Sample records for motion baseline drift

  1. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    PubMed

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intrafractional baseline drift during free breathing breast cancer radiation therapy.

    PubMed

    Jensen, Christer Andre; Acosta Roa, Ana María; Lund, Jo-Åsmund; Frengen, Jomar

    2017-06-01

    Intrafraction motion in breast cancer radiation therapy (BCRT) has not yet been thoroughly described in the literature. It has been observed that baseline drift occurs as part of the intrafraction motion. This study aims to measure baseline drift and its incidence in free-breathing BCRT patients using an in-house developed laser system for tracking the position of the sternum. Baseline drift was monitored in 20 right-sided breast cancer patients receiving free breathing 3D-conformal RT by using an in-house developed laser system which measures one-dimensional distance in the AP direction. A total of 357 patient respiratory traces from treatment sessions were logged and analysed. Baseline drift was compared to patient positioning error measured from in-field portal imaging. The mean overall baseline drift at end of treatment sessions was -1.3 mm for the patient population. Relatively small baseline drift was observed during the first fraction; however it was clearly detected already at the second fraction. Over 90% of the baseline drift occurs during the first 3 min of each treatment session. The baseline drift rate for the population was -0.5 ± 0.2 mm/min in the posterior direction the first minute after localization. Only 4% of the treatment sessions had a 5 mm or larger baseline drift at 5 min, all towards the posterior direction. Mean baseline drift in the posterior direction in free breathing BCRT was observed in 18 of 20 patients over all treatment sessions. This study shows that there is a substantial baseline drift in free breathing BCRT patients. No clear baseline drift was observed during the first treatment session; however, baseline drift was markedly present at the rest of the sessions. Intrafraction motion due to baseline drift should be accounted for in margin calculations.

  3. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System.

    PubMed

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko; Onimaru, Rikiya; Katoh, Norio; Inoue, Tetsuya; Sutherland, Kenneth Lee; Suzuki, Ryusuke; Shirato, Hiroki; Shimizu, Shinichi

    2016-01-01

    To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), -1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko

    2016-01-01

    Purpose: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Methods and Materials: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch positionmore » correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. Results: The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), −1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Conclusions: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers.« less

  5. On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Skarlatoudis, A.; Margaris, B.

    2005-12-01

    Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.

  6. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menten, MJ; Fast, MF; Nill, S

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin:more » 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting clinical outcome in hypofractionated treatment protocols. Dynamic MLC tracking preserves tumor dose coverage even in the presence of extreme baseline drifts. We acknowledge financial and technical support of the MLC tracking research from Elekta AB. Research at ICR is supported by CRUK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR. MFF is supported by CRUK under Programme C33589/A19908.« less

  7. Observation of Drifting Icebergs and Sea Ice from Space by TerraSAR-X and TanDEM-X

    NASA Astrophysics Data System (ADS)

    Won, Joong-Sun

    2017-04-01

    Detection and monitoring drifting icebergs and sea ice is of interest across wide range of Arctic and Antarctic coastal studies such as security of navigation, climatic impact, geological impact, etc. It is not easy to discriminate drifting ices from stationary ones, and to measure their drifting speeds. There is a potential to use space-borne SAR for this purpose, but it is difficult to precisely measure because the drift velocity is usually very slow. In this study, we investigate two approaches for discriminating drifting ices on the sea from surrounding static ones and for measuring their range velocity. The first method is to utilize the quad-pol TerraSAR-X which adopts dual receive antenna (DRA), and the second one is to examine the potential use of TanDEM-X bistatic along-track interferometry (ATI). To utilize DRA mode quad-pol SAR as ATI, it is necessary to remove the phase difference of scattering centers between transmitted H- and V-pol signals. By assume that the individual scattering center of returned signal does not change for a few inter-pulse periods, it is possible to measure the Doppler frequency induced by motion through measuring slow-time (or azimuth time) Doppler phase derivative of co-pol or cross-pol pairs. Results applied to TerraSAR-X quad-pol data over the Cape Columbia in the Arctic Ocean are to be presented and discussed. It was successful to detect and measure drift sea ice that was flowing away from the antenna with a velocity of about 0.37 m/s (or 1.4 km/h) to 0.67 m/s (or 2.4 km/h) while neighboring ones were static. A more sophisticated approach would be a bistatic ATI which exploits a long along-track baseline for observation of slowly moving ground objects. TanDEM-X bistatic ATI pairs are examined, which were acquired at an Antarctic coast. The ATI interferograms show an innovative capability of TanDEM-X/TerraSAR-X constellation. An along-track baseline of a few hundred meters is superior to a few meter baseline of DRA mode ATI system. However, topographic phase is inevitably mixed with Doppler phase associated with target motion because of a non-zero perpendicular baseline (or effective baseline). Thus it is necessary to separate target motion components from topographic components that are unknown for icebergs. Here we examine characteristics of the topographic phase of drift sea ice in the bistatic ATI interferograms, and discuss a detouring approach to quick detection of drifting icebergs by TanDEM-X bistatic ATI. The results demonstrate that it would be efficient to detect drifting icebergs and sea ice from space by utilizing high resolution SAR systems while the precise measurement of the drifting speeds requires further studies.

  8. Outcomes of Silicone Arthroplasty Stratified by Fingers for the Rheumatoid Metacarpophalangeal Joints

    PubMed Central

    Chung, Kevin C.; Kotsis, Sandra V.; Shaw Wilgis, E. F.; Fox, David A.; Regan, Marian; Kim, H. Myra; Burke, Frank D.

    2015-01-01

    Purpose Previous studies have demonstrated that outcomes for the ulnar digits appear to be worse than the radial digits after silicone metacarpophalangeal joint arthroplasty (SMPA) for the rheumatoid hand. This study examines various components of hand deformities in an effort to understand SMPA outcomes in terms of metacarpophalangeal joint range of motion and alignment. We hypothesize that the ulnar fingers will have less improvement marked by greater ulnar drift, extension lag, and less metacarpophalangeal joint (MCPJ) arc of motion than the radial fingers. Methods 68 surgical patients were recruited from 3 sites in this multi-center international prospective cohort study. All patients had a diagnosis of rheumatoid arthritis, were between the ages of 18–80, and were eligible to undergo SMPA based on measured hand deformities (extensor lag and ulnar drift). Ulnar drift, extension lag, and arc of motion for the MCPJ of each finger were measured at baseline (pre-surgical) and 1-year after SMPA. Results All fingers showed an improvement in ulnar drift from baseline to 1-year after surgery. The smallest improvement was in the index finger (12°) and the largest improvement was in the little finger (30°). Similarly, the largest improvement in extension lag was seen in the little finger (47°) and the smallest improvement was seen in the index finger (21°). In terms of MCPJ arc of motion, all fingers moved to a more extended posture and gained an improved arc of motion, but the biggest improvement was observed in the 2 ulnar fingers and less so in the 2 radial fingers. Conclusions Our hypothesis that the ulnar fingers will have worse outcomes than the radial fingers is not proven by this study. Although past experiences have indicated that it is more difficult to maintain posture for the ring and little fingers after SMPA due to the deforming forces, sufficient correction of the deformities in the ulnar fingers is possible, if attention to adequate bone resection and realigning of the extensor mechanism are carefully performed during the procedure. PMID:19896008

  9. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 06: Patient-specific QA Procedure for Gated VMAT SABR Treatments using 10x Beam in Flattening-Filter Free Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Chitsazzadeh, Shadi; Wells, Derek

    2016-08-15

    Purpose: To develop a highly sensitive patient specific QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: A platform was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside the ArcCheck. The Quasar phantom controller uses a patient-specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. With this system the ion chamber is used to QA the correct phase of the gated delivery and the ArcCheck diodes are used to QA the overall dose distribution. This novelmore » approach requires a single plan delivery for a complete QA of a gated plan. The sensitivity of the gating QA procedure was investigated with respect to the following parameters: PTV size, exhale duration, baseline drift, gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns is currently undergoing to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less

  10. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  11. On baseline corrections and uncertainty in response spectrafor baseline variations commonly encountered in digital accelerograph records

    USGS Publications Warehouse

    Akkar, Sinan; Boore, David M.

