14. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx

    PubMed Central

    Tabler, Jacqueline M; Rigney, Maggie M; Berman, Gordon J; Gopalakrishnan, Swetha; Heude, Eglantine; Al-lami, Hadeel Adel; Yannakoudiadkis, Basil Z; Fitch, Rebecca D; Carter, Christopher; Vokes, Steven; Liu, Karen J; Tajbakhsh, Shahragim; Egnor, SE Roian; Wallingford, John B

    2017-01-01

    Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights into the molecular genetics of form and function in the mammalian vocal apparatus. DOI: http://dx.doi.org/10.7554/eLife.19153.001 PMID:28177282

  15. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility.

    PubMed

    Satir, P

    1968-10-01

    This study confirms and extends previous work on the lateral cilia of the fresh-water mussel, Elliptio complanatus, in support of a "sliding filament" mechanism of ciliary motility wherein peripheral filaments (microtubules) do not change length during beat (see Satir, 1967). Short sequences of serial sections of tips are examined in control (nonbeating) and activated (metachronal wave) preparations. Several different tip types, functional rather than morphogenetic variants, are demonstrated, but similarly bent cilia have similar tips. The peripheral filaments are composed of two subfibers: a and b. The bent regions of cilia are in the form of circular arcs, and apparent differences in subfiber-b length at the tip are those predicted solely by geometry of the stroke without the necessity of assuming filament contraction. Various subfibers b apparently move with respect to one another during beat, since small systematic variations in relative position can be detected from cilium to cilium. While subfiber-b lengths are uniform throughout, subfiber-a lengths are morphologically different for each filament: 8 and 3 are about 0.8 micro longer than 1, 4 and 5, but each unique length is independent of stroke position or tip type. Subfiber-a does not contract, nor does it move, e.g. slide, with respect to subfiber-b of the same doublet. The central pair of filaments extends to the tip of the cilium where its members fuse. Subunit assembly in ciliary microtubules is evidently precise. This may be of importance in establishing the relationships needed for mechanochemical interactions that produce sliding and beat.

  16. CILIA: before and after.

    PubMed

    Satir, Peter

    2017-01-01

    This is a history of cilia research before and after the discovery of intraflagellar transport (IFT) and the link between primary cilia ciliogenesis and polycystic kidney disease (PKD). Before IFT, ca. the beginning of the new millennium, although sensory and primary cilia were well described, research was largely focused on motile cilia, their structure, movement, and biogenesis. After IFT and the link to PKD, although work on motile cilia has continued to progress, research on primary cilia has exploded, leading to new insights into the role of cilia in cell signaling and development. Genomics, proteomics, and new imaging techniques have unified the field and pointed out the critical role of cilia as a restricted cell organellar compartment, functionally integrated with other cell organelles including the autophagosome and the nucleus.

  17. Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans.

    PubMed

    Miao, Chunyue; Jiang, Qian; Li, Huili; Zhang, Qin; Bai, Baoling; Bao, Yihua; Zhang, Ting

    2016-10-13

    Neural tube defects (NTDs) are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC). We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1 DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10) resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans.

  18. Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans

    PubMed Central

    Miao, Chunyue; Jiang, Qian; Li, Huili; Zhang, Qin; Bai, Baoling; Bao, Yihua; Zhang, Ting

    2016-01-01

    Neural tube defects (NTDs) are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC). We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1. DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10) resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans. PMID:27543293

  19. Cilia Dysfunction in Lung Disease

    PubMed Central

    Tilley, Ann E.; Walters, Matthew S.; Shaykhiev, Renat; Crystal, Ronald G.

    2015-01-01

    A characteristic feature of the human airway epithelium is the presence of ciliated cells bearing motile cilia, specialized cell surface projections containing axonemes comprised of microtubules and dynein arms, which provide ATP-driven motility. In the airways, cilia function in concert with airway mucus to mediate the critical function of mucociliary clearance, cleansing the airways of inhaled particles and pathogens. The prototypical disorder of respiratory cilia is primary ciliary dyskinesia, an inherited disorder that leads to impaired mucociliary clearance, repeated chest infections, and progressive destruction of lung architecture. Numerous acquired lung diseases are also marked by abnormalities in both cilia structure and function. In this review we summarize current knowledge regarding airway ciliated cells and cilia, how they function to maintain a healthy epithelium, and how disorders of cilia structure and function contribute to inherited and acquired lung disease. PMID:25386990

  20. Evaluating efficiency and robustness in cilia design.

    PubMed

    Guo, Hanliang; Kanso, Eva

    2016-03-01

    Motile cilia are used by many eukaryotic cells to transport flow. Cilia-driven flows are important to many physiological functions, yet a deep understanding of the interplay between the mechanical structure of cilia and their physiological functions in healthy and diseased conditions remains elusive. To develop such an understanding, one needs a quantitative framework to assess cilia performance and robustness when subject to perturbations in the cilia apparatus. Here we link cilia design (beating patterns) to function (flow transport) in the context of experimentally and theoretically derived cilia models. We particularly examine the optimality and robustness of cilia design. Optimality refers to efficiency of flow transport, while robustness is defined as low sensitivity to variations in the design parameters. We find that suboptimal designs can be more robust than optimal ones. That is, designing for the most efficient cilium does not guarantee robustness. These findings have significant implications on the understanding of cilia design in artificial and biological systems.

  1. PTEN regulates cilia through Dishevelled

    PubMed Central

    Shnitsar, Iryna; Bashkurov, Mikhail; Masson, Glenn R.; Ogunjimi, Abiodun A.; Mosessian, Sherly; Cabeza, Eduardo Aguiar; Hirsch, Calley L.; Trcka, Daniel; Gish, Gerald; Jiao, Jing; Wu, Hong; Winklbauer, Rudolf; Williams, Roger L.; Pelletier, Laurence; Wrana, Jeffrey L.; Barrios-Rodiles, Miriam

    2015-01-01

    Cilia are hair-like cellular protrusions important in many aspects of eukaryotic biology. For instance, motile cilia enable fluid movement over epithelial surfaces, while primary (sensory) cilia play roles in cellular signalling. The molecular events underlying cilia dynamics, and particularly their disassembly, are not well understood. Phosphatase and tensin homologue (PTEN) is an extensively studied tumour suppressor, thought to primarily act by antagonizing PI3-kinase signalling. Here we demonstrate that PTEN plays an important role in multicilia formation and cilia disassembly by controlling the phosphorylation of Dishevelled (DVL), another ciliogenesis regulator. DVL is a central component of WNT signalling that plays a role during convergent extension movements, which we show here are also regulated by PTEN. Our studies identify a novel protein substrate for PTEN that couples PTEN to regulation of cilia dynamics and WNT signalling, thus advancing our understanding of potential underlying molecular etiologies of PTEN-related pathologies. PMID:26399523

  2. PACRG, a protein linked to ciliary motility, mediates cellular signaling.

    PubMed

    Loucks, Catrina M; Bialas, Nathan J; Dekkers, Martijn P J; Walker, Denise S; Grundy, Laura J; Li, Chunmei; Inglis, P Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Leroux, Michel R

    2016-07-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon-associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan.

  3. PACRG, a protein linked to ciliary motility, mediates cellular signaling

    PubMed Central

    Loucks, Catrina M.; Bialas, Nathan J.; Dekkers, Martijn P. J.; Walker, Denise S.; Grundy, Laura J.; Li, Chunmei; Inglis, P. Nick; Kida, Katarzyna; Schafer, William R.; Blacque, Oliver E.; Jansen, Gert; Leroux, Michel R.

    2016-01-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon–associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan. PMID:27193298

  4. Intraflagellar Transport Protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain

    PubMed Central

    Gorivodsky, Marat; Mukhopadhyay, Mahua; Wilsch-Braeuninger, Michaela; Phillips, Matthew; Teufel, Andreas; Kim, Changmee; Malik, Nasir; Huttner, Wieland; Westphal, Heiner

    2008-01-01

    IFT172, also known as Selective Lim-domain Binding protein (SLB), is a component of the Intraflagellar Transport (IFT) complex. In order to evaluate the biological role of the Ift172 gene, we generated a loss-of-function mutation in the mouse. The resulting Slb mutant embryos die between E12.5–13.0, and exhibit severe cranio-facial malformations, failure to close the cranial neural tube, holoprosencephaly, heart edema and extensive hemorrhages. Cilia outgrowth in cells of the neuroepithelium is initiated but the axonemes are severely truncated and do not contain visible microtubules. Morphological and molecular analyses revealed a global brain-patterning defect along the dorsal-ventral (DV) and anterior-posterior (AP) axes. We demonstrate that Ift172 gene function is required for early regulation of Fgf8 at the midbrain-hindbrain boundary and maintenance of the isthmic organizer. In addition, Ift172 is required for proper function of the embryonic node, the early embryonic organizer and for formation of the head organizing center (the anterior mesendoderm, or AME). We propose a model suggesting that forebrain and mid-hindbrain growth and AP patterning depends on the early function of Ift172 at gastrulation. Our data suggest that the formation and function of the node and AME in the mouse embryo relies on an indispensable role of Ift172 in cilia morphogenesis and cilia-mediated signaling. PMID:18930042

  5. Fine-Tuning Motile Cilia and Flagella: Evolution of the Dynein Motor Proteins from Plants to Humans at High Resolution

    PubMed Central

    Kollmar, Martin

    2016-01-01

    The flagellum is a key innovation linked to eukaryogenesis. It provides motility by regulated cycles of bending and bend propagation, which are thought to be controlled by a complex arrangement of seven distinct dyneins in repeated patterns of outer- (OAD) and inner-arm dynein (IAD) complexes. Electron tomography showed high similarity of this axonemal repeat pattern across ciliates, algae, and animals, but the diversity of dynein sequences across the eukaryotes has not yet comprehensively been resolved and correlated with structural data. To shed light on the evolution of the axoneme I performed an exhaustive analysis of dyneins using the available sequenced genome data. Evidence from motor domain phylogeny allowed expanding the current set of nine dynein subtypes by eight additional isoforms with, however, restricted taxonomic distributions. I confirmed the presence of the nine dyneins in all eukaryotic super-groups indicating their origin predating the last eukaryotic common ancestor. The comparison of the N-terminal tail domains revealed a most likely axonemal dynein origin of the new classes, a group of chimeric dyneins in plants/algae and Stramenopiles, and the unique domain architecture and origin of the outermost OADs present in green algae and ciliates but not animals. The correlation of sequence and structural data suggests the single-headed class-8 and class-9 dyneins to localize to the distal end of the axonemal repeat and the class-7 dyneins filling the region up to the proximal heterodimeric IAD. Tracing dynein gene duplications across the eukaryotes indicated ongoing diversification and fine-tuning of flagellar functions in extant taxa and species. PMID:27880711

  6. CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice

    PubMed Central

    McKenzie, Casey W.; Craige, Branch; Kroeger, Tiffany V.; Finn, Rozzy; Wyatt, Todd A.; Sisson, Joseph H.; Pavlik, Jacqueline A.; Strittmatter, Lara; Hendricks, Gregory M.; Witman, George B.; Lee, Lance

    2015-01-01

    Motile cilia and flagella play critical roles in fluid clearance and cell motility, and dysfunction commonly results in the pediatric syndrome primary ciliary dyskinesia (PCD). CFAP221, also known as PCDP1, is required for ciliary and flagellar function in mice and Chlamydomonas reinhardtii, where it localizes to the C1d projection of the central microtubule apparatus and functions in a complex that regulates flagellar motility in a calcium-dependent manner. We demonstrate that the genes encoding the mouse homologues of the other C. reinhardtii C1d complex members are primarily expressed in motile ciliated tissues, suggesting a conserved function in mammalian motile cilia. The requirement for one of these C1d complex members, CFAP54, was identified in a mouse line with a gene-trapped allele. Homozygous mice have PCD characterized by hydrocephalus, male infertility, and mucus accumulation. The infertility results from defects in spermatogenesis. Motile cilia have a structural defect in the C1d projection, indicating that the C1d assembly mechanism requires CFAP54. This structural defect results in decreased ciliary beat frequency and perturbed cilia-driven flow. This study identifies a critical role for CFAP54 in proper assembly and function of mammalian cilia and flagella and establishes the gene-trapped allele as a new model of PCD. PMID:26224312

  7. Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host

    PubMed Central

    McOdimba, Francis A.; Omogo, Collins O.; Adung’a, Vincent O.; Krüger, Timothy; Masiga, Daniel K.; Engstler, Markus

    2016-01-01

    African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate’s incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the ‘cellular waveform’. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites. PMID:26871910

  8. Primary cilia and graded Sonic Hedgehog signaling.

    PubMed

    Sasai, Noriaki; Briscoe, James

    2012-01-01

    Cilia are evolutionary-conserved microtubule-containing organelles protruding from the surface of cells. They are classified into two types--primary and motile cilia. Primary cilia are nearly ubiquitous, at least in vertebrate cells, and it has become apparent that they play an essential role in the intracellular transduction of a range of stimuli. Most notable among these is Sonic Hedgehog. In this article we briefly summarize the structure and biogenesis of primary cilia. We discuss the evidence implicating cilia in the transduction of extrinsic signals. We focus on the involvement and molecular mechanism of cilia in signaling by Sonic Hedgehog in embryonic tissues, specifically the neural tube, and we discuss how cilia play an active role in the interpretation of gradients of Sonic Hedgehog (Shh) signaling.

  9. Pericentrin, a centrosomal protein related to microcephalic primordial dwarfism, is required for olfactory cilia assembly in mice.

    PubMed

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Shimizu, Shoko; Taniguchi, Manabu; Matsuzaki, Shinsuke; Tohyama, Masaya; Asanuma, Masato

    2009-10-01

    The Drosophila pericentrin-like protein has been shown to be essential for the formation of the sensory cilia of chemosensory and mechanosensory neurons by mutant analysis in flies, while the in vivo function of pericentrin, a well-studied mammalian centrosomal protein related to microcephalic primordial dwarfism, has been unclear. To determine whether pericentrin is required for ciliogenesis in mammals, we generated and analyzed mice with a hypomorphic mutation of Pcnt encoding the mouse pericentrin. Immunofluorescence analysis demonstrated that olfactory cilia of chemosensory neurons in the nasal olfactory epithelium were malformed in the homozygous mutant mice. On the other hand, the assembly of motile and primary cilia of non-neuronal epithelial cells and the formation of sperm flagella were not affected in the Pcnt-mutant mice. The defective assembly of olfactory cilia in the mutant was apparent from birth. The mutant animals displayed reduced olfactory performance in agreement with the compromised assembly of olfactory cilia. Our findings suggest that pericentrin is essential for the assembly of chemosensory cilia of olfactory receptor neurons, but it is not globally required for cilia formation in mammals.

  10. Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity

    PubMed Central

    Luo, Wenwei; Yi, Hong; Taylor, Jeannette; Li, Jian-dong; Chi, Fanglu; Todd, N. Wendell; Lin, Xi; Ren, Dongdong; Chen, Ping

    2017-01-01

    The middle ear conducts sound to the cochlea for hearing. Otitis media (OM) is the most common illness in childhood. Moreover, chronic OM with effusion (COME) is the leading cause of conductive hearing loss. Clinically, COME is highly associated with Primary Ciliary Dyskinesia, implicating significant contributions of cilia dysfunction to COME. The understanding of middle ear cilia properties that are critical to OM susceptibility, however, is limited. Here, we confirmed the presence of a ciliated region near the Eustachian tube orifice at the ventral region of the middle ear cavity, consisting mostly of a lumen layer of multi-ciliated and a layer of Keratin-5-positive basal cells. We also found that the motile cilia are polarized coordinately and display a planar cell polarity. Surprisingly, we also found a region of multi-ciliated cells that line the posterior dorsal pole of the middle ear cavity which was previously thought to contain only non-ciliated cells. Our study provided a more complete understanding of cilia distribution and revealed for the first time coordinated polarity of cilia in the epithelium of the mammalian middle ear, thus illustrating novel structural features that are likely critical for middle ear functions and related to OM susceptibility. PMID:28358397

  11. Selective particle capture by asynchronously beating cilia

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Kanso, Eva

    2015-12-01

    Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles' inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.

  12. Cilia organize ependymal planar polarity

    PubMed Central

    Mirzadeh, Zaman; Han, Young-Goo; Soriano-Navarro, Mario; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2010-01-01

    Multi-ciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of cerebrospinal fluid (CSF). Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the central nervous system. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: i) rotational; angle of individual basal bodies with respect to their long axis and ii) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multi-step process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells. PMID:20164345

  13. Cilia organize ependymal planar polarity.

    PubMed

    Mirzadeh, Zaman; Han, Young-Goo; Soriano-Navarro, Mario; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2010-02-17

    Multiciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of CSF. Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the CNS. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: (1) rotational; angle of individual basal bodies with respect to their long axis and (2) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multistep process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells.

  14. Mechanical Properties of Primary Cilia

    NASA Astrophysics Data System (ADS)

    Battle, Christopher; Schmidt, Christoph F.

    2013-03-01

    Recent studies have shown that the primary cilium, long thought to be a vestigial cellular appendage with no function, is involved in a multitude of sensory functions. One example, interesting from both a biophysical and medical standpoint, is the primary cilium of kidney epithelial cells, which acts as a mechanosensitive flow sensor. Genetic defects in ciliary function can cause, e.g., polycystic kidney disease (PKD). The material properties of these non-motile, microtubule-based 9 +0 cilia, and the way they are anchored to the cell cytoskeleton, are important to know if one wants to understand the mechano-electrochemical response of these cells, which is mediated by their cilia. We have probed the mechanical properties, boundary conditions, and dynamics of the cilia of MDCK cells using optical traps and DIC/fluorescence microscopy. We found evidence for both elastic relaxation of the cilia themselves after bending and for compliance in the intracellular anchoring structures. Angular and positional fluctuations of the cilia reflect both thermal excitations and cellular driving forces.

  15. The sensory cilia of Caenorhabditis elegans.

    PubMed

    Inglis, Peter N; Ou, Guangshuo; Leroux, Michel R; Scholey, Jonathan M

    2007-03-08

    The non-motile cilium, once believed to be a vestigial cellular structure, is now increasingly associated with the ability of a wide variety of cells and organisms to sense their chemical and physical environments. With its limited number of sensory cilia and diverse behavioral repertoire, C. elegans has emerged as a powerful experimental system for studying how cilia are formed, function, and ultimately modulate complex behaviors. Here, we discuss the biogenesis, distribution, structures, composition and general functions of C. elegans cilia. We also briefly highlight how C. elegans is being used to provide molecular insights into various human ciliopathies, including Polycystic Kidney Disease and Bardet-Biedl Syndrome.

  16. Proteomics of Primary Cilia by Proximity Labeling

    PubMed Central

    Mick, David U.; Rodrigues, Rachel B.; Leib, Ryan D.; Adams, Christopher M.; Chien, Allis S.; Gygi, Steven P.; Nachury, Maxence V.

    2015-01-01

    SUMMARY While cilia are recognized as important signaling organelles, the extent of ciliary functions remains unknown because of difficulties in cataloguing proteins from mammalian primary cilia. We present a method that readily captures rapid snapshots of the ciliary proteome by selectively biotinylating ciliary proteins using a cilia-targeted proximity labeling enzyme (cilia-APEX). Besides identifying known ciliary proteins, cilia-APEX uncovered several ciliary signaling molecules. The kinases PKA, AMPK and LKB1 were validated as bona fide ciliary proteins and PKA was found to regulate Hedgehog signaling in primary cilia. Furthermore, proteomics profiling of Ift27/Bbs19 mutant cilia correctly detected BBSome accumulation inside Ift27−/− cilia and revealed that β-arrestin 2 and the viral receptor CAR are candidate cargoes of the BBSome. This work demonstrates that proximity labeling can be applied to proteomics of non-membrane-enclosed organelles and suggests that proteomics profiling of cilia will enable a rapid and powerful characterization of ciliopathies. PMID:26585297

  17. JAM-A is present in mammalian spermatozoa where it is essential for normal motility.

    PubMed

    Shao, Minghai; Ghosh, Ananya; Cooke, Vesselina G; Naik, Ulhas P; Martin-DeLeon, Patricia A

    2008-01-01

    Junctional adhesion molecules (JAMs) that are expressed in endothelial and epithelial cells and function in tight junction assembly, also perform important roles in testis where the closely-related JAM-A, JAM-B, and JAM-C are found. Disruption of murine Jam-B and Jam-C has varying effects on sperm development and function; however, deletion of Jam-A has not yet been studied. Here we show for the first time that in addition to expression in the Sertoli-Sertoli tight junctions in the seminiferous tubules, the approximately 32 kDa murine JAM-A is present in elongated spermatids and in the plasma membrane of the head and flagellum of sperm. Deletion of Jam-A, using the gene trap technology, results in flagellar defects at the ultrastructural level. In Jam-A-deficient mice, which have reduced litter size, both progressive and hyperactive motility are significantly affected (P<0.0001) before and, more severely, after capacitation. The findings show that JAM-A is involved in sperm tail formation and is essential for normal motility, which may occur via its signal transduction and protein phosphorylation properties. Detection of JAM-A in human sperm proteins indicates that its role may be conserved in sperm motility and that JAM-A may be a candidate gene for the analysis of idiopathic sperm motility defects resulting in male subfertility in the human population.

  18. Otoacoustic emissions without somatic motility: Can stereocilia mechanics drive the mammalian cochlea?

    NASA Astrophysics Data System (ADS)

    Liberman, M. C.; Zuo, Jian; Guinan, J. J.

    2004-09-01

    Distortion product otoacoustic emissions (DPOAEs) evoked by low-level tones are a sensitive indicator of outer hair cell (OHC) function. High-level DPOAEs are less vulnerable to cochlear insult, and their dependence on the OHC function is more controversial. Here, the mechanism underlying high-level DPOAE generation is addressed using a mutant mouse line lacking prestin, the molecular motor driving OHC somatic motility, required for cochlear amplification. With prestin deletion, attenuated DPOAEs were measurable at high sound levels. DPOAE thresholds were shifted by ~50 dB, matching the loss of cochlear amplifier gain measured in compound action potentials. In contrast, at high sound levels, distortion products in the cochlear microphonic (CM) of mutants were not decreased re wildtypes (expressed re CM at the primaries). Distortion products in both CM and otoacoustic emissions disappeared rapidly after death. The results show that OHC somatic motility is not necessary for the production of DPOAEs at high SPLs. They also suggest that the small, physiologically vulnerable DPOAE that remains without prestin-based motility is due directly to the mechanical nonlinearity associated with stereociliary transduction, and that this stereocilia mechanical nonlinearity is robustly coupled to the motion of the cochlear partition to the extent that it can drive the middle ear.

  19. STUDIES ON CILIA

    PubMed Central

    Satir, Peter

    1968-01-01

    This study confirms and extends previous work on the lateral cilia of the fresh-water mussel, Elliptio complanatus, in support of a "sliding filament" mechanism of ciliary motility wherein peripheral filaments (microtubules) do not change length during beat (see Satir, 1967). Short sequences of serial sections of tips are examined in control (nonbeating) and activated (metachronal wave) preparations. Several different tip types, functional rather than morphogenetic variants, are demonstrated, but similarly bent cilia have similar tips. The peripheral filaments are composed of two subfibers: a and b. The bent regions of cilia are in the form of circular arcs, and apparent differences in subfiber-b length at the tip are those predicted solely by geometry of the stroke without the necessity of assuming filament contraction. Various subfibers b apparently move with respect to one another during beat, since small systematic variations in relative position can be detected from cilium to cilium. While subfiber-b lengths are uniform throughout, subfiber-a lengths are morphologically different for each filament: 8 and 3 are about 0.8 µ longer than 1, 4 and 5, but each unique length is independent of stroke position or tip type. Subfiber-a does not contract, nor does it move, e.g. slide, with respect to subfiber-b of the same doublet. The central pair of filaments extends to the tip of the cilium where its members fuse. Subunit assembly in ciliary microtubules is evidently precise. This may be of importance in establishing the relationships needed for mechanochemical interactions that produce sliding and beat. PMID:5678451

  20. Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Burton, Jason C.; Behringer, Richard R.; Larina, Irina V.

    2016-02-01

    Since mouse is a superior model for genetic analysis of human disorders, reproductive studies in mice have significant implications on further understanding of fertility and infertility in humans. Fertilized oocytes are transported through the reproductive tract by motile cilia lining the lumen of the oviduct as well as by oviduct contractions. While the role of cilia is well recognized, ciliary dynamics in the oviduct is not well understood, largely owing to the lack of live imaging approaches. Here, we report in vivo micro-scale mapping of cilia and cilia beat frequency (CBF) in the mouse oviduct using optical coherence tomography (OCT). This functional imaging method is based on spectral analysis of the OCT speckle variations produced by the beat of cilia in the oviduct, which does not require exogenous contrast agents. Animal procedures similar to the ones used for production of transgenic mice are utilized to expose the reproductive organs for imaging in anesthetized females. In this paper, we first present in vivo structural imaging of the mouse oviduct capturing the oocyte and the preimplantation embryo and then show the result of depth-resolved high-resolution CBF mapping in the ampulla of the live mouse. These data indicate that this structural and functional OCT imaging approach can be a useful tool for a variety of live investigations of mammalian reproduction and infertility.

  1. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts

    PubMed Central

    Al Dahouk, Sascha; Köhler, Stephan; Occhialini, Alessandra; Jiménez de Bagüés, María Pilar; Hammerl, Jens Andre; Eisenberg, Tobias; Vergnaud, Gilles; Cloeckaert, Axel; Zygmunt, Michel S.; Whatmore, Adrian M.; Melzer, Falk; Drees, Kevin P.; Foster, Jeffrey T.; Wattam, Alice R.; Scholz, Holger C.

    2017-01-01

    Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species. PMID:28300153

  2. Cilia induced cerebrospinal fluid flow in the third ventricle of brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    2016-11-01

    Cerebrospinal fluid (CSF) conveys many physiologically important signaling factors through the ventricles of the mammalian brain. The walls of the ventricles are covered with motile cilia that were thought to generate a laminar flow purely following the curvature of walls. However, we recently discovered that cilia of the ventral third ventricle (v3V) generate a complex flow network along the wall, leading to subdivision of the v3V. The contribution of such cilia induced flow to the overall three dimensional volume flow remains to be investigated by using numerical simulation, arguably the best approach for such investigations. The lattice Boltzmann method is used to study the CFS flow in a reconstructed geometry of the v3V. Simulation of CSF flow neglecting cilia in this geometry confirmed that the previous idea about pure confined flow does not reflect the reality observed in experiment. The experimentally recorded ciliary flow network along the wall was refined with the smoothed particle hydrodynamics and then adapted as boundary condition in simulation. We study the contribution of the ciliary network to overall CSF flow and identify site-specific delivery of CSF constituents with respect to the temporal changes.

  3. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    PubMed Central

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  4. Switching on cilia: transcriptional networks regulating ciliogenesis.

    PubMed

    Choksi, Semil P; Lauter, Gilbert; Swoboda, Peter; Roy, Sudipto

    2014-04-01

    Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.

  5. IFT-Cargo Interactions and Protein Transport in Cilia.

    PubMed

    Lechtreck, Karl F

    2015-12-01

    The motile and sensory functions of cilia and flagella are indispensable for human health. Cilia assembly requires a dedicated protein shuttle, intraflagellar transport (IFT), a bidirectional motility of multi-megadalton protein arrays along ciliary microtubules. IFT functions as a protein carrier delivering hundreds of distinct proteins into growing cilia. IFT-based protein import and export continue in fully grown cilia and are required for ciliary maintenance and sensing. Large ciliary building blocks might depend on IFT to move through the transition zone, which functions as a ciliary gate. Smaller, freely diffusing proteins, such as tubulin, depend on IFT to be concentrated or removed from cilia. As I discuss here, recent work provides insights into how IFT interacts with its cargoes and how the transport is regulated.

  6. Planar polarity of ependymal cilia.

    PubMed

    Kishimoto, Norihito; Sawamoto, Kazunobu

    2012-02-01

    Ependymal cells, epithelial cells that line the cerebral ventricles of the adult brain in various animals, extend multiple motile cilia from their apical surface into the ventricles. These cilia move rapidly, beating in a direction determined by the ependymal planar cell polarity (PCP). Ciliary dysfunction interferes with cerebrospinal fluid circulation and alters neuronal migration. In this review, we summarize recent studies on the cellular and molecular mechanisms underlying two distinct types of ependymal PCP. Ciliary beating in the direction of fluid flow is established by a combination of hydrodynamic forces and intracellular planar polarity signaling. The ciliary basal bodies' anterior position on the apical surface of the cell is determined in the embryonic radial glial cells, inherited by ependymal cells, and established by non-muscle myosin II in early postnatal development.

  7. Bbof1 is required to maintain cilia orientation

    PubMed Central

    Chien, Yuan-Hung; Werner, Michael E.; Stubbs, Jennifer; Joens, Matt S.; Li, Julie; Chien, Shu; Fitzpatrick, James A. J.; Mitchell, Brian J.; Kintner, Chris

    2013-01-01

    Multiciliate cells (MCCs) are highly specialized epithelial cells that employ hundreds of motile cilia to produce a vigorous directed flow in a variety of organ systems. The production of this flow requires the establishment of planar cell polarity (PCP) whereby MCCs align hundreds of beating cilia along a common planar axis. The planar axis of cilia in MCCs is known to be established via the PCP pathway and hydrodynamic cues, but the downstream steps required for cilia orientation remain poorly defined. Here, we describe a new component of cilia orientation, based on the phenotypic analysis of an uncharacterized coiled-coil protein, called bbof1. We show that the expression of bbof1 is induced during the early phases of MCC differentiation by the master regulator foxj1. MCC differentiation and ciliogenesis occurs normally in embryos where bbof1 activity is reduced, but cilia orientation is severely disrupted. We show that cilia in bbof1 mutants can still respond to patterning and hydrodynamic cues, but lack the ability to maintain their precise orientation. Misexpression of bbof1 promotes cilia alignment, even in the absence of flow or in embryos where microtubules and actin filaments are disrupted. Bbof1 appears to mediate cilia alignment by localizing to a polar structure adjacent to the basal body. Together, these results suggest that bbof1 is a basal body component required in MCCs to align and maintain cilia orientation in response to flow. PMID:23900544

  8. Paramecium BBS genes are key to presence of channels in Cilia

    PubMed Central

    2012-01-01

    Background Changes in genes coding for ciliary proteins contribute to complex human syndromes called ciliopathies, such as Bardet-Biedl Syndrome (BBS). We used the model organism Paramecium to focus on ciliary ion channels that affect the beat form and sensory function of motile cilia and evaluate the effects of perturbing BBS proteins on these channels. Methods We used immunoprecipitations and mass spectrometry to explore whether Paramecium proteins interact as in mammalian cells. We used RNA interference (RNAi) and swimming behavior assays to examine the effects of BBS depletion on ciliary ion channels that control ciliary beating. Combining RNA interference and epitope tagging, we examined the effects of BBS depletion of BBS 7, 8 and 9 on the location of three channels and a chemoreceptor in cilia. Results We found 10 orthologs of 8 BBS genes in P. tetraurelia. BBS1, 2, 4, 5, 7, 8 and 9 co-immunoprecipitate. While RNAi reduction of BBS 7 and 9 gene products caused loss and shortening of cilia, RNAi for all BBS genes except BBS2 affected patterns of ciliary motility that are governed by ciliary ion channels. Swimming behavior assays pointed to loss of ciliary K+ channel function. Combining RNAi and epitope tagged ciliary proteins we demonstrated that a calcium activated K+ channel was no longer located in the cilia upon depletion of BBS 7, 8 or 9, consistent with the cells’ swimming behavior. The TRPP channel PKD2 was also lost from the cilia. In contrast, the ciliary voltage gated calcium channel was unaffected by BBS depletion, consistent with behavioral assays. The ciliary location of a chemoreceptor for folate was similarly unperturbed by the depletion of BBS 7, 8 or 9. Conclusions The co-immunoprecipitation of BBS 1,2,4,5,7,8, and 9 suggests a complex of BBS proteins. RNAi for BBS 7, 8 or 9 gene products causes the selective loss of K+ and PKD2 channels from the cilia while the critical voltage gated calcium channel and a peripheral receptor protein remain

  9. Primary cilia in the basal cells of equine epididymis: a serendipitous finding.

    PubMed

    Arrighi, Silvana

    2013-04-01

    Occurrence of a solitary cilium was an unexpected discovery while studying the ultrastructure of epididymal epithelium in equidae. Primary cilia were detected in epididymal basal cells of all individuals of the equines studied - horses, donkey and mules - independently from age and tract of the duct, emerging from the basal cell surface and insinuating into the intercellular spaces. More rarely solitary cilia occurred also at the luminal surface of the principal cells. The ciliary apparatus was constituted by a structurally typical basal body continuous with the finger-like ciliary shaft extending from the cell surface, and an adjacent centriole oriented at right angles to the basal body. The cilium was structured as the typical primary, non-motile cilia found in many mammalian cells, having a 9+0 microtubular pattern. The basal diplosome was randomly associated with other cellular organelles including the Golgi complex, the endoplasmic reticulum, the microfilament network, the plasma membrane, vesicles and pits. Primary ciliogenesis is a new and unexpected finding in the epididymal epithelium. A monitoring role of luminal factors and extracellular liquids might be attributed to this organelle, likely acting as chemical receptor of the luminal environment, thus modulating the epithelial function by a cell-to-cell crosstalk involving the entire epithelium.

  10. An age of enlightenment for cilia: The FASEB Summer Research Conference on the “Biology of Cilia and Flagella”

    PubMed Central

    Tran, Pamela V.; Lechtreck, Karl F.

    2015-01-01

    From July 19–24, 2015, 169 clinicians and basic scientists gathered in the vertiginous heights of Snowmass, Colorado (2,502 m) for the fourth FASEB summer research conference on the ‘Biology of Cilia and Flagella’. Organizers Maureen Barr (Rutgers University), Iain Drummond (Massachusetts General Hospital/Harvard Medical School), and Jagesh Shah (Brigham and Women’s Hospital/Harvard Medical School) assembled a program filled with new data and forward-thinking ideas documenting the ongoing growth of the field. Sixty oral presentations and 77 posters covered novel aspects of cilia structure, ciliogenesis, cilia motility, cilia-mediated signaling, and cilia-related disease. In this report, we summarize the meeting, highlight exciting developments and discuss open questions. PMID:26597000

  11. An age of enlightenment for cilia: The FASEB summer research conference on the "Biology of Cilia and Flagella".

    PubMed

    Tran, Pamela V; Lechtreck, Karl F

    2016-01-15

    From July 19-24, 2015, 169 clinicians and basic scientists gathered in the vertiginous heights of Snowmass, Colorado (2502 m) for the fourth FASEB summer research conference on the 'Biology of Cilia and Flagella'. Organizers Maureen Barr (Rutgers University), Iain Drummond (Massachusetts General Hospital/Harvard Medical School), and Jagesh Shah (Brigham and Women's Hospital/Harvard Medical School) assembled a program filled with new data and forward-thinking ideas documenting the ongoing growth of the field. Sixty oral presentations and 77 posters covered novel aspects of cilia structure, ciliogenesis, cilia motility, cilia-mediated signaling, and cilia-related disease. In this report, we summarize the meeting, highlight exciting developments and discuss open questions.

  12. Dynamics of cilia length in left–right development

    PubMed Central

    2017-01-01

    Reduction in the length of motile cilia in the zebrafish left–right organizer (LRO), also known as Kupffer's vesicle, has a large impact on left–right development. Here we demonstrate through genetic overexpression in zebrafish embryos and mathematical modelling that the impact of increased motile cilia length in embryonic LRO fluid flow is milder than that of short cilia. Through Arl13b overexpression, which increases cilia length without impacting cilia beat frequency, we show that the increase in cilium length is associated with a decrease in beat amplitude, resulting in similar flow strengths for Arl13b overexpression and wild-type (WT) embryos, which were not predicted by current theory. Longer cilia exhibit pronounced helical beat patterns and, consequently, lower beat amplitudes relative to WT, a result of an elastohydrodynamic shape transition. For long helical cilia, fluid dynamics modelling predicts a mild (approx. 12%) reduction in the torque exerted on the fluid relative to the WT, resulting in a proportional reduction in flow generation. This mild reduction is corroborated by experiments, providing a mechanism for the mild impact on organ situs.

  13. Left-right organizer flow dynamics: how much cilia activity reliably yields laterality?

    PubMed

    Sampaio, Pedro; Ferreira, Rita R; Guerrero, Adán; Pintado, Petra; Tavares, Bárbara; Amaro, Joana; Smith, Andrew A; Montenegro-Johnson, Thomas; Smith, David J; Lopes, Susana S

    2014-06-23

    Internal organs are asymmetrically positioned inside the body. Embryonic motile cilia play an essential role in this process by generating a directional fluid flow inside the vertebrate left-right organizer. Detailed characterization of how fluid flow dynamics modulates laterality is lacking. We used zebrafish genetics to experimentally generate a range of flow dynamics. By following the development of each embryo, we show that fluid flow in the left-right organizer is asymmetric and provides a good predictor of organ laterality. This was tested in mosaic organizers composed of motile and immotile cilia generated by dnah7 knockdowns. In parallel, we used simulations of fluid dynamics to analyze our experimental data. These revealed that fluid flow generated by 30 or more cilia predicts 90% situs solitus, similar to experimental observations. We conclude that cilia number, dorsal anterior motile cilia clustering, and left flow are critical to situs solitus via robust asymmetric charon expression.

  14. STUDIES ON CILIA

    PubMed Central

    Satir, Peter

    1963-01-01

    Upon excision into spring water, the lateral cilia of the gill of the freshwater mussel Elliptio complanatus (Solander) stop beating, but 0.04 M potassium ion can activate the gill so that these cilia again beat with metachronal rhythm. One per cent osmium tetroxide quickly pipetted onto a fully activated gill fixes the lateral cilia in a pattern that preserves the form and arrangement of the metachronal wave, and permits the cilia to be studied with the electron microscope in all stages of their beat cycle. Changes are seen in the fixed active preparation that are not present in the inactive control, i.e., in the packing of the cilia, the position of the axis of the ciliary cross-section, and the diameter of the ring of peripheral filaments. Analysis of these parameters may lead to new correlations between ciliary fine structure and function. PMID:14079494

  15. Sensing a Sensor: Identifying the Mechanosensory Function of Primary Cilia

    PubMed Central

    Prasad, Rahul M.; Jin, Xingjian; Nauli, Surya M.

    2014-01-01

    Over the past decade, primary cilia have emerged as the premier means by which cells sense and transduce mechanical stimuli. Primary cilia are sensory organelles that have been shown to be vitally involved in the mechanosensation of urine in the renal nephron, bile in the hepatic biliary system, digestive fluid in the pancreatic duct, dentin in dental pulp, lacunocanalicular fluid in bone and cartilage, and blood in vasculature. The prevalence of primary cilia among mammalian cell types is matched by the tremendously varied disease states caused by both structural and functional defects in cilia. In the process of delineating the mechanisms behind these disease states, calcium fluorimetry has been widely utilized as a means of quantifying ciliary function to both fluid flow and pharmacological agents. In this review, we will discuss the approaches used in associating calcium levels to cilia function. PMID:24839551

  16. FOXJ1 prevents cilia growth inhibition by cigarette smoke in human airway epithelium in vitro.

    PubMed

    Brekman, Angelika; Walters, Matthew S; Tilley, Ann E; Crystal, Ronald G

    2014-11-01

    Airway epithelium ciliated cells play a central role in clearing the lung of inhaled pathogens and xenobiotics, and cilia length and coordinated beating are important for airway clearance. Based on in vivo studies showing that the airway epithelium of healthy smokers has shorter cilia than that of healthy nonsmokers, we investigated the mechanisms involved in cigarette smoke-mediated inhibition of ciliogenesis by assessing normal human airway basal cell differentiation in air-liquid interface (ALI) cultures in the presence of nontoxic concentrations of cigarette smoke extract (CSE). Measurements of cilia length from Day 28 ALI cultures demonstrated that CSE exposure was associated with shorter cilia (P < 0.05), reproducing the effect of cigarette smoking on cilia length observed in vivo. This phenotype correlated with a broad CSE-mediated suppression of genes involved in cilia-related transcriptional regulation, intraflagellar transport, cilia motility, structural integrity, and basal body development but not of control genes or epithelial barrier integrity. The CSE-mediated inhibition of cilia growth could be prevented by lentivirus-mediated overexpression of FOXJ1, the major cilia-related transcription factor, which led to partial reversal of expression of cilia-related genes suppressed by CSE. Together, the data suggest that components of cigarette smoke are responsible for a broad suppression of genes involved in cilia growth, but, by stimulating ciliogenesis with the transcription factor FOXJ1, it may be possible to maintain close to normal cilia length despite the stress of cigarette smoking.

  17. Visualizing renal primary cilia.

    PubMed

    Deane, James A; Verghese, Elizabeth; Martelotto, Luciano G; Cain, Jason E; Galtseva, Alya; Rosenblum, Norman D; Watkins, D Neil; Ricardo, Sharon D

    2013-03-01

    Renal primary cilia are microscopic sensory organelles found on the apical surface of epithelial cells of the nephron and collecting duct. They are based upon a microtubular cytoskeleton, bounded by a specialized membrane, and contain an array of proteins that facilitate their assembly, maintenance and function. Cilium-based signalling is important for the control of epithelial differentiation and has been implicated in the pathogenesis of various cystic kidney diseases and in renal repair. As such, visualizing renal primary cilia and understanding their composition has become an essential component of many studies of inherited kidney disease and mechanisms of epithelial regeneration. Primary cilia were initially identified in the kidney using electron microscopy and this remains a useful technique for the high resolution examination of these organelles. New reagents and techniques now also allow the structure and composition of primary cilia to be analysed in detail using fluorescence microscopy. Primary cilia can be imaged in situ in sections of kidney, and many renal-derived cell lines produce primary cilia in culture providing a simplified and accessible system in which to investigate these organelles. Here we outline microscopy-based techniques commonly used for studying renal primary cilia.

  18. Novel roles for the radial spoke head protein 9 in neural and neurosensory cilia

    PubMed Central

    Sedykh, Irina; TeSlaa, Jessica J.; Tatarsky, Rose L.; Keller, Abigail N.; Toops, Kimberly A.; Lakkaraju, Aparna; Nyholm, Molly K.; Wolman, Marc A.; Grinblat, Yevgenya

    2016-01-01

    Cilia are cell surface organelles with key roles in a range of cellular processes, including generation of fluid flow by motile cilia. The axonemes of motile cilia and immotile kinocilia contain 9 peripheral microtubule doublets, a central microtubule pair, and 9 connecting radial spokes. Aberrant radial spoke components RSPH1, 3, 4a and 9 have been linked with primary ciliary dyskinesia (PCD), a disorder characterized by ciliary dysmotility; yet, radial spoke functions remain unclear. Here we show that zebrafish Rsph9 is expressed in cells bearing motile cilia and kinocilia, and localizes to both 9 + 2 and 9 + 0 ciliary axonemes. Using CRISPR mutagenesis, we show that rsph9 is required for motility of presumptive 9 + 2 olfactory cilia and, unexpectedly, 9 + 0 neural cilia. rsph9 is also required for the structural integrity of 9 + 2 and 9 + 0 ciliary axonemes. rsph9 mutant larvae exhibit reduced initiation of the acoustic startle response consistent with hearing impairment, suggesting a novel role for Rsph9 in the kinocilia of the inner ear and/or lateral line neuromasts. These data identify novel roles for Rsph9 in 9 + 0 motile cilia and in sensory kinocilia, and establish a useful zebrafish PCD model. PMID:27687975

  19. Cildb: a knowledgebase for centrosomes and cilia.

    PubMed

    Arnaiz, Olivier; Malinowska, Agata; Klotz, Catherine; Sperling, Linda; Dadlez, Michal; Koll, France; Cohen, Jean

    2009-01-01

    Ciliopathies, pleiotropic diseases provoked by defects in the structure or function of cilia or flagella, reflect the multiple roles of cilia during development, in stem cells, in somatic organs and germ cells. High throughput studies have revealed several hundred proteins that are involved in the composition, function or biogenesis of cilia. The corresponding genes are potential candidates for orphan ciliopathies. To study ciliary genes, model organisms are used in which particular questions on motility, sensory or developmental functions can be approached by genetics. In the course of high throughput studies of cilia in Paramecium tetraurelia, we were confronted with the problem of comparing our results with those obtained in other model organisms. We therefore developed a novel knowledgebase, Cildb, that integrates ciliary data from heterogeneous sources. Cildb links orthology relationships among 18 species to high throughput ciliary studies, and to OMIM data on human hereditary diseases. The web interface of Cildb comprises three tools, BioMart for complex queries, BLAST for sequence homology searches and GBrowse for browsing the human genome in relation to OMIM information for human diseases. Cildb can be used for interspecies comparisons, building candidate ciliary proteomes in any species, or identifying candidate ciliopathy genes.Database URL:http://cildb.cgm.cnrs-gif.fr.

  20. Small GTPases and cilia.

    PubMed

    Li, Yujie; Hu, Jinghua

    2011-01-01

    Small GTPases are key molecular switches that bind and hydrolyze GTP in diverse membrane- and cytoskeleton-related cellular processes. Recently, mounting evidences have highlighted the role of various small GTPases, including the members in Arf/Arl, Rab, and Ran subfamilies, in cilia formation and function. Once overlooked as an evolutionary vestige, the primary cilium has attracted more and more attention in last decade because of its role in sensing various extracellular signals and the association between cilia dysfunction and a wide spectrum of human diseases, now called ciliopathies. Here we review recent advances about the function of small GTPases in the context of cilia, and the correlation between the functional impairment of small GTPases and ciliopathies. Understanding of these cellular processes is of fundamental importance for broadening our view of cilia development and function in normal and pathological states and for providing valuable insights into the role of various small GTPases in disease processes, and their potential as therapeutic targets.

  1. Emergence of multiple synchronization modes in hydrodynamically-coupled cilia

    NASA Astrophysics Data System (ADS)

    Guo, Hanliang; Kanso, Eva

    2016-11-01

    Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.

  2. Primary Cilia Are Not Calcium-Responsive Mechanosensors

    PubMed Central

    Delling, M.; Indzhykulian, A. A.; Liu, X.; Liu, Y.; Xie, T.; Corey, D. P.; Clapham, D. E.

    2016-01-01

    Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium1. This Ca2+- Responsive MechanoSensor (CaRMS) hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers2,3. Here, we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. First, we developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator (GECI) in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca2+ influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signaling. PMID:27007841

  3. [The importance of model organisms to study cilia and flagella biology].

    PubMed

    Vincensini, Laetitia; Blisnick, Thierry; Bastin, Philippe

    2011-01-01

    Cilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.

  4. In vivo micro-scale tomography of ciliary behavior in the mammalian oviduct

    PubMed Central

    Wang, Shang; Burton, Jason C.; Behringer, Richard R.; Larina, Irina V.

