Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Carrelli, David J.
2006-01-01
The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.
Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.
Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong
2016-08-01
The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.
STAMPS: development and verification of swallowing kinematic analysis software.
Lee, Woo Hyung; Chun, Changmook; Seo, Han Gil; Lee, Seung Hak; Oh, Byung-Mo
2017-10-17
Swallowing impairment is a common complication in various geriatric and neurodegenerative diseases. Swallowing kinematic analysis is essential to quantitatively evaluate the swallowing motion of the oropharyngeal structures. This study aims to develop a novel swallowing kinematic analysis software, called spatio-temporal analyzer for motion and physiologic study (STAMPS), and verify its validity and reliability. STAMPS was developed in MATLAB, which is one of the most popular platforms for biomedical analysis. This software was constructed to acquire, process, and analyze the data of swallowing motion. The target of swallowing structures includes bony structures (hyoid bone, mandible, maxilla, and cervical vertebral bodies), cartilages (epiglottis and arytenoid), soft tissues (larynx and upper esophageal sphincter), and food bolus. Numerous functions are available for the spatiotemporal parameters of the swallowing structures. Testing for validity and reliability was performed in 10 dysphagia patients with diverse etiologies and using the instrumental swallowing model which was designed to mimic the motion of the hyoid bone and the epiglottis. The intra- and inter-rater reliability tests showed excellent agreement for displacement and moderate to excellent agreement for velocity. The Pearson correlation coefficients between the measured and instrumental reference values were nearly 1.00 (P < 0.001) for displacement and velocity. The Bland-Altman plots showed good agreement between the measurements and the reference values. STAMPS provides precise and reliable kinematic measurements and multiple practical functionalities for spatiotemporal analysis. The software is expected to be useful for researchers who are interested in the swallowing motion analysis.
Quantitative assessment of human motion using video motion analysis
NASA Technical Reports Server (NTRS)
Probe, John D.
1993-01-01
In the study of the dynamics and kinematics of the human body a wide variety of technologies has been developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development, coupled with recent advances in video technology, have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System (APAS) to develop data on shirtsleeved and space-suited human performance in order to plan efficient on-orbit intravehicular and extravehicular activities. APAS is a fully integrated system of hardware and software for biomechanics and the analysis of human performance and generalized motion measurement. Major components of the complete system include the video system, the AT compatible computer, and the proprietary software.
NASA Technical Reports Server (NTRS)
Parks, Kelsey
2010-01-01
Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.
UROKIN: A Software to Enhance Our Understanding of Urogenital Motion.
Czyrnyj, Catriona S; Labrosse, Michel R; Graham, Ryan B; McLean, Linda
2018-05-01
Transperineal ultrasound (TPUS) allows for objective quantification of mid-sagittal urogenital mechanics, yet current practice omits dynamic motion information in favor of analyzing only a rest and a peak motion frame. This work details the development of UROKIN, a semi-automated software which calculates kinematic curves of urogenital landmark motion. A proof of concept analysis, performed using UROKIN on TPUS video recorded from 20 women with and 10 women without stress urinary incontinence (SUI) performing maximum voluntary contraction of the pelvic floor muscles. The anorectal angle and bladder neck were tracked while the motion of the pubic symphysis was used to compensate for the error incurred by TPUS probe motion during imaging. Kinematic curves of landmark motion were generated for each video and curves were smoothed, time normalized, and averaged within groups. Kinematic data yielded by the UROKIN software showed statistically significant differences between women with and without SUI in terms of magnitude and timing characteristics of the kinematic curves depicting landmark motion. Results provide insight into the ways in which UROKIN may be useful to study differences in pelvic floor muscle contraction mechanics between women with and without SUI and other pelvic floor disorders. The UROKIN software improves on methods described in the literature and provides unique capacity to further our understanding of urogenital biomechanics.
Video Analysis of Rolling Cylinders
ERIC Educational Resources Information Center
Phommarach, S.; Wattanakasiwich, P.; Johnston, I.
2012-01-01
In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…
Effectiveness of an automatic tracking software in underwater motion analysis.
Magalhaes, Fabrício A; Sawacha, Zimi; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio; Fantozzi, Silvia
2013-01-01
Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP), based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers' positions) were manually tracked to determine the markers' center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM). Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker's coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4%) than for COM (17.8%). Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis. Key PointsThe availability of effective software for automatic tracking would represent a significant advance for the practical use of kinematic analysis in swimming and other aquatic sports.An important feature of automatic tracking software is to require limited human interventions and supervision, thus allowing short processing time.When tracking underwater movements, the degree of automation of the tracking procedure is influenced by the capability of the algorithm to overcome difficulties linked to the small target size, the low image quality and the presence of background clutters.The newly developed feature-tracking algorithm has shown a good automatic tracking effectiveness in underwater motion analysis with significantly smaller percentage of required manual interventions when compared to a commercial software.
Software package for modeling spin-orbit motion in storage rings
NASA Astrophysics Data System (ADS)
Zyuzin, D. V.
2015-12-01
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.
Kim, Won-Seok; Zeng, Pengcheng; Shi, Jian Qing; Lee, Youngjo; Paik, Nam-Jong
2017-01-01
Motion analysis of the hyoid bone via videofluoroscopic study has been used in clinical research, but the classical manual tracking method is generally labor intensive and time consuming. Although some automatic tracking methods have been developed, masked points could not be tracked and smoothing and segmentation, which are necessary for functional motion analysis prior to registration, were not provided by the previous software. We developed software to track the hyoid bone motion semi-automatically. It works even in the situation where the hyoid bone is masked by the mandible and has been validated in dysphagia patients with stroke. In addition, we added the function of semi-automatic smoothing and segmentation. A total of 30 patients' data were used to develop the software, and data collected from 17 patients were used for validation, of which the trajectories of 8 patients were partly masked. Pearson correlation coefficients between the manual and automatic tracking are high and statistically significant (0.942 to 0.991, P-value<0.0001). Relative errors between automatic tracking and manual tracking in terms of the x-axis, y-axis and 2D range of hyoid bone excursion range from 3.3% to 9.2%. We also developed an automatic method to segment each hyoid bone trajectory into four phases (elevation phase, anterior movement phase, descending phase and returning phase). The semi-automatic hyoid bone tracking from VFSS data by our software is valid compared to the conventional manual tracking method. In addition, the ability of automatic indication to switch the automatic mode to manual mode in extreme cases and calibration without attaching the radiopaque object is convenient and useful for users. Semi-automatic smoothing and segmentation provide further information for functional motion analysis which is beneficial to further statistical analysis such as functional classification and prognostication for dysphagia. Therefore, this software could provide the researchers in the field of dysphagia with a convenient, useful, and all-in-one platform for analyzing the hyoid bone motion. Further development of our method to track the other swallowing related structures or objects such as epiglottis and bolus and to carry out the 2D curve registration may be needed for a more comprehensive functional data analysis for dysphagia with big data.
A new software tool for 3D motion analyses of the musculo-skeletal system.
Leardini, A; Belvedere, C; Astolfi, L; Fantozzi, S; Viceconti, M; Taddei, F; Ensini, A; Benedetti, M G; Catani, F
2006-10-01
Many clinical and biomechanical research studies, particularly in orthopaedics, nowadays involve forms of movement analysis. Gait analysis, video-fluoroscopy of joint replacement, pre-operative planning, surgical navigation, and standard radiostereometry would require tools for easy access to three-dimensional graphical representations of rigid segment motion. Relevant data from this variety of sources need to be organised in structured forms. Registration, integration, and synchronisation of segment position data are additional necessities. With this aim, the present work exploits the features of a software tool recently developed within a EU-funded project ('Multimod') in a series of different research studies. Standard and advanced gait analysis on a normal subject, in vivo fluoroscopy-based three-dimensional motion of a replaced knee joint, patellar and ligament tracking on a knee specimen by a surgical navigation system, stem-to-femur migration pattern on a patient operated on total hip replacement, were analysed with standard techniques and all represented by this innovative software tool. Segment pose data were eventually obtained from these different techniques, and were successfully imported and organised in a hierarchical tree within the tool. Skeletal bony segments, prosthesis component models and ligament links were registered successfully to corresponding marker position data for effective three-dimensional animations. These were shown in various combinations, in different views, from different perspectives, according to possible specific research interests. Bioengineering and medical professionals would be much facilitated in the interpretation of the motion analysis measurements necessary in their research fields, and would benefit therefore from this software tool.
Applications of Phase-Based Motion Processing
NASA Technical Reports Server (NTRS)
Branch, Nicholas A.; Stewart, Eric C.
2018-01-01
Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.
Motion Law Analysis and Structural Optimization of the Ejection Device of Tray Seeder
NASA Astrophysics Data System (ADS)
Luo, Xin; Hu, Bin; Dong, Chunwang; Huang, Lili
An ejection mechanism consisting four reset springs, an electromagnet and a seed disk was designed for tray seeder. The motion conditions of seeds in the seed disk were theoretical analyzed and intensity and height of seed ejection were calculated. The motions of the seeds and seed disk were multi-body dynamic simulated using Cosmos modules plug-in SolidWorks software package. The simulation results showed the consistence with the theoretical analysis.
Software package for modeling spin–orbit motion in storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de
2015-12-15
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less
Applications of High-speed motion analysis system on Solid Rocket Motor (SRM)
NASA Astrophysics Data System (ADS)
Liu, Yang; He, Guo-qiang; Li, Jiang; Liu, Pei-jin; Chen, Jian
2007-01-01
High-speed motion analysis system could record images up to 12,000fps and analyzed with the image processing system. The system stored data and images directly in electronic memory convenient for managing and analyzing. The high-speed motion analysis system and the X-ray radiography system were established the high-speed real-time X-ray radiography system, which could diagnose and measure the dynamic and high-speed process in opaque. The image processing software was developed for improve quality of the original image for acquiring more precise information. The typical applications of high-speed motion analysis system on solid rocket motor (SRM) were introduced in the paper. The research of anomalous combustion of solid propellant grain with defects, real-time measurement experiment of insulator eroding, explosion incision process of motor, structure and wave character of plume during the process of ignition and flameout, measurement of end burning of solid propellant, measurement of flame front and compatibility between airplane and missile during the missile launching were carried out using high-speed motion analysis system. The significative results were achieved through the research. Aim at application of high-speed motion analysis system on solid rocket motor, the key problem, such as motor vibrancy, electrical source instability, geometry aberrance, and yawp disturbance, which damaged the image quality, was solved. The image processing software was developed which improved the capability of measuring the characteristic of image. The experimental results showed that the system was a powerful facility to study instantaneous and high-speed process in solid rocket motor. With the development of the image processing technique, the capability of high-speed motion analysis system was enhanced.
Khadilkar, Leenesh; MacDermid, Joy C; Sinden, Kathryn E; Jenkyn, Thomas R; Birmingham, Trevor B; Athwal, George S
2014-01-01
Video-based movement analysis software (Dartfish) has potential for clinical applications for understanding shoulder motion if functional measures can be reliably obtained. The primary purpose of this study was to describe the functional range of motion (ROM) of the shoulder used to perform a subset of functional tasks. A second purpose was to assess the reliability of functional ROM measurements obtained by different raters using Dartfish software. Ten healthy participants, mean age 29 ± 5 years, were videotaped while performing five tasks selected from the Disabilities of the Arm, Shoulder and Hand (DASH). Video cameras and markers were used to obtain video images suitable for analysis in Dartfish software. Three repetitions of each task were performed. Shoulder movements from all three repetitions were analyzed using Dartfish software. The tracking tool of the Dartfish software was used to obtain shoulder joint angles and arcs of motion. Test-retest and inter-rater reliability of the measurements were evaluated using intraclass correlation coefficients (ICC). Maximum (coronal plane) abduction (118° ± 16°) and (sagittal plane) flexion (111° ± 15°) was observed during 'washing one's hair;' maximum extension (-68° ± 9°) was identified during 'washing one's own back.' Minimum shoulder ROM was observed during 'opening a tight jar' (33° ± 13° abduction and 13° ± 19° flexion). Test-retest reliability (ICC = 0.45 to 0.94) suggests high inter-individual task variability, and inter-rater reliability (ICC = 0.68 to 1.00) showed moderate to excellent agreement. KEY FINDINGS INCLUDE: 1) functional shoulder ROM identified in this study compared to similar studies; 2) healthy individuals require less than full ROM when performing five common ADL tasks 3) high participant variability was observed during performance of the five ADL tasks; and 4) Dartfish software provides a clinically relevant tool to analyze shoulder function.
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2016-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.
Teasing Apart Complex Motions using VideoPoint
NASA Astrophysics Data System (ADS)
Fischer, Mark
2002-10-01
Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.
NASA Tech Briefs, December 1998. Volume 22, No. 12
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage section on design and analysis software, and sections on electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, manufacturing/fabrication, physical sciences, and special sections of Photonics Tech Briefs, Motion Control Tech briefs and a Hot Technology File 1999 Resource Guide.
Mitigating Motion Base Safety Issues: The NASA LaRC CMF Implementation
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Grupton, Lawrence E.; Martinez, Debbie; Carrelli, David J.
2005-01-01
The NASA Langley Research Center (LaRC), Cockpit Motion Facility (CMF) motion base design has taken advantage of inherent hydraulic characteristics to implement safety features using hardware solutions only. Motion system safety has always been a concern and its implementation is addressed differently by each organization. Some approaches rely heavily on software safety features. Software which performs safety functions is subject to more scrutiny making its approval, modification, and development time consuming and expensive. The NASA LaRC's CMF motion system is used for research and, as such, requires that the software be updated or modified frequently. The CMF's customers need the ability to update the simulation software frequently without the associated cost incurred with safety critical software. This paper describes the CMF engineering team's approach to achieving motion base safety by designing and implementing all safety features in hardware, resulting in applications software (including motion cueing and actuator dynamic control) being completely independent of the safety devices. This allows the CMF safety systems to remain intact and unaffected by frequent research system modifications.
Evaluation of deformable image registration and a motion model in CT images with limited features.
Liu, F; Hu, Y; Zhang, Q; Kincaid, R; Goodman, K A; Mageras, G S
2012-05-07
Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2015-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.
Software Models Impact Stresses
NASA Technical Reports Server (NTRS)
Hanshaw, Timothy C.; Roy, Dipankar; Toyooka, Mark
1991-01-01
Generalized Impact Stress Software designed to assist engineers in predicting stresses caused by variety of impacts. Program straightforward, simple to implement on personal computers, "user friendly", and handles variety of boundary conditions applied to struck body being analyzed. Applications include mathematical modeling of motions and transient stresses of spacecraft, analysis of slamming of piston, of fast valve shutoffs, and play of rotating bearing assembly. Provides fast and inexpensive analytical tool for analysis of stresses and reduces dependency on expensive impact tests. Written in FORTRAN 77. Requires use of commercial software package PLOT88.
NASA Technical Reports Server (NTRS)
1990-01-01
The Ames digital image velocimetry technology has been incorporated in a commercially available image processing software package that allows motion measurement of images on a PC alone. The software, manufactured by Werner Frei Associates, is IMAGELAB FFT. IMAGELAB FFT is a general purpose image processing system with a variety of other applications, among them image enhancement of fingerprints and use by banks and law enforcement agencies for analysis of videos run during robberies.
Image Processing Occupancy Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Image Processing Occupancy Sensor, or IPOS, is a novel sensor technology developed at the National Renewable Energy Laboratory (NREL). The sensor is based on low-cost embedded microprocessors widely used by the smartphone industry and leverages mature open-source computer vision software libraries. Compared to traditional passive infrared and ultrasonic-based motion sensors currently used for occupancy detection, IPOS has shown the potential for improved accuracy and a richer set of feedback signals for occupant-optimized lighting, daylighting, temperature setback, ventilation control, and other occupancy and location-based uses. Unlike traditional passive infrared (PIR) or ultrasonic occupancy sensors, which infer occupancy based only onmore » motion, IPOS uses digital image-based analysis to detect and classify various aspects of occupancy, including the presence of occupants regardless of motion, their number, location, and activity levels of occupants, as well as the illuminance properties of the monitored space. The IPOS software leverages the recent availability of low-cost embedded computing platforms, computer vision software libraries, and camera elements.« less
PRISM software—Processing and review interface for strong-motion data
Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter
2017-11-28
Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.
PIV/HPIV Film Analysis Software Package
NASA Technical Reports Server (NTRS)
Blackshire, James L.
1997-01-01
A PIV/HPIV film analysis software system was developed that calculates the 2-dimensional spatial autocorrelations of subregions of Particle Image Velocimetry (PIV) or Holographic Particle Image Velocimetry (HPIV) film recordings. The software controls three hardware subsystems including (1) a Kodak Megaplus 1.4 camera and EPIX 4MEG framegrabber subsystem, (2) an IEEE/Unidex 11 precision motion control subsystem, and (3) an Alacron I860 array processor subsystem. The software runs on an IBM PC/AT host computer running either the Microsoft Windows 3.1 or Windows 95 operating system. It is capable of processing five PIV or HPIV displacement vectors per second, and is completely automated with the exception of user input to a configuration file prior to analysis execution for update of various system parameters.
Mars Science Laboratory CHIMRA/IC/DRT Flight Software for Sample Acquisition and Processing
NASA Technical Reports Server (NTRS)
Kim, Won S.; Leger, Chris; Carsten, Joseph; Helmick, Daniel; Kuhn, Stephen; Redick, Richard; Trujillo, Diana
2013-01-01
The design methodologies of using sequence diagrams, multi-process functional flow diagrams, and hierarchical state machines were successfully applied in designing three MSL (Mars Science Laboratory) flight software modules responsible for handling actuator motions of the CHIMRA (Collection and Handling for In Situ Martian Rock Analysis), IC (Inlet Covers), and DRT (Dust Removal Tool) mechanisms. The methodologies were essential to specify complex interactions with other modules, support concurrent foreground and background motions, and handle various fault protections. Studying task scenarios with multi-process functional flow diagrams yielded great insight to overall design perspectives. Since the three modules require three different levels of background motion support, the methodologies presented in this paper provide an excellent comparison. All three modules are fully operational in flight.
A software platform for statistical evaluation of patient respiratory patterns in radiation therapy.
Dunn, Leon; Kenny, John
2017-10-01
The aim of this work was to design and evaluate a software tool for analysis of a patient's respiration, with the goal of optimizing the effectiveness of motion management techniques during radiotherapy imaging and treatment. A software tool which analyses patient respiratory data files (.vxp files) created by the Varian Real-Time Position Management System (RPM) was developed to analyse patient respiratory data. The software, called RespAnalysis, was created in MATLAB and provides four modules, one each for determining respiration characteristics, providing breathing coaching (biofeedback training), comparing pre and post-training characteristics and performing a fraction-by-fraction assessment. The modules analyse respiratory traces to determine signal characteristics and specifically use a Sample Entropy algorithm as the key means to quantify breathing irregularity. Simulated respiratory signals, as well as 91 patient RPM traces were analysed with RespAnalysis to test the viability of using the Sample Entropy for predicting breathing regularity. Retrospective assessment of patient data demonstrated that the Sample Entropy metric was a predictor of periodic irregularity in respiration data, however, it was found to be insensitive to amplitude variation. Additional waveform statistics assessing the distribution of signal amplitudes over time coupled with Sample Entropy method were found to be useful in assessing breathing regularity. The RespAnalysis software tool presented in this work uses the Sample Entropy method to analyse patient respiratory data recorded for motion management purposes in radiation therapy. This is applicable during treatment simulation and during subsequent treatment fractions, providing a way to quantify breathing irregularity, as well as assess the need for breathing coaching. It was demonstrated that the Sample Entropy metric was correlated to the irregularity of the patient's respiratory motion in terms of periodicity, whilst other metrics, such as percentage deviation of inhale/exhale peak positions provided insight into respiratory amplitude regularity. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Ramkumar, Prem N; Haeberle, Heather S; Navarro, Sergio M; Sultan, Assem A; Mont, Michael A; Ricchetti, Eric T; Schickendantz, Mark S; Iannotti, Joseph P
2018-03-07
Mobile technology offers the prospect of delivering high-value care with increased patient access and reduced costs. Advances in mobile health (mHealth) and telemedicine have been inhibited by the lack of interconnectivity between devices and software and inability to process consumer sensor data. The objective of this study was to preliminarily validate a motion-based machine learning software development kit (SDK) for the shoulder compared with a goniometer for 4 arcs of motion: (1) abduction, (2) forward flexion, (3) internal rotation, and (4) external rotation. A mobile application for the SDK was developed and "taught" 4 arcs of shoulder motion. Ten subjects without shoulder pain or prior shoulder surgery performed the arcs of motion for 5 repetitions. Each motion was measured by the SDK and compared with a physician-measured manual goniometer measurement. Angular differences between SDK and goniometer measurements were compared with univariate and power analyses. The comparison between the SDK and goniometer measurement detected a mean difference of less than 5° for all arcs of motion (P > .05), with a 94% chance of detecting a large effect size from a priori power analysis. Mean differences for the arcs of motion were: abduction, -3.7° ± 3.2°; forward flexion, -4.9° ± 2.5°; internal rotation, -2.4° ± 3.7°; and external rotation -2.6° ± 3.4°. The SDK has the potential to remotely substitute for a shoulder range of motion examination within 5° of goniometer measurements. An open-source motion-based SDK that can learn complex movements, including clinical shoulder range of motion, from consumer sensors offers promise for the future of mHealth, particularly in telemonitoring before and after orthopedic surgery. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Development and Evaluation of the Effectiveness of Computer-Assisted Physics Instruction
ERIC Educational Resources Information Center
Rahman, Mohd. Jasmy Abd; Ismail, Mohd. Arif. Hj.; Nasir, Muhammad
2014-01-01
This study aims to design and develop an interactive software for teaching and learning physics about motion and vectors analysis. This study also assesses its effectiveness in classroom and assesses the learning motivation of SMA Pekanbaru's students. The software is developed using ADDIE Model design and Life Cycle Model and built using the…
Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment
Kim, Ikhwan; Kim, Taehyoun
2015-01-01
Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives. PMID:26076407
Using a Computer Microphone Port to Study Circular Motion: Proposal of a Secondary School Experiment
ERIC Educational Resources Information Center
Soares, A. A.; Borcsik, F. S.
2016-01-01
In this work we present an inexpensive experiment proposal to study the kinematics of uniform circular motion in a secondary school. We used a PC sound card to connect a homemade simple sensor to a computer and used the free sound analysis software "Audacity" to record experimental data. We obtained quite good results even in comparison…
NASA Astrophysics Data System (ADS)
Almesallmy, Mohammed
Methodologies are developed for dynamic analysis of mechanical systems with emphasis on inertial propulsion systems. This work adopted the Lagrangian methodology. Lagrangian methodology is the most efficient classical computational technique, which we call Equations of Motion Code (EOMC). The EOMC is applied to several simple dynamic mechanical systems for easier understanding of the method and to aid other investigators in developing equations of motion of any dynamic system. In addition, it is applied to a rigid multibody system, such as Thomson IPS [Thomson 1986]. Furthermore, a simple symbolic algorithm is developed using Maple software, which can be used to convert any nonlinear n-order ordinary differential equation (ODE) systems into 1st-order ODE system in ready format to be used in Matlab software. A side issue, but equally important, we have started corresponding with the U.S. Patent office to persuade them that patent applications, claiming gross linear motion based on inertial propulsion systems should be automatically rejected. The precedent is rejection of patent applications involving perpetual motion machines.
[Image processing applying in analysis of motion features of cultured cardiac myocyte in rat].
Teng, Qizhi; He, Xiaohai; Luo, Daisheng; Wang, Zhengrong; Zhou, Beiyi; Yuan, Zhirun; Tao, Dachang
2007-02-01
Study of mechanism of medicine actions, by quantitative analysis of cultured cardiac myocyte, is one of the cutting edge researches in myocyte dynamics and molecular biology. The characteristics of cardiac myocyte auto-beating without external stimulation make the research sense. Research of the morphology and cardiac myocyte motion using image analysis can reveal the fundamental mechanism of medical actions, increase the accuracy of medicine filtering, and design the optimal formula of medicine for best medical treatments. A system of hardware and software has been built with complete sets of functions including living cardiac myocyte image acquisition, image processing, motion image analysis, and image recognition. In this paper, theories and approaches are introduced for analysis of living cardiac myocyte motion images and implementing quantitative analysis of cardiac myocyte features. A motion estimation algorithm is used for motion vector detection of particular points and amplitude and frequency detection of a cardiac myocyte. Beatings of cardiac myocytes are sometimes very small. In such case, it is difficult to detect the motion vectors from the particular points in a time sequence of images. For this reason, an image correlation theory is employed to detect the beating frequencies. Active contour algorithm in terms of energy function is proposed to approximate the boundary and detect the changes of edge of myocyte.
Kinematic analysis of total knee prosthesis designed for Asian population.
Low, F H; Khoo, L P; Chua, C K; Lo, N N
2000-01-01
In designing a total knee replacement (TKR) prosthesis catering for the Asian population, 62 sets of femur were harvested and analyzed. The morphometrical data obtained were found to be in good agreement with dimensions typical of the Asian knee and has reaffirmed the fact that Caucasian knees are generally larger than Asian knees. Subsequently, these data when treated using a multivariate statistical technique resulted in the establishment of major design parameters for six different sizes of femoral implants. An extra-small implant size with established dimensions and geometrical shape has surfaced from the study. The differences between the Asian knees and the Caucasian knees are discussed. Employing the established femoral dimensions and motion path of the knee joint, the articulating tibia profile was generated. All the sizes of implants were modeled using a computer-aided software package. Thereupon, these models that accurately fits the local Asian knee were transported into a dynamic and kinematic analysis software package. The tibiofemoral joint was modeled successfully as a slide curve joint to study intuitively the motion of the femur when articulating on the tibia surface. An optimal tibia profile could be synthesized to mimic the natural knee path motion. Details of the analysis are presented and discussed.
Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R
2011-06-01
Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.
Real-time animation software for customized training to use motor prosthetic systems.
Davoodi, Rahman; Loeb, Gerald E
2012-03-01
Research on control of human movement and development of tools for restoration and rehabilitation of movement after spinal cord injury and amputation can benefit greatly from software tools for creating precisely timed animation sequences of human movement. Despite their ability to create sophisticated animation and high quality rendering, existing animation software are not adapted for application to neural prostheses and rehabilitation of human movement. We have developed a software tool known as MSMS (MusculoSkeletal Modeling Software) that can be used to develop models of human or prosthetic limbs and the objects with which they interact and to animate their movement using motion data from a variety of offline and online sources. The motion data can be read from a motion file containing synthesized motion data or recordings from a motion capture system. Alternatively, motion data can be streamed online from a real-time motion capture system, a physics-based simulation program, or any program that can produce real-time motion data. Further, animation sequences of daily life activities can be constructed using the intuitive user interface of Microsoft's PowerPoint software. The latter allows expert and nonexpert users alike to assemble primitive movements into a complex motion sequence with precise timing by simply arranging the order of the slides and editing their properties in PowerPoint. The resulting motion sequence can be played back in an open-loop manner for demonstration and training or in closed-loop virtual reality environments where the timing and speed of animation depends on user inputs. These versatile animation utilities can be used in any application that requires precisely timed animations but they are particularly suited for research and rehabilitation of movement disorders. MSMS's modeling and animation tools are routinely used in a number of research laboratories around the country to study the control of movement and to develop and test neural prostheses for patients with paralysis or amputations.
Measurement of lumbar spine intervertebral motion in the sagittal plane using videofluoroscopy.
Harvey, Steven; Hukins, David; Smith, Francis; Wardlaw, Douglas; Kader, Deiary
2016-08-10
Static radiographic techniques are unable to capture the wealth of kinematic information available from lumbar spine sagittal plane motion. Demonstration of a viable non-invasive technique for acquiring and quantifying intervertebral motion of the lumbar spine in the sagittal plane. Videofluoroscopic footage of sagittal plane lumbar spine flexion-extension in seven symptomatic volunteers (mean age = 48 yrs) and one asymptomatic volunteer (age = 54 yrs) was recorded. Vertebral bodies were digitised using customised software employing a novel vertebral digitisation scheme that was minimally affected by out-of-plane motion. Measurement errors in intervertebral rotation (± 1°) and intervertebral displacement (± 0.5 mm) compare favourably with the work of others. Some subjects presenting with an identical condition (disc prolapse) exhibited a similar column vertebral flexion-extension relative to S1 (L3: max. 5.9°, min. 5.6°), while in others (degenerative disc disease) there was paradoxically a significant variation in this measurement (L3: max. 28.1°, min. 0.7°). By means of a novel vertebral digitisation scheme and customised digitisation/analysis software, sagittal plane intervertebral motion data of the lumbar spine data has been successfully extracted from videofluoroscopic image sequences. Whilst the intervertebral motion signatures of subjects in this study differed significantly, the available sample size precluded the inference of any clinical trends.
Comparisons of Kinematics and Dynamics Simulation Software Tools
NASA Technical Reports Server (NTRS)
Shiue, Yeu-Sheng Paul
2002-01-01
Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.
Dynamic simulation of train derailments
DOT National Transportation Integrated Search
2006-11-05
This paper describes a planar rigid-body model to examine the gross motions of rail cars in a train derailment. The model is implemented using a commercial software package called ADAMS (Automatic Dynamic Analysis of Mechanical Systems). The results ...
NASA Astrophysics Data System (ADS)
Deleflie, Florent; Wailliez, Sébastien; Portmann, Christophe; Gilles, M.; Vienne, Alain; Berthier, J.; Valk, St; Hautesserres, Denis; Martin, Thierry; Fraysse, Hubert
To perform an orbit modelling accurate enough to provide a good estimate of the lifetime of a satellite, or to ensure the stability of a disposal orbit through centuries, we built a new orbit propagator based on the theory of mean orbital motion. It is named SECS-SD2 , for Simplified and Extended CODIOR Software -Space Debris Dedicated . The CODIOR software propagates numerically averaged equations of motion, with a typical integration step size on the order of a few hours, and was originally written in classical orbital elements. The so-called Space Debris -dedicated version is written in orbital elements suitable for orbits with small eccentricities and inclinations, so as to characterize the main dynamic properties of the motion within the LEO, MEO, and GEO regions. The orbital modelling accounts for the very first terms of the geopotential, the perturbations induced by the luni-solar attraction, the solar radiation pressure, and the atmospheric drag (using classical models). The new software was designed so as to ensure short computation times, even over periods of decades or centuries. This paper aims first at describing and validating the main functionalities of the software: we explain how the simplified averaged equations of motion were built, we show how we get sim-plified luni-solar ephemerides without using any huge file for orbit propagations over centuries, and we show how we averaged and simulated the solar flux. We show as well how we expressed short periodic terms to be added to the mean equations of motion, in order to get orbital ele-ments comparable to those deduced from the classical numerical integration of the oscultating equations of motion. The second part of the paper sheds light on some dynamical properties of space debris flying in the LEO and GEO regions, which were obtained from the new software. Knowing that each satellite in the LEO region is now supposed to re-enter the atmosphere within a period of 25 years, we estimated in various dynamical configurations the lifetime of LEO objects depending on their initial conditions of motion, on the solar flux models applied through decades, and on the atmospheric density models and also the satellite area-to-mass ratio. In the GEO region, we investigated the dynamical reasons that can cause space debris re-entering the GEO-protected region after the passivation of a disposal spacecraft.
High-Speed Video Analysis in a Conceptual Physics Class
ERIC Educational Resources Information Center
Desbien, Dwain M.
2011-01-01
The use of probe ware and computers has become quite common in introductory physics classrooms. Video analysis is also becoming more popular and is available to a wide range of students through commercially available and/or free software. Video analysis allows for the study of motions that cannot be easily measured in the traditional lab setting…
Auto-tracking system for human lumbar motion analysis.
Sui, Fuge; Zhang, Da; Lam, Shing Chun Benny; Zhao, Lifeng; Wang, Dongjun; Bi, Zhenggang; Hu, Yong
2011-01-01
Previous lumbar motion analyses suggest the usefulness of quantitatively characterizing spine motion. However, the application of such measurements is still limited by the lack of user-friendly automatic spine motion analysis systems. This paper describes an automatic analysis system to measure lumbar spine disorders that consists of a spine motion guidance device, an X-ray imaging modality to acquire digitized video fluoroscopy (DVF) sequences and an automated tracking module with a graphical user interface (GUI). DVF sequences of the lumbar spine are recorded during flexion-extension under a guidance device. The automatic tracking software utilizing a particle filter locates the vertebra-of-interest in every frame of the sequence, and the tracking result is displayed on the GUI. Kinematic parameters are also extracted from the tracking results for motion analysis. We observed that, in a bone model test, the maximum fiducial error was 3.7%, and the maximum repeatability error in translation and rotation was 1.2% and 2.6%, respectively. In our simulated DVF sequence study, the automatic tracking was not successful when the noise intensity was greater than 0.50. In a noisy situation, the maximal difference was 1.3 mm in translation and 1° in the rotation angle. The errors were calculated in translation (fiducial error: 2.4%, repeatability error: 0.5%) and in the rotation angle (fiducial error: 1.0%, repeatability error: 0.7%). However, the automatic tracking software could successfully track simulated sequences contaminated by noise at a density ≤ 0.5 with very high accuracy, providing good reliability and robustness. A clinical trial with 10 healthy subjects and 2 lumbar spondylolisthesis patients were enrolled in this study. The measurement with auto-tacking of DVF provided some information not seen in the conventional X-ray. The results proposed the potential use of the proposed system for clinical applications.
G-DYN Multibody Dynamics Engine
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Broderick, Daniel
2011-01-01
G-DYN is a multi-body dynamic simulation software engine that automatically assembles and integrates equations of motion for arbitrarily connected multibody dynamic systems. The algorithm behind G-DYN is based on a primal-dual formulation of the dynamics that captures the position and velocity vectors (primal variables) of each body and the interaction forces (dual variables) between bodies, which are particularly useful for control and estimation analysis and synthesis. It also takes full advantage of the spare matrix structure resulting from the system dynamics to numerically integrate the equations of motion efficiently. Furthermore, the dynamic model for each body can easily be replaced without re-deriving the overall equations of motion, and the assembly of the equations of motion is done automatically. G-DYN proved an essential software tool in the simulation of spacecraft systems used for small celestial body surface sampling, specifically in simulating touch-and-go (TAG) maneuvers of a robotic sampling system from a comet and asteroid. It is used extensively in validating mission concepts for small body sample return, such as Comet Odyssey and Galahad New Frontiers proposals.
Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.
Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam
2014-07-01
Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.
Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M
2017-04-01
In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional hardware is mounted onto the OCT scanner to gather information about the eye motion patterns during OCT data acquisition. This information is later processed and applied to the OCT data for creating an anatomically correct representation of the retina, either in an offline or online manner. In software based techniques, the motion patterns are approximated either by comparing the acquired data to a reference image, or by considering some prior assumptions about the nature of the eye motion. Careful investigations done on the most common methods in the field provides invaluable insight regarding future directions of the research in this area. The challenge in hardware-based techniques lies in the implementation aspects of particular devices. However, the results of these techniques are superior to those obtained from software-based techniques because they are capable of capturing secondary data related to eye motion during OCT acquisition. Software-based techniques on the other hand, achieve moderate success and their performance is highly dependent on the quality of the OCT data in terms of the amount of motion artifacts contained in them. However, they are still relevant to the field since they are the sole class of techniques with the ability to be applied to legacy data acquired using systems that do not have extra hardware to track eye motion. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and Analysis of Turbomachinery for Space Applications
NASA Technical Reports Server (NTRS)
Dorney, D.; Garcia, Roberto (Technical Monitor)
2002-01-01
This presentation provides an overview of CORSAIR, a three dimensional computational fluid dynamics software code for the analysis of turbomachinery components available from NASA, and discusses its potential use in the design of these parts. Topics covered include: time-dependent equations of motion, grid topology, turbulence models, boundary conditions, parallel simulations and miscellaneous capabilities.
Development of a video-guided real-time patient motion monitoring system.
Ju, Sang Gyu; Huh, Woong; Hong, Chae-Seon; Kim, Jin Sung; Shin, Jung Suk; Shin, Eunhyuk; Han, Youngyih; Ahn, Yong Chan; Park, Hee Chul; Choi, Doo Ho
2012-05-01
The authors developed a video image-guided real-time patient motion monitoring (VGRPM) system using PC-cams, and its clinical utility was evaluated using a motion phantom. The VGRPM system has three components: (1) an image acquisition device consisting of two PC-cams, (2) a main control computer with a radiation signal controller and warning system, and (3) patient motion analysis software developed in-house. The intelligent patient motion monitoring system was designed for synchronization with a beam on/off trigger signal in order to limit operation to during treatment time only and to enable system automation. During each treatment session, an initial image of the patient is acquired as soon as radiation starts and is compared with subsequent live images, which can be acquired at up to 30 fps by the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ(movement)) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.3, 0.5, and 1.0 cm for 1 and 2 s, respectively, was used to evaluate the system performance. The authors measured optimal δ(movement) for clinical use, the minimum distance that can be detected with this system, and the response time of the whole system using a video analysis technique. The stability of the system in a linear accelerator unit was evaluated for a period of 6 months. As a result of the moving phantom test, the δ(movement) for detection of all simulated phantom motion except the 0.1 cm movement was determined to be 0.2% of total number of pixels in the initial image. The system can detect phantom motion as small as 0.2 cm. The measured response time from the detection of phantom movement to generation of the warning signal was 0.1 s. No significant functional disorder of the system was observed during the testing period. The VGRPM system has a convenient design, which synchronizes initiation of the analysis with a beam on/off signal from the treatment machine and may contribute to a reduction in treatment error due to patient motion and increase the accuracy of treatment dose delivery.
Verification of RRA and CMC in OpenSim
NASA Astrophysics Data System (ADS)
Ieshiro, Yuma; Itoh, Toshiaki
2013-10-01
OpenSim is the free software that can handle various analysis and simulation of skeletal muscle dynamics with PC. This study treated RRA and CMC tools in OpenSim. It is remarkable that we can simulate human motion with respect to nerve signal of muscles using these tools. However, these tools seem to still in developmental stages. In order to verify applicability of these tools, we analyze bending and stretching motion data which are obtained from motion capture device using these tools. In this study, we checked the consistency between real muscle behavior and numerical results from these tools.
The contaminant analysis automation robot implementation for the automated laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younkin, J.R.; Igou, R.E.; Urenda, T.D.
1995-12-31
The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less
Llamas, César; González, Manuel A; Hernández, Carmen; Vegas, Jesús
2016-10-01
Nearly every practical improvement in modeling human motion is well founded in a properly designed collection of data or datasets. These datasets must be made publicly available for the community could validate and accept them. It is reasonable to concede that a collective, guided enterprise could serve to devise solid and substantial datasets, as a result of a collaborative effort, in the same sense as the open software community does. In this way datasets could be complemented, extended and expanded in size with, for example, more individuals, samples and human actions. For this to be possible some commitments must be made by the collaborators, being one of them sharing the same data acquisition platform. In this paper, we offer an affordable open source hardware and software platform based on inertial wearable sensors in a way that several groups could cooperate in the construction of datasets through common software suitable for collaboration. Some experimental results about the throughput of the overall system are reported showing the feasibility of acquiring data from up to 6 sensors with a sampling frequency no less than 118Hz. Also, a proof-of-concept dataset is provided comprising sampled data from 12 subjects suitable for gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
SIMA: Python software for analysis of dynamic fluorescence imaging data.
Kaifosh, Patrick; Zaremba, Jeffrey D; Danielson, Nathan B; Losonczy, Attila
2014-01-01
Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.
ΔΔPT: a comprehensive toolbox for the analysis of protein motion
2013-01-01
Background Normal Mode Analysis is one of the most successful techniques for studying motions in proteins and macromolecules. It can provide information on the mechanism of protein functions, used to aid crystallography and NMR data reconstruction, and calculate protein free energies. Results ΔΔPT is a toolbox allowing calculation of elastic network models and principle component analysis. It allows the analysis of pdb files or trajectories taken from; Gromacs, Amber, and DL_POLY. As well as calculation of the normal modes it also allows comparison of the modes with experimental protein motion, variation of modes with mutation or ligand binding, and calculation of molecular dynamic entropies. Conclusions This toolbox makes the respective tools available to a wide community of potential NMA users, and allows them unrivalled ability to analyse normal modes using a variety of techniques and current software. PMID:23758746
Enhanced Capabilities of BullReporter and BullConverter : final report.
DOT National Transportation Integrated Search
2017-09-01
Bull-Converter/Reporter is a software stack for Weigh-In-Motion (WIM) data analysis and reporting tools developed by the University of Minnesota Duluth for the Minnesota Department of Transportation (MnDOT) to resolve problems associated with deploym...
CoLiTec software - detection of the near-zero apparent motion
NASA Astrophysics Data System (ADS)
Khlamov, Sergii V.; Savanevych, Vadym E.; Briukhovetskyi, Olexandr B.; Pohorelov, Artem V.
2017-06-01
In this article we described CoLiTec software for full automated frames processing. CoLiTec software allows processing the Big Data of observation results as well as processing of data that is continuously formed during observation. The scope of solving tasks includes frames brightness equalization, moving objects detection, astrometry, photometry, etc. Along with the high efficiency of Big Data processing CoLiTec software also ensures high accuracy of data measurements. A comparative analysis of the functional characteristics and positional accuracy was performed between CoLiTec and Astrometrica software. The benefits of CoLiTec used with wide field and low quality frames were observed. The efficiency of the CoLiTec software was proved by about 700.000 observations and over 1.500 preliminary discoveries.
PRISM Software: Processing and Review Interface for Strong‐Motion Data
Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter
2017-01-01
A continually increasing number of high‐quality digital strong‐motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey, as well as data from regional seismic networks within the United States, calls for automated processing of strong‐motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong‐motion records. When used without AQMS, PRISM provides batch‐processing capabilities. The PRISM software is platform independent (coded in Java), open source, and does not depend on any closed‐source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a review tool, which is a graphical user interface for manual review, edit, and processing. To facilitate use by non‐NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand‐alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible to accommodate implementation of new processing techniques. All the computing features have been thoroughly tested.
The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.
Hachaj, Tomasz; Ogiela, Marek R
2016-06-01
The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment.
Robust, Flexible Motion Control for the Mars Explorer Rovers
NASA Technical Reports Server (NTRS)
Maimone, Mark; Biesiadecki, Jeffrey
2007-01-01
The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.
Earth-moon system: Dynamics and parameter estimation
NASA Technical Reports Server (NTRS)
Breedlove, W. J., Jr.
1975-01-01
A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.
Determination of the static friction coefficient from circular motion
NASA Astrophysics Data System (ADS)
Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.
2014-07-01
This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s-1, and the videos are analyzed using Tracker video-analysis software, allowing the students to dynamically model the motion of the coin. The students have to obtain the static friction coefficient by comparing the centripetal and maximum static friction forces. The experiment only requires simple and inexpensive materials. The dynamics of circular motion and static friction forces are difficult for many students to understand. The proposed laboratory exercise addresses these topics, which are relevant to the physics curriculum.
NASA Astrophysics Data System (ADS)
Lee, Victor R.