    2009-01-01

    Most digital accelerograph recordings are plagued by long-period drifts, best seen in the velocity and displacement time series obtained from integration of the acceleration time series. These drifts often result in velocity values that are nonzero near the end of the record. This is clearly unphysical and can lead to inaccurate estimates of peak ground displacement and long-period spectral response. The source of the long-period noise seems to be variations in the acceleration baseline in many cases. These variations could be due to true ground motion (tilting and rotation, as well as local permanent ground deformation), instrumental effects, or analog-to-digital conversion. Very often the trends in velocity are well approximated by a linear trend after the strong shaking subsides. The linearity of the trend in velocity implies that no variations in the baseline could have occurred after the onset of linearity in the velocity time series. This observation, combined with the lack of any trends in the pre-event motion, allows us to compute the time interval in which any baseline variations could occur. We then use several models of the variations in a Monte Carlo procedure to derive a suite of baseline-corrected accelerations for each noise model using records from the 1999 Chi-Chi earthquake and several earthquakes in Turkey. Comparisons of the mean values of the peak ground displacements, spectral displacements, and residual displacements computed from these corrected accelerations for the different noise models can be used as a guide to the accuracy of the baseline corrections. For many of the records considered here the mean values are similar for each noise model, giving confidence in the estimation of the mean values. The dispersion of the ground-motion measures increases with period and is noise-model dependent. The dispersion of inelastic spectra is greater than the elastic spectra at short periods but approaches that of the elastic spectra at longer periods. The elastic spectra from the most basic processing, in which only the pre-event mean is removed from the acceleration time series, do not diverge from the baseline-corrected spectra until periods of 10-20 sec or more for the records studied here, implying that for many engineering purposes elastic spectra can be used from records with no baseline correction or filtering.

  12. Wave drift damping acting on multiple circular cylinders (model tests)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.

    1995-12-31

    The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less

  13. Analog-to-digital conversion as a source of drifts in displacements derived from digital recordings of ground acceleration

    USGS Publications Warehouse

    Boore, D.M.

    2003-01-01

    Displacements obtained from double integration of digitally recorded ground accelerations often show drifts much larger than those expected for the true ground displacements. These drifts might be due to many things, including dynamic elastic ground tilt, inelastic ground deformation, hysteresis in the instruments, and cross feed due to misalignment of nominally orthogonal sensors. This article shows that even if those effects were not present, the analog-to-digital conversion (ADC) process can produce apparent "pulses" and offsets in the acceleration baseline if the ground motion is slowly varying compared with the quantization level of the digitization. Such slowly varying signals can be produced by constant offsets that do not coincide with a quantization level and by near- and intermediate-field terms in the wave field radiated from earthquakes. Double integration of these apparent pulses and offsets leads to drifts in the displacements similar to those found in processing real recordings. These effects decrease in importance as the resolution of the ADC process increases.

  14. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    PubMed

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.

  15. Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Kim, Siyong; Park, Yang-Kyun; Youn, Kaylin K.; Keall, Paul; Lee, Rena

    2014-11-01

    A dual quasi-breath-hold (DQBH) technique is proposed for respiratory motion management (a hybrid technique combining breathing-guidance with breath-hold task in the middle). The aim of this study is to test a hypothesis that the DQBH biofeedback system improves both the capability of motion management and delivery efficiency. Fifteen healthy human subjects were recruited for two respiratory motion measurements (free breathing and DQBH biofeedback breathing for 15 min). In this study, the DQBH biofeedback system utilized the abdominal position obtained using an real-time position management (RPM) system (Varian Medical Systems, Palo Alto, USA) to audio-visually guide a human subject for 4 s breath-hold at EOI and 90% EOE (EOE90%) to improve delivery efficiency. We investigated the residual respiratory motion and the delivery efficiency (duty-cycle) of abdominal displacement within the gating window. The improvement of the abdominal motion reproducibility was evaluated in terms of cycle-to-cycle displacement variability, respiratory period and baseline drift. The DQBH biofeedback system improved the abdominal motion management capability compared to that with free breathing. With a phase based gating (mean ± std: 55  ±  5%), the averaged root mean square error (RMSE) of the abdominal displacement in the dual-gating windows decreased from 2.26 mm of free breathing to 1.16 mm of DQBH biofeedback (p-value = 0.007). The averaged RMSE of abdominal displacement over the entire respiratory cycles reduced from 2.23 mm of free breathing to 1.39 mm of DQBH biofeedback breathing in the dual-gating windows (p-value = 0.028). The averaged baseline drift dropped from 0.9 mm min-1 with free breathing to 0.09 mm min-1 with DQBH biofeedback (p-value = 0.048). The averaged duty-cycle with an 1 mm width of displacement bound increased from 15% of free breathing to 26% of DQBH biofeedback (p-value = 0.003). The study demonstrated that the DQBH biofeedback system has the potential to significantly reduce the residual respiratory motion with the improved duty cycle during the respiratory gating procedure.

  16. SU-G-BRB-07: Developing a QA Procedure for Gated VMAT SABR Treatments Using 10 MV Beam in Flattening-Filter Free Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitsazzadeh, S; Wells, D; Mestrovic, A

    2016-06-15

    Purpose: To develop a QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: An interface was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside an ArcCheck diode array. The Quasar phantom controller used a patient specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. An amplitude-based RPM tracking system was specified to turn the beam on during the exhale phase of the breathing pattern. SABR plans were developed using Eclipse for liver PTVs ranging in sizemore » from 3-12 cm in diameter using a 2-arc VMAT technique. Dose was measured in the middle of the penumbra region, where the high dose gradient allowed for sensitive detection of any inaccuracies in gated dose delivery. The overall fidelity of the dose distribution was confirmed using ArcCheck. The sensitivity of the gating QA procedure was investigated with respect to the following four parameters: PTV size, duration of exhale, baseline drift, and gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns will be required to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less

  17. Poster - Thur Eve - 11: A realistic respiratory trace generator and its application to respiratory management techniques.

    PubMed

    Quirk, S; Becker, N; Smith, W L

    2012-07-01

    Respiratory motion complicates radiotherapy treatment of thoracic and abdominal tumours. Simplified respiratory motions such as sinusoidal and single patient traces are often used to determine the impact of motion on respiratory management techniques in radiotherapy. Such simplifications only accurately model a small portion of patients, as most patients exhibit variability and irregularity beyond these models. We have preformed a comprehensive analysis of respiratory motion and developed a software tool that allows for explicit inclusion of variability. We utilize our realistic respiratory generator to customize respiratory traces to test the robustness of the estimate of internal gross target volumes (IGTV) by 4DCT and CBCT. We confirmed that good agreement is found between 4DCT and CBCT for regular breathing motion. When amplitude variability was introduced the accuracy of the estimate slightly, but the absolute differences were still < 3 mm for both modalities. Poor agreement was shown with the addition of baseline drifts. Both modalities were found to underestimate the IGTV by as much as 30% for 4DCT and 25% for CBCT. Both large and small drifts deteriorated the estimate accuracy. The respiratory trace generator was advantageous for examining the difference between 4DCT and CBCT IGTV estimation under variable motions. It provided useful implementation abilities to test specific attributes of respiratory motion and detected issues that were not seen with the regular motion studies. This is just one example of how the respiratory trace generator can be utilized to test applications of respiratory management techniques. © 2012 American Association of Physicists in Medicine.

  18. Brownian motion with adaptive drift for remaining useful life prediction: Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung

    2018-01-01

    Linear Brownian motion with constant drift is widely used in remaining useful life predictions because its first hitting time follows the inverse Gaussian distribution. State space modelling of linear Brownian motion was proposed to make the drift coefficient adaptive and incorporate on-line measurements into the first hitting time distribution. Here, the drift coefficient followed the Gaussian distribution, and it was iteratively estimated by using Kalman filtering once a new measurement was available. Then, to model nonlinear degradation, linear Brownian motion with adaptive drift was extended to nonlinear Brownian motion with adaptive drift. However, in previous studies, an underlying assumption used in the state space modelling was that in the update phase of Kalman filtering, the predicted drift coefficient at the current time exactly equalled the posterior drift coefficient estimated at the previous time, which caused a contradiction with the predicted drift coefficient evolution driven by an additive Gaussian process noise. In this paper, to alleviate such an underlying assumption, a new state space model is constructed. As a result, in the update phase of Kalman filtering, the predicted drift coefficient at the current time evolves from the posterior drift coefficient at the previous time. Moreover, the optimal Kalman filtering gain for iteratively estimating the posterior drift coefficient at any time is mathematically derived. A discussion that theoretically explains the main reasons why the constructed state space model can result in high remaining useful life prediction accuracies is provided. Finally, the proposed state space model and its associated Kalman filtering gain are applied to battery prognostics.