    2015-01-01

    Motile cilia in the mammalian oviduct play a key role in reproduction, such as transporting fertilized oocytes to the uterus for implantation. Due to their small size (~5–10 μm in length and ~300 nm in diameter), live visualization of cilia and their activity in the lumen of the oviduct through tissue layers represents a major challenge not yet overcome. Here, we report a functional low-coherence optical imaging technique that allows in vivo depth-resolved mapping of the cilia location and cilia beat frequency (CBF) in the intact mouse oviduct with micro-scale spatial resolution. We validate our approach with widely-used microscopic imaging methods, present the first in vivo mapping of the oviduct CBF in its native context, and demonstrate the ability of this approach to differentiate CBF in different locations of the oviduct at different post-conception stages. This technique opens a range of opportunities for live studies in reproductive medicine as well as other areas focused on cilia activity and related ciliopathies. PMID:26279472

  5. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling

    PubMed Central

    Breunig, Joshua J.; Sarkisian, Matthew R.; Arellano, Jon I.; Morozov, Yury M.; Ayoub, Albert E.; Sojitra, Sonal; Wang, Baolin; Flavell, Richard A.; Rakic, Pasko; Town, Terrence

    2008-01-01

    Primary cilia are present on mammalian neurons and glia, but their function is largely unknown. We generated conditional homozygous mutant mice for a gene we termed Stumpy. Mutants lack cilia and have conspicuous abnormalities in postnatally developing brain regions, including a hypoplasic hippocampus characterized by a primary deficiency in neural stem cells known as astrocyte-like neural precursors (ALNPs). Previous studies suggested that primary cilia mediate sonic hedgehog (Shh) signaling. Here, we find that loss of ALNP cilia leads to abrogated Shh activity, increased cell cycle exit, and morphological abnormalities in ALNPs. Processing of Gli3, a mediator of Shh signaling, is also altered in the absence of cilia. Further, key mediators of the Shh pathway localize to ALNP cilia. Thus, selective targeting of Shh machinery to primary cilia confers to ALNPs the ability to differentially respond to Shh mitogenic signals compared to neighboring cells. Our data suggest these organelles are cellular “antennae” critically required to modulate ALNP behavior. PMID:18728187

  6. Primary cilia disappear in rat podocytes during glomerular development.

    PubMed

    Ichimura, Koichiro; Kurihara, Hidetake; Sakai, Tatsuo

    2010-07-01

    Most tubular epithelial cell types express primary cilia, and mutations of primary-cilium-associated proteins are well known to cause several kinds of cystic renal disease. However, until now, it has been unclear whether mammalian podocytes express primary cilia in vivo. In this study, we determined whether primary cilia are present in the podocytes of rat immature and mature glomeruli by means of transmission electron microscopy of serial ultrathin sections. In immature glomeruli of fetal rats, podocytes express the primary cilia with high percentages at the S-shaped body (88 +/- 5%, n = 3), capillary loop (95 +/- 4%, n = 4), and maturing glomerulus (76 +/- 13%, n = 5) stages. The percentage of ciliated podocytes was significantly lower at the maturing glomerulus stage than at the former two stages. In mature glomeruli of adult rats, ciliated podocytes were not found at all (0 +/- 0%, n = 11). These findings indicate that the primary cilia gradually disappear in rat podocytes during glomerular development. Since glomerular filtration rate increases during development, the primary cilia on the podocytes are subjected to a stronger bending force. Thus, the disappearance of the primary cilia presumably prevents the entry of excessive calcium-ions via the cilium-associated polycystin complexes and the disturbance of intracellular signaling cascades in mature podocytes.

  7. Cilia biology: stop overeating now!

    PubMed

    Satir, Peter

    2007-11-20

    Knocking out primary cilia of adult mouse tissues or a specific subset of cilia from POMC-expressing neurons in the brain initiates uncontrolled eating. This behavior leads to obesity and kidney disease.

  8. Cilia and Diseases

    PubMed Central

    Brown, Jason M.; Witman, George B.

    2014-01-01

    In recent decades, cilia have moved from relative obscurity to a position of importance for understanding multiple complex human diseases. Now termed the ciliopathies, these diseases inflict devastating effects on millions of people worldwide. In this review, written primarily for teachers and students who may not yet be aware of the recent exciting developments in this field, we provide a general overview of our current understanding of cilia and human disease. We start with an introduction to cilia structure and assembly and indicate where they are found in the human body. We then discuss the clinical features of selected ciliopathies, with an emphasis on primary ciliary dyskinesia, polycystic kidney disease, and retinal degeneration. The history of ciliopathy research involves a fascinating interplay between basic and clinical sciences, highlighted in a timeline. Finally, we summarize the relative strengths of individual model organisms for ciliopathy research; many of these are suitable for classroom use. PMID:25960570

  9. Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation.

    PubMed

    González-Fernández, L; Ortega-Ferrusola, C; Macias-Garcia, B; Salido, G M; Peña, F J; Tapia, J A

    2009-06-01

    rapid and reversible. Pervanadate also increased tyrosine phosphorylation of different proteins in capacitated and noncapacitated spermatozoa. Results showed that the phosphatases PTPN11, DUSP4, and DUSP3 are present in boar, stallion, and dog spermatozoa. PTPRB is also present in boar and stallion spermatozoa but was not detected in dog. The subcellular distribution of the identified phosphatases is diverse, suggesting that they likely have specific roles in sperm. Finally, PTP activity has a positive role in the regulation of motility and is involved in protein tyrosine phosphorylation in mammalian sperm.

  10. Sensory cilia and integration of signal transduction in human health and disease.

    PubMed

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda; Satir, Peter

    2007-02-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the extracellular environment in order to control basic cellular processes during embryonic and postnatal development, as well as in tissue homeostasis in adulthood. Consequently, defects in building of the cilium or in transport or function of ciliary signal proteins are associated with a series of pathologies, including developmental disorders and cancer. In this review, we highlight recent examples of the mechanisms by which signal components are selectively targeted and transported to the ciliary membrane and we present an overview of the signal transduction pathways associated with primary and motile cilia in vertebrate cells, including platelet-derived growth factor receptor-alpha (PDGFRalpha), hedgehog and Wnt signaling pathways. Finally, we discuss the functions of these cilia-associated signal transduction pathways and their role in human health and development.

  11. Early eukaryotic origins for cilia-associated bioactive peptide-amidating activity.

    PubMed

    Kumar, Dhivya; Blaby-Haas, Crysten E; Merchant, Sabeeha S; Mains, Richard E; King, Stephen M; Eipper, Betty A

    2016-03-01

    Ciliary axonemes and basal bodies were present in the last eukaryotic common ancestor and play crucial roles in sensing and responding to environmental cues. Peptidergic signaling, generally considered a metazoan innovation, is essential for organismal development and homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) is crucial for the last step of bioactive peptide biosynthesis. However, identification of a complete PAM-like gene in green algal genomes suggests ancient evolutionary roots for bioactive peptide signaling. We demonstrate that the Chlamydomonas reinhardtii PAM gene encodes an active peptide-amidating enzyme (CrPAM) that shares key structural and functional features with the mammalian enzyme, indicating that components of the peptide biosynthetic pathway predate multicellularity. In addition to its secretory pathway localization, CrPAM localizes to cilia and tightly associates with the axonemal superstructure, revealing a new axonemal enzyme activity. This localization pattern is conserved in mammals, with PAM present in both motile and immotile sensory cilia. The conserved ciliary localization of PAM adds to the known signaling capabilities of the eukaryotic cilium and provides a potential mechanistic link between peptidergic signaling and endocrine abnormalities commonly observed in ciliopathies.

  12. Early eukaryotic origins for cilia-associated bioactive peptide-amidating activity

    PubMed Central

    Kumar, Dhivya; Blaby-Haas, Crysten E.; Merchant, Sabeeha S.; Mains, Richard E.; King, Stephen M.; Eipper, Betty A.

    2016-01-01

    ABSTRACT Ciliary axonemes and basal bodies were present in the last eukaryotic common ancestor and play crucial roles in sensing and responding to environmental cues. Peptidergic signaling, generally considered a metazoan innovation, is essential for organismal development and homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) is crucial for the last step of bioactive peptide biosynthesis. However, identification of a complete PAM-like gene in green algal genomes suggests ancient evolutionary roots for bioactive peptide signaling. We demonstrate that the Chlamydomonas reinhardtii PAM gene encodes an active peptide-amidating enzyme (CrPAM) that shares key structural and functional features with the mammalian enzyme, indicating that components of the peptide biosynthetic pathway predate multicellularity. In addition to its secretory pathway localization, CrPAM localizes to cilia and tightly associates with the axonemal superstructure, revealing a new axonemal enzyme activity. This localization pattern is conserved in mammals, with PAM present in both motile and immotile sensory cilia. The conserved ciliary localization of PAM adds to the known signaling capabilities of the eukaryotic cilium and provides a potential mechanistic link between peptidergic signaling and endocrine abnormalities commonly observed in ciliopathies. PMID:26787743

  13. Evolutionarily Ancient Association of the FoxJ1 Transcription Factor with the Motile Ciliogenic Program

    PubMed Central

    Ho, Hao Kee; Babu, Deepak; Eitel, Michael; Narasimhan, Vijayashankaranarayanan; Tiku, Varnesh; Westbrook, Jody; Schierwater, Bernd; Roy, Sudipto

    2012-01-01

    It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. PMID:23144623

  14. Primary cilia and autophagic dysfunction in Huntington's disease

    PubMed Central

    Kaliszewski, M; Knott, A B; Bossy-Wetzel, E

    2015-01-01

    Huntington's disease (HD) is an inherited, neurodegenerative disorder caused by a single-gene mutation: a CAG expansion in the huntingtin (HTT) gene that results in production of a mutated protein, mutant HTT, with a polyglutamine tail (polyQ-HTT). Although the molecular pathways of polyQ-HTT toxicity are not fully understood, because protein misfolding and aggregation are central features of HD, it has long been suspected that cellular housekeeping processes such as autophagy might be important to disease pathology. Indeed, multiple lines of research have identified abnormal autophagy in HD, characterized generally by increased autophagic induction and inefficient clearance of substrates. To date, the origin of autophagic dysfunction in HD remains unclear and the search for actors involved continues. To that end, recent studies have suggested a bidirectional relationship between autophagy and primary cilia, signaling organelles of most mammalian cells. Interestingly, primary cilia structure is defective in HD, suggesting a potential link between autophagic dysfunction, primary cilia and HD pathogenesis. In addition, because polyQ-HTT also accumulates in primary cilia, the possibility exists that primary cilia might play additional roles in HD: perhaps by disrupting signaling pathways or acting as a reservoir for secretion and propagation of toxic, misfolded polyQ-HTT fragments. Here, we review recent research suggesting potential links between autophagy, primary cilia and HD and speculate on possible pathogenic mechanisms and future directions for the field. PMID:26160070

  15. Antennas of organ morphogenesis: the roles of cilia in vertebrate kidney development

    PubMed Central

    Marra, Amanda N.; Li, Yue

    2016-01-01

    Abstract Cilia arose early during eukaryotic evolution, and their structural components are highly conserved from the simplest protists to complex metazoan species. In recent years, the role of cilia in the ontogeny of vertebrate organs has received increasing attention due to a staggering correlation between human disease and dysfunctional cilia. In particular, the presence of cilia in both the developing and mature kidney has become a deep area of research due to ciliopathies common to the kidney, such as polycystic kidney disease (PKD). Interestingly, mutations in genes encoding proteins that localize to the cilia cause similar cystic phenotypes in kidneys of various vertebrates, suggesting an essential role for cilia in kidney organogenesis and homeostasis as well. Importantly, the genes so far identified in kidney disease have conserved functions across species, whose kidneys include both primary and motile cilia. Here, we aim to provide a comprehensive description of cilia and their role in kidney development, as well as highlight the usefulness of the zebrafish embryonic kidney as a model to further understand the function of cilia in kidney health. PMID:27389733

  16. HIF Stabilization Weakens Primary Cilia

    PubMed Central

    Resnick, Andrew

    2016-01-01

    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Defective cilia and ciliary-associated proteins have been shown to result in cystic diseases. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because the mechanical properties of cilia impact their response to applied flow, we asked how the stiffness of cilia can be controlled pharmacologically. We performed an experiment subjecting cilia to Taxol (a microtubule stabilizer) and CoCl2 (a HIF stabilizer to model hypoxia). Madin-Darby Canine Kidney (MDCK) cells were selected as our model system. After incubation with a selected pharmacological agent, cilia were optically trapped and the bending modulus measured. We found that HIF stabilization significantly weakens cilia. These results illustrate a method to alter the mechanical properties of primary cilia and potentially alter the flow sensing properties of cilia. PMID:27812213

  17. HIF Stabilization Weakens Primary Cilia.

    PubMed

    Resnick, Andrew

    2016-01-01

    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Defective cilia and ciliary-associated proteins have been shown to result in cystic diseases. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because the mechanical properties of cilia impact their response to applied flow, we asked how the stiffness of cilia can be controlled pharmacologically. We performed an experiment subjecting cilia to Taxol (a microtubule stabilizer) and CoCl2 (a HIF stabilizer to model hypoxia). Madin-Darby Canine Kidney (MDCK) cells were selected as our model system. After incubation with a selected pharmacological agent, cilia were optically trapped and the bending modulus measured. We found that HIF stabilization significantly weakens cilia. These results illustrate a method to alter the mechanical properties of primary cilia and potentially alter the flow sensing properties of cilia.

  18. Conservation of ciliary proteins in plants with no cilia

    PubMed Central

    2011-01-01

    Background Eukaryotic cilia are complex, highly conserved microtubule-based organelles with a broad phylogenetic distribution. Cilia were present in the last eukaryotic common ancestor and many proteins involved in cilia function have been conserved through eukaryotic diversification. However, cilia have also been lost multiple times in different lineages, with at least two losses occurring within the land plants. Whereas all non-seed plants produce cilia for motility of male gametes, some gymnosperms and all angiosperms lack cilia. During these evolutionary losses, proteins with ancestral ciliary functions may be lost or co-opted into different functions. Results Here we identify a core set of proteins with an inferred ciliary function that are conserved in ciliated eukaryotic species. We interrogate this genomic dataset to identify proteins with a predicted ancestral ciliary role that have been maintained in non-ciliated land plants. In support of our prediction, we demonstrate that several of these proteins have a flagellar localisation in protozoan trypanosomes. The phylogenetic distribution of these genes within the land plants indicates evolutionary scenarios of either sub- or neo-functionalisation and expression data analysis shows that these genes are highly expressed in Arabidopsis thaliana pollen cells. Conclusions A large number of proteins possess a phylogenetic ciliary profile indicative of ciliary function. Remarkably, many genes with an ancestral ciliary role are maintained in non-ciliated land plants. These proteins have been co-opted to perform novel functions, most likely before the loss of cilia, some of which appear related to the formation of the male gametes. PMID:22208660

  19. Effect of viscosity on metachrony in mucus propelling cilia.

    PubMed

    Gheber, L; Korngreen, A; Priel, Z

    1998-01-01

    In the present work we report that increasing the viscosity of the medium caused not only a decrease in the ciliary beat frequency but also changes in the metachrony and correlation between cilia. The study was performed using double and triple simultaneous photoelectric measurements on cultured ciliary cells from the frog esophagus in the viscosity range of 1-2,000 cp. We observed that increasing the viscosity intensified the fluctuations in all the measured parameters. Ciliary beat frequency decreased moderately. Even at quite high viscosities (circa 2000 cp.), cilia were still active with beating frequencies of 3-5 Hz. In addition, the degree of correlation between cilia parallel to the effective stroke direction (ESD) decreased, while that perpendicular to the ESD at a low range of viscosities remained unchanged and even increased at high viscosities. Medium viscosities in the range of 30-1,500 cp. altered the metachronal wave properties of cultured frog esophagus. The metachronal wavelength increased by up to 50%, and the wave direction changed towards more orthoplectic type of coordination. According to our recently suggested model [Gheber and Priel, 1990: Cell Motil. Cytoskeleton 16:167-181], these effects can be explained by a decrease in the temporal asymmetry of the ciliary beat. Since similar results were observed in water propelling cilia of Paramecium subjected to medium viscosity ranges of up to 40 cp. [Machemer, 1972: J. Exp. Biol. 57:239-259], we conclude that hydrodynamic interactions govern the metachronal wave properties of both mucus and water propelling cilia, though mucus propelling cilia, with their better adaptation to increased load, are affected at much higher viscosities than water propelling cilia.

  20. Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons

    PubMed Central

    Koemeter-Cox, Andrew I.; Sherwood, Thomas W.; Green, Jill A.; Steiner, Robert A.; Berbari, Nicolas F.; Yoder, Bradley K.; Kauffman, Alexander S.; Monsma, Paula C.; Brown, Anthony; Askwith, Candice C.; Mykytyn, Kirk

    2014-01-01

    Most central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space. However, the impact of cilia on signaling to central neurons has never been demonstrated. Here, we show that the kisspeptin receptor (Kiss1r), a GPCR that is activated by kisspeptin to regulate the onset of puberty and adult reproductive function, is enriched in cilia projecting from mouse gonadotropin-releasing hormone (GnRH) neurons. Interestingly, GnRH neurons in adult animals are multiciliated and the percentage of GnRH neurons possessing multiple Kiss1r-positive cilia increases during postnatal development in a progression that correlates with sexual maturation. Remarkably, disruption of cilia selectively on GnRH neurons leads to a significant reduction in kisspeptin-mediated GnRH neuronal activity. To our knowledge, this result is the first demonstration of cilia disruption affecting central neuronal activity and highlights the importance of cilia for proper GPCR signaling. PMID:24982149

  1. Biomimetic cilia arrays - fabrication, magnetic actuation, and driven fluid transport phenomena

    NASA Astrophysics Data System (ADS)

    Shields, Adam

    The cilium is one of biology's most basic functional nanostructures, present on nearly every cell and increasingly realized as vital to many aspects of human health. A fundamental reason for the ubiquity of cilia is their ability to effectively interact with fluids at the microscale, where the Reynolds number is low and thus inertia is irrelevant. This ability makes cilia an attractive and popular candidate for an engineered biomimic with potential applications in microfluidics and sensing. In addition, biological ciliated systems are difficult to study for many reasons, and so I demonstrate how a functional biomimetic system can also serve as a model platform for highly controlled studies of biologically relevant, cilia-driven hydrodynamics. Using the template-based microfabrication of a magnetic nanoparticle/polymer composite, I fabricate arrays of magnetically actuated biomimetic cilia at the scale of their biological analogues. I will discuss this fabrication technique and the magnetic actuation of these arrays to mimic the beat of biological cilia. I also report on the nature of the fluid flows driven by the cilia beat, and demonstrate how these cilia arrays can simultaneously generate long-range fluid transport and mixing in distinct fluid flow regimes. Finally, I present these results within the context of canonical hydrodynamics problems and discuss the implications for biological systems, such as the motile cilia recently discovered in the embryonic node.

  2. Primary cilia disappear in rat podocytes during glomerular development

    PubMed Central

    Kurihara, Hidetake; Sakai, Tatsuo

    2010-01-01

    Most tubular epithelial cell types express primary cilia, and mutations of primary-cilium-associated proteins are well known to cause several kinds of cystic renal disease. However, until now, it has been unclear whether mammalian podocytes express primary cilia in vivo. In this study, we determined whether primary cilia are present in the podocytes of rat immature and mature glomeruli by means of transmission electron microscopy of serial ultrathin sections. In immature glomeruli of fetal rats, podocytes express the primary cilia with high percentages at the S-shaped body (88 ± 5%, n = 3), capillary loop (95 ± 4%, n =  4), and maturing glomerulus (76 ± 13%, n = 5) stages. The percentage of ciliated podocytes was significantly lower at the maturing glomerulus stage than at the former two stages. In mature glomeruli of adult rats, ciliated podocytes were not found at all (0 ± 0%, n = 11). These findings indicate that the primary cilia gradually disappear in rat podocytes during glomerular development. Since glomerular filtration rate increases during development, the primary cilia on the podocytes are subjected to a stronger bending force. Thus, the disappearance of the primary cilia presumably prevents the entry of excessive calcium-ions via the cilium-associated polycystin complexes and the disturbance of intracellular signaling cascades in mature podocytes. Electronic supplementary material The online version of this article (doi:10.1007/s00441-010-0983-7) contains supplementary material, which is available to authorized users. PMID:20495826

  3. The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left-right asymmetry.

    PubMed

    Thompson, Helen; Shaw, Michael K; Dawe, Helen R; Shimeld, Sebastian M

    2012-04-15

    In the early mouse embryo monocilia on the ventral node rotate to generate a leftward flow of fluid. This nodal flow is essential for the left-sided expression of nodal and pitx2, and for subsequent asymmetric organ patterning. Equivalent left fluid flow has been identified in other vertebrates, including Xenopus and zebrafish, indicating it is an ancient vertebrate mechanism. Asymmetric nodal and Pitx expression have also been identified in several invertebrates, including the vertebrates' nearest relatives, the urochordates. However whether cilia regulate this asymmetric gene expression remains unknown, and previous studies in urochordates have not identified any cilia prior to the larval stage, when asymmetry is already long established. Here we use Scanning and Transmission Electron Microscopy and immunofluorescence to investigate cilia in the urochordate Ciona intestinalis. We show that single cilia are transiently present on each ectoderm cell of the late neurula/early tailbud stage embryo, a time point just before onset of asymmetric nodal expression. Mapping the position of each cilium on these cells shows they are posteriorly positioned, something also described for mouse node cilia. The C. intestinalis cilia have a 9+0 ring ultrastructure, however we find no evidence of structures associated with motility such as dynein arms, radial spokes or nexin. Furthermore the 9+0 ring structure becomes disorganised immediately after the cilia have exited the cell, indicative of cilia which are not capable of motility. Our results indicate that although cilia are present prior to molecular asymmetries, they are not motile and hence cannot be operating in the same way as the flow-generating cilia of the vertebrate node. We conclude that the cilia may have a role in the development of C. intestinalis left-right asymmetry but that this would have to be in a sensory capacity, perhaps as mechanosensors as hypothesised in two-cilia physical models of vertebrate cilia

  4. Axonemal Positioning and Orientation in 3-D Space for Primary Cilia: What is Known, What is Assumed, and What Needs Clarification

    PubMed Central

    Farnum, Cornelia E.; Wilsman, Norman J.

    2012-01-01

    Two positional characteristics of the ciliary axoneme – its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional space – are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3-D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations. PMID:22012592

  5. Symmetry Breaking in a Model for Nodal Cilia

    NASA Astrophysics Data System (ADS)

    Brokaw, Charles J.

    2005-03-01

    Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.

  6. Hydrodynamic Phase Locking in Mouse Node Cilia

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Shinohara, Kyosuke; Ishikawa, Takuji; Hamada, Hiroshi

    2013-06-01

    Rotational movement of mouse node cilia generates leftward fluid flow in the node cavity, playing an important role in left-right determination in the embryo. Although rotation of numerous cilia was believed necessary to trigger the determination, recent reports indicate the action of two cilia to be sufficient. We examine cooperative cilia movement via hydrodynamic interaction. Results show cilia to be cooperative, having phases locked in a certain relation; a system with a pair of nonidentical cilia can achieve phase-locked states more easily than one with a pair of identical cilia.

  7. Piracy of adhesins: attachment of superinfecting pathogens to respiratory cilia by secreted adhesins of Bordetella pertussis.

    PubMed

    Tuomanen, E

    1986-12-01

    Two proteins secreted by Bordetella pertussis are known to mediate adherence of these bacteria to mammalian respiratory cilia. When either ciliated cells or other pathogenic bacteria were pretreated with these adhesins, Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus acquired the ability to adhere to cilia in vitro and in vivo. Such piracy of adhesins may contribute to superinfection in mucosal diseases such as whooping cough.

  8. Force Generation and Dynamics of Individual Cilia under External Loading

    PubMed Central

    Hill, David B.; Swaminathan, Vinay; Estes, Ashley; Cribb, Jeremy; O'Brien, E. Timothy; Davis, C. William; Superfine, R.

    2010-01-01

    Abstract Motile cilia are unique multimotor systems that display coordination and periodicity while imparting forces to biological fluids. They play important roles in normal physiology, and ciliopathies are implicated in a growing number of human diseases. In this work we measure the response of individual human airway cilia to calibrated forces transmitted via spot-labeled magnetic microbeads. Cilia respond to applied forces by 1), a reduction in beat amplitude (up to an 85% reduction by 160–170 pN of force); 2), a decreased tip velocity proportionate to applied force; and 3), no significant change in beat frequency. Tip velocity reduction occurred in each beat direction, independently of the direction of applied force, indicating that the cilium is “driven” in both directions at all times. By applying a quasistatic force model, we deduce that axoneme stiffness is dominated by the rigidity of the microtubules, and that cilia can exert 62 ± 18 pN of force at the tip via the generation of 5.6 ± 1.6 pN/dynein head. PMID:20085719

  9. Analysis of properties of cilia using Tetrahymena thermophila.

    PubMed

    Rajagopalan, Vidyalakshmi; Corpuz, Elizabeth O; Hubenschmidt, Mark J; Townsend, Caroline R; Asai, David J; Wilkes, David E

    2009-01-01

    Cilia and eukaryotic flagella are important structures required for the motility of cells, the movement of medium across the surfaces of cells, and the connections between the receptor and synthetic portions of sensory cells. The axoneme forms the cytoskeleton of the cilium comprising several hundreds of proteins that assemble into the 9 + 2 arrangement of outer doublet and central pair microtubules, the inner and outer rows of dynein arms, and many other structures. Tetrahymena thermophila is an excellent model organism for the study of cilia and ciliogenesis. The cell is covered by about 1,000 cilia which are essential for survival. Additionally, the Tetrahymena genome is available and targeted genetic manipulations are straightforward. In this chapter, we describe five protocols that examine properties of cilia: (a) measuring mRNA levels to see the effect of deciliation on gene expression; (b) swimming velocity and linearity; (c) ciliary length and density; (d) phagocytosis that occurs through the ciliated oral apparatus; and (e) depolarization-induced ciliary reversal.

  10. Direct recording and molecular identification of the calcium channel of primary cilia

    NASA Astrophysics Data System (ADS)

    Decaen, Paul G.; Delling, Markus; Vien, Thuy N.; Clapham, David E.

    2013-12-01

    A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.

  11. Be together, not the same: Spatiotemporal organization of different cilia types generates distinct transport functions

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Guo, Hanliang; Ruby, Edward; Dabiri, John; McFall-Ngai, Margaret; Kanso, Eva

    2016-11-01

    Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. Cilia are often thought to be limited to stereotypic morphologies, beat kinematics and non-discriminatory clearance functions, but we find that the spatiotemporal organization of different cilia types and beat behaviors can generate complex flow patterns and transport functions. Here, we present a case study in the Hawaiian bobtail squid where collective ciliary activity and resulting flow fields help recruit symbiont bacteria to the animal host. In particular, we demonstrate empirically and computationally how the squid's internal cilia act like a microfluidic device that actively filters the water for potential bacterial candidates and also provides a sheltered zone allowing for accumulation of mucus and bacteria into a biofilm. Moreover, in this sheltered zone, different cilia-driven flows enhance diffusion of biochemical signals, which could accelerate specific bacteria-host recognition. These results suggest that studying cilia activity on the population level might reveal a diverse range of biological transport and sensing functions. Moreover, understanding cilia as functional building blocks could inspire the design of ciliated robots and devices.

  12. Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways

    PubMed Central

    Gilley, Sandra K.; Stenbit, Antine E.; Pasek, Raymond C.; Sas, Kelli M.; Steele, Stacy L.; Amria, May; Bunni, Marlene A.; Estell, Kimberly P.; Schwiebert, Lisa M.; Flume, Patrick; Gooz, Monika; Haycraft, Courtney J.; Yoder, Bradley K.; Miller, Caroline; Pavlik, Jacqueline A.; Turner, Grant A.; Sisson, Joseph H.

    2013-01-01

    The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88− mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88− mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function. PMID:24213915

  13. Behavior of Primary Cilia and Tricellular Tight Junction Proteins during Differentiation in Temperature-Sensitive Mouse Cochlear Precursor Hair Cells.

    PubMed

    Kakuki, Takuya; Kaneko, Yakuto; Takano, Kenichi; Ninomiya, Takafumi; Kohno, Takayuki; Kojima, Takashi; Himi, Tetsuo

    2016-01-01

    In the sensory hair cells of the mammalian cochlea, the primary cilia in the planar cell polarity as well as the tight junctions in the epithelial cell polarity and the barrier are important to maintain normal hearing. Temperature-sensitive mouse cochlear precursor hair cells were used to investigate the behavior of primary cilia and tricellular tight junction proteins during the differentiation of sensory hair cells. In undifferentiated cells (incubated at 33°C), many acetylated tubulin-positive primary cilia were observed, and each was accompanied with an x03B3;-tubulin-positive basal body. The primary cilia had a '9 + 0' architecture with nine outer microtubule doublets but lacking a central pair of microtubules. In differentiated cells (incubated at 39°C), acetylated tubulin-positive primary cilia as well as acetylated tubulin-positive cilia-like structures were partially observed on the cell surface. In differentiated cells, the number of primary cilia was markedly reduced compared with undifferentiated cells, and innumerable cilia-like structures with no ciliary pockets were partially observed on the cell surface. In undifferentiated cells, few tricellulin molecules and lipolysis-stimulated lipoprotein receptors (LSRs) were observed in the cytoplasm. In differentiated cells, many tricellulin molecules and LSRs were observed on the membranes and within the cytoplasm. Conditional immortalized mouse cochlear precursor hair cells may be useful to investigate the roles of primary cilia and tricellular tight junctions during cellular differentiation and degeneration such as apoptosis.

  14. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    PubMed

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.

  15. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila

    PubMed Central

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C.; Durand, Bénédicte

    2014-01-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left–right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604–amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly. PMID:24554765

  16. Fluid pumping using magnetic cilia

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Ballard, Matt; Alexeev, Alexander; Hesketh, Peter; Woodruff School of Mechanical Engineering Team

    2016-11-01

    Using experiments and computer simulations, we examine fluid pumping by artificial magnetic cilia fabricated using surface micromachining techniques. An asymmetry in forward and recovery strokes of the elastic cilia causes the net pumping in a creeping flow regime. We show this asymmetry in the ciliary strokes is due to the change in magnetization of the elastic cilia combined with viscous force due to the fluid. Specifically, the time scale for forward stroke is mostly governed by the magnetic forces, whereas the time scale for the recovery stroke is determined by the elastic and viscous forces. These different time scales result in different cilia deformation during forward and backward strokes which in turn lead to the asymmetry in the ciliary motion. To disclose the physics of magnetic cilia pumping we use a hybrid lattice Boltzmann and lattice spring method. We validate our model by comparing the simulation results with the experimental data. The results of our study will be useful to design microfluidic systems for fluid mixing and particle manipulation including different biological particles. USDA and NSF.

  17. Alcohol drives S-nitrosylation and redox activation of protein phosphatase 1, causing bovine airway cilia dysfunction.

    PubMed

    Price, Michael E; Pavlik, Jacqueline A; Liu, Miao; Ding, Shi-Jian; Wyatt, Todd A; Sisson, Joseph H

    2017-03-01

    Individuals with alcohol (ethanol)-use disorders are at increased risk for lung infections, in part, due to defective mucociliary clearance driven by motile cilia in the airways. We recently reported that isolated, demembranated bovine cilia (axonemes) are capable of producing nitric oxide ((∙)NO) when exposed to biologically relevant concentrations of alcohol. This increased presence of (∙)NO can lead to protein S-nitrosylation, a posttranslational modification signaling mechanism involving reversible adduction of nitrosonium cations or (∙)NO to thiolate or thiyl radicals, respectively, of proteins forming S-nitrosothiols (SNOs). We quantified and compared SNO content between isolated, demembranated axonemes extracted from bovine tracheae, with or without in situ alcohol exposure (100 mM × 24 h). We demonstrate that relevant concentrations of alcohol exposure shift the S-nitrosylation status of key cilia regulatory proteins, including 20-fold increases in S-nitrosylation of proteins that include protein phosphatase 1 (PP1). With the use of an ATP-reactivated axoneme motility system, we demonstrate that alcohol-driven S-nitrosylation of PP1 is associated with PP1 activation and dysfunction of axoneme motility. These new data demonstrate that alcohol can shift the S-nitrothiol balance at the level of the cilia organelle and highlight S-nitrosylation as a novel signaling mechanism to regulate PP1 and cilia motility.

  18. Role of cilia in structural birth defects: insights from ciliopathy mutant mouse models.

    PubMed

    Rao Damerla, Rama; Gabriel, George C; Li, You; Klena, Nikolai T; Liu, Xiaoqin; Chen, Yu; Cui, Cheng; Pazour, Gregory J; Lo, Cecilia W

    2014-06-01

    Structural birth defect (SBD) is a major cause of morbidity and mortality in the newborn period. Although the etiology of SBD is diverse, a wide spectrum of SBD associated with ciliopathies points to the cilium as having a central role in the pathogenesis of SBDs. Ciliopathies are human diseases arising from disruption of cilia structure and/or function. They are associated with developmental anomalies in one or more organ systems and can involve defects in motile cilia, such as those in the airway epithelia or from defects in nonmotile (primary cilia) that have sensory and cell signaling function. Availability of low cost next generation sequencing has allowed for explosion of new knowledge in genetic etiology of ciliopathies. This has led to the appreciation that many genes are shared in common between otherwise clinically distinct ciliopathies. Further insights into the relevance of the cilium in SBD has come from recovery of pathogenic mutations in cilia-related genes from many large-scale mouse forward genetic screens with differing developmental phenotyping focus. Our mouse mutagenesis screen for congenital heart disease (CHD) using noninvasive fetal echocardiography has yielded a marked enrichment for pathogenic mutations in genes required for motile or primary cilia function. These novel mutant mouse models will be invaluable for modeling human ciliopathies and further interrogating the role of the cilium in the pathogenesis of SBD and CHD. Overall, these findings suggest a central role for the cilium in the pathogenesis of a wide spectrum of developmental anomalies associated with CHD and SBDs.

  19. TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella.

    PubMed

    Ishikawa, Hiroaki; Ide, Takahiro; Yagi, Toshiki; Jiang, Xue; Hirono, Masafumi; Sasaki, Hiroyuki; Yanagisawa, Haruaki; Wemmer, Kimberly A; Stainier, Didier Yr; Qin, Hongmin; Kamiya, Ritsu; Marshall, Wallace F

    2014-01-01

    Cilia/flagella are assembled and maintained by the process of intraflagellar transport (IFT), a highly conserved mechanism involving more than 20 IFT proteins. However, the functions of individual IFT proteins are mostly unclear. To help address this issue, we focused on a putative IFT protein TTC26/DYF13. Using live imaging and biochemical approaches we show that TTC26/DYF13 is an IFT complex B protein in mammalian cells and Chlamydomonas reinhardtii. Knockdown of TTC26/DYF13 in zebrafish embryos or mutation of TTC26/DYF13 in C. reinhardtii, produced short cilia with abnormal motility. Surprisingly, IFT particle assembly and speed were normal in dyf13 mutant flagella, unlike in other IFT complex B mutants. Proteomic and biochemical analyses indicated a particular set of proteins involved in motility was specifically depleted in the dyf13 mutant. These results support the concept that different IFT proteins are responsible for different cargo subsets, providing a possible explanation for the complexity of the IFT machinery. DOI: http://dx.doi.org/10.7554/eLife.01566.001.

  20. Quantitative description of fluid flows produced by left-right cilia in zebrafish.

    PubMed

    Fox, Craig; Manning, M Lisa; Amack, Jeffrey D

    2015-01-01

    Motile cilia generate directional flows that move mucus through airways, cerebrospinal fluid through brain ventricles, and oocytes through fallopian tubes. In addition, specialized monocilia beat in a rotational pattern to create asymmetric flows that are involved in establishing the left-right (LR) body axis during embryogenesis. These monocilia, which we refer to as "left-right cilia," produce a leftward flow of extraembryonic fluid in a transient "organ of asymmetry" that directs asymmetric signaling and development of LR asymmetries in the cardiovascular system and gastrointestinal tract. The asymmetric flows are thought to establish a chemical gradient and/or activate mechanosensitive cilia to initiate calcium ion signals and a conserved Nodal (TGFβ) pathway on the left side of the embryo, but the mechanisms underlying this process remain unclear. The zebrafish organ of asymmetry, called Kupffer's vesicle, provides a useful model system for investigating LR cilia and cilia-powered fluid flows. Here, we describe methods to visualize flows in Kupffer's vesicle using fluorescent microspheres and introduce a new and freely available MATLAB particle tracking code to quantitatively describe these flows. Analysis of normal and aberrant flows indicates this approach is useful for characterizing flow properties that impact LR asymmetry and may be more broadly applicable for quantifying other cilia flows.

  1. Adipogenic Differentiation of hMSCs is Mediated by Recruitment of IGF-1r Onto the Primary Cilium Associated With Cilia Elongation.

    PubMed

    Dalbay, Melis T; Thorpe, Stephen D; Connelly, John T; Chapple, J Paul; Knight, Martin M

    2015-06-01

    Primary cilia are single non-motile organelles that provide a highly regulated compartment into which specific proteins are trafficked as a critical part of various signaling pathways. The absence of primary cilia has been shown to prevent differentiation of human mesenchymal stem cells (hMSCs). Changes in primary cilia length are crucial for regulating signaling events; however it is not known how alterations in cilia structure relate to differentiation. This study tested the hypothesis that changes in primary cilia structure are required for stem cell differentiation. hMSCs expressed primary cilia that were labeled with acetylated alpha tubulin and visualized by confocal microscopy. Chemically induced differentiation resulted in lineage specific changes in cilia length and prevalence which were independent of cell cycle. In particular, adipogenic differentiation resulted in cilia elongation associated with the presence of dexamethasone, while insulin had an inhibitory effect on cilia length. Over a 7-day time course, adipogenic differentiation media resulted in cilia elongation within 2 days followed by increased nuclear PPARγ levels; an early marker of adipogenesis. Cilia elongation was associated with increased trafficking of insulin-like growth factor-1 receptor β (IGF-1Rβ) into the cilium. This was reversed on inhibition of elongation by IFT-88 siRNA transfection, which also decreased nuclear PPARγ. This is the first study to show that adipogenic differentiation requires primary cilia elongation associated with the recruitment of IGF-1Rβ onto the cilium. This study may lead to the development of cilia-targeted therapies for controlling adipogenic differentiation and associated conditions such as obesity.

  2. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  3. Centrin 2 Is Required for Mouse Olfactory Ciliary Trafficking and Development of Ependymal Cilia Planar Polarity

    PubMed Central

    Avasthi, Prachee; Irwin, Mavis; Gerstner, Cecilia D.; Frederick, Jeanne M.; Lucero, Mary T.

    2014-01-01

    Centrins are ancient calmodulin-related Ca2+-binding proteins associated with basal bodies. In lower eukaryotes, Centrin2 (CETN2) is required for basal body replication and positioning, although its function in mammals is undefined. We generated a germline CETN2 knock-out (KO) mouse presenting with syndromic ciliopathy including dysosmia and hydrocephalus. Absence of CETN2 leads to olfactory cilia loss, impaired ciliary trafficking of olfactory signaling proteins, adenylate cyclase III (ACIII), and cyclic nucleotide-gated (CNG) channel, as well as disrupted basal body apical migration in postnatal olfactory sensory neurons (OSNs). In mutant OSNs, cilia base-anchoring of intraflagellar transport components IFT88, the kinesin-II subunit KIF3A, and cytoplasmic dynein 2 appeared compromised. Although the densities of mutant ependymal and respiratory cilia were largely normal, the planar polarity of mutant ependymal cilia was disrupted, resulting in uncoordinated flow of CSF. Transgenic expression of GFP-CETN2 rescued the Cetn2-deficiency phenotype. These results indicate that mammalian basal body replication and ciliogenesis occur independently of CETN2; however, mouse CETN2 regulates protein trafficking of olfactory cilia and participates in specifying planar polarity of ependymal cilia. PMID:24790208

  4. Centrin 2 is required for mouse olfactory ciliary trafficking and development of ependymal cilia planar polarity.

    PubMed

    Ying, Guoxin; Avasthi, Prachee; Irwin, Mavis; Gerstner, Cecilia D; Frederick, Jeanne M; Lucero, Mary T; Baehr, Wolfgang

    2014-04-30

    Centrins are ancient calmodulin-related Ca(2+)-binding proteins associated with basal bodies. In lower eukaryotes, Centrin2 (CETN2) is required for basal body replication and positioning, although its function in mammals is undefined. We generated a germline CETN2 knock-out (KO) mouse presenting with syndromic ciliopathy including dysosmia and hydrocephalus. Absence of CETN2 leads to olfactory cilia loss, impaired ciliary trafficking of olfactory signaling proteins, adenylate cyclase III (ACIII), and cyclic nucleotide-gated (CNG) channel, as well as disrupted basal body apical migration in postnatal olfactory sensory neurons (OSNs). In mutant OSNs, cilia base-anchoring of intraflagellar transport components IFT88, the kinesin-II subunit KIF3A, and cytoplasmic dynein 2 appeared compromised. Although the densities of mutant ependymal and respiratory cilia were largely normal, the planar polarity of mutant ependymal cilia was disrupted, resulting in uncoordinated flow of CSF. Transgenic expression of GFP-CETN2 rescued the Cetn2-deficiency phenotype. These results indicate that mammalian basal body replication and ciliogenesis occur independently of CETN2; however, mouse CETN2 regulates protein trafficking of olfactory cilia and participates in specifying planar polarity of ependymal cilia.

  5. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography.

    PubMed

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex.

  6. Primary cilia in neurodevelopmental disorders

    PubMed Central

    Valente, Enza Maria; Rosti, Rasim O.; Gibbs, Elizabeth; Gleeson, Joseph G.

    2014-01-01

    Primary cilia are generally solitary organelles that emanate from the surface of almost all vertebrate cell types. Until recently, details regarding the function of these structures were lacking; however, extensive evidence now suggests that primary cilia have critical roles in sensing the extracellular environment, and in coordinating developmental and homeostatic signalling pathways. Furthermore, disruption of these functions seems to underlie a diverse spectrum of disorders, known as primary ciliopathies. These disorders are characterized by wide-ranging clinical and genetic heterogeneity, but with substantial overlap among distinct conditions. Indeed, ciliopathies are associated with a large variety of manifestations that often include distinctive neurological findings. Herein, we review neurological features associated with primary ciliopathies, highlight genotype–phenotype correlations, and discuss potential mechanisms underlying these findings. PMID:24296655

  7. Oscillatory Fluid Flow Influences Primary Cilia and Microtubule Mechanics

    PubMed Central

    Espinha, Lina C.; Hoey, David A.; Fernandes, Paulo R.; Rodrigues, Hélder C.; Jacobs, Christopher R.

    2014-01-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. PMID:25044764

  8. Magnetically Actuated Cilia for Microfluidic Manipulation

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Owen, Drew; Ballard, Matt; Hesketh, Peter J.; Alexeev, Alexander; Woodruff School of Mechanical Engineering Collaboration; Petit InstituteBioengineering; Biosciences Collaboration

    2015-11-01

    We demonstrate magnetic micro-cilia based microfluidic mixing and capture techniques. For this, we use a simple and easy to fabricate high aspect ratio cilia, which are actuated magnetically. These micro-features are fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The evaporated alloy curls upwards when the seed layer is removed to release the cilia, thus making a free standing `C' shaped magnetic microstructure. This is actuated using an external electromagnet or a rotating magnet. The artificial cilia can be actuated upto 20Hz. We demonstrate the active mixing these cilia can produce in the microchannel. Also, we demonstrate the capture of target species in a sample using these fast oscillating cilia. The surface of the cilia is functionalized by streptavidin which binds to biotin labelled fluorescent microspheres and mimic the capture of bacteria. We show very high capture efficiencies by using these methods. These simple to fabricate micro cilia can easily be incorporated into many microfluidic systems which require high mixing and capture efficiencies.

  9. Swimming like algae: biomimetic soft artificial cilia.

    PubMed

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond

    2013-01-06

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia.

  10. Cilia ultrastructure in children with Down syndrome.

    PubMed

    McLean, Laurie; MacCormick, Johnna; Robb, Ian; Carpenter, Blair; Pothos, Mary

    2003-12-01

    Chronic sinusitis, otitis media with effusion, and upper respiratory tract infections are commonly found in patients with Down syndrome. These diseases are generally felt to be secondary to depressed immune function and altered craniofacial dimensions. Recently, a cilia ultrastructure abnormality was found in a child with Down syndrome. This study is the first to be carried out to determine if cilia ultrastructure abnormalities are prevalent in the population with Down syndrome. Four of 10 patients had documented cilia abnormalities, but these were present in the background of normal cilia, suggesting that they were the result rather than the cause of chronic sinusitis. Similarly, nasal epithelium metaplasia was detected in 50% of the patients. Chronic sinusitis, otitis media with effusion, and recurrent upper respiratory tract infections in children with Down syndrome cannot generally be attributed to primary cilia ultrastructure abnormalities.

  11. Swimming with protists: perception, motility and flagellum assembly.

    PubMed

    Ginger, Michael L; Portman, Neil; McKean, Paul G

    2008-11-01

    In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.

  12. An Essential Role for Dermal Primary Cilia in Hair Follicle Morphogenesis

    PubMed Central

    Lehman, Jonathan; Laag, Essam; Michaud, Edward J.; Yoder, Bradley K.

    2009-01-01

    The primary cilium is a microtubule-based organelle implicated as an essential component of a number of signaling pathways. It is present on cells throughout the mammalian body; however, its functions in most tissues remain largely unknown. Herein we demonstrate that primary cilia are present on cells in murine skin and hair follicles throughout morphogenesis and during hair follicle cycling in postnatal life. Using the Cre-lox system, we disrupted cilia assembly in the ventral dermis and evaluated the effects on hair follicle development. Mice with disrupted dermal cilia have severe hypotrichosis (lack of hair) in affected areas. Histological analyses reveal that most follicles in the mutants arrest at stage 2 of hair development and have small or absent dermal condensates. This phenotype is reminiscent of that seen in the skin of mice lacking Shh or Gli2. In situ hybridization and quantitative RT-PCR analysis indicates that the hedgehog pathway is downregulated in the dermis of the cilia mutant hair follicles. Thus, these data establish cilia as a critical signaling component required for normal hair morphogenesis and suggest that this organelle is needed on cells in the dermis for reception of signals such as sonic hedgehog. PMID:18987668

  13. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    PubMed

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  14. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules.

    PubMed

    Armour, Eric A; Carson, Robert P; Ess, Kevin C

    2012-08-15

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.

  15. Entropy-based measures of in vivo cilia-driven microfluidic mixing derived from quantitative optical imaging

    NASA Astrophysics Data System (ADS)

    Chandrasekera, Kenny; Jonas, Stephan; Bhattacharya, Dipankan; Khokha, Mustafa; Choma, Michael A.

    2012-02-01

    Motile cilia are cellular organelles that project from different epithelial surfaces including respiratory epithelium. They generate directional fluid flow that removes harmful pathogens and particulate matter from the respiratory system. While it has been known that primary ciliary dyskinesia increases the risk of recurrent pulmonary infections, there is now heightened interest in understanding the role that cilia play in a wide-variety of respiratory diseases. Different optical imaging technologies are being investigated to visualize cilia-driven fluid flow, and quantitative image analysis is used to generate measures of ciliary performance. Here, we demonstrate the quantification of in vivo cilia-driven microfluidic mixing using spatial and temporal measures of Shannon information entropy. Using videomicroscopy, we imaged in vivo cilia-driven fluid flow generated by the epidermis of the Xenopus tropicalis embryo. Flow was seeded with either dyes or microparticles. Both spatial and temporal measures of entropy show significant levels of mixing, with maximum entropy measures of ~6.5 (out of a possible range of 0 to 8). Spatial entropy measures showed localization of mixing "hot-spots" and "cold-spots" and temporal measures showed mixing throughout.In sum, entropy-based measures of microfluidic mixing can characterize in vivo cilia-driven fluid flow and hold the potential for better characterization of ciliary dysfunction.