2015-04-01
Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video, can be deployed in such a way to support students' participation in practices of scientific modeling. As participants in classroom design experiment, fifteen fifth-grade students worked with high-speed cameras and stop-motion animation software (SAM Animation) over several days to produce dynamic models of motion and body movement. The designed series of learning activities involved iterative cycles of animation creation and critique and use of various depictive materials. Subsequent analysis of flipbooks of human jumping movements created by the students at the beginning and end of the unit revealed a significant improvement in both the epistemic fidelity of students' representations. Excerpts from classroom observations highlight the role that the teacher plays in supporting students' thoughtful reflection of and attention to slow-motion video. In total, this design and research intervention demonstrates that the combination of technologies, activities, and teacher support can lead to improvements in some of the foundations associated with students' modeling.
High-Speed Video Analysis of Damped Harmonic Motion
ERIC Educational Resources Information Center
Poonyawatpornkul, J.; Wattanakasiwich, P.
2013-01-01
In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…
NASA Astrophysics Data System (ADS)
Bykova, L. E.; Galushina, T. Yu.; Razdymakhina, O. N.
2011-07-01
The paper presents the results of comparative analysis of different algorithms for determination of predictability time of Near-Earth asteroids (NEAs) motion. Three algorithms have been considered: shadow path method, variation method, MEGNO-analysis, where the characteristic of dynamic chaos is the time-weighted integral quantity of maximum characteristic Lyapunov exponent. The developed algorithms and software complex has been applied to identify the chaotic motion of some NEAs. It is shown that MEGNO-analysis allows enough accurately separate regular and chaotic motion of asteroids in a relatively short time intervals.
Hynes, Martin; Wang, Han; Kilmartin, Liam
2009-01-01
Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.
A kinematic model to assess spinal motion during walking.
Konz, Regina J; Fatone, Stefania; Stine, Rebecca L; Ganju, Aruna; Gard, Steven A; Ondra, Stephen L
2006-11-15
A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model. Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood. Typically, gait analysis models disregard the spine entirely or regard it as a single rigid structure. Data on regional spinal movements, in conjunction with lower limb data, associated with walking are scarce. KinTrak software (Motion Analysis Corp., Santa Rosa, CA) was used to create a biomechanical model for analysis of 3-dimensional regional spinal movements. Measuring known angles from a mechanical model and comparing them to the calculated angles validated the kinematic model. Spine motion data were collected from 10 able-bodied adults walking at 5 self-selected speeds. These results were compared to data reported in the literature. The uniaxial angles measured on the mechanical model were within 5 degrees of the calculated kinematic model angles, and the coupled angles were within 2 degrees. Regional spine kinematics from able-bodied subjects calculated with this model compared well to data reported by other authors. A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
The importance of correct specification of tribological parameters in dynamical systems modelling
NASA Astrophysics Data System (ADS)
Alaci, S.; Ciornei, F. C.; Romanu, I. C.; Ciornei, M. C.
2018-01-01
When modelling the behaviour of dynamical systems, the friction phenomenon cannot be neglected. Dry and fluid friction may occur, but dry friction has more severe effects upon the behaviour of the systems, based on the fact that the introduced discontinuities are more important. In the modelling of dynamical systems, dry friction is the main cause of occurrence of the bifurcation phenomenon. These aspects become more complex if, in the case of dry friction, static and dynamic frictions are put forward. The behaviour of a simple dynamical system is studied, consisting in a prismatic body linked to the ground by a spring, placed on a conveyor belt. The theoretical model is described by a nonlinear differential equation which after numerical integration leads to the conclusion that the steady motion of the prism is an un-damped oscillatory motion. The system was qualitatively modelled using specialised software for dynamical analysis. It was impractical to obtain a steady uniform translational motion of a rigid, therefore the conveyor belt was replaced by a metallic disc in uniform rotation motion. The attempts to compare the CAD model to the theoretical model were unsuccessful because the efforts of selecting the tribological parameters directed to the conclusion that the motion of the prism is a damped oscillation. To decide which of the methods depicts reality, a test-rig was assembled and it indicated a sustained oscillation. The conclusion is that the model employed by the dynamical analysis software cannot describe the actual model and a more complex model is required in the description of the friction phenomenon.
Design and validation of Segment--freely available software for cardiovascular image analysis.
Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan
2010-01-11
Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.
Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T
2010-05-01
We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image quality assessment by two observers revealed that the MTT maps exhibited superior quality over the TTP maps (88% good rating of MTT as compared to 68% of TTP). Our software allowed fully automated deconvolution analysis of DSC PWI using proven efficient algorithms that can be applied to acute stroke treatment decisions. Our streamlined method also offers promise for further development of automated quantitative analysis of the ischemic penumbra. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Comprehensive analysis of helicopters with bearingless rotors
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1988-01-01
A modified Galerkin method is developed to analyze the dynamic problems of multiple-load-path bearingless rotor blades. The development and selection of functions are quite parallel to CAMRAD procedures, greatly facilitating the implementation of the method into the CAMRAD program. A software is developed implementing the modified Galerkin method to determine free vibration characteristics of multiple-load-path rotor blades undergoing coupled flapwise bending, chordwise bending, twisting, and extensional motions. Results are in the process of being obtained by debugging the software.
Tudor, G Samuel J; Harden, Susan V; Thomas, Simon J
2014-03-01
Dose differences from those planned can occur due to the respiratory interplay effect on helical tomotherapy. The authors present a technique to calculate single-fraction doses in three-dimensions resulting from craniocaudal motion applied to a patient CT set. The technique is applied to phantom and patient plans using patient respiratory traces. An additional purpose of the work is to determine the contribution toward the interplay effect of different components of the respiratory trace. MATLAB code used to calculate doses to a CT dataset from a helical tomotherapy plan has been modified to permit craniocaudal motion and improved temporal resolution. Real patient traces from seven patients were applied to ten phantom plans of differing field width, modulation factor, pitch and fraction dose, and simulations made with peak-to-peak amplitudes ranging from 0 to 2.5 cm. PTV voxels near the superior or inferior limits of the PTV are excluded from the analysis. The maximum dose discrepancy compared with the static case recorded along with the proportion of voxels receiving more than 10% and 20% different from prescription dose. The analysis was repeated with the baseline variation of the respiratory trace removed, leaving the cyclic component of motion only. Radiochromic film was used on one plan-trace combination and compared with the software simulation. For one case, filtered traces were generated and used in simulations which consisted only of frequencies near to particular characteristic frequencies of the treatment delivery. Intraslice standard deviation of dose differences was used to identify potential MLC interplay, which was confirmed using nonmodulated simulations. Software calculations were also conducted for four realistic patient plans and modeling movement of a patient CT set with amplitudes informed by the observed motion of the GTV on 4DCT. The maximum magnitude of dose difference to a PTV voxel due to the interplay effect within a particular plan-trace combination for peak-to-peak amplitudes of up to 2.5 cm ranged from 4.5% to 51.6% (mean: 23.8%) of the dose delivered in the absence of respiratory motion. For cyclic motion only, the maximum dose differences in each combination ranged from 2.1% to 26.2% (mean: 9.2%). There is reasonable correspondence between an example of the phantom plan simulations and radiochromic film measurement. The filtered trace simulations revealed that frequencies close to the characteristic frequency of the jaw motion across the target were found to generate greater interplay effect than frequencies close to the gantry frequency or MLC motion. There was evidence of interplay between respiratory motion and MLC modulation, but this is small compared with the interplay between respiratory motion and jaw motion. For patient-plan simulations, dose discrepancies are seen of up to 9.0% for a patient with 0.3 cm peak-to-peak respiratory amplitude and up to 17.7% for a patient with 0.9 cm peak-to-peak amplitude. These values reduced to 1.3% and 6.5%, respectively, when only cyclic motion was considered. Software has been developed to simulate craniocaudal respiratory motion in phantom and patient plans using real patient respiratory traces. Decomposition of the traces into baseline andcyclic components reveals that the large majority of the interplay effect seen with the full trace is due to baseline variation during treatment.
How to Determine the Centre of Mass of Bodies from Image Modelling
ERIC Educational Resources Information Center
Dias, Marco Adriano; Carvalho, Paulo Simeão; Rodrigues, Marcelo
2016-01-01
Image modelling is a recent technique in physics education that includes digital tools for image treatment and analysis, such as digital stroboscopic photography (DSP) and video analysis software. It is commonly used to analyse the motion of objects. In this work we show how to determine the position of the centre of mass (CM) of objects with…
Satellite orbit computation methods
NASA Technical Reports Server (NTRS)
1977-01-01
Mathematical and algorithmical techniques for solution of problems in satellite dynamics were developed, along with solutions to satellite orbit motion. Dynamical analysis of shuttle on-orbit operations were conducted. Computer software routines for use in shuttle mission planning were developed and analyzed, while mathematical models of atmospheric density were formulated.
Non Contacting Evaluation of Strains and Cracking Using Optical and Infrared Imaging Techniques
1988-08-22
Compatible Zenith Z-386 microcomputer with plotter II. 3-D Motion Measurinq System 1. Complete OPTOTRAK three dimensional digitizing system. System includes...acquisition unit - 16 single ended analog input channels 3. Data Analysis Package software (KINEPLOT) 4. Extra OPTOTRAK Camera (max 224 per system
Biomechanical analysis using Kinovea for sports application
NASA Astrophysics Data System (ADS)
Muaza Nor Adnan, Nor; Patar, Mohd Nor Azmi Ab; Lee, Hokyoo; Yamamoto, Shin-Ichiroh; Jong-Young, Lee; Mahmud, Jamaluddin
2018-04-01
This paper assesses the reliability of HD VideoCam–Kinovea as an alternative tool in conducting motion analysis and measuring knee relative angle of drop jump movement. The motion capture and analysis procedure were conducted in the Biomechanics Lab, Shibaura Institute of Technology, Omiya Campus, Japan. A healthy subject without any gait disorder (BMI of 28.60 ± 1.40) was recruited. The volunteered subject was asked to per the drop jump movement on preset platform and the motion was simultaneously recorded using an established infrared motion capture system (Hawk–Cortex) and a HD VideoCam in the sagittal plane only. The capture was repeated for 5 times. The outputs (video recordings) from the HD VideoCam were input into Kinovea (an open-source software) and the drop jump pattern was tracked and analysed. These data are compared with the drop jump pattern tracked and analysed earlier using the Hawk–Cortex system. In general, the results obtained (drop jump pattern) using the HD VideoCam–Kinovea are close to the results obtained using the established motion capture system. Basic statistical analyses show that most average variances are less than 10%, thus proving the repeatability of the protocol and the reliability of the results. It can be concluded that the integration of HD VideoCam–Kinovea has the potential to become a reliable motion capture–analysis system. Moreover, it is low cost, portable and easy to use. As a conclusion, the current study and its findings are found useful and has contributed to enhance significant knowledge pertaining to motion capture-analysis, drop jump movement and HD VideoCam–Kinovea integration.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
Optimized "detectors" for dynamics analysis in solid-state NMR
NASA Astrophysics Data System (ADS)
Smith, Albert A.; Ernst, Matthias; Meier, Beat H.
2018-01-01
Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.
NASA Astrophysics Data System (ADS)
Barnett, Barry S.; Bovik, Alan C.
1995-04-01
This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.
MOtoNMS: A MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation.
Mantoan, Alice; Pizzolato, Claudio; Sartori, Massimo; Sawacha, Zimi; Cobelli, Claudio; Reggiani, Monica
2015-01-01
Neuromusculoskeletal modeling and simulation enable investigation of the neuromusculoskeletal system and its role in human movement dynamics. These methods are progressively introduced into daily clinical practice. However, a major factor limiting this translation is the lack of robust tools for the pre-processing of experimental movement data for their use in neuromusculoskeletal modeling software. This paper presents MOtoNMS (matlab MOtion data elaboration TOolbox for NeuroMusculoSkeletal applications), a toolbox freely available to the community, that aims to fill this lack. MOtoNMS processes experimental data from different motion analysis devices and generates input data for neuromusculoskeletal modeling and simulation software, such as OpenSim and CEINMS (Calibrated EMG-Informed NMS Modelling Toolbox). MOtoNMS implements commonly required processing steps and its generic architecture simplifies the integration of new user-defined processing components. MOtoNMS allows users to setup their laboratory configurations and processing procedures through user-friendly graphical interfaces, without requiring advanced computer skills. Finally, configuration choices can be stored enabling the full reproduction of the processing steps. MOtoNMS is released under GNU General Public License and it is available at the SimTK website and from the GitHub repository. Motion data collected at four institutions demonstrate that, despite differences in laboratory instrumentation and procedures, MOtoNMS succeeds in processing data and producing consistent inputs for OpenSim and CEINMS. MOtoNMS fills the gap between motion analysis and neuromusculoskeletal modeling and simulation. Its support to several devices, a complete implementation of the pre-processing procedures, its simple extensibility, the available user interfaces, and its free availability can boost the translation of neuromusculoskeletal methods in daily and clinical practice.
Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.
Barre, Arnaud; Armand, Stéphane
2014-04-01
C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankel, David J.; Clair, Aaron B. St.; Langsfield, Joshua D.
2006-11-01
Toothpaste is a graphical user interface and Computer Aided Drafting/Manufacturing (CAD/CAM) software package used to plan tool paths for Galil Motion Control hardware. The software is a tool for computer controlled dispensing of materials. The software may be used for solid freeform fabrication of components or the precision printing of inks. Mathematical calculations are used to produce a set of segments and arcs that when coupled together will fill space. The paths of the segments and arcs are then translated into a machine language that controls the motion of motors and translational stages to produce tool paths in three dimensions.more » As motion begins material(s) are dispensed or printed along the three-dimensional pathway.« less
NASA Astrophysics Data System (ADS)
Miclosina, C. O.; Balint, D. I.; Campian, C. V.; Frunzaverde, D.; Ion, I.
2012-11-01
This paper deals with the optimization of the axial hydraulic turbines of Kaplan type. The optimization of the runner blade is presented systematically from two points of view: hydrodynamic and constructive. Combining these aspects in order to gain a safer operation when unsteady effects occur in the runner of the turbine is attempted. The design and optimization of the runner blade is performed with QTurbo3D software developed at the Center for Research in Hydraulics, Automation and Thermal Processes (CCHAPT) from "Eftimie Murgu" University of Resita, Romania. QTurbo3D software offers possibilities to design the meridian channel of hydraulic turbines design the blades and optimize the runner blade. 3D modeling and motion analysis of the runner blade operating mechanism are accomplished using SolidWorks software. The purpose of motion study is to obtain forces, torques or stresses in the runner blade operating mechanism, necessary to estimate its lifetime. This paper clearly states the importance of combining the hydrodynamics with the structural design in the optimization procedure of the runner of hydraulic turbines.
Kroll, Alexandra; Haramagatti, Chandrashekara R.; Lipinski, Hans-Gerd; Wiemann, Martin
2017-01-01
Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking allows to measure the size of a diffusing particle close to a cell. However, within the more complex system of a cell’s cytoplasm normal, confined or anomalous diffusion together with directed motion may occur. In this work we present a method to automatically classify and segment single trajectories into their respective motion types. Single trajectories were found to contain more than one motion type. We have trained a random forest with 9 different features. The average error over all motion types for synthetic trajectories was 7.2%. The software was successfully applied to trajectories of positive controls for normal- and constrained diffusion. Trajectories captured by nanoparticle tracking analysis served as positive control for normal diffusion. Nanoparticles inserted into a diblock copolymer membrane was used to generate constrained diffusion. Finally we segmented trajectories of diffusing (nano-)particles in V79 cells captured with both darkfield- and confocal laser scanning microscopy. The software called “TraJClassifier” is freely available as ImageJ/Fiji plugin via https://git.io/v6uz2. PMID:28107406
Autonomous Instrument Placement for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Leger, P. Chris; Maimone, Mark
2009-01-01
Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.
Rapid processing of PET list-mode data for efficient uncertainty estimation and data analysis
NASA Astrophysics Data System (ADS)
Markiewicz, P. J.; Thielemans, K.; Schott, J. M.; Atkinson, D.; Arridge, S. R.; Hutton, B. F.; Ourselin, S.
2016-07-01
In this technical note we propose a rapid and scalable software solution for the processing of PET list-mode data, which allows the efficient integration of list mode data processing into the workflow of image reconstruction and analysis. All processing is performed on the graphics processing unit (GPU), making use of streamed and concurrent kernel execution together with data transfers between disk and CPU memory as well as CPU and GPU memory. This approach leads to fast generation of multiple bootstrap realisations, and when combined with fast image reconstruction and analysis, it enables assessment of uncertainties of any image statistic and of any component of the image generation process (e.g. random correction, image processing) within reasonable time frames (e.g. within five minutes per realisation). This is of particular value when handling complex chains of image generation and processing. The software outputs the following: (1) estimate of expected random event data for noise reduction; (2) dynamic prompt and random sinograms of span-1 and span-11 and (3) variance estimates based on multiple bootstrap realisations of (1) and (2) assuming reasonable count levels for acceptable accuracy. In addition, the software produces statistics and visualisations for immediate quality control and crude motion detection, such as: (1) count rate curves; (2) centre of mass plots of the radiodistribution for motion detection; (3) video of dynamic projection views for fast visual list-mode skimming and inspection; (4) full normalisation factor sinograms. To demonstrate the software, we present an example of the above processing for fast uncertainty estimation of regional SUVR (standard uptake value ratio) calculation for a single PET scan of 18F-florbetapir using the Siemens Biograph mMR scanner.
NASA Technical Reports Server (NTRS)
Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.
1984-01-01
A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation.
NASA Astrophysics Data System (ADS)
Zhang, Min; Wang, Wen; Xiang, Kui; Lu, Keqing; Fan, Zongwei
2015-02-01
This paper describes a novel cylindrical capacitive sensor (CCS) to measure the spindle five degree-of-freedom (DOF) motion errors. The operating principle and mathematical models of the CCS are presented. Using Ansoft Maxwell software to calculate the different capacitances in different configurations, structural parameters of end face electrode are then investigated. Radial, axial and tilt motions are also simulated by making comparisons with the given displacements and the simulation values respectively. It could be found that the proposed CCS has a high accuracy for measuring radial motion error when the average eccentricity is about 15 μm. Besides, the maximum relative error of axial displacement is 1.3% when the axial motion is within [0.7, 1.3] mm, and the maximum relative error of the tilt displacement is 1.6% as rotor tilts around a single axis within [-0.6, 0.6]°. Finally, the feasibility of the CCS for measuring five DOF motion errors is verified through simulation and analysis.
NASA Astrophysics Data System (ADS)
Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao
2012-03-01
This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.
Microsoft Kinect Sensor Evaluation
NASA Technical Reports Server (NTRS)
Billie, Glennoah
2011-01-01
My summer project evaluates the Kinect game sensor input/output and its suitability to perform as part of a human interface for a spacecraft application. The primary objective is to evaluate, understand, and communicate the Kinect system's ability to sense and track fine (human) position and motion. The project will analyze the performance characteristics and capabilities of this game system hardware and its applicability for gross and fine motion tracking. The software development kit for the Kinect was also investigated and some experimentation has begun to understand its development environment. To better understand the software development of the Kinect game sensor, research in hacking communities has brought a better understanding of the potential for a wide range of personal computer (PC) application development. The project also entails the disassembly of the Kinect game sensor. This analysis would involve disassembling a sensor, photographing it, and identifying components and describing its operation.
Utah's Regional/Urban ANSS Seismic Network---Strategies and Tools for Quality Performance
NASA Astrophysics Data System (ADS)
Burlacu, R.; Arabasz, W. J.; Pankow, K. L.; Pechmann, J. C.; Drobeck, D. L.; Moeinvaziri, A.; Roberson, P. M.; Rusho, J. A.
2007-05-01
The University of Utah's regional/urban seismic network (224 stations recorded: 39 broadband, 87 strong-motion, 98 short-period) has become a model for locally implementing the Advanced National Seismic System (ANSS) because of successes in integrating weak- and strong-motion recording and in developing an effective real-time earthquake information system. Early achievements included implementing ShakeMap, ShakeCast, point-to- multipoint digital telemetry, and an Earthworm Oracle database, as well as in-situ calibration of all broadband and strong-motion stations and submission of all data and metadata into the IRIS DMC. Regarding quality performance, our experience as a medium-size regional network affirms the fundamental importance of basics such as the following: for data acquisition, deliberate attention to high-quality field installations, signal quality, and computer operations; for operational efficiency, a consistent focus on professional project management and human resources; and for customer service, healthy partnerships---including constant interactions with emergency managers, engineers, public policy-makers, and other stakeholders as part of an effective state earthquake program. (Operational cost efficiencies almost invariably involve trade-offs between personnel costs and the quality of hardware and software.) Software tools that we currently rely on for quality performance include those developed by UUSS (e.g., SAC and shell scripts for estimating local magnitudes) and software developed by other organizations such as: USGS (Earthworm), University of Washington (interactive analysis software), ISTI (SeisNetWatch), and IRIS (PDCC, BUD tools). Although there are many pieces, there is little integration. One of the main challenges we face is the availability of a complete and coherent set of tools for automatic and post-processing to assist in achieving the goals/requirements set forth by ANSS. Taking our own network---and ANSS---to the next level will require standardized, well-designed, and supported software. Other advances in seismic network performance will come from diversified instrumentation. We have recently shown the utility of incorporating strong-motion data (even from soil sites) into the routine analysis of local seismicity, and have also collocated an acoustic array with a broadband seismic station (in collaboration with Southern Methodist University). For the latter experiment, the purpose of collocated seismic and infrasound sensors is to (1) further an understanding of the physics associated with the generation and the propagation of seismic and low-frequency acoustic energy from shallow sources and (2) explore the potential for blast discrimination and improved source location using seismic and infrasonic data in a synergetic way.
An interactive dynamic analysis and decision support software for MR mammography.
Ertaş, Gökhan; Gülçür, H Ozcan; Tunaci, Mehtap
2008-06-01
A fully automated software is introduced to facilitate MR mammography (MRM) examinations and overcome subjectiveness in diagnosis using normalized maximum intensity-time ratio (nMITR) maps. These maps inherently suppress enhancements due to normal parenchyma and blood vessels that surround lesions and have natural tolerance to small field inhomogeneities and motion artifacts. The classifier embedded within the software is trained with normalized complexity and maximum nMITR of 22 lesions and tested with the features of remaining 22 lesions. Achieved diagnostic performances are 92% sensitivity, 90% specificity, 91% accuracy, 92% positive predictive value and 90% negative predictive value. DynaMammoAnalyst shortens evaluation time considerably and reduces inter and intra-observer variability by providing decision support.
Steel Spheres and Skydiver--Terminal Velocity
ERIC Educational Resources Information Center
Costa Leme, J.; Moura, C.; Costa, Cintia
2009-01-01
This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.
PRISM, Processing and Review Interface for Strong Motion Data Software
NASA Astrophysics Data System (ADS)
Kalkan, E.; Jones, J. M.; Stephens, C. D.; Ng, P.
2016-12-01
A continually increasing number of high-quality digital strong-motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the U.S., calls for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. PRISM automates the processing of strong-motion records by providing batch-processing capabilities. The PRISM software is platform-independent (coded in Java), open-source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a graphical user interface (GUI) for manual review and processing. To facilitate the use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and GUI components) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X and Windows. PRISM was designed to be flexible and extensible in order to accommodate implementation of new processing techniques. Input to PRISM currently is limited to data files in the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) V0 format, so that all retrieved acceleration time series need to be converted to this format. Output products include COSMOS V1, V2 and V3 files as: (i) raw acceleration time series in physical units with mean removed (V1), (ii) baseline-corrected and filtered acceleration, velocity, and displacement time series (V2), and (iii) response spectra, Fourier amplitude spectra and common earthquake-engineering intensity measures (V3). A thorough description of the record processing features supported by PRISM is presented with examples and validation results. All computing features have been thoroughly tested.
PDSS/IMC requirements and functional specifications
NASA Technical Reports Server (NTRS)
1983-01-01
The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.
Jones, Jeanne; Kalkan, Erol; Stephens, Christopher
2017-02-23
A continually increasing number of high-quality digital strong-motion records from stations of the National Strong-Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the United States, call for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong-motion records. When used without AQMS, PRISM provides batch-processing capabilities. The PRISM version 1.0.0 is platform independent (coded in Java), open source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine and a review tool that has a graphical user interface (GUI) to manually review, edit, and process records. To facilitate use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible in order to accommodate new processing techniques. This report provides a thorough description and examples of the record processing features supported by PRISM. All the computing features of PRISM have been thoroughly tested.
Urban Earthquake Shaking and Loss Assessment
NASA Astrophysics Data System (ADS)
Hancilar, U.; Tuzun, C.; Yenidogan, C.; Zulfikar, C.; Durukal, E.; Erdik, M.
2009-04-01
This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Level 2 analysis of the ELER Software (similar to HAZUS and SELENA) is essentially intended for earthquake risk assessment (building damage, consequential human casualties and macro economic loss quantifiers) in urban areas. The basic Shake Mapping is similar to the Level 0 and Level 1 analysis however, options are available for more sophisticated treatment of site response through externally entered data and improvement of the shake map through incorporation of accelerometric and other macroseismic data (similar to the USGS ShakeMap System). The building inventory data for the Level 2 analysis will consist of grid (geo-cell) based urban building and demographic inventories. For building grouping the European building typology developed within the EU-FP5 RISK-EU project is used. The building vulnerability/fragility relationships to be used can be user selected from a list of applicable relationships developed on the basis of a comprehensive study, Both empirical and analytical relationships (based on the Coefficient Method, Equivalent Linearization Method and the Reduction Factor Method of analysis) can be employed. Casualties in Level 2 analysis are estimated based on the number of buildings in different damaged states and the casualty rates for each building type and damage level. Modifications to the casualty rates can be used if necessary. ELER Level 2 analysis will include calculation of direct monetary losses as a result building damage that will allow for repair-cost estimations and specific investigations associated with earthquake insurance applications (PML and AAL estimations). ELER Level 2 analysis loss results obtained for Istanbul for a scenario earthquake using different techniques will be presented with comparisons using different earthquake damage assessment software. The urban earthquake shaking and loss information is intented for dissemination in a timely manner to related agencies for the planning and coordination of the post-earthquake emergency response. However the same software can also be used for scenario earthquake loss estimation, related Monte-Carlo type simulations and eathquake insurance applications.
JASMINE: Data analysis and simulation
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Sako, Nobutada; Jasmine Working Group
JASMINE will study the structure and evolution of the Milky Way Galaxy. To accomplish these objectives JASMINE will measure trigonometric parallaxes, positions and proper motions of about 10 million stars with a precision of 10 μas at z = 14 mag. In this paper methods for data analysis and error budgets, on-board data handling such as sampling strategy and data compression, and simulation software for end-to-end simulation are presented.
A method to perform spinal motion analysis from functional X-ray images.
Schulze, Martin; Trautwein, Frank; Vordemvenne, Thomas; Raschke, Michael; Heuer, Frank
2011-06-03
Identifying spinal instability is an important aim for proper surgical treatment. Analysis of functional X-ray images delivers measurements of the range of motion (RoM) and the center of rotation (CoR). In today's practice, CoR determination is often omitted, due to the lack of accurate methods. The aim of this work was to investigate the accuracy of a new analysis software (FXA™) based on an in vitro experiment. Six bovine spinal specimens (L3-4) were mounted in a robot (KR125, Kuka). CoRs were predefined by locking the robot actuator tool center point to the estimated position of the physiologic CoR and taking a baseline X-ray. Specimens were deflected to various RoM(preset) flexion/extension angles about the CoR(preset). Lateral functional radiographs were acquired and specimen movements were recorded using an optical motion tracking system (Optotrak Certus). RoM and CoR errors were calculated from presets for both methods. Prior to the experiment, the FXA™ software was verified with artificially generated images. For the artificial images, FXA™ yielded a mean RoM-error of 0.01 ± 0.03° (bias ± standard deviation). In the experiment, RoM-error of the FXA™-software (deviation from presets) was 0.04 ± 0.13°, and 0.10 ± 0.16° for the Optotrak, respectively. Both correlated with 0.998 (p < 0.001). For RoM < 1.0°, FXA™ determined CoR positions with a bias>20mm. This bias progressively decreased from RoM = 1° (bias = 6.0mm) to RoM = 9° (bias<1.5mm). Under the assumption that CoR location variances <5mm are clinically irrelevant on the lumbar spine, the FXA™ method can accurately determine CoRs for RoMs > 1°. Utilizing FXA™, polysegmental RoMs, CoRs and implant migration measurements could be performed in daily practice. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu
2016-08-01
Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.
Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes
NASA Astrophysics Data System (ADS)
Moniri, Hassan
2017-03-01
Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.
Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles
NASA Technical Reports Server (NTRS)
Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.
2013-01-01
This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.
Motion of a Charged Particle in a Constant and Uniform Electromagnetic Field
ERIC Educational Resources Information Center
Ladino, L. A.; Rondón, S. H.; Orduz, P.
2015-01-01
This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…
Chen, Yen-Yin; Chen, Weng-Pin; Chang, Hao-Hueng; Huang, Shih-Hao; Lin, Chun-Pin
2014-02-01
The aim of this study was to develop a novel dental implant abutment with a micro-motion mechanism that imitates the biomechanical behavior of the periodontal ligament, with the goal of increasing the long-term survival rate of dental implants. Computer-aided design software was used to design a novel dental implant abutment with an internal resilient component with a micro-motion capability. The feasibility of the novel system was investigated via finite element analysis. Then, a prototype of the novel dental implant abutment was fabricated, and the mechanical behavior was evaluated. The results of the mechanical tests and finite element analysis confirmed that the novel dental implant abutment possessed the anticipated micro-motion capability. Furthermore, the nonlinear force-displacement behavior apparent in this micro-motion mechanism imitated the movement of a human tooth. The slope of the force-displacement curve of the novel abutment was approximately 38.5 N/mm before the 0.02-mm displacement and approximately 430 N/mm after the 0.03-mm displacement. The novel dental implant abutment with a micro-motion mechanism actually imitated the biomechanical behavior of a natural tooth and provided resilient function, sealing, a non-separation mechanism, and ease-of-use. Copyright © 2013 Academy of Dental Materials. All rights reserved.
Principle and analysis of a rotational motion Fourier transform infrared spectrometer
NASA Astrophysics Data System (ADS)
Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning
2017-09-01
Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.
Strain System for the Motion Base Shuttle Mission Simulator
NASA Technical Reports Server (NTRS)
Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.
2010-01-01
The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.
2007-06-01
corresponding software developed for the translational response of rock- founded retaining walls buttressed at their toe by a reinforced concrete slab...by a Reinforced Concrete Slab ...........................................................................................................32 2.1...2.5 New translational analysis model of a wall retaining a partially submerged backfill and buttressed by a reinforced concrete slab
NASA Astrophysics Data System (ADS)
Trochimczuk, R.
2017-02-01
This paper presents an analysis of a parallelogram mechanism commonly used to provide a kinematic remote center of motion in surgical telemanipulators. Selected types of parallel manipulator designs, encountered in commercial and laboratory-made designs described in the medical robotics literature, will serve as the research material. Among other things, computer simulations in the ANSYS 13.0 CAD/CAE software environment, employing the finite element method, will be used. The kinematics of the solution of manipulator with the parallelogram mechanism will be determined in order to provide a more complete description. These results will form the basis for the decision regarding the possibility of applying a parallelogram mechanism in an original prototype of a telemanipulator arm.
Analysis of Galaxy 15 Satellite Images from a Small-Aperture Telescope
2011-09-01
December 2010) during which it did not respond to commands from the ground. During this time period, the satellite drifted eastward causing...and 2) aberration. The light speed correction reflects the motion of the satellite along the orbit during the time Δt it takes for the signal to... time (or phase angle) with a separate photometric analysis performed at Oceanit. To obtain the photometry , we used AstroGraph software (Fig. 3
Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji
2015-08-01
To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.
Krause, David A; Boyd, Michael S; Hager, Allison N; Smoyer, Eric C; Thompson, Anthony T; Hollman, John H
2015-02-01
The squat is a fundamental movement of many athletic and daily activities. Methods to clinically assess the squat maneuver range from simple observation to the use of sophisticated equipment. The purpose of this study was to examine the reliability of Coach's Eye (TechSmith Corp), a 2-dimensional (2D) motion analysis mobile device application (app), for assessing maximal sagittal plane hip, knee, and ankle motion during a functional movement screen deep squat, and to compare range of motion values generated by it to those from a Vicon (Vicon Motion Systems Ltd) 3-dimensional (3D) motion analysis system. Twenty-six healthy subjects performed three functional movement screen deep squats recorded simultaneously by both the app (on an iPad [Apple Inc]) and the 3D motion analysis system. Joint angle data were calculated with Vicon Nexus software (Vicon Motion Systems Ltd). The app video was analyzed frame by frame to determine, and freeze on the screen, the deepest position of the squat. With a capacitive stylus reference lines were then drawn on the iPad screen to determine joint angles. Procedures were repeated with approximately 48 hours between sessions. Test-retest intrarater reliability (ICC3,1) for the app at the hip, knee, and ankle was 0.98, 0.98, and 0.79, respectively. Minimum detectable change was hip 6°, knee 6°, and ankle 7°. Hip joint angles measured with the 2D app exceeded measurements obtained with the 3D motion analysis system by approximately 40°. Differences at the knee and ankle were of lower magnitude, with mean differences of 5° and 3°, respectively. Bland-Altman analysis demonstrated a systematic bias in the hip range-of-motion measurement. No such bias was demonstrated at the knee or ankle. The 2D app demonstrated excellent reliability and appeared to be a responsive means to assess for clinical change, with minimum detectable change values ranging from 6° to 7°. These results also suggest that the 2D app may be used as an alternative to a sophisticated 3D motion analysis system for assessing sagittal plane knee and ankle motion; however, it does not appear to be a comparable alternative for assessing hip motion. 3.
Software Aids Visualization of Computed Unsteady Flow
NASA Technical Reports Server (NTRS)
Kao, David; Kenwright, David
2003-01-01
Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.
Refinement of Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks
NASA Technical Reports Server (NTRS)
Zaal, Petrus M. T.; Schroeder, Jeffery A.; Chung, William W.
2017-01-01
The objective of this paper is to refine objective motion cueing criteria for commercial transport simulators based on pilots' performance in three flying tasks. Actuator hardware and software algorithms determine motion cues. Today, during a simulator qualification, engineers objectively evaluate only the hardware. Pilot inspectors subjectively assess the overall motion cueing system (i.e., hardware plus software); however, it is acknowledged that pinpointing any deficiencies that might arise to either hardware or software is challenging. ICAO 9625 has an Objective Motion Cueing Test (OMCT), which is now a required test in the FAA's part 60 regulations for new devices, evaluating the software and hardware together; however, it lacks accompanying fidelity criteria. Hosman has documented OMCT results for a statistical sample of eight simulators which is useful, but having validated criteria would be an improvement. In a previous experiment, we developed initial objective motion cueing criteria that this paper is trying to refine. Sinacori suggested simple criteria which are in reasonable agreement with much of the literature. These criteria often necessitate motion displacements greater than most training simulators can provide. While some of the previous work has used transport aircraft in their studies, the majority used fighter aircraft or helicopters. Those that used transport aircraft considered degraded flight characteristics. As a result, earlier criteria lean more towards being sufficient, rather than necessary, criteria for typical transport aircraft training applications. Considering the prevalence of 60-inch, six-legged hexapod training simulators, a relevant question is "what are the necessary criteria that can be used with the ICAO 9625 diagnostic?" This study adds to the literature as follows. First, it examines well-behaved transport aircraft characteristics, but in three challenging tasks. The tasks are equivalent to the ones used in our previous experiment, allowing us to directly compare the results and add to the previous data. Second, it uses the Vertical Motion Simulator (VMS), the world's largest vertical displacement simulator. This allows inclusion of relatively large motion conditions, much larger than a typical training simulator can provide. Six new motion configurations were used that explore the motion responses between the initial objective motion cueing boundaries found in a previous experiment and what current hexapod simulators typically provide. Finally, a sufficiently large pilot pool added statistical reliability to the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Gross
2004-09-01
The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less
Reflight certification software design specifications
NASA Technical Reports Server (NTRS)
1984-01-01
The PDSS/IMC Software Design Specification for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) is contained. The PDSS/IMC is to be used for checkout and verification of the IMC flight hardware and software by NASA/MSFC.
Observation model and parameter partials for the JPL geodetic (GPS) modeling software 'GPSOMC'
NASA Technical Reports Server (NTRS)
Sovers, O. J.
1990-01-01
The physical models employed in GPSOMC, the modeling module of the GIPSY software system developed at JPL for analysis of geodetic Global Positioning Satellite (GPS) measurements are described. Details of the various contributions to range and phase observables are given, as well as the partial derivatives of the observed quantities with respect to model parameters. A glossary of parameters is provided to enable persons doing data analysis to identify quantities with their counterparts in the computer programs. The present version is the second revision of the original document which it supersedes. The modeling is expanded to provide the option of using Cartesian station coordinates; parameters for the time rates of change of universal time and polar motion are also introduced.
NASA Technical Reports Server (NTRS)
Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan
2011-01-01
A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.
Software for Project-Based Learning of Robot Motion Planning
ERIC Educational Resources Information Center
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-01-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…
Proposed patient motion monitoring system using feature point tracking with a web camera.
Miura, Hideharu; Ozawa, Shuichi; Matsuura, Takaaki; Yamada, Kiyoshi; Nagata, Yasushi
2017-12-01
Patient motion monitoring systems play an important role in providing accurate treatment dose delivery. We propose a system that utilizes a web camera (frame rate up to 30 fps, maximum resolution of 640 × 480 pixels) and an in-house image processing software (developed using Microsoft Visual C++ and OpenCV). This system is simple to use and convenient to set up. The pyramidal Lucas-Kanade method was applied to calculate motions for each feature point by analysing two consecutive frames. The image processing software employs a color scheme where the defined feature points are blue under stable (no movement) conditions and turn red along with a warning message and an audio signal (beeping alarm) for large patient movements. The initial position of the marker was used by the program to determine the marker positions in all the frames. The software generates a text file that contains the calculated motion for each frame and saves it as a compressed audio video interleave (AVI) file. We proposed a patient motion monitoring system using a web camera, which is simple and convenient to set up, to increase the safety of treatment delivery.
Ju, S; Hong, C; Yim, D; Kim, M; Kim, J; Han, Y; Shin, J; Shin, E; Ahn, S; Choi, D
2012-06-01
We developed a video image-guided real-time patient motion monitoring system for helical Tomotherapy (VGRPM-Tomo), and its clinical utility was evaluated using a motion phantom. The VGRPM-Tomo consisted of three components: an image acquisition device consisting of two PC-cams, a main control computer with a radiation signal controller and warning system, and patient motion analysis software, which was developed in house. The system was designed for synchronization with a beam on/off trigger signal to limit operation during treatment time only and to enable system automation. In order to detect the patient motion while the couch is moving into the gantry, a reference image, which continuously updated its background by exponential weighting filter (EWF), is compared with subsequent live images using the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ_movement) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.5, and 1.0 cm for 1 and 2 sec, respectively, was used to evaluate the system performance at maximum couch speed (0.196 cm/sec) in a Helical Tomotherapy (HD, Hi-art, Tomotherapy, USA). We measured the optimal EWF factor (a) and δ_movement, which is the minimum distance that can be detected with this system, and the response time of the whole system. The optimal a for clinical use ranged from 0.85 to 0.9. The system was able to detect phantom motion as small as 0.2 cm with tight δ_movement, 0.1% total number of pixels in the reference image. The measured response time of the whole system was 0.1 sec. The VGRPM-tomo can contribute to reduction of treatment error caused by the motion of patients and increase the accuracy of treatment dose delivery in HD. This work was supported by the Technology Innovation Program, 10040362, Development of an integrated management solution for radiation therapy funded by the Ministry of Knowledge Economy (MKE, Korea). This idea is protected by a Korean patent (patent no. 10-1007367). © 2012 American Association of Physicists in Medicine.
Loading, electromyograph, and motion during exercise
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
1993-01-01
A system is being developed to gather kineto-dynamic data for a study to determine the load vectors applied to bone during exercise on equipment similar to that used in space. This information will quantify bone loading for exercise countermeasures development. Decreased muscle loading and external loading of bone during weightlessness results in cancellous bone loss of 1 percent per month in the lower extremities and 2 percent per month in the calcaneous. It is hypothesized that loading bone appropriately during exercise may prevent the bone loss. The system consists of an ergometer instrumented to provide position of the pedal (foot), pedaling forces on the foot (on the sagittal plane), and force on the seat. Accelerometers attached to the limbs will provide acceleration. These data will be used as input to an analytical model of the limb to determine forces on the bones and on groups of muscles. EMG signals from activity in the muscles will also be used in conjunction with the equations of mechanics of motion to be able to discern forces exerted by specific muscles. The tasks to be carried out include: design of various mechanical components to mount transducers, specification of mechanical components, specification of position transducers, development of a scheme to control the data acquisition instruments (TEAC recorder and optical encoder board), development of a dynamic model of the limbs in motion, and development of an overall scheme for data collection analysis and presentation. At the present time, all the hardware components of the system are operational, except for a computer board to gather position data from the pedals and crank. This board, however, may be put to use by anyone with background in computer based instrumentation. The software components are not all done. Software to transfer data recorded from the EMG measurements is operational, software to drive the optical encoder card is mostly done. The equations to model the kinematics and dynamics of motion of the limbs have been developed, but they have not yet been implemented in software. Aside from the development of the hardware and software components of the system, the methodology to use accelerometers and encoders and the formulation of the appropriate equations are an important contribution to the area of biomechanics, particularly in space applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falco, Maria Daniela, E-mail: mdanielafalco@hotmail.co; Fontanarosa, Davide; Miceli, Roberto
2011-04-01
Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be accurate, and its registration matrix can be easily translated into the TPS and a low dose is delivered to the patient during image acquisition. These results can help in designing imaging protocols for offline evaluations.« less
Studying Upper-Limb Amputee Prosthesis Use to Inform Device Design
2016-10-01
study of the resulting videos led to a new prosthetics-use taxonomy that is generalizable to various levels of amputation and terminal devices. The...taxonomy was applied to classification of the recorded videos via custom tagging software with midi controller interface. The software creates...a motion capture studio and video cameras to record accurate and detailed upper body motion during a series of standardized tasks. These tasks are
NASA Astrophysics Data System (ADS)
Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.
NASA Astrophysics Data System (ADS)
Handayani, Langlang; Prasetya Aji, Mahardika; Susilo; Marwoto, Putut
2016-08-01
An alternative approach of an arts-based instruction for Basic Physics class has been developed through the implementation of video analysis of a Javanesse traditional dance: Bambangan Cakil. A particular movement of the dance -weapon throwing- was analyzed by employing the LoggerPro software package to exemplify projectile motion. The results of analysis indicated that the movement of the thrown weapon in Bambangan Cakil dance provides some helping explanations of several physics concepts of projectile motion: object's path, velocity, and acceleration, in a form of picture, graph and also table. Such kind of weapon path and velocity can be shown via a picture or graph, while such concepts of decreasing velocity in y direction (weapon moving downward and upward) due to acceleration g can be represented through the use of a table. It was concluded that in a Javanesse traditional dance there are many physics concepts which can be explored. The study recommends to bring the traditional dance into a science class which will enable students to get more understanding of both physics concepts and Indonesia cultural heritage.
de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist
2016-01-01
To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P < .05) were statistically analyzed using the GraphPad InStat for the Mac OS software (GraphPad Software, La Jolla, CA, USA). There were no significant differences in remaining debris (P > .05) between the two groups. The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied.