  19. Relativistic electron motion in cylindrical waveguide with strong guiding magnetic field and high power microwave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    2015-06-15

    In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatiallymore » periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.« less

  20. Contrast gain control in first- and second-order motion perception.

    PubMed

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  1. Comparative Study of Drift Compensation Methods for Environmental Gas Sensors

    NASA Astrophysics Data System (ADS)

    Abidin, M. Z.; Asmat, Arnis; Hamidon, M. N.

    2018-02-01

    Most drift compensation attempts in environmental gas sensors are only emphasize on the “already-known” drift-causing parameter (i.e., ambient temperature, relative humidity) in compensating the sensor drift. Less consideration is taken to another parameter (i.e., baseline responses) that might have affected indirectly with the promotion of drift-causing parameter variable (in this context, is ambient temperature variable). In this study, the “indirect” drift-causing parameter (drifted baseline responses) has been taken into consideration in compensating the sensor drift caused by ambient temperature variable, by means of a proposed drift compensation method (named as RT-method). The effectiveness of this method in its efficacy of compensating drift was analysed and compared with the common method that used the “already-known” drift-causing parameter (named as T-method), using drift reduction percentage. From the results analysis, the RT-method has outperformed T- method in the drift reduction percentage, with its ability to reduce drift up to 64% rather than the T-method which only able to reduce up to 45% for TGS2600 sensor. It has proven that the inclusion of drifted baseline responses into drift compensation attempt would resulted to an improved drift compensation efficiency.

  2. Local collective motion analysis for multi-probe dynamic imaging and microrheology

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  3. Realistic respiratory motion margins for external beam partial breast irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Leigh; Quirk, Sarah; Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dosemore » profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was described. It was found that the currently used respiratory margin of 5 mm in partial breast irradiation may be overly conservative for many 3DCRT PBI patients. Amplitude alone was found to be insufficient to determine patient-specific margins: individual respiratory trace shape and baseline drift both contributed to the dosimetric target coverage. With respiratory coaching, individualized respiratory margins smaller than the full extent of motion could reduce planning target volumes while ensuring adequate coverage under respiratory motion.« less

  4. Ensemble framework based real-time respiratory motion prediction for adaptive radiotherapy applications.

    PubMed

    Tatinati, Sivanagaraja; Nazarpour, Kianoush; Tech Ang, Wei; Veluvolu, Kalyana C

    2016-08-01

    Successful treatment of tumors with motion-adaptive radiotherapy requires accurate prediction of respiratory motion, ideally with a prediction horizon larger than the latency in radiotherapy system. Accurate prediction of respiratory motion is however a non-trivial task due to the presence of irregularities and intra-trace variabilities, such as baseline drift and temporal changes in fundamental frequency pattern. In this paper, to enhance the accuracy of the respiratory motion prediction, we propose a stacked regression ensemble framework that integrates heterogeneous respiratory motion prediction algorithms. We further address two crucial issues for developing a successful ensemble framework: (1) selection of appropriate prediction methods to ensemble (level-0 methods) among the best existing prediction methods; and (2) finding a suitable generalization approach that can successfully exploit the relative advantages of the chosen level-0 methods. The efficacy of the developed ensemble framework is assessed with real respiratory motion traces acquired from 31 patients undergoing treatment. Results show that the developed ensemble framework improves the prediction performance significantly compared to the best existing methods. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Adiabatic particle motion in a nearly drift-free magnetic field - Application to the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1978-01-01

    An investigation is made of the adiabatic particle motion occurring in an almost drift-free magnetic field. The dependence of the mean drift velocity on the equatorial pitch angle and the variation of the local drift velocity along the trajectories is studied. The fields considered are two-dimensional and resemble the geomagnetic tail. Derivations are presented for instantaneous and average drift velocities, bounce times, longitudinal invariants, and approximations to the adiabatic Hamiltonian. As expected, the mean drift velocity is significantly smaller than the instantaneous drift velocities found at typical points on the trajectory. The slow drift indicates that particles advance in the dawn-dusk direction rather slowly in the plasma sheet of the magnetospheric tail.

  6. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be inferred. Our modeling suggests that the acquisition of new age and paleomagnetic data from hotspot trails where data are lacking would add valuable constraints on both plume and plate motions. At present, the limiting factor is inconsistencies between paleomagnetic, geometric, and chronologic data, leading to large uncertainties in the results.

  7. Electric and magnetic drift of non-adiabatic ions in the earth's geomagnetic tail current sheet

    NASA Technical Reports Server (NTRS)

    Beard, D. B.; Cowley, S. W. H.

    1985-01-01

    It has been shown recently that nonadiabatic particles in the earth's magnetotail drift across the tail roughly as predicted for adiabatic particles with 90 deg pitch angles. In this paper it is shown that this result implies the existence of an approximate invariant of the motion. Adding the effect of convection associated electric fields, the approximate bounce averaged motion of nonadiabatic particles in the magnetotail can be obtained. Thus the particle motion and energization due to combined magnetic and electric drifts in the magnetotail are easily predicted.

  8. Adiabatic particle motion in a nearly drift-free magnetic field: Application to the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1977-01-01

    The guiding center motion of particles in a nearly drift free magnetic field is analyzed in order to investigate the dependence of mean drift velocity on equatorial pitch angle, the variation of local drift velocity along the trajectory, and other properties. The mean drift for adiabatic particles is expressed by means of elliptic integrals. Approximations to the twice-averaged Hamiltonian W near z = O are derived, permitting simple representation of drift paths if an electric potential also exists. In addition, the use of W or of expressions for the longitudinal invariant allows the derivation of the twice averaged Liouville equation and of the corresponding Vlasov equation. Bounce times are calculated (using the drift-free approximation), as are instantaneous guiding center drift velocities, which are then used to provide a numerical check on the formulas for the mean drift.

  9. Pacific plate motion change caused the Hawaiian-Emperor Bend

    PubMed Central

    Torsvik, Trond H.; Doubrovine, Pavel V.; Steinberger, Bernhard; Gaina, Carmen; Spakman, Wim; Domeier, Mathew

    2017-01-01

    A conspicuous 60° bend of the Hawaiian-Emperor Chain in the north-western Pacific Ocean has variously been interpreted as the result of an abrupt Pacific plate motion change in the Eocene (∼47 Ma), a rapid southward drift of the Hawaiian hotspot before the formation of the bend, or a combination of these two causes. Palaeomagnetic data from the Emperor Seamounts prove ambiguous for constraining the Hawaiian hotspot drift, but mantle flow modelling suggests that the hotspot drifted 4–9° south between 80 and 47 Ma. Here we demonstrate that southward hotspot drift cannot be a sole or dominant mechanism for formation of the Hawaiian-Emperor Bend (HEB). While southward hotspot drift has resulted in more northerly positions of the Emperor Seamounts as they are observed today, formation of the HEB cannot be explained without invoking a prominent change in the direction of Pacific plate motion around 47 Ma. PMID:28580950

  10. The VLBA Extragalactic Proper Motion Catalog and a Measurement of the Secular Aberration Drift

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra E.; Darling, Jeremy

    2017-11-01

    We present a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ˜24 μas yr-1, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. The observations were conducted in the X-band and yielded positions with uncertainties of ˜70 μas. We add 10 new redshifts using spectroscopic observations taken at Apache Point Observatory and Gemini North. With the VLBA Extragalactic Proper Motion Catalog, we detect the secular aberration drift—the apparent motion of extragalactic objects caused by the solar system’s acceleration around the Galactic center—at a 6.3σ significance. We model the aberration drift as a spheroidal dipole, with the square root of the power equal to 4.89 ± 0.77 μas yr-1, an amplitude of 1.69 ± 0.27 μas yr-1, and an apex at (275\\buildrel{\\circ}\\over{.} 2+/- 10\\buildrel{\\circ}\\over{.} 0, -29\\buildrel{\\circ}\\over{.} 4+/- 8\\buildrel{\\circ}\\over{.} 8). Our dipole model detects the aberration drift at a higher significance than some previous studies, but at a lower amplitude than expected or previously measured. The full aberration drift may be partially removed by the no-net-rotation constraint used when measuring archival extragalactic radio source positions. Like the cosmic microwave background dipole, which is induced by the observer’s motion, the aberration drift signal should be subtracted from extragalactic proper motions in order to detect cosmological proper motions, including the Hubble expansion, long-period stochastic gravitational waves, and the collapse of large-scale structure.