  16. Live Imaging of the Ependymal Cilia in the Lateral Ventricles of the Mouse Brain.

    PubMed

    Al Omran, Alzahra J; Saternos, Hannah C; Liu, Tongyu; Nauli, Surya M; AbouAlaiwi, Wissam A

    2015-06-01

    Multiciliated ependymal cells line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia is associated with various neurological deficits. The current ex vivo live imaging of motile ependymal cilia technique allows for a detailed study of ciliary dynamics following several steps. These steps include: mice euthanasia with carbon dioxide according to protocols of The University of Toledo's Institutional Animal Care and Use Committee (IACUC); craniectomy followed by brain removal and sagittal brain dissection with a vibratome or sharp blade to obtain very thin sections through the brain lateral ventricles, where the ependymal cilia can be visualized. Incubation of the brain's slices in a customized glass-bottom plate containing Dulbecco's Modified Eagle's Medium (DMEM)/High-Glucose at 37 °C in the presence of 95%/5% O2/CO2 mixture is essential to keep the tissue alive during the experiment. A video of the cilia beating is then recorded using a high-resolution differential interference contrast microscope. The video is then analyzed frame by frame to calculate the ciliary beating frequency. This allows distinct classification of the ependymal cells into three categories or types based on their ciliary beating frequency and angle. Furthermore, this technique allows the use of high-speed fluorescence imaging analysis to characterize the unique intracellular calcium oscillation properties of ependymal cells as well as the effect of pharmacological agents on the calcium oscillations and the ciliary beating frequency. In addition, this technique is suitable for immunofluorescence imaging for ciliary structure and ciliary protein localization studies. This is particularly important in disease diagnosis and phenotype studies. The main limitation of the technique is attributed to the decrease in live motile cilia movement as the brain tissue starts to die.

  17. Interactive computer-assisted approach for evaluation of ultrastructural cilia abnormalities

    NASA Astrophysics Data System (ADS)

    Palm, Christoph; Siegmund, Heiko; Semmelmann, Matthias; Grafe, Claudia; Evert, Matthias; Schroeder, Josef A.

    2016-03-01

    Introduction - Diagnosis of abnormal cilia function is based on ultrastructural analysis of axoneme defects, especialy the features of inner and outer dynein arms which are the motors of ciliar motility. Sub-optimal biopsy material, methodical, and intrinsic electron microscopy factors pose difficulty in ciliary defects evaluation. We present a computer-assisted approach based on state-of-the-art image analysis and object recognition methods yielding a time-saving and efficient diagnosis of cilia dysfunction. Method - The presented approach is based on a pipeline of basal image processing methods like smoothing, thresholding and ellipse fitting. However, integration of application specific knowledge results in robust segmentations even in cases of image artifacts. The method is build hierarchically starting with the detection of cilia within the image, followed by the detection of nine doublets within each analyzable cilium, and ending with the detection of dynein arms of each doublet. The process is concluded by a rough classification of the dynein arms as basis for a computer-assisted diagnosis. Additionally, the interaction possibilities are designed in a way, that the results are still reproducible given the completion report. Results - A qualitative evaluation showed reasonable detection results for cilia, doublets and dynein arms. However, since a ground truth is missing, the variation of the computer-assisted diagnosis should be within the subjective bias of human diagnosticians. The results of a first quantitative evaluation with five human experts and six images with 12 analyzable cilia showed, that with default parameterization 91.6% of the cilia and 98% of the doublets were found. The computer-assisted approach rated 66% of those inner and outer dynein arms correct, where all human experts agree. However, especially the quality of the dynein arm classification may be improved in future work.

  18. Out of the cleanroom, self-assembled magnetic artificial cilia.

    PubMed

    Wang, Ye; Gao, Yang; Wyss, Hans; Anderson, Patrick; den Toonder, Jaap

    2013-09-07

    Micro-sized hair-like structures, such as cilia, are abundant in nature and have various functionalities. Many efforts have been made to mimic the fluid pumping function of cilia, but most of the fabrication processes for these "artificial cilia" are tedious and expensive, hindering their practical application. In this paper a cost-effective in situ fabrication technique for artificial cilia is demonstrated. The cilia are constructed by self-assembly of micron sized magnetic beads and encapsulated with soft polymer coatings. Actuation of the cilia induces an effective fluid flow, and the cilia lengths and distribution can be adjusted by varying the magnetic bead concentration and fabrication parameters.

  19. Primary Cilia in Pancreatic Development and Disease

    PubMed Central

    Lodh, Sukanya; O’Hare, Elizabeth A.; Zaghloul, Norann A.

    2014-01-01

    Primary cilia and their anchoring basal bodies are important regulators of a growing list of signaling pathways. Consequently, dysfunction in proteins associated with these structures results in perturbation of the development and function of a spectrum of tissue and cell types. Here, we review the role of cilia in mediating the development and function of the pancreas. We focus on ciliary regulation of major pathways involved in pancreatic development, including Shh, Wnt, TGF-β, Notch, and fibroblast growth factor. We also discuss pancreatic phenotypes associated with ciliary dysfunction, including pancreatic cysts and defects in glucose homeostasis, and explore the potential role of cilia in such defects. PMID:24864023

  20. Identification of ICIS-1, a new protein involved in cilia stability.

    PubMed

    Ponsard, Cecile; Skowron-Zwarg, Marie; Seltzer, Virginie; Perret, Eric; Gallinger, Julia; Fisch, Cathy; Dupuis-Williams, Pascale; Caruso, Nathalie; Middendorp, Sandrine; Tournier, Frederic

    2007-01-01

    Cilia are specialized organelles that exert critical functions in numerous organisms, including that of cell motility, fluid transport and protozoan locomotion. Ciliary architecture and function strictly depend on basal body formation, migration and axoneme elongation. Numerous ultrastructural studies have been undertaken in different species to elucidate the process of ciliogenesis. Recent analyses have led to identification of genes specifically expressed in ciliated organisms, but most proteins involved in ciliogenesis remain uncharacterized. Using human nasal epithelial cells capable of ciliary differentiation in vitro, differential display was carried out to identify new proteins associated with ciliogenesis. We isolated a new gene, ICIS-1 (Involved in CIlia Stability-1), upregulated during mucociliary differentiation. This gene is localized within the TGF-beta1 promoter and is ubiquitously expressed in human tissues. Functional analyses of gene expression inhibition by RNA interference in Paramecium tetraurelia indicated that the ICIS-1 homologue interfered with cilia stability or formation. These findings demonstrate that ICIS-1 is a new protein associated with ciliated cells and potentially related to cilia stability.

  1. Primary Cilia in Breast Cancer Progression

    DTIC Science & Technology

    2010-06-01

    mechanical signals (Satir and Christensen, 2007). The process of Intraflagellar Transport ( IFT ) is responsible for building and maintaining the...Zhang, Q., Song, B., Jackson, W.S., Detloff, P.J., Serra, R., and Yoder, B.K. (2007). Intraflagellar transport is essential for endochondral bone...structure and function of cilia. The absence of Ift88/Tg737/Polaris, a core molecular component of the IFT machinery, results in the loss of cilia

  2. Learn About GI Motility

    MedlinePlus

    ... Disorders of the Large Intestine Disorders of the Pelvic Floor Motility Testing Personal Stories Contact About GI Motility ... Disorders of the Large Intestine Disorders of the Pelvic Floor Motility Testing Personal Stories Contact About GI Motility ...

  3. About GI Motility

    MedlinePlus

    ... Disorders of the Large Intestine Disorders of the Pelvic Floor Motility Testing Personal Stories Contact About GI Motility ... Disorders of the Large Intestine Disorders of the Pelvic Floor Motility Testing Personal Stories Contact About GI Motility ...

  4. Cilia in vertebrate left-right patterning.

    PubMed

    Dasgupta, Agnik; Amack, Jeffrey D

    2016-12-19

    Understanding how left-right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left-right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic 'left-right organizer'. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left-right organizer, both of which are critical for effective cilia function during left-right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left-right organizer. This suggests the possibility that these cells acquire left-right positional information prior to the appearance of cilia.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  5. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena.

    PubMed

    Brown, J M; Marsala, C; Kosoy, R; Gaertig, J

    1999-10-01

    We cloned two genes, KIN1 and KIN2, encoding kinesin-II homologues from the ciliate Tetrahymena thermophila and constructed strains lacking either KIN1 or KIN2 or both genes. Cells with a single disruption of either gene showed partly overlapping sets of defects in cell growth, motility, ciliary assembly, and thermoresistance. Deletion of both genes resulted in loss of cilia and arrests in cytokinesis. Mutant cells were unable to assemble new cilia or to maintain preexisting cilia. Double knockout cells were not viable on a standard medium but could be grown on a modified medium on which growth does not depend on phagocytosis. Double knockout cells could be rescued by transformation with a gene encoding an epitope-tagged Kin1p. In growing cells, epitope-tagged Kin1p preferentially accumulated in cilia undergoing active assembly. Kin1p was also detected in the cell body but did not show any association with the cleavage furrow. The cell division arrests observed in kinesin-II knockout cells appear to be induced by the loss of cilia and resulting cell paralysis.

  6. Expression and localization of the Parkin co-regulated gene in mouse CNS suggests a role in ependymal cilia function.

    PubMed

    Wilson, Gabrielle R; Tan, Jacqueline T; Brody, Kate M; Taylor, Juliet M; Delatycki, Martin B; Lockhart, Paul J

    2009-08-21

    Parkin Co-Regulated Gene (PACRG) is a gene that shares a bi-directional promoter with the Parkinson's disease associated gene parkin. The functional role of PACRG is not well understood, although the gene has been associated with parkinsonian syndromes and more recently with eukaryotic cilia and flagella. We investigated the expression of Pacrg in the mouse brain by in situ hybridization and observed robust expression of Pacrg in the cells associated with the lateral, third and fourth ventricle, in addition to the aqueduct of Sylvius and choroid plexus. For all regions of Pacrg expression identified, strong expression was observed in the newborn period and this was maintained into adulthood. Immunohistochemical analysis showed that Pacrg was a component of the ependymal cells and cilia lining the ventricles. Based on our results and the previous association of PACRG homologues with cilia and flagella, we propose that Pacrg is a component of the ependymal cilia and may play an important role in motile cilia development and/or function in the CNS.

  7. Primary cilia signaling mediates intraocular pressure sensation.

    PubMed

    Luo, Na; Conwell, Michael D; Chen, Xingjuan; Kettenhofen, Christine Insinna; Westlake, Christopher J; Cantor, Louis B; Wells, Clark D; Weinreb, Robert N; Corson, Timothy W; Spandau, Dan F; Joos, Karen M; Iomini, Carlo; Obukhov, Alexander G; Sun, Yang

    2014-09-02

    Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems.

  8. Primary cilia signaling mediates intraocular pressure sensation

    PubMed Central

    Luo, Na; Conwell, Michael D.; Chen, Xingjuan; Kettenhofen, Christine Insinna; Westlake, Christopher J.; Cantor, Louis B.; Wells, Clark D.; Weinreb, Robert N.; Corson, Timothy W.; Spandau, Dan F.; Joos, Karen M.; Iomini, Carlo; Obukhov, Alexander G.; Sun, Yang

    2014-01-01

    Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems. PMID:25143588

  9. Analysis of Soluble Protein Entry into Primary Cilia Using Semi-Permeabilized Cells

    PubMed Central

    Breslow, David K.; Nachury, Maxence V.

    2016-01-01

    The primary cilium is a protrusion from the cell surface that serves as a specialized compartment for signal transduction. Many signaling factors are known to be dynamically concentrated within cilia and to require cilia for their function. Yet protein entry into primary cilia remains poorly understood. To enable a mechanistic analysis of soluble protein entry into cilia, we developed a method for semi-permeabilization of mammalian cells in which the plasma membrane is permeabilized while the ciliary membrane remains intact. Using semi-permeabilized cells as the basis for an in vitro diffusion-to-capture assay, we uncovered a size-dependent diffusion barrier that restricts soluble protein exchange between the cytosol and the cilium. The manipulability of this in vitro system enabled an extensive characterization of the ciliary diffusion barrier and led us to show that the barrier is mechanistically distinct from those at the axon initial segment and the nuclear pore complex. Because semi-permeabilized cells enable a range of experimental perturbations that would not be easily feasible in intact cells, we believe this methodology will provide a unique resource for investigating primary cilium function in development and disease. PMID:25837393

  10. Mouse infection and pathogenesis by Trypanosoma brucei motility mutants.

    PubMed

    Kisalu, Neville K; Langousis, Gerasimos; Bentolila, Laurent A; Ralston, Katherine S; Hill, Kent L

    2014-06-01

    The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that drives parasite motility and is receiving increased attention as a potential drug target. In the mammalian host, parasite motility is suspected to contribute to infection and disease pathogenesis. However, it has not been possible to test this hypothesis owing to lack of motility mutants that are viable in the bloodstream life cycle stage that infects the mammalian host. We recently identified a bloodstream-form motility mutant in 427-derived T. brucei in which point mutations in the LC1 dynein subunit disrupt propulsive motility but do not affect viability. These mutants have an actively beating flagellum, but cannot translocate. Here we demonstrate that the LC1 point mutant fails to show enhanced cell motility upon increasing viscosity of the surrounding medium, which is a hallmark of wild type T. brucei, thus indicating that motility of the mutant is fundamentally altered compared with wild type cells. We next used the LC1 point mutant to assess the influence of trypanosome motility on infection in mice. Wesurprisingly found that disrupting parasite motility has no discernible effect on T. brucei bloodstream infection. Infection time-course, maximum parasitaemia, number of waves of parasitaemia, clinical features and disease outcome are indistinguishable between motility mutant and control parasites. Our studies provide an important step toward understanding the contribution of parasite motility to infection and a foundation for future investigations of T. brucei interaction with the mammalian host.

  11. Regeneration of cilia in heavily irradiated sea urchin embryos

    SciTech Connect

    Rustad, R.C.

    1981-12-01

    Cilia were removed from blastulae, gastrulae, and plutei of the sea urchins Arbacia punctulata and Lytechinus variegatus by shaking the embryos in hypertonic media. Exposure to 50 krad (and in some experiments 100 krad) of ..gamma.. radiation either before or after deciliation had no effect on the time of appearance of regenerating cilia. There were no visually obvious differences in the rate of growth of the cilia in control and irradiated embryos. The cilia commenced beating at the same time, but the initial beating sometimes seemed less vigorous following irradiation. The data support the hypothesis that radiation has no major effect on the assembly from mature basal bodies of the microtubules of cilia.

  12. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia

    PubMed Central

    Patel-King, Ramila S.; Gilberti, Renée M.; Hom, Erik F. Y.; King, Stephen M.

    2013-01-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle–like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713

  13. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia.

    PubMed

    Patel-King, Ramila S; Gilberti, Renée M; Hom, Erik F Y; King, Stephen M

    2013-09-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle-like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly.

  14. Development and Distribution of Neuronal Cilia in Mouse Neocortex

    PubMed Central

    Arellano, Jon I.; Guadiana, Sarah M.; Breunig, Joshua J.; Rakic, Pasko; Sarkisian, Matthew R.

    2011-01-01

    Neuronal primary cilia are not generally recognized, but they are considered to extend from most, if not all, neurons in the neocortex. However, when and how cilia develop in neurons are not known. This study used immunohistochemistry for adenylyl cyclase III (ACIII), a marker of primary cilia, and electron microscopic analysis to describe the development and maturation of cilia in mouse neocortical neurons. Our results indicate that ciliogenesis is initiated in late fetal stages after neuroblast migration, when the mother centriole docks with the plasma membrane, becomes a basal body, and grows a cilia bud that we call a procilium. This procilium consists of a membranous protrusion extending from the basal body but lacking axonemal structure and remains undifferentiated until development of the axoneme and cilia elongation starts at about postnatal day 4. Neuronal cilia elongation and final cilia length depend on layer position, and the process extends for a long time, lasting 8–12 weeks. We show that, in addition to pyramidal neurons, inhibitory interneurons also grow cilia of comparable length, suggesting that cilia are indeed present in all neocortical neuron subtypes. Furthermore, the study of mice with defective ciliogenesis suggested that failed elongation of cilia is not essential for proper neuronal migration and laminar organization or establishment of neuronal polarity. Thus, the function of this organelle in neocortical neurons remains elusive. PMID:22020803

  15. The Roles of Primary cilia in Polycystic Kidney Disease

    PubMed Central

    Kathem, Sarmed H.; Mohieldin, Ashraf M.; Nauli, Surya M.

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is an inherited genetic disorder that results in progressive renal cyst formation with ultimate loss of renal function and other systemic disorders. These systemic disorders include abnormalities in cardiovascular, portal, pancreatic and gastrointestinal systems. ADPKD is considered to be among the ciliopathy diseases due to the association with abnormal primary cilia function. In order to understand the full course of primary cilia and its association with ADPKD, the structure, functions and role of primary cilia have been meticulously investigated. As a result, the focus on primary cilia has emerged to support the vital roles of primary cilia in ADPKD. The primary cilia have been shown to have not only a mechanosensory function but also a chemosensory function. Both structural and functional defects in primary cilia result in cystic kidney disease and vascular hypertension. Thus, the mechanosenory and chemosensory functions will be analyzed in regards to ADPKD. PMID:25599087

  16. Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults

    PubMed Central

    Titlow, Joshua S.; Davis, Ilan; Barker, Amy R.; Dawe, Helen R.

    2016-01-01

    ABSTRACT Cilia are conserved organelles that have important motility, sensory and signalling roles. The transition zone (TZ) at the base of the cilium is crucial for cilia function, and defects in several TZ proteins are associated with human congenital ciliopathies such as nephronophthisis (NPHP) and Meckel–Gruber syndrome (MKS). In several species, MKS and NPHP proteins form separate complexes that cooperate with Cep290 to assemble the TZ, but flies seem to lack core components of the NPHP module. We show that MKS proteins in flies are spatially separated from Cep290 at the TZ, and that flies mutant for individual MKS genes fail to recruit other MKS proteins to the TZ, whereas Cep290 seems to be recruited normally. Although there are abnormalities in microtubule and membrane organisation in developing MKS mutant cilia, these defects are less apparent in adults, where sensory cilia and sperm flagella seem to function quite normally. Thus, localising MKS proteins to the cilium or flagellum is not essential for viability or fertility in flies. PMID:27577095

  17. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome.

    PubMed

    Cui, Cheng; Chatterjee, Bishwanath; Francis, Deanne; Yu, Qing; SanAgustin, Jovenal T; Francis, Richard; Tansey, Terry; Henry, Charisse; Wang, Baolin; Lemley, Bethan; Pazour, Gregory J; Lo, Cecilia W

    2011-01-01

    Meckel-Gruber syndrome (MKS) is a recessive disorder resulting in multiple birth defects that are associated with mutations affecting ciliogenesis. We recovered a mouse mutant with a mutation in the Mks1 gene (Mks1(del64-323)) that caused a 260-amino-acid deletion spanning nine amino acids in the B9 domain, a protein motif with unknown function conserved in two other basal body proteins. We showed that, in wild-type cells, Mks1 was localized to the mother centriole from which the cilium was generated. However, in mutant Mks1(del64-323) cells, Mks1 was not localized to the centriole, even though it maintained a punctate distribution. Resembling MKS patients, Mks1 mutants had craniofacial defects, polydactyly, congenital heart defects, polycystic kidneys and randomized left-right patterning. These defects reflected disturbance of functions subserved by motile and non-motile cilia. In the kidney, glomerular and tubule cysts were observed along with short cilia, and cilia were reduced in number to a near-complete loss. Underlying the left-right patterning defects were fewer and shorter nodal cilia, and analysis with fluorescent beads showed no directional flow at the embryonic node. In the cochlea, the stereocilia were mal-patterned, with the kinocilia being abnormally positioned. Together, these defects suggested disruption of planar cell polarity, which is known to regulate node, kidney and cochlea development. In addition, we also showed that Shh signaling was disrupted. Thus, in the neural tube, the floor plate was not specified posteriorly even as expression of the Shh mediator Gli2 increased. By contrast, the Shh signaling domain was expanded in the anterior neural tube and anterior limb bud, consistent with reduced Gli3-repressor (Gli3R) function. The latter probably accounted for the preaxial digit duplication exhibited by the Mks1(del64-323) mutants. Overall, these findings indicate that centriole localization of Mks1 is required for ciliogenesis of motile and

  18. Ciliae-based actuator with piezoelectric excitation

    NASA Astrophysics Data System (ADS)

    Pott, Peter P.; Carrasco, Alvaro; Schlaak, Helmut F.

    2012-06-01

    Small actuators based on the inverse piezoelectric effect are successfully deployed in commercial applications. Usually, ultrasonic motors are used. Based on resonance effects these motors provide a pronounced nonlinearity at low speeds and thus put high demands on the control algorithm. In contrast, piezoelectric stepping motors are mechanically complex and provide only low speeds. The contribution at hand describes a proposed design for a new piezoelectric motor based on cilia friction that can be manufactured at low costs. The cilia are made from uniaxial carbon-fibre reinforced plastics. The derived CFRP-brushes are pressed perpendicularly to the rotor surface to produce force or torque. First experiments prove the feasibility of the concept. A net pushing force of 500 mN is achieved.

  19. Evolutionary implications of localization of the signaling scaffold protein parafusin to both cilia and the nucleus.

    PubMed

    Satir, Birgit Hegner; Wyroba, Elzbieta; Liu, Li; Lethan, Mette; Satir, Peter; Christensen, Søren Tvorup

    2015-02-01

    Parafusin (PFUS), a 63 kDa protein first discovered in the eukaryote Paramecium and known for its role in apicomplexan exocytosis, provides a model for the common origin of cellular systems employing scaffold proteins for targeting and signaling. PFUS is closely related to eubacterial rather than archeal phosphoglucomutases (PGM) - as we proved by comparison of their 88 sequences - but has no PGM activity. Immunofluorescence microscopy analysis with a PFUS-specific peptide antibody showed presence of this protein around the base region of primary cilia in a variety of mammalian cell types, including mouse embryonic (MEFs) and human foreskin fibroblasts (hFFs), human carcinoma stem cells (NT-2 cells), and human retinal pigment epithelial (RPE) cells. Further, PFUS localized to the nucleus of fibroblasts, and prominently to nucleoli of MEFs. Localization studies were confirmed by Western blot analysis, showing that the PFUS antibody specifically recognizes a single protein of ca. 63 kDa in both cytoplasmic and nuclear fractions. Finally, immunofluorescence microscopy analysis showed that PFUS localized to nuclei and cilia in Paramecium. These results support the suggestion that PFUS plays a role in signaling between nucleus and cilia, and that the cilium and the nucleus both evolved around the time of eukaryotic emergence. We hypothesize that near the beginnings of eukaryotic cell evolution, scaffold proteins such as PFUS arose as peripheral membrane protein identifiers for cytoplasmic membrane trafficking and were employed similarly during the subsequent evolution of exocytic, nuclear transport, and ciliogenic mechanisms.

  20. IPMC cilia system for artificial muscle applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Palmre, Viljar; Stalbaum, Tyler P.; Shen, Qi; Trabia, Sarah; Kim, Kwang Jin

    2016-04-01

    Artificial muscle (AM) technology is an excellent candidate for creating cilia-based structures for bio-inspired locomotion, maneuvering, and acoustic systems. We developed an AM based cilia fiber which are soft, flexible, easily shaped and low power consumption. The developed cilium has a diameter of around 200 µm and prepared through polymer injection technique. Nafion was used for base polymer for cilia and fabricated IPMCs via platinum electroless plating process. The prepared cilia were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The 2 point probe was conducted to measure electrode surface resistance of prepared IPMCs. We further characterized the cross-sectional morphology and studied the electromechanical performances (displacement and blocking force) of the prepared IPMC actuators. Also we created prototype mm-sized AM fiber cilia array (3x20) and tested the actuation of AM cilia fiber under external electric field.

  1. Forces applied by cilia measured on explants from mucociliary tissue.

    PubMed

    Teff, Zvi; Priel, Zvi; Gheber, Levi A

    2007-03-01

    Forces applied by intact mucus-propelling cilia were measured for the first time that we know of using a combined atomic force microscopy (AFM) and electrooptic system. The AFM probe was dipped into a field of beating cilia and its time-dependent deflection was recorded as it was struck by the cilia while the electrooptic system simultaneously and colocally measured the frequency to ensure that no perturbation was induced by the AFM probe. Using cilia from frog esophagus, we measured forces of approximately 0.21 nN per cilium during the effective stroke. This value, together with the known internal structure of these cilia, leads to the conclusion that most dynein arms along the length of the axoneme contribute to the effective stroke of these cilia.

  2. Mammalian Axoneme Central Pair Complex Proteins: Broader Roles Revealed by Gene Knockout Phenotypes

    PubMed Central

    Teves, Maria E.; Nagarkatti-Gude, David R.; Zhang, Zhibing; Strauss, Jerome F.

    2016-01-01

    The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions. PMID:26785425

  3. Kinesin-2 motors transport IFT-particles, dyneins and tubulin subunits to the tips of Caenorhabditis elegans sensory cilia: relevance to vision research?

    PubMed

    Scholey, Jonathan M

    2012-12-15

    The sensory outer segments (OS) of vertebrate retinal photoreceptors, which detect photons of light, resemble the distal segments of Caenorhabditis elegans sensory cilia, which detect chemical ligands that influence the chemotactic movements of the animal. Based on fluorescence microscopy assays performed in sensory cilia of living, transgenic "wild type" and mutant C. elegans, combined with in vitro motility assays using purified motors, we have proposed that two types of kinesin-2 motor, heterotrimeric kinesin-II and homodimeric OSM-3, cooperate to build amphid and phasmid sensory cilia on chemosensory neurons. Specifically, we propose that these motors function together in a redundant manner to build the axoneme core (aka middle segments (MS)), whereas OSM-3 alone serves to build the distal segments (DS). Furthermore, our data suggest that these motors accomplish this by driving two sequential steps of anterograde transport of cargoes consisting of IFT-particles, retrograde dynein motors, and ciliary tubulin subunits, from the transition zone to the tips of the axonemal microtubules (MTs). Homologs of kinesin-II (KIF3) and OSM-3 (KIF17) are also proposed to contribute to the assembly of vertebrate photoreceptors, although how they do so is currently unclear. Here I review our work on kinesin-2 motors, intraflagellar transport (IFT) and cilium biogenesis in C. elegans sensory cilia, and comment on its possible relevance to current research on vertebrate photoreceptor cilia assembly and function.

  4. The emerging face of primary cilia

    PubMed Central

    Zaghloul, Norann A.; Brugmann, Samantha A.

    2011-01-01

    Primary cilia are microtubule-based organelles that serve as hubs for the transduction of various developmental signaling pathways including Hedgehog, Wnt, FGF and PDGF. Ciliary dysfunction contributes to a range of disorders, collectively known as the ciliopathies. Recently, interest has grown in these syndromes, particularly among craniofacial biologists, as many known and putative ciliopathies have severe craniofacial defects. Herein we discuss the current understanding of ciliary biology and craniofacial development in an attempt to gain insight into the molecular etiology for craniofacial ciliopathies, and uncover a characteristic ciliopathic craniofacial gestalt. PMID:21305689

  5. ATR promotes cilia signalling: links to developmental impacts

    PubMed Central

    Stiff, Tom; Casar Tena, Teresa; O'Driscoll, Mark; Jeggo, Penny A.; Philipp, Melanie

    2016-01-01

    Mutations in ATR (ataxia telangiectasia and RAD3-related) cause Seckel syndrome (ATR-SS), a microcephalic primordial dwarfism disorder. Hitherto, the clinical manifestation of ATR deficiency has been attributed to its canonical role in DNA damage response signalling following replication fork stalling/collapse. Here, we show that ATR regulates cilia-dependent signalling in a manner that can be uncoupled from its function during replication. ATR-depleted or patient-derived ATR-SS cells form cilia of slightly reduced length but are dramatically impaired in cilia-dependent signalling functions, including growth factor and Sonic hedgehog signalling. To better understand the developmental impact of ATR loss of function, we also used zebrafish as a model. Zebrafish embryos depleted of Atr resembled ATR-SS morphology, showed a modest but statistically significant reduction in cilia length and other morphological features indicative of cilia dysfunction. Additionally, they displayed defects in left-right asymmetry including ambiguous expression of southpaw, incorrectly looped hearts and randomized localization of internal organs including the pancreas, features typically conferred by cilia dysfunction. Our findings reveal a novel role for ATR in cilia signalling distinct from its canonical function during replication and strengthen emerging links between cilia function and development. PMID:26908596

  6. Proteomic Analysis of Bovine Axonemes Exposed to Acute Alcohol: Role of eNOS and HSP90 in Cilia Stimulation

    PubMed Central

    Simet, Samantha M.; Pavlik, Jacqueline A.; Sisson, Joseph H.

    2012-01-01

    Background Cilia are fingerlike motor-driven organelles, which propel inhaled particles and mucus from the lung and airways. We have previously shown that brief alcohol exposure stimulates ciliary motility through an endothelial nitric oxide (eNOS)-dependent pathway localized in the ciliary metabolon. However, the signaling molecules of the ciliary metabolon involved in alcohol-triggered cilia beat frequency (CBF) stimulation upstream of eNOS activation are unknown. Methods and Results We hypothesized that brief alcohol exposure alters threonine and serine phosphorylation of proteins involved in stimulating ciliary beat frequency. Two-dimensional electrophoresis indicated both increases and deceases in the serine and threonine phosphorylation states of several proteins. One of the proteins identified was heat shock protein 90 (HSP90), which undergoes increased threonine phosphorylation after brief alcohol exposure. Because HSP90 has been shown to associate with eNOS in lung tissue, we hypothesized that HSP90 is a key component in alcohol-triggered eNOS activation and that these two proteins co-localize within the ciliary metabolon. Immunofluorescence experiments demonstrate that eNOS and HSP90 co-localize within basal bodies of the ciliary metabolon and partially translocate to the axoneme upon brief alcohol exposure. Pretreatment with geldanamycin, which disrupts HSP90 chaperone functions, prevented eNOS-HSP90 association and prevented the translocation of eNOS from the ciliary metabolon to the axoneme. Functional cilia motility studies revealed that geldanamycin blocked alcohol-stimulated ciliary motility in bovine bronchial epithelial cells and mouse tracheal rings. Conclusions Based on the HSP90 localization with eNOS, alcohol activation of HSP90 phosphorylation, and geldanamycin’s ability inhibit HSP90-eNOS association, prevent eNOS translocation to the axoneme, and block alcohol-stimulated ciliary motility, we conclude that alcohol-induced cilia stimulation

  7. RFX7 is required for the formation of cilia in the neural tube.

    PubMed

    Manojlovic, Zarko; Earwood, Ryan; Kato, Akiko; Stefanovic, Branko; Kato, Yoichi

    2014-05-01

    Regulatory Factor X (RFX) transcription factors are important for development and are likely involved in the pathogenesis of serious human diseases including ciliopathies. While seven RFX genes have been identified in vertebrates and several RFX transcription factors have been reported to be regulators of ciliogenesis, the role of RFX7 in development including ciliogenesis is not known. Here we show that RFX7 in Xenopus laevis is expressed in the neural tube, eye, otic vesicles, and somites. Knockdown of RFX7 in Xenopus embryos resulted in a defect of ciliogenesis in the neural tube and failure of neural tube closure. RFX7 controlled the formation of cilia by regulating the expression of RFX4 gene, which has been reported to be required for ciliogenesis in the neural tube. Moreover, ectopic expression of Foxj1, which is a master regulator of motile cilia formation, suppressed the expression of RFX4 but not RFX7. Taken together, RFX7 plays an important role in the process of neural tube closure at the top of the molecular cascade which controls ciliogenesis in the neural tube.

  8. Biochemical Studies of Olfaction: Role of Cilia in Odorant Recognition

    PubMed Central

    Rhein, L. D.

    1983-01-01

    Chemoreception in vertebrates is beginning to be understood. Numerous anatomical, behavioral, and physiological studies are now available. Current research efforts are examining the molecular basis of chemoreception. Rainbow trout (Salmo gairdneri) have a functional olfactory system and are a suitable vertebrate model for studying odorant interactions with receptors. Using a biochemical approach, initial events of olfactory recognition were examined; the aim was to determine the location and specificity of odor receptors. Cilia occupy the distal region of the receptor neuron on the trout olfactory epithelium, and their membranes are the postulated locus of odorant receptor sites. A cilia preparation was isolated from the olfactory rosette. The preparation was characterized by quantifying biochemical markers for cilia, along with electron microscopy, all of which substantiated enrichment of cilia. Functional activity was assessed by quantifying binding of several radioactively labeled odorant amino acids. The odorants bound to the cilia in a manner similar to the sedimentable preparation previously isolated from t h e olfactory rosette of the same animal, thus verifying the presence of odor receptors in the cilia preparation. Evidence also confirmed a site TSA which binds L-threonine, L-serine, and L-alanine and a site L which binds L-lysine (and L-arginine). Binding of L-serine and D-alanine showed evidence for a single affinity site while the others showed two affinity sites. Separation of membrane fractions from the cilia preparation revealed that binding activity is associated with a very low density membrane fraction B. PMID:19295786

  9. Micro-fluidic actuation using magnetic artificial cilia.

    PubMed

    Fahrni, Francis; Prins, Menno W J; van Ijzendoorn, Leo J

    2009-12-07

    We demonstrate advanced fluid manipulations using magnetic polymeric artificial cilia on the walls of a microfluidic channel. In nature, cilia are little hairs covering the surface of micro-organisms which enable them to manipulate a fluid on the micro-scale. The asymmetric movement of natural cilia is crucial to obtain a net fluid flow. We have developed a ferromagnetic polymer made from iron nanoparticles and polydimethylsiloxane, and describe a process that can structure the material into high aspect ratio lying artificial cilia with a length of 300 microm. These artificial cilia were actuated with a homogeneous rotating magnetic field (micro(0)H < 50 mT) generated with a compact external electromagnet. An asymmetric movement involving torsion could be created when the cilia were provided with a remanent magnetisation perpendicular to the plane of rotation of the magnetic field vector. The artificial cilia could be actuated in fluid up to a frequency of approximately 50 Hz. In an aqueous solution in a microfluidic chamber we were able to generate rotational as well as translational fluid movements with fluid velocities up to approximately 0.5 mm s(-1).

  10. A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis

    PubMed Central

    2012-01-01

    Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds. PMID:23158586

  11. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling.

    PubMed

    Christensen, Søren T; Clement, Christian A; Satir, Peter; Pedersen, Lotte B

    2012-01-01

    Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.

  12. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling

    PubMed Central

    Christensen, Søren T; Clement, Christian A; Satir, Peter; Pedersen, Lotte B

    2015-01-01

    Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders. PMID:21956154

  13. Emerging roles for renal primary cilia in epithelial repair.

    PubMed

    Deane, James A; Ricardo, Sharon D

    2012-01-01

    Primary cilia are microscopic sensory antennae that cells in many vertebrate tissues use to gather information about their environment. In the kidney, primary cilia sense urine flow and are essential for the maintenance of epithelial architecture. Defects of this organelle cause the cystic kidney disease characterized by epithelial abnormalities. These findings link primary cilia to the regulation of epithelial differentiation and proliferation, processes that must be precisely controlled during epithelial repair in the kidney. Here, we consider likely roles for primary cilium-based signaling during responses to renal injury and ensuing epithelial repair processes.

  14. CLEM Methods for Studying Primary Cilia.

    PubMed

    Macaluso, Frank P; Perumal, Geoffrey S; Kolstrup, Johan; Satir, Peter

    2016-01-01

    CLEM (correlated light and electron microscope) imaging is a highly useful technique for examining primary cilia. With CLEM, it is possible to determine the distribution of tagged proteins along the ciliary membrane and axoneme with high precision. Scanning electron microscopy (SEM) permits measurement of ciliary length and orientation in relation to nearby cellular structures in a 3D image; in optimal cases, this can be combined with superresolution microscopy of selected ciliary components as they enter or leave the cilium. This chapter discusses CLEM methods. In the method described in detail, samples are completely processed for sequential fluorescence and SEM observation. This method is ideal for robust antibody localization and minimizes image manipulation in correlating the fluorescent and SEM images. Alternative methods prepare samples for fluorescence imaging followed by processing for SEM then observation in the SEM. This method is ideal for optimal fluorescence imaging, particularly live cell imaging.

  15. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia.

    PubMed

    Walentek, Peter; Quigley, Ian K

    2017-01-01

    Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases.

  16. Hydrodynamic interactions of cilia on a spherical body

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2015-11-01

    The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.

  17. Cilia in the CNS: the Quiet Organelle Claims Center Stage

    PubMed Central

    Louvi, Angeliki; Grove, Elizabeth A.

    2011-01-01

    Summary The primary cilium is a cellular organelle that is almost ubiquitous in eukaryotes, yet its functions in vertebrates have been slow to emerge. The last fifteen years have been marked by accelerating insight into the biology of primary cilia, arising from the synergy of three major lines of research. These research programs describe a specialized mode of protein trafficking in cilia, reveal that genetic disruptions of primary cilia cause complex human disease syndromes, and establish that Sonic hedgehog (Shh) signal transduction requires the primary cilium. New lines of research have branched off to investigate the role of primary cilia in neuronal signaling, adult neurogenesis, and brain tumor formation. We review a fast expanding literature to determine what we now know about the primary cilium in the developing and adult CNS, and what new directions should lead to further clarity. PMID:21435552

  18. Microscale imaging of cilia-driven fluid flow

    PubMed Central

    Huang, Brendan K.; Choma, Michael A.

    2015-01-01

    Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right-left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied towards quantifying ciliary flow. Here we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow. PMID:25417211

  19. Tracing the origins of centrioles, cilia, and flagella

    PubMed Central

    Azimzadeh, Juliette; Pereira-Leal, José. B.

    2011-01-01

    Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles. PMID:21788366

  20. Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components

    PubMed Central

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation. PMID:25962172

  1. Modelling the fluid mechanics of cilia and flagella in reproduction and development.

    PubMed

    Montenegro-Johnson, Thomas D; Smith, Andrew A; Smith, David J; Loghin, Daniel; Blake, John R

    2012-10-01

    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.

  2. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia.

    PubMed

    Mukhopadhyay, Saikat; Wen, Xiaohui; Chih, Ben; Nelson, Christopher D; Lane, William S; Scales, Suzie J; Jackson, Peter K

    2010-10-01

    Primary cilia function as a sensory signaling compartment in processes ranging from mammalian Hedgehog signaling to neuronal control of obesity. Intraflagellar transport (IFT) is an ancient, conserved mechanism required to assemble cilia and for trafficking within cilia. The link between IFT, sensory signaling, and obesity is not clearly defined, but some novel monogenic obesity disorders may be linked to ciliary defects. The tubby mouse, which presents with adult-onset obesity, arises from mutation in the Tub gene. The tubby-like proteins comprise a related family of poorly understood proteins with roles in neural development and function. We find that specific Tubby family proteins, notably Tubby-like protein 3 (TULP3), bind to the IFT-A complex. IFT-A is linked to retrograde ciliary transport, but, surprisingly, we find that the IFT-A complex has a second role directing ciliary entry of TULP3. TULP3 and IFT-A, in turn, promote trafficking of a subset of G protein-coupled receptors (GPCRs), but not Smoothened, to cilia. Both IFT-A and membrane phosphoinositide-binding properties of TULP3 are required for ciliary GPCR localization. TULP3 and IFT-A proteins both negatively regulate Hedgehog signaling in the mouse embryo, and the TULP3-IFT-A interaction suggests how these proteins cooperate during neural tube patterning.

  3. Peroxiredoxin 1 is involved in disassembly of flagella and cilia.

    PubMed

    Gong, Fanghua; Liu, Hongtao; Li, Jie; Xue, Lexun; Zhang, Mingzhi

    2014-02-14

    Cilia/flagella are evolutionarily conserved cellular organelles. In this study, we demonstrated that Dunaliella salina Peroxiredoxin 1 (DsPrdx1) localized to the flagella and basal bodies, and was involved in flagellar disassembly. The link between DsPrdx1 and flagella of Dunaliella salina (D. salina) encouraged us to explore the function of its human homologue, Homo sapiens Peroxiredoxin 1 (HsPrdx1) in development and physiology. Our results showed that HsPrdx1 was overexpressed, and cilia were lost in esophageal squamous cell carcinoma (ESCC) cells compared with the non-cancerous esophageal epithelial cells Het-1A. Furthermore, when HsPrdx1 was knocked down by short hairpin RNA (shRNA) lentivirus in ESCC cells, the phenotype of cilia lost can be reversed, and the expression levels of tumor suppressor genes LKB1 and p-AMPK were increased, and the activity of the oncogene Aurora A was inhibited compared with those in cells transfected with scrambe-shRNA lentivirus. These findings firstly showed that Prdx1 is involved in disassembly of flagella and cilia, and suggested that the abnormal expression of the cilia-related gene including Prdx1 may affect both ciliogenesis and cancernogenesis.

  4. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    PubMed Central

    Yaghi, Asma; Dolovich, Myrna B.

    2016-01-01

    Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations. PMID:27845721

  5. Microscale flow propulsion through bioinspired and magnetically actuated artificial cilia.

    PubMed

    Chen, Chia-Yuan; Cheng, Ling-Ying; Hsu, Chun-Chieh; Mani, Karthick

    2015-05-01

    Recent advances in microscale flow propulsion through bioinspired artificial cilia provide a promising alternative for lab-on-a-chip applications. However, the ability of actuating artificial cilia to achieve a time-dependent local flow control with high accuracy together with the elegance of full integration into the biocompatible microfluidic platforms remains remote. Driven by this motive, the current work has constructed a series of artificial cilia inside a microchannel to facilitate the time-dependent flow propulsion through artificial cilia actuation with high-speed (>40 Hz) circular beating behavior. The generated flow was quantified using micro-particle image velocimetry and particle tracking with instantaneous net flow velocity of up to 10(1 ) μm/s. Induced flow patterns caused by the tilted conical motion of artificial cilia constitutes efficient fluid propulsion at microscale. This flow phenomenon was further measured and illustrated by examining the induced flow behavior across the depth of the microchannel to provide a global view of the underlying flow propulsion mechanism. The presented analytic paradigms and substantial flow evidence present novel insights into the area of flow manipulation at microscale.

  6. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50

    PubMed Central

    Yang, Yong; Cochran, Deborah A.; Gargano, Mary D.; King, Iryna; Samhat, Nayef K.; Burger, Benjain P.; Sabourin, Katherine R.; Hou, Yuqing; Awata, Junya; Parry, David A.D.; Marshall, Wallace F.; Witman, George B.; Lu, Xiangyi

    2011-01-01

    Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca2+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia. PMID:21289096

  7. Centriole distal appendages promote membrane docking, leading to cilia initiation

    PubMed Central

    Tanos, Barbara E.; Yang, Hui-Ju; Soni, Rajesh; Wang, Won-Jing; Macaluso, Frank P.; Asara, John M.; Tsou, Meng-Fu Bryan

    2013-01-01

    The distal appendages (DAPs) of centrioles have been proposed to anchor cilia to the plasma membrane, but their molecular composition, assembly, and exact function in ciliogenesis remain poorly understood. Using quantitative centrosome proteomics and superresolution microscopy, we identified five DAP components, including one previously described (CEP164), one partially characterized (CEP89 [ccdc123]), and three novel (CEP83 [ccdc41], SCLT1, and FBF1) DAP proteins. Analyses of DAP assembly revealed a hierarchy. CEP83 recruits both SCLT1 and CEP89 to centrioles. Subsequent recruitment of FBF1 and CEP164 is independent of CEP89 but mediated by SCLT1. All five DAP components are essential for ciliogenesis; loss of CEP83 specifically blocks centriole-to-membrane docking. Undocked centrioles fail to recruit TTBK2 or release CP110, the two earliest modifications found on centrioles prior to cilia assembly, revealing centriole-to-membrane docking as a temporal and spatial cue promoting cilia initiation. PMID:23348840

  8. Analysis of primary cilia in directional cell migration in fibroblasts.

    PubMed

    Christensen, Søren T; Veland, Iben R; Schwab, Albrecht; Cammer, Michael; Satir, Peter

    2013-01-01

    Early studies of migrating fibroblasts showed that primary cilia orient in front of the nucleus and point toward the leading edge. Recent work has shown that primary cilia coordinate a series of signaling pathways critical to fibroblast cell migration during development and in wound healing. In particular, platelet-derived growth factor receptor alpha (PDGFRα) is compartmentalized to the primary cilium to activate signaling pathways that regulate reorganization of the cytoskeleton required for lamellipodium formation and directional migration in the presence of a specific ligand gradient. We summarize selected methods in analyzing ciliary function in directional cell migration, including immunofluorescence microscopy, scratch assay, and chemotaxis assay by micropipette addition of PDGFRα ligands to cultures of fibroblasts. These methods should be useful not only in studying cell migration but also more generally in delineating response pathways in cells with primary cilia.

  9. A TRPM4-dependent current in murine renal primary cilia

    PubMed Central

    Flannery, Richard J.; Kleene, Steven J.

    2015-01-01

    Defects in primary cilia lead to a variety of human diseases. One of these, polycystic kidney disease, can be caused by defects in a Ca2+-gated ion channel (TRPP2) found on the cilium. Other ciliary functions also contribute to cystogenesis, and defects in apical Ca2+ homeostasis have been implicated. By recording directly from the native cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin, we have identified a second Ca2+-gated channel in the ciliary membrane: the transient receptor potential cation channel, subfamily M, member 4 (TRPM4). In excised primary cilia, TRPM4 was found to have a low sensitivity to Ca2+, with an EC50 of 646 μM at +100 mV. It was inhibited by MgATP and by 9-phenanthrol. The channel was not permeable to Ca2+ or Cl− and had a permeability ratio PK/PNa of 1.42. Reducing the expression of Trpm4 mRNA with short hairpin (sh) RNA reduced the TRPM4 current by 87% and shortened primary cilia by 43%. When phospholipase C was inhibited, the sensitivity to cytoplasmic Ca2+ greatly increased (EC50 = 26 μM at +100 mV), which is consistent with previous reports that phosphatidylinositol 4,5-bisphosphate (PIP2) modulates the channel. MgATP did not restore the channel to a preinactivation state, suggesting that the enzyme or substrate necessary for making PIP2 is not abundant in primary cilia of mIMCD-3 cells. The function of TRPM4 in renal primary cilia is not yet known, but it is likely to influence the apical Ca2+ dynamics of the cell, perhaps in tandem with TRPP2. PMID:26290373

  10. Primary cilia: a link between hormone signalling and endocrine-related cancers?

    PubMed

    O'Toole, Samuel M; Chapple, J Paul

    2016-10-15

    Primary cilia are sensory organelles that play a role as signalling hubs. Disruption of primary cilia structure and function is increasingly recognised in a range of cancers, with a growing body of evidence suggesting that ciliary disruption contributes to tumourigenesis. This review considers the role of primary cilia in the pathogenesis of endocrine-related cancers.

  11. Drosophila Sperm Motility in the Reproductive Tract1

    PubMed Central

    Yang, Yong; Lu, Xiangyi

    2011-01-01

    Motile cilia and flagella exhibit many waveforms as outputs of dynein activation sequences on the highly conserved axoneme. Motility change of sperm in the reproductive tract is difficult to study and remains an important area of investigation. Sperm typically execute a sinusoidal waveform. Increased viscosity in the medium induces somewhat unusual arc-line and helical waveforms in some sperm. However, whether the latter two waveforms occur in vivo is not known. Using green fluorescence protein imaging, we show that Drosophila sperm in the uterus move in circular foci via arc-line waves, predominantly in a tail-leading orientation. From the uterus, a small fraction of the sperm enters the seminal receptacle (SR) in parallel formations. After sperm storage and coincident with fertilization of the egg, the sperm exit the SR via head-leading helical waves. Consistent with the observed bidirectional movements, the sperm show the ability to propagate both base-to-tip and tip-to-base flagellar waves. Numerous studies have shown that sperm motility is regulated by intraflagellar calcium concentrations; in particular, the Pkd2 calcium channel has been shown to affect sperm storage. Our analyses here suggest that Pkd2 is required for the sperm to adopt the correct waveform and movement orientation during SR entry. A working model for the sperm's SR entry movement is proposed. PMID:21293028

  12. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  13. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.