Regional Earthquake Shaking and Loss Estimation
NASA Astrophysics Data System (ADS)
Sesetyan, K.; Demircioglu, M. B.; Zulfikar, C.; Durukal, E.; Erdik, M.
2009-04-01
This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses in the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Both Level 0 (similar to PAGER system of USGS) and Level 1 analyses of the ELER routine are based on obtaining intensity distributions analytically and estimating total number of casualties and their geographic distribution either using regionally adjusted intensity-casualty or magnitude-casualty correlations (Level 0) of using regional building inventory data bases (Level 1). Level 0 analysis is similar to the PAGER system being developed by USGS. For given basis source parameters the intensity distributions can be computed using: a)Regional intensity attenuation relationships, b)Intensity correlations with attenuation relationship based PGV, PGA, and Spectral Amplitudes and, c)Intensity correlations with synthetic Fourier Amplitude Spectrum. In Level 1 analysis EMS98 based building vulnerability relationships are used for regional estimates of building damage and the casualty distributions. Results obtained from pilot applications of the Level 0 and Level 1 analysis modes of the ELER software to the 1999 M 7.4 Kocaeli, 1995 M 6.1 Dinar, and 2007 M 5.4 Bingol earthquakes in terms of ground shaking and losses are presented and comparisons with the observed losses are made. The regional earthquake shaking and loss information is intented for dissemination in a timely manner to related agencies for the planning and coordination of the post-earthquake emergency response. However the same software can also be used for scenario earthquake loss estimation and related Monte-Carlo type simulations.
An Interface for Specifying Rigid-Body Motions for CFD Applications
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Chan, William; Aftosmis, Michael; Meakin, Robert L.; Kwak, Dochan (Technical Monitor)
2003-01-01
An interface for specifying rigid-body motions for CFD applications is presented. This interface provides a means of describing a component hierarchy in a geometric configuration, as well as the motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists of a general set of datatypes, along with rules for their interaction, and is designed to be flexible in order to evolve as future needs dictate. The specification is currently implemented with an XML file format which is portable across platforms and applications. The motion specification is capable of describing general rigid body motions, and eliminates the need to write and compile new code within the application software for each dynamic configuration, allowing client software to automate dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples, as well as the raw XML source of the file specifications, are included.
Linear momentum, angular momentum and energy in the linear collision between two balls
NASA Astrophysics Data System (ADS)
Hanisch, C.; Hofmann, F.; Ziese, M.
2018-01-01
In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.
Computer program documentation for the dynamic analysis of a noncontacting mechanical face seal
NASA Technical Reports Server (NTRS)
Auer, B. M.; Etsion, I.
1980-01-01
A computer program is presented which achieves a numerical solution for the equations of motion of a noncontacting mechanical face seal. The flexibly-mounted primary seal ring motion is expressed by a set of second order differential equations for three degrees of freedom. These equations are reduced to a set of first order equations and the GEAR software package is used to solve the set of first order equations. Program input includes seal design parameters and seal operating conditions. Output from the program includes velocities and displacements of the seal ring about the axis of an inertial reference system. One example problem is described.
Giandini, Tommaso; Panaino, Costanza M V; Avuzzi, Barbara; Morlino, Sara; Villa, Sergio; Bedini, Nice; Carabelli, Gabriele; Frasca, Sarah C; Romanyukha, Anna; Rosenfeld, Anatoly; Pignoli, Emanuele; Valdagni, Riccardo; Carrara, Mauro
2017-03-24
To validate and apply a method for the quantification of breathing-induced prostate motion (BIPM) for patients treated with radiotherapy and implanted with electromagnetic transponders for prostate localization and tracking. For the analysis of electromagnetic transponder signal, dedicated software was developed and validated with a programmable breathing simulator phantom. The software was then applied to 1,132 radiotherapy fractions of 30 patients treated in supine position, and to a further 61 fractions of 2 patients treated in prone position. Application of the software in phantom demonstrated reliability of the developed method in determining simulated breathing frequencies and amplitudes. For supine patients, the in vivo analysis of BIPM resulted in median (maximum) amplitudes of 0.10 mm (0.35 mm), 0.24 mm (0.66 mm), and 0.17 mm (0.61 mm) in the left-right (LR), cranio-caudal (CC), and anterior-posterior (AP) directions, respectively. Breathing frequency ranged between 7.73 and 29.43 breaths per minute. For prone patients, the ranges of the BIPM amplitudes were 0.1-0.5 mm, 0.5-1.3 mm, and 0.7-1.7 mm in the LR, CC, and AP directions, respectively. The developed method was able to detect the BIPM with sub-millimeter accuracy. While for patients treated in supine position the BIPM represents a reduced source of treatment uncertainty, for patients treated in prone position, it can be higher than 3 mm.
Advanced Software for Analysis of High-Speed Rolling-Element Bearings
NASA Technical Reports Server (NTRS)
Poplawski, J. V.; Rumbarger, J. H.; Peters, S. M.; Galatis, H.; Flower, R.
2003-01-01
COBRA-AHS is a package of advanced software for analysis of rigid or flexible shaft systems supported by rolling-element bearings operating at high speeds under complex mechanical and thermal loads. These loads can include centrifugal and thermal loads generated by motions of bearing components. COBRA-AHS offers several improvements over prior commercial bearing-analysis programs: It includes innovative probabilistic fatigue-life-estimating software that provides for computation of three-dimensional stress fields and incorporates stress-based (in contradistinction to prior load-based) mathematical models of fatigue life. It interacts automatically with the ANSYS finite-element code to generate finite-element models for estimating distributions of temperature and temperature-induced changes in dimensions in iterative thermal/dimensional analyses: thus, for example, it can be used to predict changes in clearances and thermal lockup. COBRA-AHS provides an improved graphical user interface that facilitates the iterative cycle of analysis and design by providing analysis results quickly in graphical form, enabling the user to control interactive runs without leaving the program environment, and facilitating transfer of plots and printed results for inclusion in design reports. Additional features include roller-edge stress prediction and influence of shaft and housing distortion on bearing performance.
Optics derotator servo control system for SONG Telescope
NASA Astrophysics Data System (ADS)
Xu, Jin; Ren, Changzhi; Ye, Yu
2012-09-01
The Stellar Oscillations Network Group (SONG) is an initiative which aims at designing and building a groundbased network of 1m telescopes dedicated to the study of phenomena occurring in the time domain. Chinese standard node of SONG is an Alt-Az Telescope of F/37 with 1m diameter. Optics derotator control system of SONG telescope adopts the development model of "Industrial Computer + UMAC Motion Controller + Servo Motor".1 Industrial computer is the core processing part of the motion control, motion control card(UMAC) is in charge of the details on the motion control, Servo amplifier accepts the control commands from UMAC, and drives the servo motor. The position feedback information comes from the encoder, to form a closed loop control system. This paper describes in detail hardware design and software design for the optics derotator servo control system. In terms of hardware design, the principle, structure, and control algorithm of servo system based on optics derotator are analyzed and explored. In terms of software design, the paper proposes the architecture of the system software based on Object-Oriented Programming.
Sweeney, Sunya; Smith, Derek K; Messersmith, Marion
2015-08-01
One method of articulating digital models is to use a digitized interocclusal record. However, the accuracy of different interocclusal record materials to articulate digital models has yet to be evaluated. A plastic typodont was modified with reference points for interarch measurements and articulated in maximum intercuspal position on a semiadjustable hinge articulator. Twenty-five interocclusal records of each of the 5 experimental materials (Regisil Rigid, Dentsply, York, Pa; Futar Scan, Kettenbach, Huntington Beach, Calif; Byte Right, Motion View Software, Chattanooga, Tenn; Aluwax, Aluwax Dental Products, Allendale, Mich; and Beauty Pink wax, Miltex, York, Pa) were made on the mounted typodont and digitized using an Ortho Insight 3D laser surface scanner (Motion View Software). Motion View Software was used to articulate the digital models by matching points from the models to the digitized interocclusal records. The distances between corresponding interarch markers were measured and compared with the measurements taken on the physical typodont (gold standard). Polyvinyl siloxane materials were significantly more likely to lead to successful articulation than were the other interocclusal record materials. Statistical analysis showed a significant effect of the bite registration material on the probability of success of the articulation (P <0.005). Polyvinyl siloxane is a more accurate interocclusal recording material when articulating digital models according to the process described in this study. Using a bite registration to articulate digital models should be considered the first step in the articulation process, with a likely residual need to manipulate the models manually. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Health Monitors for Chronic Disease by Gait Analysis with Mobile Phones
Juen, Joshua; Cheng, Qian; Prieto-Centurion, Valentin; Krishnan, Jerry A.
2014-01-01
Abstract We have developed GaitTrack, a phone application to detect health status while the smartphone is carried normally. GaitTrack software monitors walking patterns, using only accelerometers embedded in phones to record spatiotemporal motion, without the need for sensors external to the phone. Our software transforms smartphones into health monitors, using eight parameters of phone motion transformed into body motion by the gait model. GaitTrack is designed to detect health status while the smartphone is carried during normal activities, namely, free-living walking. The current method for assessing free-living walking is medical accelerometers, so we present evidence that mobile phones running our software are more accurate. We then show our gait model is more accurate than medical pedometers for counting steps of patients with chronic disease. Our gait model was evaluated in a pilot study involving 30 patients with chronic lung disease. The six-minute walk test (6MWT) is a major assessment for chronic heart and lung disease, including congestive heart failure and especially chronic obstructive pulmonary disease (COPD), affecting millions of persons. The 6MWT consists of walking back and forth along a measured distance for 6 minutes. The gait model using linear regression performed with 94.13% accuracy in measuring walk distance, compared with the established standard of direct observation. We also evaluated a different statistical model using the same gait parameters to predict health status through lung function. This gait model has high accuracy when applied to demographic cohorts, for example, 89.22% accuracy testing the cohort of 12 female patients with ages 50–64 years. PMID:24694291
Using "Tracker" to Prove the Simple Harmonic Motion Equation
ERIC Educational Resources Information Center
Kinchin, John
2016-01-01
Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.
Image sequence analysis workstation for multipoint motion analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-08-01
This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.
Conklin, Emily E; Lee, Kathyann L; Schlabach, Sadie A; Woods, Ian G
2015-01-01
Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs.
High-Speed Video Analysis in a Conceptual Physics Class
NASA Astrophysics Data System (ADS)
Desbien, Dwain M.
2011-09-01
The use of probe ware and computers has become quite common in introductory physics classrooms. Video analysis is also becoming more popular and is available to a wide range of students through commercially available and/or free software.2,3 Video analysis allows for the study of motions that cannot be easily measured in the traditional lab setting and also allows real-world situations to be analyzed. Many motions are too fast to easily be captured at the standard video frame rate of 30 frames per second (fps) employed by most video cameras. This paper will discuss using a consumer camera that can record high-frame-rate video in a college-level conceptual physics class. In particular this will involve the use of model rockets to determine the acceleration during the boost period right at launch and compare it to a simple model of the expected acceleration.
A Python-based interface to examine motions in time series of solar images
NASA Astrophysics Data System (ADS)
Campos-Rozo, J. I.; Vargas Domínguez, S.
2017-10-01
Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.
2017-12-01
Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.
MPCV Exercise Operational Volume Analysis
NASA Technical Reports Server (NTRS)
Godfrey, A.; Humphreys, B.; Funk, J.; Perusek, G.; Lewandowski, B. E.
2017-01-01
In order to minimize the loss of bone and muscle mass during spaceflight, the Multi-purpose Crew Vehicle (MPCV) will include an exercise device and enough free space within the cabin for astronauts to use the device effectively. The NASA Digital Astronaut Project (DAP) has been tasked with using computational modeling to aid in determining whether or not the available operational volume is sufficient for in-flight exercise.Motion capture data was acquired using a 12-camera Smart DX system (BTS Bioengineering, Brooklyn, NY), while exercisers performed 9 resistive exercises without volume restrictions in a 1g environment. Data were collected from two male subjects, one being in the 99th percentile of height and the other in the 50th percentile of height, using between 25 and 60 motion capture markers. Motion capture data was also recorded as a third subject, also near the 50th percentile in height, performed aerobic rowing during a parabolic flight. A motion capture system and algorithms developed previously and presented at last years HRP-IWS were utilized to collect and process the data from the parabolic flight [1]. These motions were applied to a scaled version of a biomechanical model within the biomechanical modeling software OpenSim [2], and the volume sweeps of the motions were visually assessed against an imported CAD model of the operational volume. Further numerical analysis was performed using Matlab (Mathworks, Natick, MA) and the OpenSim API. This analysis determined the location of every marker in space over the duration of the exercise motion, and the distance of each marker to the nearest surface of the volume. Containment of the exercise motions within the operational volume was determined on a per-exercise and per-subject basis. The orientation of the exerciser and the angle of the footplate were two important factors upon which containment was dependent. Regions where the exercise motion exceeds the bounds of the operational volume have been identified by determining which markers from the motion capture exceed the operational volume and by how much. A credibility assessment of this analysis was performed in accordance with NASA-STD-7009 prior to delivery to the MPCV program.
Re-designing a mechanism for higher speed: A case history from textile machinery
NASA Astrophysics Data System (ADS)
Douglas, S. S.; Rooney, G. T.
The generation of general mechanism design software which is the formulation of suitable objective functions is discussed. There is a consistent drive towards higher speeds in the development of industrial sewing machines. This led to experimental analyses of dynamic performance and to a search for improved design methods. The experimental work highlighted the need for smoothness of motion at high speed, component inertias, and frame structural stiffness. Smoothness is associated with transmission properties and harmonic analysis. These are added to other design requirements of synchronization, mechanism size, and function. Some of the mechanism trains in overedte sewing machines are shown. All these trains are designed by digital optimization. The design software combines analysis of the sewing machine mechanisms, formulation of objectives innumerical terms, and suitable mathematical optimization ttechniques.
A software tool for automatic classification and segmentation of 2D/3D medical images
NASA Astrophysics Data System (ADS)
Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur
2013-02-01
Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.
Dorr, Ricardo; Ozu, Marcelo; Parisi, Mario
2007-04-15
Water channels (aquaporins) family members have been identified in central nervous system cells. A classic method to measure membrane water permeability and its regulation is to capture and analyse images of Xenopus laevis oocytes expressing them. Laboratories dedicated to the analysis of motion images usually have powerful equipment valued in thousands of dollars. However, some scientists consider that new approaches are needed to reduce costs in scientific labs, especially in developing countries. The objective of this work is to share a very low-cost hardware and software setup based on a well-selected webcam, a hand-made adapter to a microscope and the use of free software to measure membrane water permeability in Xenopus oocytes. One of the main purposes of this setup is to maintain a high level of quality in images obtained at brief intervals (shorter than 70 ms). The presented setup helps to economize without sacrificing image analysis requirements.
Mars in Motion: An online Citizen Science platform looking for changes on the surface of Mars
NASA Astrophysics Data System (ADS)
Sprinks, James Christopher; Wardlaw, Jessica; Houghton, Robert; Bamford, Steven; Marsh, Stuart
2016-10-01
The European FP7 iMars project has developed tools and 3D models of the Martian surface through the co-registration of NASA and ESA mission data dating from the Viking missions of the 1970s to the present day, for a much more comprehensive interpretation of the geomorphological and climatic processes that have taken and do take place. We present the Citizen Science component of the project, 'Mars in Motion', created through the Zooniverse's Panoptes framework to allow volunteers to look for and identify changes on the surface of Mars over time. 'Mars in Motion', as with many other current citizen science platforms of a planetary or other disciplinary focus, has been developed to compliment the results of automated data mining analysis software, both by validation through the creation of training data and by adding context - gathering more in-depth data on the type and metrics of change initially detected.Through the analysis of initial volunteer results collected in the second half of 2016, the accuracy and ability of untrained participants to identify geomorphological changes is considered, as well as the impact of their position in the system. Volunteer contribution, either as a filter for poor quality imagery pre-algorithm, validation of algorithmic analysis, or adding context to pre-detected change, and their awareness and interpretation of its importance, can directly influence engagement with the platform and therefore ultimately its success. Understanding the effect of the volunteer and software's role in the system on both the results of and engagement with planetary science citizen science platforms will be an important lesson for the future, especially as the next generation of planetary missions will likely collect data orders of magnitude greater in volume. To deal with the data overload, it is likely that human or software solutions alone will not be sufficient, and that a combination of the two working together in a complimentary system that combines and exploits their strengths could provide a viable solution.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement no. 607379.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta
Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). Conclusions: The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.« less
Hu, Yong; Dong, Wei-Xin; Hann, Shannon; Yuan, Zhen-Shan; Sun, Xiao-Yang; Xie, Hui; Zhang, Meichao
To investigate the stress distribution on artificial atlantoaxial-odontoid joint (AAOJ) components during flexion, extension, lateral bending and rotation of AAOJ model constructed with the finite element (FE) method. Human cadaver specimens of normal AAOJ were CT scanned with 1 mm -thickness and transferred into Mimics software to reconstruct the three-dimensional models of AAOJ. These data were imported into Freeform software to place a AAOJ into a atlantoaxial model. With Ansys software, a geometric model of AAOJ was built. Perpendicular downward pressure of 40 N was applied to simulate gravity of a skull, then 1.53 N• m torque was exerted separately to simulate the range of motion of the model. An FE model of atlantoaxial joint after AAOJ replacement was constructed with a total of 103 053 units and 26 324 nodes. In flexion, extension, right lateral bending and right rotation, the AAOJ displacement was 1.109 mm, 3.31 mm, 0.528 mm, and 9.678 mm, respectively, and the range of motion was 1.6°, 5.1°, 4.6° and 22°. During all ROM, stress distribution of atlas-axis changed after AAOJ replacement indicating that AAOJ can offload stress. The stress distribution in the AAOJ can be successfully analyzed with the FE method.
Automatic generation of the non-holonomic equations of motion for vehicle stability analysis
NASA Astrophysics Data System (ADS)
Minaker, B. P.; Rieveley, R. J.
2010-09-01
The mathematical analysis of vehicle stability has been utilised as an important tool in the design, development, and evaluation of vehicle architectures and stability controls. This paper presents a novel method for automatic generation of the linearised equations of motion for mechanical systems that is well suited to vehicle stability analysis. Unlike conventional methods for generating linearised equations of motion in standard linear second order form, the proposed method allows for the analysis of systems with non-holonomic constraints. In the proposed method, the algebraic constraint equations are eliminated after linearisation and reduction to first order. The described method has been successfully applied to an assortment of classic dynamic problems of varying complexity including the classic rolling coin, the planar truck-trailer, and the bicycle, as well as in more recent problems such as a rotor-stator and a benchmark road vehicle with suspension. This method has also been applied in the design and analysis of a novel three-wheeled narrow tilting vehicle with zero roll-stiffness. An application for determining passively stable configurations using the proposed method together with a genetic search algorithm is detailed. The proposed method and software implementation has been shown to be robust and provides invaluable conceptual insight into the stability of vehicles and mechanical systems.
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
Scott, S. D.; Mumgaard, R. T.
2016-07-20
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S. D.; Mumgaard, R. T.
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Off-line programming motion and process commands for robotic welding of Space Shuttle main engines
NASA Technical Reports Server (NTRS)
Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.
1987-01-01
The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.
Zhang, Ao; Yan, Xing-Ke; Liu, An-Guo
2016-12-25
In the present paper, the authors introduce a newly-developed "Acupuncture Needle Manipulation Training-evaluation System" based on optical motion capture technique. It is composed of two parts, sensor and software, and overcomes some shortages of mechanical motion capture technique. This device is able to analyze the data of operations of the pressing-hand and needle-insertion hand during acupuncture performance and its software contains personal computer (PC) version, Android version, and Internetwork Operating System (IOS) Apple version. It is competent in recording and analyzing information of any ope-rator's needling manipulations, and is quite helpful for teachers in teaching, training and examining students in clinical practice.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-797] Certain Portable Electronic Devices and Related Software; Determination Not To Review Initial Determination Granting Motion To Amend the... the United States after importation of certain portable electronic devices and related software. 76 FR...
Have More Fun Teaching Physics: Simulating, Stimulating Software.
ERIC Educational Resources Information Center
Jenkins, Doug
1996-01-01
High school physics offers opportunities to use problem solving and lab practices as well as cement skills in research, technical writing, and software applications. Describes and evaluates computer software enhancing the high school physics curriculum including spreadsheets for laboratory data, all-in-one simulators, projectile motion simulators,…
NASA Technical Reports Server (NTRS)
Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.
1984-01-01
A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed were: (1) Capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) Capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) Postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) Investigation and simulation of various control methods including manual force/torque and active compliance control; (5) Evaluation and implementation of three obstacle avoidance methods; (6) Video simulation and edge detection; and (7) Software simulation validation. This appendix is the user's guide and includes examples of program runs and outputs as well as instructions for program use.
Using a Digital Video Camera to Study Motion
ERIC Educational Resources Information Center
Abisdris, Gil; Phaneuf, Alain
2007-01-01
To illustrate how a digital video camera can be used to analyze various types of motion, this simple activity analyzes the motion and measures the acceleration due to gravity of a basketball in free fall. Although many excellent commercially available data loggers and software can accomplish this task, this activity requires almost no financial…
Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio
2013-01-01
One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed. Copyright © 2013 Elsevier Inc. All rights reserved.
Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E
2015-05-01
Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.
NASA Astrophysics Data System (ADS)
Aleksandrova, A. G.; Chuvashov, I. N.; Bordovitsyna, T. V.
2011-07-01
The results of investigations of the instability of orbits in the GEO are presentеd. Average parameter MEGNO as main indicator of chaotic state has been used. The parameter is computed by combined numerical integration of equations of the motion, equations in variation and equations of MEGNO parameters. The results have been obtained using software package "Numerical model of the systems artificial satellite motion", implemented on the cluster "Skiff Cyberia".
PDSS/IMC qualification test software acceptance procedures
NASA Technical Reports Server (NTRS)
1984-01-01
Tests to be performed for qualifying the payload development support system image motion compensator (IMC) are identified. The performance of these tests will verify the IMC interfaces and thereby verify the qualification test software.
Monitoring and Controlling an Underwater Robotic Arm
NASA Technical Reports Server (NTRS)
Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.
2009-01-01
The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.
NASA Astrophysics Data System (ADS)
Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko
2018-04-01
Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were mm, mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p < 0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm () in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.
Computer-Guided Deep Brain Stimulation Programming for Parkinson's Disease.
Heldman, Dustin A; Pulliam, Christopher L; Urrea Mendoza, Enrique; Gartner, Maureen; Giuffrida, Joseph P; Montgomery, Erwin B; Espay, Alberto J; Revilla, Fredy J
2016-02-01
Pilot study to evaluate computer-guided deep brain stimulation (DBS) programming designed to optimize stimulation settings using objective motion sensor-based motor assessments. Seven subjects (five males; 54-71 years) with Parkinson's disease (PD) and recently implanted DBS systems participated in this pilot study. Within two months of lead implantation, the subject returned to the clinic to undergo computer-guided programming and parameter selection. A motion sensor was placed on the index finger of the more affected hand. Software guided a monopolar survey during which monopolar stimulation on each contact was iteratively increased followed by an automated assessment of tremor and bradykinesia. After completing assessments at each setting, a software algorithm determined stimulation settings designed to minimize symptom severities, side effects, and battery usage. Optimal DBS settings were chosen based on average severity of motor symptoms measured by the motion sensor. Settings chosen by the software algorithm identified a therapeutic window and improved tremor and bradykinesia by an average of 35.7% compared with baseline in the "off" state (p < 0.01). Motion sensor-based computer-guided DBS programming identified stimulation parameters that significantly improved tremor and bradykinesia with minimal clinician involvement. Automated motion sensor-based mapping is worthy of further investigation and may one day serve to extend programming to populations without access to specialized DBS centers. © 2015 International Neuromodulation Society.
de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist
2016-01-01
Objective: To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. Methods: A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P < .05) were statistically analyzed using the GraphPad InStat for the Mac OS software (GraphPad Software, La Jolla, CA, USA). Results: There were no significant differences in remaining debris (P > .05) between the two groups. Conclusion: The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied. PMID:28217185
ERIC Educational Resources Information Center
Mackenzie, Norma N.; And Others
1988-01-01
Reviews four computer software packages including: "The Physical Science Series: Sound" which demonstrates making waves, speed of sound, doppler effect, and human hearing; "Andromeda" depicting celestial motions in any direction; "Biology Quiz: Humans" covering chemistry, cells, viruses, and human biology; and…
Time-lapse microscopy and image processing for stem cell research: modeling cell migration
NASA Astrophysics Data System (ADS)
Gustavsson, Tomas; Althoff, Karin; Degerman, Johan; Olsson, Torsten; Thoreson, Ann-Catrin; Thorlin, Thorleif; Eriksson, Peter
2003-05-01
This paper presents hardware and software procedures for automated cell tracking and migration modeling. A time-lapse microscopy system equipped with a computer controllable motorized stage was developed. The performance of this stage was improved by incorporating software algorithms for stage motion displacement compensation and auto focus. The microscope is suitable for in-vitro stem cell studies and allows for multiple cell culture image sequence acquisition. This enables comparative studies concerning rate of cell splits, average cell motion velocity, cell motion as a function of cell sample density and many more. Several cell segmentation procedures are described as well as a cell tracking algorithm. Statistical methods for describing cell migration patterns are presented. In particular, the Hidden Markov Model (HMM) was investigated. Results indicate that if the cell motion can be described as a non-stationary stochastic process, then the HMM can adequately model aspects of its dynamic behavior.
Johnson, Quentin R; Lindsay, Richard J; Shen, Tongye
2018-02-21
A computational method which extracts the dominant motions from an ensemble of biomolecular conformations via a correlation analysis of residue-residue contacts is presented. The algorithm first renders the structural information into contact matrices, then constructs the collective modes based on the correlated dynamics of a selected set of dynamic contacts. Associated programs can bridge the results for further visualization using graphics software. The aim of this method is to provide an analysis of conformations of biopolymers from the contact viewpoint. It may assist a systematical uncovering of conformational switching mechanisms existing in proteins and biopolymer systems in general by statistical analysis of simulation snapshots. In contrast to conventional correlation analyses of Cartesian coordinates (such as distance covariance analysis and Cartesian principal component analysis), this program also provides an alternative way to locate essential collective motions in general. Herein, we detail the algorithm in a stepwise manner and comment on the importance of the method as applied to decoding allosteric mechanisms. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
An Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results
NASA Astrophysics Data System (ADS)
Alcik, H. A.; Tanircan, G.; Kaya, Y.
2015-12-01
Vast amounts of high quality strong motion data are indispensable inputs of the analyses in the field of geotechnical and earthquake engineering however, high cost of installation of the strong motion systems constitutes the biggest obstacle for worldwide dissemination. In recent years, MEMS based (micro-electro-mechanical systems) accelerometers have been used in seismological research-oriented studies as well as earthquake engineering oriented projects basically due to precision obtained in downsized instruments. In this research our primary goal is to ensure the usage of these low-cost instruments in the creation of shake-maps immediately after a strong earthquake. Second goal is to develop software that will automatically process the real-time data coming from the rapid response network and create shake-map. For those purposes, four MEMS sensors have been set up to deliver real-time data. Data transmission is done through 3G modems. A subroutine was coded in assembler language and embedded into the operating system of each instrument to create MiniSEED files with packages of 1-second instead of 512-byte packages.The Matlab-based software calculates the strong motion (SM) parameters at every second, and they are compared with the user-defined thresholds. A voting system embedded in the software captures the event if the total vote exceeds the threshold. The user interface of the software enables users to monitor the calculated SM parameters either in a table or in a graph (Figure 1). A small scale and affordable rapid response network is created using four MEMS sensors, and the functionality of the software has been tested and validated using shake table tests. The entire system is tested together with a reference sensor under real strong ground motion recordings as well as series of sine waves with varying amplitude and frequency. The successful realization of this software allowed us to set up a test network at Tekirdağ Province, the closest coastal point to the moderate size earthquake activities in the Marmara Sea, Turkey.
An open architecture motion controller
NASA Technical Reports Server (NTRS)
Rossol, Lothar
1994-01-01
Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.
ERIC Educational Resources Information Center
Science and Children, 1988
1988-01-01
Reviews six software packages for use with school age children ranging from grade 3 to grade 12. Includes "The Microcomputer Based Lab Project: Motion, Sound"; "Genetics"; "Geologic History"; "The Microscope Simulator"; and "Wiz Works" all for Apple II and "Reading for Information: Level…
The Effects of Music on Microsurgical Technique and Performance: A Motion Analysis Study.
Shakir, Afaaf; Chattopadhyay, Arhana; Paek, Laurence S; McGoldrick, Rory B; Chetta, Matthew D; Hui, Kenneth; Lee, Gordon K
2017-05-01
Music is commonly played in operating rooms (ORs) throughout the country. If a preferred genre of music is played, surgeons have been shown to perform surgical tasks quicker and with greater accuracy. However, there are currently no studies investigating the effects of music on microsurgical technique. Motion analysis technology has recently been validated in the objective assessment of plastic surgery trainees' performance of microanastomoses. Here, we aimed to examine the effects of music on microsurgical skills using motion analysis technology as a primary objective assessment tool. Residents and fellows in the Plastic and Reconstructive Surgery program were recruited to complete a demographic survey and participate in microsurgical tasks. Each participant completed 2 arterial microanastomoses on a chicken foot model, one with music playing, and the other without music playing. Participants were blinded to the study objectives and encouraged to perform their best. The order of music and no music was randomized. Microanastomoses were video recorded using a digitalized S-video system and deidentified. Video segments were analyzed using ProAnalyst motion analysis software for automatic noncontact markerless video tracking of the needle driver tip. Nine residents and 3 plastic surgery fellows were tested. Reported microsurgical experience ranged from 1 to 10 arterial anastomoses performed (n = 2), 11 to 100 anastomoses (n = 9), and 101 to 500 anastomoses (n = 1). Mean age was 33 years (range, 29-36 years), with 11 participants right-handed and 1 ambidextrous. Of the 12 subjects tested, 11 (92%) preferred music in the OR. Composite instrument motion analysis scores significantly improved with playing preferred music during testing versus no music (paired t test, P <0.001). Improvement with music was significant even after stratifying scores by order in which variables were tested (music first vs no music first), postgraduate year, and number of anastomoses (analysis of variance, P < 0.01). Preferred music in the OR may have a positive effect on trainees' microsurgical performance; as such, trainees should be encouraged to participate in setting the conditions of the OR to optimize their comfort and, possibly, performance. Moreover, motion analysis technology is a useful tool with a wide range of applications for surgical education and outcomes optimization.
Vienna SAC-SOS: Analysis of the European VLBI Sessions
NASA Astrophysics Data System (ADS)
Ros, C. T.; Pavetich, P.; Nilsson, T.; Böhm, J.; Schuh, H.
2012-12-01
The Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology as an IVS Special Analysis Center for Specific Observing Sessions (SAC-SOS) has analyzed the European VLBI sessions using the software VieVS. Between 1990 and 2011, 115 sessions have been carried out. The analyzed baselines have lengths ranging from approximately 445 to 4580 km, and they show good repeatabilities, apart from the ones containing station Simeiz. The station velocities have also been investigated. The stations situated in the stable part of Europe have not shown significant relative movements w.r.t. Wettzell, whereas the stations located in the northern areas have the largest vertical motions as a result of the post glacial isostatic rebound of the zone. The stations placed in Italy, around the Black Sea, in Siberia, and near the Arctic Circle show the largest relative horizontal motions because they belong to different geodynamical units.
NASA Astrophysics Data System (ADS)
Aleksandrova, A. G.; Bordovitsyna, T. V.; Chuvashov, I. N.
2011-07-01
In the present work results of investigations of the effect of radiation pressure on the orbital evolution of objects in the GEO are presentеd.. MEGNO-analysis of orbits in the GEO for different values of sail (area to mass ratio) have been performed. Average parameter MEGNO as main indicator of chaotic or stable motion has been used. The results have been obtained using software package "Numerical model of the systems artificial satellite motion", implemented on the cluster "Skiff Cyberia".
NASA Astrophysics Data System (ADS)
Huebner, Claudia S.
2016-10-01
As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).
Wang, Rui; Meinel, Felix G; Schoepf, U Joseph; Canstein, Christian; Spearman, James V; De Cecco, Carlo N
2015-12-01
To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. • Cardiac computed tomography (CCT) can accurately assess segmental left ventricular wall function. • A novel automated software permits accurate and fast evaluation of wall function. • The software may improve the clinical implementation of segmental functional analysis.
Measuring Sea-Ice Motion in the Arctic with Real Time Photogrammetry
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Hagen, R. A.; Peters, M. F.; Liang, R.; Ball, D.
2014-12-01
The U.S. Naval Research Laboratory, in coordination with other groups, has been collecting sea-ice data in the Arctic off the north coast of Alaska with an airborne system employing a radar altimeter, LiDAR and a photogrammetric camera in an effort to obtain wide swaths of measurements coincident with Cryosat-2 footprints. Because the satellite tracks traverse areas of moving pack ice, precise real-time estimates of the ice motion are needed to fly a survey grid that will yield complete data coverage. This requirement led us to develop a method to find the ice motion from the aircraft during the survey. With the advent of real-time orthographic photogrammetric systems, we developed a system that measures the sea ice motion in-flight, and also permits post-process modeling of sea ice velocities to correct the positioning of radar and LiDAR data. For the 2013 and 2014 field seasons, we used this Real Time Ice Motion Estimation (RTIME) system to determine ice motion using Applanix's Inflight Ortho software with an Applanix DSS439 system. Operationally, a series of photos were taken in the survey area. The aircraft then turned around and took more photos along the same line several minutes later. Orthophotos were generated within minutes of collection and evaluated by custom software to find photo footprints and potential overlap. Overlapping photos were passed to the correlation software, which selects a series of "chips" in the first photo and looks for the best matches in the second photo. The correlation results are then passed to a density-based clustering algorithm to determine the offset of the photo pair. To investigate any systematic errors in the photogrammetry, we flew several flight lines over a fixed point on various headings, over an area of non-moving ice in 2013. The orthophotos were run through the correlation software to find any residual offsets, and run through additional software to measure chip positions and offsets relative to the aircraft heading. X- and Y-offsets in situations where one of the chips was near the center of its photo were plotted to find the along- and across-track errors vs. distance from the photo center. Corrections were determined and applied to the survey data, reducing the mean error by about 1 meter. The corrections were applied to all of the subsequent survey data.
NASA Technical Reports Server (NTRS)
Bose, S. C.; Parris, B. L.
1977-01-01
Motion system drive philosophy and corresponding real-time software have been developed for the purpose of simulating the characteristics of a typical synergistic Six-Post Motion System (SPMS) on the Flight Simulator for Advanced Aircraft (FSAA) at NASA-Ames which is a non-synergistic motion system. This paper gives a brief description of these two types of motion systems and the general methods of producing motion cues of the FSAA. An actuator extension transformation which allows the simulation of a typical SPMS by appropriate drive washout and variable position limiting is described.
Numerical study of a permanent magnet linear generator for ship motion energy conversion
NASA Astrophysics Data System (ADS)
Mahmuddin, Faisal; Gunadin, Indar Chaerah; Akhir, Anshar Yaumil
2017-02-01
In order to harvest kinetic energy of a ship moving in waves, a permanent magnet linear generator is designed and simulated in the present study. For the sake of simplicity, only heave motion which will be considered in this preliminary study. The dimension of the generator is designed based on the dimension of the ship. Moreover, in order to designed an optimal design of rotor and stator, the average vertical displacement of heave motion is needed. For this purpose, a numerical method called New Strip Method (NSM) is employed to compute the motions of the ship. With NSM, the ship hull is divided into several strips and the hydrodynamics forces are computed on each strip. Moreover, because the ship is assumed to be slender, the total forces are obtained by integrating the force on each strip. After the motions can be determined, the optimal design of the generator is designed and simulated. The performance of the generator in terms of force, magnetic flux, losses, current and induced voltage which are the primary parameters of the linear generator performance, are evaluated using a finite element analysis software named Maxwell. From the study, a linear generator for converting heave motions is designed so that the produced power from the designed generator can be determined.
Monte Carlo Methodology Serves Up a Software Success
NASA Technical Reports Server (NTRS)
2003-01-01
Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.
Frame sequences analysis technique of linear objects movement
NASA Astrophysics Data System (ADS)
Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.
2017-12-01
Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.
Motion Imagery and Robotics Application Project (MIRA)
NASA Technical Reports Server (NTRS)
Grubbs, Rodney P.
2010-01-01
This viewgraph presentation describes the Motion Imagery and Robotics Application (MIRA) Project. A detailed description of the MIRA camera service software architecture, encoder features, and on-board communications are presented. A description of a candidate camera under development is also shown.
Lamberti, Fabrizio; Paravati, Gianluca; Gatteschi, Valentina; Cannavo, Alberto; Montuschi, Paolo
2018-05-01
Software for computer animation is generally characterized by a steep learning curve, due to the entanglement of both sophisticated techniques and interaction methods required to control 3D geometries. This paper proposes a tool designed to support computer animation production processes by leveraging the affordances offered by articulated tangible user interfaces and motion capture retargeting solutions. To this aim, orientations of an instrumented prop are recorded together with animator's motion in the 3D space and used to quickly pose characters in the virtual environment. High-level functionalities of the animation software are made accessible via a speech interface, thus letting the user control the animation pipeline via voice commands while focusing on his or her hands and body motion. The proposed solution exploits both off-the-shelf hardware components (like the Lego Mindstorms EV3 bricks and the Microsoft Kinect, used for building the tangible device and tracking animator's skeleton) and free open-source software (like the Blender animation tool), thus representing an interesting solution also for beginners approaching the world of digital animation for the first time. Experimental results in different usage scenarios show the benefits offered by the designed interaction strategy with respect to a mouse & keyboard-based interface both for expert and non-expert users.
SPICE Module for the Satellite Orbit Analysis Program (SOAP)
NASA Technical Reports Server (NTRS)
Coggi, John; Carnright, Robert; Hildebrand, Claude
2008-01-01
A SPICE module for the Satellite Orbit Analysis Program (SOAP) precisely represents complex motion and maneuvers in an interactive, 3D animated environment with support for user-defined quantitative outputs. (SPICE stands for Spacecraft, Planet, Instrument, Camera-matrix, and Events). This module enables the SOAP software to exploit NASA mission ephemeris represented in the JPL Ancillary Information Facility (NAIF) SPICE formats. Ephemeris types supported include position, velocity, and orientation for spacecraft and planetary bodies including the Sun, planets, natural satellites, comets, and asteroids. Entire missions can now be imported into SOAP for 3D visualization, playback, and analysis. The SOAP analysis and display features can now leverage detailed mission files to offer the analyst both a numerically correct and aesthetically pleasing combination of results that can be varied to study many hypothetical scenarios. The software provides a modeling and simulation environment that can encompass a broad variety of problems using orbital prediction. For example, ground coverage analysis, communications analysis, power and thermal analysis, and 3D visualization that provide the user with insight into complex geometric relations are included. The SOAP SPICE module allows distributed science and engineering teams to share common mission models of known pedigree, which greatly reduces duplication of effort and the potential for error. The use of the software spans all phases of the space system lifecycle, from the study of future concepts to operations and anomaly analysis. It allows SOAP software to correctly position and orient all of the principal bodies of the Solar System within a single simulation session along with multiple spacecraft trajectories and the orientation of mission payloads. In addition to the 3D visualization, the user can define numeric variables and x-y plots to quantitatively assess metrics of interest.
Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheriyadat, Anil M.
Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less
Motion and ranging sensor system for through-the-wall surveillance system
NASA Astrophysics Data System (ADS)
Black, Jeffrey D.
2002-08-01
A portable Through-the-Wall Surveillance System is being developed for law enforcement, counter-terrorism, and military use. The Motion and Ranging Sensor is a radar that operates in a frequency band that allows for surveillance penetration of most non-metallic walls. Changes in the sensed radar returns are analyzed to detect the human motion that would typically be present during a hostage or barricaded suspect scenario. The system consists of a Sensor Unit, a handheld Remote Display Unit, and an optional laptop computer Command Display Console. All units are battery powered and a wireless link provides command and data communication between units. The Sensor Unit is deployed close to the wall or door through which the surveillance is to occur. After deploying the sensor the operator may move freely as required by the scenario. Up to five Sensor Units may be deployed at a single location. A software upgrade to the Command Display Console is also being developed. This software upgrade will combine the motion detected by multiple Sensor Units and determine and track the location of detected motion in two dimensions.
Gray, Aaron D; Willis, Brad W; Skubic, Marjorie; Huo, Zhiyu; Razu, Swithin; Sherman, Seth L; Guess, Trent M; Jahandar, Amirhossein; Gulbrandsen, Trevor R; Miller, Scott; Siesener, Nathan J
Noncontact anterior cruciate ligament (ACL) injury in adolescent female athletes is an increasing problem. The knee-ankle separation ratio (KASR), calculated at initial contact (IC) and peak flexion (PF) during the drop vertical jump (DVJ), is a measure of dynamic knee valgus. The Microsoft Kinect V2 has shown promise as a reliable and valid marker-less motion capture device. The Kinect V2 will demonstrate good to excellent correlation between KASR results at IC and PF during the DVJ, as compared with a "gold standard" Vicon motion analysis system. Descriptive laboratory study. Level 2. Thirty-eight healthy volunteer subjects (20 male, 18 female) performed 5 DVJ trials, simultaneously measured by a Vicon MX-T40S system, 2 AMTI force platforms, and a Kinect V2 with customized software. A total of 190 jumps were completed. The KASR was calculated at IC and PF during the DVJ. The intraclass correlation coefficient (ICC) assessed the degree of KASR agreement between the Kinect and Vicon systems. The ICCs of the Kinect V2 and Vicon KASR at IC and PF were 0.84 and 0.95, respectively, showing excellent agreement between the 2 measures. The Kinect V2 successfully identified the KASR at PF and IC frames in 182 of 190 trials, demonstrating 95.8% reliability. The Kinect V2 demonstrated excellent ICC of the KASR at IC and PF during the DVJ when compared with the Vicon system. A customized Kinect V2 software program demonstrated good reliability in identifying the KASR at IC and PF during the DVJ. Reliable, valid, inexpensive, and efficient screening tools may improve the accessibility of motion analysis assessment of adolescent female athletes.