  11. Characteristics of DC electric fields at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Laakso, Harri; Escoubet, Philippe; Masson, Arnaud

    2016-04-01

    We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.

  12. A robust H.264/AVC video watermarking scheme with drift compensation.

    PubMed

    Jiang, Xinghao; Sun, Tanfeng; Zhou, Yue; Wang, Wan; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression.

  13. A Robust H.264/AVC Video Watermarking Scheme with Drift Compensation

    PubMed Central

    Sun, Tanfeng; Zhou, Yue; Shi, Yun-Qing

    2014-01-01

    A robust H.264/AVC video watermarking scheme for copyright protection with self-adaptive drift compensation is proposed. In our scheme, motion vector residuals of macroblocks with the smallest partition size are selected to hide copyright information in order to hold visual impact and distortion drift to a minimum. Drift compensation is also implemented to reduce the influence of watermark to the most extent. Besides, discrete cosine transform (DCT) with energy compact property is applied to the motion vector residual group, which can ensure robustness against intentional attacks. According to the experimental results, this scheme gains excellent imperceptibility and low bit-rate increase. Malicious attacks with different quantization parameters (QPs) or motion estimation algorithms can be resisted efficiently, with 80% accuracy on average after lossy compression. PMID:24672376

  14. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1

    PubMed Central

    Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.

    2013-01-01

    Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457

  15. Distance and Kinematics of the Red Hypergiant VY CMa: Very Long Baseline Array and Very Large Array Astrometry

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.

    2012-01-01

    We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 ± 0.08 mas, corresponding to a distance of 1.20+0.13 -0.10 kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr-1, corresponding to 8 km s-1, and show a tendency for expansion. After modeling the expansion of maser spots, we derived an absolute proper motion for the central star of μ x = -2.8 ± 0.2 and μ y = 2.6 ± 0.2 mas yr-1 eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be αJ2000 = 07h22m58.s3259 ± 0.s0007, δJ2000 = -25°46'03farcs063 ± 0farcs010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.

  16. Distributed sensing of ionospheric irregularities with a GNSS receiver array

    NASA Astrophysics Data System (ADS)

    Su, Yang; Datta-Barua, Seebany; Bust, Gary S.; Deshpande, Kshitija B.

    2017-08-01

    We present analysis methods for studying the structuring and motion of ionospheric irregularities at the subkilometer scale sizes that produce L band scintillations. Spaced-receiver methods are used for Global Navigation Satellite System (GNSS) receivers' phase measurements over approximately subkilometer to kilometer length baselines for the first time. The quantities estimated by these techniques are plasma drift velocity, diffraction anisotropy magnitude and orientation, and characteristic velocity. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts through linearization about the estimated values of the state. Five receivers of SAGA, the Scintillation Auroral Global Positioning System (GPS) Array, provide 100 Hz power and phase data for each channel at L1 frequency. The array is sited in the auroral zone at Poker Flat Research Range, Alaska. A case study of a single scintillating satellite observed by the array is used to demonstrate the spaced-receiver and uncertainty estimation process. A second case study estimates drifts as measured by multiple scintillating channels. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30 min period are compared to a collocated incoherent scatter radar and show good agreement in horizontal drift speed and direction during periods of scintillation for which the characteristic velocity is less than the drift velocity.

  17. Numerical verification of bounce-harmonic resonances in neoclassical toroidal viscosity for tokamaks.

    PubMed

    Kim, Kimin; Park, Jong-Kyu; Boozer, Allen H

    2013-05-03

    This Letter presents the first numerical verification for the bounce-harmonic (BH) resonance phenomena of the neoclassical transport in a tokamak perturbed by nonaxisymmetric magnetic fields. The BH resonances were predicted by analytic theories of neoclassical toroidal viscosity (NTV), as the parallel and perpendicular drift motions can be resonant and result in a great enhancement of the radial momentum transport. A new drift-kinetic δf guiding-center particle code, POCA, clearly verified that the perpendicular drift motions can reduce the transport by phase-mixing, but in the BH resonances the motions can form closed orbits and particles radially drift out fast. The POCA calculations on resulting NTV torque are largely consistent with analytic calculations, and show that the BH resonances can easily dominate the NTV torque when a plasma rotates in the perturbed tokamak and therefore, is a critical physics for predicting the rotation and stability in the International Thermonuclear Experimental Reactor.

  18. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.

    PubMed

    Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-09-09

    Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called "virtual sensor"), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth's magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.

  19. Robustness of external/internal correlation models for real-time tumor tracking to breathing motion variations

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Cerveri, P.; Riboldi, M.; Pella, A.; Baroni, G.

    2012-11-01

    In radiotherapy, organ motion mitigation by means of dynamic tumor tracking requires continuous information about the internal tumor position, which can be estimated relying on external/internal correlation models as a function of external surface surrogates. In this work, we propose a validation of a time-independent artificial neural networks-based tumor tracking method in the presence of changes in the breathing pattern, evaluating the performance on two datasets. First, simulated breathing motion traces were specifically generated to include gradually increasing respiratory irregularities. Then, seven publically available human liver motion traces were analyzed for the assessment of tracking accuracy, whose sensitivity with respect to the structural parameters of the model was also investigated. Results on simulated data showed that the proposed method was not affected by hysteretic target trajectories and it was able to cope with different respiratory irregularities, such as baseline drift and internal/external phase shift. The analysis of the liver motion traces reported an average RMS error equal to 1.10 mm, with five out of seven cases below 1 mm. In conclusion, this validation study proved that the proposed method is able to deal with respiratory irregularities both in controlled and real conditions.

  20. Assessing the Utility of Strong Motion Data to Determine Static Ground Displacements During Great Megathrust Earthquakes: Tohoku and Iquique

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.

    2014-12-01

    Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the rupture, supplementing teleseismic data and improving resolution of the location and timing of moment in finite fault models.

  1. Measurement and Compensation of BPM Chamber Motion in HLS

    NASA Astrophysics Data System (ADS)

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-06-01

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.

  2. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    PubMed

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.

  3. Simple automatic strategy for background drift correction in chromatographic data analysis.

    PubMed

    Fu, Hai-Yan; Li, He-Dong; Yu, Yong-Jie; Wang, Bing; Lu, Peng; Cui, Hua-Peng; Liu, Ping-Ping; She, Yuan-Bin

    2016-06-03

    Chromatographic background drift correction, which influences peak detection and time shift alignment results, is a critical stage in chromatographic data analysis. In this study, an automatic background drift correction methodology was developed. Local minimum values in a chromatogram were initially detected and organized as a new baseline vector. Iterative optimization was then employed to recognize outliers, which belong to the chromatographic peaks, in this vector, and update the outliers in the baseline until convergence. The optimized baseline vector was finally expanded into the original chromatogram, and linear interpolation was employed to estimate background drift in the chromatogram. The principle underlying the proposed method was confirmed using a complex gas chromatographic dataset. Finally, the proposed approach was applied to eliminate background drift in liquid chromatography quadrupole time-of-flight samples used in the metabolic study of Escherichia coli samples. The proposed method was comparable with three classical techniques: morphological weighted penalized least squares, moving window minimum value strategy and background drift correction by orthogonal subspace projection. The proposed method allows almost automatic implementation of background drift correction, which is convenient for practical use. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Amplifying the helicopter drift in a conformal HMD

    NASA Astrophysics Data System (ADS)

    Schmerwitz, Sven; Knabl, Patrizia M.; Lueken, Thomas; Doehler, Hans-Ullrich

    2016-05-01

    Helicopter operations require a well-controlled and minimal lateral drift shortly before ground contact. Any lateral speed exceeding this small threshold can cause a dangerous momentum around the roll axis, which may cause a total roll over of the helicopter. As long as pilots can observe visual cues from the ground, they are able to easily control the helicopter drift. But whenever natural vision is reduced or even obscured, e.g. due to night, fog, or dust, this controllability diminishes. Therefore helicopter operators could benefit from some type of "drift indication" that mitigates the influence of a degraded visual environment. Generally humans derive ego motion by the perceived environmental object flow. The visual cues perceived are located close to the helicopter, therefore even small movements can be recognized. This fact was used to investigate a modified drift indication. To enhance the perception of ego motion in a conformal HMD symbol set the measured movement was used to generate a pattern motion in the forward field of view close or on the landing pad. The paper will discuss the method of amplified ego motion drift indication. Aspects concerning impact factors like visualization type, location, gain and more will be addressed. Further conclusions from previous studies, a high fidelity experiment and a part task experiment, will be provided. A part task study will be presented that compared different amplified drift indications against a predictor. 24 participants, 15 holding a fixed wing license and 4 helicopter pilots, had to perform a dual task on a virtual reality headset. A simplified control model was used to steer a "helicopter" down to a landing pad while acknowledging randomly placed characters.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beilis, I. I.