  14. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  15. Ins and outs of GPCR signaling in primary cilia

    PubMed Central

    Schou, Kenneth Bødtker; Pedersen, Lotte Bang; Christensen, Søren Tvorup

    2015-01-01

    Primary cilia are specialized microtubule-based signaling organelles that convey extracellular signals into a cellular response in most vertebrate cell types. The physiological significance of primary cilia is underscored by the fact that defects in assembly or function of these organelles lead to a range of severe diseases and developmental disorders. In most cell types of the human body, signaling by primary cilia involves different G protein-coupled receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate diverse cellular and physiological events. Here, we provide an overview of GPCR signaling in primary cilia, with main focus on the rhodopsin-like (class A) and the smoothened/frizzled (class F) GPCRs. We describe how such receptors dynamically traffic into and out of the ciliary compartment and how they interact with other classes of ciliary GPCRs, such as class B receptors, to control ciliary function and various physiological and behavioral processes. Finally, we discuss future avenues for developing GPCR-targeted drug strategies for the treatment of ciliopathies. PMID:26297609

  16. Optimization of bio-inspired multi-segment IPMC cilia

    NASA Astrophysics Data System (ADS)

    Sareh, S.; Conn, A. T.; Rossiter, J. M.; Ieropoulos, I.; Walters, P.

    2010-04-01

    In nature, unidirectional fluid flows are often induced at micro-scales by cilia and related organelles. A controllable unidirectional flow is beneficial at these scales for a range of novel robotic and medical applications, whether the flow is used for propulsion (e.g. swimming robots) or mass transfer (e.g. prosthetic trachea). Ionic Polymer Metal Composites (IPMCs) are innovative smart materials that can be used directly as active propulsive surfaces rather than a traditional motor and propeller. IPMC actuators with two segmented electrodes that attempt to mimic the motion of cilia-like organelles have been realized. In this paper the optimization of these actuators towards producing unidirectional flows is described. A parametric study of the kinematic and hydrodynamic effect of modulating the drive signal has been conducted. As with eukaryotic cilia and flagella found in mammals, the segmented IPMC actuator can generate both flexural (asymmetric) and undulatory (symmetric) motions from the same physical structure. The motion is controlled by applying profiles of driving frequencies and phase differences. Kinematic analysis using a camera and laser displacement sensor has been used to measure and classify different motion types. The hydrodynamic forces produced by each motion type have been estimated using particle-tracking flow visualization. This allows drive signal profiles to be ranked in terms of fluid flow momentum transfer and directionality. Using the results of the parametric study, the IPMC motion is optimized towards producing unidirectional flow via repeatable cilia-inspired motion.

  17. Model Cilia - Experiments with Biomimetic Actuable Structures and Surfaces

    NASA Astrophysics Data System (ADS)

    Lloyd Carroll, R.

    2005-03-01

    The use of cilia to drive fluid flow is a common motif in living organisms, and in the tissues of higher organisms. By understanding the ways that cilia function (or do not function), potential therapies to treat human diseases (such as cystic fibrosis) may be devised. The complex hydrodynamics of flow in beating ciliary tissues (such as lung epithelial tissues) are challenging to study in cultured tissues, suggesting the need for model systems that will mimic the morphology and beat patterns of living systems. To reach this goal, we have fabricated high aspect ratio cilia-like structures with dimensions similar to those of a lung epithelial cilium (0.2 to 2.0 μm diameter by ˜6 to 10 μm long). The structures and surfaces are composed of a magneto-elastomeric nanocomposite, allowing the actuation of artificial cilia by magnetic fields. We have studied the flexibility of the materials under conditions of flow (in microfluidics channels), and will present theoretical and experimental data from various efforts at actuation. We will discuss details of the fabrication of the ciliated structures and present results of mechanical characterization. The impact of this work on the understanding of fluid flow above ciliated cells and tissues and potential applications of such model systems will also be described.

  18. A coating of passively oscillating flexible cilia to reduce drag

    NASA Astrophysics Data System (ADS)

    Revell, Alistair; Harwood, Adrian; O'Connor, Joseph; Sanchez, Jonathan; Favier, Julien

    2016-11-01

    We present results related to the reduction of wake drag by the coordinated action of a layer of passively oscillating flexible cilia. Inspired by the pop-up of bird feathers, this configuration is shown to self-adapt to the surrounding flow, leading to a stabilization of the wake, a reduction of the mean drag and of lift oscillations. The study is performed using Lattice Boltzmann method, coupled to a recent version of the immersed boundary method. We will present the physical analysis of the coupling between multiple beating cilia and an incoming fluid flow. The modal behaviour of the cilia dynamics will be discussed, as well as their effect on an archetype of unsteady separated boundary layer (first the oscillating channel flow and then the circular cylinder). In the latter case results demonstrate an optimal drag occurs for a particular stiffness, compared to the control case where the same cilia are fixed. It appears that the optimal results are due to a reconfiguration of the elastic coating according to the local vorticity of the flow, and a frequency lock-in, which leads to more stable wake and reduced drag. The structural parameters of the layer will be varied. Results from the PEL-SKIN project: funded by EU Grant #334954.

  19. Cilia/Ift protein and motor-related bone diseases and mouse models

    PubMed Central

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways. PMID:25553465

  20. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  1. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton

    PubMed Central

    Yuan, Xue; Serra, Rosa A.; Yang, Shuying

    2014-01-01

    Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes. PMID:24961486

  2. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton.

    PubMed

    Yuan, Xue; Serra, Rosa A; Yang, Shuying

    2015-01-01

    Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes.

  3. Motility of Mollicutes

    NASA Astrophysics Data System (ADS)

    Wolgemuth, Charles; Igoshin, Oleg; Oster, George

    2003-03-01

    Recent experiments show that the conformation of filament proteins play a role in the motility and morphology of many different types of bacteria. Conformational changes in the protein subunits may produce forces to drive propulsion and cell division. Here we present a molecular mechanism by which these forces can drive cell motion. Coupling of a biochemical cycle, such as ATP hydrolysis, to the dynamics of elastic filaments enable elastic filaments to propagate deformations that generate propulsive forces. We demonstrate this possibility for two classes of wall-less bacteria called mollicutes: the swimming of helical shaped Spiroplasma, and the gliding motility of Mycoplasma. Similar mechanisms may explain the locomotion of other prokaryotes, including the swimming of Synechococcus and the gliding of some myxobacteria.

  4. Modeling collective cell motility

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    Eukaryotic cells often move in groups, a critical aspect of many biological and medical processes including wound healing, morphogenesis and cancer metastasis. Modeling can provide useful insights into the fundamental mechanisms of collective cell motility. Constructing models that incorporate the physical properties of the cells, however, is challenging. Here, I discuss our efforts to build a comprehensive cell motility model that includes cell membrane properties, cell-substrate interactions, cell polarity, and cell-cell interaction. The model will be applied to a variety of systems, including motion on micropatterned substrates and the migration of border cells in Drosophila. This work was supported by NIH Grant No. P01 GM078586 and NSF Grant No. 1068869.

  5. NCAM regulates cell motility.

    PubMed

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna; Hartmann-Petersen, Rasmus; Kawa, Anna; Walmod, Peter S; Belman, Vadym; Gallagher, Helen C; Berezin, Vladimir; Bock, Elisabeth; Pedersen, Nina

    2002-01-15

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine inhibitor of NCAM-negative cell locomotion through a heterophilic interaction with a cell-surface receptor. As we showed that the two N-terminal immunoglobulin modules of NCAM, which are known to bind to heparin, were responsible for this inhibition, we presume that this receptor is a heparan sulfate proteoglycan. A model for the inhibitory effect of NCAM is proposed, which involves competition between NCAM and extracellular components for the binding to membrane-associated heparan sulfate proteoglycan.

  6. Motility of Mycoplasma pneumoniae.

    PubMed Central

    Radestock, U; Bredt, W

    1977-01-01

    Cell of Mycoplasma pneumoniae FH gliding on a glass surface in liquid medium were examined by microscopic observation and quantitatively by microcinematography (30 frames per min). Comparisons were made only within the individual experiments. The cells moved in an irregular pattern with numerous narrow bends and circles. They never changed their leading end. The average speed (without pauses) was relatively constant between o.2 and 0.5 mum/s. The maximum speed was about 1.5 to 2.0 mum/s. The movements were interrupted by resting periods of different lengths and frequency. Temperature, viscosity, pH, and the presence of yeast extract in the medium influenced the motility significantly; changes in glucose, calcium ions, and serum content were less effective. The movements were affected by iodoacetate, p-mercuribenzoate, and mitomycin C at inhibitory or subinhibitory concentrations. Sodium fluoride, sodium cyanide, dinitrophenol, chloramphenicol, puromycin, cholchicin, and cytochalasin B at minimal inhibitory concentrations did not affect motility. The movements were effectively inhibited by anti-M. pneumoniae antiserum. Studies with absorbed antiserum suggested that the surface components involved in motility are heat labile. The gliding of M. pneumoniae cells required an intact energy metabolism and the proteins involved seemed to have a low turnover. Images PMID:14925

  7. Why motor proteins team up - Intraflagellar transport in C. elegans cilia.

    PubMed

    Mijalkovic, Jona; Prevo, Bram; Peterman, Erwin J G

    2016-01-01

    Inside the cell, vital processes such as cell division and intracellular transport are driven by the concerted action of different molecular motor proteins. In C. elegans chemosensory cilia, 2 kinesin-2 family motor proteins, kinesin-II and OSM-3, team up to drive intraflagellar transport (IFT) in the anterograde direction, from base to tip, whereas IFT dynein hitchhikes toward the tip and subsequently drives IFT in the opposite, retrograde direction, thereby recycling both kinesins. While it is evident that at least a retrograde and an anterograde motor are necessary to drive IFT, it has remained puzzling why 2 same-polarity kinesins are employed. Recently, we addressed this question by combining advanced genome-engineering tools with ultrasensitive, quantitative fluorescence microscopy to study IFT with single-molecule sensitivity.(1,2) Using this combination of approaches, we uncovered a differentiation in kinesin-2 function, in which the slower kinesin-II operates as an 'importer', loading IFT trains into the cilium before gradually handing them over to the faster OSM-3. OSM-3 subsequently acts as a long-range 'transporter', driving the IFT trains toward the tip. The two kinesin-2 motors combine their unique motility properties to achieve something neither motor can achieve on its own; that is to optimize the amount of cargo inside the cilium. In this commentary, we provide detailed insight into the rationale behind our research approach and comment on our recent findings. Moreover, we discuss the role of IFT dynein and provide an outlook on future studies.

  8. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    PubMed

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.

  9. CILIA FORMATION IN THE ADULT CAT BRAIN AFTER PARGYLINE TREATMENT

    PubMed Central

    Milhaud, Monique; Pappas, George D.

    1968-01-01

    The brains of four adult cats treated with pargyline (a nonhydrazide monoaminoxidase inhibitor) were examined at both the light and electron microscopic levels. Formation of typical mature cilia with the 9 + 2 pattern was observed in neural cells in the following areas: habenula nuclei, interpeduncular nuclei, hippocampus, mammillary bodies, thalamus, and caudate nucleus. The most marked ciliation occurs in the habenula nuclei. In general, glial cells greatly predominate in the formation of cilia. It is not clear whether ciliation in the central nervous system is the direct result of pargyline or if it occurs indirectly as a result of inhibition of monoaminoxidase. These findings are compared with the serotonin effect on ciliation in the embryogenesis of lower forms. It is suggested that pharmacological stimulation of centriolar reproduction without subsequent mitosis may lead to ciliary formation. PMID:11905194

  10. Actin-Based Motility of Intracellular Microbial Pathogens

    PubMed Central

    Goldberg, Marcia B.

    2001-01-01

    A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review. PMID:11729265

  11. Nanoscale Fluidics: Using magnetic nanorods as model cilia

    NASA Astrophysics Data System (ADS)

    Hao, Jing; Ben, Wilde; Jeremy, Cribb; Chris, Dwyer; Jay, Fisher; Kalpit, Desai; Leandra, Vicci; Russell, M. Taylor, II; Richard, Superfine

    2003-11-01

    The beating of cilia and flagella, slender cylinders 250 nanometers in diameter with lengths from 7 to 50 microns, is ubiquitous in biology. The fluid dynamics produced by the cilia or flagella motion is responsible for organism feeding, propulsion, for bacterial clearance in the lungs and for the right-left asymmetry in vertebrates. We are developing a model system for cilia beating through the use of magnetic nanorods. Using anodized aluminum oxide (AAO) membranes as templates, magnetic rods of permalloy with a diameter of 100 and 200 nm have been fabricated. We will describe the details of fabrication and characterization, and discuss methods used to study the hydrodynamic behavior of these nanorods in aqueous solutions under applied magnetic fields. Movies of these nanorods in oscillating 3-D magnetic fields generated by our 3-dimensional force microscopy (3DFM) clearly show bead motion in vortices around the nanorod. Deliberately transporting beads near the rods by laser trap, we can reproducibly study the hydrodynamic behavior around the nanorods and the influence of local rheological properties.

  12. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  13. Symmetry-Breaking Motility

    NASA Astrophysics Data System (ADS)

    Lee, Allen; Lee, Ha Youn; Kardar, Mehran

    2005-09-01

    Locomotion of bacteria by actin polymerization and in vitro motion of spherical beads coated with a protein catalyzing polymerization are examples of active motility. Starting from a simple model of forces locally normal to the surface of a bead, we construct a phenomenological equation for its motion. The singularities at a continuous transition between moving and stationary beads are shown to be related to the symmetries of its shape. Universal features of the phase behavior are calculated analytically and confirmed by simulations. Fluctuations in velocity are shown to be generically non-Maxwellian and correlated to the shape of the bead.

  14. A high-fat diet regulates gastrin and acid secretion through primary cilia.

    PubMed

    Saqui-Salces, Milena; Dowdle, William E; Reiter, Jeremy F; Merchant, Juanita L

    2012-08-01

    The role of primary cilia in the gastrointestinal tract has not been examined. Here we report the presence of primary cilia on gastric endocrine cells producing gastrin, ghrelin, and somatostatin (Sst), hormones regulated by food intake. During eating, cilia in the gastric antrum decreased, whereas gastric acid and circulating gastrin increased. Mice fed high-fat chow showed a delayed decrease in antral cilia, increased plasma gastrin, and gastric acidity. Mice fed high-fat chow for 3 wk showed lower cilia numbers and acid but higher gastrin levels than mice fed a standard diet, suggesting that fat affects gastric physiology. Ex vivo experiments showed that cilia in the corpus responded to acid and distension, whereas cilia in the antrum responded to food. To analyze the role of gastric cilia, we conditionally deleted the intraflagellar transport protein Ift88 (Ift88(-/fl)). In fed Ift88(-/fl) mice, gastrin levels were higher, and gastric acidity was lower. Moreover, gastrin and Sst gene expression did not change in response to food as in controls. At 8 mo, Ift88(-/fl) mice developed foveolar hyperplasia, hypergastrinemia, and hypochlorhydria associated with endocrine dysfunction. Our results show that components of food (fat) are sensed by antral cilia on endocrine cells, which modulates gastrin secretion and gastric acidity.

  15. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia.

    PubMed

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer; Wong, Puisan; Huong, Tra Nguyen; Li, Chunwei; Tan, Boon Huan; Wang, De Yun; Sugrue, Richard J

    2015-10-01

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss.

  16. Spirochete motility and morpholgy

    NASA Astrophysics Data System (ADS)

    Charon, Nyles

    2004-03-01

    Spirochetes have a unique structure, and as a result their motility is different from that of other bacteria. These organisms can swim in a highly viscous, gel-like medium, such as that found in connective tissue, that inhibits the motility of most other bacteria. In spirochetes, the organelles for motility, the periplasmic flagella, reside inside the cell within the periplasmic space. A given periplasmic flagellum is attached only at one end of the cell, and depending on the species, may or may not overlap in the center of the cell. The number of periplasmic flagella varies from species to species. These structures have been shown to be directly involved in motility and function by rotating within the periplasmic space (1). The present talk focuses on the spirochete that causes Lyme disease, Borrelia burgdorferi. In many bacterial species, cell shape is usually dictated by the peptidoyglycan layer of the cell wall. In the first part of the talk, results will be presented that the morphology of B. burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella resulting in a cell with a flat-wave morphology. Backward moving, propagating waves enable these bacteria to swim and translate in a given direction. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were non-motile, but were rod-shaped (2). Western blot analysis indicated that flaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Our results indicate that the periplasmic flagella of B. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology The latter part of the talk concerns the basis for asymmetrical rotation of the periplasmic flagella of B

  17. GLUTs and mammalian sperm metabolism.

    PubMed

    Bucci, Diego; Rodriguez-Gil, Juan Enrique; Vallorani, Claudia; Spinaci, Marcella; Galeati, Giovanna; Tamanini, Carlo

    2011-01-01

    Mammalian cells use glucides as a substrate that can be catabolized through glycolitic pathways or oxidative phosphorylation, used as a source of reducing potential, or used for anabolic aims. An important role in supplying cells with energy is played by different membrane proteins that can actively (sodium-dependent glucose transporters) or passively (glucose transporters; GLUT) transport hexoses through the lipidic bilayer. In particular, GLUTs are a family of 13 proteins that facilitate the transport of sugars and have a peculiar distribution in different tissues as well as a particular affinity for substrates. These proteins are also present in mature sperm cells, which, in fact, need carriers for uptake energetic sources that are important for maintaining cell basic activity as well as specific functions, such as motility and fertilization ability. Likewise, several GLUTs have been studied in various mammalian species (man, bull, rat, mouse, boar, dog, stallion, and donkey) to point out both their actual presence or absence and their localization on plasma membrane. The aim of this work is to give an overall picture of the studies available on GLUTs in mammalian spermatozoa at this moment, pointing out the species peculiarity, the possible role of these proteins, and the potential future research on this item.

  18. Mechanics of motility initiation and motility arrest in crawling cells

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Putelat, Thibaut; Truskinovsky, Lev

    2015-11-01

    Motility initiation in crawling cells requires transformation of a symmetric state into a polarized state. In contrast, motility arrest is associated with re-symmetrization of the internal configuration of a cell. Experiments on keratocytes suggest that polarization is triggered by the increased contractility of motor proteins but the conditions of re-symmetrization remain unknown. In this paper we show that if adhesion with the extra-cellular substrate is sufficiently low, the progressive intensification of motor-induced contraction may be responsible for both transitions: from static (symmetric) to motile (polarized) at a lower contractility threshold and from motile (polarized) back to static (symmetric) at a higher contractility threshold. Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the direction of locomotion. In the interest of analytical transparency we also neglect active protrusion and view adhesion as passive. Despite the unavoidable oversimplifications associated with these assumptions, the model reproduces quantitatively the motility initiation pattern in fish keratocytes and reveals a crucial role played in cell motility by the nonlocal feedback between the mechanics and the transport of active agents. A prediction of the model that a crawling cell can stop and re-symmetrize when contractility increases sufficiently far beyond the motility initiation threshold still awaits experimental verification.

  19. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  20. Hearing in Drosophila Requires TilB, a Conserved Protein Associated With Ciliary Motility

    PubMed Central

    Kavlie, Ryan G.; Kernan, Maurice J.; Eberl, Daniel F.

    2010-01-01

    Cilia were present in the earliest eukaryotic ancestor and underlie many biological processes ranging from cell motility and propulsion of extracellular fluids to sensory physiology. We investigated the contribution of the touch insensitive larva B (tilB) gene to cilia function in Drosophila melanogaster. Mutants of tilB exhibit dysfunction in sperm flagella and ciliated dendrites of chordotonal organs that mediate hearing and larval touch sensitivity. Mutant sperm axonemes as well as sensory neuron dendrites of Johnston's organ, the fly's auditory organ, lack dynein arms. Through deficiency mapping and sequencing candidate genes, we identified tilB mutations in the annotated gene CG14620. A genomic CG14620 transgene rescued deafness and male sterility of tilB mutants. TilB is a 395-amino-acid protein with a conserved N-terminal leucine-rich repeat region at residues 16–164 and a coiled-coil domain at residues 171–191. A tilB-Gal4 transgene driving fluorescently tagged TilB proteins elicits cytoplasmic expression in embryonic chordotonal organs, in Johnston's organ, and in sperm flagella. TilB does not appear to affect tubulin polyglutamylation or polyglycylation. The phenotypes and expression of tilB indicate function in cilia construction or maintenance, but not in intraflagellar transport. This is also consistent with phylogenetic association of tilB homologs with presence of genes encoding axonemal dynein arm components. Further elucidation of tilB functional mechanisms will provide greater understanding of cilia function and will facilitate understanding ciliary diseases. PMID:20215474

  1. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices.

    PubMed

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-04-07

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.

  2. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices

    PubMed Central

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-01-01

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay. PMID:28387379

  3. Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A

    PubMed Central

    Wang, Doudou; Nitta, Ryo; Morikawa, Manatsu; Yajima, Hiroaki; Inoue, Shigeyuki; Shigematsu, Hideki; Kikkawa, Masahide; Hirokawa, Nobutaka

    2016-01-01

    The kinesin-8 motor, KIF19A, accumulates at cilia tips and controls cilium length. Defective KIF19A leads to hydrocephalus and female infertility because of abnormally elongated cilia. Uniquely among kinesins, KIF19A possesses the dual functions of motility along ciliary microtubules and depolymerization of microtubules. To elucidate the molecular mechanisms of these functions we solved the crystal structure of its motor domain and determined its cryo-electron microscopy structure complexed with a microtubule. The features of KIF19A that enable its dual function are clustered on its microtubule-binding side. Unexpectedly, a destabilized switch II coordinates with a destabilized L8 to enable KIF19A to adjust to both straight and curved microtubule protofilaments. The basic clusters of L2 and L12 tether the microtubule. The long L2 with a characteristic acidic-hydrophobic-basic sequence effectively stabilizes the curved conformation of microtubule ends. Hence, KIF19A utilizes multiple strategies to accomplish the dual functions of motility and microtubule depolymerization by ATP hydrolysis. DOI: http://dx.doi.org/10.7554/eLife.18101.001 PMID:27690357

  4. Effect of Cilia Beat Frequency on Muco-ciliary Clearance

    PubMed Central

    Sedaghat, M.H.; Shahmardan, M.M.; Norouzi, M.; Heydari, M.

    2016-01-01

    Background: The airway surface liquid (ASL), which is a fluid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs. Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a Newtonian fluid to study the effects of cilia beat frequency (CBF) at various amounts of mucus properties on muco-ciliary transport problem. Methods: Hybrid finite difference-lattice Boltzmann-method (FB-LBM) has been used to solve the momentum equations and to simulate cilia forces, and also the PCL-mucus interface more accurately, immersed boundary method (IBM) has been employed. The main contribution of the current study is to use an Oldroyd-B model as the constitutive equation of mucus. Results: Our results show that increasing CBF and decreasing mucus viscosity ratio have great effects on mucus flow, but the effect of viscosity ratio is more significant. The results also illustrate that the relation between cilia beat frequency and mean mucus velocity is almost linear and it has similar behavior at different values of viscosity ratio. Conclusion: Numerical investigation based on hybrid IB-FD-LBM has been used to study the effect of CBF at various mounts of mucus viscosity ratio on the muco-ciliary clearance. The results showed that the effect of viscosity ratio on the muco-ciliary transport process is more significant compared with CBF. PMID:28144596

  5. Mechanism of olfactory masking in the sensory cilia

    PubMed Central

    Ishida, Hirohiko; Hikichi, Satoshi; Kurahashi, Takashi

    2009-01-01

    Olfactory masking has been used to erase the unpleasant sensation in human cultures for a long period of history. Here, we show a positive correlation between the human masking and the odorant suppression of the transduction current through the cyclic nucleotide–gated (CNG) and Ca2+-activated Cl− (Cl(Ca)) channels. Channels in the olfactory cilia were activated with the cytoplasmic photolysis of caged compounds, and their sensitiveness to odorant suppression was measured with the whole cell patch clamp. When 16 different types of chemicals were applied to cells, cyclic AMP (cAMP)-induced responses (a mixture of CNG and Cl(Ca) currents) were suppressed widely with these substances, but with different sensitivities. Using the same chemicals, in parallel, we measured human olfactory masking with 6-rate scoring tests and saw a correlation coefficient of 0.81 with the channel block. Ringer's solution that was just preexposed to the odorant-containing air affected the cAMP-induced current of the single cell, suggesting that odorant suppression occurs after the evaporation and air/water partition of the odorant chemicals at the olfactory mucus. To investigate the contribution of Cl(Ca), the current was exclusively activated by using the ultraviolet photolysis of caged Ca, DM-nitrophen. With chemical stimuli, it was confirmed that Cl(Ca) channels were less sensitive to the odorant suppression. It is interpreted, however, that in the natural odorant response the Cl(Ca) is affected by the reduction of Ca2+ influx through the CNG channels as a secondary effect. Because the signal transmission between CNG and Cl(Ca) channels includes nonlinear signal-boosting process, CNG channel blockage leads to an amplified reduction in the net current. In addition, we mapped the distribution of the Cl(Ca) channel in living olfactory single cilium using a submicron local [Ca2+]i elevation with the laser photolysis. Cl(Ca) channels are expressed broadly along the cilia. We conclude that

  6. Functional characterization of putative cilia genes by high-content analysis

    PubMed Central

    Lai, Cary K.; Gupta, Nidhi; Wen, Xiaohui; Rangell, Linda; Chih, Ben; Peterson, Andrew S.; Bazan, J. Fernando; Li, Li; Scales, Suzie J.

    2011-01-01

    Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates. PMID:21289087

  7. Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia

    PubMed Central

    Qiu, Liyan; LeBel, Robert P; Storm, Daniel R; Chen, Xuanmao

    2016-01-01

    Cilia are rigid, centriole-derived, microtubule-based organelles present in a majority of vertebrate cells including neurons. They are considered the cellular “antennae” attuned for detecting a range of extracellular signals including photons, odorants, morphogens, hormones and mechanical forces. The ciliary microenvironment is distinct from most actin-based subcellular structures such as microvilli or synapses. In the nervous system, there is no evidence that neuronal cilia process any synaptic structure. Apparently, the structural features of neuronal cilia do not allow them to harbor any synaptic connections. Nevertheless, a large number of G protein-coupled receptors (GPCRs) including odorant receptors, rhodopsin, Smoothened, and type 6 serotonin receptor are found in cilia, suggesting that these tiny processes largely depend on metabotropic receptors and their tuned signals to impact neuronal functions. The type 3 adenylyl cyclase (AC3), widely known as a cilia marker, is highly and predominantly expressed in olfactory sensory cilia and primary cilia throughout the brain. We discovered that ablation of AC3 in mice leads to pleiotropic phenotypes including anosmia, failure to detect mechanical stimulation of airflow, cognitive deficit, obesity, and depression-like behaviors. Multiple lines of human genetic evidence also demonstrate that AC3 is associated with obesity, major depressive disorder (MDD), sarcoidosis, and infertility, underscoring its functional importance. Here we review recent progress on AC3, a key enzyme mediating the cAMP signaling in neuronal cilia. PMID:27785336

  8. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging.

    PubMed

    Cornils, Astrid; Maurya, Ashish K; Tereshko, Lauren; Kennedy, Julie; Brear, Andrea G; Prahlad, Veena; Blacque, Oliver E; Sengupta, Piali

    2016-12-01

    The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.

  9. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging

    PubMed Central

    Kennedy, Julie; Brear, Andrea G.; Prahlad, Veena; Blacque, Oliver E.; Sengupta, Piali

    2016-01-01

    The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies. PMID:27906968

  10. Rimonabant, Gastrointestinal Motility and Obesity

    PubMed Central

    Sun, Yan; Chen, Jiande

    2012-01-01

    Background: Obesity and overweight affect more than half of the US population and are associated with a number of diseases. Rimonabant, a cannabinoid receptor 1 blocker in the endocannabinoid (EC) system, was indicated in Europe for the treatment of obesity and overweight patients with associated risk factors but withdrawn on Jan, 2009 because of side effects. Many studies have reported the effects of rimonabant on gastrointestinal (GI) motility and food intake. The aims of this review are: to review the relationship of EC system with GI motility and food intake;to review the studies of rimonabant on GI motility, food intake and obesity;and to report the tolerance and side effects of rimonabant. Methods: the literature (Pubmed database) was searched using keywords: rimonabant, obesity and GI motility. Results: GI motility is related with appetite, food intake and nutrients absorption. The EC system inhibits GI motility, reduces emesis and increases food intake; Rimonabant accelerates gastric emptying and intestinal transition but decreases energy metabolism and food intake. There is rapid onset of tolerance to the prokinetic effect of rimonabant. The main side effects of rimonabant are depression and GI symptoms. Conclusions: Rimonabant has significant effects on energy metabolism and food intake, probably mediated via its effects on GI motility. PMID:23449551

  11. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    SciTech Connect

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer; Wong, Puisan; Huong, Tra Nguyen; Li, Chunwei; Tan, Boon Huan; Wang, De Yun; Sugrue, Richard J.

    2015-10-15

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function.

  12. Why motor proteins team up - Intraflagellar transport in C. elegans cilia

    PubMed Central

    Mijalkovic, Jona; Prevo, Bram; Peterman, Erwin J. G.

    2016-01-01

    ABSTRACT Inside the cell, vital processes such as cell division and intracellular transport are driven by the concerted action of different molecular motor proteins. In C. elegans chemosensory cilia, 2 kinesin-2 family motor proteins, kinesin-II and OSM-3, team up to drive intraflagellar transport (IFT) in the anterograde direction, from base to tip, whereas IFT dynein hitchhikes toward the tip and subsequently drives IFT in the opposite, retrograde direction, thereby recycling both kinesins. While it is evident that at least a retrograde and an anterograde motor are necessary to drive IFT, it has remained puzzling why 2 same-polarity kinesins are employed. Recently, we addressed this question by combining advanced genome-engineering tools with ultrasensitive, quantitative fluorescence microscopy to study IFT with single-molecule sensitivity.1,2 Using this combination of approaches, we uncovered a differentiation in kinesin-2 function, in which the slower kinesin-II operates as an ‘importer’, loading IFT trains into the cilium before gradually handing them over to the faster OSM-3. OSM-3 subsequently acts as a long-range ‘transporter’, driving the IFT trains toward the tip. The two kinesin-2 motors combine their unique motility properties to achieve something neither motor can achieve on its own; that is to optimize the amount of cargo inside the cilium. In this commentary, we provide detailed insight into the rationale behind our research approach and comment on our recent findings. Moreover, we discuss the role of IFT dynein and provide an outlook on future studies. PMID:27384150

  13. IFT46 plays an essential role in cilia development

    PubMed Central

    Lee, Mi-Sun; Hwang, Kyu-Seok; Oh, Hyun-Woo; Ji-Ae, Kim; Kim, Hyun-Taek; Cho, Hyun-Soo; Lee, Jeong-Ju; Ko, Je Yeong; Choi, Jung-Hwa; Jeong, Yun-Mi; You, Kwan-Hee; Kim, Joon; Park, Doo-Sang; Nam, Ki-Hoan; Aizawa, Shinichi; Kiyonari, Hiroshi; Shioi, Go; Park, Jong-Hoon; Zhou, Weibin; Kim, Nam-Soon; Kim, Cheol-Hee

    2015-01-01

    Cilia are microtubule-based structures that project into the extracellular space. Ciliary defects are associated with several human diseases, including polycystic kidney disease, primary ciliary dyskinesia, left-right axis patterning, hydrocephalus and retinal degeneration. However, the genetic and cellular biological control of ciliogenesis remains poorly understood. The IFT46 is one of the highly conserved intraflagellar transport complex B proteins. In zebrafish, ift46 is expressed in various ciliated tissues such as Kupffer’s vesicle, pronephric ducts, ears and spinal cord. We show that ift46 is localized to the basal body. Knockdown of ift46 gene results in multiple phenotypes associated with various ciliopathies including kidney cysts, pericardial edema and ventral axis curvature. In ift46 morphants, cilia in kidney and spinal canal are shortened and abnormal. Similar ciliary defects are observed in otic vesicles, lateral line hair cells, olfactory pits, but not in Kupffer’s vesicle. To explore the functions of Ift46 during mouse development, we have generated Ift46 knock-out mice. The Ift46 mutants have developmental defects in brain, neural tube and heart. In particular Ift46(−/−) homozygotes displays randomization of the embryo heart looping, which is a hallmark of defective left-right (L/R) axis patterning. Taken together, our results demonstrated that IFT46 has an essential role in vertebrate ciliary development. PMID:25722189

  14. The BBSome controls IFT assembly and turnaround in cilia.

    PubMed

    Wei, Qing; Zhang, Yuxia; Li, Yujie; Zhang, Qing; Ling, Kun; Hu, Jinghua

    2012-09-01

    The bidirectional movement of intraflagellar transport (IFT) particles, which are composed of motors, IFT-A and IFT-B subcomplexes, and cargoes, is required for the biogenesis and signalling of cilia(1,2). A successful IFT cycle depends on the proper assembly of the massive IFT particle at the ciliary base and its turnaround from anterograde to retrograde transport at the ciliary tip. However, how IFT assembly and turnaround are regulated in vivo remains elusive. From a whole-genome mutagenesis screen in Caenorhabditis elegans, we identified two hypomorphic mutations in dyf-2 and bbs-1 as the only mutants showing normal anterograde IFT transport but defective IFT turnaround at the ciliary tip. Further analyses revealed that the BBSome (refs 3, 4), a group of conserved proteins affected in human Bardet-Biedl syndrome(5) (BBS), assembles IFT complexes at the ciliary base, then binds to the anterograde IFT particle in a DYF-2- (an orthologue of human WDR19) and BBS-1-dependent manner, and lastly reaches the ciliary tip to regulate proper IFT recycling. Our results identify the BBSome as the key player regulating IFT assembly and turnaround in cilia.

  15. Elenoside increases intestinal motility

    PubMed Central

    Navarro, E; Alonso, SJ; Navarro, R; Trujillo, J; Jorge, E

    2006-01-01

    AIM: To study the effects of elenoside, an arylnaph-thalene lignan from Justicia hyssopifolia, on gastro-intestinal motility in vivo and in vitro in rats. METHODS: Routine in vivo experimental assessments were catharsis index, water percentage of boluses, intestinal transit, and codeine antagonism. The groups included were vehicle control (propylene glycol-ethanol-plant oil-tween 80), elenoside (i.p. 25 and 50 mg/kg), cisapride (i.p. 10 mg/kg), and codeine phosphate (intragastric route, 50 mg/kg). In vitro approaches used isolated rat intestinal tissues (duodenum, jejunum, and ileum). The effects of elenoside at concentrations of 3.2 x 10-4, 6.4 x 10-4 and 1.2 x 10-3 mol/L, and cisapride at 10-6 mol/L were investigated. RESULTS: Elenoside in vivo produced an increase in the catharsis index and water percentage of boluses and in the percentage of distance traveled by a suspension of activated charcoal. Codeine phosphate antagonized the effect of 25 mg/kg of elenoside. In vitro, elenoside in duodenum, jejunum and ileum produced an initial decrease in the contraction force followed by an increase. Elenoside resulted in decreased intestinal frequency in duodenum, jejunum, and ileum. The in vitro and in vivo effects of elenoside were similar to those produced by cisapride. CONCLUSION: Elenoside is a lignan with an action similar to that of purgative and prokinetics drugs. Elenoside, could be an alternative to cisapride in treatment of gastrointestinal diseases as well as a preventive therapy for the undesirable gastrointestinal effects produced by opioids used for mild to moderate pain. PMID:17131476

  16. INPP5E regulates phosphoinositide-dependent cilia transition zone function.

    PubMed

    Dyson, Jennifer M; Conduit, Sarah E; Feeney, Sandra J; Hakim, Sandra; DiTommaso, Tia; Fulcher, Alex J; Sriratana, Absorn; Ramm, Georg; Horan, Kristy A; Gurung, Rajendra; Wicking, Carol; Smyth, Ian; Mitchell, Christina A

    2017-01-02

    Human ciliopathies, including Joubert syndrome (JBTS), arise from cilia dysfunction. The inositol polyphosphate 5-phosphatase INPP5E localizes to cilia and is mutated in JBTS. Murine Inpp5e ablation is embryonically lethal and recapitulates JBTS, including neural tube defects and polydactyly; however, the underlying defects in cilia signaling and the function of INPP5E at cilia are still emerging. We report Inpp5e(-/-) embryos exhibit aberrant Hedgehog-dependent patterning with reduced Hedgehog signaling. Using mouse genetics, we show increasing Hedgehog signaling via Smoothened M2 expression rescues some Inpp5e(-/-) ciliopathy phenotypes and "normalizes" Hedgehog signaling. INPP5E's phosphoinositide substrates PI(4,5)P2 and PI(3,4,5)P3 accumulated at the transition zone (TZ) in Hedgehog-stimulated Inpp5e(-/-) cells, which was associated with reduced recruitment of TZ scaffolding proteins and reduced Smoothened levels at cilia. Expression of wild-type, but not 5-phosphatase-dead, INPP5E restored TZ molecular organization and Smoothened accumulation at cilia. Therefore, we identify INPP5E as an essential point of convergence between Hedgehog and phosphoinositide signaling at cilia that maintains TZ function and Hedgehog-dependent embryonic development.

  17. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways.

    PubMed

    Wang, Shixuan; Livingston, Man J; Su, Yunchao; Dong, Zheng

    2015-04-03

    Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.

  18. Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction

    PubMed Central

    Lam, Hilaire C.; Cloonan, Suzanne M.; Bhashyam, Abhiram R.; Haspel, Jeffery A.; Singh, Anju; Sathirapongsasuti, J. Fah; Cervo, Morgan; Yao, Hongwei; Chung, Anna L.; Mizumura, Kenji; An, Chang Hyeok; Shan, Bin; Franks, Jonathan M.; Haley, Kathleen J.; Owen, Caroline A.; Tesfaigzi, Yohannes; Washko, George R.; Quackenbush, John; Silverman, Edwin K.; Rahman, Irfan; Kim, Hong Pyo; Mahmood, Ashfaq; Biswal, Shyam S.; Ryter, Stefan W.; Choi, Augustine M.K.

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/– or Map1lc3B–/–) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6–/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1–/–, Map1lc3B–/–, and Hdac6–/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD. PMID:24200693

  19. The Par-PrkC Polarity Complex Is Required for Cilia Growth in Zebrafish Photoreceptors

    PubMed Central

    Krock, Bryan L.; Perkins, Brian D.

    2014-01-01

    Specification and development of the apical membrane in epithelial cells requires the function of polarity proteins, including Pard3 and an atypical protein kinase C (PrkC). Many epithelial cells possess microtubule-based organelles, known as cilia, that project from their apical surface and the membrane surrounding the cilium is contiguous with the apical cell membrane. Although cilia formation in cultured cells required Pard3, the in vivo requirement for Pard3 in cilia development remains unknown. The vertebrate photoreceptor outer segment represents a highly specialized cilia structure in which to identify factors necessary for apical and ciliary membrane formation. Pard3 and PrkC localized to distinct domains within vertebrate photoreceptors. Using partial morpholino knockdown, photo-morpholinos, and pharmacological approaches, the function of Pard3 and PrkC were found to be required for the formation of both the apical and ciliary membrane of vertebrate photoreceptors. Inhibition of Pard3 or PrkC activity significantly reduced the size of photoreceptor outer segments and resulted in mislocalization of rhodopsin. Suppression of Pard3 or PrkC also led to a reduction in cilia size and cilia number in Kupffer’s Vesicle, which resulted in left-right asymmetry defects. Thus, the Par-PrkC complex functions in cilia formation in vivo and this likely reflects a general role in specifying non-ciliary and ciliary compartments of the apical domain. PMID:25144710

  20. Cilia Internal Mechanism and Metachronal Coordination as the Result of Hydrodynamical Coupling

    NASA Astrophysics Data System (ADS)

    Gueron, Shay; Levit-Gurevich, Konstantin; Liron, Nadav; Blum, Jacob J.

    1997-06-01

    We present a simple but realistic model for the internal bend-generating mechanism of cilia, using parameters obtained from the analysis of data of the beat of a single cilium, and incorporate it into a recently developed dynamical model. Comparing the results to experimental data for two-dimensional beats, we demonstrate that the model captures the essential features of the motion, including many properties that are not built in explicitly. The beat pattern and frequency change in response to increased viscosity and the presence of neighboring cilia in a realistic fashion. Using the model, we are able to investigate multicilia configurations such as rows of cilia and two-dimensional arrays of cilia. When two adjacent model cilia start beating at different phase, they synchronize within two cycles, as observed in experiments in which two flagella beating out of phase are brought close together. Examination of various multicilia configurations shows that metachronal patterns (i.e., beats with a constant phase difference between neighboring cilia) evolve autonomously. This provides modeling evidence in support of the conjecture that metachronism may occur as a self-organized phenomenon due to hydrodynamical interactions between the cilia.

  1. Role of cilia in normal pancreas function and in diseased states.

    PubMed

    diIorio, Philip; Rittenhouse, Ann R; Bortell, Rita; Jurczyk, Agata

    2014-06-01

    Primary cilia play an essential role in modulating signaling cascades that shape cellular responses to environmental cues to maintain proper tissue development. Mutations in primary cilium proteins have been linked to several rare developmental disorders, collectively known as ciliopathies. Together with other disorders associated with dysfunctional cilia/centrosomes, affected individuals have increased risk of developing metabolic syndrome, neurologic disorders, and diabetes. In pancreatic tissues, cilia are found exclusively in islet and ductal cells where they play an essential role in pancreatic tissue organization. Their absence or disorganization leads to pancreatic duct abnormalities, acinar cell loss, polarity defects, and dysregulated insulin secretion. Cilia in pancreatic tissues are hubs for cellular signaling. Many signaling components, such as Hh, Notch, and Wnt, localize to pancreatic primary cilia and are necessary for proper development of pancreatic epithelium and β-cell morphogenesis. Receptors for neuroendocrine hormones, such as Somatostatin Receptor 3, also localize to the cilium and may play a more direct role in controlling insulin secretion due to somatostatin's inhibitory function. Finally, unique calcium signaling, which is at the heart of β-cell function, also occurs in primary cilia. Whereas voltage-gated calcium channels trigger insulin secretion and serve a variety of homeostatic functions in β-cells, transient receptor potential channels regulate calcium levels within the cilium that may serve as a feedback mechanism, regulating insulin secretion. This review article summarizes our current understanding of the role of primary cilia in normal pancreas function and in the diseased state.

  2. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells.

    PubMed

    Inoko, Akihito; Matsuyama, Makoto; Goto, Hidemasa; Ohmuro-Matsuyama, Yuki; Hayashi, Yuko; Enomoto, Masato; Ibi, Miho; Urano, Takeshi; Yonemura, Shigenobu; Kiyono, Tohru; Izawa, Ichiro; Inagaki, Masaki

    2012-04-30

    The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference-mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein-AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.

  3. Specific localization of scallop gill epithelial calmodulin in cilia.

    PubMed

    Stommel, E W; Stephens, R E; Masure, H R; Head, J F

    1982-03-01

    Calmodulin has been isolated and characterized from the gill of the bay scallop aequipecten irradians. Quantitative electrophoretic analysis of epithelial cell fractions show most of the calmodulin to be localized in the cilia, specifically in the detergent- solubilized membrane-matrix fraction. Calmodulin represents 2.2 +/- 0.3 percent of the membrane-matrix protein or 0.41 +/- 0.5 percent of the total ciliary protein. Its concentration is at least 10(-4) M if distributed uniformly within the matrix. Extraction in the presence of calcium suggests that the calmodulin is not bound to the axoneme proper. The ciliary protein is identified as a calmodulin on the basis of its calcium- dependent binding to a fluphenazine-sepharose affinity column and its comigration with bovine brain calmodulin on alkaline-urea and SDS polyacrylamide gels in both the presence and absence of calcium. Scallop ciliary calmodulin activates bovine brain phosphodiesterase to the same extent as bovine brain and chicken gizzard calmodulins. Containing trimethyllysine and lacking cysteine and tryptophan, the amino acid composition of gill calmodulin is typical of known calmodulins, except that it is relatively high in serine and low in methionine. Its composition is less acidic than other calmodulins, in agreement with an observed isoelectric point approximately 0.2 units higher than that of bovine brain. Comparative tryptic peptide mapping of scallop gill ciliary and bovine brain calmodulins indicates coincidence of over 75 percent of the major peptides, but at least two major peptides in each show no near-equivalency. Preliminary results using ATP-reactivated gill cell models show no effect of calcium at micromolar levels on ciliary beat or directionality of the lateral cilia, the cilia which constitute the vast majority of those isolated. However, ciliary arrest will occur at calcium levels more than 150 muM. Because calmodulin usually functions in the micromolar range, its role in this system

  4. Bardet-Biedl syndrome: Is it only cilia dysfunction?

    PubMed

    Novas, Rossina; Cardenas-Rodriguez, Magdalena; Irigoín, Florencia; Badano, Jose L

    2015-11-14

    Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic disorder, characterized by both congenital and late onset defects. From the analysis of the mutational burden in patients to the functional characterization of the BBS proteins, this syndrome has become a model for both understanding oligogenic patterns of inheritance and the biology of a particular cellular organelle: the primary cilium. Here we briefly review the genetics of BBS to then focus on the function of the BBS proteins, not only in the context of the cilium but also highlighting potential extra-ciliary roles that could be relevant to the etiology of the disorder. Finally, we provide an overview of how the study of this rare syndrome has contributed to the understanding of cilia biology and how this knowledge has informed on the cellular basis of different clinical manifestations that characterize BBS and the ciliopathies.

  5. Microfabrication of IPMC cilia for bio-inspired flow sensing

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Li, Wen; Tan, Xiaobo

    2012-04-01

    As the primary flow sensing organ for fishes, the lateral line system plays a critical role in fish behavior. Analogous to its biological counterpart, an artificial lateral line system, consisting of arrays of micro flow sensors, is expected to be instrumental in the navigation and control of underwater robots. In this paper we investigate the microfabrication of ionic polymer-metal composite (IPMC) cilia for the purpose of flow sensing. While existing macro- and microfabrication methods for IPMCs have predominantly focused on planar structures, we propose a device where micro IPMC beams stand upright on a substrate to effectively interact with the flow. Challenges in the casting of 3D Nafion structure and selective formation of electrodes are discussed, and potential solutions for addressing these challenges are presented together with preliminary microfabrication results.

  6. G-protein-coupled receptors, Hedgehog signaling and primary cilia.

    PubMed

    Mukhopadhyay, Saikat; Rohatgi, Rajat

    2014-09-01

    The Hedgehog (Hh) pathway has become an important model to study the cell biology of primary cilia, and reciprocally, the study of ciliary processes provides an opportunity to solve longstanding mysteries in the mechanism of vertebrate Hh signal transduction. The cilium is emerging as an unique compartment for G-protein-coupled receptor (GPCR) signaling in many systems. Two members of the GPCR family, Smoothened and Gpr161, play important roles in the Hh pathway. We review the current understanding of how these proteins may function to regulate Hh signaling and also highlight some of the critical unanswered questions being tackled by the field. Uncovering GPCR-regulated mechanisms important in Hh signaling may provide therapeutic strategies against the Hh pathway that plays important roles in development, regeneration and cancer.

  7. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  8. Construction of (001) facets exposed ZnO nanosheets on magnetically driven cilia film for highly active photocatalysis

    NASA Astrophysics Data System (ADS)

    Peng, Fengping; Zhou, Qiang; Lu, Chunhua; Ni, Yaru; Kou, Jiahui; Xu, Zhongzi

    2017-02-01

    ZnO nanosheet arrays with exposed (001) facets have been constructed onto a biomimetic inner-motile film, using a seed-mediated hydrothermal growth technology without adding capping agents. The growth of ZnO nanoparticles along the [001] direction is impeded because of a physical steric hindrance, and therefore (001) planes are left behind as the dominant crystal facets. In comparison to ZnO nanorod arrays film, the photocatalytic activity of the actuated (001) facets exposed ZnO nanosheet arrays film is dramatically improved to approximately 2.48 times. Moreover, when it is subjected to a rotational magnetic field, the ZnO nanosheet arrays film is driven to mimic ciliary motion like nature beating cilia, which can boost the interior mass transfer and help to promote release of active sites for improving the photocatalytic activity. As a consequence of the exposed (001) high active facets, the singular ability of microfluidic manipulation has greater effect on ZnO nanosheet arrays films. The enhancement of photocatalytic activity of the actuated ZnO nanosheet arrays film is much more than that of ZnO nanorod arrays film.