Rodríguez-Olivares, Ramón; El Faquir, Nahid; Rahhab, Zouhair; Maugenest, Anne-Marie; Van Mieghem, Nicolas M; Schultz, Carl; Lauritsch, Guenter; de Jaegere, Peter P T
2016-07-01
To study the determinants of image quality of rotational angiography using dedicated research prototype software for motion compensation without rapid ventricular pacing after the implantation of four commercially available catheter-based valves. Prospective observational study including 179 consecutive patients who underwent transcatheter aortic valve implantation (TAVI) with either the Medtronic CoreValve (MCS), Edward-SAPIEN Valve (ESV), Boston Sadra Lotus (BSL) or Saint-Jude Portico Valve (SJP) in whom rotational angiography (R-angio) with motion compensation 3D image reconstruction was performed. Image quality was evaluated from grade 1 (excellent image quality) to grade 5 (strongly degraded). Distinction was made between good (grades 1, 2) and poor image quality (grades 3-5). Clinical (gender, body mass index, Agatston score, heart rate and rhythm, artifacts), procedural (valve type) and technical variables (isocentricity) were related with the image quality assessment. Image quality was good in 128 (72 %) and poor in 51 (28 %) patients. By univariable analysis only valve type (BSL) and the presence of an artefact negatively affected image quality. By multivariate analysis (in which BMI was forced into the model) BSL valve (Odds 3.5, 95 % CI [1.3-9.6], p = 0.02), presence of an artifact (Odds 2.5, 95 % CI [1.2-5.4], p = 0.02) and BMI (Odds 1.1, 95 % CI [1.0-1.2], p = 0.04) were independent predictors of poor image quality. Rotational angiography with motion compensation 3D image reconstruction using a dedicated research prototype software offers good image quality for the evaluation of frame geometry after TAVI in the majority of patients. Valve type, presence of artifacts and higher BMI negatively affect image quality.
High performance MRI simulations of motion on multi-GPU systems.
Xanthis, Christos G; Venetis, Ioannis E; Aletras, Anthony H
2014-07-04
MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications.
NASA Astrophysics Data System (ADS)
Telban, Robert J.
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Sherman, V; Feldman, L S; Stanbridge, D; Kazmi, R; Fried, G M
2005-05-01
The aim of this study was to develop summary metrics and assess the construct validity for a virtual reality laparoscopic simulator (LapSim) by comparing the learning curves of three groups with different levels of laparoscopic expertise. Three groups of subjects ('expert', 'junior', and 'naïve') underwent repeated trials on three LapSim tasks. Formulas were developed to calculate scores for efficiency ('time-error') and economy of 'motion' ('motion') using metrics generated by the software after each drill. Data (mean +/- SD) were evaluated by analysis of variance (ANOVA). Significance was set at p < 0.05. All three groups improved significantly from baseline to final for both 'time-error' and 'motion' scores. There were significant differences between groups in time error performances at baseline and final, due to higher scores in the 'expert' group. A significant difference in 'motion' scores was seen only at baseline. We have developed summary metrics for the LapSim that differentiate among levels of laparoscopic experience. This study also provides evidence of construct validity for the LapSim.
An Imaging And Graphics Workstation For Image Sequence Analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-01-01
This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.
Head motion during MRI acquisition reduces gray matter volume and thickness estimates.
Reuter, Martin; Tisdall, M Dylan; Qureshi, Abid; Buckner, Randy L; van der Kouwe, André J W; Fischl, Bruce
2015-02-15
Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Furtado, H.; Gendrin, C.; Spoerk, J.; Steiner, E.; Underwood, T.; Kuenzler, T.; Georg, D.; Birkfellner, W.
2016-03-01
Radiotherapy treatments have changed at a tremendously rapid pace. Dose delivered to the tumor has escalated while organs at risk (OARs) are better spared. The impact of moving tumors during dose delivery has become higher due to very steep dose gradients. Intra-fractional tumor motion has to be managed adequately to reduce errors in dose delivery. For tumors with large motion such as tumors in the lung, tracking is an approach that can reduce position uncertainty. Tumor tracking approaches range from purely image intensity based techniques to motion estimation based on surrogate tracking. Research efforts are often based on custom designed software platforms which take too much time and effort to develop. To address this challenge we have developed an open software platform especially focusing on tumor motion management. FLIRT is a freely available open-source software platform. The core method for tumor tracking is purely intensity based 2D/3D registration. The platform is written in C++ using the Qt framework for the user interface. The performance critical methods are implemented on the graphics processor using the CUDA extension. One registration can be as fast as 90ms (11Hz). This is suitable to track tumors moving due to respiration (~0.3Hz) or heartbeat (~1Hz). Apart from focusing on high performance, the platform is designed to be flexible and easy to use. Current use cases range from tracking feasibility studies, patient positioning and method validation. Such a framework has the potential of enabling the research community to rapidly perform patient studies or try new methods.
Data Analysis for the LISA Pathfinder Mission
NASA Technical Reports Server (NTRS)
Thorpe, James Ira
2009-01-01
The LTP (LISA Technology Package) is the core part of the Laser Interferometer Space Antenna (LISA) Pathfinder mission. The main goal of the mission is to study the sources of any disturbances that perturb the motion of the freely-falling test masses from their geodesic trajectories as well as 10 test various technologies needed for LISA. The LTP experiment is designed as a sequence of experimental runs in which the performance of the instrument is studied and characterized under different operating conditions. In order to best optimize subsequent experimental runs, each run must be promptly analysed to ensure that the following ones make best use of the available knowledge of the instrument ' In order to do this, all analyses must be designed and tested in advance of the mission and have sufficient built-in flexibility to account for unexpected results or behaviour. To support this activity, a robust and flexible data analysis software package is also required. This poster presents two of the main components that make up the data analysis effort: the data analysis software and the mock-data challenges used to validate analysis procedures and experiment designs.
Boland, Mary Regina; Rusanov, Alexander; So, Yat; Lopez-Jimenez, Carlos; Busacca, Linda; Steinman, Richard C; Bakken, Suzanne; Bigger, J Thomas; Weng, Chunhua
2014-12-01
Underspecified user needs and frequent lack of a gold standard reference are typical barriers to technology evaluation. To address this problem, this paper presents a two-phase evaluation framework involving usability experts (phase 1) and end-users (phase 2). In phase 1, a cross-system functionality alignment between expert-derived user needs and system functions was performed to inform the choice of "the best available" comparison system to enable a cognitive walkthrough in phase 1 and a comparative effectiveness evaluation in phase 2. During phase 2, five quantitative and qualitative evaluation methods are mixed to assess usability: time-motion analysis, software log, questionnaires - System Usability Scale and the Unified Theory of Acceptance of Use of Technology, think-aloud protocols, and unstructured interviews. Each method contributes data for a unique measure (e.g., time motion analysis contributes task-completion-time; software log contributes action transition frequency). The measures are triangulated to yield complementary insights regarding user-perceived ease-of-use, functionality integration, anxiety during use, and workflow impact. To illustrate its use, we applied this framework in a formative evaluation of a software called Integrated Model for Patient Care and Clinical Trials (IMPACT). We conclude that this mixed-methods evaluation framework enables an integrated assessment of user needs satisfaction and user-perceived usefulness and usability of a novel design. This evaluation framework effectively bridges the gap between co-evolving user needs and technology designs during iterative prototyping and is particularly useful when it is difficult for users to articulate their needs for technology support due to the lack of a baseline. Copyright © 2013 Elsevier Inc. All rights reserved.
Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert
1996-01-01
The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.
Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara
2004-01-01
Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.
3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures
NASA Astrophysics Data System (ADS)
Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.
2006-02-01
The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.
NASA Astrophysics Data System (ADS)
Khalili, Ashkan; Jha, Ratneshwar; Samaratunga, Dulip
2016-11-01
Wave propagation analysis in 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first-order shear deformation theory which yields accurate results for wave motion at high frequencies. The 2-D WSFE model is highly efficient computationally and provides a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus (commercial finite element software) for wave propagation analysis in 2-D composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Five numerical examples are presented in this article, namely undamaged plate, impacted plate, plate with ply drop, folded plate and plate with stiffener. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features.
Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A.; Marks, Natalie C.; Sheehan, Alice S.; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N.; Yoo, Jennie C.; Judge, Luke M.; Spencer, C. Ian; Chukka, Anand C.; Russell, Caitlin R.; So, Po-Lin
2015-01-01
Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering. PMID:25333967
Porting and redesign of Geotool software system to Qt
NASA Astrophysics Data System (ADS)
Miljanovic Tamarit, V.; Carneiro, L.; Henson, I. H.; Tomuta, E.
2016-12-01
Geotool is a software system that allows a user to interactively display and process seismoacoustic data from International Monitoring System (IMS) station. Geotool can be used to perform a number of analysis and review tasks, including data I/O, waveform filtering, quality control, component rotation, amplitude and arrival measurement and review, array beamforming, correlation, Fourier analysis, FK analysis, event review and location, particle motion visualization, polarization analysis, instrument response convolution/deconvolution, real-time display, signal to noise measurement, spectrogram, and travel time model display. The Geotool program was originally written in C using the X11/Xt/Motif libraries for graphics. It was later ported to C++. Now the program is being ported to the Qt graphics system to be more compatible with the other software in the International Data Centre (IDC). Along with this port, a redesign of the architecture is underway to achieve a separation between user interface, control, and data model elements, in line with design patterns such as Model-View-Controller. Qt is a cross-platform application framework that will allow geotool to easily run on Linux, Mac, and Windows. The Qt environment includes modern libraries and user interfaces for standard utilities such as file and database access, printing, and inter-process communications. The Qt Widgets for Technical Applications library (QWT) provides tools for displaying standard data analysis graphics.
ESO Demonstration Project with the NRAO 12-m Antenna
NASA Astrophysics Data System (ADS)
Heald, R.; Karban, R.
2000-03-01
During the months of September through November 1999, an ALMA joint demonstration project between the European Southern Observatory (ESO) and the National Radio Astronomy Observatory (NRAO) was carried out in Socorro/New Mexico. During this period, Robert Karban (ESO) and Ron Heald (NRAO) worked together on the ESO Demonstration Project. The project integrated ESO software and existing NRAO software (a prototype for the future ALMA control software) to control the motion of the Kitt Peak 12-m antenna. ESO software from the VLT provided the operator interface and coordinate transformation software, while Pat Wallace's TPOINT provided the pointing- model software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiinoki, T; Hanazawa, H; Park, S
2015-06-15
Purpose: We aim to achieve new four-dimensional radiotherapy (4DRT) using the next generation real-time tumor-tracking (RTRT) system and flattening-filter-free techniques. To achieve new 4DRT, it is necessary to understand the respiratory motion of tumor. The purposes of this study were: 1.To develop the respiratory motion analysis tool using log files. 2.To evaluate the reproducibility of tumor motion probability distribution function (PDF) during stereotactic body RT (SBRT) of lung tumor. Methods: Seven patients having fiducial markers closely implanted to the lung tumor were enrolled in this study. The positions of fiducial markers were measured using the RTRT system (Mitsubishi Electronics Co.,more » JP) and recorded as two types of log files during the course of SBRT. For each patients, tumor motion range and tumor motion PDFs in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions were calculated using log files of all beams per fraction (PDFn). Fractional PDF reproducibility (Rn) was calculated as Kullback-Leibler (KL) divergence between PDF1 and PDFn of tumor motion. The mean of Rn (Rm) was calculated for each patient and correlated to the patient’s mean tumor motion range (Am). The change of Rm during the course of SBRT was also evluated. These analyses were performed using in-house developed software. Results: The Rm were 0.19 (0.07–0.30), 0.14 (0.07–0.32) and 0.16 (0.09–0.28) in LR, AP and SI directions, respectively. The Am were 5.11 mm (2.58–9.99 mm), 7.81 mm (2.87–15.57 mm) and 11.26 mm (3.80–21.27 mm) in LR, AP and SI directions, respectively. The PDF reproducibility decreased as the tumor motion range increased in AP and SI direction. That decreased slightly through the course of RT in SI direction. Conclusion: We developed the respiratory motion analysis tool for 4DRT using log files and quantified the range and reproducibility of respiratory motion for lung tumors.« less
Mechanism test bed. Flexible body model report
NASA Technical Reports Server (NTRS)
Compton, Jimmy
1991-01-01
The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.
Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing
Kalkan, Erol; Stephens, Christopher
2017-02-23
A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.
Defining Geodetic Reference Frame using Matlab®: PlatEMotion 2.0
NASA Astrophysics Data System (ADS)
Cannavò, Flavio; Palano, Mimmo
2016-03-01
We describe the main features of the developed software tool, namely PlatE-Motion 2.0 (PEM2), which allows inferring the Euler pole parameters by inverting the observed velocities at a set of sites located on a rigid block (inverse problem). PEM2 allows also calculating the expected velocity value for any point located on the Earth providing an Euler pole (direct problem). PEM2 is the updated version of a previous software tool initially developed for easy-to-use file exchange with the GAMIT/GLOBK software package. The software tool is developed in Matlab® framework and, as the previous version, includes a set of MATLAB functions (m-files), GUIs (fig-files), map data files (mat-files) and user's manual as well as some example input files. New changes in PEM2 include (1) some bugs fixed, (2) improvements in the code, (3) improvements in statistical analysis, (4) new input/output file formats. In addition, PEM2 can be now run under the majority of operating systems. The tool is open source and freely available for the scientific community.
Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry
NASA Astrophysics Data System (ADS)
Böhm, Johannes; Böhm, Sigrid; Boisits, Janina; Girdiuk, Anastasiia; Gruber, Jakob; Hellerschmied, Andreas; Krásná, Hana; Landskron, Daniel; Madzak, Matthias; Mayer, David; McCallum, Jamie; McCallum, Lucia; Schartner, Matthias; Teke, Kamil
2018-04-01
The Vienna VLBI and Satellite Software (VieVS) is state-of-the-art Very Long Baseline Interferometry (VLBI) analysis software for geodesy and astrometry. VieVS has been developed at Technische Universität Wien (TU Wien) since 2008, where it is used for research purposes and for teaching space geodetic techniques. In the past decade, it has been successfully applied on Very Long Baseline Interferometry (VLBI) observations for the determination of celestial and terrestrial reference frames as well as for the estimation of celestial pole offsets, universal Time (UT1-UTC), and polar motion based on least-squares adjustment. Furthermore, VieVS is equipped with tools for scheduling and simulating VLBI observations to extragalactic radio sources as well as to satellites and spacecraft, features which proved to be very useful for a variety of applications. VieVS is now available as version 3.0 and we do provide the software to all interested persons and institutions. A wiki with more information about VieVS is available at http://vievswiki.geo.tuwien.ac.at/.
EPICS-based control and data acquisition for the APS slope profiler (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sullivan, Joseph; Assoufid, Lahsen; Qian, Jun; Jemian, Peter R.; Mooney, Tim; Rivers, Mark L.; Goetze, Kurt; Sluiter, Ronald L.; Lang, Keenan
2016-09-01
The motion control, data acquisition and analysis system for APS Slope Measuring Profiler was implemented using the Experimental Physics and Industrial Control System (EPICS). EPICS was designed as a framework with software tools and applications that provide a software infrastructure used in building distributed control systems to operate devices such as particle accelerators, large experiments and major telescopes. EPICS was chosen to implement the APS Slope Measuring Profiler because it is also applicable to single purpose systems. The control and data handling capability available in the EPICS framework provides the basic functionality needed for high precision X-ray mirror measurement. Those built in capabilities include hardware integration of high-performance motion control systems (3-axis gantry and tip-tilt stages), mirror measurement devices (autocollimator, laser spot camera) and temperature sensors. Scanning the mirror and taking measurements was accomplished with an EPICS feature (the sscan record) which synchronizes motor positioning with measurement triggers and data storage. Various mirror scanning modes were automatically configured using EPICS built-in scripting. EPICS tools also provide low-level image processing (areaDetector). Operation screens were created using EPICS-aware GUI screen development tools.
Muscle Strength Endurance Testing Development Based Photo Transistor with Motion Sensor Ultrasonic
NASA Astrophysics Data System (ADS)
Rusdiana, A.
2017-03-01
The endurance of upper-body muscles is one of the most important physical fitness components. As technology develops, the process of test and assessment is now getting digital; for instance, there are a sensor stuck to the shoe (Foot Pod, Polar, and Sunto), Global Positioning System (GPS) and Differential Global Positioning System (DGPS), radar, photo finish, kinematic analysis, and photocells. Those devices aim to analyze the performances and fitness of athletes particularly the endurance of arm, chest, and shoulder muscles. In relation to that, this study attempt to create a software and a hardware for pull-ups through phototransistor with ultrasonic motion sensor. Components needed to develop this device consist of microcontroller MCS-51, photo transistor, light emitting diode, buzzer, ultrasonic sensor, and infrared sensor. The infrared sensor is put under the buffer while the ultrasonic sensor is stuck on the upper pole. The components are integrated with an LED or a laptop made using Visual Basic 12 software. The results show that pull-ups test using digital device (mean; 9.4 rep) is lower than using manual calculation (mean; 11.3 rep). This is due to the fact that digital test requires the test-takers to do pull-ups perfectly.
Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.
Future directions in flight simulation: A user perspective
NASA Technical Reports Server (NTRS)
Jackson, Bruce
1993-01-01
Langley Research Center was an early leader in simulation technology, including a special emphasis in space vehicle simulations such as the rendezvous and docking simulator for the Gemini program and the lunar landing simulator used before Apollo. In more recent times, Langley operated the first synergistic six degree of freedom motion platform (the Visual Motion Simulator, or VMS) and developed the first dual-dome air combat simulator, the Differential Maneuvering Simulator (DMS). Each Langley simulator was developed more or less independently from one another with different programming support. At present time, the various simulation cockpits, while supported by the same host computer system, run dissimilar software. The majority of recent investments in Langley's simulation facilities have been hardware procurements: host processors, visual systems, and most recently, an improved motion system. Investments in software improvements, however, have not been of the same order.
Loop-the-Loop: An Easy Experiment, A Challenging Explanation
NASA Astrophysics Data System (ADS)
Asavapibhop, B.; Suwonjandee, N.
2010-07-01
A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.
Tyler, Madelaine K
2016-01-08
This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5-30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ± 2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ± 15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ± 3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI.
Design and Simulation of an Electrothermal Actuator Based Rotational Drive
NASA Astrophysics Data System (ADS)
Beeson, Sterling; Dallas, Tim
2008-10-01
As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.
NASA Astrophysics Data System (ADS)
Yang, C.-C.; Wu, Y.-H.; Chao, B. F.; Yu, S.-B.
2009-04-01
Present-day GPS network have been extensively used to monitor crustal deformation due to various geodynamic mechanisms. Situated among the Pacific Ring of Fire on the suture zone of Eurasian and Philippine Sea Plates, the island of Taiwan with a dense continuous GPS network since ~1996 and now over 300 stations sees plenty of geophysical phenomena including particularly prominent crustal motions. We assessed daily solution of each station's coordinate time series, and made the routine corrections, such as orbital, EOP, atmospheric and tidal corrections, using GAMIT/GLOBK software (with ITRF05). We then employ the Quasi-Observation Combination Analysis (QOCA) package to obtain the variability and trend after removing occasional earthquake "disruptions". Preliminary results show strong seasonal variations. We then utilize the numerical method of Empirical Orthogonal Function (EOF) to analysis the geophysical signals from the continuous and dense GPS vertical crustal motion observations. We wish to be able to characterize both the seasonal and non-seasonal variability in the vertical crustal motion, in terms of the EOF modes in the spatial domain over Taiwan (plus a few offshore islets) with time evolution spanning the entire period of time. Corraborating with time-variable gravity data from the geodetic satellite mission GRACE, we can further obtain vertical components of both mass-induced loading with respect to the precipitation minus evaporation and the crustal motion caused by the active tectonic processes on Taiwan.
Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)
NASA Astrophysics Data System (ADS)
Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.
Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The meaning of IOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium- and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. IOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.
Piché, Mathieu; Benoît, Pierre; Lambert, Julie; Barrette, Virginie; Grondin, Emmanuelle; Martel, Julie; Paré, Amélie; Cardin, André
2007-01-01
The objective of this study was to develop a measurement method that could be implemented in chiropractic for the evaluation of angular and translational intervertebral motion of the cervical spine. Flexion-extension radiographs were digitized with a scanner at a ratio of 1:1 and imported into a software, allowing segmental motion measurements. The measurements were obtained by selecting the most anteroinferior point and the most posteroinferior point of a vertebral body (anterior and posterior arch, respectively, for C1), with the origin of the reference frame set at the most posteroinferior point of the vertebral body below. The same procedure was performed for both the flexion and extension radiographs, and the coordinates of the 2 points were used to calculate the angular movement and the translation between the 2 vertebrae. This method provides a measure of intervertebral angular and translational movement. It uses a different reference frame for each joint instead of the same reference frame for all joints and thus provides a measure of motion in the plane of each articulation. The calculated values obtained are comparable to other studies on intervertebral motion and support further development to validate the method. The present study proposes a computerized procedure to evaluate intervertebral motion of the cervical spine. This procedure needs to be validated with a reliability study but could provide a valuable tool for doctors of chiropractic and further spinal research.
"Time: What Is It that It Can Be Measured?"
ERIC Educational Resources Information Center
Raju, C. K.
2006-01-01
Experiments with the simple pendulum are easy, but its motion is nevertheless confounded with simple harmonic motion. However, refined theoretical models of the pendulum can, today, be easily taught using software like CALCODE. Similarly, the cycloidal pendulum is isochronous only in simplified theory. But what "are" theoretically equal intervals…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-14
... Initial Determination Granting Complainants' Unopposed Motion for Leave To Amend the Complaint and Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...' unopposed motion for leave to amend the complaint and notice of investigation. FOR FURTHER INFORMATION...
ERIC Educational Resources Information Center
Chen, Ching-chih
1991-01-01
Describes compact disc interactive (CD-I) as a multimedia home entertainment system that combines audio, visual, text, graphic, and interactive capabilities. Full-screen video and full-motion video (FMV) are explained, hardware for FMV decoding is described, software is briefly discussed, and CD-I titles planned for future production are listed.…
NASA Astrophysics Data System (ADS)
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.
2009-08-01
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B
2009-08-21
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
High performance MRI simulations of motion on multi-GPU systems
2014-01-01
Background MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance multi-GPU environment. Methods Three different motion models were introduced in the Magnetic Resonance Imaging SIMULator (MRISIMUL) of this study: cardiac motion, respiratory motion and flow. Simulation of a simple Gradient Echo pulse sequence and a CINE pulse sequence on the corresponding anatomical model was performed. Myocardial tagging was also investigated. In pulse sequence design, software crushers were introduced to accommodate the long execution times in order to avoid spurious echoes formation. The displacement of the anatomical model isochromats was calculated within the Graphics Processing Unit (GPU) kernel for every timestep of the pulse sequence. Experiments that would allow simulation of custom anatomical and motion models were also performed. Last, simulations of motion with MRISIMUL on single-node and multi-node multi-GPU systems were examined. Results Gradient Echo and CINE images of the three motion models were produced and motion-related artifacts were demonstrated. The temporal evolution of the contractility of the heart was presented through the application of myocardial tagging. Better simulation performance and image quality were presented through the introduction of software crushers without the need to further increase the computational load and GPU resources. Last, MRISIMUL demonstrated an almost linear scalable performance with the increasing number of available GPU cards, in both single-node and multi-node multi-GPU computer systems. Conclusions MRISIMUL is the first MR physics simulator to have implemented motion with a 3D large computational load on a single computer multi-GPU configuration. The incorporation of realistic motion models, such as cardiac motion, respiratory motion and flow may benefit the design and optimization of existing or new MR pulse sequences, protocols and algorithms, which examine motion related MR applications. PMID:24996972
Enhanced simulation software for rocket turbopump, turbulent, annular liquid seals
NASA Technical Reports Server (NTRS)
Padavala, Satya; Palazzolo, Alan
1994-01-01
One of the main objectives of this work is to develop a new dynamic analysis for liquid annular seals with arbitrary profile and to analyze a general distorted interstage seal of the space shuttle main engine high pressure oxygen turbopump (SSME-ATD-HPOTP). The dynamic analysis developed is based on a method originally proposed by Nelson and Nguyen. A simpler scheme based on cubic splines is found to be computationally more efficient and has better convergence properties at higher eccentricities. The first order solution of the original analysis is modified by including a more exact solution that takes into account the variation of perturbed variables along the circumference. A new set of equations for dynamic analysis are derived based on this more general model. A unified solution procedure that is valid for both Moody's and Hirs' friction models is presented. Dynamic analysis is developed for three different models: constant properties, variable properties, and thermal effects with variable properties. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. An example case of an elliptical seal with varying degrees of axial curvature is analyzed in detail. A case study based on predicted clearances of an interstage seal of the SSME-ATD-HPOTP is presented. Dynamic coefficients based on external specified load are introduced to analyze seals that support a preload. The other objective of this work is to study the effect of large rotor displacements of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting transient motion. One task is to identify the magnitude of motion of the rotor about the centered position and establish limits of effectiveness of using current linear models. This task is accomplished by solving the bulk flow model seal governing equations directly for transient seal forces for any given type of motion, including motion with large eccentricities. Based on the above study, an equivalence is established between linearized coefficients based transient motion and the same motion as predicted by the original governing equations. An innovative method is developed to model nonlinearities in an annular seal based on dynamic coefficients computed at various static eccentricities. This method is thoroughly tested for various types of transient motion using bulk flow model results as a benchmark.
Quirk, S; Becker, N; Smith, W L
2012-07-01
Respiratory motion complicates radiotherapy treatment of thoracic and abdominal tumours. Simplified respiratory motions such as sinusoidal and single patient traces are often used to determine the impact of motion on respiratory management techniques in radiotherapy. Such simplifications only accurately model a small portion of patients, as most patients exhibit variability and irregularity beyond these models. We have preformed a comprehensive analysis of respiratory motion and developed a software tool that allows for explicit inclusion of variability. We utilize our realistic respiratory generator to customize respiratory traces to test the robustness of the estimate of internal gross target volumes (IGTV) by 4DCT and CBCT. We confirmed that good agreement is found between 4DCT and CBCT for regular breathing motion. When amplitude variability was introduced the accuracy of the estimate slightly, but the absolute differences were still < 3 mm for both modalities. Poor agreement was shown with the addition of baseline drifts. Both modalities were found to underestimate the IGTV by as much as 30% for 4DCT and 25% for CBCT. Both large and small drifts deteriorated the estimate accuracy. The respiratory trace generator was advantageous for examining the difference between 4DCT and CBCT IGTV estimation under variable motions. It provided useful implementation abilities to test specific attributes of respiratory motion and detected issues that were not seen with the regular motion studies. This is just one example of how the respiratory trace generator can be utilized to test applications of respiratory management techniques. © 2012 American Association of Physicists in Medicine.
A software-based tool for video motion tracking in the surgical skills assessment landscape.
Ganni, Sandeep; Botden, Sanne M B I; Chmarra, Magdalena; Goossens, Richard H M; Jakimowicz, Jack J
2018-01-16
The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine the possibility of using a software-based solution to extract the data. 6 expert and 23 novice participants performed a basic laparoscopic cholecystectomy procedure in the operating room. The recorded videos were analysed using Kinovea 0.8.15 and the following parameters calculated the path length, average instrument movement and number of sudden or extreme movements. The analysed data showed that experts had significantly shorter path length (median 127 cm vs. 187 cm, p = 0.01), smaller average movements (median 0.40 cm vs. 0.32 cm, p = 0.002) and fewer sudden movements (median 14.00 vs. 21.61, p = 0.001) than their novice counterparts. The use of software-based video motion tracking of laparoscopic cholecystectomy is a simple and viable method enabling objective assessment of surgical performance. It provides clear discrimination between expert and novice performance.
Zoppellaro, Giacomo; Venneri, Lucia; Khattar, Rajdeep S; Li, Wei; Senior, Roxy
2016-06-01
Ultrasound contrast agents may be used for the assessment of regional wall motion and myocardial perfusion, but are generally considered not suitable for deformation analysis. The aim of our study was to assess the feasibility of deformation imaging on contrast-enhanced images using a novel methodology. We prospectively enrolled 40 patients who underwent stress echocardiography with continuous intravenous infusion of SonoVue for the assessment of myocardial perfusion imaging with flash replenishment technique. We compared longitudinal strain (Lε) values, assessed with a vendor-independent software (2D CPA), on 68 resting contrast-enhanced and 68 resting noncontrast recordings. Strain analysis on contrast recordings was evaluated in the first cardiac cycles after the flash. Tracking of contrast images was deemed feasible in all subjects and in all views. Contrast administration improved image quality and increased the number of segments used for deformation analysis. Lε of noncontrast and contrast-enhanced images were statistically different (-18.8 ± 4.5% and -22.8 ± 5.4%, respectively; P < 0.001), but their correlation was good (ICC 0.65, 95%CI 0.42-0.78). Patients with resting wall-motion abnormalities showed lower Lε values on contrast recordings (-18.6 ± 6.0% vs. -24.2 ± 5.5%, respectively; P < 0.01). Intra-operator and inter-operator reproducibility was good for both noncontrast and contrast images with no statistical differences. Our study shows that deformation analysis on postflash contrast-enhanced images is feasible and reproducible. Therefore, it would be possible to perform a simultaneous evaluation of wall-motion abnormalities, volumes, ejection fraction, perfusion defects, and cardiac deformation on the same contrast recording. © 2016, Wiley Periodicals, Inc.
Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H
2017-08-01
Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.
Virtual Reality Modelling Simulation of the Re-entry Motion of an Axialsymmetric Vehicle
NASA Astrophysics Data System (ADS)
Guidi, A.; Chu, Q.. P.; Mulder, J. A.
This work started during the stability analysis of the Delft Aerospace Re-entry Test demonstrator (DART) which is a small axisymmetric ballistic re-entry vehicle. The dynamic stability evaluation of an axisymmetric re-entry vehicle is especially concerned on the behaviour of its angle of attack during the flight through the atmosphere. The variation in the angle of attack is essential for prediction of the trajectory of the vehicle and for heating requirement of the structure of the vehicle. The concept of the total angle of attack and the windward meridian plane are introduced. The position of the centre of pressure can be a crucial point in the stability of the vehicle. Although the simpleness of an axisymmetric shape, the re-entry of such a vehicle is characterised by several complex phenomenologies that were analysed with the aid of the flight simulator and of a 3D virtual reality modeling simulator. Simulations were performed with a 25° AOA initial condition in order to simulate the response of the vehicle to a disturbance that may occur during the flight causing a variation in attitude from its Trim . Certain aspects of re-entry vehicle motion are conveniently described in the terms of Euler angles. Using the Eulerian angle it is possible to generate a tridimensional animation of the output of the Flight Simulator. This tridimensional analysis is of great importance in order to understand the mentioned complex motions. Furthermore with growing in computer power it is possible to generate online visualisation of the simulations. The output of the flight simulator was used in a software written in Virtual Reality Modelling Language (VRML). With VRML this software was possible the visualisation of the re-entry motion of the vehicle. With this option the animation can run on-line during the with the flight simulator and can be also easily published on the internet or send to other users in very small file size. (the VRLM simulation of the re-entry, can be seen at the official DART internet site: www.dart-project.com)
Liu, Shi; Wu, Yu; Wooten, H Omar; Green, Olga; Archer, Brent; Li, Harold; Yang, Deshan
2016-03-08
A software tool is developed, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance image-guided radiation therapy (MR-IGRT) delivery system. This tool is necessary for managing patient treatment scheduling in our clinic. The predicted treatment delivery time and the assessment of plan complexities could also be useful to aid treatment planning. A patient's total treatment delivery time, not including time required for localization, is modeled as the sum of four components: 1) the treatment initialization time; 2) the total beam-on time; 3) the gantry rotation time; and 4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam-on time can be calculated using both the planned beam-on time and the decay-corrected dose rate. To predict the remain-ing components, we retrospectively analyzed the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, linear regression is applied to predict the gantry rotation time. The MLC motion time is calculated using the leaves delay modeling method and the leaf motion speed. A quantitative analysis was performed to understand the correlation between the total treatment time and the plan complexity. The proposed algorithm is able to predict the ViewRay treatment delivery time with the average prediction error 0.22min or 1.82%, and the maximal prediction error 0.89 min or 7.88%. The analysis has shown the correlation between the plan modulation (PM) factor and the total treatment delivery time, as well as the treatment delivery duty cycle. A possibility has been identified to significantly reduce MLC motion time by optimizing the positions of closed MLC pairs. The accuracy of the proposed prediction algorithm is sufficient to support patient treatment appointment scheduling. This developed software tool is currently applied in use on a daily basis in our clinic, and could also be used as an important indicator for treatment plan complexity.
Analysing harmonic motions with an iPhone’s magnetometer
NASA Astrophysics Data System (ADS)
Yavuz, Ahmet; Kağan Temiz, Burak
2016-05-01
In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.
In silico reconstitution of Listeria propulsion exhibits nano-saltation.
Alberts, Jonathan B; Odell, Garrett M
2004-12-01
To understand how the actin-polymerization-mediated movements in cells emerge from myriad individual protein-protein interactions, we developed a computational model of Listeria monocytogenes propulsion that explicitly simulates a large number of monomer-scale biochemical and mechanical interactions. The literature on actin networks and L. monocytogenes motility provides the foundation for a realistic mathematical/computer simulation, because most of the key rate constants governing actin network dynamics have been measured. We use a cluster of 80 Linux processors and our own suite of simulation and analysis software to characterize salient features of bacterial motion. Our "in silico reconstitution" produces qualitatively realistic bacterial motion with regard to speed and persistence of motion and actin tail morphology. The model also produces smaller scale emergent behavior; we demonstrate how the observed nano-saltatory motion of L. monocytogenes,in which runs punctuate pauses, can emerge from a cooperative binding and breaking of attachments between actin filaments and the bacterium. We describe our modeling methodology in detail, as it is likely to be useful for understanding any subcellular system in which the dynamics of many simple interactions lead to complex emergent behavior, e.g., lamellipodia and filopodia extension, cellular organization, and cytokinesis.
Methodological aspects of EEG and body dynamics measurements during motion
Reis, Pedro M. R.; Hebenstreit, Felix; Gabsteiger, Florian; von Tscharner, Vinzenz; Lochmann, Matthias
2014-01-01
EEG involves the recording, analysis, and interpretation of voltages recorded on the human scalp which originate from brain gray matter. EEG is one of the most popular methods of studying and understanding the processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements that are performed in response to the environment. However, there are methodological difficulties which can occur when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions on how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics, and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determinating real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks. PMID:24715858
Analyzing Virtual Physics Simulations with Tracker
NASA Astrophysics Data System (ADS)
Claessens, Tom
2017-12-01
In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical equations of motion onto experimentally obtained data. In the field of particle mechanics, Tracker has been effectively used for learning and teaching about projectile motion, "toss up" and free-fall vertical motion, and to explain the principle of mechanical energy conservation. Also, Tracker has been successfully used in rigid body mechanics to interpret the results of experiments with rolling/slipping cylinders and moving rods. In this work, I propose an original method in which Tracker is used to analyze virtual computer simulations created with a physics-based motion solver, instead of analyzing video recording or stroboscopic photos. This could be an interesting approach to study kinematics and dynamics problems in physics education, in particular when there is no or limited access to physical labs. I demonstrate the working method with a typical (but quite challenging) problem in classical mechanics: a slipping/rolling cylinder on a rough surface.
Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito
2006-01-01
We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.
IMART software for correction of motion artifacts in images collected in intravital microscopy
Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J
2014-01-01
Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, T; Fujii, Y; Shimizu, S
Purpose: To acquire correct information for inside the body in patient positioning of Real-time-image Gated spot scanning Proton Therapy (RGPT), utilization of tomographic image at exhale phase of patient respiration obtained from 4-dimensional Cone beam CT (4D-CBCT) has been desired. We developed software named “Image Analysis Platform” for 4D-CBCT researches which has technique to segment projection-images based on 3D marker position in the body. The 3D marker position can be obtained by using two axes CBCT system at Hokkaido University Hospital Proton Therapy Center. Performance verification of the software was implemented. Methods: The software calculates 3D marker position retrospectively bymore » using matching positions on pair projection-images obtained by two axes fluoroscopy mode of CBCT system. Log data of 3D marker tracking are outputted after the tracking. By linking the Log data and gantry-angle file of projection-image, all projection-images are equally segmented to spatial five-phases according to marker 3D position of SI direction and saved to specified phase folder. Segmented projection-images are used for CBCT reconstruction of each phase. As performance verification of the software, test of segmented projection-images was implemented for sample CT phantom (Catphan) image acquired by two axes fluoroscopy mode of CBCT. Dummy marker was added on the images. Motion of the marker was modeled to move in 3D space. Motion type of marker is sin4 wave function has amplitude 10.0 mm/5.0 mm/0 mm, cycle 4 s/4 s/0 s for SI/AP/RL direction. Results: The marker was tracked within 0.58 mm accuracy in 3D for all images, and it was confirmed that all projection-images were segmented and saved to each phase folder correctly. Conclusion: We developed software for 4D-CBCT research which can segment projection-image based on 3D marker position. It will be helpful to create high quality of 4D-CBCT reconstruction image for RGPT.« less
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.
2014-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
Final Report: CNC Micromachines LDRD No.10793
DOE Office of Scientific and Technical Information (OSTI.GOV)
JOKIEL JR., BERNHARD; BENAVIDES, GILBERT L.; BIEG, LOTHAR F.
2003-04-01
The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versionsmore » of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.« less
ERIC Educational Resources Information Center
Thompson, Bruce
2007-01-01
The motion of the planets in their orbits can be demonstrated to students by using planetarium software programs. These allow time to be sped up so that the relative motions are readily observed. However, it is also valuable to have the students understand the real speed of the planets in their orbits. This paper describes an exercise that gives…
Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien
2015-12-01
Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article. © The Author(s) 2015.
KiT: a MATLAB package for kinetochore tracking.
Armond, Jonathan W; Vladimirou, Elina; McAinsh, Andrew D; Burroughs, Nigel J
2016-06-15
During mitosis, chromosomes are attached to the mitotic spindle via large protein complexes called kinetochores. The motion of kinetochores throughout mitosis is intricate and automated quantitative tracking of their motion has already revealed many surprising facets of their behaviour. Here, we present 'KiT' (Kinetochore Tracking)-an easy-to-use, open-source software package for tracking kinetochores from live-cell fluorescent movies. KiT supports 2D, 3D and multi-colour movies, quantification of fluorescence, integrated deconvolution, parallel execution and multiple algorithms for particle localization. KiT is free, open-source software implemented in MATLAB and runs on all MATLAB supported platforms. KiT can be downloaded as a package from http://www.mechanochemistry.org/mcainsh/software.php The source repository is available at https://bitbucket.org/jarmond/kit and under continuing development. Supplementary data are available at Bioinformatics online. jonathan.armond@warwick.ac.uk. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.
2013-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W
2016-02-15
Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.
Grasping objects autonomously in simulated KC-135 zero-g
NASA Technical Reports Server (NTRS)
Norsworthy, Robert S.
1994-01-01
The KC-135 aircraft was chosen for simulated zero gravity testing of the Extravehicular Activity Helper/retriever (EVAHR). A software simulation of the EVAHR hardware, KC-135 flight dynamics, collision detection and grasp inpact dynamics has been developed to integrate and test the EVAHR software prior to flight testing on the KC-135. The EVAHR software will perform target pose estimation, tracking, and motion estimation for rigid, freely rotating, polyhedral objects. Manipulator grasp planning and trajectory control software has also been developed to grasp targets while avoiding collisions.
Goddard high resolution spectrograph science verification and data analysis
NASA Technical Reports Server (NTRS)
1992-01-01
The data analysis performed was to support the Orbital Verification (OV) and Science Verification (SV) of the GHRS was in the areas of the Digicon detector's performance and stability, wavelength calibration, and geomagnetic induced image motion. The results of the analyses are briefly described. Detailed results are given in the form of attachments. Specialized software was developed for the analyses. Calibration files were formatted according to the specifications in a Space Telescope Science report. IRAS images were restored of the Large Magellanic Cloud using a blocked iterative algorithm. The algorithm works with the raw data scans without regridding or interpolating the data on an equally spaced image grid.
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T
2014-07-15
The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. Copyright © 2014. Published by Elsevier Inc.
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.
2014-01-01
The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. PMID:24657353
A Programmable System for Motion Control
NASA Technical Reports Server (NTRS)
Nowlin, Brent C.
2003-01-01
The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.
TU-D-202-03: Gating Is the Best ITV Killer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, D.
Respiratory motion has long been recognized as an important factor affecting the precision of radiotherapy. After the introduction of the 4D CT to visualize the respiratory motion in 3D, the internal target volume (ITV) has been widely adopted as simple method to take the motion into account in treatment planning and delivery. The ITV is generated as the union of the CTVs as the patient goes through the respiratory cycle. Many issues have been identified with the ITV. In this session three alternatives for the ITV will be discussed: 1) An alternative motion-inclusive approach with better imaging and smaller margins,more » called mid-position CT. 2) The tracking approach and 3) The gating approach. The following topics will be addressed by Marcel van Herk (“Is ITV the correct motion encompassing strategy”): Magnitude of respiratory motion, effect of motion on radiotherapy, motion encompassing strategies, and software solutions to assist in motion encompassing strategies. Then Paul Keall (“Make margins simple: Use real-time target tracking”) will discuss tracking with: clinical drivers for tracking, current clinical status of tumor tracking, future tumor tracking technology, and margin margin challenges with and without tracking. Finally Daniel Low will discuss gating (“Gating is the best ITV killer”): why ITV in the first place, requirements for planning, requirements at the machine, benefits and costs. The session will end with a discussion and live demo of motion simulation software to illustrate the issues and explain the relative benefit and appropriate uses for the three methods. Learning Objectives: Explain the 4D imaging and treatment planning process. Summarize the various approaches to deal with respiratory motion during radiotherapy Discuss the tradeoffs involved when choosing one of the three discussed approaches. Explain in which situation each method is the best choice Research is partly funded by Elekta Oncology Systems and the Dutch Cancer Foundation; M. van Herk, Part of the research was funded by Elekta Oncology Systems and the Dutch Cancer Foundation.« less
Computer-assisted sperm analysis (CASA): capabilities and potential developments.
Amann, Rupert P; Waberski, Dagmar
2014-01-01
Computer-assisted sperm analysis (CASA) systems have evolved over approximately 40 years, through advances in devices to capture the image from a microscope, huge increases in computational power concurrent with amazing reduction in size of computers, new computer languages, and updated/expanded software algorithms. Remarkably, basic concepts for identifying sperm and their motion patterns are little changed. Older and slower systems remain in use. Most major spermatology laboratories and semen processing facilities have a CASA system, but the extent of reliance thereon ranges widely. This review describes capabilities and limitations of present CASA technology used with boar, bull, and stallion sperm, followed by possible future developments. Each marketed system is different. Modern CASA systems can automatically view multiple fields in a shallow specimen chamber to capture strobe-like images of 500 to >2000 sperm, at 50 or 60 frames per second, in clear or complex extenders, and in <2 minutes, store information for ≥ 30 frames and provide summary data for each spermatozoon and the population. A few systems evaluate sperm morphology concurrent with motion. CASA cannot accurately predict 'fertility' that will be obtained with a semen sample or subject. However, when carefully validated, current CASA systems provide information important for quality assurance of semen planned for marketing, and for the understanding of the diversity of sperm responses to changes in the microenvironment in research. The four take-home messages from this review are: (1) animal species, extender or medium, specimen chamber, intensity of illumination, imaging hardware and software, instrument settings, technician, etc., all affect accuracy and precision of output values; (2) semen production facilities probably do not need a substantially different CASA system whereas biology laboratories would benefit from systems capable of imaging and tracking sperm in deep chambers for a flexible period of time; (3) software should enable grouping of individual sperm based on one or more attributes so outputs reflect subpopulations or clusters of similar sperm with unique properties; means or medians for the total population are insufficient; and (4) a field-use, portable CASA system for measuring one motion and two or three morphology attributes of individual sperm is needed for field theriogenologists or andrologists working with human sperm outside urban centers; appropriate hardware to capture images and process data apparently are available. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cicala, L.; Angelino, C. V.; Ruatta, G.; Baccaglini, E.; Raimondo, N.