    A model was developed of vacuum arc cathode spot motion in a magnetic field that obliquely intercepts the cathode surface. The model takes into account a force under an electric field caused by retrograde spot motion across the normal component of the magnetic field, producing a drift velocity component in the direction of the acute angle between the magnetic field and the cathode surface. The relationship between velocity of the retrograde direction and drift velocity of the cathode spot motion to the acute angle was developed. The dependencies of the drift angle θ on the acute angle φ, magnetic fieldmore » strength B, and arc current I were calculated. It was found that the calculated θ increased with φ, B, and I in accordance with Robson's measurements.« less

  6. Stability and Agreement of a Microtransducer and an Air-Filled Balloon Esophageal Catheter in the Monitoring of Esophageal Pressure.

    PubMed

    Augusto, Renan Maloni; Albuquerque, André Luis Pereira; Jaeger, Thomas; de Carvalho, Carlos Roberto Ribeiro; Caruso, Pedro

    2017-02-01

    The use of esophageal catheters with microtransducer promises advantages over traditional catheters with air-filled balloons. However, performance comparisons between these 2 types of catheters are scarce and incomplete. A catheter with a 9.5-cm air-filled balloon at the distal tip and a catheter with a microtransducer mounted within a flexible silicone rubber were tested in vitro and in vivo. In vitro, the response times of both catheters were compared, and the drift of the baseline pressure of the microtransducer catheter was evaluated over a 6-h period. In vivo, 11 healthy volunteers had both catheters inserted, and the drift of the baseline esophageal pressure was measured over a 3-h period. Also, the correlation and agreement of the baseline and changes in the esophageal pressure of both catheters were evaluated. In vitro, the microtransducer catheter had a response time significantly higher (262 × 114 Hz, P < .01) and a good pressure stability, with a mean baseline pressure drift of 1.4 cm H 2 O. In vivo, both catheters presented a small and similar baseline esophageal pressure drift (P = 0.08). For measurements of baseline and changes in esophageal pressure, the correlation and agreement between the catheters were poor, with a large bias between them. The catheter with the microtransducer had a small baseline pressure drift, similar to the air-filled balloon catheter. The low agreement between the catheters does not allow the microtransducer catheter to be used as a surrogate for the traditional air-filled balloon catheter. Copyright © 2017 by Daedalus Enterprises.

  7. Measurement and Compensation of BPM Chamber Motion in HLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. W.; Sun, B. G.; Cao, Y.

    2010-06-23

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS.more » The horizontal drifts of beam orbit have been really suppressed within 20{mu}m without the compensation of BPM chamber motion in the runtime.« less

  8. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field

    PubMed Central

    Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called “virtual sensor”), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms. PMID:27618056

  9. [A correction method of baseline drift of discrete spectrum of NIR].

    PubMed

    Hu, Ai-Qin; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu

    2014-10-01

    In the present paper, a new correction method of baseline drift of discrete spectrum is proposed by combination of cubic spline interpolation and first order derivative. A fitting spectrum is constructed by cubic spline interpolation, using the datum in discrete spectrum as interpolation nodes. The fitting spectrum is differentiable. First order derivative is applied to the fitting spectrum to calculate derivative spectrum. The spectral wavelengths which are the same as the original discrete spectrum were taken out from the derivative spectrum to constitute the first derivative spectra of the discrete spectra, thereby to correct the baseline drift of the discrete spectra. The effects of the new method were demonstrated by comparison of the performances of multivariate models built using original spectra, direct differential spectra and the spectra pretreated by the new method. The results show that negative effects on the performance of multivariate model caused by baseline drift of discrete spectra can be effectively eliminated by the new method.

  10. Marker-less respiratory motion modeling using the Microsoft Kinect for Windows

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Alnowami, M.; Wells, K.

    2014-03-01

    Patient respiratory motion is a major problem during external beam radiotherapy of the thoracic and abdominal regions due to the associated organ and target motion. In addition, such motion introduces uncertainty in both radiotherapy planning and delivery and may potentially vary between the planning and delivery sessions. The aim of this work is to examine subject-specific external respiratory motion and its associated drift from an assumed average cycle which is the basis for many respiratory motion compensated applications including radiotherapy treatment planning and delivery. External respiratory motion data were acquired from a group of 20 volunteers using a marker-less 3D depth camera, Kinect for Windows. The anterior surface encompassing thoracic and abdominal regions were subject to principal component analysis (PCA) to investigate dominant variations. The first principal component typically describes more than 70% of the motion data variance in the thoracic and abdominal surfaces. Across all of the subjects used in this study, 58% of subjects demonstrate largely abdominal breathing and 33% exhibited largely thoracic dominated breathing. In most cases there is observable drift in respiratory motion during the 300s capture period, which is visually demonstrated using Kernel Density Estimation. This study demonstrates that for this cohort of apparently healthy volunteers, there is significant respiratory motion drift in most cases, in terms of amplitude and relative displacement between the thoracic and abdominal respiratory components. This has implications for the development of effective motion compensation methodology.

  11. A Huygens principle for diffusion and anomalous diffusion in spatially extended systems

    PubMed Central

    Gottwald, Georg A.; Melbourne, Ian

    2013-01-01

    We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481

  12. Experimental evaluation of four ground-motion scaling methods for dynamic response-history analysis of nonlinear structures

    USGS Publications Warehouse

    O'Donnell, Andrew P.; Kurama, Yahya C.; Kalkan, Erol; Taflanidis, Alexandros A.

    2017-01-01

    This paper experimentally evaluates four methods to scale earthquake ground-motions within an ensemble of records to minimize the statistical dispersion and maximize the accuracy in the dynamic peak roof drift demand and peak inter-story drift demand estimates from response-history analyses of nonlinear building structures. The scaling methods that are investigated are based on: (1) ASCE/SEI 7–10 guidelines; (2) spectral acceleration at the fundamental (first mode) period of the structure, Sa(T1); (3) maximum incremental velocity, MIV; and (4) modal pushover analysis. A total of 720 shake-table tests of four small-scale nonlinear building frame specimens with different static and dynamic characteristics are conducted. The peak displacement demands from full suites of 36 near-fault ground-motion records as well as from smaller “unbiased” and “biased” design subsets (bins) of ground-motions are included. Out of the four scaling methods, ground-motions scaled to the median MIV of the ensemble resulted in the smallest dispersion in the peak roof and inter-story drift demands. Scaling based on MIValso provided the most accurate median demands as compared with the “benchmark” demands for structures with greater nonlinearity; however, this accuracy was reduced for structures exhibiting reduced nonlinearity. The modal pushover-based scaling (MPS) procedure was the only method to conservatively overestimate the median drift demands.

  13. Characteristics of DC electric fields in transient plasma sheet events

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2015-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  14. Multi-point Measurements of Relativistic Electrons in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.

    2014-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  15. A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.

    PubMed

    Kim, A; Powell, C R; Ziaie, B

    2015-06-01

    This paper reports on a generic packaging method for reducing drift in implantable pressure sensors. The described technique uses fluidic isolation by encasing the pressure sensor in a liquid-filled medical-grade polyurethane balloon; thus, isolating it from surrounding aqueous environment that is the major source of baseline drift. In-vitro tests using commercial micromachined piezoresistive pressure sensors show an average baseline drift of 0.006 cmH 2 O/day (0.13 mmHg/month) for over 100 days of saline soak test, as compared to 0.101 cmH 2 O/day (2.23 mmHg/month) for a non-fluidic-isolated one soaked for 18 days. To our knowledge, this is the lowest reported drift for an implantable pressure sensor.

  16. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, M.