  9. Esophageal motility disorders: medical therapy.

    PubMed

    Lacy, Brian E; Weiser, Kirsten

    2008-01-01

    Symptoms of chest pain and dysphagia are common in the adult population. Most patients initially undergo an evaluation to exclude anatomic causes (ie, esophagitis, stricture) and cardiovascular disease as the etiology of these symptoms. Patients with persistent symptoms may then be referred for specialized testing of the esophagus, including esophageal manometry. Disorders of esophageal motility, which include achalasia, diffuse esophageal spasm, nutcracker esophagus, hypertensive lower esophageal sphincter, and ineffective motility are often identified in these patients. Unfortunately, the etiology of these disorders has not been well characterized and the treatment has not been standardized. This review will briefly discuss the impact, etiology, and diagnosis of esophageal motility disorders, and then focus on the medical management of these disorders using evidence from well-designed, prospective studies, where available.

  10. Effect of bunching of cilia and their interplay on muco-ciliary transport.

    PubMed

    Roy, Yagnaseni; Sivathanu, Vivek; Das, Sarit K

    2013-11-01

    Cilia are hair-like organelles projecting from a eukaryotic cell, used either for locomotion or as sensors. Cilia commonly occur in patches. To take this into consideration, we represent cilia in multiple patches, instead of the conventional 'dense mat' representation. We focus on the combined action and interplay of these patches. The effects of varying the frequency, spacing and phase lag of the beating of one cilia bunch with respect to the beating of adjacent patches are studied. We model the Airway Surface Liquid (ASL) as a three-layer structure. The possibility of an optimum frequency of beating is noted and the change of mucous flow under different spacing and phase differences are observed.

  11. Cilia assembly: a role for F-actin in IFT recruitment.

    PubMed

    Quarmby, Lynne

    2014-09-08

    Ciliary growth rates are limited by the availability of precursors at the growing tip. A new paper reveals that the early rapid growth of nascent cilia is supported by F-actin-facilitated delivery of IFT proteins to basal bodies.

  12. Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans.

    PubMed

    Mukhopadhyay, Saikat; Lu, Yun; Shaham, Shai; Sengupta, Piali

    2008-05-01

    Nonmotile primary cilia are sensory organelles composed of a microtubular axoneme and a surrounding membrane sheath that houses signaling molecules. Optimal cellular function requires the precise regulation of axoneme assembly, membrane biogenesis, and signaling protein targeting and localization via as yet poorly understood mechanisms. Here, we show that sensory signaling is required to maintain the architecture of the specialized AWB olfactory neuron cilia in C. elegans. Decreased sensory signaling results in alteration of axoneme length and expansion of a membraneous structure, thereby altering the topological distribution of a subset of ciliary transmembrane signaling molecules. Signaling-regulated alteration of ciliary structures can be bypassed by modulation of intracellular cGMP or calcium levels and requires kinesin-II-driven intraflagellar transport (IFT), as well as BBS- and RAB8-related proteins. Our results suggest that compensatory mechanisms in response to altered levels of sensory activity modulate AWB cilia architecture, revealing remarkable plasticity in the regulation of cilia structure.

  13. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    PubMed Central

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  14. CB-08KIF3A IS ESSENTIAL FOR CILIOGENESIS, CILIA FUNCTION AND PROMOTES GLIOBLASTOMA PROGRESSION

    PubMed Central

    Hoang-Minh, Lan; Deleyrolle, Loic; Ugartemendia, George; Breunig, Joshua; Semple-Rowland, Susan; Reynolds, Brent; Sarkisian, Matthew

    2014-01-01

    Despite recent findings that cilia transduce diverse signaling pathways affecting cell proliferation, migration and survival, little is known about the influence of cilia or cilia-associated proteins in glioblastoma multiforme (GBM). We recently showed that primary cilia project from subsets of cells in GBM patient biopsies and derived cell lines. To determine if cilia contribute to GBM growth, we blocked ciliogenesis using a lentivirus expressing a dominant negative form of KIF3A, an essential ciliogenesis protein. We generated stable GBM cell lines (L0 and S3; representing different molecular subclasses) whereby dnKIF3A+ cells exhibited virtual complete loss of cilia compared to controls (confirmed by immunostaining and EM). Canonically, secreted Sonic hedgehog (SHH) ligand binds and activates receptor signaling cascades (e.g., smoothened (SMO)) within cilia to promote normal cell proliferation and tumor cell growth in specific developmental and pathological contexts, respectively. To examine the role of SHH in GBM proliferation, we exposed control and dnKIF3A+ L0 and S3 cells to saline or recombinant SHH. We found the number of L0 control cells significantly increased after SHH compared to saline, an effect blocked by pretreatment with cyclopamine (SMO inhibitor). However, SHH did not increase the number of L0 dnKIF3A+ cells. Interestingly, SHH exposure had no effect on S3 control cell numbers, despite observations that SHH signaling components (SMO and Gli3) were recruited to their cilia in response to SHH. This suggests GBM cilia are SHH-responsive but the downstream consequences of ciliary signaling may differ between cell lines. Notably, mice intracranially xenografted with L0 cells expressing dnKIF3A survived significantly longer than mice receiving control cells, and retained the loss of cilia phenotype in the tumors. Collectively, these data suggest KIF3A promotes GBM tumor progression, but the extent to which the effects are mediated by cilia and the

  15. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  16. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery.

    PubMed

    Kiprilov, Enko N; Awan, Aashir; Desprat, Romain; Velho, Michelle; Clement, Christian A; Byskov, Anne Grete; Andersen, Claus Y; Satir, Peter; Bouhassira, Eric E; Christensen, Søren T; Hirsch, Rhoda Elison

    2008-03-10

    Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC differentiation, demonstrating the existence of primary cilia and the localization of signaling components in undifferentiated hESCs establishes a mechanistic basis for the regulation of hESC differentiation. Using electron microscopy (EM), immunofluorescence, and confocal microscopies, we show that primary cilia are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery.

  17. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia

    PubMed Central

    Schermer, Bernhard; Höpker, Katja; Omran, Heymut; Ghenoiu, Cristina; Fliegauf, Manfred; Fekete, Andrea; Horvath, Judit; Köttgen, Michael; Hackl, Matthias; Zschiedrich, Stefan; Huber, Tobias B; Kramer-Zucker, Albrecht; Zentgraf, Hanswalter; Blaukat, Andree; Walz, Gerd; Benzing, Thomas

    2005-01-01

    Mutations in proteins localized to cilia and basal bodies have been implicated in a growing number of human diseases. Access of these proteins to the ciliary compartment requires targeting to the base of the cilia. However, the mechanisms involved in transport of cilia proteins to this transitional zone are elusive. Here we show that nephrocystin, a ciliary protein mutated in the most prevalent form of cystic kidney disease in childhood, is expressed in respiratory epithelial cells and accumulates at the base of cilia, overlapping with markers of the basal body area and the transition zone. Nephrocystin interacts with the phosphofurin acidic cluster sorting protein (PACS)-1. Casein kinase 2 (CK2)-mediated phosphorylation of three critical serine residues within a cluster of acidic amino acids in nephrocystin mediates PACS-1 binding, and is essential for colocalization of nephrocystin with PACS-1 at the base of cilia. Inhibition of CK2 activity abrogates this interaction and results in the loss of correct nephrocystin targeting. These data suggest that CK2-dependent transport processes represent a novel pathway of targeting proteins to the cilia. PMID:16308564

  18. Hippocampal and Cortical Primary Cilia Are Required for Aversive Memory in Mice

    PubMed Central

    Yazdi, S. M. Zaki R.; McNair, Andrew D.; Kippe, Jordyn M.; Croyle, Mandy J.; Kraft, Timothy W.; Yoder, Bradley K.

    2014-01-01

    It has been known for decades that neurons throughout the brain possess solitary, immotile, microtubule based appendages called primary cilia. Only recently have studies tried to address the functions of these cilia and our current understanding remains poor. To determine if neuronal cilia have a role in behavior we specifically disrupted ciliogenesis in the cortex and hippocampus of mice through conditional deletion of the Intraflagellar Transport 88 (Ift88) gene. The effects on learning and memory were analyzed using both Morris Water Maze and fear conditioning paradigms. In comparison to wild type controls, cilia mutants displayed deficits in aversive learning and memory and novel object recognition. Furthermore, hippocampal neurons from mutants displayed an altered paired-pulse response, suggesting that loss of IFT88 can alter synaptic properties. A variety of other behavioral tests showed no significant differences between conditional cilia mutants and controls. This type of conditional allele approach could be used to distinguish which behavioral features of ciliopathies arise due to defects in neural development and which result from altered cell physiology. Ultimately, this could lead to an improved understanding of the basis for the cognitive deficits associated with human cilia disorders such as Bardet-Biedl syndrome, and possibly more common ailments including depression and schizophrenia. PMID:25184295

  19. Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis

    PubMed Central

    Yadav, Sharda Prasad; Sharma, Neel Kamal; Liu, Chunqiao; Dong, Lijin; Li, Tiansen; Swaroop, Anand

    2016-01-01

    ABSTRACT Defects in cilia centrosomal genes cause pleiotropic clinical phenotypes, collectively called ciliopathies. Cilia biogenesis is initiated by the interaction of positive and negative regulators. Centriolar coiled coil protein 110 (CP110) caps the distal end of the mother centriole and is known to act as a suppressor to control the timing of ciliogenesis. Here, we demonstrate that CP110 promotes cilia formation in vivo, in contrast to findings in cultured cells. Cp110−/− mice die shortly after birth owing to organogenesis defects as in ciliopathies. Shh signaling is impaired in null embryos and primary cilia are reduced in multiple tissues. We show that CP110 is required for anchoring of basal bodies to the membrane during cilia formation. CP110 loss resulted in an abnormal distribution of core components of subdistal appendages (SDAs) and of recycling endosomes, which may be associated with premature extension of axonemal microtubules. Our data implicate CP110 in SDA assembly and ciliary vesicle docking, two requisite early steps in cilia formation. We suggest that CP110 has unique context-dependent functions, acting as both a suppressor and a promoter of ciliogenesis. PMID:26965371

  20. Zonal variation in primary cilia elongation correlates with localized biomechanical degradation in stress deprived tendon.

    PubMed

    Rowson, Daniel; Knight, Martin M; Screen, Hazel R C

    2016-12-01

    Tenocytes express primary cilia, which elongate when tendon is maintained in the absence of biomechanical load. Previous work indicates differences in the morphology and metabolism of the tenocytes in the tendon fascicular matrix (FM) and the inter-fascicular matrix (IFM). This study tests the hypothesis that primary cilia in these two regions respond differently to stress deprivation and that this is associated with differences in the biomechanical degradation of the extracellular matrix. Rat tail tendon fascicles were examined over a 7-day period of either stress deprivation or static load. Seven days of stress deprivation induced cilia elongation in both regions. However, elongation was greater in the IFM compared to the FM. Stress deprivation also induced a loss of biomechanical integrity, primarily in the IFM. Static loading reduced both the biomechanical degradation and cilia elongation. The different responses to stress deprivation in the two tendon regions are likely to be important for the aetiology of tendinopathy. Furthermore, these data suggest that primary cilia elongate in response to biomechanical degradation rather than simply the removal of load. This response to degradation is likely to have important consequences for cilia signalling in tendon and as well as in other connective tissues. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:2146-2153, 2016.

  1. Zonal variation in primary cilia elongation correlates with localized biomechanical degradation in stress deprived tendon

    PubMed Central

    Rowson, Daniel; Screen, Hazel R.C.

    2016-01-01

    ABSTRACT Tenocytes express primary cilia, which elongate when tendon is maintained in the absence of biomechanical load. Previous work indicates differences in the morphology and metabolism of the tenocytes in the tendon fascicular matrix (FM) and the inter‐fascicular matrix (IFM). This study tests the hypothesis that primary cilia in these two regions respond differently to stress deprivation and that this is associated with differences in the biomechanical degradation of the extracellular matrix. Rat tail tendon fascicles were examined over a 7‐day period of either stress deprivation or static load. Seven days of stress deprivation induced cilia elongation in both regions. However, elongation was greater in the IFM compared to the FM. Stress deprivation also induced a loss of biomechanical integrity, primarily in the IFM. Static loading reduced both the biomechanical degradation and cilia elongation. The different responses to stress deprivation in the two tendon regions are likely to be important for the aetiology of tendinopathy. Furthermore, these data suggest that primary cilia elongate in response to biomechanical degradation rather than simply the removal of load. This response to degradation is likely to have important consequences for cilia signalling in tendon and as well as in other connective tissues. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:2146–2153, 2016. PMID:26969839

  2. Spatial organization of cilia tufts governs airways mucus transport: Application to severe asthma

    NASA Astrophysics Data System (ADS)

    Khelloufi, Mustapha Kamel; Gras, Delphine; Chanez, Pascal; Viallat, Annie

    2014-11-01

    We study the coupling between both density and spatial repartition of beating cilia tufts, and the coordinated transport of mucus in an in-vitro epithelial model. We use a fully differentiated model epithelium in air liquid interface (ALI) obtained from endo-bronchial biopsies from healthy subjects and patients with asthma. The asthma phenotype is known to persist in the model. Mucus transport is characterized by the trajectories and velocities of microscopic beads incorporated in the mucus layer. When the beating cilia tufts density is higher than dc = 11/100 × 100 μm2 a spherical spiral coordinated mucus transport is observed over the whole ALI chamber (radius = 6 mm). Below dc, local mucus coordinated transport is observed on small circular domains on the epithelium surface. We reveal that the radii of these domains scale with the beating cilia tufts density with a power 3.7. Surprisingly, this power law is independent on cilia beat frequency, concentration and rheological properties of mucus for healthy subject and patient with asthma. The rotating or linear mucus transport is related to dispersion of the cilia tufts on the epithelium surface. We show that impaired mucus transport observed in severe asthma model epithelia is due to a drastic lack and dysfunction of cilia tufts. The author acknowledges the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-13-BSV5-0015-01.

  3. The mechanism of self-organized beating of cilia

    NASA Astrophysics Data System (ADS)

    Vidyadharan, Jyothish Sulochana

    The internal structure and physical properties of cilia are well known. The relevant hydrodynamics is also well known. But the mechanism behind the coordinated activity of the dynein molecular motors is not known. Based on experimental observations, it has been concluded that this mechanism cannot be due to control from the cell body. The possible mechanism has to be self-organized and the trigger for motor activation/deactivation has to be something related to the geometry of the ciliary axoneme. This thesis critically evaluates the most widely currently cited models and suggests an alternative model for how cilia beat. From the literature we obtained wave forms of ciliary beating at different instants in the beat cycle. These instants were digitized and interpolated. From this data, we were able to calculate the hydrodynamic force distribution (external force distribution) on the cilia and the translational and rotational velocities of the cell body. Once the hydrodynamic force distribution was obtained, we calculated the internal force distribution in the cilium using an equation we derived. Once this was known, we were able to calculate parameters of the ciliary axoneme such as the dynamic stiffness. The stiffness is the ratio of the first Fourier modes of the internal force distribution and the relative sliding between the doublet microtubules that form the axoneme. We found that the first mode was the dominant one and is the one we used for calculations. We were also able to calculate the energy involved in formation and propagation of the wave that produces the ciliary beating. We discovered that the dynamic stiffness varies along the length of a cilium. We determined that in the central region of the cilium, the stiffness is almost purely imaginary which means that the sliding velocity follows the internal force generation in that region rather than sliding. We also found that in Fourier space, the flexural rigidity (kappa=EI where E is Young's modulus and

  4. Motility of Electric Cable Bacteria

    PubMed Central

    Damgaard, Lars Riis; Holm, Simon Agner; Schramm, Andreas; Nielsen, Lars Peter

    2016-01-01

    ABSTRACT Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s−1 (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment. IMPORTANCE This study reports on the motility of cable bacteria, capable of transmitting electrons over centimeter distances. It gives us a new insight into their behavior in sediments and explains previously puzzling findings. Cable bacteria greatly influence their environment, and this article adds significantly to the body of knowledge about this organism. PMID:27084019

  5. The presence of primary cilia in cancer cells does not predict responsiveness to modulation of smoothened activity.

    PubMed

    Spann, Ashley L; Yuan, Kun; Goliwas, Kayla F; Steg, Adam D; Kaushik, Devanshu D; Kwon, Yeon-Jin; Frost, Andra R

    2015-07-01

    Primary cilia are microtubule-based organelles that regulate smoothened-dependent activation of the GLI transcription factors in canonical hedgehog signaling. In many cancers, primary cilia are markedly decreased or absent. The lack of primary cilia may inhibit or alter canonical hedgehog signaling and, thereby, interfere in the cellular responsiveness to modulators of smoothened activity. Clinical trials of smoothened antagonists for cancer treatment have shown the best response in basal cell carcinomas, with limited response in other solid tumors. To determine whether the presence or absence of primary cilia in cancer cells will predict their responsiveness to modulation of smoothened activity, we compared the ability of an agonist and/or inhibitor of smoothened (SAG and SANT1, respectively) to modulate GLI-mediated transcription, as measured by GLI1 mRNA level or GLI-luciferase reporter activity, in non-cancer cells with primary cilia (ovarian surface epithelial cells and breast fibroblasts), in cancer cells that cannot assemble primary cilia (MCF7, MDA-MB-231 cell lines), and in cancer cells with primary cilia (SKOV3, PANC1 cell lines). As expected, SAG and SANT1 resulted in appropriate modulation of GLI transcriptional activity in ciliated non-cancer cells, and failed to modulate GLI transcriptional activity in cancer cells without primary cilia. However, there was also no modulation of GLI transcriptional activity in either ciliated cancer cell line. SAG treatment of SKOV3 induced localization of smoothened to primary cilia, as assessed by immunofluorescence, even though there was no increase in GLI transcriptional activity, suggesting a defect in activation of SMO in the primary cilia or in steps later in the hedgehog pathway. In contrast to SKOV3, SAG treatment of PANC1 did not cause the localization of smoothened to primary cilia. Our data demonstrate that the presence of primary cilia in the cancer epithelial cells lines tested does not indicate their

  6. Primary cilia mechanics affects cell mechanosensation: A computational study.

    PubMed

    Khayyeri, Hanifeh; Barreto, Sara; Lacroix, Damien

    2015-08-21

    Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process whereby cilium deflection under fluid flow induces strains on the internal cell components that regulate the cell׳s mechanosensitive response. Our investigation employs a computational approach in which a finite element model of a cell consisting of a nucleus, cytoplasm, cortex, microtubules, actin bundles and a primary cilium was used together with a finite element representation of a flow chamber. Fluid-structure interaction analysis was performed by simulating perfusion flow of 1mm/s on the cell model. Simulations of cells with different PC mechanical characteristics, showed that the length and the stiffness of PC are responsible for the transmission of mechanical stimuli to the cytoskeleton. Fluid flow deflects the cilium, with the highest strains found at the base of the PC and in the cytoplasm. The PC deflection created further strains on the cell nucleus but did not influence microtubules and actin bundles significantly. Our results indicate that PC deflection under fluid flow stimulation transmits mechanical strain primarily to other essential organelles in the cytoplasm, such as the Golgi complex, that regulate cells' mechanoresponse. The simulations further suggest that cell mechanosensitivity can be altered by targeting PC length and rigidity.

  7. Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.; King, Stephen M.

    2012-01-01

    The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a “high-load environment,” we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters. PMID:22855525

  8. Primary cilia regulate the osmotic stress response of renal epithelial cells through TRPM3.

    PubMed

    Siroky, Brian J; Kleene, Nancy K; Kleene, Steven J; Varnell, Charles D; Comer, Raven G; Liu, Jialiu; Lu, Lu; Pachciarz, Nolan W; Bissler, John J; Dixon, Bradley P

    2017-04-01

    Primary cilia sense environmental conditions, including osmolality, but whether cilia participate in the osmotic response in renal epithelial cells is not known. The transient receptor potential (TRP) channels TRPV4 and TRPM3 are osmoresponsive. TRPV4 localizes to cilia in certain cell types, while renal subcellular localization of TRPM3 is not known. We hypothesized that primary cilia are required for maximal activation of the osmotic response of renal epithelial cells and that ciliary TRPM3 and TRPV4 mediate that response. Ciliated [murine epithelial cells from the renal inner medullary collecting duct (mIMCD-3) and 176-5] and nonciliated (176-5Δ) renal cells expressed Trpv4 and Trpm3 Ciliary expression of TRPM3 was observed in mIMCD-3 and 176-5 cells and in wild-type mouse kidney tissue. TRPV4 was identified in cilia and apical membrane of mIMCD-3 cells by electrophysiology and in the cell body by immunofluorescence. Hyperosmolal stress at 500 mOsm/kg (via NaCl addition) induced the osmotic response genes betaine/GABA transporter (Bgt1) and aldose reductase (Akr1b3) in all ciliated cell lines. This induction was attenuated in nonciliated cells. A TRPV4 agonist abrogated Bgt1 and Akr1b3 induction in ciliated and nonciliated cells. A TRPM3 agonist attenuated Bgt1 and Akr1b3 induction in ciliated cells only. TRPM3 knockout attenuated Akr1b3 induction. Viability under osmotic stress was greater in ciliated than nonciliated cells. Akr1b3 induction was also less in nonciliated than ciliated cells when mannitol was used to induce hyperosmolal stress. These findings suggest that primary cilia are required for the maximal osmotic response in renal epithelial cells and that TRPM3 is involved in this mechanism. TRPV4 appears to modulate the osmotic response independent of cilia.

  9. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes

    PubMed Central

    Dougherty, Gerard W.; Loges, Niki T.; Klinkenbusch, Judith A.; Olbrich, Heike; Pennekamp, Petra; Menchen, Tabea; Raidt, Johanna; Wallmeier, Julia; Werner, Claudius; Westermann, Cordula; Ruckert, Christian; Mirra, Virginia; Hjeij, Rim; Memari, Yasin; Durbin, Richard; Kolb-Kokocinski, Anja; Praveen, Kavita; Kashef, Mohammad A.; Kashef, Sara; Eghtedari, Fardin; Häffner, Karsten; Valmari, Pekka; Baktai, György; Aviram, Micha; Bentur, Lea; Amirav, Israel; Davis, Erica E.; Katsanis, Nicholas; Brueckner, Martina; Shaposhnykov, Artem; Pigino, Gaia; Dworniczak, Bernd

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)–left–right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP–left–right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography. PMID:26909801

  10. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes.

    PubMed

    Dougherty, Gerard W; Loges, Niki T; Klinkenbusch, Judith A; Olbrich, Heike; Pennekamp, Petra; Menchen, Tabea; Raidt, Johanna; Wallmeier, Julia; Werner, Claudius; Westermann, Cordula; Ruckert, Christian; Mirra, Virginia; Hjeij, Rim; Memari, Yasin; Durbin, Richard; Kolb-Kokocinski, Anja; Praveen, Kavita; Kashef, Mohammad A; Kashef, Sara; Eghtedari, Fardin; Häffner, Karsten; Valmari, Pekka; Baktai, György; Aviram, Micha; Bentur, Lea; Amirav, Israel; Davis, Erica E; Katsanis, Nicholas; Brueckner, Martina; Shaposhnykov, Artem; Pigino, Gaia; Dworniczak, Bernd; Omran, Heymut

    2016-08-01

    Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.

  11. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    PubMed Central

    2007-01-01

    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use. PMID:17903277

  12. Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia

    PubMed Central

    Sugiyama, Yuki; Stump, Richard J. W.; Nguyen, Anke; Wen, Li; Chen, Yongjuan; Wang, Yanshu; Murdoch, Jennifer N.; Lovicu, Frank J.; McAvoy, John W.

    2009-01-01

    Planar cell polarity (PCP) signaling polarises cells along tissue axes. Although pathways involved are becoming better understood, outstanding issues include; (i) existence/identity of cues that orchestrate global polarisation in tissues, and (ii) the generality of the link between polarisation of primary cilia and asymmetric localisation of PCP proteins. Mammalian lenses are mainly comprised of epithelial-derived fiber cells. Concentrically arranged fibers are precisely aligned as they elongate along the anterior-posterior axis and orientate towards lens poles where they meet fibers from other segments to form characteristic sutures. We show that lens exhibits PCP, with each fiber cell having a apically situated cilium and in most cases this is polarised towards the anterior pole. Frizzled and other PCP proteins are also asymmetrically localised along the equatorial-anterior axis. Mutations in core PCP genes Van Gogh-like 2 and Celsr1 perturb oriented fiber alignment and suture formation. Suppression of the PCP pathway by overexpressing Sfrp2, shows that whilst local groups of fibers are often similarly oriented, they lack global orientation; consequently when local groups of fibers with different orientations meet they form multiple, small, ectopic suture-like configurations. This indicates that this extracellular inhibitor disrupts a global polarising signal that utilises a PCP-mediated mechanism to coordinate the global alignment and orientation of fibers to lens poles. PMID:19968984

  13. Self-organized cell motility

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; Doubrovinski, Konstantin

    2011-03-01

    Cell migration plays a key role in a wide range of biological phenomena, such as morphogenesis, chemotaxis, and wound healing. Cell locomotion relies on the cytoskeleton, a meshwork of filamentous proteins, intrinsically out of thermodynamic equilibrium and cross-linked by molecular motors, proteins that turn chemical energy into mechanical work. In the course of locomotion, cells remain polarized, i.e. they retain a single direction of motion in the absence of external cues. Traditionally, polarization has been attributed to intracellular signaling. However, recent experiments show that polarization may be a consequence of self-organized cytoskeletal dynamics. Our aim is to elucidate the mechanisms by which persistent unidirectional locomotion may arise through simple mechanical interactions of the cytoskeletal proteins. To this end, we develop a simple physical description of cytoskeletal dynamics. We find that the proposed description accounts for a range of phenomena associated with cell motility, including spontaneous polarization, persistent unidirectional motion, and the co-existence of motile and non-motile states.

  14. “Mating Behavior, Male Sensory Cilia, and Polycystins in C. elegans” Chapter

    PubMed Central

    Barr, Maureen M.

    2015-01-01

    The investigation of C. elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved Intraflagellar Transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male

  15. Simulation by using the lattice Boltzmann method of microscopic particle motion induced by artificial cilia

    NASA Astrophysics Data System (ADS)

    Alapati, Suresh; Che, Woo Seong; Mannoor, Madhusoodanan; Suh, Yong Kweon

    2016-06-01

    In this paper, we present the results obtained from the simulation of particle motion induced by the fluid flow driven by an array of beating artificial cilia inside a micro-channel. A worm-like-chain model is used to simulate the elastic cilia, and the lattice Boltzmann equation is used to compute the fluid flow. We employ a harmonic force at the extreme tip of each cilium to actuate it. Our simulation methods are first validated by applying them to the motion of a single cilium and a freely falling sphere. After validation, we simulate the fluid flow generated by an array of beating cilia and find that a maximum flow rate is achieved at an optimum sperm number. Next, we simulate the motion of a neutrally buoyant spherical particle at this optimum sperm number by tracking the particle motion with a smoothed profile method. We address the effect of the following parameters on the particle velocity: the gap between cilia and particle, the particle size, the cilia density, and the presence of an array of intermediate particles.

  16. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis

    PubMed Central

    2013-01-01

    Dysfunctional cilia underlie a broad range of cellular and tissue phenotypes and can eventually result in the development of ciliopathies: pathologically diverse diseases that range from clinically mild to highly complex and severe multi-organ failure syndromes incompatible with neonatal life. Given that virtually all cells of the human body have the capacity to generate cilia, it is likely that clinical manifestations attributed to ciliary dysfunction will increase in the years to come. Disputed but nevertheless enigmatic is the notion that at least a subset of tumor phenotypes fit within the ciliopathy disease spectrum and that cilia loss may be required for tumor progression. Contending for the centrosome renders ciliation and cell division mutually exclusive; a regulated tipping of balance promotes either process. The mechanisms involved, however, are complex. If the hypothesis that tumorigenesis results from dysfunctional cilia is true, then why do the classic ciliopathies only show limited hyperplasia at best? Although disassembly of the cilium is a prerequisite for cell proliferation, it does not intrinsically drive tumorigenesis per se. Alternatively, we will explore the emerging evidence suggesting that some tumors depend on ciliary signaling. After reviewing the structure, genesis and signaling of cilia, the various ciliopathy syndromes and their genetics, we discuss the current debate of tumorigenesis as a ciliopathy spectrum defect, and describe recent advances in this fascinating field. PMID:23628112

  17. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking.

    PubMed

    Liem, Karel F; Ashe, Alyson; He, Mu; Satir, Peter; Moran, Jennifer; Beier, David; Wicking, Carol; Anderson, Kathryn V

    2012-06-11

    Two intraflagellar transport (IFT) complexes, IFT-A and IFT-B, build and maintain primary cilia and are required for activity of the Sonic hedgehog (Shh) pathway. A weak allele of the IFT-A gene, Ift144, caused subtle defects in cilia structure and ectopic activation of the Shh pathway. In contrast, strong loss of IFT-A, caused by either absence of Ift144 or mutations in two IFT-A genes, blocked normal ciliogenesis and decreased Shh signaling. In strong IFT-A mutants, the Shh pathway proteins Gli2, Sufu, and Kif7 localized correctly to cilia tips, suggesting that these pathway components were trafficked by IFT-B. In contrast, the membrane proteins Arl13b, ACIII, and Smo failed to localize to primary cilia in the absence of IFT-A. We propose that the increased Shh activity seen in partial loss-of-function IFT-A mutants may be a result of decreased ciliary ACIII and that the loss of Shh activity in the absence of IFT-A is a result of severe disruptions of cilia structure and membrane protein trafficking.

  18. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking

    PubMed Central

    Liem, Karel F.; Ashe, Alyson; He, Mu; Satir, Peter; Moran, Jennifer; Beier, David; Wicking, Carol

    2012-01-01

    Two intraflagellar transport (IFT) complexes, IFT-A and IFT-B, build and maintain primary cilia and are required for activity of the Sonic hedgehog (Shh) pathway. A weak allele of the IFT-A gene, Ift144, caused subtle defects in cilia structure and ectopic activation of the Shh pathway. In contrast, strong loss of IFT-A, caused by either absence of Ift144 or mutations in two IFT-A genes, blocked normal ciliogenesis and decreased Shh signaling. In strong IFT-A mutants, the Shh pathway proteins Gli2, Sufu, and Kif7 localized correctly to cilia tips, suggesting that these pathway components were trafficked by IFT-B. In contrast, the membrane proteins Arl13b, ACIII, and Smo failed to localize to primary cilia in the absence of IFT-A. We propose that the increased Shh activity seen in partial loss-of-function IFT-A mutants may be a result of decreased ciliary ACIII and that the loss of Shh activity in the absence of IFT-A is a result of severe disruptions of cilia structure and membrane protein trafficking. PMID:22689656

  19. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles.

    PubMed

    Siyahhan, Bercan; Knobloch, Verena; de Zélicourt, Diane; Asgari, Mahdi; Schmid Daners, Marianne; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2014-05-06

    While there is growing experimental evidence that cerebrospinal fluid (CSF) flow induced by the beating of ependymal cilia is an important factor for neuronal guidance, the respective contribution of vascular pulsation-driven macroscale oscillatory CSF flow remains unclear. This work uses computational fluid dynamics to elucidate the interplay between macroscale and cilia-induced CSF flows and their relative impact on near-wall dynamics. Physiological macroscale CSF dynamics are simulated in the ventricular space using subject-specific anatomy, wall motion and choroid plexus pulsations derived from magnetic resonance imaging. Near-wall flow is quantified in two subdomains selected from the right lateral ventricle, for which dynamic boundary conditions are extracted from the macroscale simulations. When cilia are neglected, CSF pulsation leads to periodic flow reversals along the ventricular surface, resulting in close to zero time-averaged force on the ventricle wall. The cilia promote more aligned wall shear stresses that are on average two orders of magnitude larger compared with those produced by macroscopic pulsatile flow. These findings indicate that CSF flow-mediated neuronal guidance is likely to be dominated by the action of the ependymal cilia in the lateral ventricles, whereas CSF dynamics in the centre regions of the ventricles is driven predominantly by wall motion and choroid plexus pulsation.

  20. Specific α- and β-Tubulin Isotypes Optimize the Functions of Sensory Cilia in Caenorhabditis elegans

    PubMed Central

    Hurd, Daryl D.; Miller, Renee M.; Núñez, Lizbeth; Portman, Douglas S.

    2010-01-01

    Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for the transduction of particular stimuli. Here, we find that three tubulin isotypes—the α-tubulins TBA-6 and TBA-9 and the β-tubulin TBB-4—are specifically expressed in overlapping sets of C. elegans sensory neurons and localize to the sensory cilia of these cells. Although cilia still form in mutants lacking tba-6, tba-9, and tbb-4, ciliary function is often compromised: these mutants exhibit a variety of sensory deficits as well as the mislocalization of signaling components. In at least one case, that of the CEM cephalic sensory neurons, cilium architecture is disrupted in mutants lacking specific ciliary tubulins. While there is likely to be some functional redundancy among C. elegans tubulin genes, our results indicate that specific tubulins optimize the functional properties of C. elegans sensory cilia. PMID:20421600

  1. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    SciTech Connect

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  2. Fundoplication improves disordered esophageal motility.

    PubMed

    Heider, T Ryan; Behrns, Kevin E; Koruda, Mark J; Shaheen, Nicholas J; Lucktong, Tananchai A; Bradshaw, Barbara; Farrell, Timothy M

    2003-02-01

    Patients with gastroesophageal reflux disease (GERD) and disordered esophageal motility are at risk for postoperative dysphagia, and are often treated with partial (270-degree) fundoplication as a strategy to minimize postoperative swallowing difficulties. Complete (360-degree) fundoplication, however, may provide more effective and durable reflux protection over time. Recently we reported that postfundoplication dysphagia is uncommon, regardless of preoperative manometric status and type of fundoplication. To determine whether esophageal function improves after fundoplication, we measured postoperative motility in patients in whom disordered esophageal motility had been documented before fundoplication. Forty-eight of 262 patients who underwent laparoscopic fundoplication between 1995 and 2000 satisfied preoperative manometric criteria for disordered esophageal motility (distal esophageal peristaltic amplitude < or =30 mm Hg and/or peristaltic frequency < or =80%). Of these, 19 had preoperative manometric assessment at our facility and consented to repeat study. Fifteen (79%) of these patients had a complete fundoplication and four (21%) had a partial fundoplication. Each patient underwent repeat four-channel esophageal manometry 29.5 +/- 18.4 months (mean +/- SD) after fundoplication. Distal esophageal peristaltic amplitude and peristaltic frequency were compared to preoperative data by paired t test. After fundoplication, mean peristaltic amplitude in the distal esophagus increased by 47% (56.8 +/- 30.9 mm Hg to 83.5 +/- 36.5 mm Hg; P < 0.001) and peristaltic frequency improved by 33% (66.4 +/- 28.7% to 87.6 +/- 16.3%; P < 0.01). Normal esophageal motor function was present in 14 patients (74%) after fundoplication, whereas in five patients the esophageal motor function remained abnormal (2 improved, 1 worsened, and 2 remained unchanged). Three patients with preoperative peristaltic frequencies of 0%, 10%, and 20% improved to 84%, 88%, and 50%, respectively

  3. The role of Zn-alpha2 glycoprotein in sperm motility is mediated by changes in cyclic AMP.

    PubMed

    Qu, Fei; Ying, Xiaoqian; Guo, Wei; Guo, Qiangsu; Chen, Guowu; Liu, Yue; Ding, Zhide

    2007-10-01

    Sperm motility is essential for male reproduction or natural fertilization. The cyclic AMP (cAMP)/cAMP-dependent protein kinase A (PKA) signaling pathway is generally recognized as one of the significant signaling pathways in the regulation of mammalian spermatozoan motility. Since Zn-alpha2-glycoprotein (ZAG) activity in mammalian adipose tissue is mediated via the beta(3)-adrenoreceptor, with upregulation of the cAMP pathway, we hypothesize that ZAG may play the same role in sperm motility regulation, a new factor of regulation of sperm motility. Therefore, the gene encoding human ZAG was cloned and polyclonal antibodies were generated, and then laser scanning confocal microscopy and flow cytometry were employed to identify this protein in human spermatozoa. The results showed that ZAG protein was mostly localized on the pre-equatorial region covering the acrosome, neck, and middle piece of the flagellum of spermatozoa. Furthermore, using computer-assisted sperm analysis, we found that anti-human ZAG antibodies could significantly reduce the motility of human swim-up spermatozoa after 90- or 120-min incubation (P<0.05 and P<0.01 respectively), together with the decreasing of intracellular cAMP and PKA levels. In conclusion, these data suggest that ZAG is present in human spermatozoa and may be involved in the regulation of sperm motility via the cAMP/PKA signaling pathway.

  4. Inositol polyphosphate 5-phosphatases; new players in the regulation of cilia and ciliopathies.

    PubMed

    Conduit, Sarah E; Dyson, Jennifer M; Mitchell, Christina A

    2012-08-31

    Phosphoinositides regulate numerous cellular events via the recruitment and activation of multiple lipid-binding effector proteins. The precise temporal and spatial regulation of phosphoinositide signals by the co-ordinated activities of phosphoinositide kinases and phosphatases is essential for homeostasis and development. Mutations in two inositol polyphosphate 5-phosphatases, INPP5E and OCRL, cause the cerebrorenal syndromes of Joubert and Lowe's, respectively. INPP5E and OCRL exhibit overlapping phosphoinositide substrate specificity and subcellular localisation, including an association with the primary cilia. Here, we review recent studies that identify a new role for these enzymes in the regulation of primary cilia function. Joubert syndrome has been extensively linked to primary cilia defects, and Lowe's may represent a new class of 'ciliopathy associated' syndromes.

  5. New insights into an old organelle: meeting report on biology of cilia and flagella.

    PubMed

    Sengupta, Piali; Barr, Maureen M

    2014-06-01

    The rising interest of the scientific community in cilia biology was evident from the fact that registration for the third FASEB conference on 'The Biology of Cilia and Flagella' closed out before the early bird deadline. Cilia and flagella are organelles of profound medical importance; defects in their structure or function result in a plethora of human diseases called ciliopathies. 240 clinicians and basic scientists from around the world gathered from 23 June 2013 to 28 June 2013 at Sheraton at the Falls, Niagara Falls, NY to present and discuss their research on this intensely studied subcellular structure. The meeting was organized by Gregory Pazour (University of Massachusetts Medical School), Bradley Yoder (University of Alabama-Birmingham), and Maureen Barr (Rutgers University) and was sponsored by the Federation of American Societies for Experimental Biology (FASEB). Here, we report highlights, points of discussion, and emerging themes from this exciting meeting.

  6. Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella.

    PubMed

    Hu, Zhangfeng; Liang, Yinwen; Meng, Dan; Wang, Liang; Pan, Junmin

    2015-01-01

    Defects in ciliary assembly, maintenance, and signaling are associated with various human diseases and developmental disorders, termed ciliopathies. Eukaryotic flagella and cilia (interchangeable terms) are microtubule-based organelles. Thus, microtubule dynamics and microtubule-dependent transport are predicted to affect the structural integrity and functionality of cilia profoundly. Kinesin-2 is well known for its role in intraflagellar transport to transport ciliary precursors and signaling molecules. Recently, microtubule-depolymerizing kinesins found in kinesin-8, -13, and -14A families have emerged as regulators of cilia. We first discuss ciliary kinesins identified in the flagellar or ciliary proteome, and then focus on the function and regulation of microtubule-depolymerizing kinesins. Lastly, we review the recent advances of microtubule-depolymerizing kinesins in controlling ciliary assembly, disassembly, and length.

  7. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases

    PubMed Central

    Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor

    2017-01-01

    Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry. PMID:28125008

  8. Role for primary cilia as flow detectors in the cardiovascular system.

    PubMed

    Van der Heiden, Kim; Egorova, Anastasia D; Poelmann, Robert E; Wentzel, Jolanda J; Hierck, Beerend P

    2011-01-01

    The cardiovascular system is exposed to biochemical and biomechanical signals. Various sensors for these signals have been described and they contribute to cardiovascular development, maintenance of vessel integrity during adult life, and to pathogenesis. In the past 10years, primary cilia, membrane-covered, rod-like cellular protrusions, were discovered on multiple cell types of the cardiovascular system. Primary cilia are sensory organelles involved in several key (developmental) signaling pathways and in chemo- and mechanosensing on a myriad of cell types. In the embryonic and adult cardiovascular system, they have been demonstrated to function as shear stress sensors on endothelial cells and could act as strain sensors on smooth muscle cells and cardiomyocytes and as chemosensors on fibroblasts. This review will cover their occurrence and elaborate on established and possible functions of primary cilia in the cardiovascular system.

  9. The essential roles of transition fibers in the context of cilia.

    PubMed

    Wei, Qing; Ling, Kun; Hu, Jinghua

    2015-08-01

    Once thought of as a vestigial organelle, the primary cilium is now recognized as a signaling hub for key cellular pathways in vertebrate development. The recent renaissance in cilia studies significantly improved our understanding of how cilia form and function, but little is known about how ciliogenesis is initiated and how ciliary proteins enter cilia. These important ciliary events require transition fibers (TFs) that are positioned at the ciliary base as symmetric nine-bladed propeller fibrous structures. Up until recently, TFs have been the most underappreciated ciliary structures due to limited knowledge about their molecular composition and function. Here, we highlight recent advances in our understanding of TF composition and the indispensable roles of TFs in regulating the initiation of ciliogenesis and the selective import of ciliary proteins.

  10. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    PubMed Central

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  11. An increase or a decrease in myosin II phosphorylation inhibits macrophage motility

    PubMed Central

    1991-01-01

    Myosin II purified from mammalian non-muscle cells is phosphorylated on the 20-kD light chain subunit (MLC20) by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK). The importance of MLC20 phosphorylation in regulating cell motility was investigated by introducing either antibodies to MLCK (MK-Ab) or a Ca2+/calmodulin- independent, constitutively active form of MLCK (MK-) into macrophages. The effects of these proteins on cell motility were then determined using a quantitative chemotaxis assay. Chemotaxis is significantly diminished in macrophages containing MK-Ab compared to macrophages containing control antibodies. Moreover, there is an inverse relationship between the number of cells that migrate and the amount of MK-Ab introduced into cells. Interestingly, there is also an inverse relationship between the number of cells that migrate and the amount of MK- introduced into cells. Other experiments demonstrated that MK-Ab decreased intracellular MLC20 phosphorylation while MK- increased MLC20 phosphorylation. MK- also increased the amount of myosin associated with the cytoskeleton. These data demonstrate that the regulation of MLCK is an important aspect of cell motility and suggest that MLC20 phosphorylation must be maintained within narrow limits during translational motility by mammalian cells. PMID:2071674

  12. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes

    PubMed Central

    Bower, Raqual; Tritschler, Douglas; VanderWaal, Kristyn; Perrone, Catherine A.; Mueller, Joshua; Fox, Laura; Sale, Winfield S.; Porter, M. E.

    2013-01-01

    The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending. PMID:23427265

  13. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  14. Emerging role of primary cilia as mechanosensors in osteocytes.

    PubMed

    Nguyen, An M; Jacobs, Christopher R

    2013-06-01

    The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell. This organelle has established mechanosensory roles in several contexts including kidney, liver, and the embryonic node. Mechanical load deflects the cilium, triggering biochemical responses. Defects in cilium function have been associated with numerous human diseases. Recent research has implicated the primary cilium as a mechanosensor in bone. In this review, we discuss the cilium, the growing evidence for its mechanosensory role in bone, and areas of future study.

  15. Langevin Dynamics Deciphers the Motility Pattern of Swimming Parasites

    NASA Astrophysics Data System (ADS)

    Zaburdaev, Vasily; Uppaluri, Sravanti; Pfohl, Thomas; Engstler, Markus; Friedrich, Rudolf; Stark, Holger

    2011-05-01

    The parasite African trypanosome swims in the bloodstream of mammals and causes the highly dangerous human sleeping sickness. Cell motility is essential for the parasite’s survival within the mammalian host. We present an analysis of the random-walk pattern of a swimming trypanosome. From experimental time-autocorrelation functions for the direction of motion we identify two relaxation times that differ by an order of magnitude. They originate from the rapid deformations of the cell body and a slower rotational diffusion of the average swimming direction. Velocity fluctuations are athermal and increase for faster cells whose trajectories are also straighter. We demonstrate that such a complex dynamics is captured by two decoupled Langevin equations that decipher the complex trajectory pattern by referring it to the microscopic details of cell behavior.

  16. Determination of motility forces on isolated chromosomes with laser tweezers.

    PubMed

    Khatibzadeh, Nima; Stilgoe, Alexander B; Bui, Ann A M; Rocha, Yesenia; Cruz, Gladys M; Loke, Vince; Shi, Linda Z; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Berns, Michael W

    2014-10-31

    Quantitative determination of the motility forces of chromosomes during cell division is fundamental to understanding a process that is universal among eukaryotic organisms. Using an optical tweezers system, isolated mammalian chromosomes were held in a 1064 nm laser trap. The minimum force required to move a single chromosome was determined to be ≈ 0.8-5 pN. The maximum transverse trapping efficiency of the isolated chromosomes was calculated as ≈ 0.01-0.02. These results confirm theoretical force calculations of ≈ 0.1-12 pN to move a chromosome on the mitotic or meiotic spindle. The verification of these results was carried out by calibration of the optical tweezers when trapping microspheres with a diameter of 4.5-15 µm in media with 1-7 cP viscosity. The results of the chromosome and microsphere trapping experiments agree with optical models developed to simulate trapping of cylindrical and spherical specimens.

  17. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and...

  18. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and...

  19. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and...

  20. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and...

  1. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and...

  2. The flagellar motility of Chlamydomonas pf25 mutant lacking an AKAP-binding protein is overtly sensitive to medium conditions.

    PubMed

    Yang, Chun; Yang, Pinfen

    2006-01-01

    Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wildtype-like swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.

  3. The primary cilia, a 'Rab-id' transit system for hedgehog signaling.

    PubMed

    Oro, Anthony E

    2007-12-01

    Intense focus has been centered around how the primary cilia transduces the hedgehog (Hh) signal from smoothened (Smo) to the Gli transcription factors. New data indicate that ligand and signaling lipids help regulate small GTPase-dependent accumulation and activity of signaling components.

  4. Real-time remote control of artificial cilia actuation using fingertip drawing for efficient micromixing.

    PubMed

    Chen, Chia-Yuan; Yao, Chih-Yuan; Lin, Cheng-Yi; Hung, Shih-Hsuan

    2014-10-01

    Low-efficiency diffusion mechanism poses a significant barrier to the enhancement of micromixing efficiency in microfluidics. Actuating artificial cilia to increase the contact area of two flow streams during micromixing provides a promising alternative to enhance the mixing performance. Real-time adjustment of beating behavior in artificial cilia is necessary to accommodate various biological/chemical reagents with different hydrodynamic properties that are processed in a single microfluidic platform during micromixing. Equipping the microfluidic device with a self-troubleshooting feature for the end user, such as a bubble removal function during the process of multiple chemical solution injections, is also essential for robust micromixing. To meet these requirements, we initiated a new beating control concept by controlling the beating behavior of the artificial cilia through remote and simultaneous actuation of human fingertip drawing. A series of micromixing test cases under extreme flow conditions (Re < 10(-3)) was conducted in the designed micromixer with high mixing performance. Satisfactory micromixing efficiency was achieved even with a rapid beating trajectory of the artificial cilia actuated through the fingertip motion of end users. The analytical paradigm and results allow end users to troubleshoot technical difficulties encountered during micromixing operations.