2015-08-01
Unmanned Aerial Vehicles (UAVs) are often employed to collect high resolution images in order to perform image mosaicking and/or 3D reconstruction. Images are usually stored on board and then processed with on-ground desktop software. In such a way the computational load, and hence the power consumption, is moved on ground, leaving on board only the task of storing data. Such an approach is important in the case of small multi-rotorcraft UAVs because of their low endurance due to the short battery life. Images can be stored on board with either still image or video data compression. Still image system are preferred when low frame rates are involved, because video coding systems are based on motion estimation and compensation algorithms which fail when the motion vectors are significantly long and when the overlapping between subsequent frames is very small. In this scenario, UAVs attitude and position metadata from the Inertial Navigation System (INS) can be employed to estimate global motion parameters without video analysis. A low complexity image analysis can be still performed in order to refine the motion field estimated using only the metadata. In this work, we propose to use this refinement step in order to improve the position and attitude estimation produced by the navigation system in order to maximize the encoder performance. Experiments are performed on both simulated and real world video sequences.
Biomechanics Analysis of Combat Sport (Silat) By Using Motion Capture System
NASA Astrophysics Data System (ADS)
Zulhilmi Kaharuddin, Muhammad; Badriah Khairu Razak, Siti; Ikram Kushairi, Muhammad; Syawal Abd. Rahman, Mohamed; An, Wee Chang; Ngali, Z.; Siswanto, W. A.; Salleh, S. M.; Yusup, E. M.
2017-01-01
‘Silat’ is a Malay traditional martial art that is practiced in both amateur and in professional levels. The intensity of the motion spurs the scientific research in biomechanics. The main purpose of this abstract is to present the biomechanics method used in the study of ‘silat’. By using the 3D Depth Camera motion capture system, two subjects are to perform ‘Jurus Satu’ in three repetitions each. One subject is set as the benchmark for the research. The videos are captured and its data is processed using the 3D Depth Camera server system in the form of 16 3D body joint coordinates which then will be transformed into displacement, velocity and acceleration components by using Microsoft excel for data calculation and Matlab software for simulation of the body. The translated data obtained serves as an input to differentiate both subjects’ execution of the ‘Jurus Satu’. Nine primary movements with the addition of five secondary movements are observed visually frame by frame from the simulation obtained to get the exact frame that the movement takes place. Further analysis involves the differentiation of both subjects’ execution by referring to the average mean and standard deviation of joints for each parameter stated. The findings provide useful data for joints kinematic parameters as well as to improve the execution of ‘Jurus Satu’ and to exhibit the process of learning a movement that is relatively unknown by the use of a motion capture system.
ERIC Educational Resources Information Center
Lee, Victor R.
2015-01-01
Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
..., and Associated Software AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice...''), as the only respondent. On November 19, 2012, S3G and Apple filed a joint motion to terminate the investigation based upon a settlement agreement. On December 7, 2012, S3G and Apple supplemented their motion...
An "Emergent Model" for Rate of Change
ERIC Educational Resources Information Center
Herbert, Sandra; Pierce, Robyn
2008-01-01
Does speed provide a "model for" rate of change in other contexts? Does JavaMathWorlds (JMW), animated simulation software, assist in the development of the "model for" rate of change? This project investigates the transference of understandings of rate gained in a motion context to a non-motion context. Students were 27 14-15 year old students at…
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew Edie; Matthies, Larry H.
2000-01-01
We have developed and tested a software algorithm that enables onboard autonomous motion estimation near small bodies using descent camera imagery and laser altimetry. Through simulation and testing, we have shown that visual feature tracking can decrease uncertainty in spacecraft motion to a level that makes landing on small, irregularly shaped, bodies feasible. Possible future work will include qualification of the algorithm as a flight experiment for the Deep Space 4/Champollion comet lander mission currently under study at the Jet Propulsion Laboratory.
A low cost real-time motion tracking approach using webcam technology.
Krishnan, Chandramouli; Washabaugh, Edward P; Seetharaman, Yogesh
2015-02-05
Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject's limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. Copyright © 2014 Elsevier Ltd. All rights reserved.
A low cost real-time motion tracking approach using webcam technology
Krishnan, Chandramouli; Washabaugh, Edward P.; Seetharaman, Yogesh
2014-01-01
Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject’s limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. PMID:25555306
NASA Astrophysics Data System (ADS)
Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo
2017-08-01
In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.
NASA Astrophysics Data System (ADS)
Lépine, Sébastien; Shara, Michael M.; Rich, R. Michael
2003-08-01
In a continuation of our systematic search for high proper motion stars in the Digitized Sky Survey, we have completed the analysis of northern sky fields at Galactic latitudes above 25°. With the help of our SUPERBLINK software, a powerful automated blink comparator developed by us, we have identified 1146 stars in the magnitude range 8
NASA Technical Reports Server (NTRS)
Callahan, P. S.; Eubanks, T. M.; Roth, M. G.; Steppe, J. A.; Esposito, P. B.
1983-01-01
The JPL near-real-time VLBI system called Block I is discussed. The hardware and software of the system are described, and the Time and Earth Motion Precision Observations (TEMPO) which utilize Block I are discussed. These observations are designed to provide interstation clock synchronization to 10 nsec and to determine earth orientation (UT1 and polar motion - UTPM) to 30 cm or better in each component. TEMPO results for clock synchronization and UTPM are presented with data from the July 1980-August 1981 analyzed using the most recent JPL solution software and source catalog. Future plans for TEMPO and Block I are discussed.
Position of the prosthesis and the incidence of dislocation following total hip replacement.
He, Rong-xin; Yan, Shi-gui; Wu, Li-dong; Wang, Xiang-hua; Dai, Xue-song
2007-07-05
Dislocation is the second most common complication of hip replacement surgery, and impact of the prosthesis is believed to be the fundamental reason. The present study employed Solidworks 2003 and MSC-Nastran software to analyze the three dimensional variables in order to investigate how to prevent dislocation following hip replacement surgery. Computed tomography (CT) imaging was used to collect femoral outline data and Solidworks 2003 software was used to construct the cup model with variabilities. Nastran software was used to evaluate dislocation at different prosthesis positions and different geometrical shapes. Three dimensional movement and results from finite element method were analyzed and the values of dislocation resistance index (DRI), range of motion to impingement (ROM-I), range of motion to dislocation (ROM-D) and peak resisting moment (PRM) were determined. Computer simulation was used to evaluate the range of motion of the hip joint at different prosthesis positions. Finite element analysis showed: (1) Increasing the ratio of head/neck increased the ROM-I values and moderately increased ROM-D and PRM values. Increasing the head size significantly increased PRM and to some extent ROM-I and ROM-D values, which suggested that there would be a greater likelihood of dislocation. (2) Increasing the anteversion angle increased the ROM-I, ROM-D, PRM, energy required for dislocation (ENERGY-D) and DRI values, which would increase the stability of the joint. (3) As the chamber angle was increased, ROM-I, ROM-D, PRM, Energy-D and DRI values were increased, resulting in improved joint stability. Chamber angles exceeding 55 degrees resulted in increases in ROM-I and ROM-D values, but decreases in PRM, Energy-D, and DRI values, which, in turn, increased the likelihood of dislocation. (4) The cup, which was reduced posteriorly, reduced ROM-I values (2.1 -- 5.3 degrees ) and increased the DRI value (0.073). This suggested that the posterior high side had the effect of 10 degrees anteversion angle. Increasing the head/neck ratio increases joint stability. Posterior high side reduced the range of motion of the joint but increased joint stability; Increasing the anteversion angle increases DRI values and thus improve joint stability; Increasing the chamber angle increases DRI values and improves joint stability. However, at angles exceeding 55 degrees , further increases in the chamber angle result in decreased DRI values and reduce the stability of the joint.
NASA Astrophysics Data System (ADS)
Cucchiaro, S.; Maset, E.; Fusiello, A.; Cazorzi, F.
2018-05-01
In recent years, the combination of Structure-from-Motion (SfM) algorithms and UAV-based aerial images has revolutionised 3D topographic surveys for natural environment monitoring, offering low-cost, fast and high quality data acquisition and processing. A continuous monitoring of the morphological changes through multi-temporal (4D) SfM surveys allows, e.g., to analyse the torrent dynamic also in complex topography environment like debris-flow catchments, provided that appropriate tools and procedures are employed in the data processing steps. In this work we test two different software packages (3DF Zephyr Aerial and Agisoft Photoscan) on a dataset composed of both UAV and terrestrial images acquired on a debris-flow reach (Moscardo torrent - North-eastern Italian Alps). Unlike other papers in the literature, we evaluate the results not only on the raw point clouds generated by the Structure-from- Motion and Multi-View Stereo algorithms, but also on the Digital Terrain Models (DTMs) created after post-processing. Outcomes show differences between the DTMs that can be considered irrelevant for the geomorphological phenomena under analysis. This study confirms that SfM photogrammetry can be a valuable tool for monitoring sediment dynamics, but accurate point cloud post-processing is required to reliably localize geomorphological changes.
Modeling of diatomic molecule using the Morse potential and the Verlet algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidiani, Elok
Performing molecular modeling usually uses special software for Molecular Dynamics (MD) such as: GROMACS, NAMD, JMOL etc. Molecular dynamics is a computational method to calculate the time dependent behavior of a molecular system. In this work, MATLAB was used as numerical method for a simple modeling of some diatomic molecules: HCl, H{sub 2} and O{sub 2}. MATLAB is a matrix based numerical software, in order to do numerical analysis, all the functions and equations describing properties of atoms and molecules must be developed manually in MATLAB. In this work, a Morse potential was generated to describe the bond interaction betweenmore » the two atoms. In order to analyze the simultaneous motion of molecules, the Verlet Algorithm derived from Newton’s Equations of Motion (classical mechanics) was operated. Both the Morse potential and the Verlet algorithm were integrated using MATLAB to derive physical properties and the trajectory of the molecules. The data computed by MATLAB is always in the form of a matrix. To visualize it, Visualized Molecular Dynamics (VMD) was performed. Such method is useful for development and testing some types of interaction on a molecular scale. Besides, this can be very helpful for describing some basic principles of molecular interaction for educational purposes.« less
Simulation of a tethered microgravity robot pair and validation on a planar air bearing
NASA Astrophysics Data System (ADS)
Mantellato, R.; Lorenzini, E. C.; Sternberg, D.; Roascio, D.; Saenz-Otero, A.; Zachrau, H. J.
2017-09-01
A software model has been developed to simulate the on-orbit dynamics of a dual-mass tethered system where one or both of the tethered spacecraft are able to produce propulsive thrust. The software simulates translations and rotations of both spacecraft, with the visco-elastic tether being simulated as a lumped-mass model. Thanks to this last feature, tether longitudinal and lateral modes of vibration and tether tension can be accurately assessed. Also, the way the spacecraft motion responds to sudden tether tension spikes can be studied in detail. The code enables the simulation of different scenarios, including space tug missions for deorbit maneuvers in a debris mitigation context and general-purpose tethered formation flight missions. This study aims to validate the software through a representative test campaign performed with the MIT Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) planar air bearing system. Results obtained with the numerical simulator are compared with data from direct measurements in different testing setups. The studied cases take into account different initial conditions of the spacecraft velocities and relative attitudes, and thrust forces. Data analysis is presented comparing the results of the simulations with direct measurements of acceleration and Azimuth rate of the two bodies in the planar air bearing test facility using a Nylon tether. Plans for conducting a microgravity test campaign using the SPHERES satellites aboard the International Space Station are also being scheduled in the near future in order to further validate the simulation using data from the relevant operational environment of extended microgravity with full six degree of freedom (per body) motion.
Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning.
Chen, Yiwei; Hong, Young-Joo; Makita, Shuichi; Yasuno, Yoshiaki
2018-03-01
To correct eye motion artifacts in en face optical coherence tomography angiography (OCT-A) images, a Lissajous scanning method with subsequent software-based motion correction is proposed. The standard Lissajous scanning pattern is modified to be compatible with OCT-A and a corresponding motion correction algorithm is designed. The effectiveness of our method was demonstrated by comparing en face OCT-A images with and without motion correction. The method was further validated by comparing motion-corrected images with scanning laser ophthalmoscopy images, and the repeatability of the method was evaluated using a checkerboard image. A motion-corrected en face OCT-A image from a blinking case is presented to demonstrate the ability of the method to deal with eye blinking. Results show that the method can produce accurate motion-free en face OCT-A images of the posterior segment of the eye in vivo .
Analyzing octopus movements using three-dimensional reconstruction.
Yekutieli, Yoram; Mitelman, Rea; Hochner, Binyamin; Flash, Tamar
2007-09-01
Octopus arms, as well as other muscular hydrostats, are characterized by a very large number of degrees of freedom and a rich motion repertoire. Over the years, several attempts have been made to elucidate the interplay between the biomechanics of these organs and their control systems. Recent developments in electrophysiological recordings from both the arms and brains of behaving octopuses mark significant progress in this direction. The next stage is relating these recordings to the octopus arm movements, which requires an accurate and reliable method of movement description and analysis. Here we describe a semiautomatic computerized system for 3D reconstruction of an octopus arm during motion. It consists of two digital video cameras and a PC computer running custom-made software. The system overcomes the difficulty of extracting the motion of smooth, nonrigid objects in poor viewing conditions. Some of the trouble is explained by the problem of light refraction in recording underwater motion. Here we use both experiments and simulations to analyze the refraction problem and show that accurate reconstruction is possible. We have used this system successfully to reconstruct different types of octopus arm movements, such as reaching and bend initiation movements. Our system is noninvasive and does not require attaching any artificial markers to the octopus arm. It may therefore be of more general use in reconstructing other nonrigid, elongated objects in motion.
NASA Astrophysics Data System (ADS)
da Silva Junior, Evert Pereira; Esteves, Guilherme Pompeu; Dames, Karla Kristine; Melo, Pedro Lopes de
2011-01-01
Changes in thoracoabdominal motion are highly prevalent in patients with chronic respiratory diseases. Home care services that use telemedicine techniques and Internet-based monitoring have the potential to improve the management of these patients. However, there is no detailed description in the literature of a system for Internet-based monitoring of patients with disturbed thoracoabdominal motion. The purpose of this work was to describe the development of a new telemedicine instrument for Internet-based home monitoring of thoracoabdominal movement. The instrument directly measures changes in the thorax and abdomen circumferences and transfers data through a transmission control protocol/Internet protocol connection. After the design details are described, the accuracy of the electronic and software processing units of the instrument is evaluated by using electronic signals simulating normal subjects and individuals with thoracoabdominal motion disorders. The results obtained during in vivo studies on normal subjects simulating thoracoabdominal motion disorders showed that this new system is able to detect a reduction in abdominal movement that is associated with abnormal thoracic breathing (p < 0.0001) and the reduction in thoracic movement during abnormal abdominal breathing (p < 0.005). Simulated asynchrony in thoracoabdominal motion was also adequately detected by the system (p < 0.0001). The experimental results obtained for patients with respiratory diseases were in close agreement with the expected values, providing evidence that this instrument can be a useful tool for the evaluation of thoracoabdominal motion. The Internet transmission tests showed that the acquisition and analysis of the thoracoabdominal motion signals can be performed remotely. The user can also receive medical recommendations. The proposed system can be used in a spectrum of telemedicine scenarios, which can reduce the costs of assistance offered to patients with respiratory diseases.
New inverse synthetic aperture radar algorithm for translational motion compensation
NASA Astrophysics Data System (ADS)
Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.
1991-10-01
Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.
2016-01-01
This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5–30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ±2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ±15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ±3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI. PACS numbers: 87.55.km, 87.56.Fc PMID:26894347
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
An Interactive Excel Program for Tracking a Single Droplet in Crossflow Computation
NASA Technical Reports Server (NTRS)
Urip, E.; Yang, S. L.; Marek, C. J.
2002-01-01
Spray jet in crossflow has been a subject of research because of its wide application in systems involving pollutant dispersion, jet mixing in the dilution zone of combustors, and fuel injection strategies. The focus of this work is to investigate dispersion of a 2-dimensional atomized spray jet into a 2-dimensional crossflow. A quick computational method is developed using available software. The spreadsheet can be used for any 2D droplet trajectory problem where the drop is injected into the free stream eventually coming to the free stream conditions. During the transverse injection of a spray into high velocity airflow, the droplets (carried along and deflected by a gaseous stream of co-flowing air) are subjected to forces that affect their motion in the flow field. Based on the Newton's Second Law of motion, four ordinary differential equations were used. These equations were then solved by a fourth-order Runge-Kutta method using Excel software. Visual basic programming and Excel macrocode to produce the data facilitate Excel software to plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user's manual on how to use the program is also included in this report.
2007-09-01
Motion URL: http://www.blackberry.com/products/blackberry/index.shtml Software Name: Bricolage Company: Bricolage URL: http://www.bricolage.cc...Workflow Customizable control over editorial content. Bricolage Bricolage Feature Description Software Company Workflow Allows development...content for Nuxeo Collaborative Portal projects. Nuxeo Workspace Add, edit, delete, content through web interface. Bricolage Bricolage
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, P; Cheng, S; Chao, C
Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. Themore » new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during therapy.« less
Example-based human motion denoising.
Lou, Hui; Chai, Jinxiang
2010-01-01
With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.
Upper torso and pelvis linear velocity during the downswing of elite golfers
2013-01-01
Background During a golf swing, analysis of the movement in upper torso and pelvis is a key step to determine a motion control strategy for accurate and consistent shots. However, a majority of previous studies that have evaluated this movement limited their analysis only to the rotational movement of segments, and translational motions were not examined. Therefore, in this study, correlations between translational motions in the 3 axes, which occur between the upper torso and pelvis, were also examined. Methods The experiments were carried out with 14 male pro-golfers (age: 29 ± 8 years, career: 8.2 ± 4.8years) who registered in the Korea Professional Golf Association (KPGA). Six infrared cameras (VICON; Oxford Metrics, Oxford, UK) and SB-Clinc software (SWINGBANK Ltd, Korea) were used to collect optical marker trajectories. The center of mass (CoM) of each segment was calculated based on kinematic principal. In addition, peak value of CoM velocity and the time that each peak occurred in each segment during downswing was calculated. Also, using cross-correlation analysis, the degree of coupling and time lags of peak values occurred between and within segments (pelvis and upper torso) were investigated. Results As a result, a high coupling strength between upper torso and pelvis with an average correlation coefficient = 0.86 was observed, and the coupling between segments was higher than that within segments (correlation coefficient = 0.81 and 0.77, respectively). Conclusions Such a high coupling at the upper torso and pelvis can be used to reduce the degree of motion control in the central nervous system and maintain consistent patterns in the movement. The result of this study provides important information for the development of optimal golf swing movement control strategies in the future. PMID:23398693
Upper torso and pelvis linear velocity during the downswing of elite golfers.
Beak, Seung-Hui; Choi, Ahnryul; Choi, Seung-Wook; Oh, Seung Eel; Mun, Joung Hwan; Yang, Heegoo; Sim, Taeyong; Song, Hae-Ryong
2013-02-11
During a golf swing, analysis of the movement in upper torso and pelvis is a key step to determine a motion control strategy for accurate and consistent shots. However, a majority of previous studies that have evaluated this movement limited their analysis only to the rotational movement of segments, and translational motions were not examined. Therefore, in this study, correlations between translational motions in the 3 axes, which occur between the upper torso and pelvis, were also examined. The experiments were carried out with 14 male pro-golfers (age: 29 ± 8 years, career: 8.2 ± 4.8years) who registered in the Korea Professional Golf Association (KPGA). Six infrared cameras (VICON; Oxford Metrics, Oxford, UK) and SB-Clinc software (SWINGBANK Ltd, Korea) were used to collect optical marker trajectories. The center of mass (CoM) of each segment was calculated based on kinematic principal. In addition, peak value of CoM velocity and the time that each peak occurred in each segment during downswing was calculated. Also, using cross-correlation analysis, the degree of coupling and time lags of peak values occurred between and within segments (pelvis and upper torso) were investigated. As a result, a high coupling strength between upper torso and pelvis with an average correlation coefficient = 0.86 was observed, and the coupling between segments was higher than that within segments (correlation coefficient = 0.81 and 0.77, respectively). Such a high coupling at the upper torso and pelvis can be used to reduce the degree of motion control in the central nervous system and maintain consistent patterns in the movement. The result of this study provides important information for the development of optimal golf swing movement control strategies in the future.
Sun, Jie; Li, Zhengdong; Pan, Shaoyou; Feng, Hao; Shao, Yu; Liu, Ningguo; Huang, Ping; Zou, Donghua; Chen, Yijiu
2018-05-01
The aim of the present study was to develop an improved method, using MADYMO multi-body simulation software combined with an optimization method and three-dimensional (3D) motion capture, for identifying the pre-impact conditions of a cyclist (walking or cycling) involved in a vehicle-bicycle accident. First, a 3D motion capture system was used to analyze coupled motions of a volunteer while walking and cycling. The motion capture results were used to define the posture of the human model during walking and cycling simulations. Then, cyclist, bicycle and vehicle models were developed. Pre-impact parameters of the models were treated as unknown design variables. Finally, a multi-objective genetic algorithm, the nondominated sorting genetic algorithm II, was used to find optimal solutions. The objective functions of the walk parameter were significantly lower than cycle parameter; thus, the cyclist was more likely to have been walking with the bicycle than riding the bicycle. In the most closely matched result found, all observed contact points matched and the injury parameters correlated well with the real injuries sustained by the cyclist. Based on the real accident reconstruction, the present study indicates that MADYMO multi-body simulation software, combined with an optimization method and 3D motion capture, can be used to identify the pre-impact conditions of a cyclist involved in a vehicle-bicycle accident. Copyright © 2018. Published by Elsevier Ltd.
Computational aeroelastic analysis of aircraft wings including geometry nonlinearity
NASA Astrophysics Data System (ADS)
Tian, Binyu
The objective of the present study is to show the ability of solving fluid structural interaction problems more realistically by including the geometric nonlinearity of the structure so that the aeroelastic analysis can be extended into the onset of flutter, or in the post flutter regime. A nonlinear Finite Element Analysis software is developed based on second Piola-Kirchhoff stress and Green-Lagrange strain. The second Piola-Kirchhoff stress and Green-Lagrange strain is a pair of energetically conjugated tensors that can accommodate arbitrary large structural deformations and deflection, to study the flutter phenomenon. Since both of these tensors are objective tensors, i.e., the rigid-body motion has no contribution to their components, the movement of the body, including maneuvers and deformation, can be included. The nonlinear Finite Element Analysis software developed in this study is verified with ANSYS, NASTRAN, ABAQUS, and IDEAS for the linear static, nonlinear static, linear dynamic and nonlinear dynamic structural solutions. To solve the flow problems by Euler/Navier equations, the current nonlinear structural software is then embedded into ENSAERO, which is an aeroelastic analysis software package developed at NASA Ames Research Center. The coupling of the two software, both nonlinear in their own field, is achieved by domain decomposition method first proposed by Guruswamy. A procedure has been set for the aeroelastic analysis process. The aeroelastic analysis results have been obtained for fight wing in the transonic regime for various cases. The influence dynamic pressure on flutter has been checked for a range of Mach number. Even though the current analysis matches the general aeroelastic characteristic, the numerical value not match very well with previous studies and needs farther investigations. The flutter aeroelastic analysis results have also been plotted at several time points. The influences of the deforming wing geometry can be well seen in those plots. The movement of shock changes the aerodynamic load distribution on the wing. The effect of viscous on aeroelastic analysis is also discussed. Also compared are the flutter solutions with, or without the structural nonlinearity. As can be seen, linear structural solution goes to infinite, which can not be true in reality. The nonlinear solution is more realistic and can be used to understand the fluid and structure interaction behavior, to control, or prevent disastrous events. (Abstract shortened by UMI.)
Determination of Paleoseismic Ground Motions from Inversion of Block Failures in Masonry Structures
NASA Astrophysics Data System (ADS)
Yagoda-Biran, G.; Hatzor, Y. H.
2010-12-01
Accurate estimation of ground motion parameters such as expected peak ground acceleration (PGA), predominant frequency and duration of motion in seismically active regions, is crucial for hazard preparedness and sound engineering design. The best way to estimate quantitatively these parameters would be to investigate long term recorded data of past strong earthquakes in a studied region. In some regions of the world however recorded data are scarce due to lack of seismic network infrastructure, and in all regions the availability of recorded data is restricted to the late 19th century and onwards. Therefore, existing instrumental data are hardly representative of the true seismicity of a region. When recorded data are scarce or not available, alternative methods may be applied, for example adopting a quantitative paleoseismic approach. In this research we suggest the use of seismically damaged masonry structures as paleoseismic indicators. Visitors to archeological sites all over the world are often struck by structural failure features which seem to be "seismically driven", particularly when inspecting old masonry structures. While it is widely accepted that no other loading mechanism can explain the preserved damage, the actual driving mechanism remains enigmatic even now. In this research we wish to explore how such failures may be triggered by earthquake induced ground motions and use observed block displacements to determine the characteristic parameters of the paleoseismic earthquake motion, namely duration, frequency, and amplitude. This is performed utilizing a 3D, fully dynamic, numerical analysis performed with the Discontinuous Deformation Analysis (DDA) method. Several case studies are selected for 3D numerical analysis. First we study a simple structure in the old city of L'Aquila, Italy. L'Aquila was hit by an earthquake on April 6th, 2009, with over 300 casualties and many of its medieval buildings damaged. This case study is an excellent opportunity to validate our method, since in the case of L'Aquila, both the damaged structure and the ground motions are recorded. The 3D modeling of the structure is rather complicated, and is performed by first modeling the structure with CAD software and later "translating" the model to the numerical code used. In the future, several more case studies will be analyzed, such as Kedesh and Avdat in Israel, and in collaboration with Hugh and Bilham the Temple of Shiva at Pandrethan, Kashmir. Establishing a numerical 3D dynamic analysis for back analysis of stone displacement in masonry structures as a paleoseismic tool can provide much needed data on ground motion parameters in regions where instrumental data are scarce, or are completely absent.
Using DVI To Teach Physics: Making the Abstract More Concrete.
ERIC Educational Resources Information Center
Knupfer, Nancy Nelson; Zollman, Dean
The ways in which Digital Video Interactive (DVI), a new video technology, can help students learn concepts of physics were studied in a project that included software design and production as well as formative and summative evaluation. DVI provides real-time motion, with the full-motion image contained to a window on part of the screen so that…
TweezPal - Optical tweezers analysis and calibration software
NASA Astrophysics Data System (ADS)
Osterman, Natan
2010-11-01
Optical tweezers, a powerful tool for optical trapping, micromanipulation and force transduction, have in recent years become a standard technique commonly used in many research laboratories and university courses. Knowledge about the optical force acting on a trapped object can be gained only after a calibration procedure which has to be performed (by an expert) for each type of trapped objects. In this paper we present TweezPal, a user-friendly, standalone Windows software tool for optical tweezers analysis and calibration. Using TweezPal, the procedure can be performed in a matter of minutes even by non-expert users. The calibration is based on the Brownian motion of a particle trapped in a stationary optical trap, which is being monitored using video or photodiode detection. The particle trajectory is imported into the software which instantly calculates position histogram, trapping potential, stiffness and anisotropy. Program summaryProgram title: TweezPal Catalogue identifier: AEGR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 44 891 No. of bytes in distributed program, including test data, etc.: 792 653 Distribution format: tar.gz Programming language: Borland Delphi Computer: Any PC running Microsoft Windows Operating system: Windows 95, 98, 2000, XP, Vista, 7 RAM: 12 Mbytes Classification: 3, 4.14, 18, 23 Nature of problem: Quick, robust and user-friendly calibration and analysis of optical tweezers. The optical trap is calibrated from the trajectory of a trapped particle undergoing Brownian motion in a stationary optical trap (input data) using two methods. Solution method: Elimination of the experimental drift in position data. Direct calculation of the trap stiffness from the positional variance. Calculation of 1D optical trapping potential from the positional distribution of data points. Trap stiffness calculation by fitting a parabola to the trapping potential. Presentation of X-Y positional density for close inspection of the 2D trapping potential. Calculation of the trap anisotropy. Running time: Seconds
Simplex GPS and InSAR Inversion Software
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Pierce, Marlon E.
2012-01-01
Changes in the shape of the Earth's surface can be routinely measured with precisions better than centimeters. Processes below the surface often drive these changes and as a result, investigators require models with inversion methods to characterize the sources. Simplex inverts any combination of GPS (global positioning system), UAVSAR (uninhabited aerial vehicle synthetic aperture radar), and InSAR (interferometric synthetic aperture radar) data simultaneously for elastic response from fault and fluid motions. It can be used to solve for multiple faults and parameters, all of which can be specified or allowed to vary. The software can be used to study long-term tectonic motions and the faults responsible for those motions, or can be used to invert for co-seismic slip from earthquakes. Solutions involving estimation of fault motion and changes in fluid reservoirs such as magma or water are possible. Any arbitrary number of faults or parameters can be considered. Simplex specifically solves for any of location, geometry, fault slip, and expansion/contraction of a single or multiple faults. It inverts GPS and InSAR data for elastic dislocations in a half-space. Slip parameters include strike slip, dip slip, and tensile dislocations. It includes a map interface for both setting up the models and viewing the results. Results, including faults, and observed, computed, and residual displacements, are output in text format, a map interface, and can be exported to KML. The software interfaces with the QuakeTables database allowing a user to select existing fault parameters or data. Simplex can be accessed through the QuakeSim portal graphical user interface or run from a UNIX command line.
NASA Technical Reports Server (NTRS)
Martin, William Campbell
2011-01-01
The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.
Space time neural networks for tether operations in space
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles
1993-01-01
A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating tethered payloads in earth orbit. due to the interaction between the Earth's magnetic field and current pulsing through the tether, the tethered system may exhibit a circular transverse oscillation referred to as the 'skiprope' phenomenon. Effective damping of skiprope motion depends on rapid and accurate detection of skiprope magnitude and phase. Because of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations during the skiprope motion. Since the satellite attitude motion has many other perturbations, the relationship between the skiprope parameters and attitude time history is very involved and non-linear. We propose a Space-Time Neural Network implementation for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and phase. Training and testing of the skiprope detection system will be performed using a validated Orbital Operations Simulator and Space-Time Neural Network software developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space Center.
NASA Astrophysics Data System (ADS)
Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi
2015-04-01
The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.
Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping
2015-12-01
The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation.
The research of hourglass worm dynamic balancing simulation based on SolidWorks motion
NASA Astrophysics Data System (ADS)
Wang, Zhuangzhuang; Yang, Jie; Liu, Pingyi; Zhao, Junpeng
2018-02-01
Hourglass worm is extensively used in industry due to its characteristic of heavy-load and a large reduction ratio. Varying sizes of unbalanced mass distribution appeared in the design of a single head worm. With machines developing towards higher speed and precision, the vibration and shock caused by the unbalanced mass distribution of rotating parts must be considered. Therefore, the balance grade of these parts must meet higher requirements. A method based on theoretical analysis and SolidWorks motion software simulation is presented in this paper; the virtual dynamic balance simulation test of the hourglass worm was carried out during the design of the product, so as to ensure that the hourglass worm meet the requirements of dynamic balance in the design process. This can effectively support the structural design of the hourglass worm and provide a way of thinking and designing the same type of products.
Classification Models for Pulmonary Function using Motion Analysis from Phone Sensors.
Cheng, Qian; Juen, Joshua; Bellam, Shashi; Fulara, Nicholas; Close, Deanna; Silverstein, Jonathan C; Schatz, Bruce
2016-01-01
Smartphones are ubiquitous, but it is unknown what physiological functions can be monitored at clinical quality. Pulmonary function is a standard measure of health status for cardiopulmonary patients. We have shown phone sensors can accurately measure walking patterns. Here we show that improved classification models can accurately measure pulmonary function, with sole inputs being sensor data from carried phones. Twenty-four cardiopulmonary patients performed six minute walk tests in pulmonary rehabilitation at a regional hospital. They carried smartphones running custom software recording phone motion. For every patient, every ten-second interval was correctly computed. The trained model perfectly computed the GOLD level 1/2/3, which is a standard categorization of pulmonary function as measured by spirometry. These results are encouraging towards field trials with passive monitors always running in the background. We expect patients can simply carry their phones during daily living, while supporting automatic computation ofpulmonary function for health monitoring.
Brain computer interface for operating a robot
NASA Astrophysics Data System (ADS)
Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed
2013-10-01
A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krempasky, J.; Flechsig, U.; Korhonen, T.
Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network andmore » allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.« less
Motion-Capture-Enabled Software for Gestural Control of 3D Models
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony
2012-01-01
Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.
Three-dimensional modeling and animation of two carpal bones: a technique.
Green, Jason K; Werner, Frederick W; Wang, Haoyu; Weiner, Marsha M; Sacks, Jonathan M; Short, Walter H
2004-05-01
The objectives of this study were to (a). create 3D reconstructions of two carpal bones from single CT data sets and animate these bones with experimental in vitro motion data collected during dynamic loading of the wrist joint, (b). develop a technique to calculate the minimum interbone distance between the two carpal bones, and (c). validate the interbone distance calculation process. This method utilized commercial software to create the animations and an in-house program to interface with three-dimensional CAD software to calculate the minimum distance between the irregular geometries of the bones. This interbone minimum distance provides quantitative information regarding the motion of the bones studied and may help to understand and quantify the effects of ligamentous injury.
Quantifying technical skills during open operations using video-based motion analysis.
Glarner, Carly E; Hu, Yue-Yung; Chen, Chia-Hsiung; Radwin, Robert G; Zhao, Qianqian; Craven, Mark W; Wiegmann, Douglas A; Pugh, Carla M; Carty, Matthew J; Greenberg, Caprice C
2014-09-01
Objective quantification of technical operative skills in surgery remains poorly defined, although the delivery of and training in these skills is essential to the profession of surgery. Attempts to measure hand kinematics to quantify operative performance primarily have relied on electromagnetic sensors attached to the surgeon's hand or instrument. We sought to determine whether a similar motion analysis could be performed with a marker-less, video-based review, allowing for a scalable approach to performance evaluation. We recorded six reduction mammoplasty operations-a plastic surgery procedure in which the attending and resident surgeons operate in parallel. Segments representative of surgical tasks were identified with Multimedia Video Task Analysis software. Video digital processing was used to extract and analyze the spatiotemporal characteristics of hand movement. Attending plastic surgeons appear to use their nondominant hand more than residents when cutting with the scalpel, suggesting more use of countertraction. While suturing, attendings were more ambidextrous, with smaller differences in movement between their dominant and nondominant hands than residents. Attendings also seem to have more conservation of movement when performing instrument tying than residents, as demonstrated by less nondominant hand displacement. These observations were consistent within procedures and between the different attending plastic surgeons evaluated in this fashion. Video motion analysis can be used to provide objective measurement of technical skills without the need for sensors or markers. Such data could be valuable in better understanding the acquisition and degradation of operative skills, providing enhanced feedback to shorten the learning curve. Copyright © 2014 Mosby, Inc. All rights reserved.
Emerging Technologies for Software-Reliant Systems of Systems
2010-09-01
conditions, such as temperature, sound, vibration, light intensity , motion, or proximity to objects [Raghavendra 2006]. Cognitive Network A cognitive...systems evolutionary development emergent behavior geographic distribution Maier also defines four types of SoS based on their management...by multinational teams. Many organizations use offshoring as a way to reduce costs of software development. Large web- based systems often use
MoKey: A versatile exergame creator for everyday usage.
Eckert, Martina; López, Marcos; Lázaro, Carlos; Meneses, Juan
2017-11-27
Currently, virtual applications for physical exercises are highly appreciated as rehabilitation instruments. This article presents a middleware called "MoKey" (Motion Keyboard), which converts standard off-the-shelf software into exergames (exercise games). A configurable set of gestures, captured by a motion capture camera, is translated into the key strokes required by the chosen software. The present study assesses the tool regarding usability and viability on a heterogeneous group of 11 participants, aged 5 to 51, with moderate to severe disabilities, and mostly bound to a wheelchair. In comparison with FAAST (The Flexible Action and Articulated Skeleton Toolkit), MoKey achieved better results in terms of ease of use and computational load. The viability as an exergame creator tool was proven with help of four applications (PowerPoint®, e-book reader, Skype®, and Tetris). Success rates of up to 91% have been achieved, subjective perception was rated with 4.5 points (from 0-5). The middleware provides increased motivation due to the use of favorite software and the advantage of exploiting it for exercise. Used together with communication software or online games, social inclusion can be stimulated. The therapists can employ the tool to monitor the correctness and progress of the exercises.
Video Altimeter and Obstruction Detector for an Aircraft
NASA Technical Reports Server (NTRS)
Delgado, Frank J.; Abernathy, Michael F.; White, Janis; Dolson, William R.
2013-01-01
Video-based altimetric and obstruction detection systems for aircraft have been partially developed. The hardware of a system of this type includes a downward-looking video camera, a video digitizer, a Global Positioning System receiver or other means of measuring the aircraft velocity relative to the ground, a gyroscope based or other attitude-determination subsystem, and a computer running altimetric and/or obstruction-detection software. From the digitized video data, the altimetric software computes the pixel velocity in an appropriate part of the video image and the corresponding angular relative motion of the ground within the field of view of the camera. Then by use of trigonometric relationships among the aircraft velocity, the attitude of the camera, the angular relative motion, and the altitude, the software computes the altitude. The obstruction-detection software performs somewhat similar calculations as part of a larger task in which it uses the pixel velocity data from the entire video image to compute a depth map, which can be correlated with a terrain map, showing locations of potential obstructions. The depth map can be used as real-time hazard display and/or to update an obstruction database.
NASA X-34 Technology in Motion
NASA Technical Reports Server (NTRS)
Beech, Geoffrey; Chandler, Kristie
1997-01-01
The X-34 technology development program is a joint industry/government project to develop, test, and operate a small, fully-reusable hypersonic flight vehicle. The objective is to demonstrate key technologies and operating concepts applicable to future reusable launch vehicles. Integrated in the vehicle are various systems to assure successful completion of mission objectives, including the Main Propulsion System (MPS). NASA-Marshall Space Flight Center (MSFC) is responsible for developing the X-34's MPS including the design and complete build package for the propulsion system components. The X-34 will be powered by the Fastrac Engine, which is currently in design and development at NASA-MSFC. Fastrac is a single-stage main engine, which burns a mixture of liquid oxygen (LOX) and kerosene(RP-1). The interface between the MPS and Fastrac engine are critical for proper system operation and technologies applicable to future reusable launch vehicles. Deneb's IGRIP software package with the Dynamic analysis option provided a key tool for conducting studies critical to this interface as well as a mechanism to drive the design of the LOX and RP-1 feedlines. Kinematic models were created for the Fastrac Engine and the feedlines for various design concepts. Based on the kinematic simulation within Envision, design and joint limits were verified and system interference controlled. It was also critical to the program to evaluate the effect of dynamic loads visually, providing a verification tool for dynamic analysis and in some cases uncovering areas that had not been considered. Deneb's software put the X-34 technology in motion and has been a key factor in facilitating the strenuous design schedule.
Cost/benefit analysis for video security systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-01
Dr. Don Hush and Scott Chapman, in conjunction with the Electrical and Computer Engineering Department of the University of New Mexico (UNM), have been contracted by Los Alamos National Laboratories to perform research in the area of high security video analysis. The first phase of this research, presented in this report, is a cost/benefit analysis of various approaches to the problem in question. This discussion begins with a description of three architectures that have been used as solutions to the problem of high security surveillance. An overview of the relative merits and weaknesses of each of the proposed systems ismore » included. These descriptions are followed directly by a discussion of the criteria chosen in evaluating the systems and the techniques used to perform the comparisons. The results are then given in graphical and tabular form, and their implications discussed. The project to this point has involved assessing hardware and software issues in image acquisition, processing and change detection. Future work is to leave these questions behind to consider the issues of change analysis - particularly the detection of human motion - and alarm decision criteria. The criteria for analysis in this report include: cost; speed; tradeoff issues in moving primative operations from software to hardware; real time operation considerations; change image resolution; and computational requirements.« less
CALIPSO: an interactive image analysis software package for desktop PACS workstations
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Huang, H. K.
1990-07-01
The purpose of this project is to develop a low cost workstation for quantitative analysis of multimodality images using a Macintosh II personal computer. In the current configuration the Macintosh operates as a stand alone workstation where images are imported either from a central PACS server through a standard Ethernet network or recorded through video digitizer board. The CALIPSO software developed contains a large variety ofbasic image display and manipulation tools. We focused our effort however on the design and implementation ofquantitative analysis methods that can be applied to images from different imaging modalities. Analysis modules currently implemented include geometric and densitometric volumes and ejection fraction calculation from radionuclide and cine-angiograms Fourier analysis ofcardiac wall motion vascular stenosis measurement color coded parametric display of regional flow distribution from dynamic coronary angiograms automatic analysis ofmyocardial distribution ofradiolabelled tracers from tomoscintigraphic images. Several of these analysis tools were selected because they use similar color coded andparametric display methods to communicate quantitative data extracted from the images. 1. Rationale and objectives of the project Developments of Picture Archiving and Communication Systems (PACS) in clinical environment allow physicians and radiologists to assess radiographic images directly through imaging workstations (''). This convenient access to the images is often limited by the number of workstations available due in part to their high cost. There is also an increasing need for quantitative analysis ofthe images. During thepast decade
Design and reliability analysis of DP-3 dynamic positioning control architecture
NASA Astrophysics Data System (ADS)
Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru
2011-12-01
As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.
Validation of the Leap Motion Controller using markered motion capture technology.
Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David
2016-06-14
The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
1976-10-01
should be easily converted into software for use on high-speed digital computers. Since no readily available references were found containing relationships...L31 Library 1 ONR Boston 4 NSWC, White Oak 1 J.E. Goeller 1 ONR Chicago 1 V.C.D. Dawson 1 H.K. Steves 1 ONR Pasadena 1 Libary 1 NRL/CODE 2627 Lib 1
Robotic NDE inspection of advanced solid rocket motor casings
NASA Technical Reports Server (NTRS)
Mcneelege, Glenn E.; Sarantos, Chris
1994-01-01
The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.
Dynamic Modeling and Simulation of an Underactuated System
NASA Astrophysics Data System (ADS)
Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.
2017-06-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.
Towards Image Documentation of Grave Coverings and Epitaphs for Exhibition Purposes
NASA Astrophysics Data System (ADS)
Pomaska, G.; Dementiev, N.
2015-08-01
Epitaphs and memorials as immovable items in sacred spaces provide with their inscriptions valuable documents of history. Today not only photography or photos are suitable as presentation material for cultural assets in museums. Computer vision and photogrammetry provide methods for recording, 3D modelling, rendering under artificial light conditions as well as further options for analysis and investigation of artistry. For exhibition purposes epitaphs have been recorded by the structure from motion method. A comparison of different kinds of SFM software distributions could be worked out. The suitability of open source software in the mesh processing chain from modelling up to displaying on computer monitors should be answered. Raspberry Pi, a computer in SoC technology works as a media server under Linux applying Python scripts. Will the little computer meet the requirements for a museum and is the handling comfortable enough for staff and visitors? This contribution reports about the case study.