    1977-10-01

    In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis of nuclear-reactor transients and accidents in particular, the kinematic constitutive equation for the drift velocity has been studied for various two-phase flow regimes. The constitutive equation that specifies the relative motion between phases in the drift-flux model has been derived by taking into account the interfacial geometry, the body-force field, shear stresses, and the interfacial momentum transfer, since these macroscopic effects govern the relative velocity between phases. A comparison of the model with various experimental data over various flow regimesmore » and a wide range of flow parameters shows a satisfactory agreement.« less

  17. Age-related changes in perception of movement in driving scenes.

    PubMed

    Lacherez, Philippe; Turner, Laura; Lester, Robert; Burns, Zoe; Wood, Joanne M

    2014-07-01

    Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Participants included 61 regular drivers (age range 22-87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  18. [An Improved Cubic Spline Interpolation Method for Removing Electrocardiogram Baseline Drift].

    PubMed

    Wang, Xiangkui; Tang, Wenpu; Zhang, Lai; Wu, Minghu

    2016-04-01

    The selection of fiducial points has an important effect on electrocardiogram(ECG)denoise with cubic spline interpolation.An improved cubic spline interpolation algorithm for suppressing ECG baseline drift is presented in this paper.Firstly the first order derivative of original ECG signal is calculated,and the maximum and minimum points of each beat are obtained,which are treated as the position of fiducial points.And then the original ECG is fed into a high pass filter with 1.5Hz cutoff frequency.The difference between the original and the filtered ECG at the fiducial points is taken as the amplitude of the fiducial points.Then cubic spline interpolation curve fitting is used to the fiducial points,and the fitting curve is the baseline drift curve.For the two simulated case test,the correlation coefficients between the fitting curve by the presented algorithm and the simulated curve were increased by 0.242and0.13 compared with that from traditional cubic spline interpolation algorithm.And for the case of clinical baseline drift data,the average correlation coefficient from the presented algorithm achieved 0.972.

  19. DISTANCE AND KINEMATICS OF THE RED HYPERGIANT VY CMa: VERY LONG BASELINE ARRAY AND VERY LARGE ARRAY ASTROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Reid, M. J.; Menten, K. M.

    2012-01-01

    We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 {+-} 0.08 mas, corresponding to a distance of 1.20{sup +0.13}{sub -0.10} kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr{sup -1}, corresponding to 8 km s{sup -1}, and show a tendency for expansion. After modeling themore » expansion of maser spots, we derived an absolute proper motion for the central star of {mu}{sub x} = -2.8 {+-} 0.2 and {mu}{sub y} = 2.6 {+-} 0.2 mas yr{sup -1} eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be {alpha}{sub J2000} = 07{sup h}22{sup m}58.{sup s}3259 {+-} 0.{sup s}0007, {delta}{sub J2000} = -25 Degree-Sign 46'03.''063 {+-} 0.''010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.« less

  20. Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W.

    1974-01-01

    An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.

  1. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Gross

    2004-09-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less

  2. Suggestions for Teaching the Principles of Continental Drift in the Elementary School

    ERIC Educational Resources Information Center

    Glenn, William H.

    1977-01-01

    Provides a brief overview of current geographic ideas regarding continental drift and plate tectonics and suggests techniques for illustrating continental motions to elementary school pupils. (Author/DB)

  3. Contextual effects on smooth-pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-02-01

    Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.

  4. Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors

    PubMed Central

    Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech

    2011-01-01

    Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935

  5. Efficient use of bit planes in the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1988-01-01

    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed.

  6. Eye movement instructions modulate motion illusion and body sway with Op Art.

    PubMed

    Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul

    2015-01-01

    Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth-Bridget Riley's Movements in Squares and Akiyoshi Kitaoka's Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka's image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway.

  7. Elimination of Drifts in Long-Duration Monitoring for Apnea-Hypopnea of Human Respiration.

    PubMed

    Jiang, Peng; Zhu, Rong

    2016-10-25

    This paper reports a methodology to eliminate an uncertain baseline drift in respiratory monitoring using a thermal airflow sensor exposed in a high humidity environment. Human respiratory airflow usually contains a large amount of moisture (relative humidity, RH > 85%). Water vapors in breathing air condense gradually on the surface of the sensor so as to form a thin water film that leads to a significant sensor drift in long-duration respiratory monitoring. The water film is formed by a combination of condensation and evaporation, and therefore the behavior of the humidity drift is complicated. Fortunately, the exhale and inhale responses of the sensor exhibit distinguishing features that are different from the humidity drift. Using a wavelet analysis method, we removed the baseline drift of the sensor and successfully recovered the respiratory waveform. Finally, we extracted apnea-hypopnea events from the respiratory signals monitored in whole-night sleeps of patients and compared them with golden standard polysomnography (PSG) results.

  8. Elimination of Drifts in Long-Duration Monitoring for Apnea-Hypopnea of Human Respiration

    PubMed Central

    Jiang, Peng; Zhu, Rong

    2016-01-01

    This paper reports a methodology to eliminate an uncertain baseline drift in respiratory monitoring using a thermal airflow sensor exposed in a high humidity environment. Human respiratory airflow usually contains a large amount of moisture (relative humidity, RH > 85%). Water vapors in breathing air condense gradually on the surface of the sensor so as to form a thin water film that leads to a significant sensor drift in long-duration respiratory monitoring. The water film is formed by a combination of condensation and evaporation, and therefore the behavior of the humidity drift is complicated. Fortunately, the exhale and inhale responses of the sensor exhibit distinguishing features that are different from the humidity drift. Using a wavelet analysis method, we removed the baseline drift of the sensor and successfully recovered the respiratory waveform. Finally, we extracted apnea-hypopnea events from the respiratory signals monitored in whole-night sleeps of patients and compared them with golden standard polysomnography (PSG) results. PMID:27792151

  9. Transition density of one-dimensional diffusion with discontinuous drift

    NASA Technical Reports Server (NTRS)

    Zhang, Weijian

    1990-01-01

    The transition density of a one-dimensional diffusion process with a discontinuous drift coefficient is studied. A probabilistic representation of the transition density is given, illustrating the close connections between discontinuities of the drift and Brownian local times. In addition, some explicit results are obtained based on the trivariate density of Brownian motion, its occupation, and local times.

  10. Impact of the galactic acceleration on the terrestrial reference frame and the scale factor in VLBI

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Titov, Oleg

    2017-04-01

    The relative motion of the solar system barycentre around the galactic centre can also be described as an acceleration of the solar system directed towards the centre of the Galaxy. So far, this effect has been omitted in the a priori modelling of the Very Long Baseline Interferometry (VLBI) observable. Therefore, it results in a systematic dipole proper motion (Secular Aberration Drift, SAD) of extragalactic radio sources building the celestial reference frame with a theoretical maximum magnitude of 5-7 microarcsec/year. In this work, we present our estimation of the SAD vector obtained within a global adjustment of the VLBI measurements (1979.0 - 2016.5) using the software VieVS. We focus on the influence of the observed radio sources with the maximum SAD effect on the terrestrial reference frame. We show that the scale factor from the VLBI measurements estimated for each source individually discloses a clear systematic aligned with the direction to the Galactic centre-anticentre. Therefore, the radio sources located near Galactic anticentre may cause a strong systematic effect, especially, in early VLBI years. For instance, radio source 0552+398 causes a difference up to 1 mm in the estimated baseline length. Furthermore, we discuss the scale factor estimated for each radio source after removal of the SAD systematic.

  11. Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects

    PubMed Central

    Ma, Zheng; Watamaniuk, Scott N. J.; Heinen, Stephen J.

    2017-01-01

    When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets. PMID:29090315

  12. A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.

    PubMed

    Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi

    2010-04-01

    The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.

  13. Gyrophase drifts and the orbital evolution of dust at Jupiter's Gossamer Ring

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Mendis, D. A.; Schaffer, Les

    1989-01-01

    The 'gyrophase drift' phenomenon in Jupiter's fine-dust 'gossamer ring' is presently shown to exceed the plasma-drag drift, and may be able to move small, charged grains either toward or away from synchronous radius. The grain gyrophase drifts toward the higher temperature in the presence of a radial gradient in plasma temperature; gyrophase drift will also occur in conjunction with a radial gradient in the relative concentrations of different plasma ion species, or even due to plasma-grain velocity variation associated with the grain's cycloidal motion through the plasma. The Poynting-Robertson drift is noted to be diminutive by comparison with either the plasma-drag or gyrophase drifts.

  14. Design of motion adjusting system for space camera based on ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan

    2011-08-01

    Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.

  15. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  16. Drift and separation in collisionality gradients

    DOE PAGES

    Ochs, I. E.; Rax, J. M.; Gueroult, R.; ...

