Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut
2006-01-01
Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.
Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad
2017-01-01
Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
Shin, Jae Hyuk; Lee, Boreom; Park, Kwang Suk
2011-05-01
In this study, we developed an automated behavior analysis system using infrared (IR) motion sensors to assist the independent living of the elderly who live alone and to improve the efficiency of their healthcare. An IR motion-sensor-based activity-monitoring system was installed in the houses of the elderly subjects to collect motion signals and three different feature values, activity level, mobility level, and nonresponse interval (NRI). These factors were calculated from the measured motion signals. The support vector data description (SVDD) method was used to classify normal behavior patterns and to detect abnormal behavioral patterns based on the aforementioned three feature values. The simulation data and real data were used to verify the proposed method in the individual analysis. A robust scheme is presented in this paper for optimally selecting the values of different parameters especially that of the scale parameter of the Gaussian kernel function involving in the training of the SVDD window length, T of the circadian rhythmic approach with the aim of applying the SVDD to the daily behavior patterns calculated over 24 h. Accuracies by positive predictive value (PPV) were 95.8% and 90.5% for the simulation and real data, respectively. The results suggest that the monitoring system utilizing the IR motion sensors and abnormal-behavior-pattern detection with SVDD are effective methods for home healthcare of elderly people living alone.
Kuijpers, Dirkjan; Ho, Kai Yiu J A M; van Dijkman, Paul R M; Vliegenthart, Rozemarijn; Oudkerk, Matthijs
2003-04-01
The purpose of this study was to assess the value of high-dose dobutamine cardiovascular magnetic resonance (CMR) with myocardial tagging for the detection of wall motion abnormalities as a measure of myocardial ischemia in patients with known or suspected coronary artery disease. Two hundred eleven consecutive patients with chest pain underwent dobutamine-CMR 4 days after antianginal medication was stopped. Dobutamine-CMR was performed at rest and during increasing doses of dobutamine. Cine-images were acquired during breath-hold with and without myocardial tagging at 3 short-axis levels. Regional wall motion was assessed in a 16-segment short-axis model. Patients with new wall motion abnormalities (NWMA) were examined by coronary angiography. Dobutamine-CMR was successfully performed in 194 patients. Dobutamine-CMR without tagging detected NWMA in 58 patients, whereas NWMA were detected in 68 patients with tagging (P=0.002, McNemar). Coronary angiography showed coronary artery disease in 65 (96%) of these 68 patients. All but 3 of the 65 patients needed revascularization. In the 112 patients with a negative dobutamine-CMR study, without baseline wall motion abnormalities, the cardiovascular occurrence-free survival rate was 98.2% during the mean follow-up period of 17.3 months (range, 7 to 31). Dobutamine-CMR with myocardial tagging detected more NWMA compared with dobutamine-CMR without tagging and reliably separated patients with a normal life expectancy from those at increased risk of major adverse cardiac events.
Patel, Jijibhoy J; Gupta, Ankur; Nanda, Navin C
2016-03-01
Stress echocardiography using exercise or pharmacological stressors is either contraindicated or associated with significant side effects in some patients. This pilot study was designed to evaluate a new technique, hyperemic impedance echocardiography (HIE). It is based on reactive coronary hyperemia when transient limb ischemia is induced by tourniquet inflation. We hypothesized that this physiologic coronary hyperemia can identify inducible myocardial ischemia by assessment of regional wall motion abnormalities on echocardiography when compared with dobutamine stress echocardiography (DSE). Twenty consecutive outpatients with suspected stable coronary artery disease (CAD) who underwent clinically indicated DSE were recruited for performance of HIE after informed consent was obtained. Standard graded dobutamine infusion protocol from 5 to 40 μg/kg per min was used for DSE. HIE was performed by inflating tourniquets at a pressure of 10 mmHg below the systolic blood pressure for 1 minute in three of four extremities at a time for total of four cycles. Echocardiography was performed immediately after the last rotating tourniquet deflation. DSE and HIE were classified as abnormal for development of new or worsening wall motion abnormality in at least one myocardial segment. Test characteristics were also determined for a subset of these patients (n = 12) who underwent clinically indicated coronary angiography. Hyperemic impedance echocardiography showed 86% sensitivity, 67% specificity, 86% positive predictive value, and 67% negative predictive value with a test accuracy of 80% to detect inducible myocardial wall motion abnormalities when compared with DSE. HIE also showed 83% sensitivity, 75% negative predictive value with a test accuracy of 66.7% for detection of significant (≥50% diameter stenosis) CAD on coronary angiography. In this pilot study, HIE was a feasible, safe, and promising method for detection of inducible myocardial ischemia by assessment of regional wall motion abnormalities when compared to DSE and coronary angiography. Larger studies are needed to confirm these findings. © 2016, Wiley Periodicals, Inc.
Ozcan, H Nursun; Gormez, Ayşegul; Ozsurekci, Yasemin; Karakaya, Jale; Oguz, Berna; Unal, Sule; Cetin, Mualla; Ceyhan, Mehmet; Haliloglu, Mithat
2017-02-01
Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising.
Human detection and motion analysis at security points
NASA Astrophysics Data System (ADS)
Ozer, I. Burak; Lv, Tiehan; Wolf, Wayne H.
2003-08-01
This paper presents a real-time video surveillance system for the recognition of specific human activities. Specifically, the proposed automatic motion analysis is used as an on-line alarm system to detect abnormal situations in a campus environment. A smart multi-camera system developed at Princeton University is extended for use in smart environments in which the camera detects the presence of multiple persons as well as their gestures and their interaction in real-time.
Van Nostrand, D; Janowitz, W R; Holmes, D R; Cohen, H A
1979-01-01
The ability of equilibrium gated radionuclide ventriculography to detect segmental left ventricular (LV) wall motion abnormalities was determined in 26 patients undergoing cardiac catheterization. Multiple gated studies obtained in 30 degrees right anterior oblique and 45 degrees left anterior oblique projections, played back in a movie format, were compared to the corresponding LV ventriculograms. The LV wall in the two projections was divided into eight segments. Each segment was graded as normal, hypokinetic, akinetic, dyskinetic, or indeterminate. Thirteen percent of the segments in the gated images were indeterminate; 24 out of 27 of these were proximal or distal inferior wall segments. There was exact agreement in 86% of the remaining segments. The sensitivity of the radionuclide technique for detecting normal versus any abnormal wall motion was 71%, with a specificity of 99%. Equilibrium gated ventriculography is an excellent noninvasive technique for evaluating segmental LV wall motion. It is least reliable in assessing the proximal inferior wall and interventricular septum.
Peteiro, Jesus; Bouzas-Mosquera, Alberto; Broullon, Javier; Sanchez-Fernandez, Gabriel; Perez-Cebey, Lucia; Yañez, Juan; Martinez, Dolores; Vazquez-Rodriguez, Jose M
2016-08-01
Recommendations for testing in patients with low pretest probability of coronary artery disease differ in guidelines from no testing at all to different tests. The aim of this study was to assess the value of exercise echocardiography (ExE) to define outcome in this population. A retrospective analysis was conducted of 1,436 patients with low pretest probability of coronary artery disease (<15%) who underwent initial ExE. Overall mortality, major adverse cardiac events (MACEs), defined as cardiac death or nonfatal myocardial infarction, and revascularization during follow-up, were assessed. Ischemia (development of new wall motion abnormalities with exercise) and fixed wall motion abnormalities were measured. The mean age was 50 ± 12 years. Resting wall motion abnormalities were seen in 13 patients (0.9%) and ischemia in 108 (7.5%). During follow-up, 38 patients died, 10 of cardiac death (annualized death rate, 0.39%); 20 patients had MACEs (annualized MACE rate, 0.21%); and 48 patients (29 with ischemia) underwent revascularization (annualized revascularization rate, 0.51%). The number and percentage of MACEs in the abnormal and normal ExE groups were similar (two [1.7%] vs 18 [1.4%], P = .70), as was the annualized MACE rate (0.31% vs 0.21%, P = .50). Peak left ventricular ejection fraction exhibited a nonsignificant trend for predicting MACEs (P = .11). The number of studies needed to detect an abnormal finding was 12.6 and to detect a patient with extensive ischemia was 26.1. ExE offers limited prognostic information in patients with low pretest probability of coronary artery disease. The small number of abnormal findings on ExE and low event rates and the large number of studies needed to detect an abnormal finding limit further the value of imaging in this population. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Normal form from biological motion despite impaired ventral stream function.
Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P
2011-04-01
We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.
Benyounes, Nadia; Lang, Sylvie; Gout, Olivier; Ancédy, Yann; Etienney, Arnaud; Cohen, Ariel
2016-10-01
Transthoracic echocardiography is the most commonly used tool for the detection of left ventricular wall motion (LVWM) abnormalities using "naked eye evaluation". This subjective and operator-dependent technique requires a high level of clinical training and experience. Two-dimensional speckle-tracking echocardiography (2D-STE), which is less operator-dependent, has been proposed for this purpose. However, the role of on-line segmental longitudinal peak systolic strain (LPSS) values in the prediction of LVWM has not been fully evaluated. To test segmental LPSS for predicting LVWM abnormalities in routine echocardiography laboratory practice. LVWM was evaluated by an experienced cardiologist, during routine practice, in 620 patients; segmental LPSS values were then calculated. In this work, reflecting real life, 99.6% of segments were successfully tracked. Mean (95% confidence interval [CI]) segmental LPSS values for normal basal (n=3409), mid (n=3468) and apical (n=3466) segments were -16.7% (-16.9% to -16.5%), -18.2% (-18.3% to -18.0%) and -21.1% (-21.3% to -20.9%), respectively. Mean (95% CI) segmental LPSS values for hypokinetic basal (n=114), mid (n=116) and apical (n=90) segments were -7.7% (-9.0% to -6.3%), -10.1% (-11.1% to -9.0%) and -9.3% (-10.5% to -8.1%), respectively. Mean (95% CI) segmental LPSS values for akinetic basal (n=128), mid (n=95) and apical (n=91) segments were -6.6% (-8.0% to -5.1%), -6.1% (-7.7% to -4.6%) and -4.2% (-5.4% to -3.0%), respectively. LPSS allowed the differentiation between normal and abnormal segments at basal, mid and apical levels. An LPSS value≥-12% detected abnormal segmental motion with a sensitivity of 78% for basal, 70% for mid and 82% for apical segments. Segmental LPSS values may help to differentiate between normal and abnormal left ventricular segments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa
2010-01-01
This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616
Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa
2010-01-01
This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems.
Impaired visual recognition of biological motion in schizophrenia.
Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee
2005-09-15
Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.
Pedestrian detection based on redundant wavelet transform
NASA Astrophysics Data System (ADS)
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
NASA Astrophysics Data System (ADS)
da Silva Junior, Evert Pereira; Esteves, Guilherme Pompeu; Dames, Karla Kristine; Melo, Pedro Lopes de
2011-01-01
Changes in thoracoabdominal motion are highly prevalent in patients with chronic respiratory diseases. Home care services that use telemedicine techniques and Internet-based monitoring have the potential to improve the management of these patients. However, there is no detailed description in the literature of a system for Internet-based monitoring of patients with disturbed thoracoabdominal motion. The purpose of this work was to describe the development of a new telemedicine instrument for Internet-based home monitoring of thoracoabdominal movement. The instrument directly measures changes in the thorax and abdomen circumferences and transfers data through a transmission control protocol/Internet protocol connection. After the design details are described, the accuracy of the electronic and software processing units of the instrument is evaluated by using electronic signals simulating normal subjects and individuals with thoracoabdominal motion disorders. The results obtained during in vivo studies on normal subjects simulating thoracoabdominal motion disorders showed that this new system is able to detect a reduction in abdominal movement that is associated with abnormal thoracic breathing (p < 0.0001) and the reduction in thoracic movement during abnormal abdominal breathing (p < 0.005). Simulated asynchrony in thoracoabdominal motion was also adequately detected by the system (p < 0.0001). The experimental results obtained for patients with respiratory diseases were in close agreement with the expected values, providing evidence that this instrument can be a useful tool for the evaluation of thoracoabdominal motion. The Internet transmission tests showed that the acquisition and analysis of the thoracoabdominal motion signals can be performed remotely. The user can also receive medical recommendations. The proposed system can be used in a spectrum of telemedicine scenarios, which can reduce the costs of assistance offered to patients with respiratory diseases.
Suh, Young Joo; Kim, Young Jin; Kim, Jin Young; Chang, Suyon; Im, Dong Jin; Hong, Yoo Jin; Choi, Byoung Wook
2017-11-01
We aimed to determine the effect of a whole-heart motion-correction algorithm (new-generation snapshot freeze, NG SSF) on the image quality of cardiac computed tomography (CT) images in patients with mechanical valve prostheses compared to standard images without motion correction and to compare the diagnostic accuracy of NG SSF and standard CT image sets for the detection of prosthetic valve abnormalities. A total of 20 patients with 32 mechanical valves who underwent wide-coverage detector cardiac CT with single-heartbeat acquisition were included. The CT image quality for subvalvular (below the prosthesis) and valvular regions (valve leaflets) of mechanical valves was assessed by two observers on a four-point scale (1 = poor, 2 = fair, 3 = good, and 4 = excellent). Paired t-tests or Wilcoxon signed rank tests were used to compare image quality scores and the number of diagnostic phases (image quality score≥3) between the standard image sets and NG SSF image sets. Diagnostic performance for detection of prosthetic valve abnormalities was compared between two image sets with the final diagnosis set by re-operation or clinical findings as the standard reference. NG SSF image sets had better image quality scores than standard image sets for both valvular and subvalvular regions (P < 0.05 for both). The number of phases that were of diagnostic image quality per patient was significantly greater in the NG SSF image set than standard image set for both valvular and subvalvular regions (P < 0.0001). Diagnostic performance of NG SSF image sets for the detection of prosthetic abnormalities (20 pannus and two paravalvular leaks) was greater than that of standard image sets (P < 0.05). Application of NG SSF can improve CT image quality and diagnostic accuracy in patients with mechanical valves compared to standard images. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
A clinical and ultrasonographic study of risk factors for elbow injury in young baseball players.
Tajika, T; Kobayashi, T; Yamamoto, A; Kaneko, T; Shitara, H; Shimoyama, D; Iizuka, Y; Okamura, K; Yonemoto, Y; Warita, T; Ohsawa, T; Nakajima, I; Iizuka, H; Takagishi, K
2016-04-01
To determine the risk factors for elbow injury and its association with glenohumeral internal rotation deficit among young baseball players. 229 baseball players aged 9 to 14 (mean, 11) years completed a self-administered questionnaire with items related to years of playing baseball, hours of training per weekday, days of training per week, and past and present experience of elbow pain. Two orthopaedic surgeons measured the range of motion of both shoulders and elbows. Another 2 orthopaedic surgeons performed ultrasonography to detect any elbow abnormality such as fragmentation of the medial epicondylar apophysis and osteochondritis dissecans of the capitellum. Using univariate and multivariable analyses, participants with or without elbow abnormality were compared to determine the risk factors for elbow abnormality. Elbow abnormality was detected in 100 of the participants and comprised osteochondritis dissecans of the capitellum (n=18) and fragmentation of the medial epicondylar apophysis (n=82). Elbow abnormality was associated with being a pitcher, past and present experience of elbow pain, loss of elbow extension, and the side-to-side internal rotation difference. The 100 participants with elbow abnormality were stratified into symptomatic (n=57) or asymptomatic (n=43) of elbow pain. Those with elbow abnormality and elbow pain was associated with being a pitcher. Being a pitcher was a risk factor for both elbow abnormality and elbow pain. Nonetheless, 43% of baseball players with elbow abnormality were asymptomatic. The use of ultrasonography was effective in detecting elbow abnormality and enabling early treatment.
Sensitivity to synchronicity of biological motion in normal and amblyopic vision
Luu, Jennifer Y.; Levi, Dennis M.
2017-01-01
Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the nonamblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact. PMID:23474301
Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas
2014-12-01
Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.
Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C
2009-04-01
The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.
Lehmkuhl, L B; Ware, W A; Bonagura, J D
1994-01-01
Mitral stenosis was diagnosed in 15 young to middle-aged dogs. There were 5 Newfoundlands and 4 bull terriers affected, suggesting a breed predisposition for this disorder. Clinical signs included cough, dyspnea, exercise intolerance, and syncope. Soft left apical diastolic murmurs were heard only in 4 dogs, whereas 8 dogs had systolic murmurs characteristic of mitral regurgitation. Left atrial enlargement was the most prominent radiographic feature. Left-sided congestive heart failure was detected by radiographs in 11 dogs within 1 year of diagnosis. Electrocardiographic abnormalities varied among dogs and included atrial and ventricular enlargement, as well as atrial and ventricular arrhythmias. Abnormalities on M-mode and two-dimensional echocardiograms included abnormal diastolic motion of the mitral valve characterized by decreased leaflet separation, valve doming, concordant motion of the parietal mitral valve leaflet, and a decreased E-to-F slope. Increased mitral valve inflow velocities and prolonged pressure half-times were detected by Doppler echocardiography. Cardiac catheterization, performed in 8 dogs, documented a diastolic pressure gradient between the left atrial, pulmonary capillary wedge, or pulmonary artery diastolic pressures and the left ventricular diastolic pressure. Necropsy showed mitral stenosis caused by thickened, fused mitral valve leaflets in 5 dogs and a supramitral ring in another dog. The outcome in affected dogs was poor; 9 of 15 dogs were euthanatized or died by 2 1/2 years of age.
Kim, Su Ho; Seo, Young-Il
2007-01-01
The objectives of this study were: 1) to identify the ultrasonographic (US) abnormalities and 2) to compare the findings of physical examination with US findings in rheumatoid arthritis (RA) patients with shoulder pain. We studied 30 RA patients. Physical examination was performed systemically as follows: 1) area of tenderness; 2) range of passive and active shoulder motion; 3) impingement tests; 4) maneuvers for determining the location of the tendon lesions. US investigations included the biceps, the supraspinatus, infraspinatus, and subscapularis tendons; the subacromial-subdeltoid bursa; and the glenohumeral and acromioclavicular joints. Thirty RA patients with 35 painful and 25 non-painful shoulders were examined. The range of motion affected the most by shoulder pain was abduction. The most frequent US finding of shoulder joint was effusion in the long head of the biceps tendon. Among the rotator cuff tendons, subscapularis was the most frequently involved. Tendon tear was also common among non-painful shoulders. Physical examination used for the diagnosis of shoulder pain had low sensitivity and specificity for detecting abnormalities in the rheumatoid shoulder joint. In conclusion, US abnormalities showed frequent tendon tears in our RA patients. Physical examination had low sensitivity and specificity for detecting rotator cuff tear in the rheumatoid shoulder joint. PMID:17728506
Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.
2015-01-01
Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588
NASA Astrophysics Data System (ADS)
Al Azzawi, Dia
Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight simulator. The abnormal conditions considered in this work include locked actuators (stabilator, aileron, rudder, and throttle), structural damage of the wing, horizontal tail, and vertical tail, malfunctioning sensors, and reduced engine effectiveness. The results of applying the proposed approach to this wide range of abnormal conditions show its high capability in detecting the abnormal conditions with zero false alarms and very high detection rates, correctly identifying the failed subsystem and evaluating the type and severity of the failure. The results also reveal that the post-failure flight envelope can be reasonably predicted within this framework.
Apnea Detection Method for Cheyne-Stokes Respiration Analysis on Newborn
NASA Astrophysics Data System (ADS)
Niimi, Taiga; Itoh, Yushi; Natori, Michiya; Aoki, Yoshimitsu
2013-04-01
Cheyne-Stokes respiration is especially prevalent in preterm newborns, but its severity may not be recognized. It is characterized by apnea and cyclical weakening and strengthening of the breathing. We developed a method for detecting apnea and this abnormal respiration and for estimating its malignancy. Apnea was detected based on a "difference" feature (calculated from wavelet coefficients) and a modified maximum displacement feature (related to the respiratory waveform shape). The waveform is calculated from vertical motion of the thoracic and abdominal region during respiration using a vision sensor. Our proposed detection method effectively detects apnea (sensitivity 88.4%, specificity 99.7%).
Temporal analysis of regional wall motion from cine cardiac MRI
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Didier, Dominique; Chretien, Anne; Rosset, Antoine; Magnin, Isabelle E.; Ligier, Yves
1996-04-01
The purpose of this work is to develop and to evaluate an automatic analysis technique for quantitative assessment of cardiac function from cine MRI and to identify regional alterations in synchronicity based on Fourier analysis of ventricular wall motion (WM). A temporal analysis technique of left ventricular wall displacement was developed for quantitative analysis of temporal delays in wall motion and applied to gated cine 'dark blood' cardiac MRI. This imaging technique allows the user to saturate the blood both above and below the imaging slice simultaneously by using a specially designed rf presaturation pulse. The acquisition parameters are: TR equals 25 - 60 msec, TE equals 5 - 7 msec, 0 equals 25 degrees, slice thickness equals 10 mm, 16 to 32 frames/cycle. Automatic edge detection was used to outline the ventricular cavities on all frames of a cardiac cycle. Two different segmentation techniques were applied to all studies and lead to similar results. Further improvement in edge detection accuracy was achieved by temporal interpolation of individual contours on each image of the cardiac cycle. Radial analysis of the ventricular wall motion was then performed along 64 radii drawn from the center of the ventricular cavity. The first harmonic of the Fourier transform of each radial motion curve is calculated. The phase of the fundamental Fourier component is used as an index of synchrony (delay) of regional wall motion. Results are displayed in color-coded maps of regional alterations in the amplitude and synchrony of wall motion. The temporal delays measured from individual segments are evaluated through a histogram of phase distribution, where the width of the main peak is used as an index of overall synchrony of wall motion. The variability of this technique was validated in 10 normal volunteers and was used to identify regions with asynchronous WM in 15 patients with documented CAD. The standard deviation (SD) of phase distribution measured in short axis views was calculated and used to identify regions with asynchronous wall motion in patients with coronary artery disease. Results suggest that this technique is more sensitive than global functional parameters such as ejection fraction for the detection of ventricular dysfunction. Color coded parametric display offers a more convenient way for the identification and localization of regional wall motion asynchrony. Data obtained from endocardial wall motion analysis were not significantly different from wall thickening measurements. The innovative approach of evaluating the temporal behavior of regional wall motion anomalies is expected to provide clinically relevant data about subtle alteration that cannot be detected through simple analysis of the extent (amplitude) of wall motion or myocardial thickening. Temporal analysis of regional WM abnormality from cine MRI offers an innovative and promising means for objective quantitative evaluation of subtle regional abnormalities. Color coded parametric maps allowed a better identification and localization of regional WM asynchrony.
Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms
NASA Astrophysics Data System (ADS)
Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.
2007-12-01
Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.
NASA Astrophysics Data System (ADS)
Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.
2006-08-01
Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.
Prenatal diagnosis of Chiari malformation with syringomyelia in the second trimester.
Iruretagoyena, Jesus Igor; Trampe, Barbara; Shah, Dinesh
2010-02-01
Routine anatomic ultrasound performed in the second trimester has a detection rate of approximately 70-90% for fetal congenital abnormalities (Nyberg and Souter, J Ultrasound Med 2001;6:655-674). The central nervous system abnormalities are one of the most common ones detected. Chiari malformation is among the CNS abnormalities diagnosed in the fetal period (Bianchi et al., Fetology - diagnosis and management of the fetal patient, McGraw-Hill, 2000). The Arnold-Chiari malformation was first described in 1883 by Cleland (Romero et al., Prenatal diagnosis of congenital anomalies, Appleton and Lange, 1988). It is characterised by the prolapse of the hindbrain structures below the level of the foramen magnum. It can be associated with skeletal abnormalities and neurological dysfunction. In type I, a lip of cerebellum is downwardly displaced with the tonsils, but the fourth ventricle remains in the posterior fossa. This condition may coexist with syringomyelia, which is a cyst formation on the cervical portion of the spinal cord (Creasy et al., Maternal fetal medicine principles and practice, 2004). We present a case where Chiari type 1 and syringomyelia detected at 18 weeks of gestation. The reason for referral to our center was an abnormal inward posturing of both upper and lower extremities (minimal gross movement and almost inexistent range of motion on fetal joints). On further fetal evaluation, an abnormal brain ultrasound was identified. Prenatal diagnosis of Chiari type 1 malformation and syringomyelia is almost nonexistent when reviewing the literature is the reason why this case is presented.
Bonhomme, Gabrielle R; Liu, Grant T; Miki, Atsushi; Francis, Ellie; Dobre, M-C; Modestino, Edward J; Aleman, David O; Haselgrove, John C
2006-12-01
Motion perception abnormalities and extrastriate abnormalities have been suggested in amblyopia. Functional MRI (fMRI) and motion stimuli were used to study whether interocular differences in activation are detectable in motion-sensitive cortical areas in patients with anisometropic amblyopia. We performed fMRI at 1.5 T 4 control subjects (20/20 OU), 1 with monocular suppression (20/25), and 2 with anisometropic amblyopia (20/60, 20/800). Monocular suppression was thought to be form fruste of amblyopia. The experimental stimulus consisted of expanding and contracting concentric rings, whereas the control condition consisted of stationary concentric rings. Activation was determined by contrasting the 2 conditions for each eye. Significant fMRI activation and comparable right and left eye activation was found in V3a and V5 in all control subjects (Average z-values in L vs R contrast 0.42, 0.43) and in the subject with monocular suppression (z = 0.19). The anisometropes exhibited decreased extrastriate activation in their amblyopic eyes compared with the fellow eyes (zs = 2.12, 2.76). Our data suggest motion-sensitive cortical structures may be less active when anisometropic amblyopic eyes are stimulated with moving rings. These results support the hypothesis that extrastriate cortex is affected in anisometropic amblyopia. Although suggestive of a magnocellular defect, the exact mechanism is unclear.
van Dijk, Joris D; van Dalen, Jorn A; Mouden, Mohamed; Ottervanger, Jan Paul; Knollema, Siert; Slump, Cornelis H; Jager, Pieter L
2018-04-01
Correction of motion has become feasible on cadmium-zinc-telluride (CZT)-based SPECT cameras during myocardial perfusion imaging (MPI). Our aim was to quantify the motion and to determine the value of automatic correction using commercially available software. We retrospectively included 83 consecutive patients who underwent stress-rest MPI CZT-SPECT and invasive fractional flow reserve (FFR) measurement. Eight-minute stress acquisitions were reformatted into 1.0- and 20-second bins to detect respiratory motion (RM) and patient motion (PM), respectively. RM and PM were quantified and scans were automatically corrected. Total perfusion deficit (TPD) and SPECT interpretation-normal, equivocal, or abnormal-were compared between the noncorrected and corrected scans. Scans with a changed SPECT interpretation were compared with FFR, the reference standard. Average RM was 2.5 ± 0.4 mm and maximal PM was 4.5 ± 1.3 mm. RM correction influenced the diagnostic outcomes in two patients based on TPD changes ≥7% and in nine patients based on changed visual interpretation. In only four of these patients, the changed SPECT interpretation corresponded with FFR measurements. Correction for PM did not influence the diagnostic outcomes. Respiratory motion and patient motion were small. Motion correction did not appear to improve the diagnostic outcome and, hence, the added value seems limited in MPI using CZT-based SPECT cameras.
2012-01-01
Background T2w-CMR is used widely to assess myocardial edema. Quantitative T1-mapping is also sensitive to changes in free water content. We hypothesized that T1-mapping would have a higher diagnostic performance in detecting acute edema than dark-blood and bright-blood T2w-CMR. Methods We investigated 21 controls (55 ± 13 years) and 21 patients (61 ± 10 years) with Takotsubo cardiomyopathy or acute regional myocardial edema without infarction. CMR performed within 7 days included cine, T1-mapping using ShMOLLI, dark-blood T2-STIR, bright-blood ACUT2E and LGE imaging. We analyzed wall motion, myocardial T1 values and T2 signal intensity (SI) ratio relative to both skeletal muscle and remote myocardium. Results All patients had acute cardiac symptoms, increased Troponin I (0.15-36.80 ug/L) and acute wall motion abnormalities but no LGE. T1 was increased in patient segments with abnormal and normal wall motion compared to controls (1113 ± 94 ms, 1029 ± 59 ms and 944 ± 17 ms, respectively; p < 0.001). T2 SI ratio using STIR and ACUT2E was also increased in patient segments with abnormal and normal wall motion compared to controls (all p < 0.02). Receiver operator characteristics analysis showed that T1-mapping had a significantly larger area-under-the-curve (AUC = 0.94) compared to T2-weighted methods, whether the reference ROI was skeletal muscle or remote myocardium (AUC = 0.58-0.89; p < 0.03). A T1 value of greater than 990 ms most optimally differentiated segments affected by edema from normal segments at 1.5 T, with a sensitivity and specificity of 92 %. Conclusions Non-contrast T1-mapping using ShMOLLI is a novel method for objectively detecting myocardial edema with a high diagnostic performance. T1-mapping may serve as a complementary technique to T2-weighted imaging for assessing myocardial edema in ischemic and non-ischemic heart disease, such as quantifying area-at-risk and diagnosing myocarditis. PMID:22720998
Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition
Cui, Zhiming; Zhao, Pengpeng
2014-01-01
A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045
Ultrathin flexible piezoelectric sensors for monitoring eye fatigue
NASA Astrophysics Data System (ADS)
Lü, Chaofeng; Wu, Shuang; Lu, Bingwei; Zhang, Yangyang; Du, Yangkun; Feng, Xue
2018-02-01
Eye fatigue is a symptom induced by long-term work of both eyes and brains. Without proper treatment, eye fatigue may incur serious problems. Current studies on detecting eye fatigue mainly focus on computer vision detect technology which can be very unreliable due to occasional bad visual conditions. As a solution, we proposed a wearable conformal in vivo eye fatigue monitoring sensor that contains an array of piezoelectric nanoribbons integrated on an ultrathin flexible substrate. By detecting strains on the skin of eyelid, the sensors may collect information about eye blinking, and, therefore, reveal human’s fatigue state. We first report the design and fabrication of the piezoelectric sensor and experimental characterization of voltage responses of the piezoelectric sensors. Under bending stress, the output voltage curves yield key information about the motion of human eyelid. We also develop a theoretical model to reveal the underlying mechanism of detecting eyelid motion. Both mechanical load test and in vivo test are conducted to convince the working performance of the sensors. With satisfied durability and high sensitivity, this sensor may efficiently detect abnormal eyelid motions, such as overlong closure, high blinking frequency, low closing speed and weak gazing strength, and may hopefully provide feedback for assessing eye fatigue in time so that unexpected situations can be prevented.
NASA Astrophysics Data System (ADS)
Huang, Lida; Chen, Tao; Wang, Yan; Yuan, Hongyong
2015-12-01
Gatherings of large human crowds often result in crowd disasters such as the Love Parade Disaster in Duisburg, Germany on July 24, 2010. To avoid these tragedies, video surveillance and early warning are becoming more and more significant. In this paper, the velocity entropy is first defined as the criterion for congestion detection, which represents the motion magnitude distribution and the motion direction distribution simultaneously. Then the detection method is verified by the simulation data based on AnyLogic software. To test the generalization performance of this method, video recordings of a real-world case, the Love Parade disaster, are also used in the experiments. The velocity histograms of the foreground object in the videos are extracted by the Gaussian Mixture Model (GMM) and optical flow computation. With a sequential change-point detection algorithm, the velocity entropy can be applied to detect congestions of the Love Parade festival. It turned out that without recognizing and tracking individual pedestrian, our method can detect abnormal crowd behaviors in real-time.
NASA Astrophysics Data System (ADS)
Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman
2017-06-01
ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.
[Evaluation of echocardiography for determining left ventricular function].
Wu, H; Zhu, W; Xu, J
1994-02-01
Left ventricular ejection fraction (LVEF) was calculated by echocardiography and gate blood pool (GBP) in 33 patients including those with coronary heart disease, acute and old myocardiac infarction, cardiomyopathy or mitral prolapse. Fourteen of the 33 had segmental wall motion abnormalities and 19 had non-segmental wall motion abnormalities. The results of comparing echocardiography and GBP showed that the former could substitute for other invasive and expensive examinations to determine LVEF (r = 0.804-0.964 in the 5 echocardiography methods used). Mod-Simpsons method of cross-sectioned echocardiography was the most accurate echocardiographic method (r = 0.964, sensitivity 90.9%) in all patients. The Teich method of M-mode echocardiography was useful in patients who had non-segmental wall motion abnormalities only (r = 0.957, sensitivity 94.7%) but not in patients who had segmental wall motion abnormalities (r = 0.703, sensitivity 42.9%).
NASA Astrophysics Data System (ADS)
Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.
2015-04-01
This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the performance of human observers in detecting regional motion defects in 4D gated MP SPECT images. The result supports the use of the observer model in the optimization and evaluation of 4D image reconstruction and compensation methods for improving the detection of motion abnormalities in 4D gated MP SPECT images.
A characterization of Parkinson's disease by describing the visual field motion during gait
NASA Astrophysics Data System (ADS)
Trujillo, David; Martínez, Fabio; Atehortúa, Angélica; Alvarez, Charlens; Romero, Eduardo
2015-12-01
An early diagnosis of Parkinson's Disease (PD) is crucial towards devising successful rehabilitation programs. Typically, the PD diagnosis is performed by characterizing typical symptoms, namely bradykinesia, rigidity, tremor, postural instability or freezing gait. However, traditional examination tests are usually incapable of detecting slight motor changes, specially for early stages of the pathology. Recently, eye movement abnormalities have correlated with early onset of some neurodegenerative disorders. This work introduces a new characterization of the Parkinson disease by describing the ocular motion during a common daily activity as the gait. This paper proposes a fully automatic eye motion analysis using a dense optical flow that tracks the ocular direction. The eye motion is then summarized using orientation histograms constructed during a whole gait cycle. The proposed approach was evaluated by measuring the χ2 distance between the orientation histograms, showing substantial differences between control and PD patients.
Canclini, S; Terzi, A; Rossini, P; Vignati, A; La Canna, G; Magri, G C; Pizzocaro, C; Giubbini, R
2001-01-01
Multigated radionuclide ventriculography (MUGA) is a simple and reliable tool for the assessment of global systolic and diastolic function and in several studies it is still considered a standard for the assessment of left ventricular ejection fraction. However the evaluation of regional wall motion by MUGA is critical due to two-dimensional imaging and its clinical use is progressively declining in favor of echocardiography. Tomographic MUGA (T-MUGA) is not widely adopted in clinical practice. The aim of this study was to compare T-MUGA to planar MUGA (P-MUGA) for the assessment of global ejection fraction and to transthoracic echocardiography for the evaluation of regional wall motion. A 16-segment model was adopted for the comparison with echo regional wall motion. For each one of the 16 segments the normal range of T-MUGA ejection fraction was quantified and a normal data file was defined; the average value -2.5 SD was used as the lower threshold to identify abnormal segments. In addition, amplitude images from Fourier analysis were quantified and considered abnormal according to three different thresholds (25, 50 and 75% of the maximum). In a study group of 33 consecutive patients the ejection fraction values of T-MUGA highly correlated with those of P-MUGA (r = 0.93). The regional ejection fraction (according to the normal database) and the amplitude analysis (50% threshold) allowed for the correct identification of 203/226 and 167/226 asynergic segments by echocardiography, and of 269/302 and 244/302 normal segments, respectively. Therefore sensitivity, specificity and overall accuracy to detect regional wall motion abnormalities were 90, 89, 89% and 74, 81, 79% for regional ejection fraction and amplitude analysis, respectively. T-MUGA is a reliable tool for regional wall motion evaluation, well correlated with echocardiography, less subjective and able to provide quantitative data.
Application of virtual reality graphics in assessment of concussion.
Slobounov, Semyon; Slobounov, Elena; Newell, Karl
2006-04-01
Abnormal balance in individuals suffering from traumatic brain injury (TBI) has been documented in numerous recent studies. However, specific mechanisms causing balance deficits have not been systematically examined. This paper demonstrated the destabilizing effect of visual field motion, induced by virtual reality graphics in concussed individuals but not in normal controls. Fifty five student-athletes at risk for concussion participated in this study prior to injury and 10 of these subjects who suffered MTBI were tested again on day 3, day 10, and day 30 after the incident. Postural responses to visual field motion were recorded using a virtual reality (VR) environment in conjunction with balance (AMTI force plate) and motion tracking (Flock of Birds) technologies. Two experimental conditions were introduced where subjects passively viewed VR scenes or actively manipulated the visual field motion. Long-lasting destabilizing effects of visual field motion were revealed, although subjects were asymptomatic when standard balance tests were introduced. The findings demonstrate that advanced VR technology may detect residual symptoms of concussion at least 30 days post-injury.
Karimi-Ashtiani, Shahryar; Arsanjani, Reza; Fish, Mathews; Kavanagh, Paul; Germano, Guido; Berman, Daniel; Slomka, Piotr
2012-01-01
Changes in myocardial wall motion and thickening during myocardial perfusion single-photon emission computed tomography (MPS) are typically assessed separately from gated studies to assess for stress induced functional abnormalities. We sought to develop and validate a novel approach for automatic quantification of post-stress-rest myocardial motion and thickening changes (MTC). Methods Endocardial surfaces at the end-diastolic and end-systolic frames for post-stress and rest studies were registered automatically to each other by matching ventricular surfaces. Myocardial MTCs were computed and normal limits of change were determined as the mean and standard deviation for each polar sample. Normal limits were utilized to quantify the MTCs for each map and the accumulated sample values were used for abnormality assessments in segmental regions. A hybrid method was devised by combining the Total Perfusion Deficit (TPD) and MTC for each vessel territory. Normal limits were obtained from 100 subjects with low likelihood (LLK) of coronary artery disease (CAD). For validation, 623 subjects with correlating invasive angiography were studied. All subjects had a stress/rest 99mTc-sestamibi exercise or adenosine test, and all had coronary angiography within 3 months of MPS. All MTC and TPD measurements were derived automatically. The diagnostic accuracy for detection of coronary artery disease for MTC+TPD was compared to TPD alone. Results Segmental normal values for motion change were between −1.3 and −4.1 mm and between −30.1% and −9.8% for thickening change. MTC combined with TPD achieved 61% sensitivity for 3-vessel disease (3VD), 63% for 2-vessel disease (2VD), and 90% for 1-vessel disease (1VD) detection vs. 32% for 3VD (P <0.0001), 53% for 2VD (P < 0.001), and 90% for 1VD (P = 1.0) detection with TPD alone method. The specificity for the combined method was 71% for 3VD, 72% for 2VD, and 47% for 1 VD detection vs. 90% for 3VD (P < 0.0001), 80% for 2VD (P <0.001), and 50% for 1VD detection (P=0.0625) for TPD alone method. The accuracy of 3VD detection by MTC+TPD was higher (69%) than the accuracy of TPD + change in ejection fraction (63%), (P< 0.004). Conclusion We established normal limits and a novel method for computation of regional functional changes between post-stress and rest. Combination of (TPD) with MTC improved the sensitivity for the detection of 3VD and 2VD as compared to TPD alone. PMID:22872739
Role of orientation reference selection in motion sickness, supplement 2S
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1987-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals. The conceptual basis of the present proposal hinges on the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with benign paroxysmal positional vertigo (BPPV) syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans. The overall objectives are to determine: if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects; if abnormal vertical canal-otolith function is the source of abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and if it can be quantified by vestibular and oculomotor reflex measurements; and quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability.
van der Esch, M; Knoop, J; Hunter, D J; Klein, J-P; van der Leeden, M; Knol, D L; Reiding, D; Voorneman, R E; Gerritsen, M; Roorda, L D; Lems, W F; Dekker, J
2013-05-01
Osteoarthritis (OA) of the knee is characterized by pain and activity limitations. In knee OA, proprioceptive accuracy is reduced and might be associated with pain and activity limitations. Although causes of reduced proprioceptive accuracy are divergent, medial meniscal abnormalities, which are highly prevalent in knee OA, have been suggested to play an important role. No study has focussed on the association between proprioceptive accuracy and meniscal abnormalities in knee OA. To explore the association between reduced proprioceptive accuracy and medial meniscal abnormalities in a clinical sample of knee OA subjects. Cross-sectional study in 105 subjects with knee OA. Knee proprioceptive accuracy was assessed by determining the joint motion detection threshold in the knee extension direction. The knee was imaged with a 3.0 T magnetic resonance (MR) scanner. Number of regions with medial meniscal abnormalities and the extent of abnormality in the anterior and posterior horn and body were scored according to the Boston-Leeds Osteoarthritis Knee Score (BLOKS) method. Multiple regression analyzes were used to examine whether reduced proprioceptive accuracy was associated with medial meniscal abnormalities in knee OA subjects. Mean proprioceptive accuracy was 2.9° ± 1.9°. Magnetic resonance imaging (MRI)-detected medial meniscal abnormalities were found in the anterior horn (78%), body (80%) and posterior horn (90%). Reduced proprioceptive accuracy was associated with both the number of regions with meniscal abnormalities (P < 0.01) and the extent of abnormality (P = 0.02). These associations were not confounded by muscle strength, joint laxity, pain, age, gender, body mass index (BMI) and duration of knee complaints. This is the first study showing that reduced proprioceptive accuracy is associated with medial meniscal abnormalities in knee OA. The study highlights the importance of meniscal abnormalities in understanding reduced proprioceptive accuracy in persons with knee OA. Copyright © 2013 Osteoarthritis Research Society International. All rights reserved.
Validation of cardiac accelerometer sensor measurements.
Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik
2009-12-01
In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.
Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E
2017-07-01
Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.
Kamaran, M; Teague, S M; Finkelhor, R S; Dawson, N; Bahler, R C
1995-11-01
To determine whether dobutamine stress echocardiography (DSE) provides prognostic information beyond that available from routine clinical data, we reviewed the outcome of 210 consecutive patients referred for DSE to evaluate chest pain, perioperative risk, and myocardial viability. Dobutamine was infused in increments of 10 micrograms/kg/min in 5-minute stages to a maximum of 40 micrograms/kg/min. The dobutamine stress echocardiogram was considered abnormal only if dobutamine induced a new wall motion abnormality as determined by review of the digitized echocardiographic images in a quad screen format and on videotape. Thirty percent of tests were abnormal. An abnormal test was more common (p < or = 0.02) in men and patients with angina pectoris, in patients taking nitrate therapy, or those with prior myocardial infarction or abnormal left ventricular wall motion at rest. Twenty-two deaths, 17 of which were cardiac, occurred over a median follow-up of 240 days (range 30 to 760). Sixteen cardiac deaths occurred in the 63 patients with versus 1 cardiac death among the 147 without a new wall motion abnormality (p < or = 0.0001). Other variables associated with cardiac death (p < or = 0.05) were age > 65 years, nitrate therapy, ventricular ectopy during DSE, suspected angina pectoris, and hospitalization at the time of DSE. When cardiac death, myocardial infarction, and revascularization procedures were all considered as adverse outcomes, a new wall motion abnormality continued to be the most powerful predictor of an adverse cardiac event.(ABSTRACT TRUNCATED AT 250 WORDS)
Chavhan, Govind B; Alsabban, Zehour; Babyn, Paul S
2014-01-01
Diffusion-weighted (DW) imaging is an emerging technique in body imaging that provides indirect information about the microenvironment of tissues and lesions and helps detect, characterize, and follow up abnormalities. Two main challenges in the application of DW imaging to body imaging are the decreased signal-to-noise ratio of body tissues compared with neuronal tissues due to their shorter T2 relaxation time, and image degradation related to physiologic motion (eg, respiratory motion). Use of smaller b values and newer motion compensation techniques allow the evaluation of anatomic structures with DW imaging. DW imaging can be performed as a breath-hold sequence or a free-breathing sequence with or without respiratory triggering. Depending on the mobility of water molecules in their microenvironment, different normal tissues have different signals at DW imaging. Some normal tissues (eg, lymph nodes, spleen, ovarian and testicular parenchyma) are diffusion restricted, whereas others (eg, gallbladder, corpora cavernosa, endometrium, cartilage) show T2 shine-through. Epiphyses that contain fatty marrow and bone cortex appear dark on both DW images and apparent diffusion coefficient maps. Current and emerging applications of DW imaging in pediatric body imaging include tumor detection and characterization, assessment of therapy response and monitoring of tumors, noninvasive detection and grading of liver fibrosis and cirrhosis, detection of abscesses, and evaluation of inflammatory bowel disease. RSNA, 2014
Wainright, William B; Spritzer, Charles E.; Lee, Jun Young; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.
2012-01-01
Background Lateral ankle instability leads to an increased risk of tibiotalar joint osteoarthritis. Previous studies have found abnormal tibiotalar joint motions with lateral ankle instability that may contribute to this increased incidence of osteoarthritis, including increased anterior translation and internal rotation of the talus under weight-bearing loading. Surgical repairs for lateral ankle instability have shown good clinical results, but the effects of repair on in vivo ankle motion are not well understood. Hypothesis The modified Broström-Gould lateral ligament reconstruction decreases anterior translation and internal rotation of the talus under in vivo weight-bearing loading conditions. Study Design Controlled laboratory study. Methods Seven patients underwent modified Brostöm-Gould repair for unilateral lateral ankle instability. Ankle joint kinematics as a function of increasing body weight were studied with magnetic resonance imaging and biplanar fluoroscopy. Tibiotalar kinematics were measured in unstable ankles preoperatively and postoperatively at a mean follow-up of 12 months, as well as in the uninjured contralateral ankles of the same individuals. Results Surgical repair resulted in statistically significant decreases in anterior translation of the talus (0.9±0.3mm, p=0.018) at 100% bodyweight and internal rotation of the talus at 75% (2.6±0.8°, p=0.019) and 100% (2.7±0.8°, p=0.013) bodyweight compared to ankle kinematics measured before repair. No statistically significant differences were detected between repaired ankles and contralateral normal ankles. Conclusion The modified Broström-Gould repair improved the abnormal joint motion observed in patients with lateral ankle instability, decreasing anterior translation and internal rotation of the talus. Clinical Relevance Altered kinematics may contribute to the tibiotalar joint degeneration that occurs with chronic lateral ankle instability. The findings of the current study support the efficacy of this repair in improving the abnormal ankle motion observed in these patients. PMID:22886690
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1987-01-01
The objectives of this proposal were developed to further explore and quantify the orientation reference selection abilities of subjects and the relation, if any, between motion sickness and orientation reference selection. The overall objectives of this proposal are to determine (1) if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects, (2) if abnormal vertical canal-otolith function is the source of these abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and (3) if quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability demonstrated by tests which systematically control the sensory imformation available for orientation.
A habituation based approach for detection of visual changes in surveillance camera
NASA Astrophysics Data System (ADS)
Sha'abani, M. N. A. H.; Adan, N. F.; Sabani, M. S. M.; Abdullah, F.; Nadira, J. H. S.; Yasin, M. S. M.
2017-09-01
This paper investigates a habituation based approach in detecting visual changes using video surveillance systems in a passive environment. Various techniques have been introduced for dynamic environment such as motion detection, object classification and behaviour analysis. However, in a passive environment, most of the scenes recorded by the surveillance system are normal. Therefore, implementing a complex analysis all the time in the passive environment resulting on computationally expensive, especially when using a high video resolution. Thus, a mechanism of attention is required, where the system only responds to an abnormal event. This paper proposed a novelty detection mechanism in detecting visual changes and a habituation based approach to measure the level of novelty. The objective of the paper is to investigate the feasibility of the habituation based approach in detecting visual changes. Experiment results show that the approach are able to accurately detect the presence of novelty as deviations from the learned knowledge.
Embedded security system for multi-modal surveillance in a railway carriage
NASA Astrophysics Data System (ADS)
Zouaoui, Rhalem; Audigier, Romaric; Ambellouis, Sébastien; Capman, François; Benhadda, Hamid; Joudrier, Stéphanie; Sodoyer, David; Lamarque, Thierry
2015-10-01
Public transport security is one of the main priorities of the public authorities when fighting against crime and terrorism. In this context, there is a great demand for autonomous systems able to detect abnormal events such as violent acts aboard passenger cars and intrusions when the train is parked at the depot. To this end, we present an innovative approach which aims at providing efficient automatic event detection by fusing video and audio analytics and reducing the false alarm rate compared to classical stand-alone video detection. The multi-modal system is composed of two microphones and one camera and integrates onboard video and audio analytics and fusion capabilities. On the one hand, for detecting intrusion, the system relies on the fusion of "unusual" audio events detection with intrusion detections from video processing. The audio analysis consists in modeling the normal ambience and detecting deviation from the trained models during testing. This unsupervised approach is based on clustering of automatically extracted segments of acoustic features and statistical Gaussian Mixture Model (GMM) modeling of each cluster. The intrusion detection is based on the three-dimensional (3D) detection and tracking of individuals in the videos. On the other hand, for violent events detection, the system fuses unsupervised and supervised audio algorithms with video event detection. The supervised audio technique detects specific events such as shouts. A GMM is used to catch the formant structure of a shout signal. Video analytics use an original approach for detecting aggressive motion by focusing on erratic motion patterns specific to violent events. As data with violent events is not easily available, a normality model with structured motions from non-violent videos is learned for one-class classification. A fusion algorithm based on Dempster-Shafer's theory analyses the asynchronous detection outputs and computes the degree of belief of each probable event.
Ventricular dysfunction in children with obstructive sleep apnea: radionuclide assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, A.; Leiberman, A.; Margulis, G.
Ventricular function was evaluated using radionuclide ventriculography in 27 children with oropharyngeal obstruction and clinical features of obstructive sleep apnea. Their mean age was 3.5 years (9 months to 7.5 years). Conventional clinical assessment did not detect cardiac involvement in 25 of 27 children; however, reduced right ventricular ejection fraction (less than 35%) was found in 10 (37%) patients (mean: 19.5 +/- 2.3% SE, range: 8-28%). In 18 patients wall motion abnormality was detected. In 11 children in whom radionuclide ventriculography was performed before and after adenotonsillectomy, right ventricular ejection fraction rose from 24.4 +/- 3.6% to 46.7 +/- 3.4%more » (P less than 0.005), and in all cases wall motion showed a definite improvement. In five children, left ventricular ejection fraction rose greater than 10% after removal of oropharyngeal obstruction. It is concluded that right ventricular function may be compromised in children with obstructive sleep apnea secondary to adenotonsillar hypertrophy, even before clinical signs of cardiac involvement are present.« less
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Komnik, Igor; David, Sina; Weiss, Stefan; Potthast, Wolfgang
2016-01-01
After knee arthroplasty (KA) surgery, patients experience abnormal kinematics and kinetics during numerous activities of daily living. Biomechanical investigations have focused primarily on level walking, whereas walking on sloped surfaces, which is stated to affect knee kinematics and kinetics considerably, has been neglected to this day. This study aimed to analyze over-ground walking on level and sloped surfaces with a special focus on transverse and frontal plane knee kinematics and kinetics in patients with KA. A three-dimensional (3D) motion analysis was performed by means of optoelectronic stereophogrammetry 1.8 ± 0.4 years following total knee arthroplasty (TKA) and unicompartmental arthroplasty surgery (UKA). AnyBody™ Modeling System was used to conduct inverse dynamics. The TKA group negotiated the decline walking task with reduced peak knee internal rotation angles compared with a healthy control group (CG). First-peak knee adduction moments were diminished by 27% (TKA group) and 22% (UKA group) compared with the CG during decline walking. No significant differences were detected between the TKA and UKA groups, regardless of the locomotion task. Decline walking exposed apparently more abnormal knee frontal and transverse plane adjustments in KA patients than level walking compared with the CG. Hence, walking on sloped surfaces should be included in further motion analysis studies investigating KA patients in order to detect potential deficits that might be not obvious during level walking. PMID:28002437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, A.P.; Camporesi, E.M.; Sell, T.L.
The effect of intravenous (IV) nitroglycerin (NTG) on perioperative myocardial ischemia as detected by single pass radionuclide angiocardiography was studied in 20 patients scheduled for elective coronary artery bypass grafting (CABG). Ten patients, selected at random, received IV NTG 1 microgram.kg-1.min-1 (NTG group) and 10 others, IV saline (control group). Anesthetic induction consisted of midazolam 0.2 mg.kg-1, vecuronium 0.1 mg.kg-1, and 50% N{sub 2}O in O{sub 2}. ECG leads I, II, and V5 were monitored for ST segment changes. Single pass radionuclide angiocardiography (RNA) was performed at 5 times: prior to induction, prior to tracheal intubation, and at 1, 3.5,more » and 6 min following intubation. The presence of new regional wall motion abnormalities (RWMA) was determined from each RNA study as compared with the preinduction measurement. Apart from one patient in the control group who developed a new v wave after intubation, there was no evidence of ischemia by pulmonary capillary wedge pressure. No ECG evidence of ischemia was detected in any patient. Despite this, new regional wall motion abnormalities were observed in 3 patients in the control group and 1 patient in the NTG group. Blood pressure and heart rate responses of patients with new RWMA were not significantly different from other patients. The low incidence of ischemia in this population precludes a definitive statement regarding the efficacy of IV NTG, but the lower incidence of RWMA in the NTG group suggests a protective effect.« less
Lee, Hye-Jeong; Uhm, Jae-Sun; Joung, Boyoung; Hong, Yoo Jin; Hur, Jin; Choi, Byoung Wook; Kim, Young Jin
2016-04-01
Myocardial dyskinesia caused by the accessory pathway and related reversible heart failure have been well documented in echocardiographic studies of pediatric patients with Wolff-Parkinson-White (WPW) syndrome. However, the long-term effects of dyskinesia on the myocardium of adult patients have not been studied in depth. The goal of the present study was to evaluate regional myocardial abnormalities on cardiac CT examinations of adult patients with WPW syndrome. Of 74 patients with WPW syndrome who underwent cardiac CT from January 2006 through December 2013, 58 patients (mean [± SD] age, 52.2 ± 12.7 years), 36 (62.1%) of whom were men, were included in the study after the presence of combined cardiac disease was excluded. Two observers blindly evaluated myocardial thickness and attenuation on cardiac CT scans. On the basis of CT findings, patients were classified as having either normal or abnormal findings. We compared the two groups for other clinical findings, including observations from ECG, echocardiography, and electrophysiologic study. Of the 58 patients studied, 16 patients (27.6%) were found to have myocardial abnormalities (i.e., abnormal wall thinning with or without low attenuation). All abnormal findings corresponded with the location of the accessory pathway. Patients with abnormal findings had statistically significantly decreased left ventricular function, compared with patients with normal findings (p < 0.001). The frequency of regional wall motion abnormality was statistically significantly higher in patients with abnormal findings (p = 0.043). However, echocardiography documented structurally normal hearts in all patients. A relatively high frequency (27.6%) of regional myocardial abnormalities was observed on the cardiac CT examinations of adult patients with WPW syndrome. These abnormal findings might reflect the long-term effects of dyskinesia, suggesting irreversible myocardial injury that ultimately causes left ventricular dysfunction.
Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.
Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D
2016-12-01
Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular wall mechanics and chamber remodeling.
Atypical soil behavior during the 2011 Tohoku earthquake ( Mw = 9)
NASA Astrophysics Data System (ADS)
Pavlenko, Olga V.
2016-07-01
To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1 g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365-2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (Mw = 6.8) and 2000 Tottori (Mw = 6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.
Regional cardiac wall motion from gated myocardial perfusion SPECT studies
NASA Astrophysics Data System (ADS)
Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.
1999-06-01
A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.
Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin
2017-06-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Faber, Tracy L.; Garcia, Ernest V.; Lalush, David S.; Segars, W. Paul; Tsui, Benjamin M.
2001-05-01
The spline-based Mathematical Cardiac Torso (MCAT) phantom is a realistic software simulation designed to simulate single photon emission computed tomographic (SPECT) data. It incorporates a heart model of known size and shape; thus, it is invaluable for measuring accuracy of acquisition, reconstruction, and post-processing routines. New functionality has been added by replacing the standard heart model with left ventricular (LV) epicaridal and endocardial surface points detected from actual patient SPECT perfusion studies. LV surfaces detected from standard post-processing quantitation programs are converted through interpolation in space and time into new B-spline models. Perfusion abnormalities are added to the model based on results of standard perfusion quantification. The new LV is translated and rotated to fit within existing atria and right ventricular models, which are scaled based on the size of the LV. Simulations were created for five different patients with myocardial infractions who had undergone SPECT perfusion imaging. Shape, size, and motion of the resulting activity map were compared visually to the original SPECT images. In all cases, size, shape and motion of simulated LVs matched well with the original images. Thus, realistic simulations with known physiologic and functional parameters can be created for evaluating efficacy of processing algorithms.
42 CFR 409.33 - Examples of skilled nursing and rehabilitation services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... reaction. Patients who, in addition to their physical problems, exhibit acute psychological symptoms such... of a patient care plan, including tests and measurements of range of motion, strength, balance... neurological, muscular, or skeletal abnormality; (4) Range of motion exercises: Range of motion exercises which...
42 CFR 409.33 - Examples of skilled nursing and rehabilitation services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... reaction. Patients who, in addition to their physical problems, exhibit acute psychological symptoms such... of a patient care plan, including tests and measurements of range of motion, strength, balance... neurological, muscular, or skeletal abnormality; (4) Range of motion exercises: Range of motion exercises which...
Abdelmoneim, Sahar S; Ball, Caroline A; Mantovani, Francesca; Hagen, Mary E; Eifert-Rain, Susan; Wilansky, Susan; Castello, Ramon; Pellikka, Patricia A; Best, Patricia J M; Mulvagh, Sharon L
2018-05-01
In women with low to intermediate risk of coronary artery disease (CAD), prognostic detection strategies have been controversial. We present the follow-up data of the SMART trial in peri/postmenopausal women at low to intermediate risk of CAD. To determine the value of contrast stress echocardiography (CSE), stress electrocardiogram (sECG), and serum biomarkers for prediction of cardiovascular events (CE) in peri/postmenopausal women at low to intermediate risk of CAD. From January 2004 to August 2007, 400 peri/postmenopausal women were prospectively enrolled. All women had detailed risk factor assessment, and underwent simultaneous CSE (Definity ® , Lantheus Medical Imaging) and sECG. Laboratories included brain natriuretic peptide (BNP), atrial natriuretic peptide, endothelin, and high sensitivity C-reactive protein. Wall motion score index was based on a 16-segment model. Abnormal CSE was defined as new or worsening wall motion abnormality at stress, while abnormal sECG was ≥1 mm horizontal/downsloping ST segment depression/elevation (80 mseconds duration). Self-reported outcome data were collected from a mailed Women's Heart Clinic Questionnaire. CE outcomes included all-cause mortality, nonfatal myocardial infarction (MI), heart failure, chest pain hospitalization or development of typical angina (CP), and revascularization (REVASC). Adjusted Cox proportional hazard ratios (HR; 95% confidence intervals) were reported. A total of 366 women (54.4 ± 5.5 years, Framingham risk 6.5% ± 4.4%) completed simultaneous CSE and sECG. Forty-two (11.5%) had abnormal CSE, while sECG was abnormal in 22 (6%) women. Follow-up (4.4 ± 1.2 years) was available in 315/366 (86%) women (78% exercise-CSE, 22% dobutamine-CSE). In those who completed follow-up, CSE was abnormal in 33 women (10.5%) and sECG was abnormal in 21 (6.7%). In 33 women with abnormal CSE, sECG was abnormal in 7 (21.2%) and normal in 26 (79%), p = 0.0004. CE occurred in 27 (8.6%) women: 8 all-cause mortality, 2 nonfatal MI, 13 CP, and 4 REVASC. CE occurred in 21% versus 7% of women with abnormal versus normal CSE, p = 0.014 and 38% versus 6% of women with abnormal versus normal sECG, p < 0.0001. Rest BNP was higher in women with CE versus those without (p = 0.018). Abnormal sECG and abnormal CSE were associated with CE, while only abnormal sECG was an independent predictor of CE (adjusted HR 10.3 [1.9-61.4], p = 0.007). Of the laboratory results, only BNP was associated with CE (adjusted HR 2.9 [1.1-7.3], p = 0.028). sECG and rest BNP were independent predictors of subsequent CE within 5 years in peri/postmenopausal women at low to intermediate risk of CAD.
Stone, Jeremy; Mor-Avi, Victor; Ardelt, Agnieszka; Lang, Roberto M
2018-01-01
Transient, symmetric, and deep inverted electrocardiogram (ECG) T waves in the setting of stroke, commonly referred to as cerebral T waves, are rare, and the underlying mechanism is unclear. Our study aimed to test the hypothesis that cerebral T waves are associated with transient cardiac dysfunction. This retrospective study included 800 patients admitted with the primary diagnosis of hemorrhagic or ischemic stroke. ECGs were examined for cerebral T waves, defined as T-wave inversion of ≥5 mm depth in ≥4 contiguous precordial leads. Echocardiograms of those meeting these criteria were examined for the presence of left ventricular (LV) wall motion abnormalities. Follow-up evaluation included both ECG and echocardiogram. Of the 800 patients, 17 had cerebral T waves on ECG (2.1%). All 17 patients had ischemic strokes, of which 11 were in the middle cerebral artery distribution (65%), and 2 were cerebellar (12%), whereas the remaining 4 involved other locations. Follow-up ECG showed resolution of the T-wave changes in all 17 patients. Of these patients, 14 (82%) had normal wall motion, and 3 had transient wall motion abnormalities (18%). Two of these patients had Takotsubo-like cardiomyopathy with apical ballooning, and the third had globally reduced LV function. Coronary angiography showed no significant disease to explain the LV dysfunction. In summary, in our cohort of patients with acute stroke, cerebral T waves were rare and occurred only in ischemic stroke. Eighteen percent of patients with cerebral T waves had significant transient wall motion abnormalities. Patients with stroke with cerebral T waves, especially in those with ischemic strokes, should be assessed for cardiac dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.
Nunes, Maria Carmo P; Badano, Luigi Paolo; Marin-Neto, J Antonio; Edvardsen, Thor; Fernández-Golfín, Covadonga; Bucciarelli-Ducci, Chiara; Popescu, Bogdan A; Underwood, Richard; Habib, Gilbert; Zamorano, Jose Luis; Saraiva, Roberto Magalhães; Sabino, Ester Cerdeira; Botoni, Fernando A; Barbosa, Márcia Melo; Barros, Marcio Vinicius L; Falqueto, Eduardo; Simões, Marcus Vinicius; Schmidt, André; Rochitte, Carlos Eduardo; Rocha, Manoel Otávio Costa; Ribeiro, Antonio Luiz Pinho; Lancellotti, Patrizio
2018-04-01
To develop a document by Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making. Chagas disease remains one of the most prevalent infectious diseases in Latin America, and has become a health problem in non-endemic countries. Dilated cardiomyopathy is the most severe manifestation of Chagas disease, which causes substantial disability and early mortality in the socially most productive population leading to a significant economical burden. Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients' prognosis and address management. Echocardiography is the most common imaging modality used to assess, and follow-up patients with Chagas disease. The presence of echocardiographic abnormalities is of utmost importance, since it allows to stage patients according to disease progression. In early stages of cardiac involvement, echocardiography may demonstrate segmental left ventricuar wall motion abnormalities, mainly in the basal segments of inferior, inferolateral walls, and the apex, which cannot be attributed to obstructive coronary artery arteries. The prevalence of segmental wall motion abnormalities varies according to the stage of the disease, reaching about 50% in patients with left ventricular dilatation and dysfunction. Speckle tracking echocardiography allows a more precise and quantitative measurement of the regional myocardial function. Since segmental wall motion abnormalities are frequent in Chagas disease, speckle tracking echocardiography may have an important clinical application in these patients, particularly in the indeterminate forms when abnormalities are more subtle. Speckle tracking echocardiography can also quantify the heterogeneity of systolic contraction, which is associated with the risk of arrhythmic events. Three-dimensional (3D) echocardiography is superior to conventional two-dimensional (2D) echocardiography for assessing more accurately the left ventricular apex and thus to detect apical aneurysms and thrombus in patients in whom ventricular foreshortening is suspected by 2D echocardiography. In addition, 3D echocardiography is more accurate than 2D Simpson s biplane rule for assessing left ventricular volumes and function in patients with significant wall motion abnormalities, including aneurysms with distorted ventricular geometry. Contrast echocardiography has the advantage to enhancement of left ventricular endocardial border, allowing for more accurate detection of ventricular aneurysms and thrombus in Chagas disease. Diastolic dysfunction is an important hallmark of Chagas disease even in its early phases. In general, left ventricular diastolic and systolic dysfunction coexist and isolated diastolic dysfunction is uncommon but may be present in patients with the indeterminate form. Right ventricular dysfunction may be detected early in the disease course, but in general, the clinical manifestations occur late at advanced stages of Chagas cardiomyopathy. Several echocardiographic parameters have been used to assess right ventricular function in Chagas disease, including qualitative evaluation, myocardial performance index, tissue Doppler imaging, tricuspid annular plane systolic excursion, and speckle tracking strain. Cardiac magnetic resonance (CMR) is useful to assess global and regional left ventricular function in patients with Chagas diseases. Myocardial fibrosis is a striking feature of Chagas cardiomyopathy and late gadolinium enhancement (LGE) is used to detect and quantify the extension of myocardial fibrosis. Myocardial fibrosis might have a role in risk stratification of patients with Chagas disease. Limited data are available regarding right ventricular function assessed by CMR in Chagas disease. Radionuclide ventriculography is used for global biventricular function assessment in patients with suspected or definite cardiac involvement in Chagas disease with suboptimal acoustic window and contraindication to CMR. Myocardial perfusion scintigraphy may improve risk stratification to define cardiac involvement in Chagas disease, especially in the patients with devices who cannot be submitted to CMR and in the clinical setting of Chagas patients whose main complaint is atypical chest pain. Detection of reversible ischemic defects predicts further deterioration of left ventricular systolic function and helps to avoid unnecessary cardiac catheterization and coronary angiography. Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients risk stratification remains to be addressed using different images modalities.
NASA Technical Reports Server (NTRS)
Foster, J. L.
1980-01-01
The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.
Ergonomics for enhancing detection of machine abnormalities.
Illankoon, Prasanna; Abeysekera, John; Singh, Sarbjeet
2016-10-17
Detecting abnormal machine conditions is of great importance in an autonomous maintenance environment. Ergonomic aspects can be invaluable when detection of machine abnormalities using human senses is examined. This research outlines the ergonomic issues involved in detecting machine abnormalities and suggests how ergonomics would improve such detections. Cognitive Task Analysis was performed in a plant in Sri Lanka where Total Productive Maintenance is being implemented to identify sensory types that would be used to detect machine abnormalities and relevant Ergonomic characteristics. As the outcome of this research, a methodology comprising of an Ergonomic Gap Analysis Matrix for machine abnormality detection is presented.
Iramina, Keiji; Kamei, Yuuichiro; Katayama, Yoshinori
2011-01-01
We developed a simple, portable and easy system to the motion of pronation and supination of the forearm. This motion was measured by wireless acceleration and angular velocity sensor. The aim of this system is evaluation of minor nervous dysfunction. It is for the screening of the developmental disorder child. In this study, in order to confirm the effectiveness of this system, the reference curve of the neuromotor development was experimentally obtained. We studied 212 participants (108 males, 104 females) aged 7 to 12 years attending the kindergarten school. We could obtain the reference curve of the neuromotor development using this system. We also investigated the difference of neuromotor function between normally developed children and a ADHD child. There is a possibility that abnormality of the minor nervous dysfunction can be detected by using this system.
Zhao, Chaoying; Lu, Zhong; Zhang, Qin; de la Fuente, Juan
2012-01-01
Multi-temporal ALOS/PALSAR images are used to automatically investigate landslide activity over an area of ~ 200 km by ~ 350 km in northern California and southern Oregon. Interferometric synthetic aperture radar (InSAR) deformation images, InSAR coherence maps, SAR backscattering intensity images, and a DEM gradient map are combined to detect active landslides by setting individual thresholds. More than 50 active landslides covering a total of about 40 km2 area are detected. Then the short baseline subsets (SBAS) InSAR method is applied to retrieve time-series deformation patterns of individual detected landslides. Down-slope landslide motions observed from adjacent satellite tracks with slightly different radar look angles are used to verify InSAR results and measurement accuracy. Comparison of the landslide motion with the precipitation record suggests that the landslide deformation correlates with the rainfall rate, with a lag time of around 1–2 months between the precipitation peak and the maximum landslide displacement. The results will provide new insights into landslide mechanisms in the Pacific Northwest, and facilitate development of early warning systems for landslides under abnormal rainfall conditions. Additionally, this method will allow identification of active landslides in broad areas of the Pacific Northwest in an efficient and systematic manner, including remote and heavily vegetated areas difficult to inventory by traditional methods.
Coll, Claudia; González, Patricio; Massardo, Teresa; Sierralta, Paulina; Humeres, Pamela; Jofré, Josefina; Yovanovich, Jorge; Aramburú, Ivonne; Brugère, Solange; Chamorro, Hernán; Ramírez, Alfredo; Kunstmann, Sonia; López, Héctor
2002-03-01
The detection of viability after acute myocardial infarction is primordial to select the most appropriate therapy, to decrease cardiac events and abnormal remodeling. Thallium201 SPECT is one of the radionuclide techniques used to detect viability. To evaluate the use of Thallium201 rest-redistribution SPECT to detect myocardial viability in reperfused patients after a recent myocardial infarction. Forty one patients with up to of 24 days of evolution of a myocardial infarction were studied. All had angiographically demonstrated coronary artery disease and were subjected to a successful thrombolysis, angioplasty or bypass grafting. SPECT Thallium201 images were acquired at rest and after 4 h of redistribution. These results were compared with variations in wall motion score, studied at baseline and after 3 or 4 months with echocardiography. The sensitivity of rest-redistribution Thallium201 SPECT, to predict recovery of wall motion was 91% when patient analysis was performed and 79% when segmental analysis was done in the culprit region. The figures for specificity were 56 and 73% respectively. Rest-distribution Thallium201 SPECT has an excellent sensitivity to predict myocardial viability in recent myocardial infarction. The data obtained in this study is similar to that reported for chronic coronary artery disease.
Development of Motion Processing in Children with Autism
ERIC Educational Resources Information Center
Annaz, Dagmara; Remington, Anna; Milne, Elizabeth; Coleman, Mike; Campbell, Ruth; Thomas, Michael S. C.; Swettenham, John
2010-01-01
Recent findings suggest that children with autism may be impaired in the perception of biological motion from moving point-light displays. Some children with autism also have abnormally high motion coherence thresholds. In the current study we tested a group of children with autism and a group of typically developing children aged 5 to 12 years of…
Abnormal global and local event detection in compressive sensing domain
NASA Astrophysics Data System (ADS)
Wang, Tian; Qiao, Meina; Chen, Jie; Wang, Chuanyun; Zhang, Wenjia; Snoussi, Hichem
2018-05-01
Abnormal event detection, also known as anomaly detection, is one challenging task in security video surveillance. It is important to develop effective and robust movement representation models for global and local abnormal event detection to fight against factors such as occlusion and illumination change. In this paper, a new algorithm is proposed. It can locate the abnormal events on one frame, and detect the global abnormal frame. The proposed algorithm employs a sparse measurement matrix designed to represent the movement feature based on optical flow efficiently. Then, the abnormal detection mission is constructed as a one-class classification task via merely learning from the training normal samples. Experiments demonstrate that our algorithm performs well on the benchmark abnormal detection datasets against state-of-the-art methods.
The accuracy of ultrasound for measurement of mobile- bearing motion.
Aigner, Christian; Radl, Roman; Pechmann, Michael; Rehak, Peter; Stacher, Rudolf; Windhager, Reinhard
2004-04-01
After anterior cruciate ligament-sacrificing total knee replacement, mobile bearings sometimes have paradoxic movement but the implications of such movement on function, wear, and implant survival are not known. To study this potential problem accurate, reliable, and widely available inexpensive tools for in vivo mobile-bearing motion analyses are needed. We developed a method using an 8-MHz ultrasound to analyze mobile-bearing motion and ascertained accuracy, precision, and reliability compared with plain and standard digital radiographs. The anterior rim of the mobile bearing was the target for all methods. The radiographs were taken in a horizontal plane at neutral rotation and incremental external and internal rotations. Five investigators examined four positions of the mobile bearing with all three methods. The accuracy and precision were: ultrasound, 0.7 mm and 0.2 mm; digital radiograph, 0.4 mm and 0.2 mm; and plain radiographs, 0.7 mm and 0.3 mm. The interrater and intrarater reliability ranged between 0.3 to 0.4 mm and 0.1 to 0.2 mm, respectively. The difference between the methods was not significant for neutral rotation but ultrasound was significantly more accurate than any one degree of rotation or higher. Ultrasound of 8 MHz provides an accuracy and reliability that is suitable for evaluation of in vivo meniscal bearing motion. Whether this method or others are sufficiently accurate to detect motion leading to abnormal wear is not known.
Naresh, Nivedita K; Chen, Xiao; Roy, Rene J; Antkowiak, Patrick F; Annex, Brian H; Epstein, Frederick H
2015-03-01
Gene-modified mice may be used to elucidate molecular mechanisms underlying abnormal myocardial blow flow (MBF). We sought to develop a quantitative myocardial perfusion imaging technique for mice and to test the hypothesis that myocardial perfusion reserve (MPR) is reduced in a mouse model of diet-induced obesity (DIO). A dual-contrast saturation-recovery sequence with ky -t undersampling and a motion-compensated compressed sensing reconstruction algorithm was developed for first-pass MRI on a small-bore 7 Tesla system. Control mice were imaged at rest and with the vasodilators ATL313 and Regadenoson (n = 6 each). In addition, we imaged mice fed a high-fat diet (HFD) for 24 weeks. In control mice, MBF was 5.7 ± 0.8 mL/g/min at rest and it increased to 11.8 ± 0.6 mL/g/min with ATL313 and to 10.4 ± 0.3 mL/g/min with Regadenoson. In HFD mice, we detected normal resting MBF (5.6 ± 0.4 versus 5.0 ± 0.3 on control diet), low MBF at stress (7.7 ± 0.4 versus 10.4 ± 0.3 on control diet, P < 0.05), and reduced MPR (1.4 ± 0.2 versus 2.0 ± 0.3 on control diet, P < 0.05). Accelerated dual-contrast first-pass MRI with motion-compensated compressed sensing provides spatiotemporal resolution suitable for measuring MBF in free-breathing mice, and detected reduced MPR in DIO mice. These techniques may be used to study molecular mechanisms that underlie abnormal myocardial perfusion. © 2014 Wiley Periodicals, Inc.
Naresh, Nivedita K.; Chen, Xiao; Roy, Rene J.; Antkowiak, Patrick F.; Annex, Brian H.; Epstein, Frederick H.
2014-01-01
Background Gene-modified mice may be used to elucidate molecular mechanisms underlying abnormal myocardial blood flow (MBF). We sought to develop a quantitative myocardial perfusion imaging technique for mice and to test the hypothesis that myocardial perfusion reserve (MPR) is reduced in a mouse model of diet-induced obesity (DIO). Methods A dual-contrast saturation-recovery sequence with ky-t undersampling and a motion-compensated compressed sensing reconstruction algorithm was developed for first-pass MRI on a small-bore 7T system. Control mice were imaged at rest and with the vasodilators ATL313 and Regadenoson (n=6 each). In addition, we imaged mice fed a high-fat diet (HFD) for 24 weeks. Results In control mice, MBF was 5.7±0.8 ml/g/min at rest and it increased to 11.8±0.6 ml/g/min with ATL313 and to 10.4±0.3 ml/g/min with Regadenoson. In HFD mice we detected normal resting MBF (5.6±0.4 vs. 5.0±0.3 on control diet), low MBF at stress (7.7±0.4 vs. 10.4±0.3 on control diet, p<0.05), and reduced MPR (1.4±0.2 vs. 2.0±0.3 on control diet, p<0.05). Conclusions Accelerated dual-contrast first-pass MRI with motion-compensated compressed sensing provides spatiotemporal resolution suitable for measuring MBF in free-breathing mice, and detected reduced MPR in DIO mice. These techniques may be used to study molecular mechanisms that underlie abnormal myocardial perfusion. PMID:24760707
Image-based fall detection and classification of a user with a walking support system
NASA Astrophysics Data System (ADS)
Taghvaei, Sajjad; Kosuge, Kazuhiro
2017-10-01
The classification of visual human action is important in the development of systems that interact with humans. This study investigates an image-based classification of the human state while using a walking support system to improve the safety and dependability of these systems.We categorize the possible human behavior while utilizing a walker robot into eight states (i.e., sitting, standing, walking, and five falling types), and propose two different methods, namely, normal distribution and hidden Markov models (HMMs), to detect and recognize these states. The visual feature for the state classification is the centroid position of the upper body, which is extracted from the user's depth images. The first method shows that the centroid position follows a normal distribution while walking, which can be adopted to detect any non-walking state. The second method implements HMMs to detect and recognize these states. We then measure and compare the performance of both methods. The classification results are employed to control the motion of a passive-type walker (called "RT Walker") by activating its brakes in non-walking states. Thus, the system can be used for sit/stand support and fall prevention. The experiments are performed with four subjects, including an experienced physiotherapist. Results show that the algorithm can be adapted to the new user's motion pattern within 40 s, with a fall detection rate of 96.25% and state classification rate of 81.0%. The proposed method can be implemented to other abnormality detection/classification applications that employ depth image-sensing devices.
Are evolutionary hypotheses for motion sickness "just-so" stories?
Oman, Charles M
2012-01-01
Vertebrates have evolved rapidly conditionable nausea and vomiting reflexes mediated by gut and brainstem receptors, clearly as a defense against neurotoxin ingestion. In 1977 Treisman proposed that sensory orientation linkages to emetic centers evolved for the same reason, and that motion sickness was an accidental byproduct. It was an "adaptationist" explanation for motion sickness, since it assumed that evolution has shaped all phenotypic traits for survival advantage. Treisman's "poison" theory is plausible, and frequently cited as the accepted scientific explanation for motion sickness. However, alternative explanations have been proposed. The creation of hypotheses is an essential part of science - provided they are testable. This paper reviews the evidence for the Poison theory and several other adaptationist explanations. These hypotheses are certainly not "just-so stories", but supporting evidence is equivocal, and contradictory evidence exists Parsimony suggests an alternative "pluralistic" view: The vertebrate reticular formation maintains oxygenated blood flow to the brain, discriminates unexpected sensory stimuli- including postural disturbances, and detects and expels ingested neurotoxins. The three systems share neuroarchitectural elements but normally function independently. Brainstem sensory conflict neurons normally discriminate brief postural disturbances, but can be abnormally stimulated during prolonged passive transport (e.g. by boat, beginning about 150-200 generations ago). Sensory conflict signals cross couple into the neurotoxin expulsion and avoidance system, producing an arguably maladaptive emetic phenotype.
NASA Astrophysics Data System (ADS)
Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carely; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.
2016-03-01
Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.
The use of echocardiography in Wolff-Parkinson-White syndrome.
Cai, Qiangjun; Shuraih, Mossaab; Nagueh, Sherif F
2012-04-01
Endocardial mapping and radiofrequency catheter ablation are well established modalities for the diagnosis and treatment of patients with Wolff-Parkinson-White (WPW) syndrome associated with tachyarrhythmias. However, the electrophysiologic techniques are invasive, require radiation exposure, and lack spatial resolution of cardiac structures. A variety of echocardiographic techniques have been investigated as a non-invasive alternative for accessory pathway localization. Conventional M-mode echocardiography can detect the fine premature wall motion abnormalities associated with WPW syndrome. However, it is unable to identify the exact site of accessory pathway with sufficient accuracy. 2D, 2D-guided M-mode, and 2D phase analysis techniques are limited by image quality and endocardial border definition. Various modalities of tissue Doppler echocardiography significantly increase the accuracy of left-sided accessory pathway localization to 80-90% even in patients with poor acoustic window. However, right-sided pathways remain a diagnostic challenge. Strain echocardiography by speckle tracking has recently been evaluated and appears promising. Different cardiac abnormalities have been detected by echocardiography in WPW patients. Patients with WPW syndrome and tachyarrhythmias have impaired systolic and diastolic function which improves after radiofrequency ablation. Echocardiography is useful in identifying patient with accessory pathway-associated left ventricular dyssynchrony and dysfunction who may benefit from ablation therapy. Transesophageal and intracardiac echocardiography have been used to guide ablation procedure. Ablation-related complications detected by routine echocardiography are infrequent, rarely clinically relevant, and of limited value.
Detection of dominant flow and abnormal events in surveillance video
NASA Astrophysics Data System (ADS)
Kwak, Sooyeong; Byun, Hyeran
2011-02-01
We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.
The Human Pelvis: Variation in structure and function during gait
Lewis, Cara L.; Laudicina, Natalie M.; Khuu, Anne; Loverro, Kari L.
2017-01-01
The shift to habitual bipedalism 4–6 million years ago in the hominin lineage created a morphologically and functionally different human pelvis compared to our closest living relatives, the chimpanzees. Evolutionary changes to the shape of the pelvis were necessary for the transition to habitual bipedalism in humans. These changes in the bony anatomy resulted in an altered role of muscle function, influencing bipedal gait. Additionally, there are normal sex-specific variations in the pelvis as well as abnormal variations in the acetabulum. During gait, the pelvis moves in the three planes to produce smooth and efficient motion. Subtle sex-specific differences in these motions may facilitate economical gait despite differences in pelvic structure. The motions of the pelvis and hip may also be altered in the presence of abnormal acetabular structure, especially with acetabular dysplasia. PMID:28297184
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Kumar, Prashanth S.; Varadan, Vijay K.
2012-10-01
CardioVascular Disease(CVD)s lead the sudden cardiac death due to irregular phenomenon of the cardiac signal by the abnormal case of blood vessel and cardiac structure. For last two decades, cardiac disease research for man is under active discussion. As a result, the death rate by cardiac disease in men has been falling gradually compared with relatively increasing the women death rate due to CVD[2]. The main reason of this phenomenon causes the lack a sense of the seriousness to female CVD and different symptom of female CVD compared with the symptoms of male CVD. Usually, because the women CVD accompanies with ordinary symptoms unrecognizing the heart abnormality signal such as unusual fatigue, sleep disturbances, shortness of breath, anxiety, chest discomfort, and indigestion dyspepsia, most women CVD patients do not realize that these symptoms are related to the CVD symptoms. Therefore, periodic ECG signal observation is required for women cardiac disease patients. ElectroCardioGram(ECG) detection, treadmill test/exercise ECG, nuclear scan, coronary angiography, and intracoronary ultrasound are used to diagnose abnormality of heart. Among the medical checkup methods for CVDs checkup, it is very effective method for the diagnosis of cardiac disease and the early detection of heart abnormality to monitor ECG periodically. This paper suggests the effective ECG monitoring system for woman by attaching the system on woman's brassiere by using augmented chest lead attachment method. The suggested system in this paper consists of ECG signal transmission system and a server program to display and analyze the transmitted ECG. The ECG signal transmission system consists of three parts such as ECG physical signal detection part with two electrodes made by gold nanowire structure, data acquisition with AD converter, and data transmission part with GPRS(General Packet Radio Service) communication. Usually, to detect human bio signal, Ag/AgCl or gold cup electrodes are used with conductive gel. However, the gel can be dried when taking long time monitoring. The gold nanowire structure electrodes without consideration of uncomfortable usage of gel are attached on beneath the chest position of a brassiere, and the electrodes convert the physical ECG signal to voltage potential signal. The voltage potential ECG signal is converted to digital signal by AD converter included in microprocessor. The converted ECG signal by AD converter is saved on every 1 sec period in the internal RAM in microprocessor. For transmission of the saved data in the internal RAM to a server computer locating at remote area, the system uses the GPRS communication technology, which can develop the wide area network(WAP) without any gateway and repeater. In addition, the transmission system is operated on client mode of GPRS communication. The remote server is installed a program including the functions of displaying and analyzing the transmitted ECG. To display the ECG data, the program is operated with TCP/IP server mode and static IP address, and to analyze the ECG data, the paper suggests motion artifact remove algorithm including adaptive filter with LMS(least mean square), baseline detection algorithm using predictability estimation theory, a filter with moving weighted factor, low pass filter, peak to peak detection, and interpolation.
α-Information Based Registration of Dynamic Scans for Magnetic Resonance Cystography
Han, Hao; Lin, Qin; Li, Lihong; Duan, Chaijie; Lu, Hongbing; Li, Haifang; Yan, Zengmin; Fitzgerald, John
2015-01-01
To continue our effort on developing magnetic resonance (MR) cystography, we introduce a novel non–rigid 3D registration method to compensate for bladder wall motion and deformation in dynamic MR scans, which are impaired by relatively low signal–to–noise ratio in each time frame. The registration method is developed on the similarity measure of α–information, which has the potential of achieving higher registration accuracy than the commonly-used mutual information (MI) measure for either mono-modality or multi-modality image registration. The α–information metric was also demonstrated to be superior to both the mean squares and the cross-correlation metrics in multi-modality scenarios. The proposed α–registration method was applied for bladder motion compensation via real patient studies, and its effect to the automatic and accurate segmentation of bladder wall was also evaluated. Compared with the prevailing MI-based image registration approach, the presented α–information based registration was more effective to capture the bladder wall motion and deformation, which ensured the success of the following bladder wall segmentation to achieve the goal of evaluating the entire bladder wall for detection and diagnosis of abnormality. PMID:26087506
Shape-and-behavior encoded tracking of bee dances.
Veeraraghavan, Ashok; Chellappa, Rama; Srinivasan, Mandyam
2008-03-01
Behavior analysis of social insects has garnered impetus in recent years and has led to some advances in fields like control systems, flight navigation etc. Manual labeling of insect motions required for analyzing the behaviors of insects requires significant investment of time and effort. In this paper, we propose certain general principles that help in simultaneous automatic tracking and behavior analysis with applications in tracking bees and recognizing specific behaviors exhibited by them. The state space for tracking is defined using position, orientation and the current behavior of the insect being tracked. The position and orientation are parametrized using a shape model while the behavior is explicitly modeled using a three-tier hierarchical motion model. The first tier (dynamics) models the local motions exhibited and the models built in this tier act as a vocabulary for behavior modeling. The second tier is a Markov motion model built on top of the local motion vocabulary which serves as the behavior model. The third tier of the hierarchy models the switching between behaviors and this is also modeled as a Markov model. We address issues in learning the three-tier behavioral model, in discriminating between models, detecting and in modeling abnormal behaviors. Another important aspect of this work is that it leads to joint tracking and behavior analysis instead of the traditional track and then recognize approach. We apply these principles for tracking bees in a hive while they are executing the waggle dance and the round dance.
Abnormal sympathetic innervation of the heart in a patient with Emery-Dreifuss muscular dystrophy.
Fujiita, Takashi; Shimizu, Masami; Kaku, Bunji; Kanaya, Hounin; Horita, Yuki; Uno, Yoshihide; Yamazaki, Tsukasa; Ohka, Takio; Sakata, Kenji; Mabuchi, Hiroshi
2005-07-01
A 33-year-old man was admitted for general malaise and vomiting. An electrocardiogram showed a complete atrioventricular block and an echocardiogram showed right atrial dilatation and normal wall motion of left ventricle (LV). Gene analysis showed nonsense mutation in the STA gene, which codes for emerin, and Emery-Dreifuss muscular dystrophy was diagnosed. An endomyocardial biopsy of right ventricle showed mild hypertrophy of myocytes. Myocardial scintigraphic studies with Tc-99m methoxyisobutylisonitrile (MIBI) and I-123-betamethyl-p-iodophenylpentadecanoic acid (BMIPP) scintigrams showed no abnormalities. In contrast, I-123 metaiodobenzylguanidine (MIBG) scintigrams showed a diffuse and severe decrease in accumulation of MIBG in the heart. Six months later, his LV wall motion on echocardiograms developed diffuse hypokinesis. These results suggest that the abnormality on I-123 MIBG myocardial scintigrams may predict LV dysfunction in Emery-Dreifuss muscular dystrophy.
Suppressive mechanisms in visual motion processing: from perception to intelligence
Tadin, Duje
2015-01-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and those with schizophrenia—a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386
Lei, Wenjia; Fan, Miao; Wang, Meilian; Wang, Yu; Sun, Wei; Sun, Xue; Zhang, Ying
2018-05-02
Foramen ovale (FO) valve with a shape or motion abnormality is frequently detected during routine obstetric ultrasonic examinations. However, the hemodynamics mechanism of this entity remains unclear. The purpose of the study is to determine the relevance of interatrial communication restriction and resultant morphological modifications. We reviewed the echocardiographic records of fetuses with isolated abnormal FO valve evaluated between January of 2010 and december of 2016. The size (DFO) of the FO orifice, opening angle (α) of the FO valve, and dimensions of cardiac chambers, FO channel outlet (DOUT) and inferior vena cava (DIVC) were measured. We evaluated their (DFO, DOUT, α) relationships to the diameters of RA and DIVC. Five hundred and seventy normal fetuses were selected to establish the normal range of the DOUT/DIVC ratio so as to provide a criterion for restriction. An abnormal FO valve was identified in 89 fetuses without congenital heart disease, with restriction noted in 62 fetuses (45 fetuses with RA dilatation, 12 fetuses with RA and RV dilatation, and 5 fetuses with no RA dilatation). There were no significant correlations between RA/LA and DFO/DIVC, RA/ LA and α. RA/LA was negatively correlated with DOUT/DIVC (R2=0.97, p<0.01). For a fetus with an abnormal FO valve, right heart dilatation could be considered as an indicator of interatrial communication restriction, which could be assessed by evaluating the FO channel outlet. The degree of right atrium dilatation indicates the severity of the restriction.
Reliability and validity of the range of motion scale (ROMS) in patients with abnormal postures.
van Rooijen, Diana E; Lalli, Stefania; Marinus, Johan; Maihöfner, Christian; McCabe, Candida S; Munts, Alex G; van der Plas, Anton A; Tijssen, Marina A J; van de Warrenburg, Bart P; Albanese, Alberto; van Hilten, Jacobus J
2015-03-01
Sustained abnormal postures (i.e., fixed dystonia) are the most frequently reported motor abnormalities in complex regional pain syndrome (CRPS), but these symptoms may also develop after peripheral trauma without CRPS. Currently, there is no valid and reliable measurement instrument available to measure the severity and distribution of these postures. The range of motion scale (ROMS) was therefore developed to assess the severity based on the possible active range of motion of all joints (arms, legs, trunk, and neck), and the present study evaluates its reliability and validity. Inter- and intra-rater reliability of the ROMS was determined in 16 patients with abnormal sustained postures, who were videotaped following a standard video protocol in a university hospital. The recordings were rated by a panel of international experts. In addition, 30 patients were clinically tested with both the Burke-Fahn-Marsden (BFM) scale as well as the ROMS to assess construct validity. Inter-rater reliability for total ROMS scores showed an intra-class correlation coefficient (ICC) of 0.85. The majority of the scores for the separate joints (13 out of 18) demonstrated an almost perfect agreement with ICCs ranging from 0.81 to 0.94; of the other items, one showed fair, one moderate, and three substantial agreement. The ICCs for the intra-rater reliability ranged from moderate to almost perfect (0.68-0.98). Spearman's correlation coefficients between corresponding body areas as measured with the ROMS or BFM were all above 0.82. The ROMS is a reliable and valid instrument to evaluate the severity and distribution of sustained abnormal postures. Wiley Periodicals, Inc.
The Human Pelvis: Variation in Structure and Function During Gait.
Lewis, Cara L; Laudicina, Natalie M; Khuu, Anne; Loverro, Kari L
2017-04-01
The shift to habitual bipedalism 4-6 million years ago in the hominin lineage created a morphologically and functionally different human pelvis compared to our closest living relatives, the chimpanzees. Evolutionary changes to the shape of the pelvis were necessary for the transition to habitual bipedalism in humans. These changes in the bony anatomy resulted in an altered role of muscle function, influencing bipedal gait. Additionally, there are normal sex-specific variations in the pelvis as well as abnormal variations in the acetabulum. During gait, the pelvis moves in the three planes to produce smooth and efficient motion. Subtle sex-specific differences in these motions may facilitate economical gait despite differences in pelvic structure. The motions of the pelvis and hip may also be altered in the presence of abnormal acetabular structure, especially with acetabular dysplasia. Anat Rec, 300:633-642, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Computerized analysis and duplication of mandibular motion.
Knap, F J; Abler, J H; Richardson, B L
1975-05-01
A new digital system has been devised to analyze and duplicate jaw motion. The arrangement of the electronic system offers a range of versatility which includes graphic as well as numerical data analysis. The duplicator linkage is identical to the sensor linkage which, together with an accurate model transfer system, results in an encouraging level of accuracy in jaw-motion duplication. The data collected from normal subjects should offer some new knowledge in the normal motions of the mandible as well as establish a reference for comparison with abnormal masticatory function.
Neuroanatomical correlates of biological motion detection.
Gilaie-Dotan, Sharon; Kanai, Ryota; Bahrami, Bahador; Rees, Geraint; Saygin, Ayse P
2013-02-01
Biological motion detection is both commonplace and important, but there is great inter-individual variability in this ability, the neural basis of which is currently unknown. Here we examined whether the behavioral variability in biological motion detection is reflected in brain anatomy. Perceptual thresholds for detection of biological motion and control conditions (non-biological object motion detection and motion coherence) were determined in a group of healthy human adults (n=31) together with structural magnetic resonance images of the brain. Voxel based morphometry analyzes revealed that gray matter volumes of left posterior superior temporal sulcus (pSTS) and left ventral premotor cortex (vPMC) significantly predicted individual differences in biological motion detection, but showed no significant relationship with performance on the control tasks. Our study reveals a neural basis associated with the inter-individual variability in biological motion detection, reliably linking the neuroanatomical structure of left pSTS and vPMC with biological motion detection performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Harris, Kevin M; Schum, Kevin R; Knickelbine, Thomas; Hurrell, David G; Koehler, Jodi L; Longe, Terrence F
2003-08-01
Motion Picture Experts Group-2 (MPEG2) is a broadcast industry standard that allows high-level compression of echocardiographic data. Validation of MPEG2 digital images compared with super VHS videotape has not been previously reported. Simultaneous super VHS videotape and MPEG2 digital images were acquired. In all, 4 experienced echocardiographers completed detailed reporting forms evaluating chamber size, ventricular function, regional wall-motion abnormalities, and measures of valvular regurgitation and stenosis in a blinded fashion. Comparisons between the 2 interpretations were then performed and intraobserver concordance was calculated for the various categories. A total of 80 paired comparisons were made. The overall concordance rate was 93.6% with most of the discrepancies being minor (4.1%). Concordance was 92.4% for left ventricle, 93.2% for right ventricle, 95.2% for regional wall-motion abnormalities, and 97.8% for valve stenosis. The mean grade of valvular regurgitation was similar for the 2 techniques. MPEG2 digital imaging offers excellent concordance compared with super VHS videotape.
Normal and abnormal human vestibular ocular function
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.
1986-01-01
The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.
ERIC Educational Resources Information Center
Klin, Ami; Jones, Warren
2008-01-01
Mounting clinical evidence suggests that abnormalities of social engagement in children with autism are present even during infancy. However, direct experimental documentation of these abnormalities is still limited. In this case report of a 15-month-old infant with autism, we measured visual fixation patterns to both naturalistic and ambiguous…
A robust real-time abnormal region detection framework from capsule endoscopy images
NASA Astrophysics Data System (ADS)
Cheng, Yanfen; Liu, Xu; Li, Huiping
2009-02-01
In this paper we present a novel method to detect abnormal regions from capsule endoscopy images. Wireless Capsule Endoscopy (WCE) is a recent technology where a capsule with an embedded camera is swallowed by the patient to visualize the gastrointestinal tract. One challenge is one procedure of diagnosis will send out over 50,000 images, making physicians' reviewing process expensive. Physicians' reviewing process involves in identifying images containing abnormal regions (tumor, bleeding, etc) from this large number of image sequence. In this paper we construct a novel framework for robust and real-time abnormal region detection from large amount of capsule endoscopy images. The detected potential abnormal regions can be labeled out automatically to let physicians review further, therefore, reduce the overall reviewing process. In this paper we construct an abnormal region detection framework with the following advantages: 1) Trainable. Users can define and label any type of abnormal region they want to find; The abnormal regions, such as tumor, bleeding, etc., can be pre-defined and labeled using the graphical user interface tool we provided. 2) Efficient. Due to the large number of image data, the detection speed is very important. Our system can detect very efficiently at different scales due to the integral image features we used; 3) Robust. After feature selection we use a cascade of classifiers to further enforce the detection accuracy.
Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu
2017-11-01
Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raudies, Florian; Neumann, Heiko
2012-01-01
The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930
Suppressive mechanisms in visual motion processing: From perception to intelligence.
Tadin, Duje
2015-10-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polese, Luigi Gentile; Brackney, Larry
An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generatesmore » an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.« less
Implementation of magnetic resonance elastography for the investigation of traumatic brain injuries
NASA Astrophysics Data System (ADS)
Boulet, Thomas
Magnetic resonance elastography (MRE) is a potentially transformative imaging modality allowing local and non-invasive measurement of biological tissue mechanical properties. It uses a specific phase contrast MR pulse sequence to measure induced vibratory motion in soft material, from which material properties can be estimated. Compared to other imaging techniques, MRE is able to detect tissue pathology at early stages by quantifying the changes in tissue stiffness associated with diseases. In an effort to develop the technique and improve its capabilities, two inversion algorithms were written to evaluate viscoelastic properties from the measured displacements fields. The first one was based on a direct algebraic inversion of the differential equation of motion, which decouples under certain simplifying assumptions, and featured a spatio-temporal multi-directional filter. The second one relies on a finite element discretization of the governing equations to perform a direct inversion. Several applications of this technique have also been investigated, including the estimation of mechanical parameters in various gel phantoms and polymers, as well as the use of MRE as a diagnostic tools for brain disorders. In this respect, the particular interest was to investigate traumatic brain injury (TBI), a complex and diverse injury affecting 1.7 million Americans annually. The sensitivity of MRE to TBI was first assessed on excised rat brains subjected to a controlled cortical impact (CCI) injury, before execution of in vivo experiments in mice. MRE was also applied in vivo on mouse models of medulloblastoma tumors and multiple sclerosis. These studies showed the potential of MRE in mapping the brain mechanically and providing non-invasive in vivo imaging markers for neuropathology and pathogenesis of brain diseases. Furthermore, MRE can easily be translatable to clinical settings; thus, while this technique may not be used directly to diagnose different abnormalities in the brain at this time, it may be helpful to detect abnormalities, follow therapies, and trace macroscopic changes that are not seen by conventional methods with clinical relevance.
Toward the detection of abnormal chest radiographs the way radiologists do it
NASA Astrophysics Data System (ADS)
Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.
2011-03-01
Computer Aided Detection (CADe) and Computer Aided Diagnosis (CADx) are relatively recent areas of research that attempt to employ feature extraction, pattern recognition, and machine learning algorithms to aid radiologists in detecting and diagnosing abnormalities in medical images. However, these computational methods are based on the assumption that there are distinct classes of abnormalities, and that each class has some distinguishing features that set it apart from other classes. However, abnormalities in chest radiographs tend to be very heterogeneous. The literature suggests that thoracic (chest) radiologists develop their ability to detect abnormalities by developing a sense of what is normal, so that anything that is abnormal attracts their attention. This paper discusses an approach to CADe that is based on a technique called anomaly detection (which aims to detect outliers in data sets) for the purpose of detecting atypical regions in chest radiographs. However, in order to apply anomaly detection to chest radiographs, it is necessary to develop a basis for extracting features from corresponding anatomical locations in different chest radiographs. This paper proposes a method for doing this, and describes how it can be used to support CADe.
Detection of radial motion depends on spatial displacement.
de la Malla, Cristina; López-Moliner, Joan
2010-06-01
Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Left ventricular function abnormalities as a manifestation of silent myocardial ischemia.
Lambert, C R; Conti, C R; Pepine, C J
1986-11-01
A large body of evidence exists indicating that left ventricular dysfunction is a common occurrence in patients with severe coronary artery disease and represents silent or asymptomatic myocardial ischemia. Such dysfunction probably occurs early in the time course of every ischemic episode in patients with coronary artery disease whether symptoms are eventually manifested or not. The pathophysiology of silent versus symptomatic left ventricular dysfunction due to ischemia appears to be identical. Silent ischemia-related left ventricular dysfunction can be documented during spontaneous or stress-induced perturbations in the myocardial oxygen supply/demand ratio. It also may be detected by nitroglycerin-induced improvement in ventricular function or by salutary changes in wall motion following revascularization. Silent left ventricular dysfunction is a very early occurrence during ischemia and precedes electrocardiographic abnormalities. In this light, its existence should always be kept in mind when dealing with patients with ischemic heart disease. It can be hypothesized that because silent ischemia appears to be identical to ischemia with symptoms in a pathophysiologic sense, prognosis and treatment in both cases should be the same.
Computer-Aided Diagnostic System For Mass Survey Chest Images
NASA Astrophysics Data System (ADS)
Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi
1988-06-01
In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.
On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor.
Kim, Woosuk; Kim, Myunggyu
2018-03-19
In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing) verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botvinick, E.H.; Frais, M.A.; Shosa, D.W.
1982-08-01
The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less
Neuromuscular properties of different spastic human joints vary systematically.
Mirbagheri, M M; Settle, K
2010-01-01
We quantified the mechanical abnormalities of the spastic wrist in chronic stroke survivors, and determined whether these findings were representative of those recorded at the elbow and ankle joints. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joints at different joint angles over the range of motion. Age-matched healthy subjects were used as control.
Salemi, Vera Maria Cury; Fernandes, Fabio; Sirvente, Raquel; Nastari, Luciano; Rosa, Leonardo Vieira; Ferreira, Cristiano A; Pena, José Luiz Barros; Picard, Michael H; Mady, Charles
2009-01-01
We compared left ventricular regional wall motion, the global left ventricular ejection fraction, and the New York Heart Association functional class pre- and postoperatively. Endomyocardial fibrosis is characterized by fibrous tissue deposition in the endomyocardium of the apex and/or inflow tract of one or both ventricles. Although left ventricular global systolic function is preserved, patients exhibit wall motion abnormalities in the apical and inferoapical regions. Fibrous tissue resection in New York Heart Association FC III and IV endomyocardial fibrosis patients has been shown to decrease morbidity and mortality. We prospectively studied 30 patients (20 female, 30+/-10 years) before and 5+/-8 months after surgery. The left ventricular ejection fraction was determined using the area-length method. Regional left ventricular motion was measured by the centerline method. Five left ventricular segments were analyzed pre- and postoperatively. Abnormality was expressed in units of standard deviation from the mean motion in a normal reference population. Left ventricular wall motion in the five regions did not differ between pre- and postoperative measurements. Additionally, the left ventricular ejection fraction did not change after surgery (0.45+/-0.13% x 0.43+/-0.12% pre- and postoperatively, respectively). The New York Heart Association functional class improved to class I in 40% and class II in 43% of patients postoperatively (p<0.05). Although endomyocardial fibrosis patients have improved clinical symptoms after surgery, the global left ventricular ejection fraction and regional wall motion in these patients do not change. This finding suggests that other explanations, such as improvements in diastolic function, may be operational.
Detection of Structural Abnormalities Using Neural Nets
NASA Technical Reports Server (NTRS)
Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.
1996-01-01
This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.
Sysoeva, Olga V; Galuta, Ilia A; Davletshina, Maria S; Orekhova, Elena V; Stroganova, Tatiana A
2017-01-01
Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD-a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 < IQ < 127) and 44 typically developing (TD) boys, aged 6-15 years. The stimuli of small (1°) and large (12°) radius were presented under high (100%) and low (1%) contrast conditions. Social Responsiveness Scale and Sensory Profile Questionnaire were used to assess the autism severity and sensory processing abnormalities. We found that the SS index was atypically reduced, while SF index abnormally enhanced in children with ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of correlation between SF and SS indexes paired with a strong direct link between abnormally enhanced SF and autism symptoms in our ASD sample emphasizes the role of the enhanced excitatory influences by themselves in the observed abnormalities in low-level visual phenomena found in ASD.
Extraction of ECG signal with adaptive filter for hearth abnormalities detection
NASA Astrophysics Data System (ADS)
Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti
2018-04-01
This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.
Liaw, Fiona Pui San; Lau, Lai Ching; Lim, Alvin Soon Tiong; Lim, Tse Hui; Lee, Geok Yee; Tien, Sim Leng
2014-12-01
The present study was designed to compare abnormality detection rates using DSP30 + IL2 and 12-O-Tetradecanoylphorbol-13-acetate (TPA) in Asian patients with B-CLL. Hematological specimens from 47 patients (29 newly diagnosed, 18 relapsed) were established as 72 h-DSP30 + IL2 and TPA cultures. Standard methods were employed to identify clonal aberrations by conventional cytogenetics (CC). The B-CLL fluorescence in situ hybridization (FISH) panel comprised ATM, CEP12, D13S25, and TP53 probes. DSP30 + IL2 cultures had a higher chromosomal abnormality detection rate (67 %) compared to TPA (44 %, p < 0.001). The mean number of analyzable metaphases and abnormal metaphases per slide was also higher (p < 0.005, p < 0.001, respectively). Culture success rate, percentage of complex karyotype, and percentage of non-clonal abnormal cell were not significantly different (p > 0.05). Thirteen cases with abnormalities were found exclusively in DSP30 + IL2 cultures compared to one found solely in TPA cultures. DSP30 + IL2 cultures were comparable to the FISH panel in detecting 11q-, +12 and 17p- but not 13q-. It also has a predilection for 11q- bearing leukemic cells compared to TPA. FISH had a higher abnormality detection rate (84.1 %) compared to CC (66.0 %) with borderline significance (p = 0.051), albeit limited by its coverage. In conclusion, DSP30 + IL2 showed a higher abnormality detection rate. However, FISH is indispensable to circumvent low mitotic indices and detect subtle abnormalities.
Lee, Young-Sook; Chung, Wan-Young
2012-01-01
Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486
Detection of Abnormal Events via Optical Flow Feature Analysis
Wang, Tian; Snoussi, Hichem
2015-01-01
In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227
The Detection Method of Fire Abnormal Based on Directional Drilling in Complex Conditions of Mine
NASA Astrophysics Data System (ADS)
Huijun, Duan; Shijun, Hao; Jie, Feng
2018-06-01
In the light of more and more urgent hidden fire abnormal detection problem in complex conditions of mine, a method which is used directional drilling technology is put forward. The method can avoid the obstacles in mine, and complete the fire abnormal detection. This paper based on analyzing the trajectory control of directional drilling, measurement while drilling and the characteristic of open branch process, the project of the directional drilling is formulated combination with a complex condition mine, and the detection of fire abnormal is implemented. This method can provide technical support for fire prevention, which also can provide a new way for fire anomaly detection in the similar mine.
... Equinus is a condition in which the upward bending motion of the ankle joint is limited. Someone ... walking, while a smaller number take steps by bending abnormally at the hip or knee. Causes There ...
Components of Motor Deficiencies in ADHD and Possible Interventions.
Dahan, Anat; Ryder, Chen Hanna; Reiner, Miriam
2018-05-15
There is a growing body of evidence pointing at several types of motor abnormalities found in attention-deficit/hyperactivity disorder (ADHD). In this article we review findings stemming from different paradigms, and suggest an interweaving approach to the different stages involved in the motor regulation process. We start by reviewing various aspects of motor abnormalities found in ADHD and related brain mechanisms. Then, we classify reported motor impairments associated with ADHD, into four classes of motor stages: Attention to the task, motion preparation, motion execution and motion monitoring. Motor abnormalities and corresponding neural activations are analyzed in the context of each of the four identified motor patterns, along with the interactions among them and with other systems. Given the specifications and models of the role of the four motor impairments in ADHD, we ask what treatments correspond to the identified motor impairments. We analyze therapeutic interventions targeting motor difficulties most commonly experienced among individuals with ADHD; first, Neurofeedback training and EMG-biofeedback. As some of the identified components of attention, planning and monitoring have been shown to be linked to abnormal oscillation patterns in the brain, we examine neurofeedback interventions aimed to address these types of oscillations: Theta/beta frequency training and SCP neurofeedback targeted at elevating the CNV component. Additionally we discuss EMG-Biofeedback interventions targeted at feedback on motor activity. Further we review physical activity and motor interventions aimed at improving motor difficulties, associated with ADHD. These kinds of interventions are shown to be helpful not only in aspects of physical ability, but also in enhancing cognition and executive functioning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rab, George T.
1988-02-01
Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.
Lin, Xiaolan; Chen, Jiadi; Huang, Huifang
2016-07-01
To assess whether immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODN) combined with interleukin-2 (IL-2) improves the number of mitotic metaphases and the detection rate of chromosomal abnormalities in chronic lymphocytic leukaemia (CLL). Bone marrow specimens were collected from 36 patients with CLL. CLL cells were cultured with CpG-ODN type DSP30 plus IL-2 for 72 h, following which R-banding analysis was conducted. Conventional culture without the immunostimulant served as the control group. The incidence of genetic abnormalities was measured by fluorescence in situ hybridisation (FISH) using a panel of five specific probes: D13S25 (13q14.3), RB1 (13q14), P53 (17p13), ATM (11q22.3) and CSP12 (trisomy 12, +12). In the control group, chromosome analysis achieved a success rate of only 22.2, and 11.1% of abnormal karyotypes were detected. After immunostimulation with DSP30 plus IL-2, chromosome analysis achieved a success rate of up to 91.6, and 41.6% of abnormal karyotypes were detected. FISH analysis detected 77.7% of abnormalities. FISH combined with CpG-ODN DSP30 plus IL-2 improved the detection rate of chromosomal abnormalities in CLL to 83.3%. CpG-ODN DSP30 combined with IL-2 is effective in improving the detection rate of chromosomal abnormalities in CLL cells. This combination with FISH analysis is conducive to increasing the detection rate of genetic abnormalities in CLL.