Kinematic analysis of preterm newborns' spontaneous movements for postural activity assessment.
Halek, Jan; Muckova, Anita; Svoboda, Zdenek; Janura, Miroslav; Marikova, Jana; Horakova, Katerina; Kantor, Lumir; Nemcova, Nina
2015-12-01
The objectives of this pilot study were to assess the potential use of 3D videography for analyzing the motion of the body center of mass (COM) in newborns and to determine differences in spontaneous movements between preterm and full-term infants. The group comprised 10 preterm newborns (gestational age at birth between 26 and 37 weeks; birth weight 800 to 2960 g; gestational age at the time of examination 34 to 39 weeks) and 10 full-term infants (gestational week 38 to 41; birth weight 2810 to 4360 g). To determine the range of motion of the COM, 3D videography was used (2 cameras, 25 Hz). When recording their movements, the infants were in the supine position, calm and awake. The recordings were processed using the APAS software. Selected points on the body were marked to obtain data for calculating the basic parameters of COM trajectories. The range of motion of the COM in both craniocaudal and anteroposterior directions was significantly greater in premature infants (P < 0.05 and P < 0.01, respectively) than in full-term babies. The variability of motion of the COM was significantly greater in the craniocaudal (P < 0.01) and anteroposterior (P < 0.05) directions in preterm babies. This was also valid for the velocity of motion of the COM in the craniocaudal direction (P < 0.05). 3D videography can be used for experimental assessment of motor behavior in preterm infants. Basic kinematic characteristics of the motion of the COM (range, variability, velocity) are greater in preterm infants.
Liu, Shi; Wu, Yu; Wooten, H. Omar; Green, Olga; Archer, Brent; Li, Harold
2016-01-01
A software tool is developed, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance image‐guided radiation therapy (MR‐IGRT) delivery system. This tool is necessary for managing patient treatment scheduling in our clinic. The predicted treatment delivery time and the assessment of plan complexities could also be useful to aid treatment planning. A patient's total treatment delivery time, not including time required for localization, is modeled as the sum of four components: 1) the treatment initialization time; 2) the total beam‐on time; 3) the gantry rotation time; and 4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam‐on time can be calculated using both the planned beam‐on time and the decay‐corrected dose rate. To predict the remain‐ing components, we retrospectively analyzed the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, linear regression is applied to predict the gantry rotation time. The MLC motion time is calculated using the leaves delay modeling method and the leaf motion speed. A quantitative analysis was performed to understand the correlation between the total treatment time and the plan complexity. The proposed algorithm is able to predict the ViewRay treatment delivery time with the average prediction error 0.22 min or 1.82%, and the maximal prediction error 0.89 min or 7.88%. The analysis has shown the correlation between the plan modulation (PM) factor and the total treatment delivery time, as well as the treatment delivery duty cycle. A possibility has been identified to significantly reduce MLC motion time by optimizing the positions of closed MLC pairs. The accuracy of the proposed prediction algorithm is sufficient to support patient treatment appointment scheduling. This developed software tool is currently applied in use on a daily basis in our clinic, and could also be used as an important indicator for treatment plan complexity. PACS number(s): 87.55.N PMID:27074472
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, M; Kim, T; Kang, S
Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
Zaknun, John J; Rajabi, Hossein; Piepsz, Amy; Roca, Isabel; Dondi, Maurizio
2011-01-01
Under the auspices of the International Atomic Energy Agency, a new-generation, platform-independent, and x86-compatible software package was developed for the analysis of scintigraphic renal dynamic imaging studies. It provides nuclear medicine professionals cost-free access to the most recent developments in the field. The software package is a step forward towards harmonization and standardization. Embedded functionalities render it a suitable tool for education, research, and for receiving distant expert's opinions. Another objective of this effort is to allow introducing clinically useful parameters of drainage, including normalized residual activity and outflow efficiency. Furthermore, it provides an effective teaching tool for young professionals who are being introduced to dynamic kidney studies by selected teaching case studies. The software facilitates a better understanding through practically approaching different variables and settings and their effect on the numerical results. An effort was made to introduce instruments of quality assurance at the various levels of the program's execution, including visual inspection and automatic detection and correction of patient's motion, automatic placement of regions of interest around the kidneys, cortical regions, and placement of reproducible background region on both primary dynamic and on postmicturition studies. The user can calculate the differential renal function through 2 independent methods, the integral or the Rutland-Patlak approaches. Standardized digital reports, storage and retrieval of regions of interest, and built-in database operations allow the generation and tracing of full image reports and of numerical outputs. The software package is undergoing quality assurance procedures to verify the accuracy and the interuser reproducibility with the final aim of launching the program for use by professionals and teaching institutions worldwide. Copyright © 2011 Elsevier Inc. All rights reserved.
Keller, Sune H; Sibomana, Merence; Olesen, Oline V; Svarer, Claus; Holm, Søren; Andersen, Flemming L; Højgaard, Liselotte
2012-03-01
Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Two scans with minor motion and 5 with major motion (as reported by the optical motion tracking system) were selected from (18)F-FDG scans acquired on a PET scanner. The motion was measured as the maximum displacement of the markers attached to the subject's head and was considered to be major if larger than 4 mm and minor if less than 2 mm. After allowing a 40- to 60-min uptake time after tracer injection, we acquired a 6-min transmission scan, followed by a 40-min emission list-mode scan. Each emission list-mode dataset was divided into 8 frames of 5 min. The reconstructed time-framed images were aligned to a selected reference frame using either EMT or the AIR (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. The results of the 3 QC methods were in agreement with one another and with a visual subjective inspection of the image data. Before MC, the QC method measures varied significantly in scans with major motion and displayed limited variations on scans with minor motion. The variation was significantly reduced and measures improved after MC with AIR, whereas EMT MC performed less well. The 3 presented QC methods produced similar results and are useful for evaluating tracer-independent external-tracking motion-correction methods for human brain scans.
Farokhmanesh, Khatere; Shirzadian, Toraj; Mahboubi, Mohammad; Shahri, Mina Neyakan
2014-01-01
Based on clinical observations, foot hyperpronation is very common. Excessive pronation (hyperpronation) can cause malalignment of the lower extremities. This most often leads to functional and structural deficits. The aim of this study was to assess the effect of foot hyperpronation on lumbar lordosis and thoracic kyphosis. Thirty five healthy subjects (age range, 18030 years) were asked to stand on 4 positions including a flat surface (normal position) and on wedges angled at 10, 15, and 20 degrees. Sampling was done using simple random sampling. Measurements were made by a motion analysis system. For data analysis, the SPSS software (ver. 18) using paired t-test and repeated measures analysis of variance (ANOVA) was applied. The eversion created by the wedges caused a significant increase in lumbar lordosis and thoracic kyphosis. The most significant change occurred between two consecutive positions of flat surface and the first wedge. The t-test for repeated measures showed a high correlation between each two consecutive positions. The results showed that with increased bilateral foot pronation, lumbar lordosis and thoracic kyphosis increased as well. In fact, each of these results is a compensation phenomenon. Further studies are required to determine long-term results of excessive foot pronation and its probable effect on damage progression. PMID:25169004
Farokhmanesh, Khatere; Shirzadian, Toraj; Mahboubi, Mohammad; Shahri, Mina Neyakan
2014-06-17
Based on clinical observations, foot hyperpronation is very common. Excessive pronation (hyperpronation) can cause malalignment of the lower extremities. This most often leads to functional and structural deficits. The aim of this study was to assess the effect of foot hyperpronation on lumbar lordosis and thoracic kyphosis. Thirty five healthy subjects (age range, 18030 years) were asked to stand on 4 positions including a flat surface (normal position) and on wedges angled at 10, 15, and 20 degrees. Sampling was done using simple random sampling. Measurements were made by a motion analysis system. For data analysis, the SPSS software (ver. 18) using paired t-test and repeated measures analysis of variance (ANOVA) was applied. The eversion created by the wedges caused a significant increase in lumbar lordosis and thoracic kyphosis. The most significant change occurred between two consecutive positions of flat surface and the first wedge. The t-test for repeated measures showed a high correlation between each two consecutive positions. The results showed that with increased bilateral foot pronation, lumbar lordosis and thoracic kyphosis increased as well. In fact, each of these results is a compensation phenomenon. Further studies are required to determine long-term results of excessive foot pronation and its probable effect on damage progression.
Digital-image processing and image analysis of glacier ice
Fitzpatrick, Joan J.
2013-01-01
This document provides a methodology for extracting grain statistics from 8-bit color and grayscale images of thin sections of glacier ice—a subset of physical properties measurements typically performed on ice cores. This type of analysis is most commonly used to characterize the evolution of ice-crystal size, shape, and intercrystalline spatial relations within a large body of ice sampled by deep ice-coring projects from which paleoclimate records will be developed. However, such information is equally useful for investigating the stress state and physical responses of ice to stresses within a glacier. The methods of analysis presented here go hand-in-hand with the analysis of ice fabrics (aggregate crystal orientations) and, when combined with fabric analysis, provide a powerful method for investigating the dynamic recrystallization and deformation behaviors of bodies of ice in motion. The procedures described in this document compose a step-by-step handbook for a specific image acquisition and data reduction system built in support of U.S. Geological Survey ice analysis projects, but the general methodology can be used with any combination of image processing and analysis software. The specific approaches in this document use the FoveaPro 4 plug-in toolset to Adobe Photoshop CS5 Extended but it can be carried out equally well, though somewhat less conveniently, with software such as the image processing toolbox in MATLAB, Image-Pro Plus, or ImageJ.
Analysis of the Hexapod Work Space using integration of a CAD/CAE system and the LabVIEW software
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2015-11-01
The paper presents the problems related to the integration of a CAD/CAE system with the LabVIEW software. The purpose of the integration is to determine the workspace of a hexapod model basing on a mathematical model describing it motion. In the first stage of the work concerning the integration task the 3D model to simulate movements of a hexapod was elaborated. This phase of the work was done in the “Motion Simulation” module of the CAD/CAE/CAM Siemens NX system. The first step was to define the components of the 3D model in the form of “links”. Individual links were defined according to the nature of the hexapod elements action. In the model prepared for movement simulation were created links corresponding to such elements as: electric actuator, top plate, bottom plate, ball-and-socket joint, toggle joint Phillips. Then were defined the constraints of the “joint” type (e.g.: revolute joint, slider joint, spherical joint) between the created component of the “link” type, so that the computer simulation corresponds to the operation of a real hexapod. The next stage of work included implementing the mathematical model describing the functioning of a hexapod in the LabVIEW software. At this stage, particular attention was paid to determining procedures for integrating the virtual 3D hexapod model with the results of calculations performed in the LabVIEW. The results relate to specific values of the jump of electric actuators depending on the position of the car on the hexapod. The use of integration made it possible to determine the safe operating space of a stationary hexapod taking into consideration the security of a person in the driving simulator designed for the disabled.
Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R. Todd; Papademetris, Xenophon
2013-01-01
Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project (www.bioimagesuite.org). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences. PMID:23319241
Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R Todd; Papademetris, Xenophon
2013-07-01
Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project ( www.bioimagesuite.org ). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.
Muscle Motion Solenoid Actuator
NASA Astrophysics Data System (ADS)
Obata, Shuji
It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.
Development of a non-linear simulation for generic hypersonic vehicles - ASUHS1
NASA Technical Reports Server (NTRS)
Salas, Juan; Lovell, T. Alan; Schmidt, David K.
1993-01-01
A nonlinear simulation is developed to model the longitudinal motion of a vehicle in hypersonic flight. The equations of motion pertinent to this study are presented. Analytic expressions for the aerodynamic forces acting on a hypersonic vehicle which were obtained from Newtonian Impact Theory are further developed. The control surface forces are further examined to incorporate vehicle elastic motion. The purpose is to establish feasible equations of motion which combine rigid body, elastic, and aeropropulsive dynamics for use in nonlinear simulations. The software package SIMULINK is used to implement the simulation. Also discussed are issues needing additional attention and potential problems associated with the implementation (with proposed solutions).
Time-Domain Terahertz Computed Axial Tomography NDE System
NASA Technical Reports Server (NTRS)
Zimdars, David
2012-01-01
NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-to-noise using a COTS scanner rather than the gchirped h scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THz CT data.
Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework
NASA Astrophysics Data System (ADS)
Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao
2016-09-01
Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugam, Senthilkumar
Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle,more » to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation unit in near future to carry out the gated radiotherapy treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, K; Fujimoto, S; Akagi, Y
Purpose: To evaluate the dosimetric impact of the interplay effect between multileaf collimator (MLC) movement and tumor respiratory motion during delivery of volumetric modulate arc therapy (VMAT) by using customized polymer gel dosimeter. Methods: Polyacrylamide-based gel dosimeter contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. An excellent gas barrier PAN (BAREX) techno bottle (φ8 cm, 650 mL) filled with iPAGAT was set to the QUASAR™ respiratory motion phantom, and was moved with motion amplitudes of 1 and 2 cm with a 4 second period during VMAT delivery by the Novalis Tx linear accelerator (Varian/BrainLAB). Two sphericalmore » tumors with a 2 cm diameter (GTV1 and GTV2) were defined, and ITV1 (GTV1+1 cm) and ITV2 (GTV2+2 cm) with expansion in the superior-inferior (S-I) direction were also defined with simulated respiratory motion. PTV margin was 2 mm around the ITV considering the setup uncertainty. Two single arc VMAT plans with 30 Gy at 3 Gy per fraction (GTV: D98>100%, PTV: D95=100%) were generated by the Varian Eclipse treatment planning system. Three-dimensional dose distribution in iPAGAT was read out by the Signa 1.5T MRI system (GE), and was evaluated by dose-volume histogram (DVH) using in-house developed software. Results: According to DVH analysis by iPAGAT, D98 of GTV1 and GTV2 were more than 100% of the prescribed dose. In contrast, D95 of PTV1 and PTV2 were about 85% and 65%, respectively. Furthermore, low-to-intermediate dose was widespread with motion amplitude of 2 cm. Conclusion: DVH analysis using iPAGAT polymer gel dosimeter was performed in this study. As a result, interplay effect was negligible, since dose coverage of GTV was sufficient during VMAT delivery with simulated respiratory motion. However, the dose reduction of PTV and the spread of low-to-intermediate dose compared to the planned dose require scrupulous attention for large tumor respiratory motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teuton, Jeremy R.; Griswold, Richard L.; Mehdi, Beata L.
Precise analysis of both (S)TEM images and video are time and labor intensive processes. As an example, determining when crystal growth and shrinkage occurs during the dynamic process of Li dendrite deposition and stripping involves manually scanning through each frame in the video to extract a specific set of frames/images. For large numbers of images, this process can be very time consuming, so a fast and accurate automated method is desirable. Given this need, we developed software that uses analysis of video compression statistics for detecting and characterizing events in large data sets. This software works by converting the datamore » into a series of images which it compresses into an MPEG-2 video using the open source “avconv” utility [1]. The software does not use the video itself, but rather analyzes the video statistics from the first pass of the video encoding that avconv records in the log file. This file contains statistics for each frame of the video including the frame quality, intra-texture and predicted texture bits, forward and backward motion vector resolution, among others. In all, avconv records 15 statistics for each frame. By combining different statistics, we have been able to detect events in various types of data. We have developed an interactive tool for exploring the data and the statistics that aids the analyst in selecting useful statistics for each analysis. Going forward, an algorithm for detecting and possibly describing events automatically can be written based on statistic(s) for each data type.« less
Dynamic simulation of road vehicle door window regulator mechanism of cross arm type
NASA Astrophysics Data System (ADS)
Miklos, I. Zs; Miklos, C.; Alic, C.
2017-01-01
The paper presents issues related to the dynamic simulation of a motor-drive operating mechanism of cross arm type, for the manipulation of road vehicle door windows, using Autodesk Inventor Professional software. The dynamic simulation of the mechanism involves a 3D modelling, kinematic coupling, drive motion parameters and external loads, as well as the graphically view of the kinematic and kinetostatic results for the various elements and kinematic couplings of the mechanism, under real operating conditions. Also, based on the results, the analysis of the mechanism components has been carried out using the finite element method.
Hydrodynamic analysis of floating platform for special purposes under complex water environment
NASA Astrophysics Data System (ADS)
Ma, Guang-ying; Yao, Yun-long
2018-03-01
This article studied a new floating offshore platform for special purposes, which was assembled by standard floating modules. By using ANSYS AQWA software, the hydrodynamic model of the platform was established. The time history responses of the platform motions and the cable tension forces were calculate under complex water environments, such as wind, wave, current and mooring. The results showed that the tension of the four cables are far less than the breaking tension of the cable, so that the cable will not break. This study can be referenced by the relevant researchers and engineers.
NASA Astrophysics Data System (ADS)
Heine, A.; Berger, M.
The classical meaning of motion design is the usage of laws of motion with convenient characteristic values. Whereas the software MOCAD supports a graphical and interactive mode of operation, among others by using an automatic polynomial interpolation. Besides a direct coupling for motion control systems, different file formats for data export are offered. The calculation of plane and spatial cam mechanisms is also based on the data, generated in the motion design module. Drawing on an example of an intermittent cam mechanism with an inside cam profile used as a new drive concept for indexing tables, the influence of motion design on the transmission properties is shown. Another example gives an insight into the calculation and export of envelope curves for cylindrical cam mechanisms. The gained geometry data can be used for generating realistic 3D-models in the CAD-system Pro/ENGINEER, using a special data exchange format.
Making Ceramic/Polymer Parts By Extrusion Stereolithography
NASA Technical Reports Server (NTRS)
Stuffle, Kevin; Mulligan, A.; Creegan, P.; Boulton, J. M.; Lombardi, J. L.; Calvert, P. D.
1996-01-01
Extrusion stereolithography developmental method of computer-controlled manufacturing of objects out of ceramic/polymer composite materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) software used to create image of desired part and translate image into motion commands for combination of mechanisms moving resin dispenser. Extrusion performed in coordination with motion of dispenser so buildup of extruded material takes on size and shape of desired part. Part thermally cured after deposition.
Mauser, Stanislas; Burgert, Oliver
2014-01-01
There are several intra-operative use cases which require the surgeon to interact with medical devices. We used the Leap Motion Controller as input device and implemented two use-cases: 2D-Interaction (e.g. advancing EPR data) and selection of a value (e.g. room illumination brightness). The gesture detection was successful and we mapped its output to several devices and systems.
Motion coordination and programmable teleoperation between two industrial robots
NASA Technical Reports Server (NTRS)
Luh, J. Y. S.; Zheng, Y. F.
1987-01-01
Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions.
Rasheed, Abdullah; Jabbour, Salma K; Rosenberg, Stephen; Patel, Ajay; Goyal, Sharad; Haffty, Bruce G; Yue, Ning J; Khan, Alvin
2016-01-01
Lung tumors move during respiration, complicating radiation therapy. The abdominal compression plate (ACP) is thought to reduce respiratory motion. This study quantifies ACP efficacy on respiratory-induced motion by using 4-dimensional computed tomography to evaluate volume and displacement changes of the heart, lungs, and tumor with and without ACP. Lung cancer patients (n = 17) received 4-dimensional computed tomography simulations (10 computed tomography scans from 0% to 90% breathing phases) with and without ACP under maximally tolerated diaphragmatic pressure. Gross tumor volume (GTV), heart, and lungs were contoured in treatment planning software for each phase. Structures were exported for analysis. For each phase, with and without ACP, tumor and organ absolute centroid range of motion and volume were calculated. ACP did not significantly affect GTV, heart, or lung motion on the sample as a whole, but instead demonstrated patient-specific results. ACP reduced GTV motion in 3 (17.6%; 3 upper lobe tumors) by 2.9 mm (P < .01), increased motion in 5 (29.4%; 3 upper lobe tumors, 1 middle lobe, 1 lower lobe) by 1.9 mm (P < .03), and did not significantly change 9. Of the 3 patients exhibiting significantly decreased GTV motion, GTV, heart, and lung range of motion was 7.4 mm, 11.8 mm, and 11.9 mm, respectively, without compression and 4.5 mm, 8.4 mm, and 10.9 mm, respectively, with compression. Averaged across the sample, ACP did not exhibit any axis-specific effect. ACP efficacy was patient-specific, possibly because of pre-existing factors including chronic obstructive pulmonary disease severity, chest wall elasticity, tumor location, and patient comfort. Tumor lobe location does not predetermine compression efficacy; therefore, patients should be simulated with and without ACP, regardless of tumor location. GTV motion seems most important in determining suitability for compression. Alternative motion control should be considered in patients not benefited by compression. In patients who benefited, ACP may enhance tumor coverage while minimizing toxicity. Larger scale studies are necessary for definitive treatment recommendations. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
A review of flight simulation techniques
NASA Astrophysics Data System (ADS)
Baarspul, Max
After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.
Application of dynamic milling in stainless steel processing
NASA Astrophysics Data System (ADS)
Shan, Wenju
2017-09-01
This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.
Multimodal Speech Capture System for Speech Rehabilitation and Learning.
Sebkhi, Nordine; Desai, Dhyey; Islam, Mohammad; Lu, Jun; Wilson, Kimberly; Ghovanloo, Maysam
2017-11-01
Speech-language pathologists (SLPs) are trained to correct articulation of people diagnosed with motor speech disorders by analyzing articulators' motion and assessing speech outcome while patients speak. To assist SLPs in this task, we are presenting the multimodal speech capture system (MSCS) that records and displays kinematics of key speech articulators, the tongue and lips, along with voice, using unobtrusive methods. Collected speech modalities, tongue motion, lips gestures, and voice are visualized not only in real-time to provide patients with instant feedback but also offline to allow SLPs to perform post-analysis of articulators' motion, particularly the tongue, with its prominent but hardly visible role in articulation. We describe the MSCS hardware and software components, and demonstrate its basic visualization capabilities by a healthy individual repeating the words "Hello World." A proof-of-concept prototype has been successfully developed for this purpose, and will be used in future clinical studies to evaluate its potential impact on accelerating speech rehabilitation by enabling patients to speak naturally. Pattern matching algorithms to be applied to the collected data can provide patients with quantitative and objective feedback on their speech performance, unlike current methods that are mostly subjective, and may vary from one SLP to another.
Bipedal locomotion in granular media
NASA Astrophysics Data System (ADS)
Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel
Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.
An image analysis system for near-infrared (NIR) fluorescence lymph imaging
NASA Astrophysics Data System (ADS)
Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.
2011-03-01
Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.
NASA Astrophysics Data System (ADS)
Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.
2013-10-01
In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.
NASA Astrophysics Data System (ADS)
Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei
2018-05-01
In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.
NASA Tech Briefs, August 2002. Volume 26, No. 8
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on computers, electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and Motion control Tech Briefs.
Improvement of cardiac CT reconstruction using local motion vector fields.
Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael
2009-03-01
The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.
Characterization of selected elementary motion detector cells to image primitives.
Benson, Leslie A; Barrett, Steven F; Wright, Cameron H G
2008-01-01
Developing a visual sensing system, complete with motion processing hardware and software would have many applications to current technology. It could be mounted on many autonomous vehicles to provide information about the navigational environment, as well as obstacle avoidance features. Incorporating the motion processing capabilities into the sensor requires a new approach to the algorithm implementation. This research, and that of many others, have turned to nature for inspiration. Elementary motion detector (EMD) cells are involved in a biological preprocessing network to provide information to the motion processing lobes of the house degrees y Musca domestica. This paper describes the response of the photoreceptor inputs to the EMDs. The inputs to the EMD components are tested as they are stimulated with varying image primitives. This is the first of many steps in characterizing the EMD response to image primitives.
Modeling of a 3DTV service in the software-defined networking architecture
NASA Astrophysics Data System (ADS)
Wilczewski, Grzegorz
2014-11-01
In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.
Virtual Exercise Training Software System
NASA Technical Reports Server (NTRS)
Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.
2018-01-01
The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.
3D reconstruction software comparison for short sequences
NASA Astrophysics Data System (ADS)
Strupczewski, Adam; Czupryński, BłaŻej
2014-11-01
Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.
Evaluation of Hands-On Clinical Exam Performance Using Marker-less Video Tracking.
Azari, David; Pugh, Carla; Laufer, Shlomi; Cohen, Elaine; Kwan, Calvin; Chen, Chia-Hsiung Eric; Yen, Thomas Y; Hu, Yu Hen; Radwin, Robert
2014-09-01
This study investigates the potential of using marker-less video tracking of the hands for evaluating hands-on clinical skills. Experienced family practitioners attending a national conference were recruited and asked to conduct a breast examination on a simulator that simulates different clinical presentations. Videos were made of the clinician's hands during the exam and video processing software for tracking hand motion to quantify hand motion kinematics was used. Practitioner motion patterns indicated consistent behavior of participants across multiple pathologies. Different pathologies exhibited characteristic motion patterns in the aggregate at specific parts of an exam, indicating consistent inter-participant behavior. Marker-less video kinematic tracking therefore shows promise in discriminating between different examination procedures, clinicians, and pathologies.
SU-E-T-439: Fundamental Verification of Respiratory-Gated Spot Scanning Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamano, H; Yamakawa, T; Hayashi, N
Purpose: The spot-scanning proton beam irradiation with respiratory gating technique provides quite well dose distribution and requires both dosimetric and geometric verification prior to clinical implementation. The purpose of this study is to evaluate the impact of gating irradiation as a fundamental verification. Methods: We evaluated field width, flatness, symmetry, and penumbra in the gated and non-gated proton beams. The respiration motion was distinguished into 3 patterns: 10, 20, and 30 mm. We compared these contents between the gated and non-gated beams. A 200 MeV proton beam from PROBEAT-III unit (Hitachi Co.Ltd) was used in this study. Respiratory gating irradiationmore » was performed by Quasar phantom (MODUS medical devices) with a combination of dedicated respiratory gating system (ANZAI Medical Corporation). For radiochromic film dosimetry, the calibration curve was created with Gafchromic EBT3 film (Ashland) on FilmQA Pro 2014 (Ashland) as film analysis software. Results: The film was calibrated at the middle of spread out Bragg peak in passive proton beam. The field width, flatness and penumbra in non-gated proton irradiation with respiratory motion were larger than those of reference beam without respiratory motion: the maximum errors of the field width, flatness and penumbra in respiratory motion of 30 mm were 1.75% and 40.3% and 39.7%, respectively. The errors of flatness and penumbra in gating beam (motion: 30 mm, gating rate: 25%) were 0.0% and 2.91%, respectively. The results of symmetry in all proton beams with gating technique were within 0.6%. Conclusion: The field width, flatness, symmetry and penumbra were improved with the gating technique in proton beam. The spot scanning proton beam with gating technique is feasible for the motioned target.« less
Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H
2017-07-01
Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.
Apparatus and method for tracking a molecule or particle in three dimensions
Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM
2009-03-03
An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.
Motion Simulation Research Related Short Term Training Attachment to TARDEC
2013-04-01
CASSI group has five main areas of focus, which are, ground vehicle power and mobility , vehicle electronics and architecture, intelligent ground...control, steering as well as seats can all be changed to mock the necessary vehicle. Originally it was designed for a High Mobility Multipurpose Wheeled...necessary outputs to the motion base. SimCreator is a software package, similar to SimuLink. Most of the backend coding is done in C++. RTI accounts
NASA Technical Reports Server (NTRS)
Magana, Mario E.
1989-01-01
The digital position controller implemented in the control computer of the 3-axis attitude motion simulator is mathematically reconstructed and documented, since the information supplied with the executable code of this controller was insufficient to make substantial modifications to it. Also developed were methodologies to introduce changes in the controller which do not require rewriting the software. Finally, recommendations are made on possible improvement to the control system performance.
NASA Technical Reports Server (NTRS)
Carlson, S.; Culler, T.; Muller, R. A.; Tetreault, M.; Perlmutter, S.
1994-01-01
The parallax of all stars of visual magnitude greater than about 6.5 has already been measured. If Nemesis is a main-sequence star 1 parsec away, this requires Nemesis's mass to be less than about 0.4 solar masses. If it were less than about 0.05 solar masses its gravity would be too weak to trigger a comet storm. If Nemesis is on the main sequence, this mass range requires it to be a red dwarf. A red dwarf companion would probably have been missed by standard astronomical surveys. Nearby stars are usually found because they are bright or have high proper motion. However, Nemesis's proper motion would now be 0.01 arcsec/yr, and if it is a red dwarf its magnitude is about 10 - too dim to attract attention. Unfortunately, standard four-color photometry does not distinguish between red dwarfs and giants. So although surveys such as the Dearborn Red Star Catalog list stars by magnitude and spectral type, they do not identify the dwarfs. Every star of the correct spectral type and magnitude must be scrutinized. Our candidate list is a hybrid; candidate red stars are identified in the astrometrically poor Dearborn Red Star Catalog and their positions are corrected using the Hubble Guide Star Catalog. When errors in the Dearborn catalog make it impossible to identify the corresponding Hubble star, the fields are split so that we have one centering on each possible candidate. We are currently scrutinizing 3098 fields, which we believe contain all possible red dwarf candidates in the northern hemisphere. Since our last report the analysis and database software has been completely rebuilt to take advantage of updated hardware, to make the data more accessible, and to implement improved methods of data analysis. The software is now completed and we are eliminating stars every clear night.
Gallego, V; Pérez, L; Asturiano, J F; Yoshida, M
2014-09-15
The biodiversity of marine ecosystems is diverse and a high number of species coexist side by side. However, despite the fact that most of these species share a common fertilization strategy, a high variability in terms of the size, shape, and motion of spermatozoa can be found. In this study, we have analyzed both the sperm motion parameters and the spermatozoa morphometric features of two swimmer (pufferfish and European eel) and two sessile (sea urchin and ascidian) marine species. The most important differences in the sperm motion parameters were registered in the swimming period. Sessile species sperm displayed notably higher values than swimmer species sperm. In addition, the sperm motilities and velocities of the swimmer species decreased sharply once the sperm was activated, whereas the sessile species were able to maintain their initial values for a long time. These results are linked directly to the species-specific lifestyles. Although sessile organisms, which show limited or no movement, need sperm with a capacity to swim for long distances to find the oocytes, swimmer organisms can move toward the female and release gametes near it, and therefore the spermatozoa does not need to swim for such a long time. At the same time, sperm morphology is related to sperm motion parameters, and in this study an in-depth morphometric analysis of ascidian, sea urchin, and pufferfish spermatozoa, using computer-assisted sperm analysis software, has been carried out for the first time. A huge variability in shapes, sizes, and structures of the studied species was found using electron microscopy. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Tech Briefs, June 2002. Volume 26, No. 6
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on data acquisition, electronic components and systems, software, materials, mechanics, machinery/automation, physical sciences, book and reports, motion control, and a special section of Photonics Tech Briefs.
Tidal atmospheric and ocean loading in VLBI analysis
NASA Astrophysics Data System (ADS)
Girdiuk, Anastasiia; Schindelegger, Michael; Böhm, Johannes
2016-04-01
In VLBI (Very Long Baseline Interferometry) analysis, reductions for tidal atmospheric and ocean loading are commonly used according to the IERS Conventions. In this presentation we examine such loading corrections from contemporary geophysical models within routine VLBI processing and discuss the internal consistency of the applied corrections for various effects. In detail, two gravitational ocean tide models, FES2004 and the recent FES2012 atlas with a much finer horizontal resolution and an improved description of hydrodynamic processes, are employed. Moreover, the contribution of atmospheric tidal loading is also re-considered based on data taken from two providers of station displacements, Goddard Space Flight Center and the TU Wien group. Those two models differ in terms of the underlying meteorological data, which can be a reason for inconsistency of VLBI reductions and may lead to systematics in the VLBI products at tidal frequencies. We validate this assumption in terms of Earth rotation parameters, by a tidal analysis of diurnal and semi-diurnal universal time and semi-diurnal polar motion variations as determined with the Vienna VLBI Software. Applying the loading models in a consistent way still leads to unexplained residuals at about 4-5 μas in the diurnal polar motion band, thus limiting the possibility of assessing geophysical models at this particular frequency.
Adde, Lars; Helbostad, Jorunn L; Jensenius, Alexander R; Taraldsen, Gunnar; Grunewaldt, Kristine H; Støen, Ragnhild
2010-08-01
The aim of this study was to investigate the predictive value of a computer-based video analysis of the development of cerebral palsy (CP) in young infants. A prospective study of general movements used recordings from 30 high-risk infants (13 males, 17 females; mean gestational age 31wks, SD 6wks; range 23-42wks) between 10 and 15 weeks post term when fidgety movements should be present. Recordings were analysed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analyses. CP status was reported at 5 years. Thirteen infants developed CP (eight hemiparetic, four quadriparetic, one dyskinetic; seven ambulatory, three non-ambulatory, and three unknown function), of whom one had fidgety movements. Variability of the centroid of motion had a sensitivity of 85% and a specificity of 71% in identifying CP. By combining this with variables reflecting the amount of motion, specificity increased to 88%. Nine out of 10 children with CP, and for whom information about functional level was available, were correctly predicted with regard to ambulatory and non-ambulatory function. Prediction of CP can be provided by computer-based video analysis in young infants. The method may serve as an objective and feasible tool for early prediction of CP in high-risk infants.
Network and user interface for PAT DOME virtual motion environment system
NASA Technical Reports Server (NTRS)
Worthington, J. W.; Duncan, K. M.; Crosier, W. G.
1993-01-01
The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) provides astronauts a virtual microgravity sensory environment designed to help alleviate tye symptoms of space motion sickness (SMS). The system consists of four microcomputers networked to provide real time control, and an image generator (IG) driving a wide angle video display inside a dome structure. The spherical display demands distortion correction. The system is currently being modified with a new graphical user interface (GUI) and a new Silicon Graphics IG. This paper will concentrate on the new GUI and the networking scheme. The new GUI eliminates proprietary graphics hardware and software, and instead makes use of standard and low cost PC video (CGA) and off the shelf software (Microsoft's Quick C). Mouse selection for user input is supported. The new Silicon Graphics IG requires an Ethernet interface. The microcomputer known as the Real Time Controller (RTC), which has overall control of the system and is written in Ada, was modified to use the free public domain NCSA Telnet software for Ethernet communications with the Silicon Graphics IG. The RTC also maintains the original ARCNET communications through Novell Netware IPX with the rest of the system. The Telnet TCP/IP protocol was first used for real-time communication, but because of buffering problems the Telnet datagram (UDP) protocol needed to be implemented. Since the Telnet modules are written in C, the Adap pragma 'Interface' was used to interface with the network calls.
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy
Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.
2014-01-01
This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omari, E; Tai, A; Li, X
Purpose: Real-time ultrasound monitoring during SBRT is advantageous in understanding and identifying motion irregularities which may cause geometric misses. In this work, we propose to utilize real-time ultrasound to track the diaphragm in conjunction with periodical kV fluoroscopy to monitor motion of tumor or landmarks during SBRT delivery. Methods: Transabdominal Ultrasound (TAUS) b-mode images were collected from 10 healthy volunteers using the Clarity Autoscan System (Elekta). The autoscan transducer, which has a center frequency of 5 MHz, was utilized for the scans. The acquired images were contoured using the Clarity Automatic Fusion and Contouring workstation software. Monitoring sessions of 5more » minute length were observed and recorded. The position correlation between tumor and diaphragm could be established with periodic kV fluoroscopy periodically acquired during treatment with Elekta XVI. We acquired data using a tissue mimicking ultrasound phantom with embedded spheres placed on a motion stand using ultrasound and kV Fluoroscopy. MIM software was utilized for image fusion. Correlation of diaphragm and target motion was also validated using 4D-MRI and 4D-CBCT. Results: The diaphragm was visualized as a hyperechoic region on the TAUS b-mode images. Volunteer set-up can be adjusted such that TAUS probe will not interfere with treatment beams. A segment of the diaphragm was contoured and selected as our tracking structure. Successful monitoring sessions of the diaphragm were recorded. For some volunteers, diaphragm motion over 2 times larger than the initial motion has been observed during tracking. For the phantom study, we were able to register the 2D kV Fluoroscopy with the US images for position comparison. Conclusion: We demonstrated the feasibility of tracking the diaphragm using real-time ultrasound. Real-time tracking can help in identifying such irregularities in the respiratory motion which is correlated to tumor motion. We also showed the feasibility of acquiring 2D KV Fluoroscopy and registering the images with Ultrasound.« less
Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network
NASA Astrophysics Data System (ADS)
Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.
2011-12-01
The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing procedures, the nonlinloc algorithm was implemented for manual and automatic locations using 1D and 3D velocity models; plugins for improved automatic phase picking and Ml computation were developed; and the graphical user interface for manual review was extended (including pick uncertainty definition; first motion focal mechanisms; interactive review of station magnitude waveforms; full inclusion of strong motion data). SC3 locations are fully compatible with those derived from the existing in-house processing tools and are stored in a database derived from the QuakeML data model. The database is shared with the SED alerting software, which merges origins from both SC3 and external sources in realtime and handles the alerting procedure. With the monitoring software being transitioned to SeisComp3, acquisition, archival and dissemination of SED waveform data now conforms to the seedlink and ArcLink protocols and continuous archives can be accessed via SED and all EIDA (European Integrated Data Archives) web-sites. Further, a SC3 module for waveform parameterisation has been developed, allowing rapid computation of peak values of ground motion and other engineering parameters within minutes of a new event. An output of this module is USGS ShakeMap XML. n minutes of a new event. An output of this module is USGS ShakeMap XML.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen
2013-12-15
Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.« less
Motion performance and mooring system of a floating offshore wind turbine
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Liang; Wu, Haitao
2012-09-01
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
NASA Technical Reports Server (NTRS)
Howard, Joseph M.; Ha, Kong Q.; Shiri, Ron; Smith, J. Scott; Mosier, Gary; Muheim, Danniella
2008-01-01
This paper is part five of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory, and the fourth introduced the software toolkits used to perform much of the optical analysis for JWST. The work here models observatory operations by simulating line-of-sight image motion and alignment drifts over a two-week period. Alignment updates are then simulated using wavefront sensing and control processes to calculate and perform the corrections. A single model environment in Matlab is used for evaluating the predicted performance of the observatory during these operations.
Combining EEG, MIDI, and motion capture techniques for investigating musical performance.
Maidhof, Clemens; Kästner, Torsten; Makkonen, Tommi
2014-03-01
This article describes a setup for the simultaneous recording of electrophysiological data (EEG), musical data (MIDI), and three-dimensional movement data. Previously, each of these three different kinds of measurements, conducted sequentially, has been proven to provide important information about different aspects of music performance as an example of a demanding multisensory motor skill. With the method described here, it is possible to record brain-related activity and movement data simultaneously, with accurate timing resolution and at relatively low costs. EEG and MIDI data were synchronized with a modified version of the FTAP software, sending synchronization signals to the EEG recording device simultaneously with keypress events. Similarly, a motion capture system sent synchronization signals simultaneously with each recorded frame. The setup can be used for studies investigating cognitive and motor processes during music performance and music-like tasks--for example, in the domains of motor control, learning, music therapy, or musical emotions. Thus, this setup offers a promising possibility of a more behaviorally driven analysis of brain activity.
Flexcam Image Capture Viewing and Spot Tracking
NASA Technical Reports Server (NTRS)
Rao, Shanti
2008-01-01
Flexcam software was designed to allow continuous monitoring of the mechanical deformation of the telescope structure at Palomar Observatory. Flexcam allows the user to watch the motion of a star with a low-cost astronomical camera, to measure the motion of the star on the image plane, and to feed this data back into the telescope s control system. This automatic interaction between the camera and a user interface facilitates integration and testing. Flexcam is a CCD image capture and analysis tool for the ST-402 camera from Santa Barbara Instruments Group (SBIG). This program will automatically take a dark exposure and then continuously display corrected images. The image size, bit depth, magnification, exposure time, resolution, and filter are always displayed on the title bar. Flexcam locates the brightest pixel and then computes the centroid position of the pixels falling in a box around that pixel. This tool continuously writes the centroid position to a network file that can be used by other instruments.
NASA Astrophysics Data System (ADS)
Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.; Pop, Ioan
2018-06-01
The steady boundary layer flow over a stretching/shrinking cylinder with suction effect is numerically studied. Using a similarity transformations, the governing partial differential equations are transformed into a set of nonlinear differential equations and have been solved numerically using a bvp4c code in Matlab software. The nanofluid model used is taking into account the effects of Brownian motion and thermophoresis. The influences of the governing parameters namely the curvature parameter γ, mass suction parameter S, Brownian motion parameter Nb and thermophoresis parameter Nt on the flow, heat and mass transfers characteristics are presented graphically. The numerical results obtained for the skin friction coefficient, local Nusselt number and local Sherwood number are thoroughly determined and presented graphically for several values of the governing parameters. From our investigation, it is found that the non-unique (dual) solutions exist for a certain range of mass suction parameter. It is observed that as curvature parameter increases, the skin friction coefficient and heat transfer rate decrease, meanwhile the mass transfer rates increase. Moreover, the stability analysis showed that the first solution is linearly stable, while the second solution is linearly unstable.
Design and construction of a novel rotary magnetostrictive motor
NASA Astrophysics Data System (ADS)
Zhou, Nanjia; Blatchley, Charles C.; Ibeh, Christopher C.
2009-04-01
Magnetostriction can be used to induce linear incremental motion, which is effective in giant magnetostrictive inchworm motors. Such motors possess the advantage of combining small step incremental motion with large force. However, continuous rotation may be preferred in practical applications. This paper describes a novel magnetostrictive rotary motor using terfenol-D (Tb0.3Dy0.7Fe1.9) material as the driving element. The motor is constructed of two giant magnetostrictive actuators with shell structured flexure-hinge and leaf springs. These two actuators are placed in a perpendicular position to minimize the coupling displacement of the two actuators. The principal design parameters of the actuators and strain amplifiers are optimally determined, and its static analysis is undertaken through finite element analysis software. The small movements of the magnetostrictive actuators are magnified by about three times using oval shell structured amplifiers. When two sinusoidal wave currents with 90° phase shift are applied to the magnetostrictive actuators, purely rotational movement can be produced as in the orbit of a Lissajous diagram in an oscillograph, and this movement is used to drive the rotor of the motor. A prototype has been constructed and tested.
Using Wide-Field Meteor Cameras to Actively Engage Students in Science
NASA Astrophysics Data System (ADS)
Kuehn, D. M.; Scales, J. N.
2012-08-01
Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.
Selection and optimization of mooring cables on floating platform for special purposes
NASA Astrophysics Data System (ADS)
Ma, Guang-ying; Yao, Yun-long; Zhao, Chen-yao
2017-08-01
This paper studied a new type of assembled marine floating platform for special purposes. The selection and optimization of mooring cables on the floating platform are studied. By using ANSYS AQWA software, the hydrodynamic model of the platform was established to calculate the time history response of the platform motion under complex water environments, such as wind, wave, current and mooring. On this basis, motion response and cable tension were calculated with different cable mooring states under the designed environmental load. Finally, the best mooring scheme to meet the cable strength requirements was proposed, which can lower the motion amplitude of the platform effectively.
NASA Astrophysics Data System (ADS)
Vimmr, Jan; Bublík, Ondřej; Prausová, Helena; Hála, Jindřich; Pešek, Luděk
2018-06-01
This paper deals with a numerical simulation of compressible viscous fluid flow around three flat plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence model. The simulation was performed using the developed in-house CFD software based on discontinuous Galerkin method, which offers high order of accuracy.