    2017-07-20

    Here we identify a single-particle drift resulting from collisional interactions with a background species, in the presence of a collisionality gradient and background net flow. We also analyze this drift in different limits, showing how it reduces to the well known impurity pinch for high-Zi impurities. We find that in the low-temperature, singly ionized limit, the magnitude of the drift becomes mass-dependent and energy-dependent. Furthermore, by solving for the resulting diffusion-advection motion, we propose a mass-separation scheme that takes advantage of this drift, and analyze the separative capability as a function of collisionally dissipated energy.

  17. Drift and separation in collisionality gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Rax, J. M.; Gueroult, R.

    Here we identify a single-particle drift resulting from collisional interactions with a background species, in the presence of a collisionality gradient and background net flow. We also analyze this drift in different limits, showing how it reduces to the well known impurity pinch for high-Zi impurities. We find that in the low-temperature, singly ionized limit, the magnitude of the drift becomes mass-dependent and energy-dependent. Furthermore, by solving for the resulting diffusion-advection motion, we propose a mass-separation scheme that takes advantage of this drift, and analyze the separative capability as a function of collisionally dissipated energy.

  18. The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.

    PubMed

    Dhont, Jennifer; Vandemeulebroucke, Jef; Burghelea, Manuela; Poels, Kenneth; Depuydt, Tom; Van Den Begin, Robbe; Jaudet, Cyril; Collen, Christine; Engels, Benedikt; Reynders, Truus; Boussaer, Marlies; Gevaert, Thierry; De Ridder, Mark; Verellen, Dirk

    2018-02-01

    To evaluate the short and long-term variability of breathing induced tumor motion. 3D tumor motion of 19 lung and 18 liver lesions captured over the course of an SBRT treatment were evaluated and compared to the motion on 4D-CT. An implanted fiducial could be used for unambiguous motion information. Fast orthogonal fluoroscopy (FF) sequences, included in the treatment workflow, were used to evaluate motion during treatment. Several motion parameters were compared between different FF sequences from the same fraction to evaluate the intrafraction variability. To assess interfraction variability, amplitude and hysteresis were compared between fractions and with the 3D tumor motion registered by 4D-CT. Population based margins, necessary on top of the ITV to capture all motion variability, were calculated based on the motion captured during treatment. Baseline drift in the cranio-caudal (CC) or anterior-poster (AP) direction is significant (ie. >5 mm) for a large group of patients, in contrary to intrafraction amplitude and hysteresis variability. However, a correlation between intrafraction amplitude variability and mean motion amplitude was found (Pearson's correlation coefficient, r = 0.72, p < 10 -4 ). Interfraction variability in amplitude is significant for 46% of all lesions. As such, 4D-CT accurately captures the motion during treatment for some fractions but not for all. Accounting for motion variability during treatment increases the PTV margins in all directions, most significantly in CC from 5 mm to 13.7 mm for lung and 8.0 mm for liver. Both short-term and day-to-day tumor motion variability can be significant, especially for lesions moving with amplitudes above 7 mm. Abandoning passive motion management strategies in favor of more active ones is advised. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Eye movement instructions modulate motion illusion and body sway with Op Art

    PubMed Central

    Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul

    2015-01-01

    Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth—Bridget Riley’s Movements in Squares and Akiyoshi Kitaoka’s Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka’s image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway. PMID:25859197

  20. Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin

    2016-09-01

    A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.

  1. Examining the role of land motion in estimating altimeter system drifts

    NASA Astrophysics Data System (ADS)

    Leuliette, E. W.; Plagge, A. M.

    2016-12-01

    With the operational onset of Jason-3 and Sentinel-3 missions, the determination of mission-specific altimeter bias drift via the global tide gauge network is more crucial than ever. Here we extend previously presented work comparing the effect of vertical land motion (VLM) at tide gauges on derived drift for the combined TOPEX/Jason-1/Jason-2 dataset with the addition of Jason-3, and the combined Envisat/AltiKa record, as well as Sentinel-3 as data become available. Estimated drifts for each mission are considered using seven VLM estimations: (1) GPS-based methodology by King et al., 2012 [updated] at University of Tasmania; (2) GPS time series produced by JPL (http://sideshow.jpl.nasa.gov/post/series.html); the Université de La Rochelle's (3) ULR5 (Santamaria-Gomez 2012) and (4) ULR6; (5) GPS time series produced at the Nevada Geodetic Laboratory, and two versions using glacial isostatic adjustment: (6) those by Peltier et al. (2015) and (7) those by A, Wahr, and Zhong (2013). The drift estimates from the combined TOPEX/Jason dataset vary by 0.7 mm/year depending on the VLM estimate. The combined Envisat/AltiKa estimated drifts vary slightly less, more on the order of 0.5 mm/yr. In addition, we demonstrate the sensitivity of the drift estimates to tide gauge selection.

  2. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept.

    PubMed

    Zachiu, Cornel; Denis de Senneville, Baudouin; Moonen, Chrit; Ries, Mario

    2015-07-01

    While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengthy interventions, the magnitude of the latter can exceed acceptable therapeutic margins. The goal of the present study is to exploit the episodic workflow of these therapies to implement a motion correction strategy for slow varying drifts of the target area and organs at risk over the entire duration of the intervention. The therapeutic workflow of a MR-guided HIFU intervention is in practice often episodic: Bursts of energy delivery are interleaved with periods of inactivity, allowing the effects of the beam on healthy tissues to recede and/or during which the plan of the intervention is reoptimized. These periods usually last for at least several minutes. It is at this time scale that organ drifts due to slow physiological motion become significant. In order to capture these drifts, the authors propose the integration of 3D MR scans in the therapy workflow during the inactivity intervals. Displacements were estimated using an optical flow algorithm applied on the 3D acquired images. A preliminary study was conducted on ten healthy volunteers. For each volunteer, 3D MR images of the abdomen were acquired at regular intervals of 10 min over a total duration of 80 min. Motion analysis was restricted to the liver and kidneys. For validating the compatibility of the proposed motion correction strategy with the workflow of a MR-guided HIFU therapy, an in vivo experiment on a porcine liver was conducted. A volumetric HIFU ablation was completed over a time span of 2 h. A 3D image was acquired before the first sonication, as well as after each sonication. Following the volunteer study, drifts larger than 8 mm for the liver and 5 mm for the kidneys prove that slow physiological motion can exceed acceptable therapeutic margins. In the animal experiment, motion tracking revealed an initial shift of up to 4 mm during the first 10 min and a subsequent continuous shift of ∼2 mm/h until the end of the intervention. This leads to a continuously increasing mismatch of the initial shot planning, the thermal dose measurements, and the true underlying anatomy. The estimated displacements allowed correcting the planned sonication cell cluster positions to the true target position, as well as the thermal dose estimates during the entire intervention and to correct the nonperfused volume measurement. A spatial coherence of all three is particularly important to assure a confluent ablation volume and to prevent remaining islets of viable malignant tissue. This study proposes a motion correction strategy for displacements resulting from slowly varying physiological motion that might occur during a MR-guided HIFU intervention. The authors have shown that such drifts can lead to a misalignment between interventional planning, energy delivery, and therapeutic validation. The presented volunteer study and in vivo experiment demonstrate both the relevance of the problem for HIFU therapies and the compatibility of the proposed motion compensation framework with the workflow of a HIFU intervention under clinical conditions.