  5. The retrograde IFT machinery of C. elegans cilia: two IFT dynein complexes?

    PubMed

    Hao, Limin; Efimenko, Evgeni; Swoboda, Peter; Scholey, Jonathan M

    2011-01-01

    We analyzed the relatively poorly understood IFT-dynein (class DYNC2)-driven retrograde IFT pathway in C. elegans cilia, which yielded results that are surprising in the context of current models of IFT. Assays of C. elegans dynein gene expression and intraflagellar transport (IFT) suggest that conventional IFT-dynein contains essential heavy (CHE-3), light-intermediate (XBX-1), plus three light polypeptide chains that participate in IFT, but no "essential" intermediate chain. IFT assays of XBX-1::YFP suggest that IFT-dynein is transported as cargo to the distal tip of the cilium by kinesin-2 motors, but independent of the IFT-particle/BBSome complexes. Finally, we were surprised to find that the subset of cilia present on the OLQ (outer labial quadrant) neurons assemble independently of conventional "CHE-3" IFT-dynein, implying that there is a second IFT-dynein acting in these cilia. We have found a novel gene encoding a dynein heavy chain, DHC-3, and two light chains, in OLQ neurons, which could constitute an IFT-dynein complex in OLQ neuronal cilia. Our results underscore several surprising features of retrograde IFT that require clarification.

  6. A Cilia Independent Role of Ift88/Polaris during Cell Migration

    PubMed Central

    Hamann, Christoph; Powelske, Christian; Mergen, Miriam; Herbst, Henriette; Kotsis, Fruzsina; Nitschke, Roland; Kuehn, E. Wolfgang

    2015-01-01

    Ift88 is a central component of the intraflagellar transport (Ift) complex B, essential for the building of cilia and flagella from single cell organisms to mammals. Loss of Ift88 results in the absence of cilia and causes left-right asymmetry defects, disordered Hedgehog signaling, and polycystic kidney disease, all of which are explained by aberrant ciliary function. In addition, a number of extraciliary functions of Ift88 have been described that affect the cell-cycle, mitosis, and targeting of the T-cell receptor to the immunological synapse. Similarly, another essential ciliary molecule, the kinesin-2 subunit Kif3a, which transports Ift-B in the cilium, affects microtubule (MT) dynamics at the leading edge of migrating cells independently of cilia. We now show that loss of Ift88 impairs cell migration irrespective of cilia. Ift88 is required for the polarization of migrating MDCK cells, and Ift88 depleted cells have fewer MTs at the leading edge. Neither MT dynamics nor MT nucleation are dependent on Ift88. Our findings dissociate the function of Ift88 from Kif3a outside the cilium and suggest a novel extraciliary function for Ift88. Future studies need to address what unifying mechanism underlies the different extraciliary functions of Ift88. PMID:26465598

  7. Spatial Distribution of Calcium-Gated Chloride Channels in Olfactory Cilia

    PubMed Central

    French, Donald A.; Badamdorj, Dorjsuren; Kleene, Steven J.

    2010-01-01

    Background In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. Principal Findings To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. Conclusions On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli. PMID:21209888

  8. Dynamics of Individual cilia to external loading- A simple one dimensional picture

    NASA Astrophysics Data System (ADS)

    Swaminathan, Vinay; Hill, David; Superfine, R.

    2008-10-01

    From being called the cellular janitors to swinging debauchers, cilia have captured the fascinations of researchers for over 200 years. In cystic fibrosis and chronic obstructive pulmonary disease where the cilia loses it's function, the protective mucus layer in the lung thickens and mucociliary clearance breaks down, leading to inflammation along the airways and an increased rate of infection. The mechanistic understanding of mucus clearance depends on a quantitative assessment of the axoneme dynamics and the maximum force the cilia are capable of generating and imparting to the mucus layer. Similar to the situation in molecular motors, detailed quantitative measurements of dynamics under applied load conditions are expected to be essential in developing predictive models. Based on our measurements of the dynamics of individual ciliary motion in the human bronchial epithelial cell under the application of an applied load, we present a simple one dimensional model for the axoneme dynamics and quantify the axoneme stiffness, the internal force generated by the axoneme, the stall force and show how the dynamics sheds insight on the time dependence of the internal force generation. The internal force generated by the axoneme is related to the ability of cilia to propel fluids and to their potential role in force sensing.

  9. Automated real-time measurement of chemotactic cell motility.

    PubMed

    Hadjout, N; Laevsky, G; Knecht, D A; Lynes, M A

    2001-11-01

    We have developed a novel method, (ECIS/taxis), for monitoring cell movement in response to chemotactic and chemokinetic factors. In this system, cells migrate in an under-agarose environment, and their positions are monitored using the electric cell-substrate impedance sensor technology to measure the impedance change at a target electrode, that is lithographed onto the substrate, as the cells arrive at the target. In the studies reported here, Dictyostelium discoideum was used as a prototypical, motile eukaryotic cell. Using the ECIS/taxis system, the arrival of cells at the target electrode was proportional to the dose offolate used to stimulate the cells and could be assessed by changes in resistance at the electrode. ECIS/taxis was readily able to distinguish between wild-type cells and a mutant that is deficient in its chemotactic response. Finally, we have shown that an agent that interferes with chemotactic motility leads to the delayed arrival of cells at the target electrode. The multi-well assay configuration allows for simultaneous automated screening of many samples for chemotactic or anti-chemotactic activity. This assay system is compatible with measurements of mammalian cell movement and should be valuable in the assessment of both agonists and antagonists of cell movement.

  10. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination

    PubMed Central

    Grimes, Daniel T.; Keynton, Jennifer L.; Buenavista, Maria T.; Jin, Xingjian; Patel, Saloni H.; Kyosuke, Shinohara; Williams, Debbie J.; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M.; Norris, Dominic P.

    2016-01-01

    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo. PMID:27272319

  11. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination.

    PubMed

    Grimes, Daniel T; Keynton, Jennifer L; Buenavista, Maria T; Jin, Xingjian; Patel, Saloni H; Kyosuke, Shinohara; Vibert, Jennifer; Williams, Debbie J; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M; Norris, Dominic P

    2016-06-01

    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo.

  12. The actin gene ACT1 is required for phagocytosis, motility, and cell separation of Tetrahymena thermophila.

    PubMed

    Williams, Norman E; Tsao, Che-Chia; Bowen, Josephine; Hehman, Gery L; Williams, Ruth J; Frankel, Joseph

    2006-03-01

    A previously identified Tetrahymena thermophila actin gene (C. G. Cupples and R. E. Pearlman, Proc. Natl. Acad. Sci. USA 83:5160-5164, 1986), here called ACT1, was disrupted by insertion of a neo3 cassette. Cells in which all expressed copies of this gene were disrupted exhibited intermittent and extremely slow motility and severely curtailed phagocytic uptake. Transformation of these cells with inducible genetic constructs that contained a normal ACT1 gene restored motility. Use of an epitope-tagged construct permitted visualization of Act1p in the isolated axonemes of these rescued cells. In ACT1Delta mutant cells, ultrastructural abnormalities of outer doublet microtubules were present in some of the axonemes. Nonetheless, these cells were still able to assemble cilia after deciliation. The nearly paralyzed ACT1Delta cells completed cleavage furrowing normally, but the presumptive daughter cells often failed to separate from one another and later became reintegrated. Clonal analysis revealed that the cell cycle length of the ACT1Delta cells was approximately double that of wild-type controls. Clones could nonetheless be maintained for up to 15 successive fissions, suggesting that the ACT1 gene is not essential for cell viability or growth. Examination of the cell cortex with monoclonal antibodies revealed that whereas elongation of ciliary rows and formation of oral structures were normal, the ciliary rows of reintegrated daughter cells became laterally displaced and sometimes rejoined indiscriminately across the former division furrow. We conclude that Act1p is required in Tetrahymena thermophila primarily for normal ciliary motility and for phagocytosis and secondarily for the final separation of daughter cells.

  13. miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110

    PubMed Central

    Song, Rui; Walentek, Peter; Sponer, Nicole; Klimke, Alexander; Lee, Joon Sub; Dixon, Gary; Harland, Richard; Wan, Ying; Lishko, Polina; Lize, Muriel; Kessel, Michael; He, Lin

    2014-01-01

    Summary The miR-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here, we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility, and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis. PMID:24899310

  14. Current topics of functional links between primary cilia and cell cycle.

    PubMed

    Izawa, Ichiro; Goto, Hidemasa; Kasahara, Kousuke; Inagaki, Masaki

    2015-01-01

    Primary cilia, microtubule-based sensory structures, orchestrate various critical signals during development and tissue homeostasis. In view of the rising interest into the reciprocal link between ciliogenesis and cell cycle, we discuss here several recent advances to understand the molecular link between the individual step of ciliogenesis and cell cycle control. At the onset of ciliogenesis (the transition from centrosome to basal body), distal appendage proteins have been established as components indispensable for the docking of vesicles at the mother centriole. In the initial step of axonemal extension, CP110, Ofd1, and trichoplein, key negative regulators of ciliogenesis, are found to be removed by a kinase-dependent mechanism, autophagy, and ubiquitin-proteasome system, respectively. Of note, their disposal functions as a restriction point to decide that the axonemal nucleation and extension begin. In the elongation step, Nde1, a negative regulator of ciliary length, is revealed to be ubiquitylated and degraded by CDK5-SCF(Fbw7) in a cell cycle-dependent manner. With regard to ciliary length control, it has been uncovered in flagellar shortening of Chlamydomonas that cilia itself transmit a ciliary length signal to cytoplasm. At the ciliary resorption step upon cell cycle re-entry, cilia are found to be disassembled not only by Aurora A-HDAC6 pathway but also by Nek2-Kif24 and Plk1-Kif2A pathways through their microtubule-depolymerizing activity. On the other hand, it is becoming evident that the presence of primary cilia itself functions as a structural checkpoint for cell cycle re-entry. These data suggest that ciliogenesis and cell cycle intimately link each other, and further elucidation of these mechanisms will contribute to understanding the pathology of cilia-related disease including cancer and discovering targets of therapeutic interventions.

  15. The effect of halothane and pentobarbital sodium on brain ependymal cilia

    PubMed Central

    2012-01-01

    Background The effect of anesthetic agents on ependymal ciliary function is unknown. The aim of this study was to determine the effect of halothane and pentobarbital sodium on brain ependymal ciliary function. Methods We used an ex vivo rat brain slice model to measure ependymal ciliary beat frequency by high speed video photography at 37°C. Results Exposure to halothane caused a significant reduction in ciliary beat frequency of 2 % (P = 0.006), 15.5 % (P < 0.001), and 21.5 % (P < 0.001) for halothane concentrations of 1.8 %, 3.4 % and 4.4 %, respectively, compared to controls. Following a one-hour wash-out period, there was no significant difference between control samples and cilia that had been exposed to 1.8 % (P = 0.5) and 3.4 % (P = 0.3) halothane. The beat frequency of cilia exposed to 4.4 % halothane had increased following the wash-out period but cilia were still beating significantly more slowly than cilia from the control group (P = <0.001). Pentobarbitone at concentrations of 25 and 50 μg/ml had no effect on ciliary beat frequency compared to controls (P = 0.6 and 0.4 respectively). A significant (P = 0.002) decrease in ciliary beat frequency was seen following incubation with a pentobarbitone concentration of 250 μg/ml (mean (SD) frequency, 24(8) Hz compared to controls, 38(9) Hz). Conclusions Halothane reversibly inhibits the rate at which ependymal cilia beat. Pentobarbitone has no effect on ciliary activity at levels used for anesthesia. It is unclear whether the slowing of ependymal ciliary by halothane is responsible for some of the secondary central nervous system effects of volatile anesthetic agents. PMID:23351190

  16. Active gel model of amoeboid cell motility

    NASA Astrophysics Data System (ADS)

    Callan-Jones, A. C.; Voituriez, R.

    2013-02-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-substrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  17. Sperm motility under conditions of weightlessness.

    PubMed

    Engelmann, U; Krassnigg, F; Schill, W B

    1992-01-01

    The aim of this study was to determine the differences in motility of frozen and thawed bull spermatozoa under conditions of weightlessness compared with ground conditions. The tests were performed within a series of scientific and technologic experiments under microgravity using sounding rockets in the Technologische Experimente unter Schwerelosigkeit (TEXUS) program launched in Kiruna, North Sweden. Using a computerized sperm motility analyzer, significant differences were found in sperm motility under microgravity compared with sperm under gravitational conditions on earth. Computer analysis showed alterations in straight line and curvilinear velocity, as well as in linearity values. The amount of progressively motile spermatozoa, including all spermatozoa with a velocity > 20 microns/second, increased significantly from 24% +/- 9.5% in the reference test to 49% +/- 7.6% in the microgravity test. In conclusion, there is strong evidence that gravity influences sperm motility.

  18. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  19. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  20. Mammalian development in space.

    PubMed

    Ronca, April E

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  1. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  2. Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates.

    PubMed

    Flores, E; Taberner, E; Rivera, M M; Peña, A; Rigau, T; Miró, J; Rodríguez-Gil, J E

    2008-10-01

    The main aim of this study is to assess the influence of freeze/thawing on motile sperm subpopulations in ejaculates from two phylogenetically different mammalian species, boar and donkey. Our results indicate that, whereas boar and donkey sperm respond very differently in their mean motion characteristics to freezing/thawing, this process did not change the existence of a 4-subpopulations structure in the ejaculates in either species when these subpopulations were defined by taking values of curvilinear velocity (VCL) as reference. Moreover, the freezing/thawing-linked changes in mean sperm-motion characteristics in both boar and donkey semen were especially due to changes in the proportion among each concrete subpopulation. In this way, the freezing/thawing-induced mean increase in motion characteristics observed in boar sperm was a result of the decrease in the percentage of sperm in Subpopulation 1 (from 53.9%+/-4.7% to 31.2%+/-3.9% after thawing) and a concomitant increase of sperm from Subpopulations 3 (from 13.3%+/-2.5% to 32.6%+/-3.9% after thawing) and 4 (from 3.4%+/-0.9% to 8.0%+/-1.1% after thawing). On the contrary, changes in mean motility of frozen/thawed donkey sperm were linked to an increase in the percentage of sperm in Subpopulation 1 (from 31.5%+/-4.3% to 58.8%+/-4.9% after thawing) and a concomitant decrease of sperm from Subpopulations 3 (from 32.4%+/-3.2% to 6.6%+/-1.8% after thawing) and 4 (from 12.2%+/-2.5% to 7.3%+/-1.9% after thawing). In conclusion, our results seem to indicate that motility changes induced by the freezing/thawing protocol are linked to concomitant changes in both the specific parameters and, more importantly, to the specific percentage of each of the motile sperm subpopulations. These changes did not affect the overall proportion of motile sperm present in both boar and donkey, which is conserved despite the detrimental effect caused by freezing/thawing in both species. Finally, the presence of some kind of motile sperm

  3. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development.

    PubMed

    Endoh-Yamagami, Setsu; Evangelista, Marie; Wilson, Deanna; Wen, Xiaohui; Theunissen, Jan-Willem; Phamluong, Khanhky; Davis, Matti; Scales, Suzie J; Solloway, Mark J; de Sauvage, Frederic J; Peterson, Andrew S

    2009-08-11

    The Hedgehog (Hh) signaling pathway regulates development in animals ranging from flies to humans. Although its framework is conserved, differences in pathway components have been reported. A kinesin-like protein, Costal2 (Cos2), plays a central role in the Hh pathway in flies. Knockdown of a zebrafish homolog of Cos2, Kif7, results in ectopic Hh signaling, suggesting that Kif7 acts primarily as a negative regulator of Hh signal transduction. However, in vitro analysis of the function of mammalian Kif7 and the closely related Kif27 has led to the conclusion that neither protein has a role in Hh signaling. Using Kif7 knockout mice, we demonstrate that mouse Kif7, like its zebrafish and Drosophila homologs, plays a role in transducing the Hh signal. We show that Kif7 accumulates at the distal tip of the primary cilia in a Hh-dependent manner. We also demonstrate a requirement for Kif7 in the efficient localization of Gli3 to cilia in response to Hh and for the processing of Gli3 to its repressor form. These results suggest a role for Kif7 in coordinating Hh signal transduction at the tip of cilia and preventing Gli3 cleavage into a repressor form in the presence of Hh.

  4. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    PubMed Central

    Dhonukshe, Pankaj; Grigoriev, Ilya; Fischer, Rainer; Tominaga, Motoki; Robinson, David G.; Hašek, Jiří; Paciorek, Tomasz; Petrášek, Jan; Seifertová, Daniela; Tejos, Ricardo; Meisel, Lee A.; Zažímalová, Eva; Gadella, Theodorus W. J.; Stierhof, York-Dieter; Ueda, Takashi; Oiwa, Kazuhiro; Akhmanova, Anna; Brock, Roland; Spang, Anne; Friml, Jiří

    2008-01-01

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role. PMID:18337510

  5. Regulation of Eukaryotic Flagellar Motility

    NASA Astrophysics Data System (ADS)

    Mitchell, David R.

    2005-03-01

    The central apparatus is essential for normal eukaryotic flagellar bend propagation as evidenced by the paralysis associated with mutations that prevent central pair (CP) assembly. Interactions between doublet-associated radial spokes and CP projections are thought to modulate spoke-regulated protein kinases and phosphatases on outer doublets, and these enzymes in turn modulate dynein activity. To better understand CP control mechanisms, we determined the three-dimensional structure of the Chlamydomonas reinhardtii CP complex and analyzed CP orientation during formation and propagation of flagellar bending waves. We show that a single CP microtubule, C1, is near the outermost doublet in curved regions of the flagellum, and this orientation is maintained by twists between successive principal and reverse bends. The Chlamydomonas CP is inherently twisted; twists are not induced by bend formation, and do not depend on forces or signals transmitted through spoke-central pair interactions. We hypothesize that CP orientation passively responds to bend formation, and that bend propagation drives rotation of the CP and maintains a constant CP orientation in bends, which in turn permits signal transduction between specific CP projections and specific doublet-associated dyneins through radial spokes. The central pair kinesin, Klp1, although essential for normal motility, is therefore not the motor that drives CP rotation. The CP also acts as a scaffold for enzymes that maintain normal intraflagellar ATP concentration.

  6. Deterministic patterns in cell motility

    NASA Astrophysics Data System (ADS)

    Lavi, Ido; Piel, Matthieu; Lennon-Duménil, Ana-Maria; Voituriez, Raphaël; Gov, Nir S.

    2016-12-01

    Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.

  7. A molecular ruler determines the repeat length in eukaryotic cilia and flagella.

    PubMed

    Oda, Toshiyuki; Yanagisawa, Haruaki; Kamiya, Ritsu; Kikkawa, Masahide

    2014-11-14

    Existence of cellular structures with specific size raises a fundamental question in biology: How do cells measure length? One conceptual answer to this question is by a molecular ruler, but examples of such rulers in eukaryotes are lacking. In this work, we identified a molecular ruler in eukaryotic cilia and flagella. Using cryo-electron tomography, we found that FAP59 and FAP172 form a 96-nanometer (nm)-long complex in Chlamydomonas flagella and that the absence of the complex disrupted 96-nm repeats of axonemes. Furthermore, lengthening of the FAP59/172 complex by domain duplication resulted in extension of the repeats up to 128 nm, as well as duplication of specific axonemal components. Thus, the FAP59/172 complex is the molecular ruler that determines the 96-nm repeat length and arrangements of components in cilia and flagella.

  8. Identification of Elongated Primary Cilia with Impaired Mechanotransduction in Idiopathic Scoliosis Patients

    PubMed Central

    Oliazadeh, Niaz; Gorman, Kristen F.; Eveleigh, Robert; Bourque, Guillaume; Moreau, Alain

    2017-01-01

    The primary cilium is an outward projecting antenna-like organelle with an important role in bone mechanotransduction. The capacity to sense mechanical stimuli can affect important cellular and molecular aspects of bone tissue. Idiopathic scoliosis (IS) is a complex pediatric disease of unknown cause, defined by abnormal spinal curvatures. We demonstrate significant elongation of primary cilia in IS patient bone cells. In response to mechanical stimulation, these IS cells differentially express osteogenic factors, mechanosensitive genes, and signaling genes. Considering that numerous ciliary genes are associated with a scoliosis phenotype, among ciliopathies and knockout animal models, we expected IS patients to have an accumulation of rare variants in ciliary genes. Instead, our SKAT-O analysis of whole exomes showed an enrichment among IS patients for rare variants in genes with a role in cellular mechanotransduction. Our data indicates defective cilia in IS bone cells, which may be linked to heterogeneous gene variants pertaining to cellular mechanotransduction. PMID:28290481

  9. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia.

    PubMed

    Dorn, Karolin V; Hughes, Casey E; Rohatgi, Rajat

    2012-10-16

    Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that localize in cilia but are displaced from the EvC zone are dominant inhibitors of Hh signaling. Disabling Evc2 function blocks Hh signaling at a specific step between Smo and the downstream regulators protein kinase A and Suppressor of Fused, preventing activation of the Gli transcription factors. Our data suggest that the Smo-Evc2 signaling complex at the EvC zone is required for Hh signal transmission and elucidate the molecular basis of two human ciliopathies.

  10. Select Acetophenones Modulate Flagellar Motility in Chlamydomonas

    PubMed Central

    Evans, Shakila K.; Pearce, Austin A.; Ibezim, Prudence K.; Primm, Todd P.; Gaillard, Anne R.

    2009-01-01

    Acetophenones were screened for activity against positive phototaxis of Chlamydomonas cells, a process that requires coordinated flagellar motility. The structure-activity relationships of a series of acetophenones are reported, including acetophenones that affect flagellar motility and cell viability. Notably, 4-methoxyacetophenone, 3,4-dimethoxyacetophenone, and 4-hydroxyacetophenone induced negative phototaxis in Chlamydomonas, suggesting interference with activity of flagellar proteins and control of flagellar dominance. PMID:20659114

  11. A Simple Cell-Based Assay Reveals That Diverse Neuropsychiatric Risk Genes Converge on Primary Cilia

    PubMed Central

    Marley, Aaron; von Zastrow, Mark

    2012-01-01

    Human genetic studies are beginning to identify a large number of genes linked to neuropsychiatric disorders. It is increasingly evident that different genes contribute to risk for similar syndromes and, conversely, the same genes or even the same alleles cross over traditional diagnostic categories. A current challenge is to understand the cellular biology of identified risk genes. However, most genes associated with complex neuropsychiatric phenotypes are not related through a known biochemical pathway, and many have an entirely unknown cellular function. One possibility is that diverse disease-linked genes converge at a higher-level cellular structure. The synapse is already known to be one such convergence, and emerging evidence suggests the primary cilium as another. Because many genes associated with neuropsychiatric illness are expressed also outside the nervous system, as are cilia, we tested the hypothesis that such genes affect conserved features of the primary cilium. Using RNA interference to test 41 broadly expressed candidate genes associated with schizophrenia, bipolar affective disorder, autism spectrum disorder and intellectual disability, we found 20 candidates that reduce ciliation in NIH3T3 cells when knocked down, and three whose manipulation increases cilia length. Three of the candidate genes were previously implicated in cilia formation and, altogether, approximately half of the candidates tested produced a ciliary phenotype. Our results support the hypothesis that primary cilia indeed represent a conserved cellular structure at which the effects of diverse neuropsychiatric risk genes converge. More broadly, they suggest a relatively simple cell-based approach that may be useful for exploring the complex biological underpinnings of neuropsychiatric disease. PMID:23056384

  12. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.

    PubMed

    Skillman, Kristen M; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L David

    2011-10-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.

  13. Flagellum density regulates Proteus mirabilis swarmer cell motility in viscous environments.

    PubMed

    Tuson, Hannah H; Copeland, Matthew F; Carey, Sonia; Sacotte, Ryan; Weibel, Douglas B

    2013-01-01

    Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming--increases in cell length and flagellum density--and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ∼5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD(4)C(2), the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters.

  14. Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites

    PubMed Central

    Skillman, Kristen M.; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L. David

    2011-01-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility. PMID:21998582

  15. Toward the reconstitution of synthetic cell motility

    PubMed Central

    Siton-Mendelson, Orit; Bernheim-Groswasser, Anne

    2016-01-01

    ABSTRACT Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell. PMID:27019160

  16. Tumor invasion as dysregulated cell motility.

    PubMed

    Kassis, J; Lauffenburger, D A; Turner, T; Wells, A

    2001-04-01

    Investigations across a range of disciplines over the past decade have brought the study of cell motility and its role in invasion to an exciting threshold. The biophysical forces proximally involved in generating cell locomotion, as well as the underlying signaling and genomic regulatory processes, are gradually becoming elucidated. We now appreciate the intricacies of the many cellular and extracellular events that modulate cell migration. This has enabled the demonstration of a causal role of cell motility in tumor progression, with various points of 'dysregulation' of motility being responsible for promoting invasion. In this paper, we describe key fundamental principles governing cell motility and branch out to describe the essence of the data that describe these principles. It has become evident that many proposed models may indeed be converging into a tightly-woven tapestry of coordinated events which employ various growth factors and their receptors, adhesion receptors (integrins), downstream molecules, cytoskeletal components, and altered genomic regulation to accomplish cell motility. Tumor invasion occurs in response to dysregulation of many of these modulatory points; specific examples include increased signaling from the EGF receptor and through PLC gamma, altered localization and expression of integrins, changes in actin modifying proteins and increased transcription from specific promoter sites. This diversity of alterations all leading to tumor invasion point to the difficulty of correcting causal events leading to tumor invasion and rather suggest that the underlying common processes required for motility be targeted for therapeutic intervention.

  17. Flagellar motility in eukaryotic human parasites.

    PubMed

    Krüger, Timothy; Engstler, Markus

    2015-10-01

    A huge variety of protists rely on one or more motile flagella to either move themselves or move fluids and substances around them. Many of these flagellates have evolved a symbiotic or parasitic lifestyle. Several of the parasites have adapted to human hosts, and include agents of prevalent and serious diseases. These unicellular parasites have become specialised in colonising a wide range of biological niches within humans. They usually have diverse transmission cycles, and frequently manifest a variety of distinct morphological stages. The motility of the single or multiple flagella plays important but understudied roles in parasite transmission, host invasion, dispersal, survival, proliferation and pathology. In this review we provide an overview of the important human pathogens that possess a motile flagellum for at least part of their life cycle. We highlight recently published studies that aim to elucidate motility mechanisms, and their relevance for human disease. We then bring the physics of swimming at the microscale into context, emphasising the importance of interdisciplinary approaches for a full understanding of flagellate motility - especially in light of the parasites' microenvironments and population dynamics. Finally, we summarise some important technological aspects, describing challenges for the field and possibilities for motility analyses in the future.

  18. Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development

    PubMed Central

    Antal, Maria Cristina; Bénardais, Karelle; Samama, Brigitte; Auger, Cyril; Schini-Kerth, Valérie; Ghandour, Said; Boehm, Nelly

    2017-01-01

    Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors. PMID:28122017

  19. Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development

    PubMed Central

    Klein, Maike K.; Haberberger, Rainer V.; Hartmann, Petra; Faulhammer, Petra; Lips, Katrin S.; Krain, Benjamin; Wess, Jürgen; Kummer, Wolfgang; König, Peter

    2014-01-01

    Ciliary beating of airway epithelial cells drives the removal of mucus and particles from the airways. Mucociliary transport and possibly airway epithelial development are governed by muscarinic acetylcholine receptors but the precise roles of the subtypes involved are unknown. This issue was addressed by determining cilia-driven particle transport, ciliary beat frequency, and the composition and ultrastructural morphology of the tracheal epithelium in M1–M5 muscarinic receptor gene-deficient mice. Knockout of M3 muscarinic receptors prevented an increase in particle transport speed and ciliary beat frequency in response to muscarine. Furthermore, the ATP response after application of muscarine was blunted. Pretreatment with atropine before application of muscarine restored the response to ATP. Additional knockout of the M2 receptor in these mice partially restored the muscarine effect most likely through the M1 receptor and normalized the ATP response. M1, M4, and M5 receptor deficient mice exhibited normal responses to muscarine. None of the investigated mutant mouse strains had any impairment of epithelial cellular structure or composition. In conclusion, M3 receptors stimulate whereas M2 receptors inhibit cilia-driven particle transport. The M1 receptor increases cilia-driven particle transport if the M3 and M2 receptor are missing. None of the receptors is necessary for epithelial development. PMID:19213795

  20. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly.

    PubMed

    Coon, Brian G; Hernandez, Victor; Madhivanan, Kayalvizhi; Mukherjee, Debarati; Hanna, Claudia B; Barinaga-Rementeria Ramirez, Irene; Lowe, Martin; Beales, Philip L; Aguilar, R Claudio

    2012-04-15

    Lowe syndrome (LS) is a devastating, X-linked genetic disease characterized by the presence of congenital cataracts, profound learning disabilities and renal dysfunction. Unfortunately, children affected with LS often die early of health complications including renal failure. Although this syndrome was first described in the early 1950s and the affected gene, OCRL1, was identified more than 17 years ago, the mechanism by which Ocrl1 defects lead to LS's symptoms remains unknown. Here we show that LS display characteristics of a ciliopathy. Specifically, we found that patients' cells have defects in the assembly of primary cilia and this phenotype was reproduced in cell lines by knock-down of Ocrl1. Importantly, this defect could be rescued by re-introduction of WT Ocrl1 in both patient and Ocrl1 knock-down cells. In addition, a zebrafish animal model of LS exhibited cilia defects and multiple morphological and anatomical abnormalities typically seen in ciliopathies. Mechanistically, we show that Ocrl1 is involved in protein trafficking to the primary cilia in an Rab8-and IPIP27/Ses-dependent manner. Taking into consideration the relevance of the signaling pathways hosted by the primary cilium, our results suggest hitherto unrecognized mechanisms by which Ocrl1 deficiency may contribute to the phenotypic characteristics of LS. This conceptual change in our understanding of the disease etiology may provide an alternative avenue for the development of therapies.

  1. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development.

    PubMed

    Bhattacharyya, Sohinee; Rainey, Mark A; Arya, Priyanka; Dutta, Samikshan; George, Manju; Storck, Matthew D; McComb, Rodney D; Muirhead, David; Todd, Gordon L; Gould, Karen; Datta, Kaustubh; Gelineau-van Waes, Janee; Band, Vimla; Band, Hamid

    2016-02-17

    Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling.

  2. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development

    PubMed Central

    Bhattacharyya, Sohinee; Rainey, Mark A; Arya, Priyanka; Dutta, Samikshan; George, Manju; Storck, Matthew D.; McComb, Rodney D.; Muirhead, David; Todd, Gordon L.; Gould, Karen; Datta, Kaustubh; Waes, Janee Gelineau-van; Band, Vimla; Band, Hamid

    2016-01-01

    Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling. PMID:26884322

  3. KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability.

    PubMed

    Yeyati, Patricia L; Schiller, Rachel; Mali, Girish; Kasioulis, Ioannis; Kawamura, Akane; Adams, Ian R; Playfoot, Christopher; Gilbert, Nick; van Heyningen, Veronica; Wills, Jimi; von Kriegsheim, Alex; Finch, Andrew; Sakai, Juro; Schofield, Christopher J; Jackson, Ian J; Mill, Pleasantine

    2017-02-28

    Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.

  4. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.

    PubMed

    Liu, Tongyu; Jin, Xingjian; Prasad, Rahul M; Sari, Youssef; Nauli, Surya M

    2014-09-01

    Ependymal cells are multiciliated epithelial cells that line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia has been associated with various neurological deficits. For the first time, we report three distinct ependymal cell types, I, II, and III, based on their unique ciliary beating frequency and beating angle. These ependymal cells have specific localizations within the third ventricle of the mouse brain. Furthermore, neither ependymal cell types nor their localizations are altered by aging. Our high-speed fluorescence imaging analysis reveals that these ependymal cells have an intracellular pacing calcium oscillation property. Our study further shows that alcohol can significantly repress the amplitude of calcium oscillation and the frequency of ciliary beating, resulting in an overall decrease in volume replacement by the cilia. Furthermore, the pharmacological agent cilostazol could differentially increase cilia beating frequency in type II, but not in type I or type III, ependymal cells. In summary, we provide the first evidence of three distinct types of ependymal cells with calcium oscillation properties.

  5. Depletion of primary cilia from mature dentate granule cells impairs hippocampus-dependent contextual memory

    PubMed Central

    Rhee, Soyoung; Kirschen, Gregory W.; Gu, Yan; Ge, Shaoyu

    2016-01-01

    The primary cilium, a sensory organelle, regulates cell proliferation and neuronal development of dentate granule cells in the hippocampus. However, its role in the function of mature dentate granule cells remains unknown. Here we specifically depleted and disrupted ciliary proteins IFT20 and Kif3A (respectively) in mature dentate granule cells and investigated hippocampus-dependent contextual memory and long-term plasticity at mossy fiber synapses. We found that depletion of IFT20 in these cells significantly impaired context-dependent fear-related memory. Furthermore, we tested synaptic plasticity of mossy fiber synapses in area CA3 and found increased long-term potentiation upon depletion of IFT20 or disruption of Kif3A. Our findings suggest a role of primary cilia in the memory function of mature dentate granule cells, which may result from abnormal mossy fiber synaptic plasticity. A direct link between the primary cilia of mature dentate granule cells and behavior will require further investigation using independent approaches to manipulate primary cilia. PMID:27678193

  6. KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability

    PubMed Central

    Schiller, Rachel; Kawamura, Akane; Gilbert, Nick; Wills, Jimi; von Kriegsheim, Alex

    2017-01-01

    Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive “actin gate” that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics. PMID:28246120

  7. Statistical physical models of cellular motility

    NASA Astrophysics Data System (ADS)

    Banigan, Edward J.

    Cellular motility is required for a wide range of biological behaviors and functions, and the topic poses a number of interesting physical questions. In this work, we construct and analyze models of various aspects of cellular motility using tools and ideas from statistical physics. We begin with a Brownian dynamics model for actin-polymerization-driven motility, which is responsible for cell crawling and "rocketing" motility of pathogens. Within this model, we explore the robustness of self-diffusiophoresis, which is a general mechanism of motility. Using this mechanism, an object such as a cell catalyzes a reaction that generates a steady-state concentration gradient that propels the object in a particular direction. We then apply these ideas to a model for depolymerization-driven motility during bacterial chromosome segregation. We find that depolymerization and protein-protein binding interactions alone are sufficient to robustly pull a chromosome, even against large loads. Next, we investigate how forces and kinetics interact during eukaryotic mitosis with a many-microtubule model. Microtubules exert forces on chromosomes, but since individual microtubules grow and shrink in a force-dependent way, these forces lead to bistable collective microtubule dynamics, which provides a mechanism for chromosome oscillations and microtubule-based tension sensing. Finally, we explore kinematic aspects of cell motility in the context of the immune system. We develop quantitative methods for analyzing cell migration statistics collected during imaging experiments. We find that during chronic infection in the brain, T cells run and pause stochastically, following the statistics of a generalized Levy walk. These statistics may contribute to immune function by mimicking an evolutionarily conserved efficient search strategy. Additionally, we find that naive T cells migrating in lymph nodes also obey non-Gaussian statistics. Altogether, our work demonstrates how physical

  8. The Role of Primary Cilia in Mesenchymal Stem Cell Differentiation: A Pivotal Switch in Guiding Lineage Commitment

    PubMed Central

    Tummala, Padmaja; Arnsdorf, Emily J.; Jacobs, Christopher R.

    2010-01-01

    Primary cilia are sensory organelles that have been shown to play a critical role in lineage commitment. It was our hypothesis that the primary cilium is necessary for chemically induced differentiation of human mesenchymal stem cells (MSC). To investigate this, polaris siRNA was used to inhibit the primary cilia and the mRNA levels of transcription factors Runx2, PPARγ were measured by RT PCR as markers of osteogenic, adipogenic and chondrogenic differentiation, respectively. MSCs with inhibited primary cilia had significantly decreased basal mRNA expression levels of all three lineages specific transcription factors indicating that primary cilia are critical in multiple differentiation pathways. Furthermore, to determine if primary cilia play a role in the differentiation potential of MSCs, progenitor cells transfected with either scrambled or polaris siRNA were cultured in osteo-inductive, chondro-inductive, or adipo-inductive media and lineage commitment was ascertained. Interestingly, within 24 h of culture, cells transfected with polaris siRNA in both osteogenic and adipogenic media lost adhesion and released from the slides; however MSCs in chondrogenic media as well as cells transfected with scrambled siRNA did not. These results suggest that the primary cilium is necessary for the normal progression of chemically induced osteogenic and adipogenic differentiation. As a control, the experiment was repeated with NIH3T3 fibroblasts and none of the effects of inhibited primary cilia were observed indicating that the loss of adhesion may be specific to MSCs. Furthermore after biochemically inducing the cells to differentiate, polaris knockdown resulted in abrogation of both Runx2 and PPARγ mRNA while SOX9 mRNA expression was significantly lower. These results suggest that primary cilia play an essential role not only in the initiation of both osteogenic and adipogenic differentiation, but also in maintaining the phenotype of differentiated cells. Interestingly

  9. Mammalian glycosylation in immunity.

    PubMed

    Marth, Jamey D; Grewal, Prabhjit K

    2008-11-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.

  10. Fourier analysis of cell motility: correlation of motility with metastatic potential.

    PubMed Central

    Partin, A W; Schoeniger, J S; Mohler, J L; Coffey, D S

    1989-01-01

    We report the development of a computerized, mathematical system for quantitating the various types of cell motility. This Fourier analysis method simultaneously quantifies for individual cells (i) temporal changes in cell shape represented by cell ruffling, undulation, and pseudopodal extension, (ii) cell translation, and (iii) average cell size and shape. This spatial-temporal Fourier analysis was tested on a series of well-characterized animal tumor cell lines of rat prostatic cancer to study in a quantitative manner the correlation of cell motility with increasing in vivo metastatic potential. Fourier motility coefficients measuring pseudopodal extension correlated best with metastatic potential in the cell lines studied. This study demonstrated that Fourier analysis provides quantitative measurement of cell motility that may be applied to the study of biological processes. This analysis should aid in the study of the motility of individual cells in various areas of cellular and tumor biology. Images PMID:2919174

  11. Motility modes of the parasite Trypanosoma brucei

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Qu, Zijie; McAllaster, Michael; de Graffenried, Christopher; Breuer, Kenneth

    2015-11-01

    The parasitic single-celled protozoan Trypanosoma brucei causes African Sleeping Sickness, which is a fatal disease in humans and animals that threatens more than 60 million people in 36 African countries. Cell motility plays a critical role in the developmental phases and dissemination of the parasite. Unlike many other motile cells such as bacteria Escherichia coli or Caulobacter crescentus, the flagellum of T. brucei is attached along the length of its awl-like body, producing a unique mode of motility that is not fully understood or characterized. Here, we report on the motility of T. brucei, which swims using its single flagellum employing both rotating and undulating propulsion modes. We tracked cells in real-time in three dimensions using fluorescent microscopy. Data obtained from experiments using both short-term tracking within the field of view and long-term tracking using a tracking microscope were analyzed. Motility modes and swimming speed were analyzed as functions of cell size, rotation rate and undulation pattern. Research supported by NSF.

  12. Study of human sperm motility post cryopreservation

    PubMed Central

    Oberoi, Bhavni; Kumar, Sushil; Talwar, Pankaj

    2014-01-01

    Background Cryopreservation of spermatozoa is a widely used technique to preserve the fertility of males. It can also benefit the armed forces personnel who are to be sent for long recruitments, while leaving their families behind. This study, apart from studying the effects of freezing and thawing, reveals the effect of the post thaw interval on the motility of the human spermatozoa and thus widens the insemination window period. Methods A detailed semen analysis was carried out as per the WHO guidelines for 25 samples. The samples were then washed, analysed and frozen in liquid nitrogen. The semen samples were subsequently thawed and similarly analysed after 20 min and 40 min of thawing. This was then followed by statistical analysis of the comparative motilities. Results Motility of sperms is found to decrease after cryopreservation. However, the study revealed that after thawing a significant increase in the motility of the sperms was noted with the progression of time (p < 0.05). Conclusion By simulating conditions similar to the in vivo conditions for the post thaw semen samples, we can safely wait, confirm the parameters like motility and count, and then inseminate the samples instead of blindly inseminating them immediately after thawing. PMID:25382909

  13. Role of macrophage-stimulating protein and its receptor, RON tyrosine kinase, in ciliary motility.

    PubMed Central

    Sakamoto, O; Iwama, A; Amitani, R; Takehara, T; Yamaguchi, N; Yamamoto, T; Masuyama, K; Yamanaka, T; Ando, M; Suda, T

    1997-01-01

    Macrophage-stimulating protein (MSP) is an 80-kD serum protein with homology to hepatocyte growth factor (HGF). Its receptor, RON tyrosine kinase, is a new member of the HGF receptor family. The MSP-RON signaling pathway has been implicated in the functional regulation of mononuclear phagocytes. However, the function of this pathway in other types of cells has not been elucidated. Here we show that in contrast to the HGF receptor, which was expressed at the basolateral surface, RON was localized at the apical surface of ciliated epithelia in the airways and oviduct. In addition, MSP was found in the bronchoalveolar space at biologically significant concentrations. MSP bound to RON on normal human bronchial epithelial cells with a high affinity (Kd = 0.5 nM) and induced autophosphorylation of RON. Activation of RON by MSP led to a significant increase in ciliary beat frequency of human nasal cilia. These findings indicate that the ciliated epithelium of the mucociliary transport apparatus is a novel target of MSP. Ciliary motility is critical for mucociliary transport. Our findings suggest that the MSP-RON signaling pathway is a novel regulatory system of mucociliary function and might be involved in the host defense and fertilization. PMID:9045873

  14. Mammalian sperm morphometry.

    PubMed Central

    Gage, M J

    1998-01-01

    Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus. PMID:9474794

  15. Motility of spermatozoa at surfaces.

    PubMed

    Woolley, D M

    2003-08-01

    The hydrodynamic basis for the accumulation of spermatozoa at surfaces has been investigated. The general conclusion is that when spermatozoa arrive at a surface, they will remain there if the vector of the time-averaged thrust is directed towards that surface. This can arise in two basic ways. First, consider spermatozoa that maintain a three-dimensional waveform and roll (spin) as they progress: in this case, it is argued that the conical (rather than cylindrical) shape of the flagellar envelope will establish the direction-of-thrust necessary for capture by the surface. (Additional findings, for spermatozoa of this type, are that the swim-trajectory is curved and that the direction of its curvature reveals the roll-direction of the cell.) Second, consider spermatozoa that maintain a strictly two-dimensional waveform at the surface: in this case, spermatozoa can be captured because the plane-of-flattening of the sperm head is tilted slightly relative to the plane of the flagellar beat. The sperm head is acting as a hydrofoil and, in one orientation only, it comes to exert a pressure against the surface. (This pressure may possibly, in vivo, aid the penetration of the zona pellucida.) The hydrofoil action of sperm heads may explain any bias in the circling direction of spermatozoa that execute two-dimensional waves at surfaces. Finally, a more complex phenomenon is where interaction of the spermatozoa with the surface appears to induce a three-dimensional to two-dimensional conversion of the flagellar wave (thus permitting the hydrofoil effect described). This is characteristic of sperm with 'twisted planar' rather than helical waves. In mammalian spermatozoa, approximately half the beat cycle is planar and the other half generates a pattern of torque causing the head to roll clockwise (seen from ahead), producing a torsion of the neck region of the flagellum. It is the gradual suppression of this torsion, by either impedance at the solid boundary or by raised

  16. Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia.

    PubMed

    Ban Frangez, Helena; Frangez, Igor; Verdenik, Ivan; Jansa, Vid; Virant Klun, Irma

    2015-01-01

    Sperm motility is an important parameter of male fertility and depends on energy consumption. Photobiomodulation with light-emitting diode (LED) is known to stimulate respiratory chain in mitochondria of different mammalian cells. The aim of this research was to evaluate the effect of photobiomodulation with LED on sperm motility in infertile men with impaired sperm motility-asthenozoospermia. Thirty consecutive men with asthenozoospermia and normal sperm count who visited the infertility clinic of University Medial Centre Ljubljana between September 2011 and February 2012 were included in the study. Semen sample of each man was divided into five parts: one served as a non-treated (native) control and four parts were irradiated with LED of different wavelengths: (1) 850 nm, (2) 625, 660 and 850 nm, (3) 470 nm and (4) 625, 660 and 470 nm. The percentage of motile sperm and kinematic parameters were measured using a Sperm Class Analyser system following the WHO recommendations. In the non-treated semen samples, the average ratio of rapidly progressive sperms was 12% and of immotile sperm 73%. Treating with LED significantly increased the proportion of rapidly progressive sperm (mean differences were as follows: 2.83 (1.39-4.28), 3.33 (1.61-5.05), 4.50 (3.00-5.99) and 3.83 (2.31-5.36) for groups 1-4, respectively) and significantly decreased the ratio of immotile sperm (the mean differences and 95% CI were as follows: 3.50 (1.30-5.70), 4.33 (2.15-6.51), 5.83 (3.81-7.86) and 5.50 (2.98-8.02) for groups 1-4, respectively). All differences were highly statistically significant. This finding confirmed that photobiomodulation using LED improved the sperm motility in asthenozoospermia regardless of the wavelength.

  17. Evidence of a role of inositol polyphosphate 5-phosphatase INPP5E in cilia formation in zebrafish.

    PubMed

    Luo, Na; Lu, Jingping; Sun, Yang

    2012-12-15

    Inositol phosphatases are important regulators of cell signaling and membrane trafficking. Mutations in inositol polyphosphate 5-phosphatase, INPP5E, have been identified in Joubert syndrome, a rare congenital disorder characterized by midbrain malformation, retinitis pigmentosa, renal cysts, and polydactyly. Previous studies have implicated primary cilia abnormalities in Joubert syndrome, yet the role of INPP5E in cilia formation is not well understood. In this study, we examined the function of INPP5E in cilia development in zebrafish. Using specific antisense morpholino oligonucleotides to knockdown Inpp5e expression, we observed phenotypes of microphthalmia, pronephros cysts, pericardial effusion, and left-right body axis asymmetry. The Inpp5e morphant zebrafish exhibited shortened and decreased cilia formation in the Kupffer's vesicle and pronephric ducts as compared to controls. Epinephrine-stimulated melanosome trafficking was delayed in the Inpp5e zebrafish morphants. Expression of human INPP5E expression rescued the phenotypic defects in the Inpp5e morphants. Taken together, we showed that INPP5E is critical for the cilia development in zebrafish.

  18. The forces applied by cilia depend linearly on their frequency due to constant geometry of the effective stroke.

    PubMed

    Teff, Zvi; Priel, Zvi; Gheber, Levi A

    2008-01-01

    Mucus propelling cilia are excitable by many stimulants, and have been shown to increase their beating frequency up to threefold, by physiological extracellular stimulants, such as adenosine-triphosphate, acetylcholine, and others. This is thought to represent the evolutionary adaptation of mucociliary systems to the need of rapid and efficient cleansing the airways of foreign particles. However, the mucus transport velocity depends not only on the beat frequency of the cilia, but on their beat pattern as well, especially in the case of mucus bearing cilia that beat in a complex, three-dimensional fashion. In this study, we directly measured the force applied by live ciliary tissues with an atomic force microscope, and found that it increases linearly with the beating frequency. This implies that the arc swept by the cilia during their effective stroke remains unchanged during frequency increase, thus leading to a linear dependence of transport velocity on the beat frequency. Combining the atomic force microscope measurements with optical measurements, we have indications that the recovery stroke is performed on a less inclined plane, leading to an effective shortening of the overall path traveled by the cilia tip during this nontransporting phase of their beat pattern. This effect is observed to be independent of the type of stimulant (temperature or chemical), chemical (adenosine-triphosphate or acetylcholine), or concentration (1 microM-100 microM), indicating that this behavior may result from internal details of the cilium mechanical structure.