The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers.
Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Putman, Rachel K; Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; Estepar, Raul San Jose; Washko, George R
2017-08-01
Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
An automated data exploitation system for airborne sensors
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.
Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu
2017-02-10
To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.
Fusion of local and global detection systems to detect tuberculosis in chest radiographs.
Hogeweg, Laurens; Mol, Christian; de Jong, Pim A; Dawson, Rodney; Ayles, Helen; van Ginneken, Bramin
2010-01-01
Automatic detection of tuberculosis (TB) on chest radiographs is a difficult problem because of the diverse presentation of the disease. A combination of detection systems for abnormalities and normal anatomy is used to improve detection performance. A textural abnormality detection system operating at the pixel level is combined with a clavicle detection system to suppress false positive responses. The output of a shape abnormality detection system operating at the image level is combined in a next step to further improve performance by reducing false negatives. Strategies for combining systems based on serial and parallel configurations were evaluated using the minimum, maximum, product, and mean probability combination rules. The performance of TB detection increased, as measured using the area under the ROC curve, from 0.67 for the textural abnormality detection system alone to 0.86 when the three systems were combined. The best result was achieved using the sum and product rule in a parallel combination of outputs.
Trained neurons-based motion detection in optical camera communications
NASA Astrophysics Data System (ADS)
Teli, Shivani; Cahyadi, Willy Anugrah; Chung, Yeon Ho
2018-04-01
A concept of trained neurons-based motion detection (TNMD) in optical camera communications (OCC) is proposed. The proposed TNMD is based on neurons present in a neural network that perform repetitive analysis in order to provide efficient and reliable motion detection in OCC. This efficient motion detection can be considered another functionality of OCC in addition to two traditional functionalities of illumination and communication. To verify the proposed TNMD, the experiments were conducted in an indoor static downlink OCC, where a mobile phone front camera is employed as the receiver and an 8 × 8 red, green, and blue (RGB) light-emitting diode array as the transmitter. The motion is detected by observing the user's finger movement in the form of centroid through the OCC link via a camera. Unlike conventional trained neurons approaches, the proposed TNMD is trained not with motion itself but with centroid data samples, thus providing more accurate detection and far less complex detection algorithm. The experiment results demonstrate that the TNMD can detect all considered motions accurately with acceptable bit error rate (BER) performances at a transmission distance of up to 175 cm. In addition, while the TNMD is performed, a maximum data rate of 3.759 kbps over the OCC link is obtained. The OCC with the proposed TNMD combined can be considered an efficient indoor OCC system that provides illumination, communication, and motion detection in a convenient smart home environment.
Development of Abnormality Detection System for Bathers using Ultrasonic Sensors
NASA Astrophysics Data System (ADS)
Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro
This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePuey, E.G.; Aessopos, A.; Monroe, L.R.
1983-08-01
In 144 patients, creatine kinase MB was measured serially at 0, 8, 16, 24, 48 and 72 h using a two-site immunoradionmetric assay (IRMA). Cardiac enzymes were also measured, including SGOT, LDH, total CPK, and CK-MB by electrophoresis. The presence of perioperative myocardial infarction (poMI) was established in 24 patients by the appearance of new electrocardiographic Q waves and/or new wall motion abnormalities detected by radionuclide ventriculography. In patients without poMI, CK-MB (IRMA) was elevated at 0 to 8 h but decreased by 16 h. In patients with poMI, peak values occurred at 16 to 24 h. Using a thresholdmore » value of 8.5 EU/I, patients with poMI could be distinguished from those without with 97% accuracy (sensitivity = 88%, specificity = 99%). We conclude that the CK-MB (IRMA) can serve as a valuable postoperative screening tet for poMI.« less
Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.
Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp
2012-07-30
Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.
Motion-blur-compensated structural health monitoring system for tunnels at a speed of 100 km/h
NASA Astrophysics Data System (ADS)
Hayakawa, Tomohiko; Ishikawa, Masatoshi
2017-04-01
High quality images of tunnel surfaces are necessary for visual judgment of abnormal parts. Hence, we propose a monitoring system from a vehicle, which is motion-blur-compensated by the back and forth motion of a galvanometer mirror to offset the vehicle speed, prolong exposure time, and take sharp images including detailed textures. As experimental result of the vehicle-mounted system, we confirmed significant improvements in image quality for a few millimeter-sized ordered black-and-white stripes and cracks, by means of motion blur compensation and prolonged exposure time, under the maximum speed allowed in Japan in a standard tunnel of a highway.
Vienola, Kari V; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F
2018-02-01
Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts.
Vienola, Kari V.; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.
2018-01-01
Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts. PMID:29552396
Kulduk, Ahmet; Altun, Necdet S; Senkoylu, Alpaslan
2015-12-01
The primary purpose of dynamic stabilization is to preserve the normal range of motion (ROM) by restricting abnormal movement in the spine. Our aim was to analyze the effects of two different dynamic stabilization systems using finite element modeling (FEM). Coflex and Dynesys dynamic devices were modeled and implanted at the L4-L5 segment using virtual FEM. A 400 N compressive force combined with 6 N flexion, extension, bending and axial rotation forces was applied to the L3-4 and L4-5 segments. ROM and disc loading forces were analyzed. Both systems reduced ROM and disc loading forces at the implanted lumbar segment, with the exception of the Coflex interspinous device, which increased ROM by 19% and did not change disc-loading forces in flexion. The Coflex device prevented excessive disc loading, but increased ROM abnormally in flexion. Neither device provided satisfactory motion preservation or load sharing in other directions. Copyright © 2015 John Wiley & Sons, Ltd.
Design and Development of a New Multi-Projection X-Ray System for Chest Imaging
NASA Astrophysics Data System (ADS)
Chawla, Amarpreet S.; Boyce, Sarah; Washington, Lacey; McAdams, H. Page; Samei, Ehsan
2009-02-01
Overlapping anatomical structures may confound the detection of abnormal pathology, including lung nodules, in conventional single-projection chest radiography. To minimize this fundamental limiting factor, a dedicated digital multi-projection system for chest imaging was recently developed at the Radiology Department of Duke University. We are reporting the design of the multi-projection imaging system and its initial performance in an ongoing clinical trial. The system is capable of acquiring multiple full-field projections of the same patient along both the horizontal and vertical axes at variable speeds and acquisition frame rates. These images acquired in rapid succession from slightly different angles about the posterior-anterior (PA) orientation can be correlated to minimize the influence of overlying anatomy. The developed system has been tested for repeatability and motion blur artifacts to investigate its robustness for clinical trials. Excellent geometrical consistency was found in the tube motion, with positional errors for clinical settings within 1%. The effect of tube-motion on the image quality measured in terms of impact on the modulation transfer function (MTF) was found to be minimal. The system was deemed clinic-ready and a clinical trial was subsequently launched. The flexibility of image acquisition built into the system provides a unique opportunity to easily modify it for different clinical applications, including tomosynthesis, correlation imaging (CI), and stereoscopic imaging.
Shi, Min; Cipollini, Matthew J; Crowley-Bish, Patricia A; Higgins, Anne W; Yu, Hongbo; Miron, Patricia M
2013-05-01
Detection of cytogenetic abnormalities requires successful culture of the clonal population to obtain metaphase chromosomes for study, and as such, has been hampered by low mitotic indices of mature B cells in culture. Our study presents data on the improved abnormality detection rate with the use of a CpG-oligonucleotide/interleukin 2 (OL/IL-2) culture protocol for mature B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and non-CLL specimens. The increased detection rate of abnormalities, compared with unstimulated culture and traditional pokeweed mitogen culture, was statistically significant for both CLL and non-CLL neoplasms. For CLL specimens, our data also showed that for cytogenetically visible aberrations, OL/IL-2 was as, if not more, sensitive than detection with interphase fluorescence in situ hybridization (iFISH). Use of OL/IL-2 allowed a number of abnormalities to be detected, which were not covered by specific iFISH panels, especially balanced translocations. Therefore, OL/IL-2 stimulation improves diagnostic sensitivity and increases discovery rate of novel prognostic findings.
Validation of Clinical Observations of Mastication in Persons with ALS.
Simione, Meg; Wilson, Erin M; Yunusova, Yana; Green, Jordan R
2016-06-01
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease that can result in difficulties with mastication leading to malnutrition, choking or aspiration, and reduced quality of life. When evaluating mastication, clinicians primarily observe spatial and temporal aspects of jaw motion. The reliability and validity of clinical observations for detecting jaw movement abnormalities is unknown. The purpose of this study is to determine the reliability and validity of clinician-based ratings of chewing performance in neuro-typical controls and persons with varying degrees of chewing impairments due to ALS. Adults chewed a solid food consistency while full-face video were recorded along with jaw kinematic data using a 3D optical motion capture system. Five experienced speech-language pathologists watched the videos and rated the spatial and temporal aspects of chewing performance. The jaw kinematic data served as the gold-standard for validating the clinicians' ratings. Results showed that the clinician-based rating of temporal aspects of chewing performance had strong inter-rater reliability and correlated well with comparable kinematic measures. In contrast, the reliability of rating the spatial and spatiotemporal aspects of chewing (i.e., range of motion of the jaw, consistency of the chewing pattern) was mixed. Specifically, ratings of range of motion were at best only moderately reliable. Ratings of chewing movement consistency were reliable but only weakly correlated with comparable measures of jaw kinematics. These findings suggest that clinician ratings of temporal aspects of chewing are appropriate for clinical use, whereas ratings of the spatial and spatiotemporal aspects of chewing may not be reliable or valid.
Park, Sung Min; Lee, Jin Hong; Choi, Seong Wook
2014-12-01
The ventricular electrocardiogram (v-ECG) was developed for long-term monitoring of heartbeats in patients with a left ventricular assist device (LVAD) and does not normally have the functionality necessary to detect additional heart irregularities that can progress to critical arrhythmias. Although the v-ECG has the benefits of physiological optimization and counterpulsation control, when abnormal heartbeats occur, the v-ECG does not show the distinct abnormal waveform that enables easy detection of an abnormal heartbeat among normal heartbeats on the conventional ECG. In this study, the v-ECGs of normal and abnormal heartbeats are compared with each other with respect to peak-to-peak voltage, area, and maximal slopes, and a new method to detect abnormal heartbeats is suggested. In a series of animal experiments with three porcine models (Yorkshire pigs weighing 30-40 kg), a v-ECG and conventional ECG were taken simultaneously during LVAD perfusion. Clinical experts found 104 abnormal heartbeats from the saved conventional ECG data and confirmed that the other 3159 heartbeats were normal. Almost all of the abnormal heartbeats were premature ventricular contractions (PVCs), and there was short-term tachycardia for 3 s. A personal computer was used to automatically detect abnormal heartbeats with the v-ECG according to the new method, and its results were compared with the clinicians' results. The new method found abnormal heartbeats with 90% accuracy, and less than 15% of the total PVCs were missed. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Security Applications Of Computer Motion Detection
NASA Astrophysics Data System (ADS)
Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry
1987-05-01
An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.
Korosoglou, Grigorios; Elhmidi, Yacine; Steen, Henning; Schellberg, Dieter; Riedle, Nina; Ahrens, Johannes; Lehrke, Stephanie; Merten, Constanze; Lossnitzer, Dirk; Radeleff, Jannis; Zugck, Christian; Giannitsis, Evangelos; Katus, Hugo A
2010-10-05
This study sought to determine the prognostic value of wall motion and perfusion assessment during high-dose dobutamine stress (DS) cardiac magnetic resonance imaging (MRI) in a large patient cohort. DS-MRI offers the possibility to integrate myocardial perfusion and wall motion analysis in a single examination for the detection of coronary artery disease (CAD). A total of 1,493 consecutive patients with suspected or known CAD underwent DS-MRI, using a standard protocol in a 1.5-T magnetic resonance scanner. Wall motion and perfusion were assessed at baseline and during stress, and outcome data including cardiac death, nonfatal myocardial infarction ("hard events"), and "late" revascularization performed >90 days after the MR scans were collected during a 2 ± 1 year follow-up period. Fifty-three hard events, including 14 cardiac deaths and 39 nonfatal infarctions, occurred during the follow-up period, whereas 85 patients underwent "late" revascularization. Using multivariable regression analysis, an abnormal result for wall motion or perfusion during stress yielded the strongest independent prognostic value for both hard events and late revascularization, clearly surpassing that of clinical and baseline magnetic resonance parameters (for wall motion: adjusted hazard ratio [HR] of 5.9 [95% confidence interval (CI): 2.5 to 13.6] for hard events and of 3.1 [95% CI: 1.7 to 5.6] for late revascularization, and for perfusion: adjusted HR of 5.4 [95% CI: 2.3 to 12.9] for hard events and of 6.2 [95% CI: 3.3 to 11.3] for late revascularization, p < 0.001 for all). DS-MRI can accurately identify patients who are at increased risk for cardiac death and myocardial infarction, separating them from those with normal findings, who have very low risk for future cardiac events. (Prognostic Value of High Dose Dobutamine Stress Magnetic Resonance Imaging; NCT00837005). Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Vezzani, Antonella; Manca, Tullio; Brusasco, Claudia; Santori, Gregorio; Valentino, Massimo; Nicolini, Francesco; Molardi, Alberto; Gherli, Tiziano; Corradi, Francesco
2014-12-01
Chest auscultation and chest x-ray commonly are used to detect postoperative abnormalities and complications in patients admitted to intensive care after cardiac surgery. The aim of the study was to evaluate whether chest ultrasound represents an effective alternative to bedside chest x-ray to identify early postoperative abnormalities. Diagnostic accuracy of chest auscultation and chest ultrasound were compared in identifying individual abnormalities detected by chest x-ray, considered the reference method. Cardiac surgery intensive care unit. One hundred fifty-one consecutive adult patients undergoing cardiac surgery. All patients included were studied by chest auscultation, ultrasound, and x-ray upon admission to intensive care after cardiac surgery. Six lung pathologic changes and endotracheal tube malposition were found. There was a highly significant correlation between abnormalities detected by chest ultrasound and x-ray (k = 0.90), but a poor correlation between chest auscultation and x-ray abnormalities (k = 0.15). Chest auscultation may help identify endotracheal tube misplacement and tension pneumothorax but it may miss most major abnormalities. Chest ultrasound represents a valid alternative to chest x-ray to detect most postoperative abnormalities and misplacements. Copyright © 2014 Elsevier Inc. All rights reserved.
Sysoeva, Olga V.; Galuta, Ilia A.; Davletshina, Maria S.; Orekhova, Elena V.; Stroganova, Tatiana A.
2017-01-01
Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD—a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 < IQ < 127) and 44 typically developing (TD) boys, aged 6–15 years. The stimuli of small (1°) and large (12°) radius were presented under high (100%) and low (1%) contrast conditions. Social Responsiveness Scale and Sensory Profile Questionnaire were used to assess the autism severity and sensory processing abnormalities. We found that the SS index was atypically reduced, while SF index abnormally enhanced in children with ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of correlation between SF and SS indexes paired with a strong direct link between abnormally enhanced SF and autism symptoms in our ASD sample emphasizes the role of the enhanced excitatory influences by themselves in the observed abnormalities in low-level visual phenomena found in ASD. PMID:28405183
Video Traffic Analysis for Abnormal Event Detection
DOT National Transportation Integrated Search
2010-01-01
We propose the use of video imaging sensors for the detection and classification of abnormal events to be used primarily for mitigation of traffic congestion. Successful detection of such events will allow for new road guidelines; for rapid deploymen...
Video traffic analysis for abnormal event detection.
DOT National Transportation Integrated Search
2010-01-01
We propose the use of video imaging sensors for the detection and classification of abnormal events to : be used primarily for mitigation of traffic congestion. Successful detection of such events will allow for : new road guidelines; for rapid deplo...
Automatic event recognition and anomaly detection with attribute grammar by learning scene semantics
NASA Astrophysics Data System (ADS)
Qi, Lin; Yao, Zhenyu; Li, Li; Dong, Junyu
2007-11-01
In this paper we present a novel framework for automatic event recognition and abnormal behavior detection with attribute grammar by learning scene semantics. This framework combines learning scene semantics by trajectory analysis and constructing attribute grammar-based event representation. The scene and event information is learned automatically. Abnormal behaviors that disobey scene semantics or event grammars rules are detected. By this method, an approach to understanding video scenes is achieved. Further more, with this prior knowledge, the accuracy of abnormal event detection is increased.
Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M
2014-07-01
Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.
Visual-Vestibular Conflict Detection Depends on Fixation.
Garzorz, Isabelle T; MacNeilage, Paul R
2017-09-25
Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach
Stančin, Sara; Tomažič, Sašo
2013-01-01
This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563
Early improper motion detection in golf swings using wearable motion sensors: the first approach.
Stančin, Sara; Tomažič, Sašo
2013-06-10
This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement.
Agostini, M G; Kacoliris, F; Demetrio, P; Natale, G S; Bonetto, C; Ronco, A E
2013-05-27
The occurrence of abnormalities in amphibians has been reported in many populations, and its increase could be related to environmental pollution and habitat degradation. We evaluated the type and prevalence of abnormalities in 5 amphibian populations from agroecosystems with different degrees of agricultural disturbance (cultivated and reference areas). We detected 9 types of abnormalities, of which the most frequent were those occurring in limbs. The observed prevalence of abnormality in assessed populations from cultivated and reference areas was as follows: Rhinella fernandezae (37.1 and 10.2%, respectively), Leptodactylus latrans adults (28.1 and 9.2%) and juveniles (32.9 and 15.3%), and Hypsiboas pulchellus (11.6 and 2.8%). Scinax granulatus populations did not show abnormalities. Pseudis minuta, which was only detected in the reference area, exhibited a prevalence of 13.3%. For R. fernandezae, L. latrans, and H. pulchellus, generalized linear mixed models showed that prevalence of abnormalities was significantly higher (p < 0.05) in cultivated than in reference areas. L. latrans juveniles were more vulnerable to abnormalities than adults (p < 0.05). The presence of abnormalities in some species inhabiting different agroecosystems suggests that environmental stress factors might be responsible for their occurrence. While we detected pesticides (endosulfan, cypermethrin, and chlorpyrifos) and lower dissolved oxygen levels in ponds of the cultivated area, no data are currently available on how other factors, such as injuries from predators and parasite infections, vary by land use. Further research will be necessary to evaluate possible causes of abnormalities detected in the present study mainly in the context of factor interactions.
INS integrated motion analysis for autonomous vehicle navigation
NASA Technical Reports Server (NTRS)
Roberts, Barry; Bazakos, Mike
1991-01-01
The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.
NASA Astrophysics Data System (ADS)
El Houda Thabet, Rihab; Combastel, Christophe; Raïssi, Tarek; Zolghadri, Ali
2015-09-01
The paper develops a set membership detection methodology which is applied to the detection of abnormal positions of aircraft control surfaces. Robust and early detection of such abnormal positions is an important issue for early system reconfiguration and overall optimisation of aircraft design. In order to improve fault sensitivity while ensuring a high level of robustness, the method combines a data-driven characterisation of noise and a model-driven approach based on interval prediction. The efficiency of the proposed methodology is illustrated through simulation results obtained based on data recorded in several flight scenarios of a highly representative aircraft benchmark.
Beck, Cornelia; Ognibeni, Thilo; Neumann, Heiko
2008-01-01
Background Optic flow is an important cue for object detection. Humans are able to perceive objects in a scene using only kinetic boundaries, and can perform the task even when other shape cues are not provided. These kinetic boundaries are characterized by the presence of motion discontinuities in a local neighbourhood. In addition, temporal occlusions appear along the boundaries as the object in front covers the background and the objects that are spatially behind it. Methodology/Principal Findings From a technical point of view, the detection of motion boundaries for segmentation based on optic flow is a difficult task. This is due to the problem that flow detected along such boundaries is generally not reliable. We propose a model derived from mechanisms found in visual areas V1, MT, and MSTl of human and primate cortex that achieves robust detection along motion boundaries. It includes two separate mechanisms for both the detection of motion discontinuities and of occlusion regions based on how neurons respond to spatial and temporal contrast, respectively. The mechanisms are embedded in a biologically inspired architecture that integrates information of different model components of the visual processing due to feedback connections. In particular, mutual interactions between the detection of motion discontinuities and temporal occlusions allow a considerable improvement of the kinetic boundary detection. Conclusions/Significance A new model is proposed that uses optic flow cues to detect motion discontinuities and object occlusion. We suggest that by combining these results for motion discontinuities and object occlusion, object segmentation within the model can be improved. This idea could also be applied in other models for object segmentation. In addition, we discuss how this model is related to neurophysiological findings. The model was successfully tested both with artificial and real sequences including self and object motion. PMID:19043613
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Schaal, Karen B; Munk, Marion R; Wyssmueller, Iris; Berger, Lieselotte E; Zinkernagel, Martin S; Wolf, Sebastian
2017-11-10
To detect vascular abnormalities in diabetic retinopathy using swept-source optical coherence tomography angiography (SS-OCTA) widefield images, and to compare the findings with color fundus photographs (CFPs) using Early Treatment Diabetic Retinopathy Study severity grading. 3 mm × 3 mm and 12 mm × 12 mm scans were acquired to cover 70° to 80° of the posterior pole using a 100-kHz SS-OCTA instrument. Two masked graders assessed the presence of vascular abnormalities on SS-OCTA and the Early Treatment Diabetic Retinopathy Study level on CFP. The grading results were then compared. A total of 120 diabetic eyes (60 patients) were imaged with the SS-OCTA instrument. Cohort 1 (91 eyes; SS-OCTA grading only) showed microaneurysms in 91% (n = 83), intraretinal microvascular abnormalities in 79% (n = 72), and neovascularization in 21% (n = 19) of cases. Cohort 2 (52 eyes; CFP grading compared with SS-OCTA) showed microaneurysms on CFP in 90% (n = 47) and on SS-OCTA in 96% (n = 50) of cases. Agreement in intraretinal microvascular abnormality detection was fair (k = 0.2). Swept-source optical coherence tomography angiography detected 50% of intraretinal microvascular abnormality cases (n = 26), which were missed on CFP. Agreement in detecting neovascularization was moderate (k = 0.5). Agreement in detection of diabetic retinopathy features on CFP and SS-OCTA varies depending on the vascular changes examined. Swept-source optical coherence tomography angiography shows a higher detection rate of intraretinal microvascular abnormalities (P = 0.039), compared with Early Treatment Diabetic Retinopathy Study grading.
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
Equivalent background speed in recovery from motion adaptation.
Simpson, W A; Newman, A; Aasland, W
1997-01-01
We measured, in the same observers, (1) the detectability, d, of a small rotational jump following adaptation to rotational motion and (2) the detectability of the same jump when superimposed on one of several background rotation speeds. Following 90 s of motion adaptation the detectability of the jump was impaired, and sensitivity slowly recovered over the course of 60 s. The detectability of the jump was also impaired by the background speed in a way consistent with a quadratic form of Weber's law. We propose that motion adaptation impairs the detectability of the small jump because it is as if an equivalent background speed has been superimposed on the display. We measured the equivalent background by finding the real background speed that produced the same d' at each instant in the recovery from motion adaptation. The equivalent background started at approximately one to two thirds the speed of the adapting motion, declined rapidly, rose to a small peak at 30 s, then disappeared by 60 s. Since the equivalent background speed corresponds to the speed of the motion aftereffect, we have measured the time course of the motion aftereffect with objective psychophysics.
Holmes, P J; Peiper, S C; Uppal, G K; Gong, J Z; Wang, Z-X; Bajaj, R
2016-10-01
Chronic lymphocytic leukaemia (CLL) is the most prevalent leukaemia in the Western Hemisphere. Cytogenetic abnormalities in CLL are used for diagnosis, prognosis and treatment. However, detecting these is difficult because mature B cells do not readily divide in culture. Here, we present data on two mitogen cocktails: CpG-oligonucleotide DSP30/Interleukin-2 (IL-2) and DSP30/IL-2 in combination with 12-O-tetradecanoylphorbol-13-acetate (TPA). We analysed 165 cases of CLL with FISH and cytogenetics from January 2011 to June 2013. In 2011, three cultures were set-up: unstimulated, DSP30/IL-2-stimulated and TPA-stimulated. In 2012-2013, two cultures were set-up: unstimulated and stimulated with TPA/DSP30/IL-2. In 2011, FISH had a detection rate of 91% and cytogenetics using DSP30/IL2 had a detection rate of 91% (n = 22). In 2012-2013, FISH had a detection rate of 79% and cytogenetics using TPA/DSP30/IL-2 had a detection rate of 98% (n = 40). The percentage of cases with normal FISH but abnormal cytogenetics increased from 9% in 2011 to 21% in 2012-2013. The TPA/DSP30/IL-2 cultures in 2012-2013 detected more novel abnormalities (n = 5) as compared to DSP30/IL-2 alone (n = 3). TPA/DSP30/IL2 was as good as or better than DSP30/IL2 alone. TPA/DSP30/IL-2 offers a high detection rate for CLL abnormalities with a single stimulated culture and may increase detection of clinically significant abnormalities. © 2016 John Wiley & Sons Ltd.
Stockman, Jonathan; Innis, Charles J; Solano, Mauricio; O'Sullivan Brisson, Jennifer; Kass, Philip H; Tlusty, Michael F; Weber, E Scott
2013-03-01
To evaluate the prevalence, distribution, and progression of radiographic abnormalities in the lungs of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) and associations between these abnormalities and body weight, carapace length, and hematologic and plasma biochemical variables. Retrospective case series. 89 cold-stunned juvenile Kemp's ridley sea turtles. Medical records were reviewed. Dorsoventral and horizontal beam craniocaudal radiographs were evaluated for the presence, distribution, and progression of lung abnormalities. Turtles were categorized as having radiographically normal or abnormal lungs; those with abnormalities detected were further categorized according to the distribution of abnormalities (left lung, right lung, or both affected). Body weight, carapace length, and hematologic and plasma biochemical data were compared among categories. 48 of 89 (54%) turtles had radiographic abnormalities of the lungs. Unilateral abnormalities of the right or left lung were detected in 14 (16%) and 2 (2%), respectively; both lungs were affected in 32 (36%). Prevalence of unilateral abnormalities was significantly greater for the right lung than for the left lung. Evaluation of follow-up radiographs indicated clinical improvement over time for most (18/31 [58%]) turtles. Prevalence of bilateral radiographic abnormalities was positively correlated with body weight and carapace length. There was no significant association between radiographic category and hematologic or plasma biochemical variables. Radiographic abnormalities of the lungs were commonly detected in cold-stunned Kemp's ridley turtles. Results of this study may aid clinicians in developing effective diagnostic and treatment plans for these patients.
Harmonic motion detection in a vibrating scattering medium.
Urban, Matthew W; Chen, Shigao; Greenleaf, James
2008-09-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10 degrees or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously.
Harmonic Motion Detection in a Vibrating Scattering Medium
Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.
2008-01-01
Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892
Smart sensing surveillance video system
NASA Astrophysics Data System (ADS)
Hsu, Charles; Szu, Harold
2016-05-01
An intelligent video surveillance system is able to detect and identify abnormal and alarming situations by analyzing object movement. The Smart Sensing Surveillance Video (S3V) System is proposed to minimize video processing and transmission, thus allowing a fixed number of cameras to be connected on the system, and making it suitable for its applications in remote battlefield, tactical, and civilian applications including border surveillance, special force operations, airfield protection, perimeter and building protection, and etc. The S3V System would be more effective if equipped with visual understanding capabilities to detect, analyze, and recognize objects, track motions, and predict intentions. In addition, alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. The S3V System capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.
Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector.
Del Hougne, Philipp; F Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N; Fink, Mathias; Lerosey, Geoffroy; Smith, David R
2018-04-25
Detecting and analysing motion is a key feature of Smart Homes and the connected sensor vision they embrace. At present, most motion sensors operate in line-of-sight Doppler shift schemes. Here, we propose an alternative approach suitable for indoor environments, which effectively constitute disordered cavities for radio frequency (RF) waves; we exploit the fundamental sensitivity of modes of such cavities to perturbations, caused here by moving objects. We establish experimentally three key features of our proposed system: (i) ability to capture the temporal variations of motion and discern information such as periodicity ("smart"), (ii) non line-of-sight motion detection, and (iii) single-frequency operation. Moreover, we explain theoretically and demonstrate experimentally that the use of dynamic metasurface apertures can substantially enhance the performance of RF motion detection. Potential applications include accurately detecting human presence and monitoring inhabitants' vital signs.
Syngelaki, Argyro; Pergament, Eugene; Homfray, Tessa; Akolekar, Ranjit; Nicolaides, Kypros H
2014-01-01
To estimate the proportion of other chromosomal abnormalities that could be missed if combined testing was replaced by cell-free (cf) DNA testing as the method of screening for trisomies 21, 18 and 13. The prevalence of trisomies 21, 18 or 13, sex chromosome aneuploidies, triploidy and other chromosomal abnormalities was examined in pregnancies undergoing first-trimester combined screening and chorionic villus sampling (CVS). In 1,831 clinically significant chromosomal abnormalities in pregnancies with combined risk for trisomies 21, 18 and 13≥1:100, the contribution of trisomies 21, 18 or 13, sex chromosome aneuploidies, triploidy and other chromosomal abnormalities at high risk of adverse outcome was 82.9, 8.2, 3.9 and 5.0%, respectively. Combined screening followed by CVS for risk≥1:10 and cfDNA testing for risk 1:11-1:2,500 could detect 97% of trisomy 21 and 98% of trisomies 18 and 13. Additionally, 86% of monosomy X, half of 47,XXY, 47,XYY or 47,XXX, half of other chromosomal abnormalities and one third of triploidies, which are currently detected by combined screening and CVS for risk≥1:100, could be detected. Screening by cfDNA testing, contingent on results of combined testing, improves detection of trisomies, but misses a few of the other chromosomal abnormalities detected by screening with the combined test. © 2014 S. Karger AG, Basel.
SU-G-JeP4-03: Anomaly Detection of Respiratory Motion by Use of Singular Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoku, J; Kumagai, S; Nakabayashi, S
Purpose: The implementation and realization of automatic anomaly detection of respiratory motion is a very important technique to prevent accidental damage during radiation therapy. Here, we propose an automatic anomaly detection method using singular value decomposition analysis. Methods: The anomaly detection procedure consists of four parts:1) measurement of normal respiratory motion data of a patient2) calculation of a trajectory matrix representing normal time-series feature3) real-time monitoring and calculation of a trajectory matrix of real-time data.4) calculation of an anomaly score from the similarity of the two feature matrices. Patient motion was observed by a marker-less tracking system using a depthmore » camera. Results: Two types of motion e.g. cough and sudden stop of breathing were successfully detected in our real-time application. Conclusion: Automatic anomaly detection of respiratory motion using singular spectrum analysis was successful in the cough and sudden stop of breathing. The clinical use of this algorithm will be very hopeful. This work was supported by JSPS KAKENHI Grant Number 15K08703.« less
Motion detection and compensation in infrared retinal image sequences.
Scharcanski, J; Schardosim, L R; Santos, D; Stuchi, A
2013-01-01
Infrared image data captured by non-mydriatic digital retinography systems often are used in the diagnosis and treatment of the diabetic macular edema (DME). Infrared illumination is less aggressive to the patient retina, and retinal studies can be carried out without pupil dilation. However, sequences of infrared eye fundus images of static scenes, tend to present pixel intensity fluctuations in time, and noisy and background illumination changes pose a challenge to most motion detection methods proposed in the literature. In this paper, we present a retinal motion detection method that is adaptive to background noise and illumination changes. Our experimental results indicate that this method is suitable for detecting retinal motion in infrared image sequences, and compensate the detected motion, which is relevant in retinal laser treatment systems for DME. Copyright © 2013 Elsevier Ltd. All rights reserved.
Panichi, R; Faralli, M; Bruni, R; Kiriakarely, A; Occhigrossi, C; Ferraresi, A; Bronstein, A M; Pettorossi, V E
2017-11-01
Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1 ) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2 ) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3 ) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4 ) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of motion perception after UVL was slower than that of vestibulo-ocular reflex. Perceptual but not vestibulo-ocular reflex deficits correlated with dizziness-related handicap. Copyright © 2017 the American Physiological Society.
Aboul-Enein, Fatma; Kar, Saibal; Hayes, Sean W; Sciammarella, Maria; Abidov, Aiden; Makkar, Raj; Friedman, John D; Eigler, Neal; Berman, Daniel S
2004-06-01
The functional role of various angiographic grades for coronary collaterals remains controversial. The aim of this study was to assess the influence of the Rentrop angiographic grading of coronary collaterals on myocardial perfusion in patients with single-vessel chronic total occlusion (CTO) and no prior myocardial infarction (MI). The study included 56 patients with single-vessel CTO and no prior MI who underwent rest-stress myocardial perfusion SPECT and coronary angiography within 6 mo. All patients had angiographic evidence of coronary collaterals. Patients were divided according to the Rentrop classification: Group I had grade 1 or 2 (n = 25) and group II had grade 3 collaterals (n = 31). Group I had a higher frequency of resting regional wall motion abnormalities on left ventriculography (52.6% vs. 19.2% [P = 0.019]). The mean perfusion scores of the overall population showed severe and extensive stress perfusion defects (summed stress score of 14.1 +/- 7.1 and summed difference score of 12.9 +/- 6.9) but minimal resting perfusion defects (summed rest score of 1.0 +/- 2.7). No perfusion scores differed between the 2 groups. The perfusion findings suggested that chronic stunning rather than hibernation is the principal cause of regional wall motion abnormalities in these patients. In the setting of single-vessel CTO and no prior MI, coronary collaterals appear to protect against resting perfusion defects. Excellent angiographic collaterals may prevent resting regional wall motion abnormalities but do not appear to protect against stress-induced perfusion defects.
Jeevanandham, Balaji; Kalyanpur, Tejas; Gupta, Prashant; Cherian, Mathew
2017-06-01
This study was to assess the usefulness of newer three-dimensional (3D)-T 1 sampling perfection with application optimized contrast using different flip-angle evolutions (SPACE) and 3D-T 2 fluid-attenuated inversion recovery (FLAIR) sequences in evaluation of meningeal abnormalities. 78 patients who presented with high suspicion of meningeal abnormalities were evaluated using post-contrast 3D-T 2 -FLAIR, 3D-T 1 magnetization-prepared rapid gradient-echo (MPRAGE) and 3D-T 1 -SPACE sequences. The images were evaluated independently by two radiologists for cortical gyral, sulcal space, basal cisterns and dural enhancement. The diagnoses were confirmed by further investigations including histopathology. Post-contrast 3D-T 1 -SPACE and 3D-T 2 -FLAIR images yielded significantly more information than MPRAGE images (p < 0.05 for both SPACE and FLAIR images) in detection of meningeal abnormalities. SPACE images best demonstrated abnormalities in dural and sulcal spaces, whereas FLAIR was useful for basal cisterns enhancement. Both SPACE and FLAIR performed equally well in detection of gyral enhancement. In all 10 patients, where both SPACE and T 2 -FLAIR images failed to demonstrate any abnormality, further analysis was also negative. The 3D-T 1 -SPACE sequence best demonstrated abnormalities in dural and sulcal spaces, whereas FLAIR was useful for abnormalities in basal cisterns. Both SPACE and FLAIR performed holds good for detection of gyral enhancement. Post-contrast SPACE and FLAIR sequences are superior to the MPRAGE sequence for evaluation of meningeal abnormalities and when used in combination have the maximum sensitivity for leptomeningeal abnormalities. The negative-predictive value is nearly 100%, where no leptomeningeal abnormality was detected on these sequences. Advances in knowledge: Post-contrast 3D-T 1 -SPACE and 3D-T 2 -FLAIR images are more useful than 3D-T 1 -MPRAGE images in evaluation of meningeal abnormalities.
Bybee, Kevin A; Prasad, Abhiram; Barsness, Greg W; Lerman, Amir; Jaffe, Allan S; Murphy, Joseph G; Wright, R Scott; Rihal, Charanjit S
2004-08-01
The characteristics of 16 women with transient left ventricular (LV) apical ballooning syndrome in a United States population are presented. Additionally, Thrombolysis In Myocardial Infarction (TIMI) frame counts were evaluated during the acute period. Patients generally presented with anterior ST-elevation acute coronary syndrome in the absence of obstructive coronary disease. All patients had LV apical wall motion abnormalities. An acute emotional or physiologic stressor preceded most cases. TIMI frame counts were abnormal in all patients and often abnormal in all 3 major coronary vessels, suggesting that the diffuse impairment of coronary microcirculatory function may play a role in the pathogenesis of the syndrome.
Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K
2015-01-01
To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.
Moeskops, Pim; de Bresser, Jeroen; Kuijf, Hugo J; Mendrik, Adriënne M; Biessels, Geert Jan; Pluim, Josien P W; Išgum, Ivana
2018-01-01
Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic variation in brain abnormalities and motion artefacts. The method uses a multi-scale convolutional neural network with a T 1 -weighted image, a T 2 -weighted fluid attenuated inversion recovery (FLAIR) image and a T 1 -weighted inversion recovery (IR) image as input. The method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and WMH. Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge ( n = 20), quantitatively and qualitatively in relatively healthy older subjects ( n = 96), and qualitatively in patients from a memory clinic ( n = 110). The method can accurately segment WMH (Overall Dice coefficient in the MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coefficients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH volumes (Spearman's ρ = 0.83 for relatively healthy older subjects). In both cohorts, our method produced reliable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic: tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of brain abnormalities and motion artefacts. In conclusion, this study shows that a convolutional neural network-based segmentation method can accurately segment brain tissues and WMH in MR images of older patients with varying degrees of brain abnormalities and motion artefacts.
Systematic Screening for Subtelomeric Anomalies in a Clinical Sample of Autism
ERIC Educational Resources Information Center
Wassink, Thomas H.; Losh, Molly; Piven, Joseph; Sheffield, Val C.; Ashley, Elizabeth; Westin, Erik R.; Patil, Shivanand R.
2007-01-01
High-resolution karyotyping detects cytogenetic anomalies in 5-10% of cases of autism. Karyotyping, however, may fail to detect abnormalities of chromosome subtelomeres, which are gene rich regions prone to anomalies. We assessed whether panels of FISH probes targeted for subtelomeres could detect abnormalities beyond those identified by…
WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.
Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang
2015-12-21
With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.
WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †
Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang
2015-01-01
With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612
Motion artifact detection in four-dimensional computed tomography images
NASA Astrophysics Data System (ADS)
Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.
2014-03-01
Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.
Heerema, Nyla A.; Byrd, John C.; Cin, Paola Dal; Dell’ Aquila, Marie L.; Koduru, Prasad; Aviram, Ayala; Smoley, Stephanie; Rassenti, Laura Z.; Greaves, Andrew W.; Brown, Jennifer R.; Rai, Kanti R.; Kipps, Thomas J.; Kay, Neil E.; van Dyke, Daniel
2010-01-01
Cytogenetic abnormalities in CLL are important prognostic indicators. Historically, only interphase cytogenetics was clinically useful in CLL because traditional mitogens are not effective mitotic stimulants. Recently, CpG-oligodeoxynucleotide (ODN) stimulation has shown effectiveness in CLL. The CLL Research Consortium (CRC) tested the effectiveness and reproducibility of CpG-ODN stimulation to detect chromosomally abnormal clones by five laboratories. More clonal abnormalities were observed after culture of CLL cells with CpG-ODN than with pokeweed mitogen (PWM)+12-O-tetradecanoyl-phorobol-13-acetate (TPA). All clonal abnormalities in PWM+TPA cultures were observed in CpG-ODN cultures, whereas CpG-ODN identified some clones not found by PWM+TPA. CpG-ODN stimulation of one normal control and 12 CLL samples showed that excepting clones of del(13q) in low frequencies and one translocation, results in all five laboratories were consistent, and all abnormalities were concordant with FISH. Thus, abnormal clones in CLL are more readily detected with CpG-ODN stimulation than with traditional B-cell mitogens. After CpG-ODN stimulation, abnormalities were reproducible among cytogenetic laboratories. CpG-ODN did not appear to induce aberrations in cell culture and enhanced detection of abnormalities and complexity in CLL. Since karyotypic complexity is prognostic and is not detectable by standard FISH analyses, stimulation with CpG-ODN is useful to identify this additional prognostic factor in CLL. PMID:21156225
On event-based optical flow detection
Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko
2015-01-01
Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470
Cheng, Yew Song; Bhutta, Mahmood F; Ramsden, James D; Lennox, Penny
2014-03-01
We describe an unusual case of paradoxical vocal fold motion in a child with cerebral palsy. Clinically, the child presented with mild stridor, which worsened over months, eventually requiring emergency intubation. After an unsuccessful trial of medical management, microlaryngoscopy revealed abnormal adduction of the vocal folds during inspiration. This was successfully treated with periodic type A botulinum toxin injections to the vocal folds, sparing the child from tracheostomy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lv, Wei; Wang, Shuyu
2014-11-01
Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (P<0.001), although the detection of the 22q11 microdeletion was not significantly different between the two groups (P=0.583). In addition, all fetuses with the 22q11 microdeletion occurred de novo. In conclusion, genetic factors are important in the etiology of CHD. Where fetuses present with cardiac defects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.
Guidelines to identify abnormalities after childhood urinary tract infections: a prospective audit.
Coulthard, Malcolm G; Lambert, Heather J; Vernon, Susan J; Hunter, Elizabeth W; Keir, Michael J
2014-05-01
To compare the childhood urinary tract infection (UTI) guidelines from the Royal College of Physicians (RCP) in 1991 and from National Institute of Health and Care Excellence (NICE) (CG54) in 2007 by measuring their efficiency at detecting urinary tract abnormalities. Children with UTIs within the Newcastle Primary Care Trust (population 70,800 children) were referred and imaged according to the RCP guidelines during 2008, and these were compared to the activity that would have been undertaken if we had implemented the CG54 guidelines, including following them through 2011 to identify those with recurrent UTIs. The numbers of children imaged, the imaging burden and efficiency, and urinary tract abnormalities detected by each guideline. Fewer children would have been imaged by CG54 than RCP (150 vs 427), but its sensitivity was lower, at 44% for detecting scarring, 10% for identifying vesicoureteric reflux and 40% for other abnormalities. Overall, it would have only detected one-quarter of the abnormal cases (8 vs 32) and would have missed five of nine children with scarring, including three with multiple lesions and one with renal impairment. Imposing an age restriction of <8 years to the RCP guidelines would reduce its screening rate by 20% and still detect 90% of the abnormalities. The CG54 guidelines do not alter the imaging efficiency compared to the RCP guidelines, but they are considerably less sensitive.
Detecting Kidney and Urinary Tract Abnormalities Before Birth
... Advocacy Donate A to Z Health Guide Detecting Kidney and Urinary Tract Abnormalities Before Birth Print Email ... in many cases. Do these blockages always cause kidney damage? No. Before birth, the mother's placenta performs ...
The relationship of global form and motion detection to reading fluency.
Englund, Julia A; Palomares, Melanie
2012-08-15
Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Delamorena, B. A.
1984-01-01
A method to detect stratospheric warmings using ionospheric absorption records obtained by an Absorption Meter (method A3) is introduced. The activity of the stratospheric circulation and the D region ionospheric absorption as well as other atmospheric parameters during the winter anomaly experience an abnormal variation. A simultaneity was found in the beginning of abnormal variation in the mentioned parameters, using the absorption records for detecting the initiation of the stratospheric warming. Results of this scientific experience of forecasting in the El Arenosillo Range, are presented.
Tansig activation function (of MLP network) for cardiac abnormality detection
NASA Astrophysics Data System (ADS)
Adnan, Ja'afar; Daud, Nik Ghazali Nik; Ishak, Mohd Taufiq; Rizman, Zairi Ismael; Rahman, Muhammad Izzuddin Abd
2018-02-01
Heart abnormality often occurs regardless of gender, age and races. This problem sometimes does not show any symptoms and it can cause a sudden death to the patient. In general, heart abnormality is the irregular electrical activity of the heart. This paper attempts to develop a program that can detect heart abnormality activity through implementation of Multilayer Perceptron (MLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP network by using several training algorithms with Tansig activation function.
Whiplash syndrome: kinematic factors influencing pain patterns.
Cusick, J F; Pintar, F A; Yoganandan, N
2001-06-01
The overall, local, and segmental kinematic responses of intact human cadaver head-neck complexes undergoing an inertia-type rear-end impact were quantified. High-speed, high-resolution digital video data of individual facet joint motions during the event were statistically evaluated. To deduce the potential for various vertebral column components to be exposed to adverse strains that could result in their participation as pain generators, and to evaluate the abnormal motions that occur during this traumatic event. The vertebral column is known to incur a nonphysiologic curvature during the application of an inertial-type rear-end impact. No previous studies, however, have quantified the local component motions (facet joint compression and sliding) that occur as a result of rear-impact loading. Intact human cadaver head-neck complexes underwent inertia-type rear-end impact with predominant moments in the sagittal plane. High-resolution digital video was used to track the motions of individual facet joints during the event. Localized angular motion changes at each vertebral segment were analyzed to quantify the abnormal curvature changes. Facet joint motions were analyzed statistically to obtain differences between anterior and posterior strains. The spine initially assumed an S-curve, with the upper spinal levels in flexion and the lower spinal levels in extension. The upper C-spine flexion occurred early in the event (approximately 60 ms) during the time the head maintained its static inertia. The lower cervical spine facet joints demonstrated statistically greater compressive motions in the dorsal aspect than in the ventral aspect, whereas the sliding anteroposterior motions were the same. The nonphysiologic kinematic responses during a whiplash impact may induce stresses in certain upper cervical neural structures or lower facet joints, resulting in possible compromise sufficient to elicit either neuropathic or nociceptive pain. These dynamic alterations of the upper level (occiput to C2) could impart potentially adverse forces to related neural structures, with subsequent development of a neuropathic pain process. The pinching of the lower facet joints may lead to potential for local tissue injury and nociceptive pain.
Automatic brain tumor detection in MRI: methodology and statistical validation
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert
2005-04-01
Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.
ECG Based Heart Arrhythmia Detection Using Wavelet Coherence and Bat Algorithm
NASA Astrophysics Data System (ADS)
Kora, Padmavathi; Sri Rama Krishna, K.
2016-12-01
Atrial fibrillation (AF) is a type of heart abnormality, during the AF electrical discharges in the atrium are rapid, results in abnormal heart beat. The morphology of ECG changes due to the abnormalities in the heart. This paper consists of three major steps for the detection of heart diseases: signal pre-processing, feature extraction and classification. Feature extraction is the key process in detecting the heart abnormality. Most of the ECG detection systems depend on the time domain features for cardiac signal classification. In this paper we proposed a wavelet coherence (WTC) technique for ECG signal analysis. The WTC calculates the similarity between two waveforms in frequency domain. Parameters extracted from WTC function is used as the features of the ECG signal. These features are optimized using Bat algorithm. The Levenberg Marquardt neural network classifier is used to classify the optimized features. The performance of the classifier can be improved with the optimized features.
Nishii, Nobuhiro; Miyoshi, Akihito; Kubo, Motoki; Miyamoto, Masakazu; Morimoto, Yoshimasa; Kawada, Satoshi; Nakagawa, Koji; Watanabe, Atsuyuki; Nakamura, Kazufumi; Morita, Hiroshi; Ito, Hiroshi
2018-03-01
Remote monitoring (RM) has been advocated as the new standard of care for patients with cardiovascular implantable electronic devices (CIEDs). RM has allowed the early detection of adverse clinical events, such as arrhythmia, lead failure, and battery depletion. However, lead failure was often identified only by arrhythmic events, but not impedance abnormalities. To compare the usefulness of arrhythmic events with conventional impedance abnormalities for identifying lead failure in CIED patients followed by RM. CIED patients in 12 hospitals have been followed by the RM center in Okayama University Hospital. All transmitted data have been analyzed and summarized. From April 2009 to March 2016, 1,873 patients have been followed by the RM center. During the mean follow-up period of 775 days, 42 lead failure events (atrial lead 22, right ventricular pacemaker lead 5, implantable cardioverter defibrillator [ICD] lead 15) were detected. The proportion of lead failures detected only by arrhythmic events, which were not detected by conventional impedance abnormalities, was significantly higher than that detected by impedance abnormalities (arrhythmic event 76.2%, 95% CI: 60.5-87.9%; impedance abnormalities 23.8%, 95% CI: 12.1-39.5%). Twenty-seven events (64.7%) were detected without any alert. Of 15 patients with ICD lead failure, none has experienced inappropriate therapy. RM can detect lead failure earlier, before clinical adverse events. However, CIEDs often diagnose lead failure as just arrhythmic events without any warning. Thus, to detect lead failure earlier, careful human analysis of arrhythmic events is useful. © 2017 Wiley Periodicals, Inc.
Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion
NASA Astrophysics Data System (ADS)
Butkevich, Alexey G.
2018-06-01
The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.
Moving object detection using dynamic motion modelling from UAV aerial images.
Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid
2014-01-01
Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.
Visual motion detection and habitat preference in Anolis lizards.
Steinberg, David S; Leal, Manuel
2016-11-01
The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.
Hood, D C; Harizman, N; Kanadani, F N; Grippo, T M; Baharestani, S; Greenstein, V C; Liebmann, J M; Ritch, R
2007-07-01
To assess the accuracy of optical coherence tomography (OCT) in detecting damage to a hemifield, patients with hemifield defects confirmed on both static automated perimetry (SAP) and multifocal visual evoked potentials (mfVEP) were studied. Eyes of 40 patients with concomitant SAP and mfVEP glaucomatous loss and 25 controls underwent OCT retinal nerve fibre layer (RNFL), mfVEP and 24-2 SAP tests. For the mfVEP and 24-2 SAP, a hemifield was defined as abnormal based upon cluster criteria. On OCT, a hemifield was considered abnormal if one of the five clock hour sectors (3 and 9 o'clock excluded) was at <1% (red) or two were at <5% (yellow). Seventy seven (43%) of the hemifields were abnormal on both mfVEP and SAP tests. The OCT was abnormal for 73 (95%) of these. Only 1 (1%) of the 100 hemifields of the controls was abnormal on OCT. Sensitivity/specificity (one eye per person) was 95/98%. The OCT RNFL test accurately detects abnormal hemifields confirmed on both subjective and objective functional tests. Identifying abnormal hemifields with a criterion of 1 red (1%) or 2 yellow (5%) clock hours may prove useful in clinical practice.
Constrained motion model of mobile robots and its applications.
Zhang, Fei; Xi, Yugeng; Lin, Zongli; Chen, Weidong
2009-06-01
Target detecting and dynamic coverage are fundamental tasks in mobile robotics and represent two important features of mobile robots: mobility and perceptivity. This paper establishes the constrained motion model and sensor model of a mobile robot to represent these two features and defines the k -step reachable region to describe the states that the robot may reach. We show that the calculation of the k-step reachable region can be reduced from that of 2(k) reachable regions with the fixed motion styles to k + 1 such regions and provide an algorithm for its calculation. Based on the constrained motion model and the k -step reachable region, the problems associated with target detecting and dynamic coverage are formulated and solved. For target detecting, the k-step detectable region is used to describe the area that the robot may detect, and an algorithm for detecting a target and planning the optimal path is proposed. For dynamic coverage, the k-step detected region is used to represent the area that the robot has detected during its motion, and the dynamic-coverage strategy and algorithm are proposed. Simulation results demonstrate the efficiency of the coverage algorithm in both convex and concave environments.
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
NASA Astrophysics Data System (ADS)
Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.
2014-02-01
The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners.
Efference Copy Failure during Smooth Pursuit Eye Movements in Schizophrenia
Dias, Elisa C.; Sanchez, Jamie L.; Schütz, Alexander C.; Javitt, Daniel C.
2013-01-01
Abnormal smooth pursuit eye movements in patients with schizophrenia are often considered a consequence of impaired motion perception. Here we used a novel motion prediction task to assess the effects of abnormal pursuit on perception in human patients. Schizophrenia patients (n = 15) and healthy controls (n = 16) judged whether a briefly presented moving target (“ball”) would hit/miss a stationary vertical line segment (“goal”). To relate prediction performance and pursuit directly, we manipulated eye movements: in half of the trials, observers smoothly tracked the ball; in the other half, they fixated on the goal. Strict quality criteria ensured that pursuit was initiated and that fixation was maintained. Controls were significantly better in trajectory prediction during pursuit than during fixation, their performance increased with presentation duration, and their pursuit gain and perceptual judgments were correlated. Such perceptual benefits during pursuit may be due to the use of extraretinal motion information estimated from an efference copy signal. With an overall lower performance in pursuit and perception, patients showed no such pursuit advantage and no correlation between pursuit gain and perception. Although patients' pursuit showed normal improvement with longer duration, their prediction performance failed to benefit from duration increases. This dissociation indicates relatively intact early visual motion processing, but a failure to use efference copy information. Impaired efference function in the sensory system may represent a general deficit in schizophrenia and thus contribute to symptoms and functional outcome impairments associated with the disorder. PMID:23864667
Efference copy failure during smooth pursuit eye movements in schizophrenia.
Spering, Miriam; Dias, Elisa C; Sanchez, Jamie L; Schütz, Alexander C; Javitt, Daniel C
2013-07-17
Abnormal smooth pursuit eye movements in patients with schizophrenia are often considered a consequence of impaired motion perception. Here we used a novel motion prediction task to assess the effects of abnormal pursuit on perception in human patients. Schizophrenia patients (n = 15) and healthy controls (n = 16) judged whether a briefly presented moving target ("ball") would hit/miss a stationary vertical line segment ("goal"). To relate prediction performance and pursuit directly, we manipulated eye movements: in half of the trials, observers smoothly tracked the ball; in the other half, they fixated on the goal. Strict quality criteria ensured that pursuit was initiated and that fixation was maintained. Controls were significantly better in trajectory prediction during pursuit than during fixation, their performance increased with presentation duration, and their pursuit gain and perceptual judgments were correlated. Such perceptual benefits during pursuit may be due to the use of extraretinal motion information estimated from an efference copy signal. With an overall lower performance in pursuit and perception, patients showed no such pursuit advantage and no correlation between pursuit gain and perception. Although patients' pursuit showed normal improvement with longer duration, their prediction performance failed to benefit from duration increases. This dissociation indicates relatively intact early visual motion processing, but a failure to use efference copy information. Impaired efference function in the sensory system may represent a general deficit in schizophrenia and thus contribute to symptoms and functional outcome impairments associated with the disorder.