Kinematics and Dynamics of Motion Control Based on Acceleration Control
NASA Astrophysics Data System (ADS)
Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro
The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.
Puchkov, Evgeny O
2010-06-01
In the vacuoles of Saccharomyces cerevisiae yeast cells, vividly moving insoluble polyphosphate complexes (IPCs) <1 microm size, stainable by a fluorescent dye, 4',6-diamidino-2-phenylindole (DAPI), may appear under some growth conditions. The aim of this study was to quantitatively characterize the movement of the IPCs and to evaluate the viscosity in the vacuoles using the obtained data. Studies were conducted on S. cerevisiae cells stained by DAPI and fluorescein isothyocyanate-labelled latex microspheres, using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA). IPC movement was photorecorded and shown to be Brownian motion. On latex microspheres, a methodology was developed for measuring a fluorescing particle's two-dimensional (2D) displacements and its size. In four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. Apparent viscosity values in the vacuoles of the cells, computed by the Einstein-Smoluchowski equation using the obtained data, were found to be 2.16 +/- 0.60, 2.52 +/- 0.63, 3.32 +/- 0.9 and 11.3 +/- 1.7 cP. The first three viscosity values correspond to 30-40% glycerol solutions. The viscosity value of 11.3 +/- 1.7 cP was supposed to be an overestimation, caused by the peculiarities of the vacuole structure and/or volume in this particular cell. This conclusion was supported by the particular quality of the Brownian motion trajectories set in this cell as compared to the other three cells.
Zhu, Wenchao; Xu, Xiulin; Hu, Xiufang; An, Meijun
2017-06-01
This article presents the design of a motion control system for seated lower-limb rehabilitation training. The system is composed of lower limb exoskeleton, motor drive circuit, program of motion control, and so forth. The power of lower limbs joints is provided by six motors. The PCI-1240 motion control card is used as the core. This study achieved repetitive rotation training and gait trajectory training of lower limbs joints, of which the velocity, angle and time can be accurately controlled and adjusted. The experimental results showed that the motion control system can meet the requirement of repetitive rehabilitation training for patients with lower limb dysfunction. This article provides a new method to the research of motion control system in rehabilitation training, which can promote industrial automation technique to be used for health care, and conducive to the further study of the rehabilitation robot.
A Four-Feet Walking-Type Rotary Piezoelectric Actuator with Minute Step Motion.
Liu, Yingxiang; Wang, Yun; Liu, Junkao; Xu, Dongmei; Li, Kai; Shan, Xiaobiao; Deng, Jie
2018-05-08
A four-feet walking-type rotary piezoelectric actuator with minute step motion was proposed. The proposed actuator used the rectangular motions of four driving feet to push the rotor step-by-step; this operating principle was different with the previous non-resonant actuators using direct-driving, inertial-driving, and inchworm-type mechanisms. The mechanism of the proposed actuator was discussed in detail. Transient analyses were accomplished by ANSYS software to simulate the motion trajectory of the driving foot and to find the response characteristics. A prototype was manufactured to verify the mechanism and to test the mechanical characteristics. A minimum resolution of 0.095 μrad and a maximum torque of 49 N·mm were achieved by the prototype, and the output speed was varied by changing the driving voltage and working frequency. This work provides a new mechanism for the design of a rotary piezoelectric actuator with minute step motion.
Active eye-tracking for an adaptive optics scanning laser ophthalmoscope
Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin
2015-01-01
We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370
A Four-Feet Walking-Type Rotary Piezoelectric Actuator with Minute Step Motion
Wang, Yun; Liu, Junkao; Xu, Dongmei; Li, Kai; Shan, Xiaobiao; Deng, Jie
2018-01-01
A four-feet walking-type rotary piezoelectric actuator with minute step motion was proposed. The proposed actuator used the rectangular motions of four driving feet to push the rotor step-by-step; this operating principle was different with the previous non-resonant actuators using direct-driving, inertial-driving, and inchworm-type mechanisms. The mechanism of the proposed actuator was discussed in detail. Transient analyses were accomplished by ANSYS software to simulate the motion trajectory of the driving foot and to find the response characteristics. A prototype was manufactured to verify the mechanism and to test the mechanical characteristics. A minimum resolution of 0.095 μrad and a maximum torque of 49 N·mm were achieved by the prototype, and the output speed was varied by changing the driving voltage and working frequency. This work provides a new mechanism for the design of a rotary piezoelectric actuator with minute step motion. PMID:29738495
SU-E-J-11: A New Optical Method to Register Patient External Motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbes, B; Azcona, J; Moreno, M
2014-06-01
Purpose: To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. Methods: The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom.To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used amore » first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained.The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. Results: Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. Conclusion: A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain.« less
Learning Photogrammetry with Interactive Software Tool PhoX
NASA Astrophysics Data System (ADS)
Luhmann, T.
2016-06-01
Photogrammetry is a complex topic in high-level university teaching, especially in the fields of geodesy, geoinformatics and metrology where high quality results are demanded. In addition, more and more black-box solutions for 3D image processing and point cloud generation are available that generate nice results easily, e.g. by structure-from-motion approaches. Within this context, the classical approach of teaching photogrammetry (e.g. focusing on aerial stereophotogrammetry) has to be reformed in order to educate students and professionals with new topics and provide them with more information behind the scene. Since around 20 years photogrammetry courses at the Jade University of Applied Sciences in Oldenburg, Germany, include the use of digital photogrammetry software that provide individual exercises, deep analysis of calculation results and a wide range of visualization tools for almost all standard tasks in photogrammetry. During the last years the software package PhoX has been developed that is part of a new didactic concept in photogrammetry and related subjects. It also serves as analysis tool in recent research projects. PhoX consists of a project-oriented data structure for images, image data, measured points and features and 3D objects. It allows for almost all basic photogrammetric measurement tools, image processing, calculation methods, graphical analysis functions, simulations and much more. Students use the program in order to conduct predefined exercises where they have the opportunity to analyse results in a high level of detail. This includes the analysis of statistical quality parameters but also the meaning of transformation parameters, rotation matrices, calibration and orientation data. As one specific advantage, PhoX allows for the interactive modification of single parameters and the direct view of the resulting effect in image or object space.
NASA Astrophysics Data System (ADS)
Kreemer, C. W.; Hammond, W. C.; Blewitt, G.
2009-12-01
The Sierra Nevada - Great Valley (SNGV) micro-plate has long been recognized as a tectonically rigid, though mobile, entity within the Pacific - North America plate boundary zone. The motion of the SNGV relative to stable North America (and the Colorado Plateau) provides the kinematic boundary condition for, and perhaps drives, the deformation in the Basin and Range Province (BRP) and Walker Lane. In the north the motion of the SNGV is aligned with the Mohawk Valley fault zone, which could have a slip rate of over a few mm/yr. The crest of the Sierras marks the SNGV’s eastern edge, but the obliquity between orientation of this boundary and the block’s motion implies an expected increase in rangefront-normal extension from the northern to southern Walker Lane. We use new GPS data from the EarthScope Plate Boundary Observatory (PBO) and our own semi-continuous MAGNET network to revisit the following questions: 1) Do the data still support rigidity of the SNGV?; 2) How far east does the rigidity extend and how does this relate to SNGV lithology?; 3) How does the direction of SNGV motion relate to the strike of its eastern margin and observed strain partitioning (and its along strike variation) in the Walker Lane?; and 4) How is SNGV-BRP motion accommodated between the Walker Lane and the Cascadia forearc? We analyze data from all the available continuous GPS sites in the greater SNGV region, including new data from PBO, as well as data from MAGNET. All data are processed with the GIPSY-OASIS II precise point positioning software using recently reprocessed orbits from JPL's IGS Analysis Center. The processing includes satellite and station antenna calibrations and all data have the phase ambiguities fixed using the Ambizap algorithm. Positions are estimated in our custom-made North America reference frame in which continental-scale common-mode errors are removed. Velocities and uncertainties are estimated using the CATS software in which we assuming an error model with flicker plus white noise. Many stations in the Great Valley show anomalous horizontal motions compared to the most stable stations in the Sierra Nevada Mountains. These motions are likely due to hydrological effects in the Great Valley, which can be seen in the significant subsidence that occurs at these stations. Consequently, there are a relatively small number of stations that should be used to constrain the SNGV rigid body rotation. We find that stations in the southernmost Sierra Nevada Mountains have a northward motion of >1 mm/yr relative to the central and northern Sierras. This could partly be explained in terms of regional post-seismic viscoelastic relaxation from recent earthquakes (e.g. Kern County 1952, Landers, 1992, Hector Mine1999), but may also reflect the region’s anomalous mantle dynamics.
A multimedia perioperative record keeper for clinical research.
Perrino, A C; Luther, M A; Phillips, D B; Levin, F L
1996-05-01
To develop a multimedia perioperative recordkeeper that provides: 1. synchronous, real-time acquisition of multimedia data, 2. on-line access to the patient's chart data, and 3. advanced data analysis capabilities through integrated, multimedia database and analysis applications. To minimize cost and development time, the system design utilized industry standard hardware components and graphical. software development tools. The system was configured to use a Pentium PC complemented with a variety of hardware interfaces to external data sources. These sources included physiologic monitors with data in digital, analog, video, and audio as well as paper-based formats. The development process was guided by trials in over 80 clinical cases and by the critiques from numerous users. As a result of this process, a suite of custom software applications were created to meet the design goals. The Perioperative Data Acquisition application manages data collection from a variety of physiological monitors. The Charter application provides for rapid creation of an electronic medical record from the patient's paper-based chart and investigator's notes. The Multimedia Medical Database application provides a relational database for the organization and management of multimedia data. The Triscreen application provides an integrated data analysis environment with simultaneous, full-motion data display. With recent technological advances in PC power, data acquisition hardware, and software development tools, the clinical researcher now has the ability to collect and examine a more complete perioperative record. It is hoped that the description of the MPR and its development process will assist and encourage others to advance these tools for perioperative research.
NASA Tech Briefs, August 2001. Volume 25, No. 8
NASA Technical Reports Server (NTRS)
2001-01-01
Topics include: special coverage section on computers and peripherals, and sections on electronic components systems, software, materials, mechanics, manufacturing/fabrication, physical sciences, book and reports, and a special section of Motion Control Tech Briefs.
NASA Tech Briefs, October 2002. Volume 26, No. 10
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on sensors, electronic components and systems, software, materials, materials, mechanics, manufacturing, physical sciences, information sciences, book and reports, motion control and a special section of Photonics Tech Briefs.
Computer-assisted 3D kinematic analysis of all leg joints in walking insects.
Bender, John A; Simpson, Elaine M; Ritzmann, Roy E
2010-10-26
High-speed video can provide fine-scaled analysis of animal behavior. However, extracting behavioral data from video sequences is a time-consuming, tedious, subjective task. These issues are exacerbated where accurate behavioral descriptions require analysis of multiple points in three dimensions. We describe a new computer program written to assist a user in simultaneously extracting three-dimensional kinematics of multiple points on each of an insect's six legs. Digital video of a walking cockroach was collected in grayscale at 500 fps from two synchronized, calibrated cameras. We improved the legs' visibility by painting white dots on the joints, similar to techniques used for digitizing human motion. Compared to manual digitization of 26 points on the legs over a single, 8-second bout of walking (or 106,496 individual 3D points), our software achieved approximately 90% of the accuracy with 10% of the labor. Our experimental design reduced the complexity of the tracking problem by tethering the insect and allowing it to walk in place on a lightly oiled glass surface, but in principle, the algorithms implemented are extensible to free walking. Our software is free and open-source, written in the free language Python and including a graphical user interface for configuration and control. We encourage collaborative enhancements to make this tool both better and widely utilized.
NASA Astrophysics Data System (ADS)
Urban, S. E.; Martin, J. C.; Jackson, E. S.; Corbin, T. E.
1996-07-01
The U. S. Naval Observatory is in the process of making new reductions of the Astrographic Catalogue using a modern reference catalog, the ACRS, and new data analysis and reduction software. Currently ten AC zones have been reduced. This papers discusses the reduction models and results from the Algiers, Oxford I and II, and Vatican zones (those of the Cape zone are discussed elsewhere). The resulting star positions will be combined with those of the U.S. Naval Observatory's Twin Astrograph Catalog to produce a catalog of positions and proper motions in support of the Sloan Digital Sky Survey.
Structure-from-motion for MAV image sequence analysis with photogrammetric applications
NASA Astrophysics Data System (ADS)
Schönberger, J. L.; Fraundorfer, F.; Frahm, J.-M.
2014-08-01
MAV systems have found increased attention in the photogrammetric community as an (autonomous) image acquisition platform for accurate 3D reconstruction. For an accurate reconstruction in feasible time, the acquired imagery requires specialized SfM software. Current systems typically use high-resolution sensors in pre-planned flight missions from far distance. We describe and evaluate a new SfM pipeline specifically designed for sequential, close-distance, and low-resolution imagery from mobile cameras with relatively high frame-rate and high overlap. Experiments demonstrate reduced computational complexity by leveraging the temporal consistency, comparable accuracy and point density with respect to state-of-the-art systems.
NASA Astrophysics Data System (ADS)
Salach, A.
2017-05-01
The documentary value of analogue scanned photographs is invaluable. A large and rich collection of archival photographs is often the only source of information about past of the selected area. This paper presents a method of adaptation of scanned, analogue photographs to suitable form allowing to use them in Structure from Motion technology. For this purpose, an automatic algorithm, implemented in the application called SAPC (Scanned Aerial Photographs Correction), which transforms scans to a form, which characteristic similar to the images captured by a digital camera, was invented. Images, which are created in the applied program as output data, are characterized by the same principal point position in each photo and the same resolution through cutting out the black photo frame. Additionally, SAPC generates a binary image file, which can mask areas of fiducial marks. In the experimental section, scanned, analogue photographs of Warsaw, which had been captured in 1986, were used in two variants: unprocessed and processed in SAPC application. An insightful analysis was conducted on the influence of transformation in SAPC on quality of spatial orientation of photographs. Block adjustment through aerial triangulation was calculated using two SfM software products: Agisoft PhotoScan and Pix4d and their results were compared with results obtained from professional photogrammetric software - Trimble Inpho. The author concluded that pre-processing in SAPC application had a positive impact on a quality of block orientation of scanned, analogue photographs, using SfM technology.
The Use Of Videography For Three-Dimensional Motion Analysis
NASA Astrophysics Data System (ADS)
Hawkins, D. A.; Hawthorne, D. L.; DeLozier, G. S.; Campbell, K. R.; Grabiner, M. D.
1988-02-01
Special video path editing capabilities with custom hardware and software, have been developed for use in conjunction with existing video acquisition hardware and firmware. This system has simplified the task of quantifying the kinematics of human movement. A set of retro-reflective markers are secured to a subject performing a given task (i.e. walking, throwing, swinging a golf club, etc.). Multiple cameras, a video processor, and a computer work station collect video data while the task is performed. Software has been developed to edit video files, create centroid data, and identify marker paths. Multi-camera path files are combined to form a 3D path file using the DLT method of cinematography. A separate program converts the 3D path file into kinematic data by creating a set of local coordinate axes and performing a series of coordinate transformations from one local system to the next. The kinematic data is then displayed for appropriate review and/or comparison.
Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.
Santoli, Salvatore
2009-02-01
Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.
Dauncey, Thomas; Singh, Harvinder P; Dias, Joseph J
Clinical measurement. To investigate the characteristics of wrist motion (area, axis, and location) during activities of daily living (ADL) using electrogoniometry. A sample of 83 normal volunteers performed the Sollerman hand function test (SHFT) with a flexible biaxial electrogoniometer applied to their wrists. This technique is accurate and reliable and has been used before for assessment of wrist circumduction in normal volunteers. A software package was used to overlay an ellipse of best fit around the 2-dimensional trace of the electrogoniometer mathematically computing the area, location, and axis angle of the ellipse. Most ADL could be completed within 20% of the total area of circumduction (3686°° ± 1575°°) of a normal wrist. An oblique plane in radial extension and ulnar flexion (dart-throwing motion plane) was used for rotation (-14° ± 32°) and power grip tasks (-29° ± 25°) during ADL; however, precision tasks (4° ± 28°), like writing, were performed more often in the flexion extension plane. In the dominant hand, only 2 power tasks were located in flexion region (cutting play dough [ulnar] and pouring carton [radial]), precision tasks were located centrally, and rotation and other power tasks were located in extension region. This study has identified that wrist motion during the ADL requires varying degrees of movement in oblique planes. Using electrogoniometry, we could visualize the area, location, and plane of motion during ADL. This could assist future researchers to compare procedures leading to loss of motion in specific quadrants of wrist motion and its impact on patient's ability in performing particular ADL. It could guide hand therapists to specifically focus on retraining the ADL that may be affected when wrist range of motion is lost after injury. Diagnostic level III. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
4-station ultra-rapid EOP experiment with e-VLBI technique and automated correlation/analysis
NASA Astrophysics Data System (ADS)
Kurihara, S.; Nozawa, K.; Haas, R.; Lovell, J.; McCallum, J.; Quick, J.; Hobiger, T.
2013-08-01
Since 2007, the Geospatial Information Authority of Japan (GSI) and the Onsala Space Observatory (OSO) have performed the ultra-rapid dUT1 experiments, which can provide us with near real-time dUT1 value. Its technical knowledge has already been adopted for the regular series of the Tsukuba-Wettzell intensive session. Now we tried some 4-station ultra-rapid EOP experiments in association with Hobart and HartRAO so that we can estimate not only dUT1 but also the two polar motion parameters. In this experiment a new analysis software c5++ developed by the National Institute of Information and Communications Technology (NICT) was used. We describe past developments and an overview of the experiment, and conclude with its results in this report.
Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite
NASA Technical Reports Server (NTRS)
Gullahorn, G. E.
1984-01-01
The effects of a tethered satellite system's internal dynamics on the subsatellite were calculated including both overall motions (libration and attitude oscillations) and internal tether oscillations. The SKYHOOK tether simulation program was modified to operate with atmospheric density variations and to output quantities of interest. Techniques and software for analyzing the results were developed including noise spectral analysis. A program was begun for computing a stable configuration of a tether system subject to air drag. These configurations will be of use as initial conditions for SKYHOOK and, through linearized analysis, directly for stability and dynamical studies. A case study in which the subsatellite traverses an atmospheric density enhancement confirmed some theoretical calculations, and pointed out some aspects of the interaction with the tether system dynamics.
Analyzing Robotic Kinematics Via Computed Simulations
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.
1992-01-01
Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.
Human Engineering Modeling and Performance Lab Study Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.
Pengpen, T; Soleimani, M
2015-06-13
Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol.
Sorzano, Carlos Oscar S; de la Rosa-Trevín, José Miguel; Tama, Florence; Jonić, Slavica
2014-11-01
This article presents an integral graphical interface to the Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) approach that was developed for capturing continuous motions of large macromolecular complexes from single-particle EM images. HEMNMA was shown to be a good approach to analyze multiple conformations of a macromolecular complex but it could not be widely used in the EM field due to a lack of an integral interface. In particular, its use required switching among different software sources as well as selecting modes for image analysis was difficult without the graphical interface. The graphical interface was thus developed to simplify the practical use of HEMNMA. It is implemented in the open-source software package Xmipp 3.1 (http://xmipp.cnb.csic.es) and only a small part of it relies on MATLAB that is accessible through the main interface. Such integration provides the user with an easy way to perform the analysis of macromolecular dynamics and forms a direct connection to the single-particle reconstruction process. A step-by-step HEMNMA protocol with the graphical interface is given in full details in Supplementary material. The graphical interface will be useful to experimentalists who are interested in studies of continuous conformational changes of macromolecular complexes beyond the modeling of continuous heterogeneity in single particle reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fadil, A.; Barriot, J.; Sichoix, L.; Ortega, P.; Willis, P.; Serafini, J.
2010-12-01
Monitoring vertical land motion is of crucial interest in observations of long-term sea level change and its reconstruction, but is among of the most, yet highly challenging, tasks of space geodesy. The aim of the paper is to compare the vertical velocity estimates of Tahiti Island obtained from six independent geophysical measurements, namely a decade of GPS, DORIS, and GRACE data, 17 years sea level difference (altimeter minus tide gauge (TG)) time series, ICE-5G (VM2 L90) Post-Glacial Rebound (PGR) model predictions, and coral reef stratigraphy. Except The Glacial Isostatic Adjustment (GIA also known as PGR) model, all the techniques are in a good agreement and reveal a very slow subsidence of the Tahiti Island averaged at -0.3 mm/yr which is barely significant. Neverthless, despite of that vertical motion, Tahiti remains an ideal location for the calibration of satellite altimeter measurements.Estimated vertical crustal motions from GPS, DORIS, GRACE, (altimetry - tide-gauge) sea level records, coral reef stratigraphy, and GIA. GG = GAMIT-GLOBK software packageGOA= GIPSY-OASIS II software package
An integrated model-based software for FUS in moving abdominal organs.
Schwenke, Michael; Strehlow, Jan; Haase, Sabrina; Jenne, Juergen; Tanner, Christine; Langø, Thomas; Loeve, Arjo J; Karakitsios, Ioannis; Xiao, Xu; Levy, Yoav; Sat, Giora; Bezzi, Mario; Braunewell, Stefan; Guenther, Matthias; Melzer, Andreas; Preusser, Tobias
2015-05-01
Focused ultrasound surgery (FUS) is a non-invasive method for tissue ablation that has the potential for complete and controlled local tumour destruction with minimal side effects. The treatment of abdominal organs such as the liver, however, requires particular technological support in order to enable a safe, efficient and effective treatment. As FUS is applied from outside the patient's body, suitable imaging methods, such as magnetic resonance imaging or diagnostic ultrasound, are needed to guide and track the procedure. To facilitate an efficient FUS procedure in the liver, the organ motion during breathing and the partial occlusion by the rib cage need to be taken into account in real time, demanding a continuous patient-specific adaptation of the treatment configuration. Modelling the patient's respiratory motion and combining this with tracking data improves the accuracy of motion predictions. Modelling and simulation of the FUS effects within the body allows the use of treatment planning and has the potential to be used within therapy to increase knowledge about the patient status. This article describes integrated model-based software for patient-specific modelling and prediction for FUS treatments of moving abdominal organs.
NASA Astrophysics Data System (ADS)
To, T.; Nguyen, D.; Tran, G.
2015-04-01
Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.
NASA Tech Briefs, April 1999. Volume 23, No. 4
NASA Technical Reports Server (NTRS)
1999-01-01
Topics include: special coverage sections on automotive technology, and CAM and sections on electronic components and systems, software, materials, machinery/automation, physical sciences, and a special section of Electronic Tech Briefs and Motion Control Tech Briefs.
NASA Tech Briefs, December 2000. Volume 24, No. 12
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: special coverage sections on Imaging/Video/Display Technology, and sections on electronic components and systems, test and measurement, software, information sciences, and special sections of Electronics Tech Briefs and Motion Control Tech Briefs.
NASA Tech Briefs, October 2001. Volume 25, No. 10
NASA Technical Reports Server (NTRS)
2001-01-01
Topics include: special coverage section on composites and plastics, electronic components and systems, software, mechanics, physical sciences, information sciences, book and reports, and a special sections of Photonics Tech Briefs and Motion Control Tech Briefs.
NASA Tech Briefs, February 2002. Volume 26, No. 2
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include:a technology focus on computers, electronic components and systems, software, materials, mechanics,physical sciences machinery, manufacturing/fabrication, mathematics, book and reports, motion control tech briefs and a special section on Photonics Tech Briefs.
Research on external flow field of a car based on reverse engineering
NASA Astrophysics Data System (ADS)
Hu, Shushan; Liu, Ronge
2018-05-01
In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.
Microcomputer based software for biodynamic simulation
NASA Technical Reports Server (NTRS)
Rangarajan, N.; Shams, T.
1993-01-01
This paper presents a description of a microcomputer based software package, called DYNAMAN, which has been developed to allow an analyst to simulate the dynamics of a system consisting of a number of mass segments linked by joints. One primary application is in predicting the motion of a human occupant in a vehicle under the influence of a variety of external forces, specially those generated during a crash event. Extensive use of a graphical user interface has been made to aid the user in setting up the input data for the simulation and in viewing the results from the simulation. Among its many applications, it has been successfully used in the prototype design of a moving seat that aids in occupant protection during a crash, by aircraft designers in evaluating occupant injury in airplane crashes, and by users in accident reconstruction for reconstructing the motion of the occupant and correlating the impacts with observed injuries.
NASA Astrophysics Data System (ADS)
Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.
2005-06-01
An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.
Simpson, Robin; Devenyi, Gabriel A; Jezzard, Peter; Hennessy, T Jay; Near, Jamie
2017-01-01
To introduce a new toolkit for simulation and processing of magnetic resonance spectroscopy (MRS) data, and to demonstrate some of its novel features. The FID appliance (FID-A) is an open-source, MATLAB-based software toolkit for simulation and processing of MRS data. The software is designed specifically for processing data with multiple dimensions (eg, multiple radiofrequency channels, averages, spectral editing dimensions). It is equipped with functions for importing data in the formats of most major MRI vendors (eg, Siemens, Philips, GE, Agilent) and for exporting data into the formats of several common processing software packages (eg, LCModel, jMRUI, Tarquin). This paper introduces the FID-A software toolkit and uses examples to demonstrate its novel features, namely 1) the use of a spectral registration algorithm to carry out useful processing routines automatically, 2) automatic detection and removal of motion-corrupted scans, and 3) the ability to perform several major aspects of the MRS computational workflow from a single piece of software. This latter feature is illustrated through both high-level processing of in vivo GABA-edited MEGA-PRESS MRS data, as well as detailed quantum mechanical simulations to generate an accurate LCModel basis set for analysis of the same data. All of the described processing steps resulted in a marked improvement in spectral quality compared with unprocessed data. Fitting of MEGA-PRESS data using a customized basis set resulted in improved fitting accuracy compared with a generic MEGA-PRESS basis set. The FID-A software toolkit enables high-level processing of MRS data and accurate simulation of in vivo MRS experiments. Magn Reson Med 77:23-33, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Teaching physics with Angry Birds: exploring the kinematics and dynamics of the game
NASA Astrophysics Data System (ADS)
Rodrigues, M.; Simeão Carvalho, P.
2013-07-01
In this paper, we present classroom strategies for teaching kinematics at middle and high school levels, using Rovio’s famous game Angry Birds and the video analyser software Tracker. We show how to take advantage of this entertaining video game, by recording appropriate motions of birds that students can explore by manipulating data, characterizing the red bird’s motion and fitting results to physical models. A dynamic approach is also addressed to link gravitational force to projectile trajectories.
Sensing And Force-Reflecting Exoskeleton
NASA Technical Reports Server (NTRS)
Eberman, Brian; Fontana, Richard; Marcus, Beth
1993-01-01
Sensing and force-reflecting exoskeleton (SAFiRE) provides control signals to robot hand and force feedback from robot hand to human operator. Operator makes robot hand touch objects gently and manipulates them finely without exerting excessive forces. Device attaches to operator's hand; comfortable and lightweight. Includes finger exoskeleton, cable mechanical transmission, two dc servomotors, partial thumb exoskeleton, harness, amplifier box, two computer circuit boards, and software. Transduces motion of index finger and thumb. Video monitor of associated computer displays image corresponding to motion.
Applied research of embedded WiFi technology in the motion capture system
NASA Astrophysics Data System (ADS)
Gui, Haixia
2012-04-01
Embedded wireless WiFi technology is one of the current wireless hot spots in network applications. This paper firstly introduces the definition and characteristics of WiFi. With the advantages of WiFi such as using no wiring, simple operation and stable transmission, this paper then gives a system design for the application of embedded wireless WiFi technology in the motion capture system. Also, it verifies the effectiveness of design in the WiFi-based wireless sensor hardware and software program.
NASA Astrophysics Data System (ADS)
Gómez-Gutiérrez, Álvaro; Juan de Sanjosé-Blasco, José; Schnabel, Susanne; de Matías-Bejarano, Javier; Pulido-Fernández, Manuel; Berenguer-Sempere, Fernando
2015-04-01
In this work, the hypothesis of improving 3D models obtained with Structure from Motion (SfM) approaches using images pre-processed by High Dynamic Range (HDR) techniques is tested. Photographs of the Veleta Rock Glacier in Spain were captured with different exposure values (EV0, EV+1 and EV-1), two focal lengths (35 and 100 mm) and under different weather conditions for the years 2008, 2009, 2011, 2012 and 2014. HDR images were produced using the different EV steps within Fusion F.1 software. Point clouds were generated using commercial and free available SfM software: Agisoft Photoscan and 123D Catch. Models Obtained using pre-processed images and non-preprocessed images were compared in a 3D environment with a benchmark 3D model obtained by means of a Terrestrial Laser Scanner (TLS). A total of 40 point clouds were produced, georeferenced and compared. Results indicated that for Agisoft Photoscan software differences in the accuracy between models obtained with pre-processed and non-preprocessed images were not significant from a statistical viewpoint. However, in the case of the free available software 123D Catch, models obtained using images pre-processed by HDR techniques presented a higher point density and were more accurate. This tendency was observed along the 5 studied years and under different capture conditions. More work should be done in the near future to corroborate whether the results of similar software packages can be improved by HDR techniques (e.g. ARC3D, Bundler and PMVS2, CMP SfM, Photosynth and VisualSFM).
Open architecture CMM motion controller
NASA Astrophysics Data System (ADS)
Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John
2001-12-01
Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.
Haddad, Cinira Assad Simão; Saad, Marcelo; Perez, Maria del Carmen Janeiro; Miranda, Fausto
2013-01-01
ABSTRACT Objective: To evaluate alterations in posture and range of motion of the upper limbs in women after mastectomy and lymphadenectomy, submitted to radiotherapy as adjuvant treatment. Methods: Two groups were evaluated: 16 post-mastectomy women with lymphedema of the upper limb and 14 post-mastectomy women without lymphedema. Patients were submitted to analysis made by software, one for posture and the other to measure ranges of movement of the shoulder, elbow, and wrists. The results obtained were compared between the right and left sides, and operated and non-operated sides, and then were submitted to statistical tests. Results: Both groups presented with anteriorization of the trunk. The women with lymphedema had head rotation to the right, protrusion of the left shoulder, and trunk inclination angle smaller on the operated side, besides bilateral elevation of the scapula when compared to the group with no lymphedema. Changes in range of motion were also smaller on the operated side in terms of flexion, abduction, and external rotation of the shoulder for all women, and for those with lymphedema, elbow extension and wrist flexion had a smaller range of motion. Conclusion: Women submitted to mastectomy presented with asymmetries and modifications in posture, and lymphedema seemed to worsen this condition. Additionally, they had deficits in range of motion in the shoulders on the operated side. Women with lymphedema also showed deficits in the elbows and wrist. PMID:24488379
NASA Technical Reports Server (NTRS)
Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel
2010-01-01
The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.
Motions of Celestial Bodies; Computer simulations
NASA Astrophysics Data System (ADS)
Butikov, Eugene
2014-10-01
This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.
Motion Analysis System for Instruction of Nihon Buyo using Motion Capture
NASA Astrophysics Data System (ADS)
Shinoda, Yukitaka; Murakami, Shingo; Watanabe, Yuta; Mito, Yuki; Watanuma, Reishi; Marumo, Mieko
The passing on and preserving of advanced technical skills has become an important issue in a variety of fields, and motion analysis using motion capture has recently become popular in the research of advanced physical skills. This research aims to construct a system having a high on-site instructional effect on dancers learning Nihon Buyo, a traditional dance in Japan, and to classify Nihon Buyo dancing according to style, school, and dancer's proficiency by motion analysis. We have been able to study motion analysis systems for teaching Nihon Buyo now that body-motion data can be digitized and stored by motion capture systems using high-performance computers. Thus, with the aim of developing a user-friendly instruction-support system, we have constructed a motion analysis system that displays a dancer's time series of body motions and center of gravity for instructional purposes. In this paper, we outline this instructional motion analysis system based on three-dimensional position data obtained by motion capture. We also describe motion analysis that we performed based on center-of-gravity data obtained by this system and motion analysis focusing on school and age group using this system.
Perfusion CT to assess angiogenesis in colon cancer: technical limitations and practical challenges.
Dighe, S; Castellano, E; Blake, H; Jeyadevan, N; Koh, M U; Orten, M; Swift, I; Brown, G
2012-10-01
Perfusion CT may have the potential to quantify the degree of angiogenesis of solid tumours in vivo. This study aims to identify the practical and technical challenges inherent to the technique, and evaluate its feasibility in colorectal tumours. 51 patients from 2 institutions prospectively underwent a single perfusion CT on 2 different multidetector scanners. The patients were advised to breath-hold as long as possible, followed by shallow breathing, and were given intravenous buscopan to reduce movement. Numerous steps were explored to identify the challenges. 43 patients successfully completed the perfusion CT as per protocol. Inability to detect the tumour (n=3), misplacement of dynamic sequence co-ordinates (n=2), failure of contrast injection (n=2) and displacement of tumour (n=1) were the reasons for failure. In 14 cases excessive respiratory motion displaced the tumour out of the scanning field along the temporal sequence, leading to erroneous data capture. In nine patients, minor displacements of the tumour were corrected by repositioning the region of interest (ROI) to its original position after reviewing each dynamic sequence slice. In 20 patients the tumour was stable, and data captured from the ROI were representative, and could have been analysed by commercially available Body Tumor Perfusion 3.0® software (GE Healthcare, Waukesha, WI). Hence all data were manually analysed by MATLAB® processing software (MathWorks, Cambridge, UK). Perfusion CT in tumours susceptible to motion during acquisition makes accurate data capture challenging and requires meticulous attention to detail. Motion correction software is essential if perfusion CT is to be used routinely in colorectal cancer.
Barth, Martin; Weiß, Christel; Brenke, Christopher; Schmieder, Kirsten
2017-04-01
Software-based planning of a spinal implant inheres in the promise of precision and superior results. The purpose of the study was to analyze the measurement reliability, prognostic value, and scientific use of a surgical planning software in patients receiving anterior cervical discectomy and fusion (ACDF). Lateral neutral, flexion, and extension radiographs of patients receiving tailored cages as suggested by the planning software were available for analysis. Differences of vertebral wedging angles and segmental height of all cervical segments were determined at different timepoints using intraclass correlation coefficients (ICC). Cervical lordosis (C2/C7), segmental heights, global, and segmental range of motion (ROM) were determined at different timepoints. Clinical and radiological variables were correlated 12 months after surgery. 282 radiographs of 35 patients with a mean age of 53.1 ± 12.0 years were analyzed. Measurement of segmental height was highly accurate with an ICC near to 1, but angle measurements showed low ICC values. Likewise, the ICCs of the prognosticated values were low. Postoperatively, there was a significant decrease of segmental height (p < 0.0001) and loss of C2/C7 ROM (p = 0.036). ROM of unfused segments also significantly decreased (p = 0.016). High NDI was associated with low subsidence rates. The surgical planning software showed high accuracy in the measurement of height differences and lower accuracy values with angle measurements. Both the prognosticated height and angle values were arbitrary. Global ROM, ROM of the fused and intact segments, is restricted after ACDF.
Motion control system of MAX IV Laboratory soft x-ray beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se
2016-07-27
At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less
Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique
1993-01-01
The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.
The Projectile Inside the Loop
ERIC Educational Resources Information Center
Varieschi, Gabriele U.
2006-01-01
The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.
NASA Tech Briefs, September 1998. Volume 22, No. 9
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage on data acquisition, also, electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, physical sciences, information sciences, This issue contains a special sections of Electronics Tech Briefs and Motion Control Tech Briefs.
Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William
2017-01-01
NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.
Microprocessor control system for 200-kilowatt Mod-OA wind turbines
NASA Technical Reports Server (NTRS)
Nyland, T. W.; Birchenough, A. G.
1982-01-01
The microprocessor system and program used to control the operation of the 200-kW Mod-OA wind turbines is described. The system is programmed to begin startup and shutdown sequences automatically and to control yaw motion. Rotor speed and power output are controlled with integral and proportional control of the blade pitch angle. Included in the report are a description of the hardware and a discussion of the software programming technique. A listing of the PL/M software program is given.
Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Suorsa, Raymond; Sridhar, Banavar
1991-01-01
A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.
Partridge, Roland W; Hughes, Mark A; Brennan, Paul M; Hennessey, Iain A M
2014-08-01
Objective performance feedback has potential to maximize the training benefit of laparoscopic simulators. Instrument movement metrics are, however, currently the preserve of complex and expensive systems. We aimed to develop and validate affordable, user-ready software that provides objective feedback by tracking instrument movement in a "take-home" laparoscopic simulator. Computer-vision processing tracks the movement of colored bands placed around the distal instrument shafts. The position of each instrument is logged from the simulator camera feed and movement metrics calculated in real time. Ten novices (junior doctors) and 13 general surgery trainees (StR) (training years 3-7) performed a standardized task (threading string through hoops) on the eoSim (eoSurgical™ Ltd., Edinburgh, Scotland, United Kingdom) take-home laparoscopic simulator. Statistical analysis was performed using unpaired t tests with Welch's correction. The software was able to track the instrument tips reliably and effectively. Significant differences between the two groups were observed in time to complete task (StR versus novice, 2 minutes 33 seconds versus 9 minutes 53 seconds; P=.01), total distance traveled by instruments (3.29 m versus 11.38 m, respectively; P=.01), average instrument motion smoothness (0.15 mm/second(3) versus 0.06 mm/second(3), respectively; P<.01), and handedness (mean difference between dominant and nondominant hand) (0.55 m versus 2.43 m, respectively; P=.03). There was no significant difference seen in the distance between instrument tips, acceleration, speed of instruments, or time off-screen. We have developed software that brings objective performance feedback to the portable laparoscopic box simulator. Construct validity has been demonstrated. Removing the need for additional motion-tracking hardware makes it affordable and accessible. It is user-ready and has the potential to enhance the training benefit of portable simulators both in the workplace and at home.
Using Google Earth to Explore Multiple Data Sets and Plate Tectonic Concepts
NASA Astrophysics Data System (ADS)
Goodell, L. P.
2015-12-01
Google Earth (GE) offers an engaging and dynamic environment for exploration of earth science data. While GIS software offers higher-level analytical capability, it comes with a steep learning curve and complex interface that is not easy for the novice, and in many cases the instructor, to negotiate. In contrast, the intuitive interface of GE makes it easy for students to quickly become proficient in manipulating the globe and independently exploring relationships between multiple data sets at a wide range of scales. Inquiry-based, data-rich exercises have been developed for both introductory and upper-level activities including: exploration of plate boundary characteristics and relative motion across plate boundaries; determination and comparison of short-term and long-term average plate velocities; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions. Used successfully in undergraduate course settings, for TA training and for professional development programs for middle and high school teachers, the exercises use the following GE data sets (with sources) that have been collected/compiled by the author and are freely available for non-commercial use: 1) tectonic plate boundaries and plate names (Bird, 2003 model); 2) real-time earthquakes (USGS); 3) 30 years of M>=5.0 earthquakes, plotted by depth (USGS); 4) seafloor age (Mueller et al., 1997, 2008); 5) location and age data for hot spot tracks (published literature); 6) Holocene volcanoes (Smithsonian Global Volcanism Program); 7) GPS station locations with links to times series (JPL, NASA, UNAVCO); 8) short-term motion vectors derived from GPS times series; 9) long-term average motion vectors derived from plate motion models (UNAVCO plate motion calculator); 10) earthquake data sets consisting of seismic station locations and links to relevant seismograms (Rapid Earthquake Viewer, USC/IRIS/DELESE).
Flow visualization and modeling for education and outreach in low-income countries
NASA Astrophysics Data System (ADS)
Motanated, K.
2016-12-01
Being able to visualize the dynamic interaction between the movement of water and sediment flux is undeniably a profound tool for students and novices to understand complicated earth surface processes. In a laser-sheet flow visualization technique, a light source that is thin and monochromatic is required to illuminate sediments or tracers in the flow. However, an ideal laser sheet generator is rather expensive, especially for schools and universities residing in low-income countries. This project is proposing less-expensive options for a laser-sheet source and flow visualization experiment configuration for qualitative observation and quantitative analysis of the interaction between fluid media and sediments. Here, Fresnel lens is used to convert from point laser into sheet laser. Multiple combinations of laser diodes of various wavelength (nanometer) and power (milliwatt) and Fresnel lenses of various dimensions are analyzed. The pair that is able to produce the thinnest and brightest light sheet is not only effective but also affordable. The motion of sediments in a flow can be observed by illuminating the laser-sheet in an interested flow region. The particle motion is recorded by a video camera that is capable of taking multiple frames per second and having a narrow depth of view. The recorded video file can be played in a slow-motion mode so students can visually observe and qualitatively analyze the particle motion. An open source software package for Particle Imaging Velocimetry (PIV) can calculate the local velocity of particles from still images extracted from the video and create a vector map depicting particle motion. This flow visualization experiment is inexpensive and the configuration is simple to setup. Most importantly, this flow visualization technique serves as a fundamental tool for earth surface process education and can further be applied to sedimentary process modeling.
CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitek, M. A.; Lottes, S. A.
This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petasecca, M., E-mail: marcop@uow.edu.au; Newall, M. K.; Aldosari, A. H.
Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of smallmore » field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.« less
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Zheng, Steven; Suaning, Gregg J
2014-01-01
Simulated prosthetic vision (SPV) in normally sighted subjects is an established way of investigating the prospective efficacy of visual prosthesis designs in visually guided tasks such as mobility. To perform meaningful SPV mobility studies in computer-based environments, a credible representation of both the virtual scene to navigate and the experienced artificial vision has to be established. It is therefore prudent to make optimal use of existing hardware and software solutions when establishing a testing framework. The authors aimed at improving the realism and immersion of SPV by integrating state-of-the-art yet low-cost consumer technology. The feasibility of body motion tracking to control movement in photo-realistic virtual environments was evaluated in a pilot study. Five subjects were recruited and performed an obstacle avoidance and wayfinding task using either keyboard and mouse, gamepad or Kinect motion tracking. Walking speed and collisions were analyzed as basic measures for task performance. Kinect motion tracking resulted in lower performance as compared to classical input methods, yet results were more uniform across vision conditions. The chosen framework was successfully applied in a basic virtual task and is suited to realistically simulate real-world scenes under SPV in mobility research. Classical input peripherals remain a feasible and effective way of controlling the virtual movement. Motion tracking, despite its limitations and early state of implementation, is intuitive and can eliminate between-subject differences due to familiarity to established input methods.
Validation results of the IAG Dancer project for distributed GPS analysis
NASA Astrophysics Data System (ADS)
Boomkamp, H.