  19. Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei.

    PubMed

    Stellamanns, Eric; Uppaluri, Sravanti; Hochstetter, Axel; Heddergott, Niko; Engstler, Markus; Pfohl, Thomas

    2014-10-01

    Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation.

  20. Microgravity, bacteria, and the influence of motility

    NASA Astrophysics Data System (ADS)

    Benoit, Michael R.; Klaus, David M.

    Space microbiology studies date back to the 1960s, with most investigations reporting that increased bacterial populations occur in flight compared to ground controls. Several exceptions to these findings, however, have created controversy and complicated explanations of how, or whether, microgravity affects microorganisms. Upon closer examination of the literature, we identified a trend relating cell motility to experimental outcome. Related studies conducted in microgravity analog devices, such as the clinostat or rotating wall vessel bioreactor, further corroborate this trend. We review the literature regarding bacterial growth experiments conducted in space (and using microgravity analogs) and analyze the influence of bacterial motility.

  1. Response of a Motile/Non-Motile Escherichia coli Front to Hydrodynamic excitations

    NASA Astrophysics Data System (ADS)

    Baabour, Magali; Douarche, Carine; Salin, Dominique

    2014-11-01

    In a recent study (Douarche et al. PRL 102, 198101 (2009)), it has been shown that the motility of Escherichia coli (E. coli) is highly correlated to the oxygen level in a minimal medium: bacteria swim as long as they are provided with oxygen but reversibly transit to a non-motile state when they lack of it. Hence, when oxygen diffuses into an anaerobic sample of non-motile bacteria, a propagating front delineates a region of motile bacteria where oxygen is present from a region of non-motile ones where the oxygen is still not present. To study the response of this front to hydrodynamics excitation, we use the same fluorescent E. coli bacterial solution in rectangular cross section glass cells open to air (oxygen) at one inlet. After bacteria have consumed the oxygen of the solution, the presence of the oxygen only at the open edge of the sample leads to the formation of an analogous stationary front between motile and non-motile bacteria. We follow the response of this front to hydrodynamics flows such as an oscillating Poiseuille flow or natural convection. We analyze both the macroscopic behavior (shape and width) of the front as well as the microscopic displacements of individual bacteria. The dispersive behavior of this bacterial front is compared to the one of equivalent. Collaboration between Laboratories FAST and LPS, Univ Paris Sud and CNRS.

  2. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website.

  3. Cytometry of mammalian sperm

    SciTech Connect

    Gledhill, B.L.

    1983-10-11

    Male germ cells respond dramatically to a variety of insults and are important reproductive dosimeters. Semen analyses are very useful in studies on the effects of drugs, chemicals, and environmental hazards on testicular function, male fertility and heritable germinal mutations. The accessibility of male cells makes them well suited for analytical cytology. We might automate the process of determining sperm morphology but should not do so solely for increased speed. Rather, richer tangible benefits will derive from cytometric evaluation through increased sensitivity, reduced subjectivity, standardization between investigators and laboratories, enhanced archival systems, and the benefits of easily exchanged standardized data. Inroads on the standardization of assays for motility and functional integrity are being made. Flow cytometric analysis of total DNA content of individual sperm is an insensitive means to detect exposure to reproductive toxins because of the small size and low frequency of the DNA content errors. Flow cytometry can be applied to determine the proportions of X- and Y-sperm in semen samples.

  4. Global genetic analysis in mice unveils central role for cilia in congenital heart disease

    PubMed Central

    Li, You; Klena, Nikolai T.; Gabriel, George C; Liu, Xiaoqin; Kim, Andrew J.; Lemke, Kristi; Chen, Yu; Chatterjee, Bishwanath; Devine, William; Damerla, Rama Rao; Chang, Chien-fu; Yagi, Hisato; San Agustin, Jovenal T.; Thahir, Mohamed; Anderton, Shane; Lawhead, Caroline; Vescovi, Anita; Pratt, Herbert; Morgan, Judy; Haynes, Leslie; Smith, Cynthia L.; Eppig, Janan T.; Reinholdt, Laura; Francis, Richard; Leatherbury, Linda; Ganapathiraju, Madhavi K.; Tobita, Kimimasa; Pazour, Gregory J.; Lo, Cecilia W.

    2015-01-01

    Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births1, but the incidence of CHD is up to ten fold higher in human fetuses2,3. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk4. Here we report findings from a recessive forward genetic screen in fetal mice, showing the cilium and cilia transduced cell signaling play important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia transduced cell signaling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signaling. Surprisingly, many CHD genes encoded interacting proteins, suggesting an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note pathways identified show overlap with CHD candidate genes recovered in CHD patients5, suggesting they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations are sperm archived, creating a rich public resource for human disease modeling. PMID:25807483

  5. A Processed Multidomain Mycoplasma hyopneumoniae Adhesin Binds Fibronectin, Plasminogen, and Swine Respiratory Cilia

    PubMed Central

    Seymour, Lisa M.; Deutscher, Ania T.; Jenkins, Cheryl; Kuit, Tracey A.; Falconer, Linda; Minion, F. Chris; Crossett, Ben; Padula, Matthew; Dixon, Nicholas E.; Djordjevic, Steven P.; Walker, Mark J.

    2010-01-01

    Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (KD 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (KD 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae. PMID:20813843

  6. A processed multidomain mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia.

    PubMed

    Seymour, Lisa M; Deutscher, Ania T; Jenkins, Cheryl; Kuit, Tracey A; Falconer, Linda; Minion, F Chris; Crossett, Ben; Padula, Matthew; Dixon, Nicholas E; Djordjevic, Steven P; Walker, Mark J

    2010-10-29

    Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (K(D) 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (K(D) 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae.

  7. The Membrane Proteome of Sensory Cilia to the Depth of Olfactory Receptors*

    PubMed Central

    Kuhlmann, Katja; Tschapek, Astrid; Wiese, Heike; Eisenacher, Martin; Meyer, Helmut E.; Hatt, Hanns H.; Oeljeklaus, Silke; Warscheid, Bettina

    2014-01-01

    In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca2+/K+ shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na+/Ca2+ exchanger (NCKX) 4 and the plasma membrane Ca2+-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse

  8. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    PubMed Central

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-01-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982

  9. CEP90 is required for the assembly and centrosomal accumulation of centriolar satellites, which is essential for primary cilia formation.

    PubMed

    Kim, Kyeongmi; Lee, Kwanwoo; Rhee, Kunsoo

    2012-01-01

    Centriolar satellites are PCM-1-positive granules surrounding centrosomes. Proposed functions of the centriolar satellites include protein targeting to the centrosome, as well as communication between the centrosome and surrounding cytoplasm. CEP90 is a centriolar satellite protein that is critical for spindle pole integrity in mitotic cells. In this study, we examined the biological functions of CEP90 in interphase cells. CEP90 physically interacts with PCM-1 at centriolar satellites, and this interaction is essential for centrosomal accumulation of the centriolar satellites and eventually for primary cilia formation. CEP90 is also required for BBS4 loading on centriolar satellites and its localization in primary cilia. Our results imply that the assembly and transport of centriolar satellites are critical steps for primary cilia formation and ciliary protein recruitment.

  10. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    NASA Astrophysics Data System (ADS)

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-06-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for `stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces.

  11. Heterotrimeric kinesin-II is necessary and sufficient to promote different stepwise assembly of morphologically distinct bipartite cilia in Drosophila antenna

    PubMed Central

    Jana, Swadhin C.; Girotra, Mukul; Ray, Krishanu

    2011-01-01

    Structurally diverse sensory cilia have evolved from primary cilia, a microtubule-based cellular extension engaged in chemical and mechanical sensing and signal integration. The diversity is often associated with functional specialization. The olfactory receptor neurons in Drosophila, for example, express three distinct bipartite cilia displaying different sets of olfactory receptors on them. Molecular description underlying their assembly and diversification is still incomplete. Here, we show that the branched and the slender olfactory cilia develop in two distinct step-wise patterns through the pupal stages before the expression of olfactory receptor genes in olfactory neurons. The process initiates with a thin procilium growth from the dendrite apex, followed by volume increment in successive stages. Mutations in the kinesin-II subunit genes either eliminate or restrict the cilia growth as well as tubulin entry into the developing cilia. Together with previous results, our results here suggest that heterotrimeric kinesin-II is the primary motor engaged in all type-I sensory cilia assembly in Drosophila and that the cilia structure diversity is achieved through additional transports supported by the motor during development. PMID:21233284

  12. 'Dicty dynamics': Dictyostelium motility as persistent random motion

    NASA Astrophysics Data System (ADS)

    Li, Liang; Cox, Edward C.; Flyvbjerg, Henrik

    2011-08-01

    We model the motility of Dictyostelium cells in a systematic data-driven manner. We deduce a minimal dynamical model that reproduces the statistical features of experimental trajectories. These are trajectories of the centroid of the cell perimeter, which is more sensitive to pseudopod activity than the usual tracking by centroid or nucleus. Our data account for cell individuality and dictate a model that extends the cell-type specific models recently derived for mammalian cells. Two generalized Langevin equations model stochastic periodic pseudopod motion parallel and orthogonal to the amoeba's direction of motion. This motion propels the amoeba with a random periodic left-right waddle in a direction that has a long persistence time. The model fully accounts for the statistics of the experimental trajectories, including velocity power spectra and auto-correlations, non-Gaussian velocity distributions, and multiplicative noise. Thus, we find neither need nor place in our data for an interpretation in terms of anomalous diffusion. The model faithfully captures cell individuality as different parameter values in the model, and serves as a basis for integrating the local mechanics of cell motion with our observed long-term behavior.

  13. Exosome secretion affects social motility in Trypanosoma brucei

    PubMed Central

    Shaked, Hadassa; Arvatz, Gil; Tkacz, Itai Dov; Binder, Lior; Waldman Ben-Asher, Hiba; Okalang, Uthman; Chikne, Vaibhav; Cohen-Chalamish, Smadar; Michaeli, Shulamit

    2017-01-01

    Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. PMID:28257521

  14. Semiautomated Motility Assay For Determining Toxicity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond

    1996-01-01

    Improved method of assessing toxicities of various substances based on observation of effects of those substances on motilities of manageably small number of cells of protozoan species Tetrahema pyriformis. Provides repeatable, standardized tests with minimal handling by technicians and with minimal exposure of technicians to chemicals. Rapid and economical alternative to Draize test.

  15. Methods for fabricating microarrays of motile bacteria.

    PubMed

    Rozhok, Sergey; Shen, Clifton K-F; Littler, Pey-Lih H; Fan, Zhifang; Liu, Chang; Mirkin, Chad A; Holz, Richard C

    2005-04-01

    Motile bacterial cell microarrays were fabricated by attaching Escherichia coli K-12 cells onto predesigned 16-mercaptohexadecanoic acid patterned microarrays, which were covalently functionalized with E. coli antibodies or poly-L-lysine. By utilizing 11-mercaptoundecyl-penta(ethylene glycol) or 11-mercapto-1-undecanol as passivating molecules, nonspecific binding of E. coli was significantly reduced. Microcontact printing and dip-pen nanolithography were used to prepare microarrays for bacterial adhesion, which was studied by optical fluorescence and atomic force microscopy. These data indicate that single motile E. coli can be attached to predesigned line or dot features and binding can occur via the cell body or the flagella of bacteria. Adherent bacteria are viable (remain alive and motile after adhesion to patterned surface features) for more than four hours. Individual motile bacterial cells can be placed onto predesigned surface features that are at least 1.3 microm in diameter or larger. The importance of controlling the adhesion of single bacterial cell to a surface is discussed with regard to biomotor design.

  16. Esophageal motility disorders after gastric banding.

    PubMed

    O'Rourke, R W; Deveney, C W; McConnell, D B; Wolfe, B M; Jobe, B A

    2007-01-01

    The long-term effects of gastric banding on esophageal function are not well described. This report describes a 28-year-old woman who developed signs and symptoms of abnormal esophageal motility and lower esophageal sphincter hypotension after gastric banding for morbid obesity. The current literature addressing the effects of gastric banding on esophageal function in light of this case report is discussed.

  17. Esophageal motility abnormalities in gastroesophageal reflux disease.

    PubMed

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-05-06

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett's esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted.

  18. [Increased spontaneous uterine motility with serotonin].

    PubMed

    Lechner, W; Sölder, E; Sölder, B; Kölle, D; Huter, O

    1992-01-01

    The influence of serotonine, a vasoactive neurotransmitter, on the spontaneous motility of uterine strips was investigated. A highly significant (p less than 0.001) increase of uterine activity was observed when serotonine 10(-6) M was added to the perfusing medium.

  19. Regulation of mammalian Gli proteins by Costal 2 and PKA in Drosophila reveals Hedgehog pathway conservation.

    PubMed

    Marks, Steven A; Kalderon, Daniel

    2011-06-01

    Hedgehog (Hh) signaling activates full-length Ci/Gli family transcription factors and prevents Ci/Gli proteolytic processing to repressor forms. In the absence of Hh, Ci/Gli processing is initiated by direct Pka phosphorylation. Despite those fundamental similarities between Drosophila and mammalian Hh pathways, the differential reliance on cilia and some key signal transduction components had suggested a major divergence in the mechanisms that regulate Ci/Gli protein activities, including the role of the kinesin-family protein Costal 2 (Cos2), which directs Ci processing in Drosophila. Here, we show that Cos2 binds to three regions of Gli1, just as for Ci, and that Cos2 functions to silence mammalian Gli1 in Drosophila in a Hh-regulated manner. Cos2 and the mammalian kinesin Kif7 can also direct Gli3 and Ci processing in fly, underscoring a fundamental conserved role for Cos2 family proteins in Hh signaling. We also show that direct PKA phosphorylation regulates the activity, rather than the proteolysis of Gli in Drosophilia, and we provide evidence for an analogous action of PKA on Ci.

  20. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development

    PubMed Central

    Barker, Amy R; Thomas, Rhys; Dawe, Helen R

    2014-01-01

    The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems. PMID:24322779

  1. An animated model of reticulorumen motility.

    PubMed

    Gookin, Jody L; Foster, Derek M; Harvey, Alice M; McWhorter, Dan

    2009-01-01

    Understanding reticulorumen motility is important to the assessment of ruminant health and optimal production, and in the recognition, diagnosis, and treatment of disease. Accordingly, the teaching of reticulorumen motility is a staple of all veterinary curricula. This teaching has historically been based on written descriptions, line drawings, or pressure tracings obtained during contraction sequences. We developed an animated model of reticulorumen motility and hypothesized that veterinary students would prefer use of the model over traditional instructional methods. First-year veterinary students were randomly allocated to one of two online learning exercises: with the animated model (Group A) or with text and line drawings (Group B) depicting reticulorumen motility. Learning was assessed with a multiple-choice quiz and feedback on the learning alternatives was obtained by survey. Seventy-four students participated in the study, including 38/42 in Group A and 36/36 in Group B. Sixty-four out of 72 students (89%) responded that they would prefer use of the animated model if only one of the two learning methods was available. A majority of students agreed or strongly agreed that the animated model was easy to understand and improved their knowledge and appreciation of the importance of reticulorumen motility, and would recommend the model to other veterinary students. Interestingly, students in Group B achieved higher scores on examination than students in Group A. This could be speculatively attributed to the inclusion of an itemized list of contraction sequences in the text provided to Group B and failure of Group A students to read the text associated with the animations.

  2. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation

    PubMed Central

    Saucedo, Lucía; Buffa, Gabriela N.; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J.

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. PMID:25970615

  3. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation.

    PubMed

    Saucedo, Lucía; Buffa, Gabriela N; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J; Vazquez-Levin, Mónica H; Marín-Briggiler, Clara

    2015-01-01

    Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility.

  4. A novel biosensor to study cAMP dynamics in cilia and flagella

    PubMed Central

    Mukherjee, Shatanik; Jansen, Vera; Jikeli, Jan F; Hamzeh, Hussein; Alvarez, Luis; Dombrowski, Marco; Balbach, Melanie; Strünker, Timo; Seifert, Reinhard; Kaupp, U Benjamin; Wachten, Dagmar

    2016-01-01

    The cellular messenger cAMP regulates multiple cellular functions, including signaling in cilia and flagella. The cAMP dynamics in these subcellular compartments are ill-defined. We introduce a novel FRET-based cAMP biosensor with nanomolar sensitivity that is out of reach for other sensors. To measure cAMP dynamics in the sperm flagellum, we generated transgenic mice and reveal that the hitherto methods determining total cAMP levels do not reflect changes in free cAMP levels. Moreover, cAMP dynamics in the midpiece and principal piece of the flagellum are distinctively different. The sole cAMP source in the flagellum is the soluble adenylate cyclase (SACY). Although bicarbonate-dependent SACY activity requires Ca2+, basal SACY activity is suppressed by Ca2+. Finally, we also applied the sensor to primary cilia. Our new cAMP biosensor features unique characteristics that allow gaining new insights into cAMP signaling and unravel the molecular mechanisms underlying ciliary function in vitro and in vivo. DOI: http://dx.doi.org/10.7554/eLife.14052.001 PMID:27003291

  5. The contrasting roles of primary cilia and cytonemes in Hh signaling.

    PubMed

    Kornberg, Thomas B

    2014-10-01

    Hedgehog (Hh) is a paracrine signaling protein with major roles in development and disease. In vertebrates and invertebrates, Hh signal transduction is carried out almost entirely by evolutionarily conserved components, and in both, intercellular movement of Hh is mediated by cytonemes - specialized filopodia that serve as bridges that bring distant cells into contact. A significant difference is the role of the primary cilium, a slender, tubulin-based protuberance of many vertebrate cells. Although the primary cilium is essential for Hh signaling in cells that have one, most Drosophila cells lack a primary cilium. This perspective addresses the roles of primary cilia and cytonemes, and proposes that for Hh signaling, the role of primary cilia is to provide a specialized hydrophobic environment that hosts lipid-modified Hh and other components of Hh signal transduction after Hh has traveled from elsewhere in the cell. Implicit in this model is the idea that initial binding and uptake of Hh is independent of and segregated from the processes of signal transduction and activation.

  6. Mutations in MAPKBP1 Cause Juvenile or Late-Onset Cilia-Independent Nephronophthisis.

    PubMed

    Macia, Maxence S; Halbritter, Jan; Delous, Marion; Bredrup, Cecilie; Gutter, Arthur; Filhol, Emilie; Mellgren, Anne E C; Leh, Sabine; Bizet, Albane; Braun, Daniela A; Gee, Heon Y; Silbermann, Flora; Henry, Charline; Krug, Pauline; Bole-Feysot, Christine; Nitschké, Patrick; Joly, Dominique; Nicoud, Philippe; Paget, André; Haugland, Heidi; Brackmann, Damien; Ahmet, Nayir; Sandford, Richard; Cengiz, Nurcan; Knappskog, Per M; Boman, Helge; Linghu, Bolan; Yang, Fan; Oakeley, Edward J; Saint Mézard, Pierre; Sailer, Andreas W; Johansson, Stefan; Rødahl, Eyvind; Saunier, Sophie; Hildebrandt, Friedhelm; Benmerah, Alexandre

    2017-02-02

    Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.

  7. Fluid transport at low Reynolds number with magnetically actuated artificial cilia

    NASA Astrophysics Data System (ADS)

    Gauger, E. M.; Downton, M. T.; Stark, H.

    2009-02-01

    By numerical modeling we investigate fluid transport in low-Reynolds-number flow achieved with a special elastic filament or artifical cilium attached to a planar surface. The filament is made of superparamagnetic particles linked together by DNA double strands. An external magnetic field induces dipolar interactions between the beads of the filament which provides a convenient way of actuating the cilium in a well-controlled manner. The filament has recently been used to successfully construct the first artificial micro-swimmer (R. Dreyfus et al., Nature 437, 862 (2005)). In our numerical study we introduce a measure, which we call pumping performance, to quantify the fluid transport induced by the magnetically actuated cilium and identify an optimum stroke pattern of the filament. It consists of a slow transport stroke and a fast recovery stroke. Our detailed parameter study also reveals that for sufficiently large magnetic fields the artificial cilium is mainly governed by the Mason number that compares frictional to magnetic forces. Initial studies on multi-cilia systems show that the pumping performance is very sensitive to the imposed phase lag between neighboring cilia, i.e., to the details of the initiated metachronal wave.

  8. A novel biosensor to study cAMP dynamics in cilia and flagella.

    PubMed

    Mukherjee, Shatanik; Jansen, Vera; Jikeli, Jan F; Hamzeh, Hussein; Alvarez, Luis; Dombrowski, Marco; Balbach, Melanie; Strünker, Timo; Seifert, Reinhard; Kaupp, U Benjamin; Wachten, Dagmar

    2016-03-22

    The cellular messenger cAMP regulates multiple cellular functions, including signaling in cilia and flagella. The cAMP dynamics in these subcellular compartments are ill-defined. We introduce a novel FRET-based cAMP biosensor with nanomolar sensitivity that is out of reach for other sensors. To measure cAMP dynamics in the sperm flagellum, we generated transgenic mice and reveal that the hitherto methods determining total cAMP levels do not reflect changes in free cAMP levels. Moreover, cAMP dynamics in the midpiece and principal piece of the flagellum are distinctively different. The sole cAMP source in the flagellum is the soluble adenylate cyclase (SACY). Although bicarbonate-dependent SACY activity requires Ca(2+), basal SACY activity is suppressed by Ca(2+). Finally, we also applied the sensor to primary cilia. Our new cAMP biosensor features unique characteristics that allow gaining new insights into cAMP signaling and unravel the molecular mechanisms underlying ciliary function in vitro and in vivo.

  9. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice.

    PubMed

    Wainwright, Elanor N; Svingen, Terje; Ng, Ee Ting; Wicking, Carol; Koopman, Peter

    2014-11-15

    The issues of whether and how some organs coordinate their size and shape with the blueprint of the embryo axis, while others appear to regulate their morphogenesis autonomously, remain poorly understood. Mutations in Ift144, encoding a component of the trafficking machinery of primary cilia assembly, result in a range of embryo patterning defects, affecting the limbs, skeleton and neural system. Here, we show that embryos of the mouse mutant Ift144(twt) develop gonads that are larger than wild-type. Investigation of the early patterning of the urogenital ridge revealed that the anterior-posterior domain of the gonad/mesonephros was extended at 10.5 dpc, with no change in the length of the metanephros. In XY embryos, this extension resulted in an increase in testis cord number. Moreover, we observed a concomitant extension of the trunk axis in both sexes, with no change in the length of the tail domain or somite number. Our findings support a model in which: (1) primary cilia regulate embryonic trunk elongation; (2) the length of the trunk axis determines the size of the urogenital ridges; and (3) the gonad domain is partitioned into a number of testis cords that depends on the available space, rather than being divided a predetermined number of times to generate a specific number of cords.

  10. Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.

    PubMed

    Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano

    2015-08-31

    Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs.

  11. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L

    PubMed Central

    Assis, L. H. P.; Silva-Junior, R. M. P.; Dolce, L. G.; Alborghetti, M. R.; Honorato, R. V.; Nascimento, A. F. Z.; Melo-Hanchuk, T. D.; Trindade, D. M.; Tonoli, C. C. C.; Santos, C. T.; Oliveira, P. S. L.; Larson, R. E.; Kobarg, J.; Espreafico, E. M.; Giuseppe, P. O.; Murakami, M. T.

    2017-01-01

    Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes. PMID:28266547

  12. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model

    PubMed Central

    Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling. PMID:27941997

  13. Mammalian clock output mechanisms.

    PubMed

    Kalsbeek, Andries; Yi, Chun-Xia; Cailotto, Cathy; la Fleur, Susanne E; Fliers, Eric; Buijs, Ruud M

    2011-06-30

    In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.

  14. The Mammalian Septin Interactome

    PubMed Central

    Neubauer, Katharina; Zieger, Barbara

    2017-01-01

    Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions. PMID:28224124

  15. A Rosetta stone of mammalian genetics.

    PubMed

    Nadeau, J H; Grant, P L; Mankala, S; Reiner, A H; Richardson, J E; Eppig, J T

    1995-01-26

    The Mammalian Comparative Database provides genetic maps of mammalian species. Comparative maps are valuable aids for predicting linkages, developing animal models and studying genome organization and evolution.

  16. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  17. Esophageal motility disorders in HIV patients.

    PubMed

    Zalar, Alberto E; Olmos, Martín A; Piskorz, Eduardo L; Magnanini, Fernando L

    2003-05-01

    Opportunistic esophageal infections (Candida, cytomegalovirus, herpes simplex virus) and idiophatic esophageal ulcerations are commonly found in HIV patients. However, motility disorders of the esophagus have seldom been investigated in this population. The aim of this prospective study was to determine the presence of motility disorders in HIV patients with esophageal symptoms (with or without associated lesions detected by endoscopy) and in HIV patients without esophageal symptoms and normal esophagoscopy. Eigthteen consecutive HIV patients (10 male, 8 female, ages 20-44 years, mean age 33.5; 8 HIV positive and 10 AIDS) were studied prospectively. Nine patients complained of esophageal symptoms, e.g, dysphagia/odynophagia (group 1) and 9 had symptoms not related to esophageal disease, such as diarrhea, abdominal pain, or gastrointestinal bleeding (group 2). All patients underwent upper endoscopy; mucosal biopsies were taken when macroscopic esophageal lesions were identified or when the patients were symptomatic even if the esophageal mucosa was normal. Esophageal manometry was performed in the 18 patients, using a 4-channel water-perfused system according to a standardized technique. Sixteen of the 18 patients (88.8%) had baseline manometric abnormalities. In group 1, 8/9 patients had esophageal motility disorders: nutcrackeresophagus in 1, hypertensive lower esophageal sphincter (LES) with incomplete relaxation in 2, nonspecific esophageal motility disorders (NEMD) in 3, diffuse esophageal spasm in 1, esophageal hypocontraction with low LES pressure in 1. Six of these 9 patients had lesions detected by endoscopy: CMV ulcers in 2, idiopathic ulcers in 1, candidiasis in 1, idiopathic ulcer + candidiasis in 1, nonspecific esophagitis in 1; and 3/9 had normal endoscopy and normal esophageal biopsies. In group 2, 8/9 patients had abnormal motility: hypertensive LES with incomplete relaxation in 1, nutcracker esophagus in 2, esophageal hypocontraction in 3, and NEMD

  18. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  19. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  20. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2012-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use a simply analytic model in conjuction with computational experiments to investigate intracellular fluid flow in a simple model of Physarum. Of particlar interest are stresses generated by cytoplasmic flow which may be used to aid in cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion.

  1. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2011-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use both analytic and computational models to investigate intracellular fluid flow in a simple model of Physarum. In both models, of we are specifically interested in stresses generated by cytoplasmic flow which act in the direction of cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, low waves and locomotive forces, and attempt characterize conditions necessary to generate directed motion.

  2. Uterine motility in patients with bicornuate uterus.

    PubMed

    Oliva, G C; Fratoni, A; Genova, M; Romanini, C

    1992-01-01

    This study analyzes uterine motility in 12 women with a bicornuate uterus using the results of the recordings of endo-uterine pressure, obtained with two balloon-closed catheters. Seven patients had symmetric uterine cavities, while the rest (5 patient) had very dissimilar ones. The registration of the uterine motility was carried out during various phases of the cycle and after the administration of two drugs (oxitocin and methylergobasine), with the following results: the bicornuate uterus has a spontaneous activity similar to that of a normal uterus. A similar contractile response was observed in the uteri with two anatomically symmetric horns, whereas a dissimilar response was typical of the uteri with marked anatomic differences between the two horns.

  3. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  4. Soft micromachines with programmable motility and morphology.

    PubMed

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J

    2016-07-22

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  5. Soft micromachines with programmable motility and morphology

    NASA Astrophysics Data System (ADS)

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-07-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  6. A Comprehensive Genetic Characterization of Bacterial Motility

    PubMed Central

    Girgis, Hany S; Liu, Yirchung; Ryu, William S; Tavazoie, Saeed

    2007-01-01

    We have developed a powerful experimental framework that combines competitive selection and microarray-based genetic footprinting to comprehensively reveal the genetic basis of bacterial behaviors. Application of this method to Escherichia coli motility identifies 95% of the known flagellar and chemotaxis genes, and reveals three dozen novel loci that, to varying degrees and through diverse mechanisms, affect motility. To probe the network context in which these genes function, we developed a method that uncovers genome-wide epistatic interactions through comprehensive analyses of double-mutant phenotypes. This allows us to place the novel genes within the context of signaling and regulatory networks, including the Rcs phosphorelay pathway and the cyclic di-GMP second-messenger system. This unifying framework enables sensitive and comprehensive genetic characterization of complex behaviors across the microbial biosphere. PMID:17941710

  7. Endocytic reawakening of motility in jammed epithelia.

    PubMed

    Malinverno, Chiara; Corallino, Salvatore; Giavazzi, Fabio; Bergert, Martin; Li, Qingsen; Leoni, Marco; Disanza, Andrea; Frittoli, Emanuela; Oldani, Amanda; Martini, Emanuele; Lendenmann, Tobias; Deflorian, Gianluca; Beznoussenko, Galina V; Poulikakos, Dimos; Ong, Kok Haur; Uroz, Marina; Trepat, Xavier; Parazzoli, Dario; Maiuri, Paolo; Yu, Weimiao; Ferrari, Aldo; Cerbino, Roberto; Scita, Giorgio

    2017-01-30

    Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.

  8. The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development

    PubMed Central

    Hurd, Toby; Zhou, Weibin; Jenkins, Paul; Liu, Chia-Jen; Swaroop, Anand; Khanna, Hemant; Martens, Jeffrey; Hildebrandt, Friedhelm; Margolis, Ben

    2010-01-01

    Ciliopathies represent a growing group of human genetic diseases whose etiology lies in defects in ciliogenesis or ciliary function. Given the established entity of renal–retinal ciliopathies, we have been examining the role of cilia-localized proteins mutated in retinitis pigmentosa (RP) in regulating renal ciliogenesis or cilia-dependent signaling cascades. Specifically, this study examines the role of the RP2 gene product with an emphasis on renal and vertebrate development. We demonstrate that in renal epithelia, RP2 localizes to the primary cilium through dual acylation of the amino-terminus. We also show that RP2 forms a calcium-sensitive complex with the autosomal dominant polycystic kidney disease protein polycystin 2. Ablation of RP2 by shRNA promotes swelling of the cilia tip that may be a result of aberrant trafficking of polycystin 2 and other ciliary proteins. Morpholino-mediated repression of RP2 expression in zebrafish results in multiple developmental defects that have been previously associated with ciliary dysfunction, such as hydrocephalus, kidney cysts and situs inversus. Finally, we demonstrate that, in addition to our observed physical interaction between RP2 and polycystin 2, dual morpholino-mediated knockdown of polycystin 2 and RP2 results in enhanced situs inversus, indicating that these two genes also regulate a common developmental process. This work suggests that RP2 may be an important regulator of ciliary function through its association with polycystin 2 and provides evidence of a further link between retinal and renal cilia function. PMID:20729296

  9. Hypoxia inhibits primary cilia formation and reduces cell-mediated contraction in stress-deprived rat tail tendon fascicles

    PubMed Central

    Lavagnino, Michael; Oslapas, Anna N.; Gardner, Keri L.; Arnoczky, Steven P.

    2016-01-01

    Summary Background Hypoxia, which is associated with chronic tendinopathy, has recently been shown to decrease the mechanosensitivity of some cells. Therefore, the purpose of this study was to determine the effect of hypoxia on the formation of elongated primary cilia (a mechanosensing organelle of tendon cells) in vitro and to determine the effect of hypoxia on cell-mediated contraction of stress-deprived rat tail tendon fascicles (RTTfs). Methods Tendon cells isolated from RTTfs were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24 hours. The cells were then stained for tubulin and the number of cells with elongated cilia counted. RTTfs from 1-month-old male Sprague-Dawley rats were also cultured under hypoxic and normoxic conditions for three days and tendon length measured daily. Results A significant (p=0.002) decrease in the percent of elongated cilia was found in cells maintained in hypoxic conditions (54.1%±12.2) when compared in normoxic conditions (71.7%±6.32). RTTfs in hypoxia showed a significant decrease in the amount of contraction compared to RTTfs in normoxia after two (p=0.007) and three (p=0.001) days. Conclusion The decreased incidence of elongated primary cilia in a hypoxic environment, as well as the decreased mechanoresponsiveness of tendon cells under these conditions may relate to the inability of some cases of chronic tendinopathy to respond to strain-based rehabilitation modalities (i.e. eccentric loading). PMID:27900292

  10. Ionic imbalance, in addition to molecular crowding, abates cytoskeletal dynamics and vesicle motility during hypertonic stress.

    PubMed

    Nunes, Paula; Roth, Isabelle; Meda, Paolo; Féraille, Eric; Brown, Dennis; Hasler, Udo

    2015-06-16

    Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking.

  11. Cell motility: Combining experiments with modeling

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    2013-03-01

    Cell migration and motility is a pervasive process in many biology systems. It involves intra-cellular signal transduction pathways that eventually lead to membrane extension and contraction. Here we describe our efforts to combine quantitative experiments with theoretical and computational modeling to gain fundamental insights into eukaryotic cell motion. In particular, we will focus on the amoeboid motion of Dictyostelium discoideum cells. This work is supported by the National Institutes of Health (P01 GM078586)

  12. Motility-indole-lysine-sulfide medium.

    PubMed

    Ederer, G M; Lund, M E; Blazevic, D J; Reller, L B; Mirrett, S

    1975-09-01

    A medium designed for the detection of motility, indole, lysine decarboxylase and deaminase reactions, and H2S production was devised and evaluated. Results, using 157 strains of enteric pathogens, were in agreement with reference methods. When 300 isolates from fecal cultures were screened using this medium, Shigella was easily differentiated from Escherichia and more of the Proteus species, especially P. morganii, could be eliminated from further study.

  13. Hyaluronan stimulates pancreatic cancer cell motility

    PubMed Central

    Cheng, Xiao-Bo; Kohi, Shiro; Koga, Atsuhiro; Hirata, Keiji; Sato, Norihiro

    2016-01-01

    Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis. PMID:26684359

  14. Effect of total laryngectomy on esophageal motility

    SciTech Connect

    Hanks, J.B.; Fisher, S.R.; Meyers, W.C.; Christian, K.C.; Postlethwait, R.W.; Jones, R.S.

    1981-01-01

    Total laryngectomy for cancer can result in dysphagia and altered esophageal motility. Manometric changes in the upper esophageal sphincter (UES), and in proximal and distal esophageal function have been reported. However, most studies have failed to take into account radiation therapy and appropriate controls. We selected ten male patients (54.3 +/- 1.9 yr) for longitudinal manometric evaluation prior to laryngectomy then at two weeks and again six months later. No patient received preoperative radiation therapy, had a previous history of esophageal surgery, or developed a postoperative wound infection or fistula. Seven of ten patients had positive nodes and received 6,000-6,600 rads postoperative radiation therapy. Preoperatively 4 of 10 patients complained of dysphagia which did not significantly change following surgery and radiation. Two of three patients who did not complain of dysphagia preoperatively and received radiation postoperatively developed dysphagia. No patient without dysphagia preoperatively who received no radiation therapy developed symptoms. Our studies show that laryngectomy causes alterations in the UES resting and peak pressures but not in the proximal or distal esophagus, or the lower esophageal sphincter. These data also imply radiation therapy may be associated with progressive alterations in motility and symptomatology. Further study regarding the effects of radiation on esophageal motility and function are urged.

  15. Motility of active fluid drops on surfaces

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Diana; Alexander, Gareth P.

    2015-12-01

    Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013), 10.1038/nature11591]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.

  16. Characterization of swarming motility in Citrobacter freundii.

    PubMed

    Cong, Yanguang; Wang, Jing; Chen, Zhijin; Xiong, Kun; Xu, Qiwang; Hu, Fuquan

    2011-04-01

    Bacterial swarming motility is a flagella-dependent translocation on the surface environment. It has received extensive attention as a population behavior involving numerous genes. Here, we report that Citrobacter freundii, an opportunistic pathogen, exhibits swarming movement on a solid medium surface with appropriate agar concentration. The swarming behavior of C. freundii was described in detail. Insertional mutagenesis with transposon Mini-Tn5 was carried out to discover genetic determinants related to the swarming of C. freundii. A number of swarming genes were identified, among which flhD, motA, motB, wzx, rfaL, rfaJ, rfbX, rfaG, rcsD, rcsC, gshB, fabF, dam, pgi, and rssB have been characterized previously in other species. In mutants related to lipopolysaccharide synthesis and RcsCDB signal system, a propensity to form poorly motile bacterial aggregates on the agar surface was observed. The aggregates hampered bacterial surface migration. In several mutants, the insertion sites were identified to be in the ORF of yqhC, yeeZ, CKO_03941, glgC, and ttrA, which have never been shown to be involved in swarming. Our results revealed several novel characteristics of swarming motility in C. freundii which are worthy of further study.

  17. Swimming Motility Reduces Deposition to Silica Surfaces

    SciTech Connect

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng; Hu, Dehong; Kamai, Tamir; Ginn, Timothy R.; Zilles, Julie L.; Nguyen, Thanh H.

    2015-01-01

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation point flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.

  18. Gastrointestinal motility testing--a personal perspective.

    PubMed

    Quigley, E M

    1995-01-01

    The role of motility tests in the evaluation of some common disorders in which motility has been assumed to play a role is reviewed. Three separate areas, non-cardiac chest pain, constipation and the irritable bowel syndrome are discussed. In each area, considerable difficulty in the clinical definition of these disorders persists and presents a major obstacle to the evaluation of diagnostic tests. With regard to non-cardiac chest pain, it is apparent that gastro-oesophageal reflux and sensory/perception abnormalities, rather than dysmotility, are the predominant factors, and investigations should take account of this. While studies of colonic and small intestinal motility have demonstrated various abnormal patterns in patients described as suffering from the irritable bowel syndrome, the specificity of any of these motor 'abnormalities' remains uncertain, and manometry cannot be recommended as a diagnostic tool in this context. Considerable advances have been made in our understanding of gut motor physiology and in our ability to accurately record motor function in man, the basic pathophysiology of many 'functional' gut syndromes remains unclear, and the role of dysmotility, in particular, poorly defined.

  19. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia.

    PubMed

    Caparrós-Martín, Jose A; Valencia, María; Reytor, Edel; Pacheco, María; Fernandez, Margarita; Perez-Aytes, Antonio; Gean, Esther; Lapunzina, Pablo; Peters, Heiko; Goodship, Judith A; Ruiz-Perez, Victor L

    2013-01-01

    Hedgehog (Hh) signaling is involved in patterning and morphogenesis of most organs in the developing mammalian embryo. Despite many advances in understanding core components of the pathway, little is known about how the activity of the Hh pathway is adjusted in organ- and tissue-specific developmental processes. Mutations in EVC or EVC2 disrupt Hh signaling in tooth and bone development. Using mouse models, we show here that Evc and Evc2 are mutually required for localizing to primary cilia and also for maintaining their normal protein levels. Consistent with Evc and Evc2 functioning as a complex, the skeletal phenotypes in either single or double homozygous mutant mice are virtually indistinguishable. Smo translocation to the cilium was normal in Evc2-deficient chondrocytes following Hh activation with the Smo-agonist SAG. However, Gli3 recruitment to cilia tips was reduced and Sufu/Gli3 dissociation was impaired. Interestingly, we found Smo to co-precipitate with Evc/Evc2, indicating that in some cells Hh signaling requires direct interaction of Smo with the Evc/Evc2 complex. Expression of a dominantly acting Evc2 mutation previously identified in Weyer's acrodental dysostosis (Evc2Δ43) caused mislocalization of Evc/Evc2Δ43 within the cilium and also reproduced the Gli3-related molecular defects observed in Evc2(-/-) chondrocytes. Moreover, Evc silencing in Sufu(-/-) cells attenuated the output of the Hh pathway, suggesting that Evc/Evc2 also promote Hh signaling in the absence of Sufu. Together our data reveal that the Hh pathway involves Evc/Evc2-dependent modulations that are necessary for normal endochondral bone formation.

  20. Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body.

    PubMed

    Tsao, Che-Chia; Gorovsky, Martin A

    2008-02-15

    Intraflagellar transport (IFT) moves multiple protein particles composed of two biochemically distinct complexes, IFT-A and IFT-B, bi-directionally within cilia and is essential for cilia assembly and maintenance. We identified an ORF from the Tetrahymena macronuclear genome sequence, encoding IFT122A, an ortholog of an IFT-A complex protein. Tetrahymena IFT122A is induced during cilia regeneration, and epitope-tagged Ift122Ap could be detected in isolated cilia. IFT122A knockout cells still assembled cilia, albeit with lower efficiency, and could regenerate amputated cilia. Ift172p and Ift88p, two IFT-B complex proteins that localized mainly to basal bodies and along the cilia in wild-type cells, became preferentially enriched at the ciliary tips in IFT122A knockout cells. Our results indicate that Tetrahymena IFT122A is not required for anterograde transport-dependent ciliary assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body.

  1. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia.

    PubMed

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R

    2011-04-13

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.

  2. Passive versus active local microrheology in mammalian cells and amoebae

    NASA Astrophysics Data System (ADS)

    Riviere, C.; Gazeau, F.; Marion, S.; Bacri, J.-C.; Wilhelm, C.

    2004-12-01

    We compare in this paper the rotational magnetic microrheology detailed by Marion et al [18] and Wilhelm et al [19] to the passive tracking microrheology. The rotational microrheology has been designed to explore, using magnetic rotating probes, the local intracellular microenvironment of living cells in terms of viscoelasticity. Passive microrheology techniques is based on the analysis of spontaneous diffusive motions of Brownian probes. The dependence of mean square displacement (MSD) with the time then directly reflects the type of movement (sub-, hyper- or diffusive motions). Using the same intracellular probes, we performed two types of measurements (active and passive). Based on the fluctuation-dissipation theorem, one should obtain the same information from the both techniques in a thermally equilibrium system. Interestingly, our measurements differ, and the discordances directly inform on active biological processes, which add to thermally activated fluctuations in our out-of equilibrium systems. In both cell models used, mammalian Hela cells and amoebae Entamoeba Histolytica, a hyper-diffusive regime at a short time is observed, which highlights the presence of an active non-thermal driving force, acting on the probe. However, the nature of this active force in mammalian cells and amoebae is different, according to their different phenotypes. In mammalian cells active processes are governed by the transport, via molecular motors, on the microtubule network. In amoebae, which are highly motile cells free of microtubule network, the active processes are dominated by strong fluxes of cytoplasm driven by extension of pseudopodia, in random directions, leading to an amplitude of motion one order of magnitude higher than for mammalian cells. Figs 7, Refs 32.

  3. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  4. Molecular mechanisms of sound amplification in the mammalian cochlea.

    PubMed

    Ashmore, J F; Géléoc, G S; Harbott, L

    2000-10-24

    Mammalian hearing depends on the enhanced mechanical properties of the basilar membrane within the cochlear duct. The enhancement arises through the action of outer hair cells that act like force generators within the organ of Corti. Simple considerations show that underlying mechanism of somatic motility depends on local area changes within the lateral membrane of the cell. The molecular basis for this phenomenon is a dense array of particles that are inserted into the basolateral membrane and that are capable of sensing membrane potential field. We show here that outer hair cells selectively take up fructose, at rates high enough to suggest that a sugar transporter may be part of the motor complex. The relation of these findings to a recent candidate for the molecular motor is also discussed.

  5. The Wireless Motility Capsule: a One-Stop Shop for the Evaluation of GI Motility Disorders.

    PubMed

    Saad, Richard J

    2016-03-01

    The wireless motility and pH capsule (WMC) provides an office-based test to simultaneously assess both regional and whole gut transit. Ingestion of this non-digestible capsule capable of measuring temperature, pH, and the pressure of its immediate surroundings allows for the measurement of gastric, small bowel, and colonic transit times in an ambulatory setting. Approved by the US Food and Drug Administration for the evaluation of suspected conditions of delayed gastric emptying and the evaluation of colonic transit in chronic idiopathic constipation, WMC should be considered in suspected gastrointestinal motility disorders as it provides a single study capable of simultaneously assessing for regional, multiregional, or generalized motility disorders. Specific indications for testing with the WMC should include the evaluation of suspect cases of gastroparesis, small bowel dysmotility, and slow transit constipation, as well as symptom syndromes suggestive of a multiregional or generalized gastrointestinal transit delay.

  6. Long-range interactions, wobbles, and phase defects in chains of model cilia

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas R.; Bruot, Nicolas; Kotar, Jurij; Goldstein, Raymond E.; Cicuta, Pietro; Polin, Marco

    2016-12-01

    Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.

  7. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia.

    PubMed

    Rink, Jochen C; Gurley, Kyle A; Elliott, Sarah A; Sánchez Alvarado, Alejandro

    2009-12-04

    The Hedgehog (Hh) signaling pathway plays multiple essential roles during metazoan development, homeostasis, and disease. Although core protein components are highly conserved, the variations in Hh signal transduction mechanisms exhibited by existing model systems (Drosophila, fish, and mammals) are difficult to understand. We characterized the Hh pathway in planarians. Hh signaling is essential for establishing the anterior/posterior axis during regeneration by modulating wnt expression. Moreover, RNA interference methods to reduce signal transduction proteins Cos2/Kif27/Kif7, Fused, or Iguana do not result in detectable Hh signaling defects; however, these proteins are essential for planarian ciliogenesis. Our study expands the understanding of Hh signaling in the animal kingdom and suggests an ancestral mechanistic link between Hh signaling and the function of cilia.

  8. A physical explanation of the temperature dependence of physiological processes mediated by cilia and flagella

    PubMed Central

    Humphries, Stuart

    2013-01-01

    The majority of biological rates are known to exhibit temperature dependence. Here I reveal a direct link between temperature and ecologically relevant rates such as swimming speeds in Archaea, Bacteria, and Eukaryotes as well as fluid-pumping and filtration rates in many metazoans, and show that this relationship is driven by movement rates of cilia and flagella. I develop models of the temperature dependence of cilial and flagellar movement rates and evaluate these with an extensive compilation of data from the literature. The model captures the temperature dependence of viscosity and provides a mechanistic and biologically interpretable explanation for the temperature dependence of a range of ecologically relevant processes; it also reveals a clear dependence on both reaction rate-like processes and the physics of the environment. The incorporation of viscosity allows further insight into the effects of environmental temperature variation and of processes, such as disease, that affect the viscosity of blood or other body fluids. PMID:23959901

  9. Rotation and twist of the central-pair microtubules in the cilia of Paramecium

    PubMed Central

    1980-01-01

    The orientation and configuration of the central-pair microtubules in cilia were studied by serial thin-section analysis of "instantaneously fixed" paramecia. Cilia were frozen in various positions in metachronal waves by such a fixation. The spatial sequence of these positions across the wave represents the temporal sequence of the positions during the active beat cycle of a cilium. Systematic shifts of central- pair orientation across the wave indicate that the central pair rotates 360 degrees counterclockwise (viewed from outside) with each ciliary beat cycle (C. K. Omoto, 1979, Thesis, University of Wisconsin, Madison; C. K. Omoto and C. Kung, 1979, Nature [Lond.] 279:532-534). This is true even for paramecia with different directions of effective stroke as in forward- or backward-swimming cells. The systematic shifts of central-pair orientation cannot be seen in Ni++-paralyzed cells or sluggish mutants which do not have metachronal waves. Both serial thin- section and thick-section high-voltage electron microscopy show that whenever a twist in the central pair is seen, it is always left-handed. This twist is consistent with the hypothesis that the central pair continuously rotates counterclockwise with the rotation originating at the base of the cilium. That the rotation of the central pair is most likely with respect to the peripheral tubules as well as the cell surface is discussed. These results are incorporated into a model in which the central-pair complex is a component in the regulation of the mechanism needed for three-dimensional ciliary movement. PMID:7419599

  10. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin β2

    PubMed Central

    Hurd, Toby W.; Fan, Shuling; Margolis, Ben L.