Medrano-Gracia, Pau; Cowan, Brett R; Bluemke, David A; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Suinesiaputra, Avan; Young, Alistair A
2013-09-13
Cardiovascular imaging studies generate a wealth of data which is typically used only for individual study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides precise quantification of shape and motion differences between disease groups and normal subjects. However, subtle shape differences may arise due to differences in imaging protocol between studies. A mathematical model describing regional wall motion and shape was used to establish a coordinate system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project from two independent studies which used different imaging protocols: steady state free precession (SSFP) and gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged with both protocols. Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias. Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between cohorts acquired in separate studies.
MEG-guided analysis of 7T-MRI in patients with epilepsy.
Colon, A J; Osch, M J P van; Buijs, M; Grond, J V D; Hillebrand, A; Schijns, O; Wagner, G J; Ossenblok, P; Hofman, P; Buchem, M A V; Boon, P
2018-05-26
To study possible detection of structural abnormalities on 7T MRI that were not detected on 3T MRI and estimate the added value of MEG-guidance. For abnormalities found, analysis of convergence between clinical, MEG and 7T MRI localization of suspected epileptogenic foci. In adult patients with well-documented localization-related epilepsy in whom a previous 3T MRI did not demonstrate an epileptogenic lesion but MEG indicated a plausible epileptogenic focus, 7T MRI was performed. Based on semiologic data, visual analysis of the 7T images was performed as well as based on prior MEG results. Correlation with other data from the patient charts, for as far as these were available, was analysed. To establish the level of concordance between the three observers the generalized or Fleiss kappa was calculated. In 3/19 patients abnormalities that, based on semiology, could plausibly represent an epileptogenic lesion were detected using 7T MRI. In an additional 3/19 an abnormality was detected after MEG-guidance. However, in these later cases there was no concordance among the three observers with regard to the presence of a structural abnormality. In one of these three cases intracranial recording was performed, proving the possible abnormality on 7T MRI to be the epileptogenic focus. In 32% of patients 7T MRI showed abnormalities that could indicate an epileptogenic lesion whereas previous 3T MRI did not, especially when visual inspection was guided by the presence of focal interictal MEG abnormalities. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Modelling dynamics with context-free grammars
NASA Astrophysics Data System (ADS)
García-Huerta, Juan-M.; Jiménez-Hernández, Hugo; Herrera-Navarro, Ana-M.; Hernández-Díaz, Teresa; Terol-Villalobos, Ivan
2014-03-01
This article presents a strategy to model the dynamics performed by vehicles in a freeway. The proposal consists on encode the movement as a set of finite states. A watershed-based segmentation is used to localize regions with high-probability of motion. Each state represents a proportion of a camera projection in a two-dimensional space, where each state is associated to a symbol, such that any combination of symbols is expressed as a language. Starting from a sequence of symbols through a linear algorithm a free-context grammar is inferred. This grammar represents a hierarchical view of common sequences observed into the scene. Most probable grammar rules express common rules associated to normal movement behavior. Less probable rules express themselves a way to quantify non-common behaviors and they might need more attention. Finally, all sequences of symbols that does not match with the grammar rules, may express itself uncommon behaviors (abnormal). The grammar inference is built with several sequences of images taken from a freeway. Testing process uses the sequence of symbols emitted by the scenario, matching the grammar rules with common freeway behaviors. The process of detect abnormal/normal behaviors is managed as the task of verify if any word generated by the scenario is recognized by the grammar.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Lu, Fei; Zou, Kai; Yan, Hong; Wan, Min; Kuang, Yan; Zhou, Yanqing
2018-03-01
An ultra-high angular velocity and minor-caliber high-precision stably control technology application for active-optics image-motion compensation, is put forward innovatively in this paper. The image blur problem due to several 100°/s high-velocity relative motion between imaging system and target is theoretically analyzed. The velocity match model of detection system and active optics compensation system is built, and active optics image motion compensation platform experiment parameters are designed. Several 100°/s high-velocity high-precision control optics compensation technology is studied and implemented. The relative motion velocity is up to 250°/s, and image motion amplitude is more than 20 pixel. After the active optics compensation, motion blur is less than one pixel. The bottleneck technology of ultra-high angular velocity and long exposure time in searching and infrared detection system is successfully broke through.
Using State Estimation Residuals to Detect Abnormal SCADA Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Chen, Yousu; Huang, Zhenyu
2010-04-30
Detection of abnormal supervisory control and data acquisition (SCADA) data is critically important for safe and secure operation of modern power systems. In this paper, a methodology of abnormal SCADA data detection based on state estimation residuals is presented. Preceded with a brief overview of outlier detection methods and bad SCADA data detection for state estimation, the framework of the proposed methodology is described. Instead of using original SCADA measurements as the bad data sources, the residuals calculated based on the results of the state estimator are used as the input for the outlier detection algorithm. The BACON algorithm ismore » applied to the outlier detection task. The IEEE 118-bus system is used as a test base to evaluate the effectiveness of the proposed methodology. The accuracy of the BACON method is compared with that of the 3-σ method for the simulated SCADA measurements and residuals.« less
Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc
2015-01-01
Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p).
Contributions of the 12 neuron classes in the fly lamina to motion vision
Tuthill, John C.; Nern, Aljoscha; Holtz, Stephen L.; Rubin, Gerald M.; Reiser, Michael B.
2013-01-01
SUMMARY Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type, and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing, and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. PMID:23849200
Contributions of the 12 neuron classes in the fly lamina to motion vision.
Tuthill, John C; Nern, Aljoscha; Holtz, Stephen L; Rubin, Gerald M; Reiser, Michael B
2013-07-10
Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayakawa, Tomohiko; Moko, Yushi; Morishita, Kenta; Ishikawa, Masatoshi
2018-04-01
In this paper, we propose a pixel-wise deblurring imaging (PDI) system based on active vision for compensation of the blur caused by high-speed one-dimensional motion between a camera and a target. The optical axis is controlled by back-and-forth motion of a galvanometer mirror to compensate the motion. High-spatial-resolution image captured by our system in high-speed motion is useful for efficient and precise visual inspection, such as visually judging abnormal parts of a tunnel surface to prevent accidents; hence, we applied the PDI system for structural health monitoring. By mounting the system onto a vehicle in a tunnel, we confirmed significant improvement in image quality for submillimeter black-and-white stripes and real tunnel-surface cracks at a speed of 100 km/h.
[Image processing applying in analysis of motion features of cultured cardiac myocyte in rat].
Teng, Qizhi; He, Xiaohai; Luo, Daisheng; Wang, Zhengrong; Zhou, Beiyi; Yuan, Zhirun; Tao, Dachang
2007-02-01
Study of mechanism of medicine actions, by quantitative analysis of cultured cardiac myocyte, is one of the cutting edge researches in myocyte dynamics and molecular biology. The characteristics of cardiac myocyte auto-beating without external stimulation make the research sense. Research of the morphology and cardiac myocyte motion using image analysis can reveal the fundamental mechanism of medical actions, increase the accuracy of medicine filtering, and design the optimal formula of medicine for best medical treatments. A system of hardware and software has been built with complete sets of functions including living cardiac myocyte image acquisition, image processing, motion image analysis, and image recognition. In this paper, theories and approaches are introduced for analysis of living cardiac myocyte motion images and implementing quantitative analysis of cardiac myocyte features. A motion estimation algorithm is used for motion vector detection of particular points and amplitude and frequency detection of a cardiac myocyte. Beatings of cardiac myocytes are sometimes very small. In such case, it is difficult to detect the motion vectors from the particular points in a time sequence of images. For this reason, an image correlation theory is employed to detect the beating frequencies. Active contour algorithm in terms of energy function is proposed to approximate the boundary and detect the changes of edge of myocyte.
Guidelines to identify abnormalities after childhood urinary tract infections: a prospective audit
Coulthard, Malcolm G; Lambert, Heather J; Vernon, Susan J; Hunter, Elizabeth W; Keir, Michael J
2014-01-01
Objective To compare the childhood urinary tract infection (UTI) guidelines from the Royal College of Physicians (RCP) in 1991 and from National Institute of Health and Care Excellence (NICE) (CG54) in 2007 by measuring their efficiency at detecting urinary tract abnormalities. Design Children with UTIs within the Newcastle Primary Care Trust (population 70 800 children) were referred and imaged according to the RCP guidelines during 2008, and these were compared to the activity that would have been undertaken if we had implemented the CG54 guidelines, including following them through 2011 to identify those with recurrent UTIs. Main outcome measures The numbers of children imaged, the imaging burden and efficiency, and urinary tract abnormalities detected by each guideline. Results Fewer children would have been imaged by CG54 than RCP (150 vs 427), but its sensitivity was lower, at 44% for detecting scarring, 10% for identifying vesicoureteric reflux and 40% for other abnormalities. Overall, it would have only detected one-quarter of the abnormal cases (8 vs 32) and would have missed five of nine children with scarring, including three with multiple lesions and one with renal impairment. Imposing an age restriction of <8 years to the RCP guidelines would reduce its screening rate by 20% and still detect 90% of the abnormalities. Interpretation The CG54 guidelines do not alter the imaging efficiency compared to the RCP guidelines, but they are considerably less sensitive. PMID:24436366
76 FR 22925 - Assumption Buster Workshop: Abnormal Behavior Detection Finds Malicious Actors
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... Technology Research and Development (NITRD) Program, National Science Foundation. ACTION: Call for... NATIONAL SCIENCE FOUNDATION Assumption Buster Workshop: Abnormal Behavior Detection Finds...: The NCO, on behalf of the Special Cyber Operations Research and Engineering (SCORE) Committee, an...
Computerized method to compensate for breathing body motion in dynamic chest radiographs
NASA Astrophysics Data System (ADS)
Matsuda, H.; Tanaka, R.; Sanada, S.
2017-03-01
Dynamic chest radiography combined with computer analysis allows quantitative analyses on pulmonary function and rib motion. The accuracy of kinematic analysis is directly linked to diagnostic accuracy, and thus body motion compensation is a major concern. Our purpose in this study was to develop a computerized method to reduce a breathing body motion in dynamic chest radiographs. Dynamic chest radiographs of 56 patients were obtained using a dynamic flat-panel detector. The images were divided into a 1 cm-square and the squares on body counter were used to detect the body motion. Velocity vector was measured using cross-correlation method on the body counter and the body motion was then determined on the basis of the summation of motion vector. The body motion was then compensated by shifting the images based on the measured vector. By using our method, the body motion was accurately detected by the order of a few pixels in clinical cases, mean 82.5% in right and left directions. In addition, our method detected slight body motion which was not able to be identified by human observations. We confirmed our method effectively worked in kinetic analysis of rib motion. The present method would be useful for the reduction of a breathing body motion in dynamic chest radiography.
Kaniewska, Malwina; Schuetz, Georg M; Willun, Steffen; Schlattmann, Peter; Dewey, Marc
2017-04-01
To compare the diagnostic accuracy of computed tomography (CT) in the assessment of global and regional left ventricular (LV) function with magnetic resonance imaging (MRI). MEDLINE, EMBASE and ISI Web of Science were systematically reviewed. Evaluation included: ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and left ventricular mass (LVM). Differences between modalities were analysed using limits of agreement (LoA). Publication bias was measured by Egger's regression test. Heterogeneity was evaluated using Cochran's Q test and Higgins I 2 statistic. In the presence of heterogeneity the DerSimonian-Laird method was used for estimation of heterogeneity variance. Fifty-three studies including 1,814 patients were identified. The mean difference between CT and MRI was -0.56 % (LoA, -11.6-10.5 %) for EF, 2.62 ml (-34.1-39.3 ml) for EDV and 1.61 ml (-22.4-25.7 ml) for ESV, 3.21 ml (-21.8-28.3 ml) for SV and 0.13 g (-28.2-28.4 g) for LVM. CT detected wall motion abnormalities on a per-segment basis with 90 % sensitivity and 97 % specificity. CT is accurate for assessing global LV function parameters but the limits of agreement versus MRI are moderately wide, while wall motion deficits are detected with high accuracy. • CT helps to assess patients with coronary artery disease (CAD). • MRI is the reference standard for evaluation of left ventricular function. • CT provides accurate assessment of global left ventricular function.
An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; LV, M.
2017-12-01
Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS/PALSAR data. The results show that the strategy can effectively improve the accuracy of velocity estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m. It is proved to be highly appropriate for monitoring glacier motion over a widely varying range of ice velocities with a relatively high accuracy.
NASA Astrophysics Data System (ADS)
Smyczynski, Mark S.; Gifford, Howard C.; Dey, Joyoni; Lehovich, Andre; McNamara, Joseph E.; Segars, W. Paul; King, Michael A.
2016-02-01
The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPNs) in single-photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this nonuniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99 m NeoTect. Similarly, spherical phantoms of 1.0-cm diameter were generated to model small SPN for each of the 150 uniquely located sites within the lungs whose respiratory motion was based on the motion of normal structures in the volunteer CT studies. The SIMIND Monte Carlo program was used to produce SPECT projection data from these. Normal and single-lesion containing SPECT projection sets with a clinically realistic Poisson noise level were created for the cases of 1) the end-expiration (EE) frame with all counts, 2) respiration-averaged motion with all counts, 3) one fourth of the 32 frames centered around EE (Quarter Binning), 4) one half of the 32 frames centered around EE (Half Binning), and 5) eight temporally binned frames spanning the respiratory cycle. Each of the sets of combined projection data were reconstructed with RBI-EM with system spatial-resolution compensation (RC). Based on the known motion for each of the 150 different lesions, the reconstructed volumes of respiratory bins were shifted so as to superimpose the locations of the SPN onto that in the first bin (Reconstruct and Shift). Five human observers performed localization receiver operating characteristics (LROC) studies of SPN detection. The observer results were analyzed for statistical significance differences in SPN detection accuracy among the three correction strategies, the standard acquisition, and the ideal case of the absence of respiratory motion. Our human-observer LROC determined that Quarter Binning and Half Binning strategies resulted in SPN detection accuracy statistically significantly below ( ) that of standard clinical acquisition, whereas the Reconstruct and Shift strategy resulted in a detection accuracy not statistically significantly different from that of the ideal case. This investigation demonstrates that tumor detection based on acquisitions associated with less than all the counts which could potentially be employed may result in poorer detection despite limiting the motion of the lesion. The Reconstruct and Shift method results in tumor detection that is equivalent to ideal motion correction.
SoM: a smart sensor for human activity monitoring and assisted healthy ageing.
Naranjo-Hernández, David; Roa, Laura M; Reina-Tosina, Javier; Estudillo-Valderrama, Miguel Ángel
2012-11-01
This paper presents the hardware and software design and implementation of a low-cost, wearable, and unobstructive intelligent accelerometer sensor for the monitoring of human physical activities. In order to promote healthy lifestyles to elders for an active, independent, and healthy ageing, as well as for the early detection of psychomotor abnormalities, the activity monitoring is performed in a holistic manner in the same device through different approaches: 1) a classification of the level of activity that allows to establish patterns of behavior; 2) a daily activity living classifier that is able to distinguish activities such as climbing or descending stairs using a simple method to decouple the gravitational acceleration components of the motion components; and 3) an estimation of metabolic expenditure independent of the activity performed and the anthropometric characteristics of the user. Experimental results have demonstrated the feasibility of the prototype and the proposed algorithms.
Suzuki, Masahiko; Mitoma, Hiroshi; Yoneyama, Mitsuru
2017-01-01
Long-term and objective monitoring is necessary for full assessment of the condition of patients with Parkinson's disease (PD). Recent advances in biotechnology have seen the development of various types of wearable (body-worn) sensor systems. By using accelerometers and gyroscopes, these devices can quantify motor abnormalities, including decreased activity and gait disturbances, as well as nonmotor signs, such as sleep disturbances and autonomic dysfunctions in PD. This review discusses methodological problems inherent in wearable devices. Until now, analysis of the mean values of motion-induced signals on a particular day has been widely applied in the clinical management of PD patients. On the other hand, the reliability of these devices to detect various events, such as freezing of gait and dyskinesia, has been less than satisfactory. Quantification of disease-specific changes rather than nonspecific changes is necessary.
2017-01-01
Long-term and objective monitoring is necessary for full assessment of the condition of patients with Parkinson's disease (PD). Recent advances in biotechnology have seen the development of various types of wearable (body-worn) sensor systems. By using accelerometers and gyroscopes, these devices can quantify motor abnormalities, including decreased activity and gait disturbances, as well as nonmotor signs, such as sleep disturbances and autonomic dysfunctions in PD. This review discusses methodological problems inherent in wearable devices. Until now, analysis of the mean values of motion-induced signals on a particular day has been widely applied in the clinical management of PD patients. On the other hand, the reliability of these devices to detect various events, such as freezing of gait and dyskinesia, has been less than satisfactory. Quantification of disease-specific changes rather than nonspecific changes is necessary. PMID:28607801
Yan, Yun-An
2016-01-14
The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today's nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Overload protection circuit utilizes one circuit for suspending inverter action when load abnormality is detected and second circuit to monitor clearance of abnormality. Device wastes no power during normal operating conditions and responds instantaneously when abnormality is cleared.
Unsteady behavior of a reattaching shear layer
NASA Technical Reports Server (NTRS)
Driver, D. M.; Seegmiller, H. L.; Marvin, J.
1983-01-01
A detailed investigation of the unsteadiness in a reattaching, turbulent shear layer is reported. Laser-Doppler velocimeter measurements were conditionally sampled on the basis of instantaneous flow direction near reattachment. Conditions of abnormally short reattachment and abnormally long reattachment were considered. Ensemble-averaging of measurements made during these conditions was used to obtain mean velocities and Rreynolds stresses. In the mean flow, conditional streamlines show a global change in flow pattern which correlates with wall-flow direction. This motion can loosely be described as a 'flapping' of the shear layer. Tuft probes show that the flow direction reversals occur quite randomly and are shortlived. Streses shown also vary with the change in flow pattern. Yet, the global'flapping' motion does not appear to contribute significantly to the stress in the flow. A second type of unsteady motion was identified. Spectral analysis of both wall static pressure and streamwise velocity shows that most of the energy in the flow resides in frequencies that are significantly lower than that of the turbulence. The dominant frequency is at a Strouhal number equal to 0.2, which is the characteristic frequency of roll-up and pairing of vortical structure seen in free shear layers. It is conjectured that the 'flapping' is a disorder of the roll-up and pairing process occurring in the shear layer.
LAWRENCE, REBEKAH L.; BRAMAN, JONATHAN P.; STAKER, JUSTIN L.; LAPRADE, ROBERT F.; LUDEWIG, PAULA M.
2015-01-01
STUDY DESIGN Cross-sectional. OBJECTIVES To compare differences in glenohumeral joint angular motion and linear translations between symptomatic and asymptomatic individuals during shoulder motion performed in 3 planes of humerothoracic elevation. BACKGROUND Numerous clinical theories have linked abnormal glenohumeral kinematics, including decreased glenohumeral external rotation and increased superior translation, to individuals with shoulder pain and impingement diagnoses. However, relatively few studies have investigated glenohumeral joint angular motion and linear translations in this population. METHODS Transcortical bone pins were inserted into the scapula and humerus of 12 a symptomatic and 10 symptomatic participants for direct bone-fixed tracking using electromagnetic sensors. Glenohumeral joint angular positions and linear translations were calculated during active shoulder flexion, abduction, and scapular plane abduction. RESULTS Differences between groups in angular positions were limited to glenohumeral elevation, coinciding with a reduction in scapulothoracic upward rotation. Symptomatic participants demonstrated 1.4 mm more anterior glenohumeral translation between 90° and 120° of shoulder flexion and an average of 1 mm more inferior glenohumeral translation throughout shoulder abduction. CONCLUSION Differences in glenohumeral kinematics exist between symptomatic and a symptomatic individuals. The clinical implications of these differences are not yet understood, and more research is needed to understand the relationship between abnormal kinematics, shoulder pain, and pathoanatomy. PMID:25103132
Moving Object Detection on a Vehicle Mounted Back-Up Camera
Kim, Dong-Sun; Kwon, Jinsan
2015-01-01
In the detection of moving objects from vision sources one usually assumes that the scene has been captured by stationary cameras. In case of backing up a vehicle, however, the camera mounted on the vehicle moves according to the vehicle’s movement, resulting in ego-motions on the background. This results in mixed motion in the scene, and makes it difficult to distinguish between the target objects and background motions. Without further treatments on the mixed motion, traditional fixed-viewpoint object detection methods will lead to many false-positive detection results. In this paper, we suggest a procedure to be used with the traditional moving object detection methods relaxing the stationary cameras restriction, by introducing additional steps before and after the detection. We also decribe the implementation as a FPGA platform along with the algorithm. The target application of this suggestion is use with a road vehicle’s rear-view camera systems. PMID:26712761
Going on with false beliefs: What if satisfaction of search was really suppression of recognition?
NASA Astrophysics Data System (ADS)
Mello-Thoms, Claudia; Trieu, Phuong Dung; Brennan, Patrick C.
2014-03-01
Satisfaction of search (SOS) is a well known phenomenon in radiology, in which the detection of one abnormality facilitates the neglect of other abnormalities. Over the years SOS has been thoroughly studied primarily in chest and in trauma, and it has been found to be an elusive effect, appearing in some settings but not in others. Unfortunately, very little is known about SOS in mammography. In this study we will explore SOS in breast cancer detection by considering a case set of digital mammograms as interpreted by breast radiologists. However, the primary goal of the study will be to challenge the core of the paradigm; for decades, many have associated SOS with incomplete search, but as Kundel has put eloquently when addressing the SPIE Medical Imaging in 2004 [1], "observers do not stop viewing when one abnormality has been found on an image with multiple abnormalities". What else could cause SOS then? According to our previous work, the first "perceived" abnormality reported by a radiologist has an influential role in the report of any other "perceived" abnormalities on the case, which supports the idea that perhaps SOS is caused a perceptual suppression of the recognition of different abnormalities. In other words, once the radiologist has made a first report (regardless of whether that first report is a TP or FP), detection and hence reporting of other abnormalities present in the case are greatly dependent on whether these associated abnormalities "fit the profile" of what has been already found.
Bronchial abnormalities found in a consecutive series of 40 brachycephalic dogs.
De Lorenzi, Davide; Bertoncello, Diana; Drigo, Michele
2009-10-01
To detect abnormalities of the lower respiratory tract (trachea, principal bronchi, and lobar bronchi) in brachycephalic dogs by use of endoscopy, evaluate the correlation between laryngeal collapse and bronchial abnormalities, and determine whether dogs with bronchial abnormalities have a less favorable postsurgical long-term outcome following correction of brachycephalic syndrome. Prospective case series study. 40 client-owned brachycephalic dogs with stertorous breathing and clinical signs of respiratory distress. Brachycephalic dogs anesthetized for pharyngoscopy and laryngoscopy between January 2007 and June 2008 underwent flexible bronchoscopy for systematic evaluation of the principal and lobar bronchi. For dogs that underwent surgical correction of any component of brachycephalic syndrome, owners rated surgical outcome during a follow-up telephone survey. Correlation between laryngeal collapse and bronchial abnormalities and association between bronchial abnormalities and long-term outcome were assessed. Pugs (n = 20), English Bulldogs (13), and French Bulldogs (7) were affected. A fixed bronchial collapse was recognized in 35 of 40 dogs with a total of 94 bronchial stenoses. Abnormalities were irregularly distributed between hemithoraces; 15 of 94 bronchial abnormalities were detected in the right bronchial system, and 79 of 94 were detected in the left. The left cranial bronchus was the most commonly affected structure, and Pugs were the most severely affected breed. Laryngeal collapse was significantly correlated with severe bronchial collapse; no significant correlation was found between severity of bronchial abnormalities and postsurgical outcome. Bronchial collapse was a common finding in brachycephalic dogs, and long-term postsurgical outcome was not affected by bronchial stenosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, V.J.; Patz, E.; Harris, P.L.
Pleural abnormalities identified on anatomical studies are often nonspecific and may represent benign or malignant disease. We prospectively evaluated the ability of FDG-PET to identify malignancy in patients with pleural abnormalities detected on chest radiographs or chest CT. Thirty-two patients with pleural abnormalities (pleural masses, thickening or effusions) found on chest radiographs or CT were evaluated by FDG-PET. Regions of interest (ROI) were identified on the PET images correlating to anatomic abnormalities and standard uptake ratios (SUR`s) of these ROI`s were calculated. A SUR value of 2.5 or greater was considered positive for malignancy. Physicians blinded to biopsy results gradedmore » their confidence of malignancy (1-5 scale) and graded lesion FDG uptake with respect to mediastinal radioactivity. Twenty-three of the patients had definitive diagnoses by tissue biopsy. Seventeen of these patients had malignant (SUR=7.9{plus_minus}3.8) and 6 had benign (SUR=2.8{plus_minus}2.4) causes of their pleural abnormalities (p=0.001). All but two malignant cases had SURs higher than 2.5 and one of these two was correctly interpreted by the observers. SURs lower than 2.5 were seen in four of the six (67%) benign pleural abnormalities. Using a combination of both visual and semiquantitative analysis, the sensitivity of FDG-PET for detecting malignant pleural abnormalities was 94%. Active infections in the pleural space had increased FDG uptake on PET studies while other benign pleural abnormalities did not. FDG-PET has very high sensitivity for detecting malignant pleural abnormalities and can differentiate benign from malignant pleural abnormalities.« less
Dynamic behavior of prosthetic aortic tissue valves as viewed by high-speed cinematography.
Rainer, W G; Christopher, R A; Sadler, T R; Hilgenberg, A D
1979-09-01
Using a valve testing apparatus of our own design and with a high-speed (600 to 800 frames per second) 16 mm movie camera, films were made of Hancock porcine, Carpentier-Edwards porcine, and Ionescu-Shiley bovine pericardial valves mounted in the aortic position and cycled under physiological conditions at 72 to 100 beats per minute. Fresh and explanted valves were observed using saline or 36.5% glycerol as the pumping solution. When fresh valves were studied using saline solution as the pumpint fluid, the Hancock and Carpentier-Edwards porcine valves showed high-frequency leaflet vibration, which increased in frequency with higher cycling rates. Abnormal leaflet motion was decreased when glycerol was used as the blood analogue. The Ionescu-Shiley bovine pericardial valve did not show abnormal leaflet motion under these conditions. Conclusions drawn from tissue valve testing studies that use excessively high pulsing rates and pressures (accelerated testing) and saline or water as pumping solutions cannot be transposed to predict the fate of tissue valves in a clinical setting.
Analysis of Retainer Induced Disturbances of Reaction Wheel
NASA Astrophysics Data System (ADS)
Taniwaki, Shigemune; Kudo, Masahito; Sato, Makoto; Ohkami, Yoshiaki
A ball bearing reaction wheel (RW) is a key attitude control actuator of spacecrafts, but it is also a major source of inner disturbances. Future space mission requires high attitude stability, and disturbance property of the RW must be improved. There are some disturbance sources inside the RW, and abnormal motion of a retainer is one of the most significant ones. The retainer is one of mechanical parts of a ball bearing supporting a rotor spin axis. It is used to keep the ball intervals. Therefore it is nonholonomically constrained with balls, an inner race, and an outer race, and its complex motion causes disturbances which are difficult to be effectively removed. In this paper, dynamics of the retainer is investigated through experimental tests and numerical simulations. Disturbances of normal and abnormal RWs are compared, and relation between retainer mass imbalances and their dynamics are investigated. As results, a trade-off relation between instability reduction and disturbance reduction is verified and one of the criteria to decide the appropriate mass imbalance is proposed.
High lifetime probability of screen-detected cervical abnormalities.
Pankakoski, Maiju; Heinävaara, Sirpa; Sarkeala, Tytti; Anttila, Ahti
2017-12-01
Objective Regular screening and follow-up is an important key to cervical cancer prevention; however, screening inevitably detects mild or borderline abnormalities that would never progress to a more severe stage. We analysed the cumulative probability and recurrence of cervical abnormalities in the Finnish organized screening programme during a 22-year follow-up. Methods Screening histories were collected for 364,487 women born between 1950 and 1965. Data consisted of 1 207,017 routine screens and 88,143 follow-up screens between 1991 and 2012. Probabilities of cervical abnormalities by age were estimated using logistic regression and generalized estimating equations methodology. Results The probability of experiencing any abnormality at least once at ages 30-64 was 34.0% (95% confidence interval [CI]: 33.3-34.6%) . Probability was 5.4% (95% CI: 5.0-5.8%) for results warranting referral and 2.2% (95% CI: 2.0-2.4%) for results with histologically confirmed findings. Previous occurrences were associated with an increased risk of detecting new ones, specifically in older women. Conclusion A considerable proportion of women experience at least one abnormal screening result during their lifetime, and yet very few eventually develop an actual precancerous lesion. Re-evaluation of diagnostic criteria concerning mild abnormalities might improve the balance of harms and benefits of screening. Special monitoring of women with recurrent abnormalities especially at older ages may also be needed.
Evaluating a robust contour tracker on echocardiographic sequences.
Jacob, G; Noble, J A; Mulet-Parada, M; Blake, A
1999-03-01
In this paper we present an evaluation of a robust visual image tracker on echocardiographic image sequences. We show how the tracking framework can be customized to define an appropriate shape space that describes heart shape deformations that can be learnt from a training data set. We also investigate energy-based temporal boundary enhancement methods to improve image feature measurement. Results are presented demonstrating real-time tracking on real normal heart motion data sequences and abnormal synthesized and real heart motion data sequences. We conclude by discussing some of our current research efforts.
Lateral idiopathic subluxation of the radial head. Case report.
Lancaster, S; Horowitz, M
1987-01-01
Idiopathic subluxation of the radial head (ISRH) is a rare entity that is separate from congenital dislocations of the radial head, both symptomatically and radiographically. ISRH causes pain and restriction of rotation. A dome-shaped radial head, a hypertrophied ulna, and a hypoplastic capitellum are not present in ISRH, as they are in a congenital dislocation of the radial head (CDRH). A true lateral ISRH is used as an example to demonstrate these differences. Remodeling of the radial head may preserve motion in the joint surface deformed by growth along abnormal planes of motion.
Detecting dominant motion patterns in crowds of pedestrians
NASA Astrophysics Data System (ADS)
Saqib, Muhammad; Khan, Sultan Daud; Blumenstein, Michael
2017-02-01
As the population of the world increases, urbanization generates crowding situations which poses challenges to public safety and security. Manual analysis of crowded situations is a tedious job and usually prone to errors. In this paper, we propose a novel technique of crowd analysis, the aim of which is to detect different dominant motion patterns in real-time videos. A motion field is generated by computing the dense optical flow. The motion field is then divided into blocks. For each block, we adopt an Intra-clustering algorithm for detecting different flows within the block. Later on, we employ Inter-clustering for clustering the flow vectors among different blocks. We evaluate the performance of our approach on different real-time videos. The experimental results show that our proposed method is capable of detecting distinct motion patterns in crowded videos. Moreover, our algorithm outperforms state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Allec, N.; Abbaszadeh, S.; Scott, C. C.; Lewin, J. M.; Karim, K. S.
2012-12-01
In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.
Allec, N; Abbaszadeh, S; Scott, C C; Lewin, J M; Karim, K S
2012-12-21
In contrast-enhanced mammography (CEM), the dual-energy dual-exposure technique, which can leverage existing conventional mammography infrastructure, relies on acquiring the low- and high-energy images using two separate exposures. The finite time between image acquisition leads to motion artifacts in the combined image. Motion artifacts can lead to greater anatomical noise in the combined image due to increased mismatch of the background tissue in the images to be combined, however the impact has not yet been quantified. In this study we investigate a method to include motion artifacts in the dual-energy noise and performance analysis. The motion artifacts are included via an extended cascaded systems model. To validate the model, noise power spectra of a previous dual-energy clinical study are compared to that of the model. The ideal observer detectability is used to quantify the effect of motion artifacts on tumor detectability. It was found that the detectability can be significantly degraded when motion is present (e.g., detectability of 2.5 mm radius tumor decreased by approximately a factor of 2 for translation motion on the order of 1000 μm). The method presented may be used for a more comprehensive theoretical noise and performance analysis and fairer theoretical performance comparison between dual-exposure techniques, where motion artifacts are present, and single-exposure techniques, where low- and high-energy images are acquired simultaneously and motion artifacts are absent.
Iliescu, D; Tudorache, S; Comanescu, A; Antsaklis, P; Cotarcea, S; Novac, L; Cernea, N; Antsaklis, A
2013-09-01
To assess the potential of first-trimester sonography in the detection of fetal abnormalities using an extended protocol that is achievable with reasonable resources of time, personnel and ultrasound equipment. This was a prospective two-center 2-year study of 5472 consecutive unselected pregnant women examined at 12 to 13 + 6 gestational weeks. Women were examined using an extended morphogenetic ultrasound protocol that, in addition to the basic evaluation, involved a color Doppler cardiac sweep and identification of early contingent markers for major abnormalities. The prevalence of lethal and severe malformations was 1.39%. The first-trimester scan identified 40.6% of the cases detected overall and 76.3% of major structural defects. The first-trimester detection rate (DR) for major congenital heart disease (either isolated or associated with extracardiac abnormalities) was 90% and that for major central nervous system anomalies was 69.5%. In fetuses with increased nuchal translucency (NT), the first-trimester DR for major anomalies was 96%, and in fetuses with normal NT it was 66.7%. Most (67.1%) cases with major abnormalities presented with normal NT. A detailed first-trimester anomaly scan using an extended protocol is an efficient screening method to detect major fetal structural abnormalities in low-risk pregnancies. It is feasible at 12 to 13 + 6 weeks with ultrasound equipment and personnel already used for routine first-trimester screening. Rate of detection of severe malformations is greater in early- than in mid-pregnancy and on postnatal evaluation. Early heart investigation could be improved by an extended protocol involving use of color Doppler. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
The processing of social stimuli in early infancy: from faces to biological motion perception.
Simion, Francesca; Di Giorgio, Elisa; Leo, Irene; Bardi, Lara
2011-01-01
There are several lines of evidence which suggests that, since birth, the human system detects social agents on the basis of at least two properties: the presence of a face and the way they move. This chapter reviews the infant research on the origin of brain specialization for social stimuli and on the role of innate mechanisms and perceptual experience in shaping the development of the social brain. Two lines of convergent evidence on face detection and biological motion detection will be presented to demonstrate the innate predispositions of the human system to detect social stimuli at birth. As for face detection, experiments will be presented to demonstrate that, by virtue of nonspecific attentional biases, a very coarse template of faces become active at birth. As for biological motion detection, studies will be presented to demonstrate that, since birth, the human system is able to detect social stimuli on the basis of their properties such as the presence of a semi-rigid motion named biological motion. Overall, the empirical evidence converges in supporting the notion that the human system begins life broadly tuned to detect social stimuli and that the progressive specialization will narrow the system for social stimuli as a function of experience. Copyright © 2011 Elsevier B.V. All rights reserved.
Hood, D C; Harizman, N; Kanadani, F N; Grippo, T M; Baharestani, S; Greenstein, V C; Liebmann, J M; Ritch, R
2007-01-01
Aim To assess the accuracy of optical coherence tomography (OCT) in detecting damage to a hemifield, patients with hemifield defects confirmed on both static automated perimetry (SAP) and multifocal visual evoked potentials (mfVEP) were studied. Methods Eyes of 40 patients with concomitant SAP and mfVEP glaucomatous loss and 25 controls underwent OCT retinal nerve fibre layer (RNFL), mfVEP and 24‐2 SAP tests. For the mfVEP and 24‐2 SAP, a hemifield was defined as abnormal based upon cluster criteria. On OCT, a hemifield was considered abnormal if one of the five clock hour sectors (3 and 9 o'clock excluded) was at <1% (red) or two were at <5% (yellow). Results Seventy seven (43%) of the hemifields were abnormal on both mfVEP and SAP tests. The OCT was abnormal for 73 (95%) of these. Only 1 (1%) of the 100 hemifields of the controls was abnormal on OCT. Sensitivity/specificity (one eye per person) was 95/98%. Conclusions The OCT RNFL test accurately detects abnormal hemifields confirmed on both subjective and objective functional tests. Identifying abnormal hemifields with a criterion of 1 red (1%) or 2 yellow (5%) clock hours may prove useful in clinical practice. PMID:17301118
MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI
Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges
2014-01-01
Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies. PMID:22743250
Leung, W C; Lau, E T; Lau, W L; Tang, Rebecca; Wong, Shell Fean; Lau, T K; Tse, K T; Wong, S F; To, W K; Ng, Lucy K L; Lao, T T; Tang, Mary H Y
2008-02-01
The application of rapid aneuploidy testing as a stand-alone approach in prenatal diagnosis is much debated. The major criticism of this targeted approach is that it will not detect other chromosomal abnormalities that will be picked up by traditional karyotyping. This study aimed to study the nature of such chromosomal abnormalities and whether parents would choose to terminate affected pregnancies. Retrospective study on a cytogenetic database. Eight public hospitals in Hong Kong. The karyotype results of 19 517 amniotic fluid cultures performed for advanced maternal age (>or=35 years) from 1997 to 2002 were classified according to whether they were detectable by rapid aneuploidy testing. The outcomes of pregnancies with abnormal karyotypes were reviewed from patient records. In all, 333 (1.7%) amniotic fluid cultures yielded abnormal karyotypes; 175 (52.6%) of these were detected by rapid aneuploidy testing, and included trisomy 21 (n=94, 28.2%), trisomy 18 or 13 (n=21, 6.3%), and sex chromosome abnormalities (n=60, 18.0%). The other 158 (47.4%) chromosomal abnormalities were not detectable by rapid aneuploidy testing, of which 63 (18.9%) were regarded to be of potential clinical significance and 95 (28.5%) of no clinical significance. Pregnancy outcomes in 327/333 (98.2%) of these patients were retrieved. In total, 143 (42.9%) of these pregnancies were terminated: 93/94 (98.9%) for trisomy 21, 20/21 (95.2%) for trisomy 18 or 13, 19/60 (31.7%) for sex chromosome abnormalities, and 11/63 (17.5%) for other chromosomal abnormalities with potential clinical significance. There were no terminations in the 95 pregnancies in which karyotyping results were regarded to be of no clinical significance. 'Knowing less' by the rapid aneuploidy stand-alone testing could miss about half of all chromosomal abnormalities detectable by amniocentesis performed for advanced maternal age. Findings from two fifths of the latter were of potential clinical significance, and the parents chose to terminate one out of six of the corresponding pregnancies. If both techniques are available, parents could have enhanced autonomy to choose.
Smoke regions extraction based on two steps segmentation and motion detection in early fire
NASA Astrophysics Data System (ADS)
Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan
2018-03-01
Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.
Pap tests detect abnormal cervical cells, including precancerous cervical lesions, as well as early cervical cancers. HPV tests detect HPV infections that can cause cervical cell abnormalities. Learn how Pap and HPV tests are done, how often testing should be done, and how are HPV test results are reported.
NASA Technical Reports Server (NTRS)
Uijtdehaage, S. H.; Stern, R. M.; Koch, K. L.
1992-01-01
This study investigated the effect of food ingestion on motion sickness severity and its physiological mechanisms. Forty-six fasted subjects were assigned either to a meal group or to a no-meal group. Electrogastrographic (EGG) indices (normal 3 cpm activity and abnormal 4-9 cpm tachyarrhythmia) and respiratory sinus arrhythmia (RSA) were measured before and after a meal and during a subsequent exposure to a rotating drum in which illusory self-motion was induced. The results indicated that food intake enhanced cardiac parasympathetic tone (RSA) and increased gastric 3 cpm activity. Postprandial effects on motion sickness severity remain equivocal due to group differences in RSA baseline levels. During drum rotation, dysrhythmic activity of the stomach (tachyarrhythmia) and vagal withdrawal were observed. Furthermore, high levels of vagal tone prior to drum rotation predicted a low incidence of motion sickness symptoms, and were associated positively with gastric 3 cpm activity and negatively with tachyarrhythmia. These data suggest that enhanced levels of parasympathetic activity can alleviate motion sickness symptoms by suppressing, in part, its dysrhythmic gastric underpinnings.
TH-CD-207A-04: Optimized Respiratory Gating for Abnormal Breathers in Pancreatic SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, W; Miften, M; Schefter, T
Purpose: Pancreatic SBRT is uniquely challenging due to both the erratic/unstable motion of the pancreas and the close proximity of the radiosensitive small bowel. Respiratory gating can mitigate this effect, but the irregularity of motion severely affects traditional phase-based gating. The purpose of this study was to analyze real-time motion data of pancreatic tumors to optimize the efficacy and accuracy of respiratory gating, with the overall goal of enabling dose escalated pancreatic SBRT. Methods: Fifteen pancreatic SBRT patients received 30–33 Gy in 5 fractions on a Varian TrueBeam STx unit. Abdominal compression was used to reduce the amplitude of tumormore » motion, and daily cone-beam computed tomography (CBCT) scans were acquired prior to each treatment for target localization purposes. For this study, breathing data (phase and amplitude) were collected during each CBCT scan using Varian’s Real-Time Position Management system. An in-house template matching technique was used to track the superior-inferior motion of implanted fiducial markers in CBCT projection images. Using tumor motion and breathing data, phase-based or amplitude-based respiratory gating was simulated for all 75 fractions, targeting either end-exhalation or end-inhalation phases of breathing. Results: For the average patient, gating at end-exhalation offered the best reductions in effective motion for equal duty cycles. However, optimal central phase angle varied widely (range: 0–92%, mean±SD: 49±12%), and phase-based gating windows typically associated with end-exhalation (i.e., “30–70%”) were rarely ideal. Amplitude-based gating significantly outperformed phase-based gating, with average effective ranges for amplitude-based gating 25% lower than phase-based gating ranges (as much as 73% lower). Amplitude-based gating was consistently better suited to accommodate abnormal breathing patterns. For both phase-based and amplitude-based gating, end-exhalation provided significantly better results than end-inhalation. Conclusion: Amplitude-based gating reliably outperformed phase-based gating, and end-exhalation was more suitable than end-inhalation. These results will be used to guide future dose-escalation trials. Research funding provided by Varian Medical Systems to Miften and Jones.« less
Neurobehavioral Mechanisms of Temporal Processing Deficits In Parkinson’s Disease
2011-01-01
Foam padding was used to limit head motion. Auditory stimuli were delivered binaurally through a headphone that together with earplugs attenuated...core timer.’ Specifically, by the striatal beat frequency (SBF) model, Figure 5. Percent signal change in regions showing abnormal activation OFF
Iliescu, D; Comănescu, A; Antsaklis, P; Tudorache, Stefania; Ghiluşi, Mirela; Comănescu, Violeta; Paulescu, Daniela; Ceauşu, Iuliana; Antsaklis, A; Novac, Liliana; Cernea, N
2011-01-01
Morphological investigation of the central nervous system (CNS) in fetuses with positive markers for open spina bifida (OSB) detection, visualized by ultrasound during the first trimester of pregnancy. Data from fetuses that underwent routine first trimester ultrasound scan in our center during September 2007-March 2011 and presented abnormal aspects of the fourth ventricle, also referred as intracranial translucency (IT), provided the morphological support to evaluate CNS features. A neuro-histological study of posterior cerebral fossa illustrated anatomical features of the structures involved in the sonographic first trimester detection of neural tube defects. Abnormal IT aspects were found in OSB cases examined in the first trimester, but also in other severe cerebral abnormalities. Brain stem antero-posterior diameter (BS) and brain stem to occipital bone (BSOB) ratio may be more specific for OSB detection. Correlations between histological aspects of posterior brain fossa and ultrasound standard assessment have been made; highlighting the anatomical features involved by the new techniques developed for OSB early detection. Preliminary results show that modern sonographic protocols are capable to detect abnormalities in the morphometry of the posterior brain. First trimester fourth ventricle abnormalities should be followed by careful CNS evaluation because are likely to appear in OSB affected fetuses, but also in other CNS severe anomalies; in such cases, normal BS and BSOB ratio may serve as indirect argument for spine integrity, if specificity is confirmed in large series of fetuses.
Rodriguez, Ana C.; Burk, Robert D.; Hildesheim, Allan; Herrero, Rolando; Wacholder, Sholom; Hutchinson, Martha; Schiffman, Mark
2012-01-01
Background. Few studies have addressed the timing of cervical cytologic abnormalities and human papillomavirus (HPV) positivity during the course of an infection. It remains largely unknown how infections detected by HPV and cytology wax and wane relative to each other. The aim of this analysis was to assess the longitudinal relationship of abnormal cytology and HPV positivity in a 7-year prospective study of 2500 women in Guanacaste, Costa Rica. Methods. At each semiannual or annual visit, cervical specimens were screened using liquid-based cytology and tested for >40 HPV types with use of MY09/MY11 L1 degenerate primer polymerase chain reaction–based methods. On the basis of previous work, we separated prevalent and newly detected infections in younger and older women. Results. Among newly detected HPV- and/or cytology-positive events, HPV and cytology appeared together ∼60% of the time; when discordant, HPV tended to appear before cytology in younger and older women. Combining newly and prevalently detected events, HPV and cytology disappeared at the same time >70% of the time. When discordant, HPV tended to disappear after cytology in younger and older women. Conclusions. Detection of HPV DNA and associated cytological abnormalities tend to come and leave together; however, when discordant, detection of HPV DNA tends to precede and/or last longer than associated cytologic abnormalities. PMID:22147792
Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.
2013-04-01
Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.
Parallel search for conjunctions with stimuli in apparent motion.
Casco, C; Ganis, G
1999-01-01
A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal integration of feature conjunctions before they are identified by the static system; and (iii) target detectability in these stimuli relies upon a nonattentive, cooperative, directionally selective motion mechanism that responds to high-level attributes (conjunction of size and orientation).
Using impedance cardiography with postural change to stratify patients with hypertension.
DeMarzo, Arthur P
2011-06-01
Early detection of cardiovascular disease in patients with hypertension could initiate appropriate treatment to control blood pressure and prevent the progression of cardiovascular disease. The goal of this study was to show how impedance cardiography waveform analysis with postural change can be used to detect subclinical cardiovascular disease in patients with high blood pressure. Patients with high blood pressure had impedance cardiography data obtained in two positions, standing upright and supine. In 50 adults, impedance cardiography indicated that all patients had abnormal data, with 44 (88%) having multiple abnormalities. Impedance cardiography showed 32 (64%) had ventricular dysfunction, 48 (96%) had vascular load abnormalities, 34 (68%) had hemodynamic abnormalities, 2 (4%) had hypovolemia, and 3 (6%) had hypervolemia. Hypertensive patients have diverse cardiovascular abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment could be customized based on the abnormal underlying mechanisms with the potential to rapidly control blood pressure, prevent progression of cardiovascular disease, and possibly reverse remodeling.
Brain Dysplasia Associated with Ciliary Dysfunction In Infants with Congenital Heart Disease
Panigrahy, Ashok; Lee, Vincent; Ceschin, Rafael; Zuccoli, Giulio; Beluk, Nancy; Khalifa, Omar; Votava-Smith, Jodie K; DeBrunner, Mark; Munoz, Ricardo; Domnina, Yuliya; Morell, Victor; Wearden, Peter; De Toledo, Joan Sanchez; Devine, William; Zahid, Maliha; Lo, Cecilia W.
2016-01-01
Objective To test for associations between abnormal respiratory ciliary motion (CM) and brain abnormalities in infants with congenital heart disease (CHD) Study design We recruited 35 infants with CHD preoperatively and performed nasal tissue biopsy to assess respiratory CM by videomicroscopy. Cranial ultrasound and brain magnetic resonance imaging were obtained pre- and/or post-operatively and systematically reviewed for brain abnormalities. Segmentation was used to quantitate cerebrospinal fluid and regional brain volumes. Perinatal and perioperative clinical variables were collected. Results A total of 10 (28.5%) patients with CHD had abnormal CM. Abnormal CM was not associated with brain injury, but was correlated with increased extra-axial CSF volume (p<0.001), delayed brain maturation (p<0.05), and a spectrum of subtle dysplasia including the hippocampus (p<0.0078) and olfactory bulb (p<0.034). Abnormal CM was associated with higher composite dysplasia score (p<0.001) and both were correlated with elevated pre-operative serum lactate (p <0.001). Conclusion Abnormal respiratory CM in infants with CHD is associated with a spectrum of brain dysplasia. These findings suggest that ciliary defects may play a role in brain dysplasia in patients with CHD and have the potential to prognosticate neurodevelopmental risks. PMID:27574995
McLennan, Andrew; Palma-Dias, Ricardo; da Silva Costa, Fabricio; Meagher, Simon; Nisbet, Debbie L; Scott, Fergus
2016-02-01
There are limited data regarding noninvasive prenatal testing (NIPT) in low-risk populations, and the ideal aneuploidy screening model for a pregnant population has yet to be established. To assess the implementation of NIPT into clinical practice utilising both first- and second-line screening models. Three private practices specialising in obstetric ultrasound and prenatal diagnosis in Australia offered NIPT as a first-line test, ideally followed by combined first-trimester screening (cFTS), or as a second-line test following cFTS, particularly in those with a calculated risk between 1:50 and 1:1000. NIPT screening was performed in 5267 women and as a first-line screening method in 3359 (63.8%). Trisomies 21 and 13 detection was 100% and 88% for trisomy 18. Of cases with known karyotypes, the positive predictive value (PPV) of the test was highest for trisomy 21 (97.7%) and lowest for monosomy X (25%). Ultrasound detection of fetal structural abnormality resulted in the detection of five additional chromosome abnormalities, two of which had high-risk cFTS results. For all chromosomal abnormalities, NIPT alone detected 93.4%, a contingent model detected 81.8% (P = 0.097), and cFTS alone detected 65.9% (P < 0.005). NIPT achieved 100% T21 detection and had a higher DR of all aneuploidy when used as a first-line test. Given the false-positive rate for all aneuploidies, NIPT is an advanced screening test, rather than a diagnostic test. The benefit of additional cFTS was the detection of fetal structural abnormalities and some unusual chromosomal abnormalities. © 2016 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
NASA Technical Reports Server (NTRS)
Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.
1996-01-01
A new unsupervised pattern classifier is introduced for on-line detection of abnormality in features of vibration that are used for fault diagnosis of helicopter gearboxes. This classifier compares vibration features with their respective normal values and assigns them a value in (0, 1) to reflect their degree of abnormality. Therefore, the salient feature of this classifier is that it does not require feature values associated with faulty cases to identify abnormality. In order to cope with noise and changes in the operating conditions, an adaptation algorithm is incorporated that continually updates the normal values of the features. The proposed classifier is tested using experimental vibration features obtained from an OH-58A main rotor gearbox. The overall performance of this classifier is then evaluated by integrating the abnormality-scaled features for detection of faults. The fault detection results indicate that the performance of this classifier is comparable to the leading unsupervised neural networks: Kohonen's Feature Mapping and Adaptive Resonance Theory (AR72). This is significant considering that the independence of this classifier from fault-related features makes it uniquely suited to abnormality-scaling of vibration features for fault diagnosis.
De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine
2018-03-01
To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.
Geffers, H; Sigel, H; Bitter, F; Kampmann, H; Stauch, M; Adam, W E
1976-08-01
Camera-Kinematography is a nearly noninvasive method to investigate regional motion of the myocard, and allows evaluation of the function of the heart. About 20 min after injection of 15-20 mCi of 99mTC-Human-Serum-Albumin, when the tracer is distributed homogenously within the bloodpool, data acquisition starts. Myocardial wall motion is represented in an appropriate quasi three-dimensional form. In this representation scars can be revealed as "silent" (akinetic) regions, aneurysms by asynchronic motion. Time activity curves for arbitrarily chosen regions can be calculated and give an equivalent for regional volume changes. 16 patients with an old infarction have been investigated. In fourteen cases the location and extent of regions with abnormal motion could be evaluated. Only two cases of a small posterior wall infarction did not show deviations from normal contraction pattern.
NASA Astrophysics Data System (ADS)
White, Brian; Squires, Todd M.; Hain, Timothy C.; Stone, Howard A.
2003-11-01
Benign paroxysmal positional vertigo (BPPV) is a mechanical disorder of the vestibular system where micron-size crystals abnormally drift into the semicircular canals of the inner ear that sense angular motion of the head. Sedimentation of these crystals causes sensation of motion after true head motion has stopped: vertigo results. The usual clinical treatment is through a series of head maneuvers designed to move the particles into a less sensitive region of the canal system. We present a three-dimensional model to simulate treatment of BPPV by determining the complete hydrodynamic motion of the particles through the course of a therapeutic maneuver while using a realistic representation of the actual geometry. Analyses of clinical maneuvers show the parameter range for which they are effective, and indicate inefficiencies in current practice. In addition, an optimization process determines the most effective head maneuver, which significantly differs from those currently in practice.
Motion Adaptation, its Role in Motion Detection Under Natural Image Conditions and Target Detection
2005-06-02
Ibbotson, M.R. & Goodman, L.J. (1990) “Response characteristics of four wide-field motion sensitive descending interneurons in Apis mellifera ,” J. Exp...libraries (in particular a module, PyGame, original designed as an API for computer games applications). Andrew’s contribution to this effort was a
Yield rate of chromosomal microarray analysis in fetuses with congenital heart defects.
Turan, Sifa; Asoglu, Mehmet Resit; Gabbay-Benziv, Rinat; Doyle, Lauren; Harman, Christopher; Turan, Ozhan M
2018-02-01
The purpose of this study was to calculate the yield rates of CMA in fetuses diagnosed with various CHDs in a tertiary center. This cohort study collected prenatal genetic test results of 145 fetuses diagnosed with CHD. All 145 cases underwent Conventional karyotype (CK), followed by CMA in cases of negative CK result. "Detection rate" of genetic abnormalities was calculated as the percentage of cases with genetic abnormalities identified. The rate of genetic abnormalities detected by CK was first calculated, and then the cumulative detection rate was calculated in the study population. "Yield rate of CMA" was determined by subtracting the cumulative detection rate from the detection rate of CK. The cumulative detection rate was assumed to represent the detection rate of CMA since it is due to the fact that if CMA had been done for all patients before CK, it would have diagnosed all the genetic abnormalities in the study population, and thus it was named as anticipated CMA. Of the 145 CHD cases, 92 (63.4%) had isolated CHD and 53 (36.6%) had concomitant CHD and extracardiac anomaly (ECA). The detection rate of genetic abnormalities was 14% and 33.8% for CK and anticipated-CMA respectively (p < .001). The yield rate of CMA was 19.8% and 16.1% before and after the exclusion of cases with 22q.11.2 deletion/duplication, respectively. The detection rates of genetic abnormalities for isolated CHD, and concomitant CHD-ECA groups were 6.5% and 26.4% by CK, and 23.9% and 50.9% by anticipated-CMA, respectively (p < .01). The yield rate of CMA was 17.4% and 24.5% for isolated CHD and concomitant CHD-ECA cases, respectively. CMA increases the diagnostic yield in fetuses with CHD, regardless of whether it is isolated or not. CMA should be the modality of choice when investigating the genetic origin of CHDs until whole exome or genome sequencing is implemented into routine clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
Restoration of non-uniform exposure motion blurred image
NASA Astrophysics Data System (ADS)
Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng
2014-11-01
Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.