2012-12-01
The number of permanent GPS stations in the world has grown far too large to allow processing of all this data at analysis centers. The majority of these GPS sites do not even make their observation data available to the analysis centers, for various valid reasons. The current ITRF solution is still based on centralized analysis by the IGS, and subsequent densification of the reference frame via regional network solutions. Minor inconsistencies in analysis methods, software systems and data quality imply that this centralized approach is unlikely to ever reach the ambitious accuracy objectives of GGOS. The dependence on published data also makes it clear that a centralized approach will never provide a true global ITRF solution for all GNSS receivers in the world. If the data does not come to the analysis, the only alternative is to bring the analysis to the data. The IAG Dancer project has implemented a distributed GNSS analysis system on the internet in which each receiver can have its own analysis center in the form of a freely distributed JAVA peer-to-peer application. Global parameters for satellite orbits, clocks and polar motion are solved via a distributed least squares solution among all participating receivers. A Dancer instance can run on any computer that has simultaneous access to the receiver data and to the public internet. In the future, such a process may be embedded in the receiver firmware directly. GPS network operators can join the Dancer ITRF realization without having to publish their observation data or estimation products. GPS users can run a Dancer process without contributing to the global solution, to have direct access to the ITRF in near real-time. The Dancer software has been tested on-line since late 2011. A global network of processes has gradually evolved to allow stabilization and tuning of the software in order to reach a fully operational system. This presentation reports on the current performance of the Dancer system, and demonstrates the obvious benefits of distributed analysis of geodetic data in general. IAG Dancer screenshot
NASA Technical Reports Server (NTRS)
Wilmington, R. P.; Klute, Glenn K. (Editor); Carroll, Amy E. (Editor); Stuart, Mark A. (Editor); Poliner, Jeff (Editor); Rajulu, Sudhakar (Editor); Stanush, Julie (Editor)
1992-01-01
Kinematics, the study of motion exclusive of the influences of mass and force, is one of the primary methods used for the analysis of human biomechanical systems as well as other types of mechanical systems. The Anthropometry and Biomechanics Laboratory (ABL) in the Crew Interface Analysis section of the Man-Systems Division performs both human body kinematics as well as mechanical system kinematics using the Ariel Performance Analysis System (APAS). The APAS supports both analysis of analog signals (e.g. force plate data collection) as well as digitization and analysis of video data. The current evaluations address several methodology issues concerning the accuracy of the kinematic data collection and analysis used in the ABL. This document describes a series of evaluations performed to gain quantitative data pertaining to position and constant angular velocity movements under several operating conditions. Two-dimensional as well as three-dimensional data collection and analyses were completed in a controlled laboratory environment using typical hardware setups. In addition, an evaluation was performed to evaluate the accuracy impact due to a single axis camera offset. Segment length and positional data exhibited errors within 3 percent when using three-dimensional analysis and yielded errors within 8 percent through two-dimensional analysis (Direct Linear Software). Peak angular velocities displayed errors within 6 percent through three-dimensional analyses and exhibited errors of 12 percent when using two-dimensional analysis (Direct Linear Software). The specific results from this series of evaluations and their impacts on the methodology issues of kinematic data collection and analyses are presented in detail. The accuracy levels observed in these evaluations are also presented.
SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, S; Rao, A; Wendt, R
Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the cameramore » by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination.« less
Non-linear motions in reprocessed GPS station position time series
NASA Astrophysics Data System (ADS)
Rudenko, Sergei; Gendt, Gerd
2010-05-01
Global Positioning System (GPS) data of about 400 globally distributed stations obtained at time span from 1998 till 2007 were reprocessed using GFZ Potsdam EPOS (Earth Parameter and Orbit System) software within International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Pilot Project and IGS Data Reprocessing Campaign with the purpose to determine weekly precise coordinates of GPS stations located at or near tide gauges. Vertical motions of these stations are used to correct the vertical motions of tide gauges for local motions and to tie tide gauge measurements to the geocentric reference frame. Other estimated parameters include daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. The solution GT1 derived is based on using absolute phase center variation model, ITRF2005 as a priori reference frame, and other new models. The solution contributed also to ITRF2008. The time series of station positions are analyzed to identify non-linear motions caused by different effects. The paper presents the time series of GPS station coordinates and investigates apparent non-linear motions and their influence on GPS station height rates.
Power, Jonathan D; Barnes, Kelly A; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E
2011-01-01
Here, we demonstrate that subject motion produces substantial changes in the timecourses of resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of motion estimates from the data. These changes cause systematic but spurious correlation structures throughout the brain. Specifically, many long-distance correlations are decreased by subject motion, whereas many short-distance correlations are increased. These changes in rs-fcMRI correlations do not arise from, nor are they adequately countered by, some common functional connectivity processing steps. Two indices of data quality are proposed, and a simple method to reduce motion-related effects in rs-fcMRI analyses is demonstrated that should be flexibly implementable across a variety of software platforms. We demonstrate how application of this technique impacts our own data, modifying previous conclusions about brain development. These results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements. PMID:22019881
Real-time motion analytics during brain MRI improve data quality and reduce costs.
Dosenbach, Nico U F; Koller, Jonathan M; Earl, Eric A; Miranda-Dominguez, Oscar; Klein, Rachel L; Van, Andrew N; Snyder, Abraham Z; Nagel, Bonnie J; Nigg, Joel T; Nguyen, Annie L; Wesevich, Victoria; Greene, Deanna J; Fair, Damien A
2017-11-01
Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
CT fluoroscopy-guided robotically-assisted lung biopsy
NASA Astrophysics Data System (ADS)
Xu, Sheng; Fichtinger, Gabor; Taylor, Russell H.; Banovac, Filip; Cleary, Kevin
2006-03-01
Lung biopsy is a common interventional radiology procedure. One of the difficulties in performing the lung biopsy is that lesions move with respiration. This paper presents a new robotically assisted lung biopsy system for CT fluoroscopy that can automatically compensate for the respiratory motion during the intervention. The system consists of a needle placement robot to hold the needle on the CT scan plane, a radiolucent Z-frame for registration of the CT and robot coordinate systems, and a frame grabber to obtain the CT fluoroscopy image in real-time. The CT fluoroscopy images are used to noninvasively track the motion of a pulmonary lesion in real-time. The position of the lesion in the images is automatically determined by the image processing software and the motion of the robot is controlled to compensate for the lesion motion. The system was validated under CT fluoroscopy using a respiratory motion simulator. A swine study was also done to show the feasibility of the technique in a respiring animal.
Astrometric Measurements and Proper Motion Analysis for WDS 11582 +0335 HJ 1204
NASA Astrophysics Data System (ADS)
Edwards, Erica; Garcia, Jose; Terronez, Cheyenne; Stuart, Melanie; Calanog, Jae; Boyce, Pat; Boyce, Grady
2018-04-01
We obtained and analyzed CCD images of the double star system WDS 11582 +0335 (HJ 1204) using the iTelescope network and a variety of specialized software. WCS coordinates were attached to each image, and the separation distance (ρ) and mean position angle (θ) were measured at ρ = 7.9" ± 0.03" and θ = 59.3° ± 0.2°. These results were compared to historical data, dating back 200 years and we find that HJ 1204 is currently exhibiting a linearly decreasing ρ and a constant θ. This suggests that HJ 1204 could be a visual double or an edge-on binary. Follow-up spectroscopic observations should resolve the two possibilities.
Determining the benefits of Vorticella cell body motion
NASA Astrophysics Data System (ADS)
Specht, Matty C.; Pepper, Rachel E.
2016-11-01
Microscopic sessile suspension feeders are single-celled organisms found in aquatic ecosystems. They live attached to underwater surfaces and create a fluid flow in order to feed on bacteria and debris. They participate in the natural degradation of contaminants in water. Understanding the fluid flow they create enhances our knowledge of their environmental impact. One type of suspension feeder, Vorticella, have been observed to vary their cell body orientation with respect to their surface, but the benefits of this motion are still unknown. We use simulations to investigate the effect of Vorticella body motion on the feeding current and the nutrient flux to the cell body to determine whether or not the motion increases nutrient consumption. We determine the nutrient flux using COMSOL Multiphysics software to solve the advection-diffusion equation with the flow given by a stokeslet model. We use a range of motions similar and dissimilar to that of live Vorticella. We find that most patterns of motion do not increase the nutrient flux, since the Vorticella feed from regions where they already have depleted the water of nutrients. However, it is possible that their motion could help the Vorticella find nutrients that are inhomogenously distributed in water.
Improvements to the fastex flutter analysis computer code
NASA Technical Reports Server (NTRS)
Taylor, Ronald F.
1987-01-01
Modifications to the FASTEX flutter analysis computer code (UDFASTEX) are described. The objectives were to increase the problem size capacity of FASTEX, reduce run times by modification of the modal interpolation procedure, and to add new user features. All modifications to the program are operable on the VAX 11/700 series computers under the VAX operating system. Interfaces were provided to aid in the inclusion of alternate aerodynamic and flutter eigenvalue calculations. Plots can be made of the flutter velocity, display and frequency data. A preliminary capability was also developed to plot contours of unsteady pressure amplitude and phase. The relevant equations of motion, modal interpolation procedures, and control system considerations are described and software developments are summarized. Additional information documenting input instructions, procedures, and details of the plate spline algorithm is found in the appendices.
Dynamic analysis and control PID path of a model type gantry crane
NASA Astrophysics Data System (ADS)
Ospina-Henao, P. A.; López-Suspes, Framsol
2017-06-01
This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. In order to verify the theoretical results obtained, a contrast was made between solutions obtained by simulation in SimMechanics-Matlab and Euler-Lagrange equations system, has been solved through Matlab libraries for solving equation’s systems of the type and order obtained. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of PID control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.
Automatic respiration tracking for radiotherapy using optical 3D camera
NASA Astrophysics Data System (ADS)
Li, Tuotuo; Geng, Jason; Li, Shidong
2013-03-01
Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New images can be accurately represented as weighted summation of those eigen-vectors, which can be easily discriminated with a trained classifier. We developed algorithms, software and integrated with an O3D imaging system to perform the respiration tracking automatically. The resulting respiration tracking system requires no human intervene during it tracking operation. Experimental results show that our approach to respiration tracking is more accurate and robust than the methods using manual selected markers, even in the presence of incomplete imaging data.
Upgrades to the NOAA/NESDIS automated Cloud-Motion Vector system
NASA Technical Reports Server (NTRS)
Nieman, Steve; Menzel, W. Paul; Hayden, Christopher M.; Wanzong, Steve; Velden, Christopher S.
1993-01-01
The latest version of the automated cloud motion vector software has yielded significant improvements in the quality of the GOES cloud-drift winds produced operationally by NESDIS. Cloud motion vectors resulting from the automated system are now equal or superior in quality to those which had the benefit of manual quality control a few years ago. The single most important factor in this improvement has been the upgraded auto-editor. Improved tracer selection procedures eliminate targets in difficult regions and allow a higher target density and therefore enhanced coverage in areas of interest. The incorporation of the H2O-intercept height assignment method allows an adequate representation of the heights of semi-transparent clouds in the absence of a CO2-absorption channel. Finally, GOES-8 water-vapor motion winds resulting from the automated system are superior to any done previously by NESDIS and should now be considered as an operational product.
Exploitation of Ubiquitous Wi-Fi Devices as Building Blocks for Improvised Motion Detection Systems.
Soldovieri, Francesco; Gennarelli, Gianluca
2016-02-27
This article deals with a feasibility study on the detection of human movements in indoor scenarios based on radio signal strength variations. The sensing principle exploits the fact that the human body interacts with wireless signals, introducing variations of the radiowave fields due to shadowing and multipath phenomena. As a result, human motion can be inferred from fluctuations of radiowave power collected by a receiving terminal. In this paper, we investigate the potentialities of widely available wireless communication devices in order to develop an improvised motion detection system (IMDS). Experimental tests are performed in an indoor environment by using a smartphone as a Wi-Fi access point and a laptop with dedicated software as a receiver. Simple detection strategies tailored for real-time operation are implemented to process the received signal strength measurements. The achieved results confirm the potentialities of the simple system here proposed to reliably detect human motion in operational conditions.
HETDEX tracker control system design and implementation
NASA Astrophysics Data System (ADS)
Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian
2012-09-01
To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.
Fonseca, Carissa G; Backhaus, Michael; Bluemke, David A; Britten, Randall D; Chung, Jae Do; Cowan, Brett R; Dinov, Ivo D; Finn, J Paul; Hunter, Peter J; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Medrano-Gracia, Pau; Shivkumar, Kalyanam; Suinesiaputra, Avan; Tao, Wenchao; Young, Alistair A
2011-08-15
Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt). http://www.cardiacatlas.org a.young@auckland.ac.nz Supplementary data are available at Bioinformatics online.
The use of hypermedia to increase the productivity of software development teams
NASA Technical Reports Server (NTRS)
Coles, L. Stephen
1991-01-01
Rapid progress in low-cost commercial PC-class multimedia workstation technology will potentially have a dramatic impact on the productivity of distributed work groups of 50-100 software developers. Hypermedia/multimedia involves the seamless integration in a graphical user interface (GUI) of a wide variety of data structures, including high-resolution graphics, maps, images, voice, and full-motion video. Hypermedia will normally require the manipulation of large dynamic files for which relational data base technology and SQL servers are essential. Basic machine architecture, special-purpose video boards, video equipment, optical memory, software needed for animation, network technology, and the anticipated increase in productivity that will result for the introduction of hypermedia technology are covered. It is suggested that the cost of the hardware and software to support an individual multimedia workstation will be on the order of $10,000.
Petasecca, M; Newall, M K; Booth, J T; Duncan, M; Aldosari, A H; Fuduli, I; Espinoza, A A; Porumb, C S; Guatelli, S; Metcalfe, P; Colvill, E; Cammarano, D; Carolan, M; Oborn, B; Lerch, M L F; Perevertaylo, V; Keall, P J; Rosenfeld, A B
2015-06-01
Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named "MagicPlate-512" for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by (GEANT)4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.
NASA Technical Reports Server (NTRS)
Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron
1994-01-01
This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.
Effect of Ground Motion Characteristics on the Seismic Response of a Monumental Concrete Arch Bridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caglayan, B. Ozden; Ozakgul, Kadir; Tezer, Ovunc
2008-07-08
Railway network in Turkey dates back to more than a hundred years ago and according to official records, there are approximately 18,000 railway bridges with spans varying between 50 cm up to 150 meters. One of them is a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, located in an earthquake-prone region in southern part of the country. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a seriesmore » of in-depth acceleration measurements that were conducted on-site, the model was refined. Types of ground motion records were used to investigate the seismic response and vulnerability of this massive structure in order to provide information regarding (i) damage-susceptible regions of the structure for monitoring purposes, and, (ii) seismic loads to be taken into account during evaluation and possible strengthening phases for this type of structures.« less
Validation of XMALab software for marker-based XROMM.
Knörlein, Benjamin J; Baier, David B; Gatesy, Stephen M; Laurence-Chasen, J D; Brainerd, Elizabeth L
2016-12-01
Marker-based XROMM requires software tools for: (1) correcting fluoroscope distortion; (2) calibrating X-ray cameras; (3) tracking radio-opaque markers; and (4) calculating rigid body motion. In this paper we describe and validate XMALab, a new open-source software package for marker-based XROMM (C++ source and compiled versions on Bitbucket). Most marker-based XROMM studies to date have used XrayProject in MATLAB. XrayProject can produce results with excellent accuracy and precision, but it is somewhat cumbersome to use and requires a MATLAB license. We have designed XMALab to accelerate the XROMM process and to make it more accessible to new users. Features include the four XROMM steps (listed above) in one cohesive user interface, real-time plot windows for detecting errors, and integration with an online data management system, XMAPortal. Accuracy and precision of XMALab when tracking markers in a machined object are ±0.010 and ±0.043 mm, respectively. Mean precision for nine users tracking markers in a tutorial dataset of minipig feeding was ±0.062 mm in XMALab and ±0.14 mm in XrayProject. Reproducibility of 3D point locations across nine users was 10-fold greater in XMALab than in XrayProject, and six degree-of-freedom bone motions calculated with a joint coordinate system were 3- to 6-fold more reproducible in XMALab. XMALab is also suitable for tracking white or black markers in standard light videos with optional checkerboard calibration. We expect XMALab to increase both the quality and quantity of animal motion data available for comparative biomechanics research. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Schwind, Michael
Structure from Motion (SfM) is a photogrammetric technique whereby three-dimensional structures (3D) are estimated from overlapping two-dimensional (2D) image sequences. It is studied in the field of computer vision and utilized in fields such as archeology, engineering, and the geosciences. Currently, many SfM software packages exist that allow for the generation of 3D point clouds. Little work has been done to show how topographic data generated from these software differ over varying terrain types and why they might produce different results. This work aims to compare and characterize the differences between point clouds generated by three different SfM software packages: two well-known proprietary solutions (Pix4D, Agisoft PhotoScan) and one open source solution (OpenDroneMap). Five terrain types were imaged utilizing a DJI Phantom 3 Professional small unmanned aircraft system (sUAS). These terrain types include a marsh environment, a gently sloped sandy beach and jetties, a forested peninsula, a house, and a flat parking lot. Each set of imagery was processed with each software and then directly compared to each other. Before processing the sets of imagery, the software settings were analyzed and chosen in a manner that allowed for the most similar settings to be set across the three software types. This was done in an attempt to minimize point cloud differences caused by dissimilar settings. The characteristics of the resultant point clouds were then compared with each other. Furthermore, a terrestrial light detection and ranging (LiDAR) survey was conducted over the flat parking lot using a Riegl VZ- 400 scanner. This data served as ground truth in order to conduct an accuracy assessment of the sUAS-SfM point clouds. Differences were found between the different results, apparent not only in the characteristics of the clouds, but also the accuracy. This study allows for users of SfM photogrammetry to have a better understanding of how different processing software compare and the inherent sensitivity of SfM automation in 3D reconstruction. Because this study used mostly default settings within the software, it would be beneficial for further research to investigate the effects of changing parameters have on the fidelity of point cloud datasets generated from different SfM software packages.
On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor.
Kim, Woosuk; Kim, Myunggyu
2018-03-19
In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing) verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.
Seismic Hazard analysis of Adjaria Region in Georgia
NASA Astrophysics Data System (ADS)
Jorjiashvili, Nato; Elashvili, Mikheil
2014-05-01
The most commonly used approach to determining seismic-design loads for engineering projects is probabilistic seismic-hazard analysis (PSHA). The primary output from a PSHA is a hazard curve showing the variation of a selected ground-motion parameter, such as peak ground acceleration (PGA) or spectral acceleration (SA), against the annual frequency of exceedance (or its reciprocal, return period). The design value is the ground-motion level that corresponds to a preselected design return period. For many engineering projects, such as standard buildings and typical bridges, the seismic loading is taken from the appropriate seismic-design code, the basis of which is usually a PSHA. For more important engineering projects— where the consequences of failure are more serious, such as dams and chemical plants—it is more usual to obtain the seismic-design loads from a site-specific PSHA, in general, using much longer return periods than those governing code based design. Calculation of Probabilistic Seismic Hazard was performed using Software CRISIS2007 by Ordaz, M., Aguilar, A., and Arboleda, J., Instituto de Ingeniería, UNAM, Mexico. CRISIS implements a classical probabilistic seismic hazard methodology where seismic sources can be modelled as points, lines and areas. In the case of area sources, the software offers an integration procedure that takes advantage of a triangulation algorithm used for seismic source discretization. This solution improves calculation efficiency while maintaining a reliable description of source geometry and seismicity. Additionally, supplementary filters (e.g. fix a sitesource distance that excludes from calculation sources at great distance) allow the program to balance precision and efficiency during hazard calculation. Earthquake temporal occurrence is assumed to follow a Poisson process, and the code facilitates two types of MFDs: a truncated exponential Gutenberg-Richter [1944] magnitude distribution and a characteristic magnitude distribution [Youngs and Coppersmith, 1985]. Notably, the software can deal with uncertainty in the seismicity input parameters such as maximum magnitude value. CRISIS offers a set of built-in GMPEs, as well as the possibility of defining new ones by providing information in a tabular format. Our study shows that in case of Ajaristkali HPP study area, significant contribution to Seismic Hazard comes from local sources with quite low Mmax values, thus these two attenuation lows give us quite different PGA and SA values.
Delparte, D; Gates, RD; Takabayashi, M
2015-01-01
The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190
The Coming of Digital Desktop Media.
ERIC Educational Resources Information Center
Galbreath, Jeremy
1992-01-01
Discusses the movement toward digital-based platforms including full-motion video for multimedia products. Hardware- and software-based compression techniques for digital data storage are considered, and a chart summarizes features of Digital Video Interactive, Moving Pictures Experts Group, P x 64, Joint Photographic Experts Group, Apple…
NASA Tech Briefs, December 2001. Volume 25, No. 12
NASA Technical Reports Server (NTRS)
2001-01-01
Topics include: special coverage section on sensors, and sections on electronic components and systems, software, materials, mechanics, information sciences, book and reports, and a special section of Motion Control Tech Briefs. It also contains a section celebrating the 25th anniversary of the publication.
Design and development of an upper extremity motion capture system for a rehabilitation robot.
Nanda, Pooja; Smith, Alan; Gebregiorgis, Adey; Brown, Edward E
2009-01-01
Human robot interaction is a new and rapidly growing field and its application in the realm of rehabilitation and physical care is a major focus area of research worldwide. This paper discusses the development and implementation of a wireless motion capture system for the human arm which can be used for physical therapy or real-time control of a robotic arm, among many other potential applications. The system is comprised of a mechanical brace with rotary potentiometers inserted at the different joints to capture position data. It also contains surface electrodes which acquire electromyographic signals through the CleveMed BioRadio device. The brace interfaces with a software subsystem which displays real time data signals. The software includes a 3D arm model which imitates the actual movement of a subject's arm under testing. This project began as part of the Rochester Institute of Technology's Undergraduate Multidisciplinary Senior Design curriculum and has been integrated into the overall research objectives of the Biomechatronic Learning Laboratory.
NASA Astrophysics Data System (ADS)
Neighbors, C.; Noriega, G. R.; Caras, Y.; Cochran, E. S.
2010-12-01
HAZUS-MH MR4 (HAZards U. S. Multi-Hazard Maintenance Release 4) is a risk-estimation software developed by FEMA to calculate potential losses due to natural disasters. Federal, state, regional, and local government use the HAZUS-MH Earthquake Model for earthquake risk mitigation, preparedness, response, and recovery planning (FEMA, 2003). In this study, we examine several parameters used by the HAZUS-MH Earthquake Model methodology to understand how modifying the user-defined settings affect ground motion analysis, seismic risk assessment and earthquake loss estimates. This analysis focuses on both shallow crustal and deep intraslab events in the American Pacific Northwest. Specifically, the historic 1949 Mw 6.8 Olympia, 1965 Mw 6.6 Seattle-Tacoma and 2001 Mw 6.8 Nisqually normal fault intraslab events and scenario large-magnitude Seattle reverse fault crustal events are modeled. Inputs analyzed include variations of deterministic event scenarios combined with hazard maps and USGS ShakeMaps. This approach utilizes the capacity of the HAZUS-MH Earthquake Model to define landslide- and liquefaction- susceptibility hazards with local groundwater level and slope stability information. Where Shakemap inputs are not used, events are run in combination with NEHRP soil classifications to determine site amplification effects. The earthquake component of HAZUS-MH applies a series of empirical ground motion attenuation relationships developed from source parameters of both regional and global historical earthquakes to estimate strong ground motion. Ground motion and resulting ground failure due to earthquakes are then used to calculate, direct physical damage for general building stock, essential facilities, and lifelines, including transportation systems and utility systems. Earthquake losses are expressed in structural, economic and social terms. Where available, comparisons between recorded earthquake losses and HAZUS-MH earthquake losses are used to determine how region coordinators can most effectively utilize their resources for earthquake risk mitigation. This study is being conducted in collaboration with King County, WA officials to determine the best model inputs necessary to generate robust HAZUS-MH models for the Pacific Northwest.
Kumar, Neelesh
2014-10-01
Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.
Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild
2013-08-01
This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies.
NASA Technical Reports Server (NTRS)
Hall, Drew P.; Ly, William; Howard, Richard T.; Weir, John; Rakoczy, John; Roe, Fred (Technical Monitor)
2002-01-01
The software development for an upgrade to the Hobby-Eberly Telescope (HET) was done in LABView. In order to improve the performance of the HET at the McDonald Observatory, a closed-loop system had to be implemented to keep the mirror segments aligned during periods of observation. The control system, called the Segment Alignment Maintenance System (SAMs), utilized inductive sensors to measure the relative motions of the mirror segments. Software was developed in LABView to tie the sensors, operator interface, and mirror-control motors together. Developing the software in LABView allowed the system to be flexible, understandable, and able to be modified by the end users. Since LABView is built using block diagrams, the software naturally followed the designed control system's block and flow diagrams, and individual software blocks could be easily verified. LABView's many built-in display routines allowed easy visualization of diagnostic and health-monitoring data during testing. Also, since LABView is a multi-platform software package, different programmers could develop the code remotely on various types of machines. LABView s ease of use facilitated rapid prototyping and field testing. There were some unanticipated difficulties in the software development, but the use of LABView as the software "language" for the development of SAMs contributed to the overall success of the project.
Flow visualization of CFD using graphics workstations
NASA Technical Reports Server (NTRS)
Lasinski, Thomas; Buning, Pieter; Choi, Diana; Rogers, Stuart; Bancroft, Gordon
1987-01-01
High performance graphics workstations are used to visualize the fluid flow dynamics obtained from supercomputer solutions of computational fluid dynamic programs. The visualizations can be done independently on the workstation or while the workstation is connected to the supercomputer in a distributed computing mode. In the distributed mode, the supercomputer interactively performs the computationally intensive graphics rendering tasks while the workstation performs the viewing tasks. A major advantage of the workstations is that the viewers can interactively change their viewing position while watching the dynamics of the flow fields. An overview of the computer hardware and software required to create these displays is presented. For complex scenes the workstation cannot create the displays fast enough for good motion analysis. For these cases, the animation sequences are recorded on video tape or 16 mm film a frame at a time and played back at the desired speed. The additional software and hardware required to create these video tapes or 16 mm movies are also described. Photographs illustrating current visualization techniques are discussed. Examples of the use of the workstations for flow visualization through animation are available on video tape.
Cannell, John; Jovic, Emelyn; Rathjen, Amy; Lane, Kylie; Tyson, Anna M; Callisaya, Michele L; Smith, Stuart T; Ahuja, Kiran Dk; Bird, Marie-Louise
2018-02-01
To compare the efficacy of novel interactive, motion capture-rehabilitation software to usual care stroke rehabilitation on physical function. Randomized controlled clinical trial. Two subacute hospital rehabilitation units in Australia. In all, 73 people less than six months after stroke with reduced mobility and clinician determined capacity to improve. Both groups received functional retraining and individualized programs for up to an hour, on weekdays for 8-40 sessions (dose matched). For the intervention group, this individualized program used motivating virtual reality rehabilitation and novel gesture controlled interactive motion capture software. For usual care, the individualized program was delivered in a group class on one unit and by rehabilitation assistant 1:1 on the other. Primary outcome was standing balance (functional reach). Secondary outcomes were lateral reach, step test, sitting balance, arm function, and walking. Participants (mean 22 days post-stroke) attended mean 14 sessions. Both groups improved (mean (95% confidence interval)) on primary outcome functional reach (usual care 3.3 (0.6 to 5.9), intervention 4.1 (-3.0 to 5.0) cm) with no difference between groups ( P = 0.69) on this or any secondary measures. No differences between the rehabilitation units were seen except in lateral reach (less affected side) ( P = 0.04). No adverse events were recorded during therapy. Interactive, motion capture rehabilitation for inpatients post stroke produced functional improvements that were similar to those achieved by usual care stroke rehabilitation, safely delivered by either a physical therapist or a rehabilitation assistant.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
Frequency Spectrum Method-Based Stress Analysis for Oil Pipelines in Earthquake Disaster Areas
Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao
2015-01-01
When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline. PMID:25692790
Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.
Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao
2015-01-01
When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Dolly, S; Anastasio, M
Purpose: Head and neck (H&N) internal organ motion has previously been determined with low frequency and temporary nature based on population-based pre- and post-treatment studies. Using immobilization masks and adding a 4–6 mm planning-tumor-volume margin, geometric uncertainties of patients are routinely considered clinically inconsequential in H&N radiotherapy. Using the first commercially-available MR-IGRT system, we conducted the first quantitative study on inter-patient, intra- and inter-fractional H&N internal motion patterns to evaluate the necessity of individualized asymmetric internal margins. Methods: Ninety cine sagittal MR image sequences were acquired during the entire treatment course (6–7 weeks) of three H&N cancer patients using themore » ViewRay™ MR-IGRT system. The images were 5 mm thick and acquired at 4 frames/per second. One of the patients had a tracheostomy tube. The cross-sectional H&N airway (nasopharynx, oropharynx, and laryngopharynx portions) movement was analyzed comprehensively using in-house developed motion detection software. Results: Large inter-patient variations of swallowing frequency (0–1 times/per fraction), swallowing duration (1–3 seconds), and pharyngeal cross-sectional area (238–2516 mm2) were observed. Extensive pharyngeal motion occurred during swallowing, while nonzero and periodic change of airway geometry was observed in resting. For patient 1 with tracheostomy tube replacement, 30.3%, 30.0%, 48.7% and 0.3% of total frames showed ≥ 4 mm displacements in the anterior, posterior, inferior, and superior airway boundaries, respectively; similarly, (5.7%, 0.0%, 0.0%, 0.3%) and (23.3%, 0.0%, 35.7%, 1.7%) occurred for patients 2 and 3. Area overlapping coefficients with respect to the first frame were 76.3+/−6.4%, 90.3+/−0.6%, and 92.3+/−1.2% for the three patients, respectively. Conclusion: Both the resting and swallowing motions varied in frequency and amplitude among the patients and across fractions of a patient’s treatment. Patients receiving surgery that alters their respiratory and swallowing behavior can have significant intra-fractional internal motion. Patient-specific organ/tumor motion analysis may yield individualized asymmetric internal margins and improve the therapeutic ratio.« less
Video Image Stabilization and Registration (VISAR) Software
NASA Technical Reports Server (NTRS)
1999-01-01
Two scientists at NASA's Marshall Space Flight Center, atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.
Video Image Stabilization and Registration (VISAR) Software
NASA Technical Reports Server (NTRS)
1999-01-01
Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.
Strong Motion Seismograph Based On MEMS Accelerometer
NASA Astrophysics Data System (ADS)
Teng, Y.; Hu, X.
2013-12-01
The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The application program layer mainly concludes: earthquake parameter module, local database managing module, data transmission module, remote monitoring, FTP service and so on. The application layer adopted multi-thread process. The whole strong motion seismograph was encapsulated in a small aluminum box, which size is 80mm×120mm×55mm. The inner battery can work continuesly more than 24 hours. The MEMS accelerograph uses modular design for its software part and hardware part. It has remote software update function and can meet the following needs: a) Auto picking up the earthquake event; saving the data on wave-event files and hours files; It may be used for monitoring strong earthquake, explosion, bridge and house health. b) Auto calculate the earthquake parameters, and transferring those parameters by 3G wireless broadband network. This kind of seismograph has characteristics of low cost, easy installation. They can be concentrated in the urban region or areas need to specially care. We can set up a ground motion parameters quick report sensor network while large earthquake break out. Then high-resolution-fine shake-map can be easily produced for the need of emergency rescue. c) By loading P-wave detection program modules, it can be used for earthquake early warning for large earthquakes; d) Can easily construct a high-density layout seismic monitoring network owning remote control and modern intelligent earthquake sensor.
NASA Tech Briefs, June 1998. Volume 22, No. 6
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage on computer hardware and peripherals, electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs. and a second special section of Motion Control Tech Briefs
Modeling the History of Astronomy: Ptolemy, Copernicus, and Tycho
ERIC Educational Resources Information Center
Timberlake, Todd K.
2013-01-01
This paper describes a series of activities in which students investigate and use the Ptolemaic, Copernican, and Tychonic models of planetary motion. The activities guide students through using open source software to discover important observational facts, learn the necessary vocabulary, understand the fundamental properties of different…
NASA Tech Briefs, October 1999. Volume 23, No. 10
NASA Technical Reports Server (NTRS)
1999-01-01
Topics include: special coverage section on data acquisition and sensors and sections on electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing/fabrication, bio-medical, physical sciences, information sciences, book and reports, and special section of Electronics Tech Briefs and Motion Control Tech briefs
Unexpected Control Structure Interaction on International Space Station
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Platonov, Valery; Medina, Elizabeth A.; Borisenko, Alexander; Bogachev, Alexey
2017-01-01
On June 23, 2011, the International Space Station (ISS) was performing a routine 180 degree yaw maneuver in support of a Russian vehicle docking when the on board Russian Segment (RS) software unexpectedly declared two attitude thrusters failed and switched thruster configurations in response to unanticipated ISS dynamic motion. Flight data analysis after the maneuver indicated that higher than predicted structural loads had been induced at various locations on the United States (U.S.) segment of the ISS. Further analysis revealed that the attitude control system was firing thrusters in response to both structural flex and rigid body rates, which resonated the structure and caused high loads and fatigue cycles. It was later determined that the thruster themselves were healthy. The RS software logic, which was intended to react to thruster failures, had instead been heavily influenced by interaction between the control system and structural flex. This paper will discuss the technical aspects of the control structure interaction problem that led to the RS control system firing thrusters in response to structural flex, the factors that led to insufficient preflight analysis of the thruster firings, and the ramifications the event had on the ISS. An immediate consequence included limiting which thrusters could be used for attitude control. This complicated the planning of on-orbit thruster events and necessitated the use of suboptimal thruster configurations that increased propellant usage and caused thruster lifetime usage concerns. In addition to the technical aspects of the problem, the team dynamics and communication shortcomings that led to such an event happening in an environment where extensive analysis is performed in support of human space flight will also be examined. Finally, the technical solution will be presented, which required a multidisciplinary effort between the U.S. and Russian control system engineers and loads and dynamics structural engineers to develop and implement an extensive modification in the RS software logic for ISS attitude control thruster firings.
Calibration Software for Use with Jurassicprok
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Hensley, Scott; Siqueira, Paul
2004-01-01
The Jurassicprok Interferometric Calibration Software (also called "Calibration Processor" or simply "CP") estimates the calibration parameters of an airborne synthetic-aperture-radar (SAR) system, the raw measurement data of which are processed by the Jurassicprok software described in the preceding article. Calibration parameters estimated by CP include time delays, baseline offsets, phase screens, and radiometric offsets. CP examines raw radar-pulse data, single-look complex image data, and digital elevation map data. For each type of data, CP compares the actual values with values expected on the basis of ground-truth data. CP then converts the differences between the actual and expected values into updates for the calibration parameters in an interferometric calibration file (ICF) and a radiometric calibration file (RCF) for the particular SAR system. The updated ICF and RCF are used as inputs to both Jurassicprok and to the companion Motion Measurement Processor software (described in the following article) for use in generating calibrated digital elevation maps.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
Space station dynamics, attitude control and momentum management
NASA Technical Reports Server (NTRS)
Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi
1989-01-01
The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.
Power estimation of martial arts movement using 3D motion capture camera
NASA Astrophysics Data System (ADS)
Azraai, Nur Zaidi; Awang Soh, Ahmad Afiq Sabqi; Mat Jafri, Mohd Zubir
2017-06-01
Motion capture camera (MOCAP) has been widely used in many areas such as biomechanics, physiology, animation, arts, etc. This project is done by approaching physics mechanics and the extended of MOCAP application through sports. Most researchers will use a force plate, but this will only can measure the force of impact, but for us, we are keen to observe the kinematics of the movement. Martial arts is one of the sports that uses more than one part of the human body. For this project, martial art `Silat' was chosen because of its wide practice in Malaysia. 2 performers have been selected, one of them has an experienced in `Silat' practice and another one have no experience at all so that we can compare the energy and force generated by the performers. Every performer will generate a punching with same posture which in this project, two types of punching move were selected. Before the measuring start, a calibration has been done so the software knows the area covered by the camera and reduce the error when analyze by using the T stick that have been pasted with a marker. A punching bag with mass 60 kg was hung on an iron bar as a target. The use of this punching bag is to determine the impact force of a performer when they punch. This punching bag also will be stuck with the optical marker so we can observe the movement after impact. 8 cameras have been used and placed with 2 cameras at every side of the wall with different angle in a rectangular room 270 ft2 and the camera covered approximately 50 ft2. We covered only a small area so less noise will be detected and make the measurement more accurate. A Marker has been pasted on the limb of the entire hand that we want to observe and measure. A passive marker used in this project has a characteristic to reflect the infrared that being generated by the camera. The infrared will reflected to the camera sensor so the marker position can be detected and show in software. The used of many cameras is to increase the precision and improve the accuracy of the marker. Performer movement was recorded and analyzed using software Cortex motion analysis where velocity and acceleration of a performer movement can be measured. With classical mechanics approach we have estimated the power and force of impact and shows that an experienced performer produces more power and force of impact is higher than the inexperienced performer.
NASA Technical Reports Server (NTRS)
Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave
2010-01-01
The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.
Motion video analysis using planar parallax
NASA Astrophysics Data System (ADS)
Sawhney, Harpreet S.
1994-04-01
Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.
Vertical-angle control system in the LLMC
NASA Astrophysics Data System (ADS)
Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei
2000-10-01
A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.
Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz
2010-11-01
Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.
Surface analysis by laser beam scanning and stereophotogrammetry
NASA Astrophysics Data System (ADS)
Aliverti, Andrea; Ferrigno, Giancarlo; Pedotti, Antonio
1993-10-01
The possibility to describe mathematically the body surfaces could improve diagnosis and objective evaluation of deformities, the follow up of progressive diseases and could represent a useful tool for other medical sectors as prosthetic and plastic surgery as well as for industrial applications where a real shape needs to be digitized and analyzed or modified mathematically. The approach here presented is based on the acquisition of a surface scanned by a laser beam. The 3D coordinates of the spot generated on the surface by the beam are obtained by an automatic image analyzer (ELITE system), originally developed for human motion analysis. The 3D coordinates are obtained by stereo-photogrammetry starting from at least two different view of the subject. A software package for graphic representation of the obtained surfaces has been developed and some preliminary results about some body shapes will be presented.
Modifying high-order aeroelastic math model of a jet transport using maximum likelihood estimation
NASA Technical Reports Server (NTRS)
Anissipour, Amir A.; Benson, Russell A.
1989-01-01
The design of control laws to damp flexible structural modes requires accurate math models. Unlike the design of control laws for rigid body motion (e.g., where robust control is used to compensate for modeling inaccuracies), structural mode damping usually employs narrow band notch filters. In order to obtain the required accuracy in the math model, maximum likelihood estimation technique is employed to improve the accuracy of the math model using flight data. Presented here are all phases of this methodology: (1) pre-flight analysis (i.e., optimal input signal design for flight test, sensor location determination, model reduction technique, etc.), (2) data collection and preprocessing, and (3) post-flight analysis (i.e., estimation technique and model verification). In addition, a discussion is presented of the software tools used and the need for future study in this field.
NASA Astrophysics Data System (ADS)
Pakos, Wojciech
2015-09-01
The paper presents numerical analysis of harmonically excited vibration of a cable-stayed footbridge caused by a load function simulating crouching (squats) while changing the static tension in chosen cables. The intentional synchronized motion (e.g., squats) of a single person or group of persons on the footbridge with a frequency close to the natural frequency of the structure may lead to the resonant vibrations with large amplitudes. The appropriate tension changes in some cables cause detuning of resonance on account of stiffness changes of structures and hence detuning in the natural frequency that is close to the excitation frequency. The research was carried out on a 3D computer model of a real structure - a cable-stayed steel footbridge in Leśnica, a quarter of Wrocław, Poland, with the help of standard computer software based on FEM COSMOS/M System.
NASA Astrophysics Data System (ADS)
WANG, Q.
2017-12-01
Used the finite element analysis software GeoStudio to establish vibration analysis model of Qianjiangping landslide, which locates at the Three Gorges Reservoir area. In QUAKE/W module, we chosen proper Dynamic elasticity modulus and Poisson's ratio of soil layer and rock stratum. When loading, we selected the waveform data record of Three Gorge Telemetric Seismic Network as input ground motion, which includes five rupture events recorded of Lujiashan seismic station. In dynamic simulating, we mainly focused on sliding process when the earthquake date record was applied. The simulation result shows that Qianjiangping landslide wasn't not only affected by its own static force, but also experienced the dynamic process of micro fracture-creep-slip rupture-creep-slip.it provides a new approach for the early warning feasibility of rock landslide in future research.
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.
2005-01-01
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.
van Dijk, Joris D; van Dalen, Jorn A; Mouden, Mohamed; Ottervanger, Jan Paul; Knollema, Siert; Slump, Cornelis H; Jager, Pieter L
2018-04-01
Correction of motion has become feasible on cadmium-zinc-telluride (CZT)-based SPECT cameras during myocardial perfusion imaging (MPI). Our aim was to quantify the motion and to determine the value of automatic correction using commercially available software. We retrospectively included 83 consecutive patients who underwent stress-rest MPI CZT-SPECT and invasive fractional flow reserve (FFR) measurement. Eight-minute stress acquisitions were reformatted into 1.0- and 20-second bins to detect respiratory motion (RM) and patient motion (PM), respectively. RM and PM were quantified and scans were automatically corrected. Total perfusion deficit (TPD) and SPECT interpretation-normal, equivocal, or abnormal-were compared between the noncorrected and corrected scans. Scans with a changed SPECT interpretation were compared with FFR, the reference standard. Average RM was 2.5 ± 0.4 mm and maximal PM was 4.5 ± 1.3 mm. RM correction influenced the diagnostic outcomes in two patients based on TPD changes ≥7% and in nine patients based on changed visual interpretation. In only four of these patients, the changed SPECT interpretation corresponded with FFR measurements. Correction for PM did not influence the diagnostic outcomes. Respiratory motion and patient motion were small. Motion correction did not appear to improve the diagnostic outcome and, hence, the added value seems limited in MPI using CZT-based SPECT cameras.
Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC
NASA Astrophysics Data System (ADS)
Kim, Young-Rok; Park, Eunseo; Oh, Hyungjik Jay; Park, Sang-Young; Lim, Hyung-Chul; Park, Chandeok
2013-12-01
In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion XP and YP are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.
NASA Astrophysics Data System (ADS)
Gabriel, A. A.; Madden, E. H.; Ulrich, T.; Wollherr, S.
2016-12-01
Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.
NASA Astrophysics Data System (ADS)
Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie
2017-04-01
Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.
A New Seismic Hazard Model for Mainland China
NASA Astrophysics Data System (ADS)
Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.
2017-12-01
We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.
The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.
Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.
Performance assessment techniques for Doppler radar physiological sensors.
Hafner, Noah; Lubecke, Victor
2009-01-01
This paper presents a technique for assessing the performance of continuous wave Doppler radar systems for physiological sensing. The technique includes an artificial target for testing physiological sensing radar systems with motion analogous to human heart movement and software algorithms leveraging the capabilities of this target to simply test radar system performance. The mechanical target provides simple to complex patterns of motion that are stable and repeatable. Details of radar system performance can be assessed and the effects of configuration changes that might not appear with a human target can be observed when using this mechanical target.
The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation
Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.
2017-11-27
Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.
Toward a Quantification of the Information/Communication Industries. Publication No. 74-2.
ERIC Educational Resources Information Center
Lavey, Warren G.
A national survey was made to collect data about the information/communication industries in the United States today. Eleven industries were studied: television, radio, telephone, telegraph, postal service, newspaper, periodical, book publishing and printing, motion pictures, computer software, and cable television. The data collection scheme used…