    2011-01-01

    Ciliopathies represent a newly emerging group of human diseases that share a common etiology resulting from dysfunction of the cilium or centrosome. The gene encoding the retinitis pigmentosa 2 protein (RP2) is mutated in X-linked retinitis pigmentosa. RP2 localizes to the ciliary base and this requires the dual acylation of the N-terminus, but the precise mechanism by which RP2 is trafficked to the cilia is unknown. Here we have characterized an interaction between RP2 and Importin β2 (transportin-1), a member of the Importin-β family that regulates nuclear–cytoplasmic shuttling. We demonstrate that Importin β2 is necessary for localization of RP2 to the primary cilium because ablation of Importin β2 by shRNA blocks entry both of endogenous and exogenous RP2 to the cilium. Furthermore, we identify two distinct binding sites of RP2, which interact independently with Importin β2. One binding site is a nuclear localization signal (NLS)-like sequence that is located at the N-terminus of RP2 and the other is an M9-like sequence within the tubulin folding cofactor C (TBCC) domain. Mutation of the NLS-like consensus sequence did not abolish localization of RP2 to cilia, suggesting that the sequence is not essential for RP2 ciliary targeting. Interestingly, we found that several missense mutations that cause human disease fall within the M9-like sequence of RP2 and these mutations block entry of RP2 into the cilium, as well as its interaction with Importin β2. Together, this work further highlights a role of Importin β2 in regulation of the entry of RP2 and other proteins into the ciliary compartment. PMID:21285245

  11. Mucous Secretion and Cilia Beating Defend Developing Coral Larvae from Suspended Sediments

    PubMed Central

    Jones, Ross J.; Clode, Peta L.; Negri, Andrew P.

    2016-01-01

    Suspended sediments produced from dredging activities, or added to the sediment budget via river runoff, are a concern for marine resource managers. Understanding the impact of suspended sediments on critical life history stages of keystone species like corals is fundamental to effective management of coastlines and reefs. Coral embryos (Acropora tenuis and A. millepora) and larvae (A. tenuis, A. millepora and Pocillopora acuta) were subjected to a range of suspended sediment concentrations of different sediment types (siliciclastic and carbonate) to assess concentration-response relationships on ecologically relevant endpoints, including survivorship and ability to metamorphose. Embryos were subjected to short (12 h) suspended sediment exposures from ages of 3–12 hours old or a long (30 h) exposure at 6 hours old. Neither the survivorship nor metamorphosis function of embryos were significantly affected by realistic sediment exposures to ~1000 mg L-1. However, some embryos exhibited a previously undescribed response to dynamically suspended sediments, which saw 10% of the embryos form negatively buoyant cocoons at siliciclastic suspended sediment concentrations ≥35 mg L-1. Scanning electron and optical microscopy confirmed the presence of a coating on these embryos, possibly mucus with incorporated sediment particles. Cocoon formation was common in embryos but not in larvae, and occurred more often after exposure to siliciclastic rather than carbonate sediments. Once transferred into sediment-free seawater, functional ~36-h-old embryos began emerging from the cocoons, coinciding with cilia development. Ciliated (> 36-h-old) larvae exposed to suspended sediments for 60 h were also observed to secrete mucus and were similarly unaffected by suspended sediment concentrations to ~800 mg L-1. This study provides evidence that mucous secretion and cilia beating effectively protect coral embryos and larvae from suspended sediment and that these mechanisms may enhance

  12. Equilibrium shape of liquid lenses and correlations of beating cilia on the surface of frog embryos

    NASA Astrophysics Data System (ADS)

    Huisman, Fawn Mitsu

    This thesis reports the results of two unrelated projects: liquid lenses and cilia motion. A liquid lens is the equilibrium configuration of a non-wetting 3-fluid system, and the profile of the 3 interfaces can, in principle, be determined by solving the Young-Laplace differential equation for each interface if the surface tensions of all three interfaces are accurately known. Fluid interfacial tensions are not tabulated and are spectacularly sensitive to impurities, so in practice these quantities must be measured. We have developed a method of measuring these parameters by comparing the observed shape of liquid lenses to calculated equilibrium shapes. We have experimentally studied lenses of alkanes floating on water. These results were compared with various liquid lens systems. The profile of these lens systems was measured using ray tracing and Morie imaging, and found to be in excellent agreement with the calculated lens shapes for pure fluids. Upon the introduction of a surfactant, dodecyltrimethylammonium bromide(DTAB), we find that there is a minimum in the dihedral angle of the lens as a function of surfactant concentration, corresponding to the transition from partial-wetting to pseudo-partial wetting. The development and orientation of ciliated cells on Xenopus laevis larval skin was examined using high speed video microscopy. The intercellular orientation of wild-type, dominant negative mutants, and Vangl2MO morpholinos was studied by scoring the beating direction of ciliated cells and measuring the correlation with nearest neighbors. No significant difference between the mutant and wild type was found. Time lapse videos of developing cilia indicate that intracellular ordering is non-existent in early development, with ordering occurring by maturity. Further work needs to be done to determine what role fluid flow plays in that ordering.

  13. Mucous Secretion and Cilia Beating Defend Developing Coral Larvae from Suspended Sediments.

    PubMed

    Ricardo, Gerard F; Jones, Ross J; Clode, Peta L; Negri, Andrew P

    Suspended sediments produced from dredging activities, or added to the sediment budget via river runoff, are a concern for marine resource managers. Understanding the impact of suspended sediments on critical life history stages of keystone species like corals is fundamental to effective management of coastlines and reefs. Coral embryos (Acropora tenuis and A. millepora) and larvae (A. tenuis, A. millepora and Pocillopora acuta) were subjected to a range of suspended sediment concentrations of different sediment types (siliciclastic and carbonate) to assess concentration-response relationships on ecologically relevant endpoints, including survivorship and ability to metamorphose. Embryos were subjected to short (12 h) suspended sediment exposures from ages of 3-12 hours old or a long (30 h) exposure at 6 hours old. Neither the survivorship nor metamorphosis function of embryos were significantly affected by realistic sediment exposures to ~1000 mg L-1. However, some embryos exhibited a previously undescribed response to dynamically suspended sediments, which saw 10% of the embryos form negatively buoyant cocoons at siliciclastic suspended sediment concentrations ≥35 mg L-1. Scanning electron and optical microscopy confirmed the presence of a coating on these embryos, possibly mucus with incorporated sediment particles. Cocoon formation was common in embryos but not in larvae, and occurred more often after exposure to siliciclastic rather than carbonate sediments. Once transferred into sediment-free seawater, functional ~36-h-old embryos began emerging from the cocoons, coinciding with cilia development. Ciliated (> 36-h-old) larvae exposed to suspended sediments for 60 h were also observed to secrete mucus and were similarly unaffected by suspended sediment concentrations to ~800 mg L-1. This study provides evidence that mucous secretion and cilia beating effectively protect coral embryos and larvae from suspended sediment and that these mechanisms may enhance

  14. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    PubMed

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-10-17

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility.

  15. Structural basis for multifunctional roles of mammalian aminopeptidase N

    PubMed Central

    Chen, Lang; Lin, Yi-Lun; Peng, Guiqing; Li, Fang

    2012-01-01

    Mammalian aminopeptidase N (APN) plays multifunctional roles in many physiological processes, including peptide metabolism, cell motility and adhesion, and coronavirus entry. Here we determined crystal structures of porcine APN at 1.85 Å resolution and its complexes with a peptide substrate and a variety of inhibitors. APN is a cell surface-anchored and seahorse-shaped zinc-aminopeptidase that forms head-to-head dimers. Captured in a catalytically active state, these structures of APN illustrate a detailed catalytic mechanism for its aminopeptidase activity. The active site and peptide-binding channel of APN reside in cavities with wide openings, allowing easy access to peptides. The cavities can potentially open up further to bind the exposed N terminus of proteins. The active site anchors the N-terminal neutral residue of peptides/proteins, and the peptide-binding channel binds the remainder of the peptides/proteins in a sequence-independent fashion. APN also provides an exposed outer surface for coronavirus binding, without its physiological functions being affected. These structural features enable APN to function ubiquitously in peptide metabolism, interact with other proteins to mediate cell motility and adhesion, and serve as a coronavirus receptor. This study elucidates multifunctional roles of APN and can guide therapeutic efforts to treat APN-related diseases. PMID:23071329

  16. Distinct Ca2+ channels maintain a high motility state of the sperm that may be needed for penetration of egg jelly of the newt, Cynops pyrrhogaster.

    PubMed

    Takahashi, Tomoe; Kutsuzawa, Megumi; Shiba, Kogiku; Takayama-Watanabe, Eriko; Inaba, Kazuo; Watanabe, Akihiko

    2013-09-01

    Activation state of sperm motility named "hyperactivation" enables mammalian sperm to progress through the oviductal matrix, although a similar state of sperm motility is unknown in non-mammalian vertebrates at fertilization. Here, we found a high motility state of the sperm in the newt Cynops pyrrhogaster. It was predominantly caused in egg jelly extract (JE) and characterized by a high wave velocity of the undulating membrane (UM) that was significantly higher at the posterior midpiece. An insemination assay suggested that the high motility state might be needed for sperm to penetrate the egg jelly, which is the accumulated oviductal matrix. Specific characteristics of the high motility state were completely abrogated by a high concentration of verapamil, which blocks the L-type and T-type voltage-dependent Ca(2+) channels (VDCCs). Mibefradil, a dominant blocker of T-type VDCCs, suppressed the wave of the UM at the posterior midpiece with separate wave propagation from both the anterior midpiece and the posterior principal piece. In addition, nitrendipine, a dominant L-type VDCC blocker, weakened the wave of the UM, especially in the anterior midpiece. Live Ca(2+) imaging showed that, compared with the intact sperm in the JE, the relative intracellular Ca(2+) level changed especially in the anterior and posterior ends of the midpiece of the blocker-treated sperm. These suggest that different types of Ca(2+) channels mediate the intracellular Ca(2+) level predominantly in the anterior and posterior ends of the midpiece to maintain the high motility state of the newt sperm.

  17. CX3CR1 Is Expressed in Differentiated Human Ciliated Airway Cells and Co-Localizes with Respiratory Syncytial Virus on Cilia in a G Protein-Dependent Manner

    PubMed Central

    Jeong, Kwang-Il; Piepenhagen, Peter A.; Kishko, Michael; DiNapoli, Joshua M.; Groppo, Rachel P.; Zhang, Linong; Almond, Jeffrey; Kleanthous, Harry; Delagrave, Simon; Parrington, Mark

    2015-01-01

    Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified. Here we show that CX3CR1 is expressed in the motile cilia of differentiated human airway epithelial (HAE) cells, and that CX3CR1 co-localizes with RSV particles. Upon infection, the distribution of CX3CR1 in these cells is significantly altered. Complete or partial deletion of RSV G results in viruses binding at least 72-fold less efficiently to cells, and reduces virus replication. Moreover, an antibody targeting an epitope near the G protein’s CX3CR1-binding motif significantly inhibits binding of the virus to airway cells. Given previously published evidence of the interaction of G with CX3CR1 in human lymphocytes, these findings suggest a role for G in the interaction of RSV with ciliated lung cells. This interpretation is consistent with past studies showing a protective benefit in immunizing against G in animal models of RSV infection, and would support targeting the CX3CR1-G protein interaction for prophylaxis or therapy. CX3CR1 expression in lung epithelial cells may also have implications for other respiratory diseases such as asthma. PMID:26107373

  18. Cell motility and local viscoelasticity of fibroblasts.

    PubMed

    Park, S; Koch, D; Cardenas, R; Käs, J; Shih, C K

    2005-12-01

    Viscoelastic changes of the lamellipodial actin cytoskeleton are a fundamental element of cell motility. Thus, the correlation between the local viscoelastic properties of the lamellipodium (including the transitional region to the cell body) and the speed of lamellipodial extension is studied for normal and malignantly transformed fibroblasts. Using our atomic force microscopy-based microrheology technique, we found different mechanical properties between the lamellipodia of malignantly transformed fibroblasts (H-ras transformed and SV-T2 fibroblasts) and normal fibroblasts (BALB 3T3 fibroblasts). The average elastic constants, K, in the leading edge of SV-T2 fibroblasts (0.48 +/- 0.51 kPa) and of H-ras transformed fibroblasts (0.42 +/- 0.35 kPa) are significantly lower than that of BALB 3T3 fibroblasts (1.01 +/- 0.40 kPa). The analysis of time-lapse phase contrast images shows that the decrease in the elastic constant, K, for malignantly transformed fibroblasts is correlated with the enhanced motility of the lamellipodium. The measured mean speeds are 6.1 +/- 4.5 microm/h for BALB 3T3 fibroblasts, 13.1 +/- 5.2 microm/h for SV-T2 fibroblasts, and 26.2 +/- 11.5 microm/h for H-ras fibroblasts. Furthermore, the elastic constant, K, increases toward the cell body in many instances which coincide with an increase in actin filament density toward the cell body. The correlation between the enhanced motility and the decrease in viscoelastic moduli supports the Elastic Brownian Ratchet model for driving lamellipodia extension.

  19. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  20. Dynamic Clustering in Suspension of Motile Bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Hepeng; Chen, Xiao; Yang, Xiang; Yang, Mingcheng

    2015-03-01

    Bacteria suspension exhibits a wide range of collective phenomena arising from interactions between individual cells. Here we investigate dynamic clusters of motile bacteria near an air-liquid interface. Cell in a cluster orient its flagella perpendicular to the interface and generate attractive radial fluid flow that leads to cluster formation. Rotating cell also creates tangential forces on neighbors that sets clusters into counter-clockwise rotation. We construct a numerical model of self-propelled particles that interact via pair-wise forces extracted from hydrodynamic calculations; such a model reproduces many properties of observed cluster dynamics.

  1. Gastrointestinal motility in space motion sickness

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Linder, Barry J.; Moore, Thomas P.; Pool, Sam L.

    1987-01-01

    Gastrointestinal symptoms in space motion sickness (SMS) are significantly different from those in ordinary motion sickness (MS). Recording and tabulation of sounds was the only technique that could be used as a measure of motility during spaceflight operations. There were 17 subjects, six unaffected by SMS, who made ambulatory recordings preflight and inflight. With one exception, all those affected had sharply reduced sounds, while those unaffected had increases or moderate reductions. The mechanism of vomiting in SMS appears to be secondary to this ileus, in contrast to vomiting in ordinary MS, where the emesis center is thought to be directly triggered by the vestibular system.

  2. The unique paradigm of spirochete motility and chemotaxis.

    PubMed

    Charon, Nyles W; Cockburn, Andrew; Li, Chunhao; Liu, Jun; Miller, Kelly A; Miller, Michael R; Motaleb, Md A; Wolgemuth, Charles W

    2012-01-01

    Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helix-shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria.

  3. Swimming and swarming motility properties of peanut-nodulating rhizobia.

    PubMed

    Vicario, Julio C; Dardanelli, Marta S; Giordano, Walter

    2015-01-01

    Motility allows populations of bacteria to rapidly reach and colonize new microniches or microhabitats. The motility of rhizobia (symbiotic nitrogen-fixing bacteria that nodulate legume roots) is an important factor determining their competitive success. We evaluated the effects of temperature, incubation time, and seed exudates on swimming and swarming motility of five strains of Bradyrhizobium sp. (peanut-nodulating rhizobia). Swimming motility was increased by exudate exposure for all strains except native Pc34. In contrast, swarming motility was increased by exudate exposure for native 15A but unchanged for the other four strains. All five strains displayed the ability to differentiate into swarm cells. Morphological examination by scanning electron microscopy showed that the length of the swarm cells was variable, but generally greater than that of vegetative cells. Our findings suggest the importance of differential motility properties of peanut-nodulating rhizobial strains during agricultural inoculation and early steps of symbiotic interaction with the host.

  4. Ineffective esophageal motility is a primary motility disorder in gastroesophageal reflux disease.

    PubMed

    Ho, Shih-Chi; Chang, Chi-Sen; Wu, Chun-Ying; Chen, Gran-Hum

    2002-03-01

    The relationship between esophageal motor abnormalities and GERD has been widely studied. The purpose of this study was to identify the prevalence of ineffective esophageal motility (IEM) in patients with GERD. In addition, we also evaluated esophageal acid exposure, acid clearance, and endoscopic esophagitis in GERD patients with IEM. Of 89 patients enrolled in this study, 47 (52.8%) were found to have nonspecific esophageal motility disorder (NEMD). Forty-four of the 47 (93.6%) patients with NEMD met the diagnostic criteria for IEM. The overall incidence of IEM in GERD patients was 49.4%. Patients with IEM had significant increases in upright and recumbent mean fraction of time pH < 4 (6.70% and 4.38%) and mean recumbent esophageal acid clearance (12.45 min/reflux) when compared to those with other motility findings. Seventeen of the 44 (39%) IEM patients did not have endoscopic esophagitis. On the other hand, 26 of the 39 (67%) patients with normal manometry had endoscopic esophagitis. We concluded that not only is the prevalence of IEM high in GERD, but also that IEM patients have more recumbent gastroesophageal reflux and delayed acid clearance. Combined with endoscopic findings, we propose that IEM can be viewed as a specific entity of primary esophageal motility disorder in patients with GERD.

  5. IFT57 stabilizes the assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo.

    PubMed

    Jiang, Xue; Hernandez, Daniel; Hernandez, Catherine; Ding, Zhaolan; Nan, Beiyan; Aufderheide, Karl; Qin, Hongmin

    2017-03-01

    Intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia. Recent biochemical studies have shown that IFT complex B (IFT-B) is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonasreinhardtii mutant for IFT57, we tested whether IFT57 is required for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, levels of IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. However, strikingly, in the protease-free flagellar compartment, while the level of IFT57 was reduced, the levels of other IFT particle proteins were not concomitantly reduced but were present at the wild-type level. The IFT movement of the IFT57-deficient IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.

  6. Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Castenholz, Richard W.

    1989-01-01

    Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

  7. Rational pharmacotherapy of gastrointestinal motility disorders.

    PubMed

    Demol, P; Ruoff, H J; Weihrauch, T R

    1989-04-01

    Nervous control of gastrointestinal motility is extremely complex, is regulated by the enteric system, the "brain of the gut", and modulated by extrinsic nerves. This system with its multiplicity of transmitters and receptors does not always allow a clear interpretation of experimental data, especially with compounds lacking specificity. In this review the complex situation is described particularly in relation to receptor populations (cholinergic, adrenergic, dopamine, histamine, 5-hydroxytryptamine, opioid, gamma-aminobutyric acid (GABA), prostanoid and dihydropyridine receptors), therapeutic aspects of drugs and their usefulness in children. Newer principles with known drugs and promising new compounds with a more appropriate kinetic or fewer side-effects, deriving from distinct pharmacological groups, as candidates for the treatment of gastrointestinal disorders are considered e.g. anticholinergics (prifinium or actilonium bromide), adrenergic alpha 2-agonists (clonidine, lidamidine) for diarrhoea in diabetic neuropathy, adrenergic beta-blockers for shortening postoperative ileus (propranolol), dopamine receptor antagonists (metoclopramide, domperidone, alizapride) and another prokinetic substance (cisapride) which may be useful for a number of applications as gastro-oesophageal reflux, gastro-paresis, intestinal pseudo-obstruction, cystic fibrosis and constipation, morphine derivatives (e.g. loperamide) for intractable diarrhoea and calcium antagonists (e.g. nifedipine) for achalasia. Increasing experience in digestive tract pharmacology and reliable clinical studies will furthermore be the basis for a more specific and better tolerated therapy of gastrointestinal motility disorders in adults and children.

  8. Bacterial Motility Reveals Unknown Molecular Organization.

    PubMed

    Duchesne, Ismaël; Rainville, Simon; Galstian, Tigran

    2015-11-17

    The water solubility of lyotropic liquid crystals (LCs) makes them very attractive to study the behavior of biological microorganisms in an environment where local symmetry is broken (as often encountered in nature). Several recent studies have shown a dramatic change in the behavior of flagellated bacteria when swimming in solutions of the lyotropic LC disodium cromoglycate (DSCG). In this study, the movements of Escherichia coli bacteria in DSCG-water solutions of different concentrations are observed to improve our understanding of this phenomenon. In addition, the viscosity of DSCG aqueous solutions is measured as a function of concentration at room temperature. We also experimentally identify a previously undescribed isotropic pretransition zone where bacteria start sticking to each other and to surfaces. Simple estimations show that the unbalanced osmotic pressure induced depletion force might be responsible for this sticking phenomenon. An estimate of the bacteria propulsive force and the DSCG aggregates length (versus concentration) are calculated from the measured viscosity of the medium. All these quantities are found to undergo a strong increase in the pretransition zone, starting at a threshold concentration of 6±1 wt % DSCG that is well below the known isotropic-LC transition (∼10 wt %). This study also shines light on the motility of flagellated bacteria in realistic environments, and it opens new avenues for interesting applications such as the use of motile microorganisms to probe the physical properties of their host or smart bandages that could guide bacteria out of wounds.

  9. Intrinsic Photosensitivity Enhances Motility of T Lymphocytes

    PubMed Central

    Phan, Thieu X.; Jaruga, Barbara; Pingle, Sandeep C.; Bandyopadhyay, Bidhan C.; Ahern, Gerard P.

    2016-01-01

    Sunlight has important biological effects in human skin. Ultraviolet (UV) light striking the epidermis catalyzes the synthesis of Vitamin D and triggers melanin production. Although a causative element in skin cancers, sunlight is also associated with positive health outcomes including reduced incidences of autoimmune diseases and cancers. The mechanisms, however, by which light affects immune function remain unclear. Here we describe direct photon sensing in human and mouse T lymphocytes, a cell-type highly abundant in skin. Blue light irradiation at low doses (<300 mJ cm−2) triggers synthesis of hydrogen peroxide (H2O2) in T cells revealed by the genetically encoded reporter HyPerRed. In turn, H2O2 activates a Src kinase/phospholipase C-γ1 (PLC-γ1) signaling pathway and Ca2+ mobilization. Pharmacologic inhibition or genetic disruption of Lck kinase, PLC-γ1 or the T cell receptor complex inhibits light-evoked Ca2+ transients. Notably, both light and H2O2 enhance T-cell motility in a Lck-dependent manner. Thus, T lymphocytes possess intrinsic photosensitivity and this property may enhance their motility in skin. PMID:27995987

  10. Major regulatory mechanisms involved in sperm motility.

    PubMed

    Pereira, Rute; Sá, Rosália; Barros, Alberto; Sousa, Mário

    2017-01-01

    The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.

  11. Bacterial Motility Reveals Unknown Molecular Organization

    PubMed Central

    Duchesne, Ismaël; Rainville, Simon; Galstian, Tigran

    2015-01-01

    The water solubility of lyotropic liquid crystals (LCs) makes them very attractive to study the behavior of biological microorganisms in an environment where local symmetry is broken (as often encountered in nature). Several recent studies have shown a dramatic change in the behavior of flagellated bacteria when swimming in solutions of the lyotropic LC disodium cromoglycate (DSCG). In this study, the movements of Escherichia coli bacteria in DSCG-water solutions of different concentrations are observed to improve our understanding of this phenomenon. In addition, the viscosity of DSCG aqueous solutions is measured as a function of concentration at room temperature. We also experimentally identify a previously undescribed isotropic pretransition zone where bacteria start sticking to each other and to surfaces. Simple estimations show that the unbalanced osmotic pressure induced depletion force might be responsible for this sticking phenomenon. An estimate of the bacteria propulsive force and the DSCG aggregates length (versus concentration) are calculated from the measured viscosity of the medium. All these quantities are found to undergo a strong increase in the pretransition zone, starting at a threshold concentration of 6 ± 1 wt % DSCG that is well below the known isotropic-LC transition (∼10 wt %). This study also shines light on the motility of flagellated bacteria in realistic environments, and it opens new avenues for interesting applications such as the use of motile microorganisms to probe the physical properties of their host or smart bandages that could guide bacteria out of wounds. PMID:26588572

  12. Major regulatory mechanisms involved in sperm motility

    PubMed Central

    Pereira, Rute; Sá, Rosália; Barros, Alberto; Sousa, Mário

    2017-01-01

    The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies. PMID:26680031

  13. Flagellated bacterial motility in polymer solutions

    PubMed Central

    Martinez, Vincent A.; Schwarz-Linek, Jana; Reufer, Mathias; Wilson, Laurence G.; Morozov, Alexander N.; Poon, Wilson C. K.

    2014-01-01

    It is widely believed that the swimming speed, v, of many flagellated bacteria is a nonmonotonic function of the concentration, c, of high-molecular-weight linear polymers in aqueous solution, showing peaked v(c) curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked v(c) curves. Using high-throughput methods for characterizing motility, we measured v and the angular frequency of cell body rotation, Ω, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that nonmonotonic v(c) curves are typically due to low-molecular-weight impurities. After purification by dialysis, the measured v(c) and Ω(c) relations for all but the highest-molecular-weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest-molecular-weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale. PMID:25468981

  14. Flagellated bacterial motility in polymer solutions.

    PubMed

    Martinez, Vincent A; Schwarz-Linek, Jana; Reufer, Mathias; Wilson, Laurence G; Morozov, Alexander N; Poon, Wilson C K

    2014-12-16

    It is widely believed that the swimming speed, v, of many flagellated bacteria is a nonmonotonic function of the concentration, c, of high-molecular-weight linear polymers in aqueous solution, showing peaked v(c) curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked v(c) curves. Using high-throughput methods for characterizing motility, we measured v and the angular frequency of cell body rotation, Ω, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that nonmonotonic v(c) curves are typically due to low-molecular-weight impurities. After purification by dialysis, the measured v(c) and Ω(c) relations for all but the highest-molecular-weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest-molecular-weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale.

  15. [Effects of radiofrequency electromagnetic fields on mammalian spermatogenesis].

    PubMed

    Susa, Martina; Pavicić, Ivan

    2007-12-01

    This article reviews studies about the effects of radiofrequency electromagnetic (RF EM) fields on male reproductive system and reproductive health in mammals. According to current data, there are almost 4 million active mobile phone lines in Croatia while this number has risen to 2 billion in the world. Increased use of mobile technology raises scientific and public concern about possible hazardous effects of RF fields on human health. The effects of radiofrequencies on reproductive health and consequences for the offspring are still mainly unknown. A number of in vivo and in vitro studies indicated that RF fields could interact with charged intracellular macromolecular structures. Results of several laboratory studies on animal models showed how the RF fields could affect the mammalian reproductive system and sperm cells. Inasmuch as, in normal physiological conditions spermatogenesis is a balanced process of division, maturation and storage of cells, it is particularly vulnerable to the chemical and physical environmental stimuli. Especially sensitive could be the cytoskeleton, composed of charged proteins; actin, intermedial filaments and microtubules. Cytoskeleton is a functional and structural part of the cell that has important role in the sperm motility, and is actively involved in the morphologic changes that occur during mammalian spermiogenesis.

  16. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control.

    PubMed

    Bandyopadhyay, Promode R; Hansen, Joshua C

    2013-01-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing.

  17. Balancing Thymocyte Adhesion and Motility: A Functional Linkage Between β1 Lntegrins and The Motility Receptor RHAMM

    PubMed Central

    Gares, Sheryl L.

    2000-01-01

    Thymocyte differentiation involves several processes that occur in different anatomic sites within the thymus. Therefore, thymocytes must have the ability to respond to signals received from stromal cells and adopt either adhesive or motile behavior. We will discuss our data indicating human thymocytes use α4β1 integrin, α5β1 integrin and RHAMM to mediate these activities. Immature multinegative (MN; CD3–4–8–19-) thymocytes use α4β1 and α5β1 integrins to mediate weak and strong adhesion. This subset also uses α4β1 integrin to mediate motility. As thymocytes differentiate, they begin to express and use RHAMM to mediate motility in conjunction with α4β1 and α5β1 integrins. Motile thymocytes use β1 integrins to maintain weakly adhesive contacts with substrate to provide traction for locomoting cells, thus weak adhesion is a requirement of motile behavior. Hyaluronan (HA) is also required by thymocytes to mediate motility. HA binding to cell surface RHAMM redistributes intracellular RHAMM to the cell surface where it functions to mediate motility. We propose that the decision to maintain adhesive or motile behavior is based on the balance between low and high avidity binding conformations of β1 integrins on thymocytes and that RHAMM:HA interactions decrease high avidity binding conformations of integrins pushing the balance toward motile behavior. PMID:11097213

  18. Serotonin Increases Cilia-Driven Particle Transport via an Acetylcholine-Independent Pathway in the Mouse Trachea

    PubMed Central

    Krasteva, Gabriela; Kummer, Wolfgang

    2009-01-01

    Background Mucociliary clearance in the airways is driven by the coordinated beating of ciliated cells. Classical neuromediators such as noradrenalin and acetylcholine increase ciliary beat frequency and thus cilia-driven transport. Despite the fact that the neuromediator serotonin is ciliostimulatory in invertebrates and has been implied in releasing acetylcholine from the airway epithelium, its role in regulating cilia function in vertebrate airways is not established. Methodology/Principal Findings We examined the effects of serotonin on ciliary beat frequency and cilia-driven particle transport in the acutely excised submerged mouse trachea and determined the sources of serotonin in this tissue by immunohistochemistry. Serotonin (100 µM) increased cilary beat frequency (8.9±1.2 Hz to 17.0±2.7 Hz) and particle transport speed (38.9±4.6 µm/s to 83.4±8.3 µm/s) to an extent that was comparable to a supramaximal dose of ATP. The increase in particle transport speed was totally prevented by methysergide (100 µM). Blockade of muscarinic receptors by atropine (1 µM) did not reduce the effect of serotonin, although it was effective in preventing the increase in particle transport speed mediated by muscarine (100 µM). Immunohistochemistry demonstrated serotonin in mast cells pointing towards mast cells and platelets as possible endogenous sources of serotonin. Conclusions/Significance These results indicate that serotonin is a likely endogenous mediator that can increase cilia-driven transport independent from acetylcholine during activation of mast cells and platelets. PMID:19290057

  19. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation.

    PubMed

    Yin, Yili; Bangs, Fiona; Paton, I Robert; Prescott, Alan; James, John; Davey, Megan G; Whitley, Paul; Genikhovich, Grigory; Technau, Ulrich; Burt, David W; Tickle, Cheryll

    2009-02-01

    The chicken talpid(3) mutant, with polydactyly and defects in other embryonic regions that depend on hedgehog (Hh) signalling (e.g. the neural tube), has a mutation in KIAA0568. Similar phenotypes are seen in mice and in human syndromes with mutations in genes that encode centrosomal or intraflagella transport proteins. Such mutations lead to defects in primary cilia, sites where Hh signalling occurs. Here, we show that cells of talpid(3) mutant embryos lack primary cilia and that primary cilia can be rescued with constructs encoding Talpid3. talpid(3) mutant embryos also develop polycystic kidneys, consistent with widespread failure of ciliogenesis. Ultrastructural studies of talpid(3) mutant neural tube show that basal bodies mature but fail to dock with the apical cell membrane, are misorientated and almost completely lack ciliary axonemes. We also detected marked changes in actin organisation in talpid(3) mutant cells, which may explain misorientation of basal bodies. KIAA0586 was identified in the human centrosomal proteome and, using an antibody against chicken Talpid3, we detected Talpid3 in the centrosome of wild-type chicken cells but not in mutant cells. Cloning and bioinformatic analysis of the Talpid3 homolog from the sea anemone Nematostella vectensis identified a highly conserved region in the Talpid3 protein, including a predicted coiled-coil domain. We show that this region is required to rescue primary cilia formation and neural tube patterning in talpid(3) mutant embryos, and is sufficient for centrosomal localisation. Thus, Talpid3 is one of a growing number of centrosomal proteins that affect both ciliogenesis and Hh signalling.

  20. Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics.

    PubMed

    Moore, Bryn S; Stepanchick, Ann N; Tewson, Paul H; Hartle, Cassandra M; Zhang, Jin; Quinn, Anne Marie; Hughes, Thomas E; Mirshahi, Tooraj

    2016-11-15

    Protein kinase A (PKA) phosphorylates Gli proteins, acting as a negative regulator of the Hedgehog pathway. PKA was recently detected within the cilium, and PKA activity specifically in cilia regulates Gli processing. Using a cilia-targeted genetically encoded sensor, we found significant basal PKA activity. Using another targeted sensor, we measured basal ciliary cAMP that is fivefold higher than whole-cell cAMP. The elevated basal ciliary cAMP level is a result of adenylyl cyclase 5 and 6 activity that depends on ciliary phosphatidylinositol (3,4,5)-trisphosphate (PIP3), not stimulatory G protein (Gαs), signaling. Sonic Hedgehog (SHH) reduces ciliary cAMP levels, inhibits ciliary PKA activity, and increases Gli1. Remarkably, SHH regulation of ciliary cAMP and downstream signals is not dependent on inhibitory G protein (Gαi/o) signaling but rather Ca(2+) entry through a Gd(3+)-sensitive channel. Therefore, PIP3 sustains high basal cAMP that maintains PKA activity in cilia and Gli repression. SHH activates Gli by inhibiting cAMP through a G protein-independent mechanism that requires extracellular Ca(2+) entry.

  1. Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection

    PubMed Central

    Bohn, Yu-Sing Tammy; Brandes, Gudrun; Rakhimova, Elza; Horatzek, Sonja; Salunkhe, Prabhakar; Munder, Antje; van Barneveld, Andrea; Jordan, Doris; Bredenbruch, Florian; Häußler, Susanne; Riedel, Kathrin; Eberl, Leo; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Hoiby, Niels; Tümmler, Burkhard; Wiehlmann, Lutz

    2008-01-01

    Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching-proficient wild-type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full-length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone-positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population. PMID:19054330

  2. Amyloid Precursor Protein family as unconventional Go-coupled receptors and the control of neuronal motility.

    PubMed

    Ramaker, Jenna M; Copenhaver, Philip F

    2017-01-01

    Cleavage of the Amyloid Precursor Protein (APP) generates amyloid peptides that accumulate in Alzheimer Disease (AD), but APP is also upregulated by developing and injured neurons, suggesting that it regulates neuronal motility. APP can also function as a G protein-coupled receptor that signals via the heterotrimeric G protein Gαo, but evidence for APP-Gαo signaling in vivo has been lacking. Using Manduca as a model system, we showed that insect APP (APPL) regulates neuronal migration in a Gαo-dependent manner. Recently, we also demonstrated that Manduca Contactin (expressed by glial cells) induces APPL-Gαo retraction responses in migratory neurons, consistent with evidence that mammalian Contactins also interact with APP family members. Preliminary studies using cultured hippocampal neurons suggest that APP-Gαo signaling can similarly regulate growth cone motility. Whether Contactins (or other APP ligands) induce this response within the developing nervous system, and how this pathway is disrupted in AD, remains to be explored.

  3. Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans.

    PubMed

    Wu, Jui-ching; Go, Aiza C; Samson, Mark; Cintra, Thais; Mirsoian, Susan; Wu, Tammy F; Jow, Margaret M; Routman, Eric J; Chu, Diana S

    2012-01-01

    Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.

  4. Bacterial motility and chemotaxis in shear

    NASA Astrophysics Data System (ADS)

    Rusconi, Roberto; Guasto, Jeffrey S.; Son, Kwangmin; Stocker, Roman

    2011-11-01

    Bacteria often exhibit directed motility (``taxis'') in response to gradients of dissolved resources, like nutrients or oxygen. While we have a detailed understanding of chemotaxis in quiescent environments, it has been largely overlooked how this behavior is affected by fluid flow, despite the ubiquity of flow in bacterial habitats. Here we present experiments on aerotaxis (attraction to dissolved oxygen) of Bacillus subtilis in controlled shear flows. Using novel microfluidic devices we expose bacterial suspensions to steady oxygen gradients, with independent control over shear rates. From single-cell trajectories and the spatial distribution of bacteria, we show that the cell rotation induced by shear reduces the aerotactic performance, demonstrating that hydrodynamic conditions affect bacterial fitness.

  5. Quantum-dot-based cell motility assay.

    PubMed

    Gu, Weiwei; Pellegrino, Teresa; Parak, Wolfgang J; Boudreau, Rosanne; Le Gros, Mark A; Gerion, Daniele; Alivisatos, A Paul; Larabell, Carolyn A

    2005-06-28

    Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

  6. Spontaneous Motility of Actin Lamellar Fragments

    NASA Astrophysics Data System (ADS)

    Blanch-Mercader, C.; Casademunt, J.

    2013-02-01

    We show that actin lamellar fragments driven solely by polymerization forces at the bounding membrane are generically motile when the circular symmetry is spontaneously broken, with no need of molecular motors or global polarization. We base our study on a nonlinear analysis of a recently introduced minimal model [Callan-Jones et al., Phys. Rev. Lett. 100, 258106 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.258106]. We prove the nonlinear instability of the center of mass and find an exact and simple relation between shape and center-of-mass velocity. A complex subcritical bifurcation scenario into traveling solutions is unfolded, where finite velocities appear through a nonadiabatic mechanism. Examples of traveling solutions and their stability are studied numerically.

  7. Polymer confinement and bacterial gliding motility

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Dobrynin, A. V.

    2005-07-01

    Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.

  8. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  9. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  10. Method and system for enhancing microbial motility

    SciTech Connect

    Hazen, T.C.; Lopez-De-Victoria, G.

    1992-12-31

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  11. Method and system for enhancing microbial motility

    SciTech Connect

    Hazen, T.C.; Lopez-De-Victoria, G.

    1990-01-05

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figs.

  12. Motility recovery during the process of regeneration in freshwater planarians.

    PubMed

    Kato, Chihiro; Mihashi, Koshin; Ishida, Sachiko

    2004-04-02

    Planarians are phylogenetically considered to be the most primitive animals to have acquired a central nervous system and a bilateral symmetry. However, very little is known about the relationship between planarian brain integration and motility. A behavioural and histological study was therefore undertaken in an aspect of planarian motility recovery during its process of regeneration. Quantitative analysis showed that the tail-regenerates recovered their motility gradually as the new heads reformed, while the non-head reforming tail fragments showed no signs of recovery. The head fragments recovered their motility soon after cutting. The cephalic margin was not a function of the motility. The brain regenerated back to its original form in approximately two weeks, the same amount of time it took for the decapitated tails to recover their motility to initial levels. This study provides quantitative evidence that the planarian motility recovered in relation to the head formation during its process of regeneration. Our results reinforce the view that the brain plays a functional part in activating planarian motility.

  13. Quantification of motility of carabid beetles in farmland.

    PubMed

    Allema, A B; van der Werf, W; Groot, J C J; Hemerik, L; Gort, G; Rossing, W A H; van Lenteren, J C

    2015-04-01

    Quantification of the movement of insects at field and landscape levels helps us to understand their ecology and ecological functions. We conducted a meta-analysis on movement of carabid beetles (Coleoptera: Carabidae), to identify key factors affecting movement and population redistribution. We characterize the rate of redistribution using motility μ (L2 T-1), which is a measure for diffusion of a population in space and time that is consistent with ecological diffusion theory and which can be used for upscaling short-term data to longer time frames. Formulas are provided to calculate motility from literature data on movement distances. A field experiment was conducted to measure the redistribution of mass-released carabid, Pterostichus melanarius in a crop field, and derive motility by fitting a Fokker-Planck diffusion model using inverse modelling. Bias in estimates of motility from literature data is elucidated using the data from the field experiment as a case study. The meta-analysis showed that motility is 5.6 times as high in farmland as in woody habitat. Species associated with forested habitats had greater motility than species associated with open field habitats, both in arable land and woody habitat. The meta-analysis did not identify consistent differences in motility at the species level, or between clusters of larger and smaller beetles. The results presented here provide a basis for calculating time-varying distribution patterns of carabids in farmland and woody habitat. The formulas for calculating motility can be used for other taxa.

  14. Laser radiation and motility patterns of human sperm

    SciTech Connect

    Lenzi, A.; Claroni, F.; Gandini, L.; Lombardo, F.; Barbieri, C.; Lino, A.; Dondero, F. )

    1989-01-01

    Human sperm were exposed in vitro to laser radiation. An increase in progressive sperm motility was associated with a faster rate of sperm ATP consumption. Computer-assisted analysis of sperm motility confirmed the positive effect of laser irradiation on velocity and linearity of sperm.

  15. Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

    PubMed Central

    Cousin, Fabien J.; Lynch, Shónagh M.; Harris, Hugh M. B.; McCann, Angela; Lynch, Denise B.; Neville, B. Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito

    2014-01-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli. PMID:25501479

  16. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    PubMed

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  17. Kinematic analysis of Toxoplasma gondii motility.

    PubMed

    Frixione, E; Mondragón, R; Meza, I

    1996-01-01

    Toxoplasma gondii tachyzoites execute a complex and little understood combination of rapid movements to reach and penetrate human or other animals cells. In the present study, computer-assisted simulation was used to quantitatively analyze the motility of these parasites in three-dimensional space with spatial and temporal resolutions in the micrometer and subsecond ranges. A digital model based on electron-micrographs of a serially sectioned tachyzoite was animated according to a videomicrographed sequence of a characteristic repetitive movement. Keyframe animation defined over 150 frames by a total of 36 kinematic parameters for specific motions, of both the whole model and particular domains, resulted in a real-time life-like simulation of the videorecorded tachyzoite movement. The kinematic values indicate that a full revolution of the model is composed of three half-turns accomplished in nearly 5 s with two phases: a relatively slow 180 degrees tilting with regard to the substratum plane, followed by fast (over 200 degrees/s) spinning almost simultaneous with pivoting around the posterior end, each clockwise and for about 180 degrees. Maximal flexing of the body, as well as bowing and retraction of its anterior end, occur at midway during the tilting phase. An estimated 70 degrees. clockwise torsion of the body seems to precede the spinning-pivoting phase. The results suggest the operation of two basic forces in the motility of T. gondii tachyzoites: (1) a clockwise torque that causes torsion, spinning, and pivoting; and (2) a longitudinal pull that contracts, bends and tilts the parasite. We discuss the possibility that both of these forces might result from the action of an actin-myosin system enveloping the twisted framework of microtubules characteristic of these organisms.

  18. Thyroxin Is Useful to Improve Sperm Motility

    PubMed Central

    Mendeluk, Gabriela Ruth; Rosales, Mónica

    2016-01-01

    Background The aim of this study was to evaluate the non-genomic action of thyroxin on sperm kinetic and its probable use to improve sperm recovery after applying an en- richment method like “swim-up” in comparison with the available one, pentoxifylline. Materials and Methods This is an experimental study. A total of 50 patients were re- cruited, followed by infertility consultation. Conventional sperm assays were performed according to World Health Organization criteria-2010 (WHO-2010). A Computer Aided Semen Analysis System was employed to assess kinetic parameters and concentrations. Number of the motile sperm recovered after preparation technique was calculated. Results Addition of T4 (0.002 µg/ml) to semen samples increased hypermotility at 20 minutes (control: 14.18 ± 5.1% vs. 17.66 ± 8.88%, P<0.03, data expressed as mean ± SD) and remained unchanged after 40 minutes. Significant differences were found in the motile sperm recovered after swim-up (control: 8.93×106 ± 9.52× 06vs. 17.20×106 ± 21.16×106, P<0.03), achieving all of the tested samples a desirable threshold value for artificial insemination outcome, while adding pentoxifylline increased the number of recovered sperm after swim-up in 60% of the studied cases. No synergism between two treatments could be determined. Conclusion We propose a new physiological tool to artificially improve insemination. The discussion opens windows to investigate unknown pathways involved in sperm ca- pacitation and gives innovative arguments to better understand infertility mechanisms. PMID:27441054

  19. Mammalian CAP (Cyclase-associated protein) in the world of cell migration: Roles in actin filament dynamics and beyond.

    PubMed

    Zhou, Guo-Lei; Zhang, Haitao; Field, Jeffrey

    2014-01-01

    Cell migration is essential for a variety of fundamental biological processes such as embryonic development, wound healing, and immune response. Aberrant cell migration also underlies pathological conditions such as cancer metastasis, in which morphological transformation promotes spreading of cancer to new sites. Cell migration is driven by actin dynamics, which is the repeated cycling of monomeric actin (G-actin) into and out of filamentous actin (F-actin). CAP (Cyclase-associated protein, also called Srv2) is a conserved actin-regulatory protein, which is implicated in cell motility and the invasiveness of human cancers. It cooperates with another actin regulatory protein, cofilin, to accelerate actin dynamics. Hence, knockdown of CAP1 slows down actin filament turnover, which in most cells leads to reduced cell motility. However, depletion of CAP1 in HeLa cells, while causing reduction in dynamics, actually led to increased cell motility. The increases in motility are likely through activation of cell adhesion signals through an inside-out signaling. The potential to activate adhesion signaling competes with the negative effect of CAP1 depletion on actin dynamics, which would reduce cell migration. In this commentary, we provide a brief overview of the roles of mammalian CAP1 in cell migration, and highlight a likely mechanism underlying the activation of cell adhesion signaling and elevated motility caused by depletion of CAP1.

  20. Bacterial signaling and motility: Sure bets

    SciTech Connect

    Zhulin, Igor B

    2008-01-01

    The IX International Conference on Bacterial Locomotion and Signal Transduction (BLAST IX) was held from 14 to 19 January 2007 in Laughlin, NV, a town in the Mojave Desert on the Nevada-Arizona border near old Route 66 and along the banks of the Colorado River. This area is a home to rattlesnakes, sagebrush, abandoned gold mines, and compulsive gamblers. What better venue could scientists possibly dream of for a professional meeting? So there they were, about 190 scientists gathered in the Aquarius Casino Resort, the largest hotel and casino in Laughlin, discussing the latest advances in the field. Aside from a brief excursion to an abandoned gold mine and a dinner cruise on the Colorado River, the scientists focused on nothing but their data and hypotheses, in spirited arguments and rebuttals, and outlined their visions and future plans in a friendly and open environment. The BLAST IX program was dense, with nearly 50 talks and over 90 posters. For that reason, this meeting report will not attempt to be comprehensive; instead it will first provide general background information on the central topics of the meeting and then highlight only a few talks that were of special interest to us and hopefully to the wider scientific community. We will also attempt to articulate some of the future directions or perspectives to the best of our abilities. The best known and understood bacterial motility mechanism is swimming powered by flagella. The rotation of bacterial flagella drives this form of bacterial movement in an aqueous environment. A bacterial flagellum consists of a helical filament attached to the cell body through a complex structure known as the hook-basal body, which drives flagellar rotation. The essential components of the basal body are the MotA-MotB motor-stator proteins bound to the cytoplasmic membrane. These stator proteins interact with proteins that comprise the supramembrane and cytoplasmic rings, which are components of the motor imbedded in the

  1. Evolutionary aspects of collective motility in pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Deforet, Maxime; Xavier, Joao

    Pseudomonas aeruginosa is a pathogenic bacteria that can use its single polar flagellum to swim through liquids. It can move collectively over semisolid surfaces, a behavior called swarming. It can also settle and form surface-attached communities called biofilms that protect them from antibiotics. The transition from single motility (swimming) to collective motility (swarming) is biologically relevant as it enables exploring environments that a single bacterium cannot explore on its own. It is also clinically relevant since swarming and biofilm formation are thought to be antagonistic. We investigate the mechanisms of bacterial collective motility using a multidisciplinary approach that combines mathematical modeling, quantitative experiments, and microbial genetics. We aim to identify how these mechanisms may evolve under the selective pressure of population expansion, and consequently reinforce or hinder collective motility. In particular, we clarify the role of growth rate and motility in invasive populations.

  2. Gliding Motility Revisited: How Do the Myxobacteria Move without Flagella?

    PubMed Central

    Mauriello, Emilia M. F.; Mignot, Tâm; Yang, Zhaomin; Zusman, David R.

    2010-01-01

    Summary: In bacteria,