2013-01-01
Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment. PMID:23855907
Image Motion Detection And Estimation: The Modified Spatio-Temporal Gradient Scheme
NASA Astrophysics Data System (ADS)
Hsin, Cheng-Ho; Inigo, Rafael M.
1990-03-01
The detection and estimation of motion are generally involved in computing a velocity field of time-varying images. A completely new modified spatio-temporal gradient scheme to determine motion is proposed. This is derived by using gradient methods and properties of biological vision. A set of general constraints is proposed to derive motion constraint equations. The constraints are that the second directional derivatives of image intensity at an edge point in the smoothed image will be constant at times t and t+L . This scheme basically has two stages: spatio-temporal filtering, and velocity estimation. Initially, image sequences are processed by a set of oriented spatio-temporal filters which are designed using a Gaussian derivative model. The velocity is then estimated for these filtered image sequences based on the gradient approach. From a computational stand point, this scheme offers at least three advantages over current methods. The greatest advantage of the modified spatio-temporal gradient scheme over the traditional ones is that an infinite number of motion constraint equations are derived instead of only one. Therefore, it solves the aperture problem without requiring any additional assumptions and is simply a local process. The second advantage is that because of the spatio-temporal filtering, the direct computation of image gradients (discrete derivatives) is avoided. Therefore the error in gradients measurement is reduced significantly. The third advantage is that during the processing of motion detection and estimation algorithm, image features (edges) are produced concurrently with motion information. The reliable range of detected velocity is determined by parameters of the oriented spatio-temporal filters. Knowing the velocity sensitivity of a single motion detection channel, a multiple-channel mechanism for estimating image velocity, seldom addressed by other motion schemes in machine vision, can be constructed by appropriately choosing and combining different sets of parameters. By applying this mechanism, a great range of velocity can be detected. The scheme has been tested for both synthetic and real images. The results of simulations are very satisfactory.
Four families with immunodeficiency and chromosome abnormalities.
Candy, D C; Hayward, A R; Hughes, D T; Layward, L; Soothill, J F
1979-01-01
Six children, with severe deficiency of some or all of the immunoglobulins and minor somatic abnormalities, had chromosomal abnormalities: (1) 45,XY,t(13q/18q), (2) 46,XY,21ps +, (3) two brothers 46,XY (inv. 7) (4) 45,X,t(11p/10p)/46X,iXq,t(11p/10p) and, (5) in addendum, 45,XX,-18;46,XX, r18. The chromosome abnormalities were detected in B- as well as T-lymphocytes (as evidenced by using both PHA- and PWM-stimulated cultures) in all probands, but one was mosaic in PHA culture, although all his PWM-stimulated cells were abnormal. Chromosomal variants were also detected in relatives of three and immunodeficiency in relatives of two. Images Fig. 1 Fig. 3 PMID:314782
Immunity-Based Aircraft Fault Detection System
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.
Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current
NASA Astrophysics Data System (ADS)
Park, Sangtak; Khater, Mahmoud; Effa, David; Abdel-Rahman, Eihab; Yavuz, Mustafa
2017-08-01
This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a = 1/2 ω o . The response of the transducer consists of static displacement and a series of harmonics at 2 ω a , 4 ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3 ω a , 5 ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation.
Exploitation of Ubiquitous Wi-Fi Devices as Building Blocks for Improvised Motion Detection Systems.
Soldovieri, Francesco; Gennarelli, Gianluca
2016-02-27
This article deals with a feasibility study on the detection of human movements in indoor scenarios based on radio signal strength variations. The sensing principle exploits the fact that the human body interacts with wireless signals, introducing variations of the radiowave fields due to shadowing and multipath phenomena. As a result, human motion can be inferred from fluctuations of radiowave power collected by a receiving terminal. In this paper, we investigate the potentialities of widely available wireless communication devices in order to develop an improvised motion detection system (IMDS). Experimental tests are performed in an indoor environment by using a smartphone as a Wi-Fi access point and a laptop with dedicated software as a receiver. Simple detection strategies tailored for real-time operation are implemented to process the received signal strength measurements. The achieved results confirm the potentialities of the simple system here proposed to reliably detect human motion in operational conditions.
Detection of ground motions using high-rate GPS time-series
NASA Astrophysics Data System (ADS)
Psimoulis, Panos A.; Houlié, Nicolas; Habboub, Mohammed; Michel, Clotaire; Rothacher, Markus
2018-05-01
Monitoring surface deformation in real-time help at planning and protecting infrastructures and populations, manage sensitive production (i.e. SEVESO-type) and mitigate long-term consequences of modifications implemented. We present RT-SHAKE, an algorithm developed to detect ground motions associated with landslides, sub-surface collapses, subsidences, earthquakes or rock falls. RT-SHAKE detects first transient changes in individual GPS time series before investigating for spatial correlation(s) of observations made at neighbouring GPS sites and eventually issue a motion warning. In order to assess our algorithm on fast (seconds to minute), large (from 1 cm to meters) and spatially consistent surface motions, we use the 1 Hz GEONET GNSS network data of the Tohoku-Oki MW9.0 2011 as a test scenario. We show the delay of detection of seismic wave arrival by GPS records is of ˜10 seconds with respect to an identical analysis based on strong-motion data and this time delay depends on the level of the time-variable noise. Nevertheless, based on the analysis of the GPS network noise level and ground motion stochastic model, we show that RT-SHAKE can narrow the range of earthquake magnitude, by setting a lower threshold of detected earthquakes to MW6.5-7, if associated with a real-time automatic earthquake location system.
Sciammarella, M G; Fragasso, G; Gerundini, P; Maffioli, L; Cappelletti, A; Margonato, A; Savi, A; Chierchia, S
1992-12-01
The ability of 99Tcm-methoxyisobutylisonitrile (MIBI) single photon emission tomography (SPET) to detect myocardial ischaemia and necrosis was assessed in 56 patients (45 male, 11 female, aged 55 +/- 5 years), with clinically recognized ischaemic heart disease (IHD). All underwent coronary angiography (CA) and left ventriculography (LV). SPET images were obtained at rest and at peak exercise (Modified Bruce) 90 min after injection of 99Tcm-MIBI (650-850 MBq). Data were acquired in 30 min over 180 degrees (from 45 degrees RAO to 45 degrees LPO) with no correction for attenuation, using a 64 x 64 matrix. The presence of persistent (P) or reversible (R) perfusion defects (PD) was then correlated to the resting and exercise ECG and to the results of CA and LV. Of the 56 patients, 34 had reversible underperfusion (RPD), 46 persistent underperfusion (PPD) and 31 had both. The occurrence of RPD correlated well with the occurrence of exercise-induced ST segment depression and/or angina (27 patients of 34 patients, 79%) and with the presence of significant coronary artery disease (CAD) (33 of 44, 73%). In 45 of 46 patients (98%) PPD corresponded to akinetic or severely hypokinetic segments (LV) usually explored by ECG leads exhibiting diagnostic Q waves (42 of 46 patients, 91%). The scan was normal both at rest and after stress in four of 11 patients with no CAD, and in two of 45 patients with CAD. Finally, an abnormal resting scan was seen in seven of 11 patients with normal coronary arteries, of whom six had regional wall motion abnormalities.(ABSTRACT TRUNCATED AT 250 WORDS)
Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.
2011-01-01
Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035
Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum
2016-12-01
Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.
Biological Motion Preference in Humans at Birth: Role of Dynamic and Configural Properties
ERIC Educational Resources Information Center
Bardi, Lara; Regolin, Lucia; Simion, Francesca
2011-01-01
The present study addresses the hypothesis that detection of biological motion is an intrinsic capacity of the visual system guided by a non-species-specific predisposition for the pattern of vertebrate movement and investigates the role of global vs. local information in biological motion detection. Two-day-old babies exposed to a biological…
On-line early fault detection and diagnosis of municipal solid waste incinerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Jinsong; Huang Jianchao; Sun Wei
A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows thatmore » automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.« less
Huang, Ai-Mei; Nguyen, Truong
2009-04-01
In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.
Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.
Shibata, Kazuhisa; Sasaki, Yuka; Kawato, Mitsuo; Watanabe, Takeo
2016-09-01
Visual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL of motion detection is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a motion detection task, subjects' neural responses to the trained motion stimuli were measured using functional magnetic resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response changes in these areas reflect task-based plasticity. These results collectively suggest that VPL of motion detection is associated with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree. © The Author 2016. Published by Oxford University Press.
Pneumothorax detection in chest radiographs using local and global texture signatures
NASA Astrophysics Data System (ADS)
Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit
2015-03-01
A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.
Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone.
Draz, Mohamed Shehata; Lakshminaraasimulu, Nivethitha Kota; Krishnakumar, Sanchana; Battalapalli, Dheerendranath; Vasan, Anish; Kanakasabapathy, Manoj Kumar; Sreeram, Aparna; Kallakuri, Shantanu; Thirumalaraju, Prudhvi; Li, Yudong; Hua, Stephane; Yu, Xu G; Kuritzkes, Daniel R; Shafiee, Hadi
2018-05-16
Zika virus (ZIKV) infection is an emerging pandemic threat to humans that can be fatal in newborns. Advances in digital health systems and nanoparticles can facilitate the development of sensitive and portable detection technologies for timely management of emerging viral infections. Here we report a nanomotor-based bead-motion cellphone (NBC) system for the immunological detection of ZIKV. The presence of virus in a testing sample results in the accumulation of platinum (Pt)-nanomotors on the surface of beads, causing their motion in H 2 O 2 solution. Then the virus concentration is detected in correlation with the change in beads motion. The developed NBC system was capable of detecting ZIKV in samples with virus concentrations as low as 1 particle/μL. The NBC system allowed a highly specific detection of ZIKV in the presence of the closely related dengue virus and other neurotropic viruses, such as herpes simplex virus type 1 and human cytomegalovirus. The NBC platform technology has the potential to be used in the development of point-of-care diagnostics for pathogen detection and disease management in developed and developing countries.
Diagnostic Role of ECG Recording Simultaneously With EEG Testing.
Kendirli, Mustafa Tansel; Aparci, Mustafa; Kendirli, Nurten; Tekeli, Hakan; Karaoglan, Mustafa; Senol, Mehmet Guney; Togrol, Erdem
2015-07-01
Arrhythmia is not uncommon in the etiology of syncope which mimics epilepsy. Data about the epilepsy induced vagal tonus abnormalities have being increasingly reported. So we aimed to evaluate what a neurologist may gain by a simultaneous electrocardiogram (ECG) and electroencephalogram (EEG) recording in the patients who underwent EEG testing due to prediagnosis of epilepsy. We retrospectively evaluated and detected ECG abnormalities in 68 (18%) of 376 patients who underwent EEG testing. A minimum of 20 of minutes artifact-free recording were required for each patient. Standard 1-channel ECG was simultaneously recorded in conjunction with the EEG. In all, 28% of females and 14% of males had ECG abnormalities. Females (mean age 49 years, range 18-88 years) were older compared with the male group (mean age 28 years, range 16-83 years). Atrial fibrillation was more frequent in female group whereas bradycardia and respiratory sinus arrhythmia was higher in male group. One case had been detected a critical asystole indicating sick sinus syndrome in the female group and treated with a pacemaker implantation in the following period. Simultaneous ECG recording in conjunction with EEG testing is a clinical prerequisite to detect and to clarify the coexisting ECG and EEG abnormalities and their clinical relevance. Potentially rare lethal causes of syncope that mimic seizure or those that could cause resistance to antiepileptic therapy could effectively be distinguished by detecting ECG abnormalities coinciding with the signs and abnormalities during EEG recording. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG.
Shafi, Mouhsin M; Westover, M Brandon; Cole, Andrew J; Kilbride, Ronan D; Hoch, Daniel B; Cash, Sydney S
2012-10-23
To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary.
Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG
Westover, M. Brandon; Cole, Andrew J.; Kilbride, Ronan D.; Hoch, Daniel B.; Cash, Sydney S.
2012-01-01
Objective: To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. Methods: We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Results: Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. Conclusions: In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary. PMID:23054233
Rourke, Ryan; Weinberg, Seth M; Marazita, Mary L; Jabbour, Noel
2017-09-01
Submucous cleft palate (SMCP) classically involves bifid uvula, zona pellucida, and notched hard palate. However, patients may present with more subtle anatomic abnormalities. The ability to detect these abnormalities is important for surgeons managing velopharyngeal dysfunction (VPD) or considering adenoidectomy. Validate an assessment protocol for diagnosis of occult submucous cleft palate (OSMCP) and identify physical examination features present in patients with OSMCP in the relaxed and activated palate positions. Study participants included patients referred to a pediatric VPD clinic with concern for hypernasality or SMCP. Using an appropriately encrypted iPod touch, transoral video was obtained for each patient with the palate in the relaxed and activated positions. The videos were reviewed by two otolaryngologists in normal speed and slow-motion, as needed, and a questionnaire was completed by each reviewer pertaining to the anatomy and function of the palate. 47 patients, with an average age of 4.6 years, were included in the study over a one-year period. Four videos were unusable due to incomplete view of the palate. The most common palatal abnormality noted was OSMCP, diagnosed by each reviewer in 26/43 and 30/43 patients respectively. Using the assessment protocol, agreement on palatal diagnosis was 83.7% (kappa = 0.68), indicating substantial agreement, with the most prevalent anatomic features being vaulted palate elevation (96%) and visible notching of hard palate (75%). The diagnosis of subtle palatal anomalies is difficult and can be subjective. Using the proposed video-analysis method and assessment protocol may improve reliability of diagnosis of OSMCP. Copyright © 2017 Elsevier B.V. All rights reserved.
Her, Keun; Ahn, Chi Bum; Park, Sung Min; Choi, Seong Wook
2015-03-21
Patients who develop critical arrhythmia during left ventricular assist device (LVAD) perfusion have a low survival rate. For diagnosis of unexpected heart abnormalities, new heart-monitoring methods are required for patients supported by LVAD perfusion. Ventricular electrocardiography using electrodes implanted in the ventricle to detect heart contractions is unsuitable if the heart is abnormal. Left ventricular impedance (LVI) is useful for monitoring heart movement but does not show abnormal action potential in the heart muscle. To detect detailed abnormal heart conditions, we obtained ventricular electrocardiograms (v-ECGs) and LVI simultaneously in porcine models connected to LVADs. In the porcine models, electrodes were set on the heart apex and ascending aorta for real-time measurements of v-ECGs and LVI. As the carrier current frequency of the LVI was adjusted to 30 kHz, it was easily derived from the original v-ECG signal by using a high-pass filter (cutoff: 10 kHz). In addition, v-ECGs with a frequency band of 0.1 - 120 Hz were easily derived using a low-pass filter. Simultaneous v-ECG and LVI data were compared to detect heart volume changes during the Q-T period when the heart contracted. A new real-time algorithm for comparison of v-ECGs and LVI determined whether the porcine heartbeats were normal or abnormal. Several abnormal heartbeats were detected using the LVADs operating in asynchronous mode, most of which were premature ventricle contractions (PVCs). To evaluate the accuracy of the new method, the results obtained were compared to normal ECG data and cardiac output measured simultaneously using commercial devices. The new method provided more accurate detection of abnormal heart movements. This method can be used for various heart diseases, even those in which the cardiac output is heavily affected by LVAD operation.
Cardiac abnormality prediction using HMLP network
NASA Astrophysics Data System (ADS)
Adnan, Ja'afar; Ahmad, K. A.; Mat, Muhamad Hadzren; Rizman, Zairi Ismael; Ahmad, Shahril
2018-02-01
Cardiac abnormality often occurs regardless of gender, age and races but depends on the lifestyle. This problem sometimes does not show any symptoms and usually detected once it already critical which lead to a sudden death to the patient. Basically, cardiac abnormality is the irregular electrical signal that generate by the pacemaker of the heart. This paper attempts to develop a program that can detect cardiac abnormality activity through implementation of Hybrid Multilayer Perceptron (HMLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP and HMLP network by using Modified Recursive Prediction Error (MRPE) algorithm and to test the network performance.
Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro
2017-11-24
Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.
Peripheral Prism Glasses: Effects of Dominance, Suppression and Background
Ross, Nicole C.; Bowers, Alex R.; Optom, M.C.; Peli, Eli
2012-01-01
Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) place different images on corresponding peripheral retinal points, a rivalrous situation in which local suppression of the prism image could occur and thus limit device functionality. Detection with peripheral prisms has primarily been evaluated using conventional perimetry where binocular rivalry is unlikely to occur. We quantified detection over more visually complex backgrounds and examined the effects of ocular dominance. Methods Detection rates of 8 participants with HH or quadranopia and normal binocularity wearing unilateral peripheral prism glasses were determined for static perimetry targets briefly presented in the prism expansion area (in the blind hemifield) and the seeing hemifield, under monocular and binocular viewing, over uniform gray and more complex patterned backgrounds. Results Participants with normal binocularity had mixed sensory ocular dominance, demonstrated no difference in detection rates when prisms were fitted on the side of the HH or the opposite side (p>0.2), and had detection rates in the expansion area that were not different for monocular and binocular viewing over both backgrounds (p>0.4). However, two participants with abnormal binocularity and strong ocular dominance demonstrated reduced detection in the expansion area when prisms were fitted in front of the non-dominant eye. Conclusions We found little evidence of local suppression of the peripheral prism image for HH patients with normal binocularity. However, in cases of strong ocular dominance, consideration should be given to fitting prisms before the dominant eye. Although these results are promising, further testing in more realistic conditions including image motion is needed. PMID:22885783
Leone, Alessandro; Siciliano, Pietro
2017-01-01
Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively. PMID:29186786
Detection of chaotic dynamics in human gait signals from mobile devices
NASA Astrophysics Data System (ADS)
DelMarco, Stephen; Deng, Yunbin
2017-05-01
The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.
NASA Astrophysics Data System (ADS)
Chia, Teck Chee; Fu, Sheng; Chia, Yee Hong; Kwek, Leong Chuan; Tang, Choong Leong
2005-09-01
This study aimed at applying Laser induced-autofluorescence (LIAF) diagnostics method as an in-vivo screening of colorectal polyplcancer. The spectrum algorithm based on the ratio of autofluorescence intensity was used to identify the diseased tissues from the normal tissues as it was generally performed better than an algorithm based only simply on the intensity of the spectrum. Histopathological biopsy results were compared with the detected AF spectra characteristics for different kinds of polyps. 73 patients had been examined via the LIAF spectroscopy detection system during their colonoscopy screening in Endoscopy Center, Singapore General Hospital. The autofluorescence from the surface of the colorectal tissues under 405 nm laser light excitation was detected using our detecting system. In the experimental investigation two groups of patients were involved. One group was "abnormal" group. There were 25 patients belonging to this group since polyps or carcinoma was found in their colorectal tract during colonoscopy. The histopathology reports confirm the group classification. Total 36 polyps' AF spectra and 9 carcinoma' AF spectra were detected from 25 patients of the abnormal group during their regular endoscopy examination. The intensity ratios RI-680/I-500 and RI-630/I-500 of polyps/cancerous AF spectra and intensity ratios of corresponding normal colorectal AF spectra were calculated. Two critical intensity ratios for separating the AF intensity ratios RI-680/I-500 and RI-630/I-500 of normal and abnormal colorectal tissues were defined as 0.5 and 0.6 respectively. Using the critical intensity ratio values, 48 "normal" group patients' rectums were checked via the LIAF detection system. There were 20 patients (41.7%) whose AF spectra of colorectal tract mucosa belonging to abnormal spectra. However, these 20 patients had not been found under white light via traditional endoscopy. For small diseased area like small plat polyp disease and carcinoma, it was very difficult to identify under white light by endoscopy. However, the LIAF spectra technique and AF intensity ratio algorithm was able to detect these kinds of abnormal area earlier than traditional endoscopy. Using this algorithm, it is able to identify the onset of abnormal tissue growth during real-time clinical endoscope examination.
MacNeilage, Paul R.; Turner, Amanda H.
2010-01-01
Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843
Detecting chaos in particle accelerators through the frequency map analysis method.
Papaphilippou, Yannis
2014-06-01
The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.
Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments
Sun, Tongyang; Duan, Lihong; Wang, Yulong
2017-01-01
The hemiplegic rehabilitation state diagnosing performed by therapists can be biased due to their subjective experience, which may deteriorate the rehabilitation effect. In order to improve this situation, a quantitative evaluation is proposed. Though many motion analysis systems are available, they are too complicated for practical application by therapists. In this paper, a method for detecting the motion of human lower limbs including all degrees of freedom (DOFs) via the inertial sensors is proposed, which permits analyzing the patient's motion ability. This method is applicable to arbitrary walking directions and tracks of persons under study, and its results are unbiased, as compared to therapist qualitative estimations. Using the simplified mathematical model of a human body, the rotation angles for each lower limb joint are calculated from the input signals acquired by the inertial sensors. Finally, the rotation angle versus joint displacement curves are constructed, and the estimated values of joint motion angle and motion ability are obtained. The experimental verification of the proposed motion detection and analysis method was performed, which proved that it can efficiently detect the differences between motion behaviors of disabled and healthy persons and provide a reliable quantitative evaluation of the rehabilitation state. PMID:29065575
Echocardiographic assessment of cardiac disease
NASA Technical Reports Server (NTRS)
Popp, R. L.
1976-01-01
The physical principles and current applications of echocardiography in assessment of heart diseases are reviewed. Technical considerations and unresolved points relative to the use of echocardiography in various disease states are stressed. The discussion covers normal mitral valve motion, mitral stenosis, aortic regurgitation, atrial masses, mitral valve prolapse, and idiopathic hypertrophic subaortic stenosis. Other topics concern tricuspic valve abnormalities, aortic valve disease, pulmonic valve, pericardial effusion, intraventricular septal motion, and left ventricular function. The application of echocardiography to congenital heart disease diagnosis is discussed along with promising ultrasonic imaging systems. The utility of echocardiography in quantitative evaluation of cardiac disease is demonstrated.
Macro-motion detection using ultra-wideband impulse radar.
Xin Li; Dengyu Qiao; Ye Li
2014-01-01
Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.
Pulse oximetry in the evaluation of peripheral vascular disease.
Jawahar, D; Rachamalla, H R; Rafalowski, A; Ilkhani, R; Bharathan, T; Anandarao, N
1997-08-01
The role of pulse oximetry in the evaluation of peripheral vascular disease (PVD) was investigated. In addition, the value of elevating the limb to improve the sensitivity of detection of PVD by the pulse oximeter was also determined. Pulse oximetry reading in the toes were obtained in 40 young, healthy volunteers and in 40 randomly selected patients referred to the vascular investigation laboratory over a period of two months. All 40 healthy volunteers had normal pulse oximetry readings. Normal pulse oximetry reading in the toes was defined as > 95% O2 Sat and +/-2 of finger pulse oximetry reading. In all 40 patients, pulse oximetry readings were either normal or not detected at all. Since there was no gradation in decrease in the pulse oximetry reading with severity of disease or with elevation of the patient's lower extremity, an absent or no reading was considered as an abnormal result from the test. The frequency of abnormal pulse oximetry readings increased significantly in groups with abnormal ankle-brachial pressure index (ABPI) and also varied significantly with elevation of the patients' lower limbs. In patients with no PVD detected by Doppler (ABPI > 0.9), pulse oximetry readings were normal in all. However, in patients with moderate PVD (ABPI, 0.5-0.9), 84% of the patients' lower limbs had normal pulse oximetry readings and 16% had an abnormal reading at baseline level (flat). An additional 12% of the lower limbs in this group had an abnormal reading on elevation of the limb to 12 inches. In patients with severe PVD (ABPI < 0.5), 54% of the patients' lower limbs had an abnormal reading at baseline and an additional 23% had an abnormal reading at elevation of the limb to 12 inches. In conclusion, pulse oximetry was not a sensitive test for detecting early PVD.
Zeni, Joseph; Pozzi, Federico; Abujaber, Sumayah; Miller, Laura
2014-01-01
Patients with hip osteoarthritis demonstrate limited range of motion, muscle weakness and altered biomechanics; however, few studies have evaluated the relationships between physical impairments and movement asymmetries. The purpose of this study was to identify the physical impairments related to movement abnormalities in patients awaiting total hip arthroplasty. We hypothesized that muscle weakness and pain would be related to greater movement asymmetries. Fifty-six subjects who were awaiting total hip arthroplasty were enrolled. Pain was assessed using a 0 to 10 scale, range of motion was assessed with the Harris Hip Score and isometric hip abductor strength was tested using a hand-held dynamometer. Trunk, pelvis and hip angles and moments in the frontal and sagittal planes were measured during walking using three dimensional motion analysis. During gait, subjects had 3.49 degrees less peak hip flexion and 8.82 degrees less extension angles (p<0.001) and had 0.03 Nm/k*m less hip abduction moment on the affected side (p=0.043). Weaker hip muscles were related to greater pelvis (r=−0.291) and trunk (r=−0.332) rotations in the frontal plane. These findings suggest that hip weakness drives abnormal movement patterns at the pelvis and trunk in patients with hip osteoarthritis to a greater degree than hip pain. PMID:25492583
Robust real-time horizon detection in full-motion video
NASA Astrophysics Data System (ADS)
Young, Grace B.; Bagnall, Bryan; Lane, Corey; Parameswaran, Shibin
2014-06-01
The ability to detect the horizon on a real-time basis in full-motion video is an important capability to aid and facilitate real-time processing of full-motion videos for the purposes such as object detection, recognition and other video/image segmentation applications. In this paper, we propose a method for real-time horizon detection that is designed to be used as a front-end processing unit for a real-time marine object detection system that carries out object detection and tracking on full-motion videos captured by ship/harbor-mounted cameras, Unmanned Aerial Vehicles (UAVs) or any other method of surveillance for Maritime Domain Awareness (MDA). Unlike existing horizon detection work, we cannot assume a priori the angle or nature (for e.g. straight line) of the horizon, due to the nature of the application domain and the data. Therefore, the proposed real-time algorithm is designed to identify the horizon at any angle and irrespective of objects appearing close to and/or occluding the horizon line (for e.g. trees, vehicles at a distance) by accounting for its non-linear nature. We use a simple two-stage hierarchical methodology, leveraging color-based features, to quickly isolate the region of the image containing the horizon and then perform a more ne-grained horizon detection operation. In this paper, we present our real-time horizon detection results using our algorithm on real-world full-motion video data from a variety of surveillance sensors like UAVs and ship mounted cameras con rming the real-time applicability of this method and its ability to detect horizon with no a priori assumptions.
Foucher, Kharma C
2017-10-01
Hip osteoarthritis results in abnormal gait mechanics, but it is not known whether abnormalities are the same in men and women. The hypothesis tested was that gait abnormalities are different in men and women with hip osteoarthritis vs. sex-specific asymptomatic groups. 150 subjects with mild through severe radiographic hip osteoarthritis and 159 asymptomatic subjects were identified from an Institutional Review Board-approved motion analysis data repository. Sagittal plane hip range of motion and peak external moments about the hip, in all three planes, averaged from normal speed walking trials, were compared for men and women, with and without hip osteoarthritis using analysis of variance. There were significant sex by group interactions for the external peak hip adduction and external rotation moments (P=0.009-0.045). Although asymptomatic women had peak adduction and external rotation moments that were respectively 12% higher and 23% lower than asymptomatic men (P=0.026-0.037), these variables did not differ between men and women with hip osteoarthritis (P≥0.684). The osteoarthritis vs. asymptomatic group difference in the peak hip adduction moment was 45% larger in women than in men. The osteoarthritis vs. asymptomatic group difference in the peak hip external rotation moment was 55% larger for men than for women (P<0.001). Sex did not influence the association between radiographic severity and gait variables. Normal sex differences in gait were not seen in hip osteoarthritis. Sex-specific adaptations may reflect different aspects of hip abductor function. Men and women with hip osteoarthritis may require different interventions to improve function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regional homogeneity of fMRI time series in autism spectrum disorders.
Shukla, Dinesh K; Keehn, Brandon; Müller, Ralph Axel
2010-05-26
Functional magnetic resonance imaging (fMRI) and functional connectivity MRI (fcMRI) studies of autism spectrum disorders (ASD) have suggested atypical patterns of activation and long-distance connectivity for diverse tasks and networks in ASD. We explored the regional homogeneity (ReHo) approach in ASD, which is analogous to conventional fcMRI, but focuses on local connectivity. FMRI data of 26 children with ASD and 29 typically developing (TD) children were acquired during continuous task performance (visual search). Effects of motion and task were removed and Kendall's coefficient of concordance (KCC) was computed, based on the correlation of the blood oxygen level dependent (BOLD) time series for each voxel and its six nearest neighbors. ReHo was lower in the ASD than the TD group in superior parietal and anterior prefrontal regions. Inverse effects of greater ReHo in the ASD group were detected in lateral and medial temporal regions, predominantly in the right hemisphere. Our findings suggest that ReHo is a sensitive measure for detecting cortical abnormalities in autism. However, impact of methodological factors (such as spatial resolution) on ReHo require further investigation. Published by Elsevier Ireland Ltd.
Hoshuyama, T; Takahashi, K; Fujishiro, K; Uchida, K; Okubo, T
2000-05-01
The prevalence of workers with abnormal findings in periodic general health examinations (PGHEx) has been growing recently in Japan and reached 41.2% in 1998. To clarify the indirect factors related to such an increase in workers with abnormal findings in the PGHEx, we carried out a questionnaire survey on the content of the statutory notification form of results of the PGHEx among a representative sample of 136 Occupational Health Organizations (OHOs). Questions on how those workers with abnormal findings were defined and detected and when the definition and the reference intervals for total cholesterol became available were included. Of the 107 OHOs which answered the questionnaire, 85 were included in the analyses because they actually calculated the number of workers with abnormal findings in each company and helped the employer fill out the notification form. The results revealed that there was no standardized definition of workers with abnormal findings in the PGHEx. Both reference intervals of items in the PGHEx and algorithm in detecting workers with abnormal findings in the PGHEx varied among the OHOs. When detecting the workers, 13 OHOs (15.3%) selected them taking into consideration medical background factors such as previous results of the PGHEx and current medical treatment. From the late 1980s to the early 1990s, many OHOs modified the definition of workers with abnormal findings, and have tended to reduce the upper limit of the reference interval for serum cholesterol. This is mainly due to amendment of the Industrial Safety and Health Law and a new recommendation for a reference interval/value proposed by the related scientific society. Although the prevalence of workers with abnormal findings in the PGHEx has continuously increased, it is not valid to compare the prevalence over the years because of modification in the definition of such workers. The prevalence of workers with abnormal findings in the PGHEx, which is one of the most important indices of the state of occupational health, should be measured by using an objective definition and be compatible with the future system of health examination for Japanese workers.
ERIC Educational Resources Information Center
Douret, L.
1993-01-01
Full-term infants who had slept in the prone position since birth were followed to detect early postural abnormalities and differentiate potential peripheral abnormality from abnormalities of a central origin. Results showed that disappearance of initial signs of abnormality appeared to be muscular, and symptoms disappeared faster when a motor…
Jokinen, Tarja S.; Syrjä, Pernilla; Junnila, Jouni; Hielm-Björkman, Anna; Laitinen-Vapaavuori, Outi
2018-01-01
Objective To investigate the clinical, cytological, and histopathological adverse effects of intra-articularly injected botulinum toxin A in dogs and to study whether the toxin spreads from the joint after the injection. Methods A longitudinal, placebo-controlled, randomized clinical trial was conducted with six healthy laboratory Beagle dogs. Stifle joints were randomized to receive either 30 IU of onabotulinum toxin A or placebo in a 1:1 ratio. Adverse effects and spread of the toxin were examined by evaluating dynamic and static weight-bearing of the injected limbs, by assessing painless range of motion and pain on palpation of joints, and by performing synovial fluid analysis, neurological examination, and electrophysiological recordings at different examination time-points in a 12-week period after the injections. The dogs were then euthanized and autopsy and histopathological examination of joint structures and adjacent muscles and nerves were performed. Results Intra-articular botulinum toxin A did not cause local weakness or injection site pain. Instead, static weight-bearing and painless range of motion of stifle joints decreased in the placebo limbs. No clinically significant abnormalities associated with intra-articular botulinum toxin A were detected in the neurological examinations. Electrophysiological recordings showed low compound muscle action potentials in two dogs in the botulinum toxin A-injected limb. No significant changes were detected in the synovial fluid. Autopsy and histopathological examination of the joint and adjacent muscles and nerves did not reveal histopathological adverse effects of the toxin. Conclusion Intra-articular botulinum toxin A does not produce significant clinical, cytological, or histopathological adverse effects in healthy dogs. Based on the electrophysiological recordings, the toxin may spread from the joint, but its clinical impact seems to be low. PMID:29320549
Heikkilä, Helka M; Jokinen, Tarja S; Syrjä, Pernilla; Junnila, Jouni; Hielm-Björkman, Anna; Laitinen-Vapaavuori, Outi
2018-01-01
To investigate the clinical, cytological, and histopathological adverse effects of intra-articularly injected botulinum toxin A in dogs and to study whether the toxin spreads from the joint after the injection. A longitudinal, placebo-controlled, randomized clinical trial was conducted with six healthy laboratory Beagle dogs. Stifle joints were randomized to receive either 30 IU of onabotulinum toxin A or placebo in a 1:1 ratio. Adverse effects and spread of the toxin were examined by evaluating dynamic and static weight-bearing of the injected limbs, by assessing painless range of motion and pain on palpation of joints, and by performing synovial fluid analysis, neurological examination, and electrophysiological recordings at different examination time-points in a 12-week period after the injections. The dogs were then euthanized and autopsy and histopathological examination of joint structures and adjacent muscles and nerves were performed. Intra-articular botulinum toxin A did not cause local weakness or injection site pain. Instead, static weight-bearing and painless range of motion of stifle joints decreased in the placebo limbs. No clinically significant abnormalities associated with intra-articular botulinum toxin A were detected in the neurological examinations. Electrophysiological recordings showed low compound muscle action potentials in two dogs in the botulinum toxin A-injected limb. No significant changes were detected in the synovial fluid. Autopsy and histopathological examination of the joint and adjacent muscles and nerves did not reveal histopathological adverse effects of the toxin. Intra-articular botulinum toxin A does not produce significant clinical, cytological, or histopathological adverse effects in healthy dogs. Based on the electrophysiological recordings, the toxin may spread from the joint, but its clinical impact seems to be low.
Effect of carbon monoxide on plants. [Mimosa pudica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, P.W.; Crocker, W.; Hitchcock, A.E.
Of 108 species of plants treated with one per cent carbon monoxide, 45 showed epinastic growth of leaves. Several species showed hyponasty which caused upward curling of leaves. Other effects included: retarded stem elongation; abnormally small new leaves; abnormal yellowing of the leaves, beginning with the oldest; abscission of leaves usually associated with yellowing; and hypertrophied tissues on stems and roots. During recovery an abnormally large number of side shoots arose from latent buds of many species. Motion pictures of Mimosa pudica showed a loss of correlation, normal equilibrium position to gravity, and sensitiveness to contact or heat stimuli; however,more » the leaves moved about more rapidly than those of controls. Since carbon monoxide causes growth rigor and loss of sensitiveness to external stimuli, it is here considered as an anesthetic.« less
Pendulum test measure correlates with gait parameters in children with cerebral palsy.
Lotfian, M; Mirbagheri, M M; Kharazi, M R; Dadashi, F; Nourian, R; Irani, A; Mirbagheri, A
2016-08-01
Individuals with cerebral palsy (CP) usually suffer from different impairments including gait impairment and spasticity. Spastic hypertonia is a defining feature of spasticity and manifests as a mechanical abnormality. The objective of this study was to determine the relationship between spastic hypertonia and gait impairments in spastic children with CP, addressing an important controversial issue. Spastic hypertonia was quantified using the pendulum test. The gait impairments were evaluated using the motion capture system in a gait laboratory. Our results showed significant correlations among gait parameters; i.e. walking speed, step length, and the pendulum test measures. This indicates that neuromuscular abnormalities are associated with spasticity and may contribute to gait impairments. The clinical implication is that the impaired gait in children with CP may be improved with the treatment of neuromuscular abnormalities.
Methods and systems for detecting abnormal digital traffic
Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA
2011-03-22
Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.
Najfeld, Vesna; Montella, Lya; Scalise, Angela; Fruchtman, Steven
2002-11-01
Between 1986 and 2001, 220 patients with polycythaemia vera (PV) were studied using conventional cytogenetics. Of 204 evaluable patients, 52 (25.4%) had clonal abnormalities. The recurrent chromosomal rearrangements were those of chromosome 9 (21.1%), del(20q) (19.2%), trisomy 8 (19.2%), rearrangements of 13q (13.4%), abnormalities of 1q (11.5%), and of chromosomes 5 and 7 (9.6%). Subsequent analysis of 32 patients, performed at follow-up of up to 14.8 years, revealed new clonal abnormalities in five patients and the disappearance of an abnormal clone in four. Eleven patients remained normal up to 11.5 years and seven patients maintained an abnormality for over 10 years. Fifty-three patients were studied retrospectively using interphase fluorescence in situ hybridization (I-FISH), utilizing probes for centromere enumeration of chromosomes 8 and 9, and for 13q14 and 20q12 loci. Conventional cytogenetics demonstrated clonal chromosome abnormalities in 23% of these 53 patients. The addition of I-FISH increased the detection of abnormalities to 29% and permitted clarification of chromosome 9 rearrangements in an additional 5.6% of patients. FISH uncovered rearrangements of chromosome 9 in 53% of patients with an abnormal FISH pattern, which represented the most frequent genomic alteration in this series.
Dysmorphometrics: the modelling of morphological abnormalities.
Claes, Peter; Daniels, Katleen; Walters, Mark; Clement, John; Vandermeulen, Dirk; Suetens, Paul
2012-02-06
The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited. A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram. We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities. The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research.
Arenz, Alexander; Drews, Michael S; Richter, Florian G; Ammer, Georg; Borst, Alexander
2017-04-03
Detecting the direction of motion contained in the visual scene is crucial for many behaviors. However, because single photoreceptors only signal local luminance changes, motion detection requires a comparison of signals from neighboring photoreceptors across time in downstream neuronal circuits. For signals to coincide on readout neurons that thus become motion and direction selective, different input lines need to be delayed with respect to each other. Classical models of motion detection rely on non-linear interactions between two inputs after different temporal filtering. However, recent studies have suggested the requirement for at least three, not only two, input signals. Here, we comprehensively characterize the spatiotemporal response properties of all columnar input elements to the elementary motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium imaging. Between these input neurons, we find large differences in temporal dynamics. Based on this, computer simulations show that only a small subset of possible arrangements of these input elements maps onto a recently proposed algorithmic three-input model in a way that generates a highly direction-selective motion detector, suggesting plausible network architectures. Moreover, modulating the motion detection system by octopamine-receptor activation, we find the temporal tuning of T4 and T5 cells to be shifted toward higher frequencies, and this shift can be fully explained by the concomitant speeding of the input elements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Constructing Carbon Fiber Motion-Detection Loops for Simultaneous EEG–fMRI
Abbott, David F.; Masterton, Richard A. J.; Archer, John S.; Fleming, Steven W.; Warren, Aaron E. L.; Jackson, Graeme D.
2015-01-01
One of the most significant impediments to high-quality EEG recorded in an MRI scanner is subject motion. Availability of motion artifact sensors can substantially improve the quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the confidence that one has in discriminating true epileptiform activity from artifact. This is due both to the reduction in artifact and the ability to visually inspect the motion sensor signals when reading the EEG, revealing whether or not head motion is present. We have previously described the use of carbon fiber loops for detecting and correcting artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s head, are electrically insulated from the scalp. They provide a simple and direct measure of specific artifact that is contaminating the EEG, including both subject motion and residual artifact arising from magnetic field gradients applied during MRI. Our previous implementation was used together with a custom-built EEG–fMRI system that differs substantially from current commercially available EEG–fMRI systems. The present technical note extends this work, describing in more detail how to construct the carbon fiber motion-detection loops, and how to interface them with a commercially available simultaneous EEG–fMRI system. We hope that the information provided may help those wishing to utilize a motion-detection/correction solution to improve the quality of EEG recorded within an MRI scanner. PMID:25601852
A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames
NASA Astrophysics Data System (ADS)
Savanevych, V. E.; Khlamov, S. V.; Vavilova, I. B.; Briukhovetskyi, A. B.; Pohorelov, A. V.; Mkrtichian, D. E.; Kudak, V. I.; Pakuliak, L. K.; Dikov, E. N.; Melnik, R. G.; Vlasenko, V. P.; Reichart, D. E.
2018-01-01
The paper deals with a computational method for detection of the solar system minor bodies (SSOs), whose inter-frame shifts in series of CCD-frames during the observation are commensurate with the errors in measuring their positions. These objects have velocities of apparent motion between CCD-frames not exceeding three rms errors (3σ) of measurements of their positions. About 15% of objects have a near-zero apparent motion in CCD-frames, including the objects beyond the Jupiter's orbit as well as the asteroids heading straight to the Earth. The proposed method for detection of the object's near-zero apparent motion in series of CCD-frames is based on the Fisher f-criterion instead of using the traditional decision rules that are based on the maximum likelihood criterion. We analyzed the quality indicators of detection of the object's near-zero apparent motion applying statistical and in situ modeling techniques in terms of the conditional probability of the true detection of objects with a near-zero apparent motion. The efficiency of method being implemented as a plugin for the Collection Light Technology (CoLiTec) software for automated asteroids and comets detection has been demonstrated. Among the objects discovered with this plugin, there was the sungrazing comet C/2012 S1 (ISON). Within 26 min of the observation, the comet's image has been moved by three pixels in a series of four CCD-frames (the velocity of its apparent motion at the moment of discovery was equal to 0.8 pixels per CCD-frame; the image size on the frame was about five pixels). Next verification in observations of asteroids with a near-zero apparent motion conducted with small telescopes has confirmed an efficiency of the method even in bad conditions (strong backlight from the full Moon). So, we recommend applying the proposed method for series of observations with four or more frames.
NASA Astrophysics Data System (ADS)
Beigi, Parmida; Salcudean, Septimiu E.; Rohling, Robert; Ng, Gary C.
2016-03-01
This paper presents an automatic localization method for a standard hand-held needle in ultrasound based on temporal motion analysis of spatially decomposed data. Subtle displacement arising from tremor motion has a periodic pattern which is usually imperceptible in the intensity image but may convey information in the phase image. Our method aims to detect such periodic motion of a hand-held needle and distinguish it from intrinsic tissue motion, using a technique inspired by video magnification. Complex steerable pyramids allow specific design of the wavelets' orientations according to the insertion angle as well as the measurement of the local phase. We therefore use steerable pairs of even and odd Gabor wavelets to decompose the ultrasound B-mode sequence into various spatial frequency bands. Variations of the local phase measurements in the spatially decomposed input data is then temporally analyzed using a finite impulse response bandpass filter to detect regions with a tremor motion pattern. Results obtained from different pyramid levels are then combined and thresholded to generate the binary mask input for the Hough transform, which determines an estimate of the direction angle and discards some of the outliers. Polynomial fitting is used at the final stage to remove any remaining outliers and improve the trajectory detection. The detected needle is finally added back to the input sequence as an overlay of a cloud of points. We demonstrate the efficiency of our approach to detect the needle using subtle tremor motion in an agar phantom and in-vivo porcine cases where intrinsic motion is also present. The localization accuracy was calculated by comparing to expert manual segmentation, and presented in (mean, standard deviation and root-mean-square error) of (0.93°, 1.26° and 0.87°) and (1.53 mm, 1.02 mm and 1.82 mm) for the trajectory and the tip, respectively.
Motion-compensated detection of heart rate based on the time registration adaptive filter
NASA Astrophysics Data System (ADS)
Yang, Lei; Zhou, Jinsong; Jing, Juanjuan; Li, Yacan; Wei, Lidong; Feng, Lei; He, Xiaoying; Bu, Meixia; Fu, Xilu
2018-01-01
A non-contact heart rate detection method based on the dual-wavelength technique is proposed and demonstrated experimentally. The heart rate is obtained based on the PhotoPlethysmoGraphy (PPG). Each detection module uses the reflection detection probe which is composed of the LED and the photodiode. It is a well-known fact that the differences in the circuits of two detection modules result in different responses of two modules for motion artifacts. It will cause a time delay between the two signals. This poses a great challenge to compensate the motion artifacts during measurements. In order to solve this problem, we have firstly used the time registration and translated the signals to ensure that the two signals are consistent in time domain. Then the adaptive filter is used to compensate the motion artifacts. Moreover, the data obtained by using this non-contact detection system is compared with those of the conventional finger blood volume pulse (BVP) sensor by simultaneously measuring the heart rate of the subject. During the experiment, the left hand remains stationary and is detected by a conventional finger BVP sensor. Meanwhile, the moving palm of right hand is detected by the proposed system. The data obtained from the proposed non-contact system are consistent and comparable with that of the BVP sensor. This method can effectively suppress the interference caused by the two circuit differences and successfully compensate the motion artifacts. This technology can be used in medical and daily heart rate measurement.
Butun, Ismail; Ra, In-Ho; Sankar, Ravi
2015-01-01
In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915
Beigi, Parmida; Rohling, Robert; Salcudean, Septimiu E; Ng, Gary C
2017-11-01
This paper presents a new micro-motion-based approach to track a needle in ultrasound images captured by a handheld transducer. We propose a novel learning-based framework to track a handheld needle by detecting microscale variations of motion dynamics over time. The current state of the art on using motion analysis for needle detection uses absolute motion and hence work well only when the transducer is static. We have introduced and evaluated novel spatiotemporal and spectral features, obtained from the phase image, in a self-supervised tracking framework to improve the detection accuracy in the subsequent frames using incremental training. Our proposed tracking method involves volumetric feature selection and differential flow analysis to incorporate the neighboring pixels and mitigate the effects of the subtle tremor motion of a handheld transducer. To evaluate the detection accuracy, the method is tested on porcine tissue in-vivo, during the needle insertion in the biceps femoris muscle. Experimental results show the mean, standard deviation and root-mean-square errors of [Formula: see text], [Formula: see text] and [Formula: see text] in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle tip, respectively. Compared to the appearance-based detection approaches, the proposed method is especially suitable for needles with ultrasonic characteristics that are imperceptible in the static image and to the naked eye.
Automatic arteriovenous crossing phenomenon detection on retinal fundus images
NASA Astrophysics Data System (ADS)
Hatanaka, Yuji; Muramatsu, Chisako; Hara, Takeshi; Fujita, Hiroshi
2011-03-01
Arteriolosclerosis is one cause of acquired blindness. Retinal fundus image examination is useful for early detection of arteriolosclerosis. In order to diagnose the presence of arteriolosclerosis, the physicians find the silver-wire arteries, the copper-wire arteries and arteriovenous crossing phenomenon on retinal fundus images. The focus of this study was to develop the automated detection method of the arteriovenous crossing phenomenon on the retinal images. The blood vessel regions were detected by using a double ring filter, and the crossing sections of artery and vein were detected by using a ring filter. The center of that ring was an interest point, and that point was determined as a crossing section when there were over four blood vessel segments on that ring. And two blood vessels gone through on the ring were classified into artery and vein by using the pixel values on red and blue component image. Finally, V2-to-V1 ratio was measured for recognition of abnormalities. V1 was the venous diameter far from the blood vessel crossing section, and V2 was the venous diameter near from the blood vessel crossing section. The crossing section with V2-to-V1 ratio over 0.8 was experimentally determined as abnormality. Twenty four images, including 27 abnormalities and 54 normal crossing sections, were used for preliminary evaluation of the proposed method. The proposed method was detected 73% of crossing sections when the 2.8 sections per image were mis-detected. And, 59% of abnormalities were detected by measurement of V1-to-V2 ratio when the 1.7 sections per image were mis-detected.
Regional Pericarditis Status Post Cardiac Ablation: A Case Report
Orme, Joseph; Eddin, Moneer; Loli, Akil
2014-01-01
Context: Regional pericarditis is elusive and difficult to diagnosis. Healthcare providers should be familiar with post-cardiac ablation complications as this procedure is now widespread and frequently performed. The management of regional pericarditis differs greatly from that of acute myocardial infarction. Case report: A 52 year-old male underwent atrial fibrillation ablation and developed severe mid-sternal chest pain the following day with electrocardiographic findings suggestive of acute myocardial infarction, and underwent coronary angiography, a left ventriculogram, and 2D transthoracic echocardiogram, all of which were unremarkable without evidence of obstructive coronary disease, wall motion abnormalities, or pericardial effusions. Ultimately, the patient was diagnosed with regional pericarditis. After diagnosis, the patient's presenting symptoms resolved with treatment including nonsteroidal anti-inflammatory agents and colchicine. Conclusion: This is the first reported case study of regional pericarditis status post cardiac ablation. Electrocardiographic findings were classic for an acute myocardial infarction; however, coronary angiography and left ventriculogram demonstrated no acute coronary occlusion or ventricular wall motion abnormalities. Healthcare professionals must remember that the electrocardiographic findings in pericarditis are not always classic and that pericarditis can occur status post cardiac ablation. PMID:25317395
Regional pericarditis status post cardiac ablation: a case report.
Orme, Joseph; Eddin, Moneer; Loli, Akil
2014-09-01
Regional pericarditis is elusive and difficult to diagnosis. Healthcare providers should be familiar with post-cardiac ablation complications as this procedure is now widespread and frequently performed. The management of regional pericarditis differs greatly from that of acute myocardial infarction. A 52 year-old male underwent atrial fibrillation ablation and developed severe mid-sternal chest pain the following day with electrocardiographic findings suggestive of acute myocardial infarction, and underwent coronary angiography, a left ventriculogram, and 2D transthoracic echocardiogram, all of which were unremarkable without evidence of obstructive coronary disease, wall motion abnormalities, or pericardial effusions. Ultimately, the patient was diagnosed with regional pericarditis. After diagnosis, the patient's presenting symptoms resolved with treatment including nonsteroidal anti-inflammatory agents and colchicine. This is the first reported case study of regional pericarditis status post cardiac ablation. Electrocardiographic findings were classic for an acute myocardial infarction; however, coronary angiography and left ventriculogram demonstrated no acute coronary occlusion or ventricular wall motion abnormalities. Healthcare professionals must remember that the electrocardiographic findings in pericarditis are not always classic and that pericarditis can occur status post cardiac ablation.
Al-Eisa, Einas; Egan, David; Deluzio, Kevin; Wassersug, Richard
2006-02-01
Comparative analysis and correlational research design were used to investigate the association between anthropometry and biomechanical performance among asymptomatic subjects and patients with low back pain (LBP). To examine the association between pelvic asymmetry and patterns of trunk motion in asymptomatic and LBP subjects. Secondary objective was to investigate the association between restricted trunk motion, laterality of referred pain, and pelvic asymmetry. Subtle pelvic asymmetry (exhibited as either lateral pelvic tilt or iliac rotational asymmetry), which is common among normal individuals, has not been convincingly linked to abnormalities in back movements. Given the difficulty in diagnosing most LBP, a classification using pelvic asymmetry and patterns of movement could be helpful in establishing a rational treatment plan. Fifty-nine subjects with no history of LBP and 54 patients with mechanical unilateral LBP were tested. An anthropometric frame was used to measure pelvic asymmetry in standing. Dynamic motion data, comprised of the principal and coupled movements, were collected using the Qualysis Motion Capture System. While the groups did not differ in the total range of lumbar movement, the LBP group exhibited significantly higher asymmetry in the principal motion. The groups differed significantly in the pattern of coupled rotation during lateral flexion. Asymmetry in lumbar lateral flexion was highly related to two types of pelvic asymmetry: lateral pelvic tilt (LPT) and iliac rotation asymmetry (IRA). Asymmetry in lumbar axial rotation was highly related to IRA but weakly related to LPT. This study demonstrates objective differences in patterns of lumbar movement between asymptomatic subjects and patients with LBP. The study also demonstrates that subtle anatomic abnormality in the pelvis is associated with altered mechanics in the lumbar spine. We suggest that asymmetry of lumbar movement may be a better indicator of functional deficit than the absolute range of movement in LBP.
Three-dimensional scapular kinematics during the throwing motion.
Meyer, Kristin E; Saether, Erin E; Soiney, Emily K; Shebeck, Meegan S; Paddock, Keith L; Ludewig, Paula M
2008-02-01
Proper scapular motion is crucial for normal shoulder mechanics. Scapular motion affects glenohumeral joint function during throwing, yet little is known about this dynamic activity. Asymptomatic subjects (10 male and 10 female), ages 21 to 45, were analyzed. Electromagnetic surface sensors on the sternum, acromion, and humerus were used to collect 3-D motion data during three trials of low-velocity throwing. Scapular angular position data were described or five predetermined events throughout the throw corresponding with classic descriptions of throwing phases, and trial-to-trial reliability was determined. ANOVA compared scapular angles across events. Subjects demonstrated good to excellent reliability between trials of the throw (ICC 0.74-0.98). The scapula demonstrated a pattern of external rotation, upward rotation (peak of approx. 40 degrees), and poster humeral horizontal abduction. During the arm acceleration phase, the scapula moved toward greater internal rotation and began anteriorly tilting. At maximum humeral internal rotation, the scapula ended in internal rotation (55 degrees), upward rotation (20 degrees), and anterior tilting (3 degrees). Significant differences in scapular position (p<0.05) were identified across the throwing motion. Scapular data identify events in the throwing motion in which throwers may be more susceptible to shoulder pathologies related to abnormal scapular kinematics.
Martínez-Avilés, Marta; Ivorra, Benjamin; Martínez-López, Beatriz; Ramos, Ángel Manuel; Sánchez-Vizcaíno, José Manuel
2017-01-01
Early detection of infectious diseases can substantially reduce the health and economic impacts on livestock production. Here we describe a system for monitoring animal activity based on video and data processing techniques, in order to detect slowdown and weakening due to infection with African swine fever (ASF), one of the most significant threats to the pig industry. The system classifies and quantifies motion-based animal behaviour and daily activity in video sequences, allowing automated and non-intrusive surveillance in real-time. The aim of this system is to evaluate significant changes in animals’ motion after being experimentally infected with ASF virus. Indeed, pig mobility declined progressively and fell significantly below pre-infection levels starting at four days after infection at a confidence level of 95%. Furthermore, daily motion decreased in infected animals by approximately 10% before the detection of the disease by clinical signs. These results show the promise of video processing techniques for real-time early detection of livestock infectious diseases. PMID:28877181
Statistical data mining of streaming motion data for fall detection in assistive environments.
Tasoulis, S K; Doukas, C N; Maglogiannis, I; Plagianakos, V P
2011-01-01
The analysis of human motion data is interesting for the purpose of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either motion, audio or video sensors on the monitored subject (wearable sensors) or the surrounding environment. The output of such sensors is data streams that require real time recognition, especially in emergency situations, thus traditional classification approaches may not be applicable for immediate alarm triggering or fall prevention. This paper presents a statistical mining methodology that may be used for the specific problem of real time fall detection. Visual data captured from the user's environment, using overhead cameras along with motion data are collected from accelerometers on the subject's body and are fed to the fall detection system. The paper includes the details of the stream data mining methodology incorporated in the system along with an initial evaluation of the achieved accuracy in detecting falls.
NASA Astrophysics Data System (ADS)
Triastuti, J.; Kintani, D.; Luqman, E. M.; Pujiastuti, D. Y.
2018-04-01
Tilapia hatchery is still conducted in freshwater and seeds are death simultaneousy when cultivated in high salinity due to the acclimatization process. An alternative method to implement hatchery at high salinity is required. This study aims to determine the salinity of activation medium that provides the best Jatimbulan Tilapia sperm motility and motion duration at high salinity. The study applies completely randomized design (CRD), which consists of 5 treatments (0 ppt, 4 ppt, 9 ppt, 14 ppt and 19 ppt) and 4 repetitions. The parameters consists of sperm motility, motion duration, fresh sperm data (volume, color, odor, pH, consistency, and the concentration of sperm) and sperm abnormalities. The results exhibited that salinity significantly (p < 0.05). Influeneed the sperm motility and motion duration. Motility reaches its best at 0 ppt and 4 ppt (93.4 % and 87.8 %). For motion duration, best condition was in 0 ppt and 4 ppt treatments, totaling 2128 seconds and 1961.5 seconds. Meanwhile, sperm did not move when treated in waters with 9 ppt, 14 ppt and 19 ppt salinities.
A motion detection system for AXAF X-ray ground testing
NASA Technical Reports Server (NTRS)
Arenberg, Jonathan W.; Texter, Scott C.
1993-01-01
The concept, implementation, and performance of the motion detection system (MDS) designed as a diagnostic for X-ray ground testing for AXAF are described. The purpose of the MDS is to measure the magnitude of a relative rigid body motion among the AXAF test optic, the X-ray source, and X-ray focal plane detector. The MDS consists of a point source, lens, centroid detector, transimpedance amplifier, and computer system. Measurement of the centroid position of the image of the optical point source provides a direct measure of the motions of the X-ray optical system. The outputs from the detector and filter/amplifier are digitized and processed using the calibration with a 50 Hz bandwidth to give the centroid's location on the detector. Resolution of 0.008 arcsec has been achieved by this system. Data illustrating the performance of the motion detection system are also presented.
Orientation selectivity sharpens motion detection in Drosophila
Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.
2015-01-01
SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048
Automated reference-free detection of motion artifacts in magnetic resonance images.
Küstner, Thomas; Liebgott, Annika; Mauch, Lukas; Martirosian, Petros; Bamberg, Fabian; Nikolaou, Konstantin; Yang, Bin; Schick, Fritz; Gatidis, Sergios
2018-04-01
Our objectives were to provide an automated method for spatially resolved detection and quantification of motion artifacts in MR images of the head and abdomen as well as a quality control of the trained architecture. T1-weighted MR images of the head and the upper abdomen were acquired in 16 healthy volunteers under rest and under motion. Images were divided into overlapping patches of different sizes achieving spatial separation. Using these patches as input data, a convolutional neural network (CNN) was trained to derive probability maps for the presence of motion artifacts. A deep visualization offers a human-interpretable quality control of the trained CNN. Results were visually assessed on probability maps and as classification accuracy on a per-patch, per-slice and per-volunteer basis. On visual assessment, a clear difference of probability maps was observed between data sets with and without motion. The overall accuracy of motion detection on a per-patch/per-volunteer basis reached 97%/100% in the head and 75%/100% in the abdomen, respectively. Automated detection of motion artifacts in MRI is feasible with good accuracy in the head and abdomen. The proposed method provides quantification and localization of artifacts as well as a visualization of the learned content. It may be extended to other anatomic areas and used for quality assurance of MR images.
Ocak, Z; Özlü, T; Ozyurt, O
2013-06-01
Recurrent pregnancy loss (RPL) which is generally known as >3 consecutive pregnancy losses before 20 weeks' gestation is seen in 0.5-2% of women. To evaluate the association of parental and fetal chromosomal abnormalities with recurrent pregnancy loss in our area and to analyze the frequency of three types of hereditary thrombophilia's; (MTHFR C677T polymorphisms, FV Leiden G1691A mutation and Prothrombin (factor II) G20210A mutation) in these female patients. The present case-control retrospective study was performed between February 2007 and December 2011 on 495 couples, who had two or more consecutive pregnancy losses before 20 weeks' gestation. We used conventional cytogenetic analysis and polymerase chain reaction-restriction fragment length polymorphism. Parental chromosomal abnormality was detected in 28 cases (2.8% of all cases, 5.7% of the couples) most of which (92.9%) were structural abnormalities. All of the structural abnormalities were balanced chromosomal translocations. Chromosomal analysis performed from the abortion materials detected a major chromosomal abnormality in 31.9% of the cases. The most frequently observed alteration in the hereditary thrombophilia genes was heterozygote mutation for the MTHFR C677T polymorphisms (n=55). Balanced translocations are the most commonly detected chromosomal abnormalities in couples being evaluated for recurrent pregnancy loss and these patients are the best candidates for offering prenatal genetic diagnosis by the help of which there is a possibility of obtaining a better reproductive outcome.
The probability of seizures during EEG monitoring in critically ill adults
Westover, M. Brandon; Shafi, Mouhsin M.; Bianchi, Matt T.; Moura, Lidia M.V.R.; O’Rourke, Deirdre; Rosenthal, Eric S.; Chu, Catherine J.; Donovan, Samantha; Hoch, Daniel B.; Kilbride, Ronan D.; Cole, Andrew J.; Cash, Sydney S.
2014-01-01
Objective To characterize the risk for seizures over time in relation to EEG findings in hospitalized adults undergoing continuous EEG monitoring (cEEG). Methods Retrospective analysis of cEEG data and medical records from 625 consecutive adult inpatients monitored at a tertiary medical center. Using survival analysis methods, we estimated the time-dependent probability that a seizure will occur within the next 72-h, if no seizure has occurred yet, as a function of EEG abnormalities detected so far. Results Seizures occurred in 27% (168/625). The first seizure occurred early (<30 min of monitoring) in 58% (98/168). In 527 patients without early seizures, 159 (30%) had early epileptiform abnormalities, versus 368 (70%) without. Seizures were eventually detected in 25% of patients with early epileptiform discharges, versus 8% without early discharges. The 72-h risk of seizures declined below 5% if no epileptiform abnormalities were present in the first two hours, whereas 16 h of monitoring were required when epileptiform discharges were present. 20% (74/388) of patients without early epileptiform abnormalities later developed them; 23% (17/74) of these ultimately had seizures. Only 4% (12/294) experienced a seizure without preceding epileptiform abnormalities. Conclusions Seizure risk in acute neurological illness decays rapidly, at a rate dependent on abnormalities detected early during monitoring. This study demonstrates that substantial risk stratification is possible based on early EEG abnormalities. Significance These findings have implications for patient-specific determination of the required duration of cEEG monitoring in hospitalized patients. PMID:25082090
The relationship between stereoacuity and stereomotion thresholds.
Cumming, B G
1995-01-01
There are in principle at least two binocular sources of information that could be used to determine the motion of an object towards or away from an observer; such motion produces changes in binocular disparities over time and also generates different image velocities in the two eyes. It has been argued in the past that stereomotion is detected by a mechanism that is independent of that which detects static disparities. More recently this conclusion has been questioned. If stereomotion detection in fact depends upon detecting disparities, there should be a clear correlation between static stereo-detection thresholds and stereomotion thresholds. If the systems are separate, there need be no such correlation. Four types of threshold measurement were performed by means of random-dot stereograms: (1) static stereo detection/discrimination; (2) stereomotion detection in random-dot stereograms (temporally uncorrelated); (3) stereomotion detection in temporally correlated random-dot stereograms; and (4) binocular detection of frontoparallel motion. Three normal subjects and five subjects with unusually high stereoacuities were studied. In addition, two manipulations were performed that altered stereomotion thresholds: changes in mean disparity, and image defocus produced by positive spectacle lenses. Across subjects and conditions, stereomotion thresholds were well correlated with stereo-discrimination thresholds. Stereomotion was poorly correlated with binocular frontoparallel-motion thresholds. These results suggest that stereomotion is detected by means of registering changes in the output of the same disparity detectors that are used to detect static disparities.
ERIC Educational Resources Information Center
Boutis, Kathy; Pecaric, Martin; Seeto, Brian; Pusic, Martin
2010-01-01
Signal detection theory (SDT) parameters can describe a learner's ability to discriminate (d[prime symbol]) normal from abnormal and the learner's criterion ([lambda]) to under or overcall abnormalities. To examine the serial changes in SDT parameters with serial exposure to radiological cases. 46 participants were recruited for this study: 20…
DeMarzo, Arthur P
2018-06-01
New guidelines on hypertension eliminated the classification of prehypertension and divided those blood pressure (BP) levels into elevated BP and stage 1 hypertension. For elevated BP, this study showed that cardiovascular (CV) abnormalities were prevalent in adults over 40 years of age with at least 2 CV risk factors. Detecting abnormalities of the CV system moves a patient from being at high risk to having earlystage cardiovascular disease (CVD) and supports a decision to treat. By redefining stage 1 and lowering the target BP, the new guidelines have set an ambitious goal for early intervention to prevent progression of CVD. Proper drug selection and titration are critical. Hypertensive patients have diverse CV abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment can be customized based on the abnormal underlying mechanisms to rapidly control BP and prevent progression of CVD.
Sawada, Kunihiko; Amemiya, Toshihiko; Hirai, Shigenori; Hayashi, Yusuke; Suzuki, Toshihiro; Honda, Masahiko; Sisounthone, Johnny; Matsumoto, Kunihito; Honda, Kazuya
2018-01-01
We compared the diagnostic reliability of 3.0-T magnetic resonance imaging (MRI) for detection of osseous abnormalities of the temporomandibular joint (TMJ) with that of the gold standard, cone-beam computed tomography (CBCT). Fifty-six TMJs were imaged with CBCT and MRI, and images of condyles and fossae were independently assessed for the presence of osseous abnormalities. The accuracy, sensitivity, and specificity of 3.0-T MRI were 0.88, 1.0, and 0.73, respectively, in condyle evaluation and 0.91, 0.75, and 0.95 in fossa evaluation. The McNemar test showed no significant difference (P > 0.05) between MRI and CBCT in the evaluation of osseous abnormalities in condyles and fossae. The present results indicate that 3.0-T MRI is equal to CBCT in the diagnostic evaluation of osseous abnormalities of the mandibular condyle.
Advances in understanding paternally transmitted Chromosomal Abnormalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, F; Sloter, E; Wyrobek, A J
2001-03-01
Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less
Zoppellaro, Giacomo; Venneri, Lucia; Khattar, Rajdeep S; Li, Wei; Senior, Roxy
2016-06-01
Ultrasound contrast agents may be used for the assessment of regional wall motion and myocardial perfusion, but are generally considered not suitable for deformation analysis. The aim of our study was to assess the feasibility of deformation imaging on contrast-enhanced images using a novel methodology. We prospectively enrolled 40 patients who underwent stress echocardiography with continuous intravenous infusion of SonoVue for the assessment of myocardial perfusion imaging with flash replenishment technique. We compared longitudinal strain (Lε) values, assessed with a vendor-independent software (2D CPA), on 68 resting contrast-enhanced and 68 resting noncontrast recordings. Strain analysis on contrast recordings was evaluated in the first cardiac cycles after the flash. Tracking of contrast images was deemed feasible in all subjects and in all views. Contrast administration improved image quality and increased the number of segments used for deformation analysis. Lε of noncontrast and contrast-enhanced images were statistically different (-18.8 ± 4.5% and -22.8 ± 5.4%, respectively; P < 0.001), but their correlation was good (ICC 0.65, 95%CI 0.42-0.78). Patients with resting wall-motion abnormalities showed lower Lε values on contrast recordings (-18.6 ± 6.0% vs. -24.2 ± 5.5%, respectively; P < 0.01). Intra-operator and inter-operator reproducibility was good for both noncontrast and contrast images with no statistical differences. Our study shows that deformation analysis on postflash contrast-enhanced images is feasible and reproducible. Therefore, it would be possible to perform a simultaneous evaluation of wall-motion abnormalities, volumes, ejection fraction, perfusion defects, and cardiac deformation on the same contrast recording. © 2016, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis
2013-11-01
Assessment of the cardiac Left Ventricle (LV) wall motion is generally based on visual inspection or quantitative analysis of 2D+t sequences acquired in short-axis cardiac cine-Magnetic Resonance Imaging (MRI). Most often, cardiac dynamic is globally analized from two particular phases of the cardiac cycle. In this paper, we propose an automated method to classify regional wall motion in LV function based on spatio-temporal pro les and Support Vector Machines (SVM). This approach allows to obtain a binary classi cation between normal and abnormal motion, without the need of pre-processing and by exploiting all the images of the cardiac cycle. In each short- axis MRI slice level (basal, median, and apical), the spatio-temporal pro les are extracted from the selection of a subset of diametrical lines crossing opposites LV segments. Initialized at end-diastole phase, the pro les are concatenated with their corresponding projections into the succesive temporal phases of the cardiac cycle. These pro les are associated to di erent types of information that derive from the image (gray levels), Fourier, Wavelet or Curvelet domains. The approach has been tested on a set of 14 abnormal and 6 healthy patients by using a leave-one-out cross validation and two kernel functions for SVM classi er. The best classi cation performance is yielded by using four-level db4 wavelet transform and SVM with a linear kernel. At each slice level the results provided a classi cation rate of 87.14% in apical level, 95.48% in median level and 93.65% in basal level.
Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology
NASA Astrophysics Data System (ADS)
Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan
2016-05-01
This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.
Neurons compute internal models of the physical laws of motion.
Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David
2004-07-29
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.
Liu, S; Song, L; Cram, D S; Xiong, L; Wang, K; Wu, R; Liu, J; Deng, K; Jia, B; Zhong, M; Yang, F
2015-10-01
To compare the performance of traditional G-banding karyotyping with that of copy number variation sequencing (CNV-Seq) for detection of chromosomal abnormalities associated with miscarriage. Products of conception (POC) were collected from spontaneous miscarriages. Chromosomal abnormalities were detected using high-resolution G-banding karyotyping and CNV sequencing. Quantitative fluorescent polymerase chain reaction analysis of maternal and POC DNA for short tandem repeat (STR) markers was used to both monitor maternal cell contamination and confirm the chromosomal status and sex of the miscarriage tissue. A total of 64 samples of POC, comprising 16 with an abnormal and 48 with a normal karyotype, were selected and coded for analysis by CNV-Seq. CNV-Seq results were concordant for 14 (87.5%) of the 16 gross chromosomal abnormalities identified by karyotyping, including 11 autosomal trisomies and three sex chromosomal aneuploidies (45,X). Of the two discordant results, a 69,XXX polyploidy was missed by CNV-Seq, although supporting STR marker analysis confirmed the triploidy. In contrast, CNV-Seq identified a sample with 45,X karyotype as a 45,X/46,XY mosaic. In the remaining 48 samples of POC with a normal karyotype, CNV-Seq detected a 2.58-Mb 22q deletion associated with DiGeorge syndrome and nine different smaller CNVs of no apparent clinical significance. CNV-Seq used in parallel with STR profiling is a reliable and accurate alternative to karyotyping for identifying chromosome copy number abnormalities associated with spontaneous miscarriage. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Tako-tsubo-like syndrome, a case report.
Patanè, Salvatore; Marte, Filippo
2008-02-29
Tako-tsubo-like (Japanese word for octopus-catcher) left ventricular dysfunction is an enigmatic cardiomyopathy. Typically, the patients have a history of recent stressful incidents immediately preceding onset of mild to moderate chest pain, have ST-segment elevation in leads V3 through V6, ECG changes that typically demonstrate diffuse T-wave inversions and abnormal QS-wave development, discrete wall motion abnormalities involving the lower anterior wall and apex on echocardiography or left ventriculography, and limited myocardial enzyme release without evidence for hemodynamically significant coronary arterial stenoses by angiography. We describe a case of a Tako-tsubo-like left ventricular dysfunction in a 72-year-old female Italian woman.
Bio-inspired motion detection in an FPGA-based smart camera module.
Köhler, T; Röchter, F; Lindemann, J P; Möller, R
2009-03-01
Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10,000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device.
Ho, S S; Kuzniecky, R I; Gilliam, F; Faught, E; Morawetz, R
1998-03-01
Temporal lobe developmental malformations (TLDM) with focal cortical dysplasia and balloon cells may coexist with mesial temporal sclerosis. The true incidence of this dual pathology is unknown. Our aim was to assess the frequency of amygdala (AM)-hippocampal abnormality in a homogeneous population with this specific developmental malformation. MRI-based volumetry of the AM and hippocampal formation (HF) in 30 patients with unilateral TLDM and intractable partial epilepsy was performed. A volume normalization process defined a normal range of HF and AM volumes in control subjects, and enabled the detection of bilateral volume loss. Normalized volumes detected HF atrophy in 26 patients (nine unilateral and 17 bilateral) and AM atrophy in 18 patients (three unilateral and 15 bilateral). Visual analysis detected unilateral HF abnormality in 21 patients and bilateral abnormality in two. When compared with a group of patients with temporal lobe epilepsy and pure hippocampal sclerosis (N = 92), where volumetry revealed bilateral HF atrophy in 18%, a significant difference in the frequency of bilateral HF atrophy was found (p < 0.0001). Dual pathology is frequent in patients with TLDM (87%), and the AM-HF abnormality is often bilateral (57%). Our data suggest that more widespread and potentially epileptogenic lesions coexist with visibly detectable unilateral TLDM. This has implications for the selection of patients for temporal lobe surgery and may influence surgical strategies.
Optimization of fecal cytology in the dog: comparison of three sampling methods.
Frezoulis, Petros S; Angelidou, Elisavet; Diakou, Anastasia; Rallis, Timoleon S; Mylonakis, Mathios E
2017-09-01
Dry-mount fecal cytology (FC) is a component of the diagnostic evaluation of gastrointestinal diseases. There is limited information on the possible effect of the sampling method on the cytologic findings of healthy dogs or dogs admitted with diarrhea. We aimed to: (1) establish sampling method-specific expected values of selected cytologic parameters (isolated or clustered epithelial cells, neutrophils, lymphocytes, macrophages, spore-forming rods) in clinically healthy dogs; (2) investigate if the detection of cytologic abnormalities differs among methods in dogs admitted with diarrhea; and (3) investigate if there is any association between FC abnormalities and the anatomic origin (small- or large-bowel diarrhea) or the chronicity of diarrhea. Sampling with digital examination (DE), rectal scraping (RS), and rectal lavage (RL) was prospectively assessed in 37 healthy and 34 diarrheic dogs. The median numbers of isolated ( p = 0.000) or clustered ( p = 0.002) epithelial cells, and of lymphocytes ( p = 0.000), differed among the 3 methods in healthy dogs. In the diarrheic dogs, the RL method was the least sensitive in detecting neutrophils, and isolated or clustered epithelial cells. Cytologic abnormalities were not associated with the origin or the chronicity of diarrhea. Sampling methods differed in their sensitivity to detect abnormalities in FC; DE or RS may be of higher sensitivity compared to RL. Anatomic origin or chronicity of diarrhea do not seem to affect the detection of cytologic abnormalities.
Bertone, Armando; Mottron, Laurent; Jelenic, Patricia; Faubert, Jocelyn
2005-10-01
Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.
Visual-vestibular processing deficits in mild traumatic brain injury.
Wright, W G; Tierney, R T; McDevitt, J
2017-01-01
The search for reliable and valid signs and symptoms of mild traumatic brain injury (mTBI), commonly synonymous with concussion, has lead to a growing body of evidence that individuals with long-lasting, unremitting impairments often experience visual and vestibular symptoms, such as dizziness, postural and gait disturbances. Investigate the role of visual-vestibular processing deficits following concussion. A number of clinically accepted vestibular, oculomotor, and balance assessments as well as a novel virtual reality (VR)-based balance assessment device were used to assess adults with post-acute concussion (n = 14) in comparison to a healthy age-matched cohort (n = 58). Significant between-group differences were found with the VR-based balance device (p = 0.001), with dynamic visual motion emerging as the most discriminating balance condition. The symptom reports collected after performing the oculomotor and vestibular tests: rapid alternating horizontal eye saccades, optokinetic stimulation, and gaze stabilization, were all sensitive to health status (p < 0.05), despite the absence of oculomotor abnormalities being observed, except for near-point convergence. The BESS, King-Devick, and Dynamic Visual Acuity tests did not detect between-group differences. Postural and visual-vestibular tasks most closely linked to spatial and self-motion perception had the greatest discriminatory outcomes. The current findings suggest that mesencephalic and parieto-occipital centers and pathways may be involved in concussion.
Optimal filtering and Bayesian detection for friction-based diagnostics in machines.
Ray, L R; Townsend, J R; Ramasubramanian, A
2001-01-01
Non-model-based diagnostic methods typically rely on measured signals that must be empirically related to process behavior or incipient faults. The difficulty in interpreting a signal that is indirectly related to the fundamental process behavior is significant. This paper presents an integrated non-model and model-based approach to detecting when process behavior varies from a proposed model. The method, which is based on nonlinear filtering combined with maximum likelihood hypothesis testing, is applicable to dynamic systems whose constitutive model is well known, and whose process inputs are poorly known. Here, the method is applied to friction estimation and diagnosis during motion control in a rotating machine. A nonlinear observer estimates friction torque in a machine from shaft angular position measurements and the known input voltage to the motor. The resulting friction torque estimate can be analyzed directly for statistical abnormalities, or it can be directly compared to friction torque outputs of an applicable friction process model in order to diagnose faults or model variations. Nonlinear estimation of friction torque provides a variable on which to apply diagnostic methods that is directly related to model variations or faults. The method is evaluated experimentally by its ability to detect normal load variations in a closed-loop controlled motor driven inertia with bearing friction and an artificially-induced external line contact. Results show an ability to detect statistically significant changes in friction characteristics induced by normal load variations over a wide range of underlying friction behaviors.
Hidden chromosome 8 abnormalities detected by FISH in adult primary myelodysplastic syndromes.
Panani, Anna D; Pappa, Vasiliki
2005-01-01
Acquired clonal chromosomal abnormalities are found in about 30-50% of primary myelodysplastic syndromes (MDS). These abnormalities are predominantly characterized by total/partial chromosomal losses or gains and rarely by balanced structural aberrations. Trisomy 8 represents the most common chromosomal gain. In the present study, the numerical aberration of chromosome 8 was evaluated by the fluorescence in situ hybridization (FISH) technique in MDS, and the results compared with those of conventional cytogenetics. Thirty adult patients with primary MDS, 17 with a normal karyotype and 13 with several chromosomal abnormalities except chromosome 8, were included in this study. On comparing the results of FISH and conventional cytogenetics, a superiority of FISH over the karyotype was detected in 3 cases. In one of them, further cytogenetic analysis confirmed the FISH results. Nevertheless, the FISH technique has limitations, detecting only abnormalities specific for the target FISH probe used In clinical practice, conventional cytogenetics continues to be the basic technique for MDS patient evaluation. However, a large number of metaphases, even those of poor quality, must be analyzed in each case. The FISH technique could be considered to be complementary to achieve a more accurate analysis.
Residual Error Based Anomaly Detection Using Auto-Encoder in SMD Machine Sound.
Oh, Dong Yul; Yun, Il Dong
2018-04-24
Detecting an anomaly or an abnormal situation from given noise is highly useful in an environment where constantly verifying and monitoring a machine is required. As deep learning algorithms are further developed, current studies have focused on this problem. However, there are too many variables to define anomalies, and the human annotation for a large collection of abnormal data labeled at the class-level is very labor-intensive. In this paper, we propose to detect abnormal operation sounds or outliers in a very complex machine along with reducing the data-driven annotation cost. The architecture of the proposed model is based on an auto-encoder, and it uses the residual error, which stands for its reconstruction quality, to identify the anomaly. We assess our model using Surface-Mounted Device (SMD) machine sound, which is very complex, as experimental data, and state-of-the-art performance is successfully achieved for anomaly detection.
Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running.
Peltz, Cathryn D; Haladik, Jeffrey A; Hoffman, Scott E; McDonald, Michael; Ramo, Nicole L; Divine, George; Nurse, Matthew; Bey, Michael J
2014-08-22
Running is a popular form of recreation, but injuries are common and may be associated with abnormal joint motion. The objective of this study was to determine the effect of three footwear conditions - barefoot (BF), an ultraflexible training shoe (FREE), and a motion control shoe (MC) - on 3D foot and ankle motion. Dynamic, biplane radiographic images were acquired from 12 runners during overground running. 3D rotations of the tibiotalar and subtalar joints were quantified in terms of plantarflexion/dorsiflexion (PF/DF), inversion/eversion (IN/EV) and internal/external rotation (IR/ER). Across the early stance phase (defined as footstrike to heel-off), BF running demonstrated greater tibiotalar joint range of motion for PF/DF (28.2 ± 8.3°) and IR/ER (7.0 ± 1.4°) than the shod conditions (FREE: PF/DF=15.1 ± 5.9°, IR/ER=4.8 ± 2.1°; MC: PF/DF=15.0 ± 6.2°, IR/ER=4.3 ± 0.7°). Also at the tibiotalar joint, BF running resulted in a position significantly more plantarflexed (BF: 2.0 ± 12.5°, FREE: 15.7 ± 12.2°, MC: 16.5 ± 9.3°) and internally rotated (BF: 12.9 ± 4.5°, FREE: 10.7 ± 4.3°, MC: 10.6 ± 3.9°) at footstrike compared to both shod conditions. No differences were detected between the shod conditions at any point in the early stance phase at the tibiotalar joint. The MC condition demonstrated significant differences compared to FREE at several points throughout the early stance phase at the subtalar joint, with the greatest differences seen at 30% in PF/DF (MC -1.4 ± 8.8°: FREE: -0.5 ± 9.0°), IN/EV (MC -8.1 ± 5.7°: FREE -6.3 ± 5.5°) and IR/ER (MC -9.5 ± 5.3°: FREE: -8.7 ± 5.2°). These findings indicate that footwear has subtle effects on joint motion mainly between BF and shod conditions at the tibiotalar joint and between shod conditions at the subtalar joint. Copyright © 2014 Elsevier Ltd. All rights reserved.
Norman, Joseph; Hock, Howard; Schöner, Gregor
2014-07-01
It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.
Optical Flow Estimation for Flame Detection in Videos
Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen
2014-01-01
Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042
Knoop, Jesper; Dekker, Joost; Klein, Jan-Paul; van der Leeden, Marike; van der Esch, Martin; Reiding, Dick; Voorneman, Ramon E; Gerritsen, Martijn; Roorda, Leo D; Steultjens, Martijn P M; Lems, Willem F
2012-10-05
We aimed to explore the associations between knee osteoarthritis (OA)-related tissue abnormalities assessed by conventional radiography (CR) and by high-resolution 3.0 Tesla magnetic resonance imaging (MRI), as well as biomechanical factors and findings from physical examination in patients with knee OA. This was an explorative cross-sectional study of 105 patients with knee OA. Index knees were imaged using CR and MRI. Multiple features from CR and MRI (cartilage, osteophytes, bone marrow lesions, effusion and synovitis) were related to biomechanical factors (quadriceps and hamstrings muscle strength, proprioceptive accuracy and varus-valgus laxity) and physical examination findings (bony tenderness, crepitus, bony enlargement and palpable warmth), using multivariable regression analyses. Quadriceps weakness was associated with cartilage integrity, effusion, synovitis (all detected by MRI) and CR-detected joint space narrowing. Knee joint laxity was associated with MRI-detected cartilage integrity, CR-detected joint space narrowing and osteophyte formation. Multiple tissue abnormalities including cartilage integrity, osteophytes and effusion, but only those detected by MRI, were found to be associated with physical examination findings such as crepitus. We observed clinically relevant findings, including a significant association between quadriceps weakness and both effusion and synovitis, detected by MRI. Inflammation was detected in over one-third of the participants, emphasizing the inflammatory component of OA and a possible important role for anti-inflammatory therapies in knee OA. In general, OA-related tissue abnormalities of the knee, even those detected by MRI, were found to be discordant with biomechanical and physical examination features.
Automated detection of videotaped neonatal seizures based on motion segmentation methods.
Karayiannis, Nicolaos B; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-07-01
This study was aimed at the development of a seizure detection system by training neural networks using quantitative motion information extracted by motion segmentation methods from short video recordings of infants monitored for seizures. The motion of the infants' body parts was quantified by temporal motion strength signals extracted from video recordings by motion segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by direct thresholding, by clustering of the pixel velocities, and by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The computational tools and procedures developed for automated seizure detection were tested and evaluated on 240 short video segments selected and labeled by physicians from a set of video recordings of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). The experimental study described in this paper provided the basis for selecting the most effective strategy for training neural networks to detect neonatal seizures as well as the decision scheme used for interpreting the responses of the trained neural networks. Depending on the decision scheme used for interpreting the responses of the trained neural networks, the best neural networks exhibited sensitivity above 90% or specificity above 90%. The best among the motion segmentation methods developed in this study produced quantitative features that constitute a reliable basis for detecting myoclonic and focal clonic neonatal seizures. The performance targets of this phase of the project may be achieved by combining the quantitative features described in this paper with those obtained by analyzing motion trajectory signals produced by motion tracking methods. A video system based upon automated analysis potentially offers a number of advantages. Infants who are at risk for seizures could be monitored continuously using relatively inexpensive and non-invasive video techniques that supplement direct observation by nursery personnel. This would represent a major advance in seizure surveillance and offers the possibility for earlier identification of potential neurological problems and subsequent intervention.
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic filter for real-time detection and tracking of independently moving objects. The proposed approach introduces a competition scheme between particles in order to ensure an improved multi-modality. Further, the filter design helps to generate a particle distribution which is homogenous even in the presence of multiple targets showing non-rigid motion patterns. The effectiveness of the method is shown on exemplary outdoor sequences.
Compliant finger sensor for sensorimotor studies in MEG and MR environment
NASA Astrophysics Data System (ADS)
Li, Y.; Yong, X.; Cheung, T. P. L.; Menon, C.
2016-07-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) are widely used for functional brain imaging. The correlations between the sensorimotor functions of the hand and brain activities have been investigated in MEG/fMRI studies. Currently, limited information can be drawn from these studies due to the limitations of existing motion sensors that are used to detect hand movements. One major challenge in designing these motion sensors is to limit the signal interference between the motion sensors and the MEG/fMRI. In this work, a novel finger motion sensor, which contains low-ferromagnetic and non-conductive materials, is introduced. The finger sensor consists of four air-filled chambers. When compressed by finger(s), the pressure change in the chambers can be detected by the electronics of the finger sensor. Our study has validated that the interference between the finger sensor and an MEG is negligible. Also, by applying a support vector machine algorithm to the data obtained from the finger sensor, at least 11 finger patterns can be discriminated. Comparing to the use of traditional electromyography (EMG) in detecting finger motion, our proposed finger motion sensor is not only MEG/fMRI compatible, it is also easy to use. As the signals acquired from the sensor have a higher SNR than that of the EMG, no complex algorithms are required to detect different finger movement patterns. Future studies can utilize this motion sensor to investigate brain activations during different finger motions and correlate the activations with the sensory and motor functions respectively.
Audit of cardiac pathology detection using a criteria-based perioperative echocardiography service.
Faris, J G; Hartley, K; Fuller, C M; Langston, R B; Royse, C F; Veltman, M G
2012-07-01
Transthoracic echocardiography is often used to screen patients prior to non-cardiac surgery to detect conditions associated with perioperative haemodynamic compromise and to stratify risk. However, anaesthetists' use of echocardiography is quite variable. A consortium led by the American College of Cardiology Foundation has developed appropriate use criteria for echocardiography. At Joondalup Hospital in Western Australia, we have used these criteria to order echocardiographic studies in patients attending our anaesthetic pre-admission clinic. We undertook this audit to determine the incidence of significant echocardiographic findings using this approach. In a 22-month period, 606 transthoracic echocardiographic studies were performed. This represented 8.7% of clinic attendees and 1.7% of all surgical patients. In about two-thirds of the patients, the indication for echocardiography was identified on the basis of a telephone screening questionnaire. The most common indications were poor exercise tolerance (27.4%), ischaemic heart disease (20.9%) and cardiac murmurs (16.3%). Over 26% of patients studied had significant cardiac pathology (i.e. moderate or severe echocardiographic findings), most importantly moderate or severe aortic stenosis (8.6%), poor left ventricular function (7.1%), a regional wall motion abnormality (4.3%) or moderate or severe mitral regurgitation (4.1%). Using appropriate use criteria to guide ordering transthoracic echocardiography studies led to a high detection rate of clinically important cardiac pathology in our perioperative service.
Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features.
Tripathy, R K; Dandapat, S
2016-06-01
The cardiac activities such as the depolarization and the relaxation of atria and ventricles are observed in electrocardiogram (ECG). The changes in the morphological features of ECG are the symptoms of particular heart pathology. It is a cumbersome task for medical experts to visually identify any subtle changes in the morphological features during 24 hours of ECG recording. Therefore, the automated analysis of ECG signal is a need for accurate detection of cardiac abnormalities. In this paper, a novel method for automated detection of cardiac abnormalities from multilead ECG is proposed. The method uses multiscale phase alternation (PA) features of multilead ECG and two classifiers, k-nearest neighbor (KNN) and fuzzy KNN for classification of bundle branch block (BBB), myocardial infarction (MI), heart muscle defect (HMD) and healthy control (HC). The dual tree complex wavelet transform (DTCWT) is used to decompose the ECG signal of each lead into complex wavelet coefficients at different scales. The phase of the complex wavelet coefficients is computed and the PA values at each wavelet scale are used as features for detection and classification of cardiac abnormalities. A publicly available multilead ECG database (PTB database) is used for testing of the proposed method. The experimental results show that, the proposed multiscale PA features and the fuzzy KNN classifier have better performance for detection of cardiac abnormalities with sensitivity values of 78.12 %, 80.90 % and 94.31 % for BBB, HMD and MI classes. The sensitivity value of proposed method for MI class is compared with the state-of-art techniques from multilead ECG.
FDG-PET/CT in the evaluation of anal carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotter, Shane E.; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO; Grigsby, Perry W.
2006-07-01
Purpose: Surgical staging and treatment of anal carcinoma has been replaced by noninvasive staging studies and combined modality therapy. In this study, we compare computed tomography (CT) and physical examination to [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) in the staging of carcinoma of the anal canal, with special emphasis on determination of spread to inguinal lymph nodes. Methods and Materials: Between July 2003 and July 2005, 41 consecutive patients with biopsy-proved anal carcinoma underwent a complete staging evaluation including physical examination, CT, and 2-FDG-PET/CT. Patients ranged in age from 30 to 89 years. Nine men were HIV-positive. Treatment was withmore » standard Nigro regimen. Results: [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) detected 91% of nonexcised primary tumors, whereas CT visualized 59%. FDG-PET/CT detected abnormal uptake in pelvic nodes of 5 patients with normal pelvic CT scans. FDG-PET/CT detected abnormal nodes in 20% of groins that were normal by CT, and in 23% without abnormality on physical examination. Furthermore, 17% of groins negative by both CT and physical examination showed abnormal uptake on FDG-PET/CT. HIV-positive patients had an increased frequency of PET-positive lymph nodes. Conclusion: [{sup 18}F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography detects the primary tumor more often than CT. FDG-PET/CT detects substantially more abnormal inguinal lymph nodes than are identified by standard clinical staging with CT and physical examination.« less
Computerized scheme for detection of diffuse lung diseases on CR chest images
NASA Astrophysics Data System (ADS)
Pereira, Roberto R., Jr.; Shiraishi, Junji; Li, Feng; Li, Qiang; Doi, Kunio
2008-03-01
We have developed a new computer-aided diagnostic (CAD) scheme for detection of diffuse lung disease in computed radiographic (CR) chest images. One hundred ninety-four chest images (56 normals and 138 abnormals with diffuse lung diseases) were used. The 138 abnormal cases were classified into three levels of severity (34 mild, 60 moderate, and 44 severe) by an experienced chest radiologist with use of five different patterns, i.e., reticular, reticulonodular, nodular, air-space opacity, and emphysema. In our computerized scheme, the first moment of the power spectrum, the root-mean-square variation, and the average pixel value were determined for each region of interest (ROI), which was selected automatically in the lung fields. The average pixel value and its dependence on the location of the ROI were employed for identifying abnormal patterns due to air-space opacity or emphysema. A rule-based method was used for determining three levels of abnormality for each ROI (0: normal, 1: mild, 2: moderate, and 3: severe). The distinction between normal lungs and abnormal lungs with diffuse lung disease was determined based on the fractional number of abnormal ROIs by taking into account the severity of abnormalities. Preliminary results indicated that the area under the ROC curve was 0.889 for the 44 severe cases, 0.825 for the 104 severe and moderate cases, and 0.794 for all cases. We have identified a number of problems and reasons causing false positives on normal cases, and also false negatives on abnormal cases. In addition, we have discussed potential approaches for improvement of our CAD scheme. In conclusion, the CAD scheme for detection of diffuse lung diseases based on texture features extracted from CR chest images has the potential to assist radiologists in their interpretation of diffuse lung diseases.
Vater, Christian; Kredel, Ralf; Hossner, Ernst-Joachim
2017-05-01
In the current study, dual-task performance is examined with multiple-object tracking as a primary task and target-change detection as a secondary task. The to-be-detected target changes in conditions of either change type (form vs. motion; Experiment 1) or change salience (stop vs. slowdown; Experiment 2), with changes occurring at either near (5°-10°) or far (15°-20°) eccentricities (Experiments 1 and 2). The aim of the study was to test whether changes can be detected solely with peripheral vision. By controlling for saccades and computing gaze distances, we could show that participants used peripheral vision to monitor the targets and, additionally, to perceive changes at both near and far eccentricities. Noticeably, gaze behavior was not affected by the actual target change. Detection rates as well as response times generally varied as a function of change condition and eccentricity, with faster detections for motion changes and near changes. However, in contrast to the effects found for motion changes, sharp declines in detection rates and increased response times were observed for form changes as a function of the eccentricities. This result can be ascribed to properties of the visual system, namely to the limited spatial acuity in the periphery and the comparably receptive motion sensitivity of peripheral vision. These findings show that peripheral vision is functional for simultaneous target monitoring and target-change detection as saccadic information suppression can be avoided and covert attention can be optimally distributed to all targets. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Arroll, Nicola; Sadler, Lynn; Stone, Peter; Masson, Vicki; Farquhar, Cindy
2013-08-16
To determine whether there were "quality gaps" in the provision of care during pregnancies that resulted in a perinatal death due to congenital abnormality. Perinatal deaths from congenital cardiovascular, central nervous system or chromosomal abnormality in 2010 were identified retrospectively. Data were extracted by retrospective clinical note review and obtained by independent review of ultrasound scans. There were 137 perinatal deaths due to a congenital cardiovascular (35), central nervous system (29) or chromosomal abnormality (73). First contact with a health professional during pregnancy was predominantly with a general practitioner. First contact occurred within 14 weeks in 85% of pregnancies and there was often a significant delay before booking. Folate supplements were taken by 7% pre-conceptually and 54% of women in the antenatal period. There were 20 perinatal deaths from neural tube defects that could potentially have been prevented through the use of pre-conceptual folate. Antenatal screening was offered to 75% of the women who presented prior to 20 weeks and 84% of these undertook at least one of the available antenatal screening tests. Review of ultrasound images found five abnormalities could have been detected earlier. Delay in booking or failure to offer screening early were the most common reasons for delay in diagnosis of screen detectable abnormalities. The preventative value and timing of (pre-conceptual) folate needs emphasis.
Pryde, P G; Isada, N B; Hallak, M; Johnson, M P; Odgers, A E; Evans, M I
1992-07-01
This study evaluated factors influencing the decision to abort after abnormalities in the karyotypically normal fetus were found through ultrasonography. We reviewed all pregnancies complicated by ultrasound-detected abnormalities managed on our service from April 1990 through August 1991 (N = 262). Cases with associated karyotypic abnormalities were excluded (N = 35), as were cases diagnosed after the legal gestational age limit for abortion (N = 68). The remaining 159 cases were stratified into prognosis groups of "severe," "uncertain," and "mild." The prognostic severity of the ultrasound abnormality strongly correlated with the decision to abort (P less than .0001). Rates of termination were 0, 12, and 66% in the "mild," "uncertain," and "severe" groups, respectively. The patients' age, gravidity, and parity, and the fetal gestational age at diagnosis did not differ significantly between the groups. 1) In non-aneuploid pregnancies with an ultrasound diagnosis of fetal abnormality, the major predictor of the decision to abort was the severity of fetal prognosis. 2) The gestational age at diagnosis was not an important variable in the decision to abort for fetal structural abnormalities. 3) Parents who had fetuses with abnormalities associated with uncertain prognoses usually opted to continue the pregnancy. This appeared to be particularly true for defects that were potentially correctable in utero or by neonatal intervention (even if investigational).
At what age is hydrocephalus detected, and what is the role of head circumference measurements?
Breuning-Broers, Jacqueline M; Deurloo, Jacqueline A; Gooskens, Rob H; Verkerk, Paul H
2014-02-01
To investigate at what age hydrocephalus is detected and to assess the role of head circumference measurements in detecting hydrocephalus, we performed a retrospective chart review in children with hydrocephalus treated in a tertiary paediatric hospital in the Netherlands. The study group contained 146 patients; 38 patients (31%) were referred because of abnormalities in head circumference. Eighty-nine per cent of the patients were detected in the first year of life. After this period, no patients were referred because of an abnormal head circumference. Therefore, head circumference measurements seem to have little value for detecting hydrocephalus after the first year of life.
Automated detection of videotaped neonatal seizures of epileptic origin.
Karayiannis, Nicolaos B; Xiong, Yaohua; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-06-01
This study aimed at the development of a seizure-detection system by training neural networks with quantitative motion information extracted from short video segments of neonatal seizures of the myoclonic and focal clonic types and random infant movements. The motion of the infants' body parts was quantified by temporal motion-strength signals extracted from video segments by motion-segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The motion of the infants' body parts also was quantified by temporal motion-trajectory signals extracted from video recordings by robust motion trackers based on block-motion models. These motion trackers were developed to adjust autonomously to illumination and contrast changes that may occur during the video-frame sequence. Video segments were represented by quantitative features obtained by analyzing motion-strength and motion-trajectory signals in both the time and frequency domains. Seizure recognition was performed by conventional feed-forward neural networks, quantum neural networks, and cosine radial basis function neural networks, which were trained to detect neonatal seizures of the myoclonic and focal clonic types and to distinguish them from random infant movements. The computational tools and procedures developed for automated seizure detection were evaluated on a set of 240 video segments of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). Regardless of the decision scheme used for interpreting the responses of the trained neural networks, all the neural network models exhibited sensitivity and specificity>90%. For one of the decision schemes proposed for interpreting the responses of the trained neural networks, the majority of the trained neural-network models exhibited sensitivity>90% and specificity>95%. In particular, cosine radial basis function neural networks achieved the performance targets of this phase of the project (i.e., sensitivity>95% and specificity>95%). The best among the motion segmentation and tracking methods developed in this study produced quantitative features that constitute a reliable basis for detecting neonatal seizures. The performance targets of this phase of the project were achieved by combining the quantitative features obtained by analyzing motion-strength signals with those produced by analyzing motion-trajectory signals. The computational procedures and tools developed in this study to perform off-line analysis of short video segments will be used in the next phase of this project, which involves the integration of these procedures and tools into a system that can process and analyze long video recordings of infants monitored for seizures in real time.
Abnormal Image Detection in Endoscopy Videos Using a Filter Bank and Local Binary Patterns
Nawarathna, Ruwan; Oh, JungHwan; Muthukudage, Jayantha; Tavanapong, Wallapak; Wong, Johnny; de Groen, Piet C.; Tang, Shou Jiang
2014-01-01
Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most essential tasks during endoscopy video review. Since these abnormalities typically appear in a small number of frames (around 5% of the total frame number), automated detection of frames with an abnormality can save physician’s time significantly. In this paper, we propose a new multi-texture analysis method that effectively discerns images showing mucosal abnormalities from the ones without any abnormality since most abnormalities in endoscopy images have textures that are clearly distinguishable from normal textures using an advanced image texture analysis method. The method uses a “texton histogram” of an image block as features. The histogram captures the distribution of different “textons” representing various textures in an endoscopy image. The textons are representative response vectors of an application of a combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local Binary Patterns on the image. Our experimental results indicate that the proposed method achieves 92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall and 90.8% specificity on colonoscopy images. PMID:25132723
Small-scale heat detection using catalytic microengines irradiated by laser
NASA Astrophysics Data System (ADS)
Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng
2013-01-01
We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f
NASA Astrophysics Data System (ADS)
Virtanen, Jaakko; Noponen, Tommi; Kotilahti, Kalle; Virtanen, Juha; Ilmoniemi, Risto J.
2011-08-01
In medical near-infrared spectroscopy (NIRS), movements of the subject often cause large step changes in the baselines of the measured light attenuation signals. This prevents comparison of hemoglobin concentration levels before and after movement. We present an accelerometer-based motion artifact removal (ABAMAR) algorithm for correcting such baseline motion artifacts (BMAs). ABAMAR can be easily adapted to various long-term monitoring applications of NIRS. We applied ABAMAR to NIRS data collected in 23 all-night sleep measurements and containing BMAs from involuntary movements during sleep. For reference, three NIRS researchers independently identified BMAs from the data. To determine whether the use of an accelerometer improves BMA detection accuracy, we compared ABAMAR to motion detection based on peaks in the moving standard deviation (SD) of NIRS data. The number of BMAs identified by ABAMAR was similar to the number detected by the humans, and 79% of the artifacts identified by ABAMAR were confirmed by at least two humans. While the moving SD of NIRS data could also be used for motion detection, on average 2 out of the 10 largest SD peaks in NIRS data each night occurred without the presence of movement. Thus, using an accelerometer improves BMA detection accuracy in NIRS.
NASA Astrophysics Data System (ADS)
Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Li, En; Miura, Masahiro; Yasuno, Yoshiaki
2016-03-01
A new optical coherence angiography (OCA) method, called correlation mapping OCA (cmOCA), is presented by using the SNR-corrected complex correlation. An SNR-correction theory for the complex correlation calculation is presented. The method also integrates a motion-artifact-removal method for the sample motion induced decorrelation artifact. The theory is further extended to compute more reliable correlation by using multi- channel OCT systems, such as Jones-matrix OCT. The high contrast vasculature imaging of in vivo human posterior eye has been obtained. Composite imaging of cmOCA and degree of polarization uniformity indicates abnormalities of vasculature and pigmented tissues simultaneously.
Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI?
Berko, Netanel S; Hay, Arielle; Sterba, Yonit; Wahezi, Dawn; Levin, Terry L
2015-09-01
Juvenile idiopathic inflammatory myopathy is a rare yet potentially debilitating condition. MRI is used both for diagnosis and to assess response to treatment. No study has evaluated the performance of US elastography in the diagnosis of this condition in children. To assess the performance of compression-strain US elastography in detecting active myositis in children with clinically confirmed juvenile idiopathic inflammatory myopathy and to compare its efficacy to MRI. Children with juvenile idiopathic inflammatory myopathy underwent non-contrast MR imaging as well as compression-strain US elastography of the quadriceps muscles. Imaging findings from both modalities were compared to each other as well as to the clinical determination of active disease based on physical examination and laboratory data. Active myositis on MR was defined as increased muscle signal on T2-weighted images. Elastography images were defined as normal or abnormal based on a previously published numerical scale of muscle elastography in normal children. Muscle echogenicity was graded as normal or abnormal based on gray-scale sonographic images. Twenty-one studies were conducted in 18 pediatric patients (15 female, 3 male; age range 3-19 years). Active myositis was present on MRI in ten cases. There was a significant association between abnormal MRI and clinically active disease (P = 0.012). US elastography was abnormal in 4 of 10 cases with abnormal MRI and in 4 of 11 cases with normal MRI. There was no association between abnormal elastography and either MRI (P > 0.999) or clinically active disease (P > 0.999). Muscle echogenicity was normal in 11 patients; all 11 had normal elastography. Of the ten patients with increased muscle echogenicity, eight had abnormal elastography. There was a significant association between muscle echogenicity and US elastography (P < 0.001). The positive and negative predictive values for elastography in the determination of active myositis were 75% and 31%, respectively, with a sensitivity of 40% and specificity of 67%. Compression-strain US elastography does not accurately detect active myositis in children with juvenile idiopathic inflammatory myopathy and cannot replace MRI as the imaging standard for detecting myositis in these children. The association between abnormal US elastography and increased muscle echogenicity suggests that elastography is capable of detecting muscle derangement in patients with myositis; however further studies are required to determine the clinical significance of these findings.
Nam, Yoonho; Jang, Jinhee; Park, Sonya Youngju; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2018-05-22
To explore the feasibility of using correlation-based time-delay (CTD) maps produced from time-resolved MR angiography (TRMRA) to diagnose perfusion abnormalities in patients suspected to have steno-occlusive lesions in the craniocervical arteries. Twenty-seven patients who were suspected to have steno-occlusive lesions in the craniocervical arteries underwent both TRMRA and brain single-photon emission computed tomography (SPECT). TRMRA was performed on the supra-aortic area after intravenous injection of a 0.03 mmol/kg gadolinium-based contrast agent. Time-to-peak (TTP) maps and CTD maps of the brain were automatically generated from TRMRA data, and their quality was assessed. Detection of perfusion abnormalities was compared between CTD maps and the time-series maximal intensity projection (MIP) images from TRMRA and TTP maps. Correlation coefficients between quantitative changes in SPECT and parametric maps for the abnormal perfusion areas were calculated. The CTD maps were of significantly superior quality than TTP maps (p < 0.01). For perfusion abnormality detection, CTD maps (kappa 0.84, 95% confidence interval [CI] 0.67-1.00) showed better agreement with SPECT than TTP maps (0.66, 0.46-0.85). For perfusion deficit detection, CTD maps showed higher accuracy (85.2%, 95% CI 66.3-95.8) than MIP images (66.7%, 46-83.5), with marginal significance (p = 0.07). In abnormal perfusion areas, correlation coefficients between SPECT and CTD (r = 0.74, 95% CI 0.34-0.91) were higher than those between SPECT and TTP (r = 0.66, 0.20-0.88). CTD maps generated from TRMRA were of high quality and offered good diagnostic performance for detecting perfusion abnormalities associated with steno-occlusive arterial lesions in the craniocervical area. • Generation of perfusion parametric maps from time-resolved MR angiography is clinically useful. • Correlation-based delay maps can be used to detect perfusion abnormalities associated with steno-occlusive craniocervical arteries. • Estimation of correlation-based delay is robust for low signal-to-noise 4D MR data.
Measurements of normal joint angles by goniometry in calves.
Sengöz Şirin, O; Timuçin Celik, M; Ozmen, A; Avki, S
2014-01-01
The aim of this study was to establish normal reference values of the forelimb and hindlimb joint angles in normal Holstein calves. Thirty clinically normal Holstein calves that were free of any detectable musculoskeletal abnormalities were included in the study. A standard transparent plastic goniometer was used to measure maximum flexion, maximum extension, and range-of-motion of the shoulder, elbow, carpal, hip, stifle, and tarsal joints. The goniometric measurements were done on awake calves that were positioned in lateral recumbency. The goniometric values were measured and recorded by two independent investigators. As a result of the study it was concluded that goniometric values obtained from awake calves in lateral recumbency were found to be highly consistent and accurate between investigators (p <0.05). The data of this study acquired objective and useful information on the normal forelimb and hindlimb joint angles in normal Holstein calves. Further studies can be done to predict detailed goniometric values from different diseases and compare them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yun-An, E-mail: yunan@gznc.edu.cn
2016-01-14
The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a newmore » short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.« less
Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).
Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888
Direction detection thresholds of passive self-motion in artistic gymnasts.
Hartmann, Matthias; Haller, Katia; Moser, Ivan; Hossner, Ernst-Joachim; Mast, Fred W
2014-04-01
In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward-rightward) motion. Gymnasts showed lower thresholds for the linear leftward-rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14-20 years) than for the younger (7-13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.
Altered spinal motion in low back pain associated with lumbar strain and spondylosis.
Cheng, Joseph S; Carr, Christopher B; Wong, Cyrus; Sharma, Adrija; Mahfouz, Mohamed R; Komistek, Richard D
2013-04-01
Study Design We present a patient-specific computer model created to translate two-dimensional (2D) fluoroscopic motion data into three-dimensional (3D) in vivo biomechanical motion data. Objective The aim of this study is to determine the in vivo biomechanical differences in patients with and without acute low back pain. Current dynamic imaging of the lumbar spine consists of flexion-extension static radiographs, which lack sensitivity to out-of-plane motion and provide incomplete information on the overall spinal motion. Using a novel technique, in-plane and coupled out-of-plane rotational motions are quantified in the lumbar spine. Methods A total of 30 participants-10 healthy asymptomatic subjects, 10 patients with low back pain without spondylosis radiologically, and 10 patients with low back pain with radiological spondylosis-underwent dynamic fluoroscopy with a 3D-to-2D image registration technique to create a 3D, patient-specific bone model to analyze in vivo kinematics using the maximal absolute rotational magnitude and the path of rotation. Results Average overall in-plane rotations (L1-L5) in patients with low back pain were less than those asymptomatic, with the dominant loss of motion during extension. Those with low back pain also had significantly greater out-of-plane rotations, with 5.5 degrees (without spondylosis) and 7.1 degrees (with spondylosis) more out-of-plane rotational motion per level compared with asymptomatic subjects. Conclusions Subjects with low back pain exhibited greater out-of-plane intersegmental motion in their lumbar spine than healthy asymptomatic subjects. Conventional flexion-extension radiographs are inadequate for evaluating motion patterns of lumbar strain, and assessment of 3D in vivo spinal motion may elucidate the association of abnormal vertebral motions and clinically significant low back pain.
Ploussard, G; Nicolaiew, N; Mongiat-Artus, P; Terry, S; Allory, Y; Vacherot, F; Abbou, C-C; Desgrandchamps, F; Salomon, L; de la Taille, A
2014-06-01
The predictive value of the abnormality side during digital rectal examination (DRE) has never been studied, suggesting that physicians examined the left lobe of the gland as well as the right lobe. We aimed to assess the predictive value of the side of DRE abnormality for prostate cancer (PCa) detection and aggressiveness in right-handed urologists. An analysis of a prospective database was carried out that included all consecutive men undergoing prostate biopsies between 2001 and 2012. The main end point was the predictive value of the abnormality side during DRE for cancer detection in clinically suspicious unilateral T2 disease. The diagnostic performance of left- versus right-sided abnormality was also assessed in terms of sensitivity, specificity and negative/positive predictive values. Overall, 308 patients had a suspicious unilateral clinical disease (detection rate 57.5%). The cancer detection rate was significantly higher in case of left-sided compared with right-sided clinical T2 stage (odds ratio 2.1). In case of left-sided disease, the number of positive cores, the rate of perineural invasion, the rate of primary grade 4 pattern and the percentage of cancer involvement per core were significantly higher compared with those reported for right-sided disease. The predictive value of abnormality laterality for cancer detection and aggressiveness remained statistically independent in multivariate models. The positive predictive value for cancer detection was 64.6 in case of suspicious left-sided disease versus 46.9 in case of right-sided disease. The risks of detecting PCa and aggressive disease on biopsy are significantly higher when DRE reveals a suspicious left-sided clinical disease as compared with right-sided disease. Right-handed physicians should be aware of this variance in diagnostic performance and potential underdetection of left-sided clinical disease, and should improve their examination of the left lobe of the gland by conducting longer exams or changing the patient's position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, P; Cheng, S; Chao, C
Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. Themore » new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during therapy.« less
ERIC Educational Resources Information Center
Samar, Vincent J.; Parasnis, Ila
2007-01-01
Studies have reported a right visual field (RVF) advantage for coherent motion detection by deaf and hearing signers but not non-signers. Yet two studies [Bosworth R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. "Brain and Cognition," 49, 170-181; Samar, V. J., & Parasnis, I. (2005).…
Endoscopy of the upper respiratory tract during treadmill exercise: a clinical study of 100 horses.
Kannegieter, N J; Dore, M L
1995-03-01
Endoscopy of the upper respiratory tract was performed in 100 horses during high speed treadmill exercise. Reasons for endoscopy were a history of an abnormal noise during exercise in 75 horses, poor performance in 17 horses and to evaluate the results of upper respiratory tract surgery in 8 horses. Of the 75 horses with a history of an abnormal noise during exercise the cause was determined in 67 (89%). Endoscopic abnormalities were detected at rest in 40 of these 75 horses (53%). In these 40 horses, a similar diagnosis as to the cause of the abnormal noise was made at rest and during exercise on the treadmill in 19 cases, while in the remaining 21 the endoscopic findings during exercise varied from that seen at rest. This included 3 horses in which a diagnosis was made at rest but no abnormalities were detected during exercise. Some of the findings during treadmill endoscopy included laryngeal dysfunction, grades 3, 4 and 5 (22 cases), dorsal displacement of the soft palate (20), epiglottic entrapment (8), epiglottic flutter (4), aryepiglottic fold flutter (4), pharyngeal collapse (3), arytenoiditis (3), vocal cord flutter (3), false nostril noise (2), pharyngeal lymphoid hyperplasia (2), soft palate haemorrhage (1) and positional arytenoid collapse (1). More than one abnormality was observed during exercise in 7 horses. A complete and correct diagnosis based on the resting endoscopy findings alone was made in 19 (25%) of these 75 cases. In the 17 horses examined because of poor performance, no abnormalities were detected during treadmill endoscopy that were not evident at rest.(ABSTRACT TRUNCATED AT 250 WORDS)
Sisto, Dario; Trojano, Maria; Vetrugno, Michele; Trabucco, Tiziana; Iliceto, Giovanni; Sborgia, Carlo
2005-04-01
To evaluate the effectiveness of visual evoked potentials (VEPs), frequency-doubling perimetry (FDP), standard achromatic perimetry (SAP), contrast sensitivity (CS) test, and magnetic resonance imaging (MRI), isolated or in combination, in detecting subclinical impairment of visual function in multiple sclerosis (MS). Twenty-two eyes of 11 patients affected by clinically definite MS, without a history of optic neuritis and asymptomatic for visual disturbances, underwent full ophthalmic examination and, in addition, VEPs, FDP, SAP, CS, and MRI. Abnormal results were taken to be as follows: for VEPs, a P100 latency >115 ms; for FDP, abnormal mean deviation (MD) or pattern SD (PSD); for SAP, abnormal MD or PSD; for CS, abnormal CS at one spatial frequency, at least; and for MRI, evidence of at least one demyelinating plaque along the visual pathway. VEPs showed abnormal results in 12 eyes (54.4%), FDP in 11 (50%), SAP in 14 (63.6%), CS in 17 (77.1%), and MRI in 16 (72.7%). In only two (9.1%) eyes of the same patient was no abnormality found. No single test detected all the abnormal eyes. Four (18.2%) eyes had pure optic nerve involvement and the remaining 16 (72.7%) had both pre- and postchiasmal involvement. In patients affected by clinically definite MS without history of optic neuritis and no visual symptoms, there is a large prevalence of visual pathway involvement that can be diagnosed only by performing multiple tests. The comparison of the tests is also useful to detect the presence of multiple lesions in the same patient.
The probability of seizures during EEG monitoring in critically ill adults.
Westover, M Brandon; Shafi, Mouhsin M; Bianchi, Matt T; Moura, Lidia M V R; O'Rourke, Deirdre; Rosenthal, Eric S; Chu, Catherine J; Donovan, Samantha; Hoch, Daniel B; Kilbride, Ronan D; Cole, Andrew J; Cash, Sydney S
2015-03-01
To characterize the risk for seizures over time in relation to EEG findings in hospitalized adults undergoing continuous EEG monitoring (cEEG). Retrospective analysis of cEEG data and medical records from 625 consecutive adult inpatients monitored at a tertiary medical center. Using survival analysis methods, we estimated the time-dependent probability that a seizure will occur within the next 72-h, if no seizure has occurred yet, as a function of EEG abnormalities detected so far. Seizures occurred in 27% (168/625). The first seizure occurred early (<30min of monitoring) in 58% (98/168). In 527 patients without early seizures, 159 (30%) had early epileptiform abnormalities, versus 368 (70%) without. Seizures were eventually detected in 25% of patients with early epileptiform discharges, versus 8% without early discharges. The 72-h risk of seizures declined below 5% if no epileptiform abnormalities were present in the first two hours, whereas 16h of monitoring were required when epileptiform discharges were present. 20% (74/388) of patients without early epileptiform abnormalities later developed them; 23% (17/74) of these ultimately had seizures. Only 4% (12/294) experienced a seizure without preceding epileptiform abnormalities. Seizure risk in acute neurological illness decays rapidly, at a rate dependent on abnormalities detected early during monitoring. This study demonstrates that substantial risk stratification is possible based on early EEG abnormalities. These findings have implications for patient-specific determination of the required duration of cEEG monitoring in hospitalized patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.
Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang
2017-12-26
Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.
DOT National Transportation Integrated Search
2014-01-01
A comprehensive field detection method is proposed that is aimed at developing advanced capability for : reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on...
Muthusamy, Natarajan; Breidenbach, Heather; Andritsos, Leslie; Flynn, Joseph; Jones, Jeffrey; Ramanunni, Asha; Mo, Xiaokui; Jarjoura, David; Byrd, John C.; Heerema, Nyla A.
2011-01-01
Reproducible cytogenetic analysis in CLL has been limited by the inability to obtain reliable metaphase cells for analysis. CpG oligonucleotide and cytokine stimulation have been shown to improve metaphase analysis of CLL cytogenetic abnormalities, but is limited by variability in the cytokine receptor levels, stability and biological activity of the cytokine in culture conditions and high costs associated with these reagents. We report here use of a novel, stable CpG, GNKG168 along with pokeweed mitogen (PWM) and phorbol 12-myristate 13-acetate (PMA) for conventional cytogenetic assessment in CLL. We demonstrate that the combined use of GNKG168+PWM/PMA increased the sensitivity of detection of chromosomal abnormalities compared to PWM/PMA (n=207, odds ratio=2.2, p=0.0002) and GNKG168 (n=219, odds ratio=1.5, p=0.0452). Further, a significant increase in sensitivity to detect complexity ≥3 with GNKG168+PWM/PMA compared to GNKG168 alone (odds ratio 8.0, p=0.0022) or PWM/PMA alone (odds ratio 9.6, p=0.0007) was observed. The trend toward detection of higher complexity was significantly greater with GNKG168+PWM/PMA compared to GNKG168 alone (p=0.0412). The increased sensitivity was mainly attributed to the addition of PWM/PMA with GNKG168 because GNKG168 alone showed no difference in sensitivity for detection of complex abnormalities (p=0.17). Comparison of fluorescence in situ hybridization (FISH) results with karyotypic results showed a high degree of consistency, although some complex karyotypes were present in cases with no adverse FISH abnormality. These studies provide evidence for potential use of GNKG168 in combination with PWM and PMA in karyotypic analysis of CLL patient samples to better identify chromosomal abnormalities for risk stratification. PMID:21494579
Using optical flow for the detection of floating mines in IR image sequences
NASA Astrophysics Data System (ADS)
Borghgraef, Alexander; Acheroy, Marc
2006-09-01
In the first Gulf War, unmoored floating mines proved to be a real hazard for shipping traffic. An automated system capable of detecting these and other free-floating small objects, using readily available sensors such as infra-red cameras, would prove to be a valuable mine-warfare asset, and could double as a collision avoidance mechanism, and a search-and-rescue aid. The noisy background provided by the sea surface, and occlusion by waves make it difficult to detect small floating objects using only algorithms based upon the intensity, size or shape of the target. This leads us to look at the sequence of images for temporal detection characteristics. The target's apparent motion is such a determinant, given the contrast between the bobbing motion of the floating object and the strong horizontal component present in the propagation of the wavefronts. We have applied the Proesmans optical flow algorithm to IR video footage of practice mines, in order to extract the motion characteristic and a threshold on the vertical motion characteristic is then imposed to detect the floating targets.
Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R
2005-01-01
Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.
Brophy, Carl M; Hoh, Daniel J
2018-06-01
Cervical disc arthroplasty (CDA) has received widespread attention as an alternative to anterior fusion due to its similar neurological and functional improvement, with the advantage of preservation of segmental motion. As CDA becomes more widely implemented, the potential for unexpected device-related adverse events may be identified. The authors report on a 48-year-old man who presented with progressive neurological deficits 3 years after 2-level CDA was performed. Imaging demonstrated periprosthetic osteolysis of the vertebral endplates at the CDA levels, with a heterogeneously enhancing ventral epidural mass compressing the spinal cord. Diagnostic workup for infectious and neoplastic processes was negative. The presumptive diagnosis was an inflammatory pannus formation secondary to abnormal motion at the CDA levels. Posterior cervical decompression and instrumented fusion was performed without removal of the arthroplasty devices or the ventral epidural mass. Postoperative imaging at 2 months demonstrated complete resolution of the compressive pannus, with associated improvement in clinical symptoms. Follow-up MRI at > 6 months showed no recurrence of the pannus. At 1 year postoperatively, CT scanning revealed improvement in periprosthetic osteolysis. Inflammatory pannus formation may be an unexpected complication of abnormal segmental motion after CDA. This rare etiology of an epidural mass associated with an arthroplasty device should be considered, in addition to workup for other potential infectious or neoplastic mass lesions. In symptomatic individuals, compressive pannus lesions can be effectively treated with fusion across the involved segment without removal of the device.
Abnormal stress echocardiography findings in cardiac amyloidosis.
Ong, Kevin C; Askew, J Wells; Dispenzieri, Angela; Maleszewski, Joseph J; Klarich, Kyle W; Anavekar, Nandan S; Mulvagh, Sharon L; Grogan, Martha
2016-06-01
Cardiac involvement in immunoglobulin light chain (amyloid light chain, AL) amyloidosis is characterized by myocardial interstitial deposition but can also cause obstructive deposits in the coronary microvasculature. We retrospectively identified 20 patients who underwent stress echocardiography within 1 year prior to the histologic diagnosis of AL amyloidosis. Only patients with cardiac amyloidosis and no known obstructive coronary disease were included. Stress echocardiograms (13 exercise; 7 dobutamine) were performed for evaluation of dyspnea and/or chest pain. Stress-induced wall motion abnormalities (WMAs) occurred in 11 patients (55%), 4 of whom had normal left ventricular wall thickness. Coronary angiogram was performed in 9 of 11 patients and demonstrated no or mild epicardial coronary artery disease. Seven (54%) patients had an abnormal exercise blood pressure which occurred with similar likelihood between those with and without stress-induced WMAs. Stress-induced WMAs and abnormal exercise blood pressure may occur in patients with cardiac AL amyloidosis despite the absence of significant epicardial coronary artery disease. This finding should raise the possibility of cardiac amyloidosis even in the absence of significant myocardial thickening.
Incidental renal tumours on low-dose CT lung cancer screening exams.
Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S
2017-06-01
Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P < 0.001). Cases with abnormalities below the diaphragms had shorter median time to diagnosis than those without (71 vs. 160 days, P = 0.004). In the reader study, 64% of renal cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P < 0.001). Conclusion Low-dose computed tomography screens can potentially detect renal cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.
Lakhoo, K; Thomas, D F; Fuenfer, M; D'Cruz, A J
1996-06-01
To analyse the reasons underlying the failure of routine pre-natal ultrasonography to prevent the subsequent development of urinary tract infection (UTI) in children with predisposing urological abnormalities. This retrospective study comprised 39 children (22 females and 17 males) who had at least one documented UTI, the presence of an anatomical anomaly of the urinary tract recognized as predisposing to UTI and had undergone ultrasonography of the urinary tract undertaken in fetal life as part of routine maternal ante-natal ultrasonography. Four categories of patients were defined: Group A, those with normal findings on pre-natal ultrasonography and no urological abnormality detected; Group B, those with a urological abnormality detected but where there was a subsequent failure of communication among clinicians; Group C, those with a urological abnormality but who received inappropriate or sub-optimal post-natal management and; Group D, those with a urological abnormality but who had a UTI despite appropriate post-natal management. In each case, the most severe documented episode of UTI was categorized as: Grade I, asymptomatic bacteriuria; Grade II, mild/moderate symptomatic UTI and; Grade III, severe symptomatic UTI necessitating hospital admission. Group A comprised 22 (56%), Group B three (9%), Group C two (5%) and Group D 12 children (31%). Of the 22 children in Group A, nine experienced a UTI of sufficient severity to necessitate hospital admission. Of the 12 children in Group D only one required hospital admission. The failure of pre-natal ultrasonography to identify the underlying predisposing urological abnormality was the most important factor contributing to subsequent UTI in post-natal life. Failure of communication and inappropriate post-natal management were numerically unimportant. In some children, UTI occurred despite pre-natal detection of their underlying anomaly and appropriate post-natal management. However, in this group the UTI was less severe than in those children whose urological anomalies had not been detected by pre-natal ultrasonography.
Motion measurement of acoustically levitated object
NASA Technical Reports Server (NTRS)
Watkins, John L. (Inventor); Barmatz, Martin B. (Inventor)
1993-01-01
A system is described for determining motion of an object that is acoustically positioned in a standing wave field in a chamber. Sonic energy in the chamber is sensed, and variation in the amplitude of the sonic energy is detected, which is caused by linear motion, rotational motion, or drop shape oscillation of the object. Apparatus for detecting object motion can include a microphone coupled to the chamber and a low pass filter connected to the output of the microphone, which passes only frequencies below the frequency of sound produced by a transducer that maintains the acoustic standing wave field. Knowledge about object motion can be useful by itself, can be useful to determine surface tension, viscosity, and other information about the object, and can be useful to determine the pressure and other characteristics of the acoustic field.
Effect of pressure and padding on motion artifact of textile electrodes.
Cömert, Alper; Honkala, Markku; Hyttinen, Jari
2013-04-08
With the aging population and rising healthcare costs, wearable monitoring is gaining importance. The motion artifact affecting dry electrodes is one of the main challenges preventing the widespread use of wearable monitoring systems. In this paper we investigate the motion artifact and ways of making a textile electrode more resilient against motion artifact. Our aim is to study the effects of the pressure exerted onto the electrode, and the effects of inserting padding between the applied pressure and the electrode. We measure real time electrode-skin interface impedance, ECG from two channels, the motion artifact related surface potential, and exerted pressure during controlled motion by a measurement setup designed to estimate the relation of motion artifact to the signals. We use different foam padding materials with various mechanical properties and apply electrode pressures between 5 and 25 mmHg to understand their effect. A QRS and noise detection algorithm based on a modified Pan-Tompkins QRS detection algorithm estimates the electrode behaviour in respect to the motion artifact from two channels; one dominated by the motion artifact and one containing both the motion artifact and the ECG. This procedure enables us to quantify a given setup's susceptibility to the motion artifact. Pressure is found to strongly affect signal quality as is the use of padding. In general, the paddings reduce the motion artifact. However the shape and frequency components of the motion artifact vary for different paddings, and their material and physical properties. Electrode impedance at 100 kHz correlates in some cases with the motion artifact but it is not a good predictor of the motion artifact. From the results of this study, guidelines for improving electrode design regarding padding and pressure can be formulated as paddings are a necessary part of the system for reducing the motion artifact, and further, their effect maximises between 15 mmHg and 20 mmHg of exerted pressure. In addition, we present new methods for evaluating electrode sensitivity to motion, utilizing the detection of noise peaks that fall into the same frequency band as R-peaks.
Mirsky, David M; Shekdar, Karuna V; Bilaniuk, Larissa T
2012-08-01
Abnormalities of the fetal head and neck may be seen in isolation or in association with central nervous system abnormalities, chromosomal abnormalities, and syndromes. Magnetic resonance imaging (MRI) plays an important role in detecting associated abnormalities of the brain as well as in evaluating for airway obstruction that may impact prenatal management and delivery planning. This article provides an overview of the common indications for MRI of the fetal head and neck, including abnormalities of the fetal skull and face, masses of the face and neck, and fetal goiter. Copyright © 2012 Elsevier Inc. All rights reserved.
Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheriyadat, Anil M.
Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less
Anomaly detection in forward looking infrared imaging using one-class classifiers
NASA Astrophysics Data System (ADS)
Popescu, Mihail; Stone, Kevin; Havens, Timothy; Ho, Dominic; Keller, James
2010-04-01
In this paper we describe a method for generating cues of possible abnormal objects present in the field of view of an infrared (IR) camera installed on a moving vehicle. The proposed method has two steps. In the first step, for each frame, we generate a set of possible points of interest using a corner detection algorithm. In the second step, the points related to the background are discarded from the point set using an one class classifier (OCC) trained on features extracted from a local neighborhood of each point. The advantage of using an OCC is that we do not need examples from the "abnormal object" class to train the classifier. Instead, OCC is trained using corner points from images known to be abnormal object free, i.e., that contain only background scenes. To further reduce the number of false alarms we use a temporal fusion procedure: a region has to be detected as "interesting" in m out of n, m
Yu, Xiao-Guang; Li, Yuan-Qing; Zhu, Wei-Bin; Huang, Pei; Wang, Tong-Tong; Hu, Ning; Fu, Shao-Yun
2017-05-25
Melamine sponge, also known as nano-sponge, is widely used as an abrasive cleaner in our daily life. In this work, the fabrication of a wearable strain sensor for human motion detection is first demonstrated with a commercially available nano-sponge as a starting material. The key resistance sensitive material in the wearable strain sensor is obtained by the encapsulation of a carbonized nano-sponge (CNS) with silicone resin. The as-fabricated CNS/silicone sensor is highly sensitive to strain with a maximum gauge factor of 18.42. In addition, the CNS/silicone sensor exhibits a fast and reliable response to various cyclic loading within a strain range of 0-15% and a loading frequency range of 0.01-1 Hz. Finally, the CNS/silicone sensor as a wearable device for human motion detection including joint motion, eye blinking, blood pulse and breathing is demonstrated by attaching the sensor to the corresponding parts of the human body. In consideration of the simple fabrication technique, low material cost and excellent strain sensing performance, the CNS/silicone sensor is believed to have great potential in the next-generation of wearable devices for human motion detection.
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-09-09
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.
Barbés, Benigno; Azcona, Juan Diego; Prieto, Elena; de Foronda, José Manuel; García, Marina; Burguete, Javier
2015-09-08
A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out-of-tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in-house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET.
Four Types of Pulse Oximeters Accurately Detect Hypoxia during Low Perfusion and Motion.
Louie, Aaron; Feiner, John R; Bickler, Philip E; Rhodes, Laura; Bernstein, Michael; Lucero, Jennifer
2018-03-01
Pulse oximeter performance is degraded by motion artifacts and low perfusion. Manufacturers developed algorithms to improve instrument performance during these challenges. There have been no independent comparisons of these devices. We evaluated the performance of four pulse oximeters (Masimo Radical-7, USA; Nihon Kohden OxyPal Neo, Japan; Nellcor N-600, USA; and Philips Intellivue MP5, USA) in 10 healthy adult volunteers. Three motions were evaluated: tapping, pseudorandom, and volunteer-generated rubbing, adjusted to produce photoplethsmogram disturbance similar to arterial pulsation amplitude. During motion, inspired gases were adjusted to achieve stable target plateaus of arterial oxygen saturation (SaO2) at 75%, 88%, and 100%. Pulse oximeter readings were compared with simultaneous arterial blood samples to calculate bias (oxygen saturation measured by pulse oximetry [SpO2] - SaO2), mean, SD, 95% limits of agreement, and root mean square error. Receiver operating characteristic curves were determined to detect mild (SaO2 < 90%) and severe (SaO2 < 80%) hypoxemia. Pulse oximeter readings corresponding to 190 blood samples were analyzed. All oximeters detected hypoxia but motion and low perfusion degraded performance. Three of four oximeters (Masimo, Nellcor, and Philips) had root mean square error greater than 3% for SaO2 70 to 100% during any motion, compared to a root mean square error of 1.8% for the stationary control. A low perfusion index increased error. All oximeters detected hypoxemia during motion and low-perfusion conditions, but motion impaired performance at all ranges, with less accuracy at lower SaO2. Lower perfusion degraded performance in all but the Nihon Kohden instrument. We conclude that different types of pulse oximeters can be similarly effective in preserving sensitivity to clinically relevant hypoxia.
4D numerical observer for lesion detection in respiratory-gated PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorsakul, Auranuch; Li, Quanzheng; Ouyang, Jinsong
2014-10-15
Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated usingmore » a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was compared to the conventional 3D approach applied on the nongated and motion-corrected images. Results: On average, the proposed 4D numerical observer improved the detection SNR by 48.6% (p < 0.005), whereas the 3D methods on motion-corrected images improved by 31.0% (p < 0.005) as compared to the nongated method. For all different conditions of the lesions, the relative SNR measurement (Gain = SNR{sub Observed}/SNR{sub Nongated}) of the 4D method was significantly higher than one from the motion-corrected 3D method by 13.8% (p < 0.02), where Gain{sub 4D} was 1.49 ± 0.21 and Gain{sub 3D} was 1.31 ± 0.15. For the lesion with the highest amplitude of motion, the 4D numerical observer yielded the highest observer-performance improvement (176%). For the lesion undergoing the smallest motion amplitude, the 4D method provided superior lesion detectability compared with the 3D method, which provided a detection SNR close to the nongated method. The investigation on a structure of the 4D numerical observer showed that a Laguerre–Gaussian channel matrix with a volumetric 3D function yielded higher lesion-detection performance than one with a 2D-stack-channelized function, whereas a different kind of channels that have the ability to mimic the human visual system, i.e., difference-of-Gaussian, showed similar performance in detecting uniform and spherical lesions. The investigation of the detection performance when increasing noise levels yielded decreasing detection SNR by 27.6% and 41.5% for the nongated and gated methods, respectively. The investigation of lesion contrast and diameter showed that the proposed 4D observer preserved the linearity property of an optimal-linear observer while the motion was present. Furthermore, the investigation of the iteration and subset numbers of the OSEM algorithm demonstrated that these parameters had impact on the lesion detectability and the selection of the optimal parameters could provide the maximum lesion-detection performance. The proposed 4D numerical observer outperformed the other observers for the lesion-detection task in various lesion conditions and motions. Conclusions: The 4D numerical observer shows substantial improvement in lesion detectability over the 3D observer method. The proposed 4D approach could potentially provide a more reliable objective assessment of the impact of respiratory-gated PET improvement for lesion-detection tasks. On the other hand, the 4D approach may be used as an upper bound to investigate the performance of the motion correction method. In future work, the authors will validate the proposed 4D approach on clinical data for detection tasks in pulmonary oncology.« less
Development of a vision non-contact sensing system for telerobotic applications
NASA Astrophysics Data System (ADS)
Karkoub, M.; Her, M.-G.; Ho, M.-I.; Huang, C.-C.
2013-08-01
The study presented here describes a novel vision-based motion detection system for telerobotic operations such as distant surgical procedures. The system uses a CCD camera and image processing to detect the motion of a master robot or operator. Colour tags are placed on the arm and head of a human operator to detect the up/down, right/left motion of the head as well as the right/left motion of the arm. The motion of the colour tags are used to actuate a slave robot or a remote system. The determination of the colour tags' motion is achieved through image processing using eigenvectors and colour system morphology and the relative head, shoulder and wrist rotation angles through inverse dynamics and coordinate transformation. A program is used to transform this motion data into motor control commands and transmit them to a slave robot or remote system through wireless internet. The system performed well even in complex environments with errors that did not exceed 2 pixels with a response time of about 0.1 s. The results of the experiments are available at: http://www.youtube.com/watch?v=yFxLaVWE3f8 and http://www.youtube.com/watch?v=_nvRcOzlWHw
Ma, Wang Kei; Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter
2017-03-01
Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ 2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ 2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring.
Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter
2017-01-01
Objective: Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. Methods: 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. Results: The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. Conclusion: According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring. PMID:28134567
Intraventricular flow alterations due to dyssynchronous wall motion
NASA Astrophysics Data System (ADS)
Pope, Audrey M.; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind
2015-11-01
Roughly 30% of patients with systolic heart failure suffer from left ventricular dyssynchrony (LVD), in which mechanical discoordination of the ventricle walls leads to poor hemodynamics and suboptimal cardiac function. There is currently no clear mechanistic understanding of how abnormalities in septal-lateral (SL) wall motion affects left ventricle (LV) function, which is needed to improve the treatment of LVD using cardiac resynchronization therapy. We use an experimental flow phantom with an LV physical model to study mechanistic effects of SL wall motion delay on LV function. To simulate mechanical LVD, two rigid shafts were coupled to two segments (apical and mid sections) along the septal wall of the LV model. Flow through the LV model was driven using a piston pump, and stepper motors coupled to the above shafts were used to locally perturb the septal wall segments relative to the pump motion. 2D PIV was used to examine the intraventricular flow through the LV physical model. Alterations to SL delay results in a reduction in the kinetic energy (KE) of the flow field compared to synchronous SL motion. The effect of varying SL motion delay from 0% (synchronous) to 100% (out-of-phase) on KE and viscous dissipation will be presented. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).
Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.
Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A
2004-11-09
Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.
Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.
Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki
2015-01-01
As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.
A model describing vestibular detection of body sway motion.
NASA Technical Reports Server (NTRS)
Nashner, L. M.
1971-01-01
An experimental technique was developed which facilitated the formulation of a quantitative model describing vestibular detection of body sway motion in a postural response mode. All cues, except vestibular ones, which gave a subject an indication that he was beginning to sway, were eliminated using a specially designed two-degree-of-freedom platform; body sway was then induced and resulting compensatory responses at the ankle joints measured. Hybrid simulation compared the experimental results with models of the semicircular canals and utricular otolith receptors. Dynamic characteristics of the resulting canal model compared closely with characteristics of models which describe eye movement and subjective responses to body rotational motions. The average threshold level, in the postural response mode, however, was considerably lower. Analysis indicated that the otoliths probably play no role in the initial detection of body sway motion.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.
1987-01-01
Eye movements and subjective detection of acceleration were measured on human experimental subjects during vestibular sled acceleration during the D1 Spacelab Mission. Methods and results are reported on the time to detection of small acceleration steps, the threshold for detection of linear acceleration, perceived motion path, and CLOAT. A consistently shorter time to detection of small acceleration steps is found. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth.
Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.
Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M
2010-01-01
Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.
The UKIDSS-2MASS proper motion survey - I. Ultracool dwarfs from UKIDSS DR4
NASA Astrophysics Data System (ADS)
Deacon, N. R.; Hambly, N. C.; King, R. R.; McCaughrean, M. J.
2009-04-01
The UK Infrared Telescope Infrared Deep Sky Survey (UKIDSS) is the first of a new generation of infrared surveys. Here, we combine the data from two UKIDSS components, the Large Area Survey (LAS) and the Galactic Cluster Survey (GCS), with Two-Micron All-Sky Survey (2MASS) data to produce an infrared proper motion survey for low-mass stars and brown dwarfs. In total, we detect 267 low-mass stars and brown dwarfs with significant proper motions. We recover all 10 known single L dwarfs and the one known T dwarf above the 2MASS detection limit in our LAS survey area and identify eight additional new candidate L dwarfs. We also find one new candidate L dwarf in our GCS sample. Our sample also contains objects from 11 potential common proper motion binaries. Finally, we test our proper motions and find that while the LAS objects have proper motions consistent with absolute proper motions, the GCS stars may have proper motions which are significantly underestimated. This is possibly due to the bulk motion of some of the local astrometric reference stars used in the proper motion determination.
DeMarzo, Arthur P
2013-06-01
Early detection of cardiovascular disease (CVD) in prehypertension could initiate appropriate treatment and prevent progression. Impedance cardiography (ICG) is a noninvasive technology that can be used to assess cardiovascular function. This study used ICG waveform analysis with postural change to detect CVD in asymptomatic prehypertensive adults over 40 years of age with no history of CVD and at least 2 cardiovascular risk factors: cigarette smoking, poor diet, physical inactivity, central obesity, family history of premature CVD, elevated blood glucose, and dyslipidemia. A study group of 25 apparently healthy adults was tested by ICG in standing and supine positions. Criteria for an age-matched control group of 16 healthy subjects included an active lifestyle, no risk factor, and no history of CVD. In addition to hemodynamic measurements of systemic vascular resistance (SVR) and cardiac index (CI), ICG used SVR to assess vascular resistive load, an index of arterial compliance and a widening of the systolic waveform to assess vascular pulsatile load, and waveform analysis and measured wave amplitude to detect ventricular dysfunction. All subjects in the study group had some abnormal ICG data, with an average of 2.9 ± 1.5 abnormalities per person. ICG indicated that 24 (96%) had elevated vascular load, 13 (52%) had some type of ventricular dysfunction, and 12 (48%) had abnormal hemodynamics. For the control group, ICG showed none (0%) with elevated vascular load, none (0%) with ventricular dysfunction, and 7 (44%) with high CI. Prehypertensives over 40 years of age with multiple risk factors have different cardiovascular abnormalities. This ICG test could be used as part of a prevention program for early detection of CVD. An abnormal ICG test could expedite the initiation of customized treatment that targets the subclinical CVD.
McGahan, John P; Moon-Grady, Anita J; Pahwa, Anokh; Towner, Dena; Rhee-Morris, Laila; Gerscovich, Eugenio O; Fogata, Maria
2007-11-01
The goal of this study was to analyze our recent experience with fetuses with transposition of the great arteries (TGA) to identify potential pitfalls and possible methods to better detect conotruncal anomalies such as TGA. We analyzed all nonreferral obstetric ultrasound examinations in which we performed basic, targeted, or formal fetal echocardiography with a newborn diagnosis of TGA. Nine neonates had TGA. Five of these cases were diagnosed prenatally, and 4 of these had complex congenital heart abnormalities. In these 4 cases, there were abnormalities in the cardiac axis (n = 3), abnormal valves or ventricular size (n = 2), and ventricular septal defects (n = 3) that were detected on the 4-chamber view of the heart. In all cases that were not detected prenatally, both prospective and retrospective reviews of the 4-chamber heart appeared normal. The prospective analyses of the outflow tracts were all interpreted as normal, whereas the retrospective review showed subtle abnormalities such as the "baby bird's beak" image. In review of these cases, there was failure to show the "crisscross" relationship of the outflow tracts. In 1 case, 5 short axis views of the heart, retrospectively showed the artery originating from the left ventricle and bifurcated, representing the pulmonary artery. Transposition of the great arteries may be associated with complex cardiac disease that could be detected on the 4-chamber view of the heart. When the 4-chamber view is normal, it is important to identify the crisscross relationship of the outflow tracts. If this is not done, it is important to document that the pulmonary artery bifurcates and originates from the right ventricle. Five short axis views of the heart may be helpful to detect conotruncal abnormalities.
Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo; Germano, Guido
2004-10-01
The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after 99mTc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%+/-3% vs 1.9%+/-4.9% p=NS) and inward septal motion (3+/-4.9 mm vs 2.3+/-6.1 mm p=NS), significant differences were observed in both perfusion (74.7%+/-6.2% vs 63.3%+/-13%, p>0.0001) and regional wall thickening (17.2%+/-7.4% vs 12.6%+/-7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population.
de Abreu, André L. P.; Nogara, Paula R. B.; Souza, Raquel P.; da Silva, Mariana C.; Uchimura, Nelson S.; Zanko, Rodrigo L.; Ferreira, Érika C.; Tognim, Maria C. B.; Teixeira, Jorge J. V.; Gimenes, Fabrícia; Consolaro, Marcia E. L.
2012-01-01
The question of whether Chlamydia trachomatis (Ct) is a cofactor for human Papillomavirus (HPV) in cervical carcinogenesis is still controversial. We conducted a molecular detection study of both infections in 622 Brazilian women, including 252 women with different grades of abnormal cervical cytology and cervical cancer (CC; cases) and 370 women with normal cytology (controls). Although Ct infection did not seem related to CC carcinogenicity, women with abnormal cytology had a significant high rate of Ct infection. Therefore, it is important to adopt protocols for diagnosis and treatment of this bacterium in conjunction with screening for CC in this population. PMID:23128289
NASA Astrophysics Data System (ADS)
Zhao, Lili; Yin, Jianping; Yuan, Lihuan; Liu, Qiang; Li, Kuan; Qiu, Minghui
2017-07-01
Automatic detection of abnormal cells from cervical smear images is extremely demanded in annual diagnosis of women's cervical cancer. For this medical cell recognition problem, there are three different feature sections, namely cytology morphology, nuclear chromatin pathology and region intensity. The challenges of this problem come from feature combination s and classification accurately and efficiently. Thus, we propose an efficient abnormal cervical cell detection system based on multi-instance extreme learning machine (MI-ELM) to deal with above two questions in one unified framework. MI-ELM is one of the most promising supervised learning classifiers which can deal with several feature sections and realistic classification problems analytically. Experiment results over Herlev dataset demonstrate that the proposed method outperforms three traditional methods for two-class classification in terms of well accuracy and less time.
Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection
Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem
2013-01-01
The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629
Online least squares one-class support vector machines-based abnormal visual event detection.
Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem
2013-12-12
The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.
Algebally, Ahmed M; Yousef, Reda Ramadan Hussein; Badr, Sanaa Sayed Hussein; Al Obeidly, Amal; Szmigielski, Wojciech; Al Ibrahim, Abdullah A
2014-01-01
The purpose of the study was to evaluate the role of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnostics and management of abnormal placentation in women with placenta previa and to compare the morbidity associated with that to placenta previa alone. The study includes 100 pregnant women with placenta previa with and without abnormal placentation. The results of MRI and US in abnormal placentation were compared with post-operative data. The patients' files were reviewed for assessment of operative and post-operative morbidity. The results of our statistical analysis were compared with data from the literature. US and MRI showed no significant difference in sensitivity and specificity in diagnosing abnormal placentation (97-100% and 94-100%, respectively). MRI was more sensitive than US for the detection of myometrial invasion and the type of abnormal placentation (73.5% and 47%, respectively). The difference between pre- and post-operative hemoglobin values and estimated blood loss were the most significant risk factors for abnormal placentation, added to risk factors known for placenta previa. Post-partum surgical complications and prolonged hospital stay were more common in the cases of placenta previa with abnormal placentation, however statistically insignificant. US and MRI are accurate imaging modalities for diagnosing abnormal placentation. MRI was more sensitive for the detection of the degree of placental invasion. The patient's morbidity increased in cases with abnormal placentation. There was no significant difference in post operative-complications and hospitalization time due to pre-operative planning when the diagnosis was established with US and MRI.
Comparison of robot surgery modular and total knee arthroplasty kinematics.
Yildirim, Gokce; Fernandez-Madrid, Ivan; Schwarzkopf, Ran; Walker, Peter S; Karia, Raj
2014-04-01
The kinematics of seven knee specimens were measured from 0 to 120 degrees flexion using an up-and-down crouching machine. Motion was characterized by the positions of the centers of the lateral and medial femoral condyles in the anterior-posterior direction relative to a fixed tibia. A modular unicompartmental knee, trochlea flange, and patella resurfacing (multicompartmental knee [MCK] system) were implanted using a surgeon-interactive robot system that provided accurate surface matching. The MCK was tested, followed by standard cruciate retaining (CR) and posterior stabilized (PS) knees. The motion of the MCK was close to anatomic, especially on the medial side, in contrast to the CR and PS knees that showed abnormal motion features. Such a modular knee system, accurately inserted, has the potential for close to normal function in clinical application. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Changes in gastric myoelectric activity during space flight
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Sandoz, Gwenn R.; Stern, Robert M.
2002-01-01
The purpose of the present study was to examine postprandial myoelectric activity of the stomach and gastric activity associated with space motion sickness using electrogastrography. Three crewmembers participated in this investigation. Preflight, subjects exhibited normal postprandial responses to the ingestion of a meal. Inflight, crewmembers exhibited an abnormal decrease in the power of the normal gastric slow wave after eating on flight day 1, but had a normal postprandial response by flight day 3. Prior to and during episodes of nausea and vomiting, the electrical activity of the stomach became dysrhythmic with 60-80% of the spectral power in the bradygastric and tachygastric frequency ranges. These findings indicate that gastric motility may be decreased during the first few days of space flight. In addition, changes in the frequency of the gastric slow wave associated with space motion sickness symptoms are consistent with those reported for laboratory-induced motion sickness.
Cardot, J C; Berthout, P; Verdenet, J; Bidet, A; Faivre, R; Bassand, J P; Bidet, R; Maurat, J P
1982-01-01
Regional and global left ventricular wall motion was assessed in 120 patients using radionuclide cineangiography (RCA) and contrast angiography. Functional imaging procedures based on a temporal Fourier analysis of dynamic image sequences were applied to the study of cardiac contractility. Two images were constructed by taking the phase and amplitude values of the first harmonic in the Fourier transform for each pixel. These two images aided in determining the perimeter of the left ventricle to calculate the global ejection fraction. Regional left ventricular wall motion was studied by analyzing the phase value and by examining the distribution histogram of these values. The accuracy of global ejection fraction calculation was improved by the Fourier technique. This technique increased the sensitivity of RCA for determining segmental abnormalities especially in the left anterior oblique view (LAO).
Harbert, Simeon D; Jaiswal, Tushar; Harley, Linda R; Vaughn, Tyler W; Baranak, Andrew S
2013-01-01
The low cost, simple, robust, mobile, and easy to use Mobile Motion Capture (MiMiC) system is presented and the constraints which guided the design of MiMiC are discussed. The MiMiC Android application allows motion data to be captured from kinematic modules such as Shimmer 2r sensors over Bluetooth. MiMiC is cost effective and can be used for an entire day in a person's daily routine without being intrusive. MiMiC is a flexible motion capture system which can be used for many applications including fall detection, detection of fatigue in industry workers, and analysis of individuals' work patterns in various environments.
NASA Astrophysics Data System (ADS)
Kaida, Yukiko; Murakami, Toshiyuki
A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.
Motion camera based on a custom vision sensor and an FPGA architecture
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel
1998-09-01
A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.
Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study
NASA Astrophysics Data System (ADS)
Werner, René; Gauer, Tobias
2015-03-01
Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.
Motion dazzle and camouflage as distinct anti-predator defenses.
Stevens, Martin; Searle, W Tom L; Seymour, Jenny E; Marshall, Kate L A; Ruxton, Graeme D
2011-11-25
Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.
Christodoulidis, Georgios; Kundoor, Vishwa; Kaluski, Edo
2017-08-28
BACKGROUND Various physical and emotional factors have been previously described as triggers for stress induced cardiomyopathy. However, acute myocardial infarction as a trigger has never been reported. CASE REPORT We describe four patients who presented with an acute myocardial infarction, in whom the initial echocardiography revealed wall motion abnormalities extending beyond the coronary distribution of the infarct artery. Of the four patients identified, the mean age was 59 years; three patients were women and two patients had underlying psychiatric history. Electrocardiogram revealed ST elevation in the anterior leads in three patients; QTc was prolonged in all cases. All patients had ≤ moderately elevated troponin. Single culprit lesion was found uniformly in the proximal or mid left anterior descending artery. Initial echocardiography revealed severely reduced ejection fraction with relative sparing of the basal segments, whereas early repeat echocardiography revealed significant improvement in the left ventricular function in all patients. CONCLUSIONS This is the first case series demonstrating that acute myocardial infarction can trigger stress induced cardiomyopathy. Extensive reversible wall motion abnormalities, beyond the ones expected from angiography, accompanied by modest elevation in troponin and marked QTc prolongation, suggest superimposed stress induced cardiomyopathy.
Defining the computational structure of the motion detector in Drosophila
Clark, Damon A.; Bursztyn, Limor; Horowitz, Mark; Schnitzer, Mark J.; Clandinin, Thomas R.
2011-01-01
SUMMARY Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt Correlator (HRC), relates visual inputs to neural and behavioral responses to motion, but the circuits that implement this computation remain unknown. Using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, “reverse phi”, that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. PMID:21689602
Roy, Basudev; Bera, Sudipta K; Banerjee, Ayan
2014-06-01
We describe a simple yet powerful technique of simultaneously measuring both translational and rotational motion of mesoscopic particles in optical tweezers by measuring the backscattered intensity on a quadrant photodiode (QPD). While the measurement of translational motion by taking the difference of the backscattered intensity incident on adjacent quadrants of a QPD is well known, we demonstrate that rotational motion can be measured very precisely by taking the difference between the diagonal quadrants. The latter measurement eliminates the translational component entirely and leads to a detection sensitivity of around 50 mdeg at S/N of 2 for angular motion of a driven microrod. The technique is also able to resolve the translational and rotational Brownian motion components of the microrod in an unperturbed trap and can be very useful in measuring translation-rotation coupling of micro-objects induced by hydrodynamic interactions.
Data based abnormality detection
NASA Astrophysics Data System (ADS)
Purwar, Yashasvi
Data based abnormality detection is a growing research field focussed on extracting information from feature rich data. They are considered to be non-intrusive and non-destructive in nature which gives them a clear advantage over conventional methods. In this study, we explore different streams of data based anomalies detection. We propose extension and revisions to existing valve stiction detection algorithm supported with industrial case study. We also explored the area of image analysis and proposed a complete solution for Malaria diagnosis. The proposed method is tested over images provided by pathology laboratory at Alberta Health Service. We also address the robustness and practicality of the solution proposed.
Abnormal Superior Temporal Connectivity During Fear Perception in Schizophrenia
Leitman, David I.; Loughead, James; Wolf, Daniel H.; Ruparel, Kosha; Kohler, Christian G.; Elliott, Mark A.; Bilker, Warren B.; Gur, Raquel E.; Gur, Ruben C.
2008-01-01
Patients with schizophrenia have difficulty in decoding facial affect. A study using event–related functional neuroimaging indicated that errors in fear detection in schizophrenia are associated with paradoxically higher activation in the amygdala and an associated network implicated in threat detection. Furthermore, this exaggerated activation to fearful faces correlated with severity of flat affect. These findings suggest that abnormal threat detection processing may reflect disruptions between nodes that comprise the affective appraisal circuit. Here we examined connectivity within this network by determining the pattern of intercorrelations among brain regions (regions of interest) significantly activated during fear identification in both healthy controls and patients using a novel procedure CORANOVA. This analysis tests differences in the interregional correlation strength between schizophrenia and healthy controls. Healthy subjects' task activation was principally characterized by robust correlations between medial structures like thalamus (THA) and amygdala (AMY) and middle frontal (MF), inferior frontal (IF), and prefrontal cortical (PFC) regions. In contrast, schizophrenia patients displayed no significant correlations between the medial regions and either MF or IF. Further, patients had significantly higher correlations between occipital lingual gyrus and superior temporal gyrus than healthy subjects. These between-group connectivity differences suggest that schizophrenia threat detection impairment may stem from abnormal stimulus integration. Such abnormal integration may disrupt the evaluation of threat within fronto-cortical regions. PMID:18550592
Song, Pengfei; Zhao, Heng; Urban, Matthew W.; Manduca, Armando; Pislaru, Sorin V.; Kinnick, Randall R.; Pislaru, Cristina; Greenleaf, James F.; Chen, Shigao
2013-01-01
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638
Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René
2018-06-01
Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.
Spine abnormalities depicted by magnetic resonance imaging in adolescent rowers.
Maurer, Marvin; Soder, Ricardo Bernardi; Baldisserotto, Matteo
2011-02-01
Most lesions of the spine of athletes, which often are detected incidentally, do not cause important symptoms or make the athletes discontinue their physical activities. To better understand the significance of these lesions, new imaging studies have been conducted with asymptomatic athletes in several sports, aiming to detect potentially deleterious and disabling abnormalities. To compare the magnetic resonance imaging (MRI) lumbar spine findings in a group of asymptomatic adolescent rowers and in a control group of adolescents matched according to age and sex who do not practice any regular physical activity. Cohort study (prevalence); Level of evidence, 3. Our study evaluated 44 asymptomatic adolescent boys distributed in 2 groups of 22 rowers and 22 control subjects. All the examinations were performed using a 0.35-T open-field MRI unit and evaluated by 2 experienced radiologists blinded to the study groups. Each MRI scan was analyzed for the presence of disc degeneration/desiccation, herniated or bulging disc, pars interarticularis stress reaction, and spondylolysis. The Student t test and the Fisher exact test were used for statistical analyses. Nine rowers (40.9%) had at least 1 abnormality detected by MRI in the lumbar spine, whereas only 2 participants (9.1%) in the control group had at least 1 MRI abnormality (P = .03). Seven disc changes (31.8%) and 6 pars abnormalities (27.3%) were found in the group of elite rowers. In the control group, 3 disc changes (13.6%) and no pars abnormalities were found in the MR scans. The comparison between groups showed statistically significant differences in stress reaction of the pars articularis. Disc disease and pars interarticularis stress reaction are prevalent abnormalities of the lumbar spine of high-performance rowers.
Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît
2017-01-01
MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.
An automatic fall detection framework using data fusion of Doppler radar and motion sensor network.
Liu, Liang; Popescu, Mihail; Skubic, Marjorie; Rantz, Marilyn
2014-01-01
This paper describes the ongoing work of detecting falls in independent living senior apartments. We have developed a fall detection system with Doppler radar sensor and implemented ceiling radar in real senior apartments. However, the detection accuracy on real world data is affected by false alarms inherent in the real living environment, such as motions from visitors. To solve this issue, this paper proposes an improved framework by fusing the Doppler radar sensor result with a motion sensor network. As a result, performance is significantly improved after the data fusion by discarding the false alarms generated by visitors. The improvement of this new method is tested on one week of continuous data from an actual elderly person who frequently falls while living in her senior home.
TH-AB-202-07: Radar Tracking of Respiratory Motion in Real Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, A; Li, C; Torres, C
Purpose: To propose a method of real time tracking of respiratory motion in patients undergoing radiation therapy. Radar technology can be employed to detection the movement of diaphragm and thoracic anatomy. Methods: A radar transceiver was specially designed. During experiment, the radar device was securely attached to a fixed frame. Respiratory motion was simulated with: 1) Varian RPM phantom, 2) Standard Imaging Respiratory Gating Platform. Signals recorded with radar equipment were compared with those measured with Varian RPM system as a reference. Results: Motion generated by Varian RPM phantom was recorded by the radar device, and compared to the signalsmore » recorded by RPM camera. The results showed exact agreement between the two monitoring equipments. Motion was also generated by Standard Imaging Respiratory Motion Platform. The results showed the radar device was capable of measuring motion of various amplitudes and periods. Conclusion: The proposed radar device is able to measure movements such as respiratory motion. Compared to state-of-the-art respiratory detection instrument, the radar device is shown to be equally precise and effective for monitoring respiration in radiation oncology patients.« less
Secular Extragalactic Parallax and Geometric Distances with Gaia Proper Motions
NASA Astrophysics Data System (ADS)
Paine, Jennie; Darling, Jeremiah K.
2018-06-01
The motion of the Solar System with respect to the cosmic microwave background (CMB) rest frame creates a well measured dipole in the CMB, which corresponds to a linear solar velocity of about 78 AU/yr. This motion causes relatively nearby extragalactic objects to appear to move compared to more distant objects, an effect that can be measured in the proper motions of nearby galaxies. An object at 1 Mpc and perpendicular to the CMB apex will exhibit a secular parallax, observed as a proper motion, of 78 µas/yr. The relatively large peculiar motions of galaxies make the detection of secular parallax challenging for individual objects. Instead, a statistical parallax measurement can be made for a sample of objects with proper motions, where the global parallax signal is modeled as an E-mode dipole that diminishes linearly with distance. We present preliminary results of applying this model to a sample of nearby galaxies with Gaia proper motions to detect the statistical secular parallax signal. The statistical measurement can be used to calibrate the canonical cosmological “distance ladder.”
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Keun, E-mail: ykkim@handong.edu; Kim, Kyung-Soo
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-basedmore » sensor, the system is expected to be highly robust to sea weather conditions.« less
NASA Astrophysics Data System (ADS)
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
A 1500 deg2 near infrared proper motion catalogue from the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Smith, Leigh; Lucas, P. W.; Burningham, B.; Jones, H. R. A.; Smart, R. L.; Andrei, A. H.; Catalán, S.; Pinfield, D. J.
2014-02-01
The United Kingdom Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) began in 2005, with the start of the UKIDSS programme as a 7 year effort to survey roughly 4000 deg2 at high Galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of two epoch J band observations, with an epoch baseline greater than 2 years to calculate proper motions. We present a near-infrared proper motion catalogue for the 1500 deg2 of the two epoch LAS data, which includes 135 625 stellar sources and a further 88 324 with ambiguous morphological classifications, all with motions detected above the 5σ level. We developed a custom proper motion pipeline which we describe here. Our catalogue agrees well with the proper motion data supplied for a 300 deg2 subset in the current Wide Field Camera Science Archive (WSA) 10th data release (DR10) catalogue, and in various optical catalogues, but it benefits from a larger matching radius and hence a larger upper proper motion detection limit. We provide absolute proper motions, using LAS galaxies for the relative to absolute correction. By using local second-order polynomial transformations, as opposed to linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by the UKIDSS pipeline. We present the results of proper motion searches for new brown dwarfs and white dwarfs. We discuss 41 sources in the WSA DR10 overlap with our catalogue with proper motions >300 mas yr-1, several of which are new detections. We present 15 new candidate ultracool dwarf binary systems.
Figure-ground segregation can rely on differences in motion direction.
Kandil, Farid I; Fahle, Manfred
2004-12-01
If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.
Optic flow detection is not influenced by visual-vestibular congruency.
Holten, Vivian; MacNeilage, Paul R
2018-01-01
Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.
Ran, Hong; Zhang, Ping-Yang; Zhang, You-Xiang; Zhang, Jian-Xin; Wu, Wen-Fang; Dong, Jing; Ma, Xiao-Wu
2016-08-01
To determine whether 3-dimensional (3D) speckle-tracking echocardiography could provide a new way to assess myocardial viability in patients with myocardial infarction (MI). Forty-five patients with MI underwent routine echocardiography, 2-dimensional (2D) speckle-tracking echocardiography, and 3D speckle-tracking echocardiography. Radionuclide myocardial perfusion/metabolic imaging was used as a reference standard to define viable and nonviable myocardia. Among 720 myocardial segments in 45 patients, 368 showed abnormal motion on routine echocardiography; 204 of 368 were categorized as viable on single-photon emission computed tomography/positron emission tomography (SPECT/PET), whereas 164 were defined as nonviable; 300 normal segments on SPECT/PET among 352 segments without abnormal motion on routine echocardiography were categorized as a control group. The radial, longitudinal, 3D, and area strain on 3D speckle-tracking echocardiography had significant differences between control and nonviable groups (P < .001), whereas none of the parameters had significant differences between control and viable groups. There were no significant differences in circumferential, radial, and longitudinal peak systolic strain from 2D speckle-tracking echocardiography between viable and nonviable groups. Although there was no significant difference in circumferential strain between the groups, radial and longitudinal strain from 3D speckle-tracking echocardiography decreased significantly in the nonviable group. Moreover, 3D and area strain values were lower in the nonviable segments than the viable segments. By receiver operating characteristic analysis, radial strain from 3D speckle-tracking echocardiography with a cutoff of 11.1% had sensitivity of 95.1% and specificity of 53.4% for viable segments; longitudinal strain with a cutoff of 14.3% had sensitivity of 65.2% and specificity of 65.7%; 3D strain with a cutoff of 17.4% had sensitivity of 70.6% and specificity of 77.2%; and area strain with a cutoff of 23.2% had sensitivity of 91.5% and specificity of 82.8%. Three-dimensional speckle-tracking echocardiography might have potential for detection of myocardial viability in patients with cardiac dysfunction due to MI.
Egenvall, Agneta; Haubro Andersen, Pia; Pfau, Thilo
2017-01-01
Recent studies evaluating horses in training and considered free from lameness by their owners have identified a large proportion of horses with motion asymmetries. However the prevalence, type and magnitude of asymmetries when trotting in a straight line or on the lunge have not been investigated. The aim of this study was to objectively investigate the presence of motion asymmetries in riding horses in training by identifying the side and quantifying the degree and type (impact, pushoff) of forelimb and hind limb asymmetries found during straight line trot and on the lunge. In a cross-sectional study, vertical head and pelvic movement symmetry was measured in 222 Warmblood type riding horses, all without perceived performance issues and considered free from lameness by their owners. Body-mounted uni-axial accelerometers were used and differences between maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) vertical displacement between left and right forelimb and hind limb stances were calculated during straight line trot and on the lunge. Previously reported symmetry thresholds were used. The thresholds for symmetry were exceeded in 161 horses for at least one variable while trotting in a straight line, HDmin (n = 58, mean 14.3 mm, SD 7.1), HDmax (n = 41, mean 12.7 mm, SD 5.5), PDmax (n = 87, mean 6.5 mm, SD 3.10), PDmin (n = 79, mean 5.7 mm, SD 2.1). Contralateral and ipsilateral concurrent forelimb and hind limb asymmetries were detected in 41 and 49 horses, respectively. There was a linear association between the straight line PDmin values and the values on the lunge with the lame limb to the inside of the circle. A large proportion (72.5%) of horses in training which were perceived as free from lameness by their owner showed movement asymmetries above previously reported asymmetry thresholds during straight line trot. It is not known to what extent these asymmetries are related to pain or to mechanical abnormalities. Therefore, one of the most important questions that must be addressed is how objective asymmetry scores can be translated into pain, orthopedic abnormality, or any type of unsoundness. PMID:28441406
Rhodin, Marie; Egenvall, Agneta; Haubro Andersen, Pia; Pfau, Thilo
2017-01-01
Recent studies evaluating horses in training and considered free from lameness by their owners have identified a large proportion of horses with motion asymmetries. However the prevalence, type and magnitude of asymmetries when trotting in a straight line or on the lunge have not been investigated. The aim of this study was to objectively investigate the presence of motion asymmetries in riding horses in training by identifying the side and quantifying the degree and type (impact, pushoff) of forelimb and hind limb asymmetries found during straight line trot and on the lunge. In a cross-sectional study, vertical head and pelvic movement symmetry was measured in 222 Warmblood type riding horses, all without perceived performance issues and considered free from lameness by their owners. Body-mounted uni-axial accelerometers were used and differences between maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) vertical displacement between left and right forelimb and hind limb stances were calculated during straight line trot and on the lunge. Previously reported symmetry thresholds were used. The thresholds for symmetry were exceeded in 161 horses for at least one variable while trotting in a straight line, HDmin (n = 58, mean 14.3 mm, SD 7.1), HDmax (n = 41, mean 12.7 mm, SD 5.5), PDmax (n = 87, mean 6.5 mm, SD 3.10), PDmin (n = 79, mean 5.7 mm, SD 2.1). Contralateral and ipsilateral concurrent forelimb and hind limb asymmetries were detected in 41 and 49 horses, respectively. There was a linear association between the straight line PDmin values and the values on the lunge with the lame limb to the inside of the circle. A large proportion (72.5%) of horses in training which were perceived as free from lameness by their owner showed movement asymmetries above previously reported asymmetry thresholds during straight line trot. It is not known to what extent these asymmetries are related to pain or to mechanical abnormalities. Therefore, one of the most important questions that must be addressed is how objective asymmetry scores can be translated into pain, orthopedic abnormality, or any type of unsoundness.
Pharyngeal manifestations of gastroesophageal reflux disease.
Rubesin, Stephen E; Levine, Marc S
2018-06-01
This article discusses the extraesophageal manifestations of gastroesophageal reflux disease, focusing primarily on the gamut of pharyngeal abnormalities that can be detected on barium swallows. Abnormalities of pharyngeal swallowing caused by gastroesophageal reflux are illustrated. We particularly emphasize how pharyngoesophageal relationships can guide the radiologist for performing tailored barium swallows to optimally evaluate pharyngeal abnormalities in patients with underlying gastroesophageal reflux disease.
Prediction of heart abnormality using MLP network
NASA Astrophysics Data System (ADS)
Hashim, Fakroul Ridzuan; Januar, Yulni; Mat, Muhammad Hadzren; Rizman, Zairi Ismael; Awang, Mat Kamil
2018-02-01
Heart abnormality does not choose gender, age and races when it strikes. With no warning signs or symptoms, it can result to a sudden death of the patient. Generally, heart's irregular electrical activity is defined as heart abnormality. Via implementation of Multilayer Perceptron (MLP) network, this paper tries to develop a program that allows the detection of heart abnormality activity. Utilizing several training algorithms with Purelin activation function, an amount of heartbeat signals received through the electrocardiogram (ECG) will be employed to condition the MLP network.
Detection of obstacles on runway using Ego-Motion compensation and tracking of significant features
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar (Principal Investigator); Camps, Octavia (Principal Investigator); Gandhi, Tarak; Devadiga, Sadashiva
1996-01-01
This report describes a method for obstacle detection on a runway for autonomous navigation and landing of an aircraft. Detection is done in the presence of extraneous features such as tiremarks. Suitable features are extracted from the image and warping using approximately known camera and plane parameters is performed in order to compensate ego-motion as far as possible. Residual disparity after warping is estimated using an optical flow algorithm. Features are tracked from frame to frame so as to obtain more reliable estimates of their motion. Corrections are made to motion parameters with the residual disparities using a robust method, and features having large residual disparities are signaled as obstacles. Sensitivity analysis of the procedure is also studied. Nelson's optical flow constraint is proposed to separate moving obstacles from stationary ones. A Bayesian framework is used at every stage so that the confidence in the estimates can be determined.
Feasibility evaluation of a motion detection system with face images for stereotactic radiosurgery.
Yamakawa, Takuya; Ogawa, Koichi; Iyatomi, Hitoshi; Kunieda, Etsuo
2011-01-01
In stereotactic radiosurgery we can irradiate a targeted volume precisely with a narrow high-energy x-ray beam, and thus the motion of a targeted area may cause side effects to normal organs. This paper describes our motion detection system with three USB cameras. To reduce the effect of change in illuminance in a tracking area we used an infrared light and USB cameras that were sensitive to the infrared light. The motion detection of a patient was performed by tracking his/her ears and nose with three USB cameras, where pattern matching between a predefined template image for each view and acquired images was done by an exhaustive search method with a general-purpose computing on a graphics processing unit (GPGPU). The results of the experiments showed that the measurement accuracy of our system was less than 0.7 mm, amounting to less than half of that of our previous system.
Pediatric tinnitus: Incidence of imaging anomalies and the impact of hearing loss.
Kerr, Rhorie; Kang, Elise; Hopkins, Brandon; Anne, Samantha
2017-12-01
Guidelines exist for evaluation and management of tinnitus in adults; however lack of evidence in children limits applicability of these guidelines to pediatric patients. Objective of this study is to determine the incidence of inner ear anomalies detected on imaging studies within the pediatric population with tinnitus and evaluate if presence of hearing loss increases the rate of detection of anomalies in comparison to normal hearing patients. Retrospective review of all children with diagnosis of tinnitus from 2010 to 2015 ;at a tertiary care academic center. 102 pediatric patients with tinnitus were identified. Overall, 53 patients had imaging studies with 6 abnormal findings (11.3%). 51/102 patients had hearing loss of which 33 had imaging studies demonstrating 6 inner ear anomalies detected. This is an incidence of 18.2% for inner ear anomalies identified in patients with hearing loss (95% confidence interval (CI) of 7.0-35.5%). 4 of these 6 inner ear anomalies detected were vestibular aqueduct abnormalities. The other two anomalies were cochlear hypoplasia and bilateral semicircular canal dysmorphism. 51 patients had no hearing loss and of these patients, 20 had imaging studies with no inner ear abnormalities detected. There was no statistical difference in incidence of abnormal imaging findings in patients with and without hearing loss (Fisher's exact test, p ;= ;0.072.) CONCLUSION: There is a high incidence of anomalies detected in imaging studies done in pediatric patients with tinnitus, especially in the presence of hearing loss. Copyright © 2017 Elsevier B.V. All rights reserved.
Chromosomal abnormalities as a cause of recurrent abortions in Egypt
El-Dahtory, Faeza Abdel Mogib
2011-01-01
BACKGROUND: In 4%-8% of couples with recurrent abortion, at least one of the partners has chromosomal abnormality. Most spontaneous miscarriages which happen in the first and second trimesters are caused by chromosomal abnormalities. These chromosomal abnormalities may be either numerical or structural. MATERIAL AND METHODS: Cytogenetic study was done for 73 Egyptian couples who presented with recurrent abortion at Genetic Unit of Children Hospital, Mansoura University. RESULTS: We found that the frequency of chromosomal abnormalities was not significantly different from that reported worldwide. Chromosomal abnormalities were detected in 9 (6.1%) of 73 couples. Seven of chromosomal abnormalities were structural and two of them were numerical. CONCLUSION: Our results showed that 6.1% of the couples with recurrent abortion had chromosomal abnormalities, with no other abnormalities. We suggest that it is necessary to perform cytogenetic in vestigation for couples who have recurrent abortion. PMID:22090718
Srivanitchapoom, Prachaya; Shamim, Ejaz A; Diomi, Pierre; Hattori, Takaaki; Pandey, Sanjay; Vorbach, Sherry; Park, Jung E; Wu, Tianxia; Auh, Sungyoung; Hallett, Mark
Exploratory case-control study. Writer's cramp (WC) is a type of focal hand dystonia. The central nervous system plays a role in its pathophysiology, but abnormalities in the affected musculoskeletal components may also be relevant. We compared the active range of motion (ROM) in patients with WC and healthy volunteers (HVs) and correlated the findings with disease duration and severity. Affected limb joints were measured with goniometers. Patients were assessed at least 3 months after their last botulinum toxin (botulinum neurotoxin) injection, and strength was clinically normal. t tests were used to compare the ROMs of WC with matched HVs. The Spearman correlation coefficient assessed the relationship of active ROMs to the disease duration and handwriting subscore of the Dystonia Disability Scale. ROMs of D1 metacarpophalangeal (MCP) joint extension as well as D2 and D5 MCP flexion were significantly smaller in WC, and distal interphalangeal joint extension in D3 and D5 was significantly greater compared with HVs. There were negative correlations between D2 MCP flexion and disease duration and with Dystonia Disability Scale. Abnormalities in ROMs in WC were found. Severity and disease duration correlated with reduced D2 MCP flexion. This may be related to intrinsic biomechanical abnormalities, co-contraction of muscles, or a combination of subclinical weakness and atrophy from repeated botulinum neurotoxin injections. Hand biomechanical properties should not be ignored in the pathophysiology of WC. 2c. Copyright © 2016 Hanley & Belfus. All rights reserved.
Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.
Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern
2012-01-01
We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.
2015-07-28
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.
Bakhirev, Alexei G; Vasef, Mohammad A; Zhang, Qian-Yun; Reichard, Kaaren K; Czuchlewski, David R
2014-04-01
BCL6 translocations are a frequent finding in B-cell lymphomas of diverse subtypes, including some cases of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). However, reliable analysis of BCL6 rearrangements using fluorescence in situ hybridization is difficult in NLPHL because of the relative paucity of neoplastic cells. Combined immunofluorescence microscopy and fluorescence in situ hybridization, or fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION), permits targeted analysis of neoplastic cells. To better define the spectrum of BCL6 abnormalities in NLPHL using FICTION analysis. We performed an optimized FICTION analysis of 24 lymph nodes, including 11 NLPHL, 5 follicular hyperplasia with prominent progressive transformation of germinal centers, and 8 follicular hyperplasia without progressive transformation of germinal centers. BCL6 rearrangement was identified in 5 of 11 cases of NLPHL (46%). In addition, BCL6 gene amplification, with large clusters of BCL6 signals in the absence of chromosome 3 aneuploidy, was detected in 3 of 11 cases of NLPHL (27%). One NLPHL showed extra copies of BCL6 present in conjunction with multiple copies of chromosome 3. Altogether, we detected BCL6 abnormalities in 9 of 11 cases of NLPHL (82%). None of the progressive transformation of germinal centers or follicular hyperplasia cases showed BCL6 abnormalities by FICTION. To our knowledge, this is the first report of BCL6 gene amplification in NLPHL. Our optimized protocol for FICTION permits detection of cytogenetic abnormalities in most NLPHL cases and may represent a useful ancillary diagnostic technique.
Choo, Wai K; McGeary, Katie; Farman, Colin; Greyling, Andre; Cross, Stephen J; Leslie, Stephen J
2014-01-01
This study aimed to examine whether general practitioner (GP) practice locations in remote and rural areas affected the pattern of direct access echocardiography referral and to assess any variations in echocardiographic findings. All referrals made by all GP practices in the Scottish Highlands over a 36-month period were analysed. Referral patterns were examined according to distance and rurality based on the Scottish Government's Urban-Rural Classification. Reasons for referral and cardiac abnormality detection rates were also examined. In total, 1188 referrals were made from 49 different GP practices; range of referral rates was 0.3-20.1 per 1000 population with a mean of 6.5 referrals per 1000 population. Referral rates were not significantly different between urban and rural practices after correction for population size. There was no correlation between the referral rates and the distance from the centre (r2=0.004, p=0.65). The most common reason for referral was the presence of new murmur (46%). The most common presenting symptom was breathlessness (44%). Overall, 28% of studies had significant abnormal findings requiring direct input from a cardiologist. There was no clear relationship between referral rates and cardiac abnormality detection rates (r2=0.07, p=0.37). The average cardiac abnormality detection rate was 56%, (range 52-60%), with no variation based on rurality (p=0.891). In this cohort, rurality and distance were not barriers to an equitable direct access echocardiography service. Cardiac abnormality detection rates are consistent with that of other studies.
Ocular screening tests of elementary school children
NASA Technical Reports Server (NTRS)
Richardson, J.
1983-01-01
This report presents an analysis of 507 abnormal retinal reflex images taken of Huntsville kindergarten and first grade students. The retinal reflex images were obtained by using an MSFC-developed Generated Retinal Reflex Image System (GRRIS) photorefractor. The system uses a 35 mm camera with a telephoto lens with an electronic flash attachment. Slide images of the eyes were examined for abnormalities. Of a total of 1835 students screened for ocular abnormalities, 507 were found to have abnormal retinal reflexes. The types of ocular abnormalities detected were hyperopia, myopia, astigmatism, esotropia, exotropia, strabismus, and lens obstuctions. The report shows that the use of the photorefractor screening system is an effective low-cost means of screening school children for abnormalities.
NASA Astrophysics Data System (ADS)
Hartung, Christine; Spraul, Raphael; Schuchert, Tobias
2017-10-01
Wide area motion imagery (WAMI) acquired by an airborne multicamera sensor enables continuous monitoring of large urban areas. Each image can cover regions of several square kilometers and contain thousands of vehicles. Reliable vehicle tracking in this imagery is an important prerequisite for surveillance tasks, but remains challenging due to low frame rate and small object size. Most WAMI tracking approaches rely on moving object detections generated by frame differencing or background subtraction. These detection methods fail when objects slow down or stop. Recent approaches for persistent tracking compensate for missing motion detections by combining a detection-based tracker with a second tracker based on appearance or local context. In order to avoid the additional complexity introduced by combining two trackers, we employ an alternative single tracker framework that is based on multiple hypothesis tracking and recovers missing motion detections with a classifierbased detector. We integrate an appearance-based similarity measure, merge handling, vehicle-collision tests, and clutter handling to adapt the approach to the specific context of WAMI tracking. We apply the tracking framework on a region of interest of the publicly available WPAFB 2009 dataset for quantitative evaluation; a comparison to other persistent WAMI trackers demonstrates state of the art performance of the proposed approach. Furthermore, we analyze in detail the impact of different object detection methods and detector settings on the quality of the output tracking results. For this purpose, we choose four different motion-based detection methods that vary in detection performance and computation time to generate the input detections. As detector parameters can be adjusted to achieve different precision and recall performance, we combine each detection method with different detector settings that yield (1) high precision and low recall, (2) high recall and low precision, and (3) best f-score. Comparing the tracking performance achieved with all generated sets of input detections allows us to quantify the sensitivity of the tracker to different types of detector errors and to derive recommendations for detector and parameter choice.
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1988-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans.
... A telltale abnormality — called a type 1 Brugada ECG pattern — is detected by an electrocardiogram (ECG) test. Brugada syndrome is much more common in ... syndrome is an abnormal pattern on an electrocardiogram (ECG) called a type 1 Brugada ECG pattern. You ...
A simple infrared-augmented digital photography technique for detection of pupillary abnormalities.
Shazly, Tarek A; Bonhomme, G R
2015-03-01
The purpose of the study was to describe a simple infrared photography technique to aid in the diagnosis and documentation of pupillary abnormalities. An unmodified 12-megapixel "point and shoot" digital camera was used to obtain binocular still photos and videos under different light conditions with near-infrared illuminating frames. The near-infrared light of 850 nm allows the capture of clear pupil images in both dim and bright light conditions. It also allows easy visualization of the pupil despite pigmented irides by augmenting the contrast between the iris and the pupil. The photos and videos obtained illustrated a variety of pupillary abnormalities using the aforementioned technique. This infrared-augmented photography technique supplements medical education, and aids in the more rapid detection, diagnosis, and documentation of a wide spectrum of pupillary abnormalities. Its portability and ease of use with minimal training complements the education of trainees and facilitates the establishment of difficult diagnoses.
Motion and ranging sensor system for through-the-wall surveillance system
NASA Astrophysics Data System (ADS)
Black, Jeffrey D.
2002-08-01
A portable Through-the-Wall Surveillance System is being developed for law enforcement, counter-terrorism, and military use. The Motion and Ranging Sensor is a radar that operates in a frequency band that allows for surveillance penetration of most non-metallic walls. Changes in the sensed radar returns are analyzed to detect the human motion that would typically be present during a hostage or barricaded suspect scenario. The system consists of a Sensor Unit, a handheld Remote Display Unit, and an optional laptop computer Command Display Console. All units are battery powered and a wireless link provides command and data communication between units. The Sensor Unit is deployed close to the wall or door through which the surveillance is to occur. After deploying the sensor the operator may move freely as required by the scenario. Up to five Sensor Units may be deployed at a single location. A software upgrade to the Command Display Console is also being developed. This software upgrade will combine the motion detected by multiple Sensor Units and determine and track the location of detected motion in two dimensions.
Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.
Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz
2017-06-01
Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.
Two novel motion-based algorithms for surveillance video analysis on embedded platforms
NASA Astrophysics Data System (ADS)
Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.
2010-05-01
This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.
Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik
2018-06-01
We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.
The importance of exercise gated blood pool imaging in Chagas Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneguetti, J.C.; Neto, J.E.; Hironaka, F.H.
1984-01-01
Myocardial involvement in Chagas Disease (CD) often leads to cardiomyopathy and heart failure. Patients (pts) with the indeterminate form (IF) have positive complement fixation test as the only abnormality. Cardiac form (CF) pts have positive serology, abnormal ECG with or without clinical symptoms. To investigate the degree of cardiac involvement in IF pts, exercise (handgrip) gated blood pool (EGBP) was performed on 77 CD male workers (46 IF, 17-50 yrs; 31 CF, 24-61 yrs) and 28 male (22-46 yrs) normal volunteers (NV). Regional wall motion (RWM), ventricular volumes (VV) and percent EF variation (..delta..%) were analysed. NV group shoed ..delta..%more » - 3.51 +- 4.86 with normal RWM and VV. IF pts showed ..delta..% - 4.27 +- 7.46 with >-10% drop in 22% of pts; RWM and VV were abnormal in 43% and 30%, respectively; at least one parameter was abnormal in 59% of pts. CF pts showed ..delta..%-10.52 +- 7.37 with >-10% drop in 59%; RWM and VV were abnormal in 79% and 83%, respectively; at least one parameter was abnormal in 86% of pts. No ..delta..% difference was found between NV and IF groups, but there was a significant difference between these two groups and CF pts. When EGBP is considered, only 41% of IF pts are normal. Also, 14% CF pts with ECG and serologic abnormalities have no cardiac dysfunction. This suggests that EGBP study should be included as a routine procedure in CD pts and used as a basis for a new classification of the disease.« less
Percutaneous perfusion monitoring for the detection of hemodialysis induced cardiovascular injury.
Penny, Jarrin D; Grant, Claire; Salerno, Fabio; Brumfield, Anne; Mianulli, Marcus; Poole, Lori; Mcintyre, Christopher W
2018-01-23
The safe delivery of hemodialysis (HD) faces dual challenges; the accurate detection of systemic circulatory stress producing cardiovascular (CV) injury, and the ability to enable effective preemptive intervention for such injury. We performed a pilot study to examine the capability of a new noninvasive, real-time monitoring system to detect the deleterious effects of HD on CV stability. Eight patients were evaluated with echocardiography prior to the initiation of HD and again at peak HD stress. Continuous CV physiologic monitoring was performed throughout using oximeter-based pulse waveform analysis (CVInsight ® Monitoring System, Intelomed, Inc., Warrendale, PA, USA). Longitudinal strain (LS) values for 12 left ventricular segments were generated using speckle-tracking software (EchoPac, GE), to assess the presence of HD-induced regional wall motion abnormalities (RWMA), indicative of myocardial stunning. A reduction in pulse strength (PS) of ≥40% detected by CVI was associated with the development of RWMA (P = 0.005). This reduction occurred in 6/8 patients, all of whom exhibited myocardial stunning. Two patients had no significant reduction in PS nor evidence of myocardial stunning. In subjects with cardiac stunning, the decrease in PS was evident early during HD, 11.49 ± 10 minutes into HD treatment, prior to the detection of RWMA, which were assessed at peak HD stress, mean 210 ± 16.43 minutes into HD treatment. Percutaneous perfusion monitoring, using pulse wave analysis, appears to be useful in identifying circulatory stress during HD and predicting the development of HD-induced myocardial stunning with a lead time long enough to consider timely intervention. © 2018 International Society for Hemodialysis.
Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy
2014-05-15
The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.
Noh, Yun Hong; Jeong, Do Un
2014-07-15
In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.
NASA Astrophysics Data System (ADS)
Bhowmik, Mrinal Kanti; Gogoi, Usha Rani; Das, Kakali; Ghosh, Anjan Kumar; Bhattacharjee, Debotosh; Majumdar, Gautam
2016-05-01
The non-invasive, painless, radiation-free and cost-effective infrared breast thermography (IBT) makes a significant contribution to improving the survival rate of breast cancer patients by early detecting the disease. This paper presents a set of standard breast thermogram acquisition protocols to improve the potentiality and accuracy of infrared breast thermograms in early breast cancer detection. By maintaining all these protocols, an infrared breast thermogram acquisition setup has been established at the Regional Cancer Centre (RCC) of Government Medical College (AGMC), Tripura, India. The acquisition of breast thermogram is followed by the breast thermogram interpretation, for identifying the presence of any abnormality. However, due to the presence of complex vascular patterns, accurate interpretation of breast thermogram is a very challenging task. The bilateral symmetry of the thermal patterns in each breast thermogram is quantitatively computed by statistical feature analysis. A series of statistical features are extracted from a set of 20 thermograms of both healthy and unhealthy subjects. Finally, the extracted features are analyzed for breast abnormality detection. The key contributions made by this paper can be highlighted as -- a) the designing of a standard protocol suite for accurate acquisition of breast thermograms, b) creation of a new breast thermogram dataset by maintaining the protocol suite, and c) statistical analysis of the thermograms for abnormality detection. By doing so, this proposed work can minimize the rate of false findings in breast thermograms and thus, it will increase the utilization potentiality of breast thermograms in early breast cancer detection.
Gurung, Arati; Scrafford, Carolyn G; Tielsch, James M; Levine, Orin S; Checkley, William
2011-01-01
Rationale The standardized use of a stethoscope for chest auscultation in clinical research is limited by its inherent inter-listener variability. Electronic auscultation and automated classification of recorded lung sounds may help prevent some these shortcomings. Objective We sought to perform a systematic review and meta-analysis of studies implementing computerized lung sounds analysis (CLSA) to aid in the detection of abnormal lung sounds for specific respiratory disorders. Methods We searched for articles on CLSA in MEDLINE, EMBASE, Cochrane Library and ISI Web of Knowledge through July 31, 2010. Following qualitative review, we conducted a meta-analysis to estimate the sensitivity and specificity of CLSA for the detection of abnormal lung sounds. Measurements and Main Results Of 208 articles identified, we selected eight studies for review. Most studies employed either electret microphones or piezoelectric sensors for auscultation, and Fourier Transform and Neural Network algorithms for analysis and automated classification of lung sounds. Overall sensitivity for the detection of wheezes or crackles using CLSA was 80% (95% CI 72–86%) and specificity was 85% (95% CI 78–91%). Conclusions While quality data on CLSA are relatively limited, analysis of existing information suggests that CLSA can provide a relatively high specificity for detecting abnormal lung sounds such as crackles and wheezes. Further research and product development could promote the value of CLSA in research studies or its diagnostic utility in clinical setting. PMID:21676606
Gurung, Arati; Scrafford, Carolyn G; Tielsch, James M; Levine, Orin S; Checkley, William
2011-09-01
The standardized use of a stethoscope for chest auscultation in clinical research is limited by its inherent inter-listener variability. Electronic auscultation and automated classification of recorded lung sounds may help prevent some of these shortcomings. We sought to perform a systematic review and meta-analysis of studies implementing computerized lung sound analysis (CLSA) to aid in the detection of abnormal lung sounds for specific respiratory disorders. We searched for articles on CLSA in MEDLINE, EMBASE, Cochrane Library and ISI Web of Knowledge through July 31, 2010. Following qualitative review, we conducted a meta-analysis to estimate the sensitivity and specificity of CLSA for the detection of abnormal lung sounds. Of 208 articles identified, we selected eight studies for review. Most studies employed either electret microphones or piezoelectric sensors for auscultation, and Fourier Transform and Neural Network algorithms for analysis and automated classification of lung sounds. Overall sensitivity for the detection of wheezes or crackles using CLSA was 80% (95% CI 72-86%) and specificity was 85% (95% CI 78-91%). While quality data on CLSA are relatively limited, analysis of existing information suggests that CLSA can provide a relatively high specificity for detecting abnormal lung sounds such as crackles and wheezes. Further research and product development could promote the value of CLSA in research studies or its diagnostic utility in clinical settings. Copyright © 2011 Elsevier Ltd. All rights reserved.
Breaking cover: neural responses to slow and fast camouflage-breaking motion.
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei
2015-08-22
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.
Breaking cover: neural responses to slow and fast camouflage-breaking motion
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M.; McLoughlin, Niall; Wang, Wei
2015-01-01
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500
Left ventricle changes early after breath-holding in deep water in elite apnea divers.
Pingitore, Alessandro; Gemignani, Angelo; Menicucci, Danilo; Passera, Mirko; Frassi, Francesca; Marabotti, Claudio; Piarulli, Andrea; Benassi, Antonio; L'Abbate, Antonio; Bedini, Remo
2010-01-01
To study by ultrasounds cardiac morphology and function early after breath-hold diving in deep water in elite athletes. Fifteen healthy male divers (age 28 +/- 3 years) were studied using Doppler-echocardiography, immediately before (basal condition, BC) and two minutes after breath-hold diving (40 meters, acute post-apnea condition, APAC). Each subject performed a series of three consecutive breath-hold dives (20-30 and 40 m depth). End-diastolic left ventricular (LV) diameter (EDD) and end-diastolic LV volume (EDV) increased significantly (p < 0.01). Stroke volume (SV), cardiac index (CI), septal and posterior systolic wall-thickening (SWT) also significantly increased after diving (p < 0.01). No wall motion abnormalities were detected, and wall motion score index was unchanged between BC and APAC. Doppler mitral E wave increased significantly (p < 0.01), whereas the A wave was unchanged. Systemic vascular resistance (SVR) decreased significantly after diving (p < 0.05). In the factor analysis, filtering out the absolute values smaller than 0.7 in the loading matrix, it resulted that factor I consists of EDV, posterior SWT, SV and CI, factor II of diastolic blood pressure, waves A and E and factor III of heart rate and SVR. Systo-diastolic functions were improved in the early period after deep breath-hold diving due to favorable changes in loading conditions relative to pre-diving, namely the recruitment of left ventricular preload reserve and the reduction in afterload.
Prakash, V. Surya; Mohan, G. Chandra; Krishnaiah, S. Venkata; Vijaykumar, V.; Babu, G. Ramesh; Reddy, G. Vijaya Bhaskar; Mahaboob, V. S.
2013-01-01
Purpose: To compare the cancer detection rate in patients with raised serum prostate-specific antigen (PSA) or abnormal digital rectal examination (DRE) results between the 10-core and the 16-core biopsy techniques in an Indian population. Methods: Between November 2010 and November 2012, 95 men aged >50 years who presented to the Urology Department with lower urinary tract symptoms, elevated serum PSA, and/or abnormal DRE findings underwent transrectal ultrasonography (TRUS)-guided prostate biopsy. A total of 53 patients underwent 10-core biopsy and 42 patients underwent 16-core biopsy. Results: Of the 53 men in the 10-core group, 8 had cancer, whereas in the 16-core biopsy group, 23 of 42 men had cancer. Detection of prostate cancer was significantly higher in patients who underwent 16-core biopsy than in those who underwent 10-core biopsy (P<0.001). Among the 95 men, 44 men had abnormal DRE findings (46.3%), of whom 23 showed cancer (52.27%). Of 51 men with normal DRE findings and elevated PSA, 8 men had malignancy with a cancer detection rate of 15.68%. Among 20 men with PSA between 4.1 and 10 ng/mL, 2 (10%) had cancer. In 31 men with PSA between 10.1 and 20 ng/mL, 3 cancers (9.67%) were detected, and in 44 men with PSA >20 ng/mL, 26 cancers were detected (59.09%). Conclusions: The cancer detection rate with 16-core TRUS-guided biopsy is significantly higher than that with 10-core biopsy (54.76% vs. 15.09%, P<0.001). In patients with both normal and abnormal DRE findings, 16-core biopsy has a better detection rate than the 10-core biopsy protocol. With increasing PSA, there is a high rate of detection of prostate cancer in both 10-core and 16-core biopsy patients. PMID:24392441
Prakash, V Surya; Mohan, G Chandra; Krishnaiah, S Venkata; Vijaykumar, V; Babu, G Ramesh; Reddy, G Vijaya Bhaskar; Mahaboob, V S
2013-01-01
To compare the cancer detection rate in patients with raised serum prostate-specific antigen (PSA) or abnormal digital rectal examination (DRE) results between the 10-core and the 16-core biopsy techniques in an Indian population. Between November 2010 and November 2012, 95 men aged >50 years who presented to the Urology Department with lower urinary tract symptoms, elevated serum PSA, and/or abnormal DRE findings underwent transrectal ultrasonography (TRUS)-guided prostate biopsy. A total of 53 patients underwent 10-core biopsy and 42 patients underwent 16-core biopsy. Of the 53 men in the 10-core group, 8 had cancer, whereas in the 16-core biopsy group, 23 of 42 men had cancer. Detection of prostate cancer was significantly higher in patients who underwent 16-core biopsy than in those who underwent 10-core biopsy (P<0.001). Among the 95 men, 44 men had abnormal DRE findings (46.3%), of whom 23 showed cancer (52.27%). Of 51 men with normal DRE findings and elevated PSA, 8 men had malignancy with a cancer detection rate of 15.68%. Among 20 men with PSA between 4.1 and 10 ng/mL, 2 (10%) had cancer. In 31 men with PSA between 10.1 and 20 ng/mL, 3 cancers (9.67%) were detected, and in 44 men with PSA >20 ng/mL, 26 cancers were detected (59.09%). The cancer detection rate with 16-core TRUS-guided biopsy is significantly higher than that with 10-core biopsy (54.76% vs. 15.09%, P<0.001). In patients with both normal and abnormal DRE findings, 16-core biopsy has a better detection rate than the 10-core biopsy protocol. With increasing PSA, there is a high rate of detection of prostate cancer in both 10-core and 16-core biopsy patients.
Algebally, Ahmed M.; Yousef, Reda Ramadan Hussein; Badr, Sanaa Sayed Hussein; Al Obeidly, Amal; Szmigielski, Wojciech; Al Ibrahim, Abdullah A.
2014-01-01
Summary Background The purpose of the study was to evaluate the role of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnostics and management of abnormal placentation in women with placenta previa and to compare the morbidity associated with that to placenta previa alone. Material/Methods The study includes 100 pregnant women with placenta previa with and without abnormal placentation. The results of MRI and US in abnormal placentation were compared with post-operative data. The patients’ files were reviewed for assessment of operative and post-operative morbidity. The results of our statistical analysis were compared with data from the literature. Results US and MRI showed no significant difference in sensitivity and specificity in diagnosing abnormal placentation (97–100% and 94–100%, respectively). MRI was more sensitive than US for the detection of myometrial invasion and the type of abnormal placentation (73.5% and 47%, respectively). The difference between pre- and post-operative hemoglobin values and estimated blood loss were the most significant risk factors for abnormal placentation, added to risk factors known for placenta previa. Post-partum surgical complications and prolonged hospital stay were more common in the cases of placenta previa with abnormal placentation, however statistically insignificant. Conclusions US and MRI are accurate imaging modalities for diagnosing abnormal placentation. MRI was more sensitive for the detection of the degree of placental invasion. The patient’s morbidity increased in cases with abnormal placentation. There was no significant difference in post operative-complications and hospitalization time due to pre-operative planning when the diagnosis was established with US and MRI. PMID:25411586
A Kinect based intelligent e-rehabilitation system in physical therapy.
Gal, Norbert; Andrei, Diana; Nemeş, Dan Ion; Nădăşan, Emanuela; Stoicu-Tivadar, Vasile
2015-01-01
This paper presents an intelligent Kinect and fuzzy inference system based e-rehabilitation system. The Kinect can detect the posture and motion of the patients while the fuzzy inference system can interpret the acquired data on the cognitive level. The system is capable to assess the initial posture and motion ranges of 20 joints. Using angles to describe the motion of the joints, exercise patterns can be developed for each patient. Using the exercise descriptors the fuzzy inference system can track the patient and deliver real-time feedback to maximize the efficiency of the rehabilitation. The first laboratory tests confirm the utility of this system for the initial posture detection, motion range and exercise tracking.
Detecting multiple moving objects in crowded environments with coherent motion regions
Cheriyadat, Anil M.; Radke, Richard J.
2013-06-11
Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.
Detecting rare, abnormally large grains by x-ray diffraction
Boyce, Brad L.; Furnish, Timothy Allen; Padilla, H. A.; ...
2015-07-16
Bimodal grain structures are common in many alloys, arising from a number of different causes including incomplete recrystallization and abnormal grain growth. These bimodal grain structures have important technological implications, such as the well-known Goss texture which is now a cornerstone for electrical steels. Yet our ability to detect bimodal grain distributions is largely confined to brute force cross-sectional metallography. The present study presents a new method for rapid detection of unusually large grains embedded in a sea of much finer grains. Traditional X-ray diffraction-based grain size measurement techniques such as Scherrer, Williamson–Hall, or Warren–Averbach rely on peak breadth andmore » shape to extract information regarding the average crystallite size. However, these line broadening techniques are not well suited to identify a very small fraction of abnormally large grains. The present method utilizes statistically anomalous intensity spikes in the Bragg peak to identify regions where abnormally large grains are contributing to diffraction. This needle-in-a-haystack technique is demonstrated on a nanocrystalline Ni–Fe alloy which has undergone fatigue-induced abnormal grain growth. In this demonstration, the technique readily identifies a few large grains that occupy <0.00001 % of the interrogation volume. Finally, while the technique is demonstrated in the current study on nanocrystalline metal, it would likely apply to any bimodal polycrystal including ultrafine grained and fine microcrystalline materials with sufficiently distinct bimodal grain statistics.« less
Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina
2015-01-01
Comprehensive functioning of Ca2+ cycling is crucial for excitation–contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs. PMID:26308621
Penttinen, Kirsi; Siirtola, Harri; Àvalos-Salguero, Jorge; Vainio, Tiina; Juhola, Martti; Aalto-Setälä, Katriina
2015-01-01
Comprehensive functioning of Ca2+ cycling is crucial for excitation-contraction coupling of cardiomyocytes (CMs). Abnormal Ca2+ cycling is linked to arrhythmogenesis, which is associated with cardiac disorders and heart failure. Accordingly, we have generated spontaneously beating CMs from induced pluripotent stem cells (iPSC) derived from patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), which is an inherited and severe cardiac disease. Ca2+ cycling studies have revealed substantial abnormalities in these CMs. Ca2+ transient analysis performed manually lacks accepted analysis criteria, and has both low throughput and high variability. To overcome these issues, we have developed a software tool, AnomalyExplorer based on interactive visualization, to assist in the classification of Ca2+ transient patterns detected in CMs. Here, we demonstrate the usability and capability of the software, and we also compare the analysis efficiency to manual analysis. We show that AnomalyExplorer is suitable for detecting normal and abnormal Ca2+ transients; furthermore, this method provides more defined and consistent information regarding the Ca2+ abnormality patterns and cell line specific differences when compared to manual analysis. This tool will facilitate and speed up the analysis of CM Ca2+ transients, making it both more accurate and user-independent. AnomalyExplorer can be exploited in Ca2+ cycling analysis to study basic disease pathology and the effects of different drugs.
Gwynne, Craig R; Curran, Sarah A
2014-12-01
Clinical assessment of lower limb kinematics during dynamic tasks may identify individuals who demonstrate abnormal movement patterns that may lead to etiology of exacerbation of knee conditions such as patellofemoral joint (PFJt) pain. The purpose of this study was to determine the reliability, validity and associated measurement error of a clinically appropriate two-dimensional (2-D) procedure of quantifying frontal plane knee alignment during single limb squats. Nine female and nine male recreationally active subjects with no history of PFJt pain had frontal plane limb alignment assessed using three-dimensional (3-D) motion analysis and digital video cameras (2-D analysis) while performing single limb squats. The association between 2-D and 3-D measures was quantified using Pearson's product correlation coefficients. Intraclass correlation coefficients (ICCs) were determined for within- and between-session reliability of 2-D data and standard error of measurement (SEM) was used to establish measurement error. Frontal plane limb alignment assessed with 2-D analysis demonstrated good correlation compared with 3-D methods (r = 0.64 to 0.78, p < 0.001). Within-session (0.86) and between-session ICCs (0.74) demonstrated good reliability for 2-D measures and SEM scores ranged from 2° to 4°. 2-D measures have good consistency and may provide a valid measure of lower limb alignment when compared to existing 3-D methods. Assessment of lower limb kinematics using 2-D methods may be an accurate and clinically useful alternative to 3-D motion analysis when identifying individuals who demonstrate abnormal movement patterns associated with PFJt pain. 2b.
Lorvidhaya, Peem; Mendoza, Ivan; Sehli, Sharmila; Atalay, Michael K; Kim, Michael H
2013-11-01
Lead insulation defects with externalization of the conductors exist in Riata defibrillator leads. Cinefluoroscopy is currently the gold standard to detect such defects. Prospective evaluation of alternative screening options such as chest radiography (CXR), which has been recommended by the FDA, is not well described. Patients with Riata leads underwent cinefluoroscopy, CXR, and device interrogation. Leads were classified as abnormal (clear cable separation), borderline, or normal by independent evaluation of cinefluoroscopy and CXR. CXR evaluation was done in two ways as follows: (1) routine CXR read by daily staff radiologists for lead screening and (2) CXR evaluation by a radiologist educated about the lead defect. One hundred two patients were evaluated at our institution. Cinefluoroscopy showed externalized conductors in 33 patients (32 %). Twenty-five of 33 patients (76 %) who had abnormal cinefluoroscopic findings had abnormal CXR findings on blinded review by the educated radiologist. All 25 patients with abnormal CXR had abnormal findings on cinefluoroscopy. Daily staff radiologists without direct education other than prompts for lead screening detected CXR abnormalities in only 8 out of 102 (8 %) cases. Cinefluoroscopy appears to be more sensitive than CXR for the detection of Riata cable extrusion. Interpretation of CXR by a radiologist with education in lead defects correlates highly with cinefluoroscopy with very high specificity. Depending on available resources for screening, CXR may be a reasonable alternative to cinefluoroscopy. Multidisciplinary collaboration across specialties (radiology and electrophysiology) can lead to improved diagnostic capability and thus the potential for enhanced quality of care.
Universal Head Ultrasound Screening in Full-term Neonates: A Retrospective Analysis of 6771 Infants.
Ballardini, Elisa; Tarocco, Anna; Rosignoli, Chiara; Baldan, Alessandro; Borgna-Pignatti, Caterina; Garani, Giampaolo
2017-06-01
Full-term neonates may have asymptomatic cranial injuries at birth and head ultrasound screening could be useful for early diagnosis. The aim of this study was to assess the prevalence and type of intracranial abnormalities and the usefulness of head ultrasound screening in these infants. Head ultrasound screening was performed on all full-term neonates (gestational age between 37 and 42 weeks), born at Sant'Anna University Hospital of Ferrara, Italy, from June 1, 2008 through May 31, 2013. Ultrasound findings were categorized into three groups: normal, minor, and major anomalies. All full-term neonates (6771) born at our hospital underwent head ultrasound screening. One hundred fourteen of 6771 (1.7%) presented ultrasound abnormalities, whereas 6657 were normal or exhibited insignificant findings. In 101 of 114 (88.6%), abnormalities were minor, and only 13 infants had major abnormalities (0.19% of all full-term newborns). All neonates with major abnormalities presented with either microcephaly or abnormal neurological evaluations. Only one individual with major abnormalities was detected exclusively by ultrasound. The number of significant anomalies detected by head ultrasound screening in asymptomatic full-term neonates born during the study period was low. Therefore, there is no indication for routine general head ultrasound screening in these patients. However, even if low, in neonates who have neurological abnormalities, risk factors or suspected brain malformations, head ultrasound screening may play an important role in the early diagnosis of intracranial anomalies. Copyright © 2017 Elsevier Inc. All rights reserved.
Early Detection of Infection in Pigs through an Online Monitoring System.
Martínez-Avilés, M; Fernández-Carrión, E; López García-Baones, J M; Sánchez-Vizcaíno, J M
2017-04-01
Late detection of emergency diseases causes significant economic losses for pig producers and governments. As the first signs of animal infection are usually fever and reduced motion that lead to reduced consumption of water and feed, we developed a novel smart system to monitor body temperature and motion in real time, facilitating the early detection of infectious diseases. In this study, carried out within the framework of the European Union research project Rapidia Field, we tested the smart system on 10 pigs experimentally infected with two doses of an attenuated strain of African swine fever. Biosensors and an accelerometer embedded in an eartag captured data before and after infection, and video cameras were used to monitor the animals 24 h per day. The results showed that in 8 of 9 cases, the monitoring system detected infection onset as an increase in body temperature and decrease in movement before or simultaneously with fever detection based on rectal temperature measurement, observation of clinical signs, the decrease in water consumption or positive qPCR detection of virus. In addition, this decrease in movement was reliably detected using automatic analysis of video images therefore providing an inexpensive alternative to direct motion measurement. The system can be set up to alert staff when high fever, reduced motion or both are detected in one or more animals. This system may be useful for monitoring sentinel herds in real time, considerably reducing the financial and logistical costs of periodic sampling and increasing the chances of early detection of infection. © 2015 Blackwell Verlag GmbH.
Ngamkham, Jarunya; Boonmark, Krittika; Phansri, Thainsang
2016-01-01
Vulva and Vaginal cancers are rare among all gynecological cancers worldwide, including Thailand, and typically affect women in later life. Persistent high risk human papillomavirus (HR-HPV) infection is one of several important causes of cancer development. In this study, we focused on HPV investigation and specific type distribution from Thai women with abnormality lesions and cancers of the vulva and Vaginal. A total of ninety paraffin-embedded samples of vulva and Vaginal abnormalities and cancer cells with histologically confirmed were collected from Thai women, who were diagnosed in 2003-2012 at the National Cancer Institute, Thailand. HPV DNA was detected and genotyped using polymerase chain reaction and enzyme immunoassay with GP5+/ bio 6+ consensus specific primers and digoxigenin-labeled specific oligoprobes, respectively. The human β-globin gene was used as an internal control. Overall results represented that HPV frequency was 16/34 (47.1%) and 8/20 (40.0%) samples of vulva with cancer and abnormal cytology lesions, respectively, while, 3/5 (60%) and 16/33 (51.61%) samples of Vaginal cancer and abnormal cytology lesions, respectively, were HPV DNA positive. Single HPV type and multiple HPV type infection could be observed in both type of cancers and abnormal lesion samples in the different histological categorizes. HPV16 was the most frequent type in all cancers and abnormal cytology lesions, whereas HPV 18 was less frequent and could be detected as co-infection with other high risk HPV types. In addition, low risk types such as HPV 6, 11 and 70 could be detected in Vulva cancer and abnormal cytology lesion samples, whereas, all Vaginal cancer samples exhibited only high risk HPV types; HPV 16 and 31. In conclusion, from our results in this study we suggest that women with persistent high risk HPV type infection are at risk of developing vulva and Vaginal cancers and HPV 16 was observed at the highest frequent both of these, similar to the cervical cancer cases. Although the number of samples in this study was limited and might not represent the overall incidence and prevalence in Thai women, but the baseline data are of interest and suggest further study for primary cancer screening and/or developing the efficiency of prophylactic HPV vaccines in Thailand.
Reversible second degree atrioventricular block after a severe sickle cell crisis.
Jaeggi, E; Bolens, M; Friedli, B
1998-01-01
Despite the high prevalence of sickle cell disease and trait in the black population and its serious potential for microinfarction, there are only a few reports on acute myocardial damage during vasoocclusive crisis. We report a unique case of transient second degree atrioventricular (A-V) block of Mobitz I and II type during a severe sickle cell crisis. Localized high ventricular septum hypoperfusion demonstrated by a 99mTc-MIBI radionuclide study and reversible echocardiographic wall motion abnormalities in the same area were strong indicators for a local ischemic event in the A-V node and His bundle area, explaining the observed transient conduction abnormalities. The present report draws attention to a potentially lethal complication of sickle cell crisis.
Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids
NASA Astrophysics Data System (ADS)
Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo
2016-09-01
We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.
A New Mouse Allele of Glutamate Receptor Delta 2 with Cerebellar Atrophy and Progressive Ataxia
Miyoshi, Yuka; Yoshioka, Yoshichika; Suzuki, Kinuko; Miyazaki, Taisuke; Koura, Minako; Saigoh, Kazumasa; Kajimura, Naoko; Monobe, Yoko; Kusunoki, Susumu; Matsuda, Junichiro; Watanabe, Masahiko; Hayasaka, Naoto
2014-01-01
Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF)–PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2 mutants. PMID:25250835
Deep-brain stimulator and control of Parkinson's disease
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Harbaugh, Robert; Abraham, Jose K.
2004-07-01
The design of a novel feedback sensor system with wireless implantable polymer MEMS sensors for detecting and wirelessly transmitting physiological data that can be used for the diagnosis and treatment of various neurological disorders, such as Parkinson's disease, epilepsy, head injury, stroke, hydrocephalus, changes in pressure, patient movements, and tremors is presented in this paper. The sensor system includes MEMS gyroscopes, accelerometers, and pressure sensors. This feedback sensor system focuses on the development and integration of implantable systems with various wireless sensors for medical applications, particularly for the Parkinson's disease. It is easy to integrate and modify the sensor network feed back system for other neurological disorders mentioned above. The monitoring and control of tremor in Parkinson's disease can be simulated on a skeleton via wireless telemetry system communicating with electroactive polymer actuator, and microsensors attached to the skeleton hand and legs. Upon sensing any abnormal motor activity which represent the characteristic rhythmic motion of a typical Parkinson's (PD) patient, these sensors will generate necessary control pulses which will be transmitted to a hat sensor system on the skeleton head. Tiny inductively coupled antennas attached to the hat sensor system can receive these control pulses, demodulate and deliver it to actuate the parts of the skeleton to control the abnormal motor activity. This feedback sensor system can further monitor and control depending on the amplitude of the abnormal motor activity. This microsystem offers cost effective means of monitoring and controlling of neurological disorders in real PD patients. Also, this network system offers a remote monitoring of the patients conditions without visiting doctors office or hospitals. The data can be monitored using PDA and can be accessed using internet (or cell phone). Cellular phone technology will allow a health care worker to be automatically notified if monitoring indicates an emergency situation. The main advantage of such system is that it can effectively monitor large number of patients at the same time, which helps to compensate the present shortage of health care workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adatepe, M.H.; Nichols, K.; Powell, O.M.
1984-01-01
The authors determined the first third filling fraction (1/3 FF), the maximum filling rate (1/3 FR) and the mean filling rate (1/3 MFR) for the first third diastolic filling period of the left ventricle in patients with coronary artery disease (CAD), valvular heart disease (VHD), pericardial effusion (PE), cardiomyopathies (CM), chronic obstructive lung disease (COPD) and in 5 normals-all from resting gated equilibrium studies. Parameters are calculated from the third order Fourier fit to the LV volume curve and its derivative. 1/3 FF% = 1/3 diastolic count - end systolic count / 1/3 diastolic count x 100. Patients with CADmore » are divided into two groups: Group I with normal ejection fraction (EF) and wall motion (WM); Group II with abnormal EF and WM. Results are shown in the table. Abnormal filling parameters are found not only in CAD but in VHD, PE and CM. The authors conclude that the first third LV filling parameters are sensitive but non-specific indicators of filling abnormalities caused by diverse etiologic factors. Abnormal first third filling parameters may occur in the presence of a normal resting EF and WM in CAD.« less
Salivary glands abnormalities in oculo-auriculo-vertebral spectrum.
Brotto, Davide; Manara, Renzo; Vio, Stefania; Ghiselli, Sara; Cantone, Elena; Mardari, Rodica; Toldo, Irene; Stritoni, Valentina; Castiglione, Alessandro; Lovo, Elisa; Trevisi, Patrizia; Bovo, Roberto; Martini, Alessandro
2018-01-01
Feeding and swallowing impairment are present in up to 80% of oculo-auriculo-vertebral spectrum (OAVS) patients. Salivary gland abnormalities have been reported in OAVS patients but their rate, features, and relationship with phenotype severity have yet to be defined. Parotid and submandibular salivary gland hypo/aplasia was evaluated on head MRI of 25 OAVS patients (16 with severe phenotype, Goldenhar syndrome) and 11 controls. All controls disclosed normal salivary glands. Abnormal parotid glands were found exclusively ipsilateral to facial microsomia in 21/25 OAVS patients (84%, aplasia in six patients) and showed no association with phenotype severity (14/16 patients with Goldenhar phenotype vs 7/9 patients with milder phenotype, p = 0.6). Submandibular salivary gland hypoplasia was detected in six OAVS patients, all with concomitant ipsilateral severe involvement of the parotid gland (p < 0.001). Submandibular salivary gland hypoplasia was associated to Goldenhar phenotype (p < 0.05). Parotid gland abnormalities were associated with ipsilateral fifth (p < 0.001) and seventh cranial nerve (p = 0.001) abnormalities. No association was found between parotid gland anomaly and ipsilateral internal carotid artery, inner ear, brain, eye, or spine abnormalities (p > 0.6). Salivary gland abnormalities are strikingly common in OAVS. Their detection might help the management of OAVS-associated swallowing and feeding impairment.
Hayakawa, Tomohiro; Kunihiro, Takeshi; Ando, Tomoko; Kobayashi, Seiji; Matsui, Eriko; Yada, Hiroaki; Kanda, Yasunari; Kurokawa, Junko; Furukawa, Tetsushi
2014-12-01
In this study, we used high-speed video microscopy with motion vector analysis to investigate the contractile characteristics of hiPS-CM monolayer, in addition to further characterizing the motion with extracellular field potential (FP), traction force and the Ca(2+) transient. Results of our traction force microscopy demonstrated that the force development of hiPS-CMs correlated well with the cellular deformation detected by the video microscopy with motion vector analysis. In the presence of verapamil and isoproterenol, contractile motion of hiPS-CMs showed alteration in accordance with the changes in fluorescence peak of the Ca(2+) transient, i.e., upstroke, decay, amplitude and full-width at half-maximum. Simultaneously recorded hiPS-CM motion and FP showed that there was a linear correlation between changes in the motion and field potential duration in response to verapamil (30-150nM), isoproterenol (0.1-10μM) and E-4031 (10-50nM). In addition, tetrodotoxin (3-30μM)-induced delay of sodium current was corresponded with the delay of the contraction onset of hiPS-CMs. These results indicate that the electrophysiological and functional behaviors of hiPS-CMs are quantitatively reflected in the contractile motion detected by this image-based technique. In the presence of 100nM E-4031, the occurrence of early after-depolarization-like negative deflection in FP was also detected in the hiPS-CM motion as a characteristic two-step relaxation pattern. These findings offer insights into the interpretation of the motion kinetics of the hiPS-CMs, and are relevant for understanding electrical and mechanical relationship in hiPS-CMs. Copyright © 2014. Published by Elsevier Ltd.
The VLBA Extragalactic Proper Motion Catalog and a Measurement of the Secular Aberration Drift
NASA Astrophysics Data System (ADS)
Truebenbach, Alexandra E.; Darling, Jeremy
2017-11-01
We present a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ˜24 μas yr-1, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. The observations were conducted in the X-band and yielded positions with uncertainties of ˜70 μas. We add 10 new redshifts using spectroscopic observations taken at Apache Point Observatory and Gemini North. With the VLBA Extragalactic Proper Motion Catalog, we detect the secular aberration drift—the apparent motion of extragalactic objects caused by the solar system’s acceleration around the Galactic center—at a 6.3σ significance. We model the aberration drift as a spheroidal dipole, with the square root of the power equal to 4.89 ± 0.77 μas yr-1, an amplitude of 1.69 ± 0.27 μas yr-1, and an apex at (275\\buildrel{\\circ}\\over{.} 2+/- 10\\buildrel{\\circ}\\over{.} 0, -29\\buildrel{\\circ}\\over{.} 4+/- 8\\buildrel{\\circ}\\over{.} 8). Our dipole model detects the aberration drift at a higher significance than some previous studies, but at a lower amplitude than expected or previously measured. The full aberration drift may be partially removed by the no-net-rotation constraint used when measuring archival extragalactic radio source positions. Like the cosmic microwave background dipole, which is induced by the observer’s motion, the aberration drift signal should be subtracted from extragalactic proper motions in order to detect cosmological proper motions, including the Hubble expansion, long-period stochastic gravitational waves, and the collapse of large-scale structure.
A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolbitsch, Christoph, E-mail: christoph.1.kolbitsch@kcl.ac.uk; Prieto, Claudia; Schaeffter, Tobias
Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracermore » uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than 10% with the proposed motion compensation approach. Conclusions: A MR acquisition scheme which yields both high resolution 3D anatomical data and highly accurate nonrigid motion information without an increase in scan time is presented. The proposed method leads to a strong improvement in both MR and PET image quality and ensures an accurate assessment of tracer uptake.« less
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research. PMID:29618999
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less
A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes
NASA Astrophysics Data System (ADS)
Sato, Daisuke; Hanaoka, Shouhei; Nomura, Yukihiro; Takenaga, Tomomi; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu
2018-02-01
Purpose: The target disorders of emergency head CT are wide-ranging. Therefore, people working in an emergency department desire a computer-aided detection system for general disorders. In this study, we proposed an unsupervised anomaly detection method in emergency head CT using an autoencoder and evaluated the anomaly detection performance of our method in emergency head CT. Methods: We used a 3D convolutional autoencoder (3D-CAE), which contains 11 layers in the convolution block and 6 layers in the deconvolution block. In the training phase, we trained the 3D-CAE using 10,000 3D patches extracted from 50 normal cases. In the test phase, we calculated abnormalities of each voxel in 38 emergency head CT volumes (22 abnormal cases and 16 normal cases) for evaluation and evaluated the likelihood of lesion existence. Results: Our method achieved a sensitivity of 68% and a specificity of 88%, with an area under the curve of the receiver operating characteristic curve of 0.87. It shows that this method has a moderate accuracy to distinguish normal CT cases to abnormal ones. Conclusion: Our method has potentialities for anomaly detection in emergency head CT.
Breast cancer detection in rotational thermography images using texture features
NASA Astrophysics Data System (ADS)
Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.
2014-11-01
Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.