  3. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachiu, Cornel, E-mail: C.Zachiu@umcutrecht.nl; Moonen, Chrit; Ries, Mario

    Purpose: While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengthy interventions, the magnitude of the latter can exceed acceptable therapeutic margins. The goal of the present study is to exploit the episodic workflow of these therapies to implement a motion correction strategy for slow varying drifts of the target area and organs at risk over the entire duration of the intervention. Methods: The therapeutic workflow of a MR-guided HIFU intervention ismore » in practice often episodic: Bursts of energy delivery are interleaved with periods of inactivity, allowing the effects of the beam on healthy tissues to recede and/or during which the plan of the intervention is reoptimized. These periods usually last for at least several minutes. It is at this time scale that organ drifts due to slow physiological motion become significant. In order to capture these drifts, the authors propose the integration of 3D MR scans in the therapy workflow during the inactivity intervals. Displacements were estimated using an optical flow algorithm applied on the 3D acquired images. A preliminary study was conducted on ten healthy volunteers. For each volunteer, 3D MR images of the abdomen were acquired at regular intervals of 10 min over a total duration of 80 min. Motion analysis was restricted to the liver and kidneys. For validating the compatibility of the proposed motion correction strategy with the workflow of a MR-guided HIFU therapy, an in vivo experiment on a porcine liver was conducted. A volumetric HIFU ablation was completed over a time span of 2 h. A 3D image was acquired before the first sonication, as well as after each sonication. Results: Following the volunteer study, drifts larger than 8 mm for the liver and 5 mm for the kidneys prove that slow physiological motion can exceed acceptable therapeutic margins. In the animal experiment, motion tracking revealed an initial shift of up to 4 mm during the first 10 min and a subsequent continuous shift of ∼2 mm/h until the end of the intervention. This leads to a continuously increasing mismatch of the initial shot planning, the thermal dose measurements, and the true underlying anatomy. The estimated displacements allowed correcting the planned sonication cell cluster positions to the true target position, as well as the thermal dose estimates during the entire intervention and to correct the nonperfused volume measurement. A spatial coherence of all three is particularly important to assure a confluent ablation volume and to prevent remaining islets of viable malignant tissue. Conclusions: This study proposes a motion correction strategy for displacements resulting from slowly varying physiological motion that might occur during a MR-guided HIFU intervention. The authors have shown that such drifts can lead to a misalignment between interventional planning, energy delivery, and therapeutic validation. The presented volunteer study and in vivo experiment demonstrate both the relevance of the problem for HIFU therapies and the compatibility of the proposed motion compensation framework with the workflow of a HIFU intervention under clinical conditions.« less

  4. Grouping Inhibits Motion Fading by Giving Rise to Virtual Trackable Features

    ERIC Educational Resources Information Center

    Hsieh, P. -J.; Tse, P. U.

    2007-01-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. The authors show that grouping can slow down the process of "motion fading," suggesting that cortical configural form analysis interacts with the computation of motion signals during motion fading. The…

  5. Piezo-based motion stages for heavy duty operation in clean environments

    NASA Astrophysics Data System (ADS)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Gissin, Michael; Feinstein, Alan

    2018-02-01

    A range of heavy duty, ultra-precise motion stages had been developed for precise positioning in semiconductor manufacturing and metrology, for use in a clean room and high vacuum (HV and UHV) environments, to meet the precision requirements for 7, 5 nm nodes and beyond. These stages are powered by L1B2 direct drive ultrasonic motors, which allows combining long motion range, sub-nanometer positioning accuracy, high stiffness (in the direction of motion), low power consumption and active compensation of thermal and structural drift while holding position. The mechanical design, material selection for clean room and high vacuum preparation techniques are reviewed. Test results in a clean room are reported for a two-axis (X-Y) stage, having a load capacity of 30 kg, a motion range of 450 mm, a positioning accuracy of < 1 nm, a maximum motion speed of > 200 mm/s and a < 2 nm position stability (3 sigma). Long term drift compensation to sub-nm level, against thermal drift, has been validated for more than 10 hours. Heavy duty operation in a high vacuum is exemplified via a single axis stage operating at 5E-7 Torr, having a moving mass of 0.96 kg, oriented against gravity. The stage is operated periodically (up and down) over a travel length of 45 mm. The motion profile has a trapezoidal shape with an acceleration of 1m/s2 and a constant velocity of 100 mm/s. The operational parameters (average absolute position error during constant velocity, motor force, dead zone level) remain stable over more than 370000 passes (experiment duration).

  6. Dérive à la surface de l'océan sous l'effet des vagues

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Martin-Lauzer, François-Régis; Chapron, Bertrand; Craneguy, Philippe; Girard-Ardhuin, Fanny; Elfouhaily, Tanos

    2004-09-01

    We model the drift velocity near the ocean surface separating the motion induced by the local current, itself influenced by winds and waves, and the motion induced by the waves, which are generated by local and remote winds. Application to the drift of 'tar balls', following the sinking of the oil tanker Prestige-Nassau in November 2002, shows that waves contribute at least one third of the drift for pollutants floating 1 m below the surface, with a mean direction about 30° to the right of the wind-sea direction. Although not new, this result was previously obtained with specific models, whereas the formalism used here combines classical wave and circulation forecasting models. To cite this article: F. Ardhuin et al., C. R. Geoscience 336 (2004).

  7. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeop; Lindsay, Lucas

    2017-05-01

    Two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single-wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carries more than 70 % and 90 % of heat at 300 and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. The dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway's scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 µm in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.

  8. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.

    PubMed

    Thygesen, Uffe Høgsbro

    2016-03-01

    We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion.

  9. Development of an approach to correcting MicroPEM baseline drift.

    PubMed

    Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan

    2018-07-01

    Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed has the potential for use with data generated from other types of PM sensors that contain a filter for weighing as well. In addition, this approach can be applied in many other regions, given widely available ambient PM data from monitoring networks, especially in urban areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.

  11. Calibration of Sea Ice Motion from QuikSCAT with those from SSM/I and Buoy

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Zhao, Yun-He; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    QuikSCAT backscatter and DMSP SSM/I radiance data are used to derive sea ice motion for both the Arctic and Antarctic region using wavelet analysis method. This technique provides improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing satellite data from Synthetic Aperture Radar (SAR). Sea ice motion of the Arctic for the period from October 1999 to March 2000 derived from QuikSCAT and SSM/I data agrees well with that derived from ocean buoys quantitatively. Thus the ice tracking results from QuikSCAT and SSM/I are complement to each other, Then, three sea-ice drift daily results from QuikSCAT, SSM/I, and buoy data can be merged to generate composite maps with more complete coverage of sea ice motion than those from single data source. A series of composite sea ice motion maps for December 1999 show that the major circulation patterns of sea ice motion are changing and shifting significantly within every four days and they are dominated by wind forcing. Sea-ice drift in the summer can not be derived from NSCAT and SSM/I data. In later summer of 1999 (in September), however, QuikSCAT data can provide good sea ice motion information in the Arctic. QuiksCAT can also provide at least partial sea ice motion information until June 15 in early summer 1999. For the Antarctic, case study shows that sea ice motion derived from QuikSCAT data is predominantly forced by and is consistent with wind field derived from QuikSCAT around the polar region. These calibrated/validated results indicate that QuikSCAT, SSM/I, and buoy merged daily ice motion are suitably accurate to identify and closely locate sea ice processes, and to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model.

  12. The Hawaii-Emperor Bend: Clearly a Record of Pacific Plate Motion Change

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Harada, Y.; Kroenke, L. W.; Sterling, A.

    2003-12-01

    As most introductory textbooks will point out, the conventional explanation for the ˜120° change in the trends of the Hawaiian and Emperor chains is a ˜60° change in plate motion over a fixed plume in the mantle. Recently, however, new paleomagnetic and radiometric age data from the Emperor Seamounts have led some scientists to reject the conventional view of the origin of the Hawaii-Emperor bend in favor of a mobile plume. Yet, at the brink of being explained away as the mere consequence of a drifting plume, the fixed hotspot hypothesis now gains support from newly reported radiometric dates of rock samples from seamounts at the bend which reveal an age much older than expected. Unlike the previous younger age ( ˜43 Ma), the older age ( ˜47 Ma) allows the bend to be directly correlated with a period of pronounced, global tectonic reorganizations around Chron 21. Here we present a new Pacific absolute plate motion model, derived from 15 hotspot chains, which does not require hotspot drift in order to satisfy geometric and chronological constraints. By considering this absolute plate motion model with available Pacific paleomagnetic poles we find support for the notion that the spin axis was closer to the Hawaiian hotspot during the formation of the Emperor chain, and this interpretation (polar wander, not hotspot drift) also explains the paleomagnetic latitudes from the Emperor seamounts as well as the lack of coral reefs materials in the drill holes north of Koko Guyot. However, this interpretation is not unique, and drift cannot be summarily ruled out. Yet, if Pacific plumes are drifting then they appear to be moving in unison. Careful examination of the Pacific seafloor reveals additional Pacific trails with bends that appear to be contemporaneous with the Hawaii-Emperor Bend, although conclusive radiometric age data are lacking. Our plate motion model predicts hotspot tracks that fit these bends. Considering all these lines of evidence the fixed hotspot hypothesis is granted a new lease on life.

  13. Does socioeconomic status predict course and outcome in patients with psychosis?

    PubMed

    Samele, C; van Os, J; McKenzie, K; Wright, A; Gilvarry, C; Manley, C; Tattan, T; Murray, R

    2001-12-01

    We examined the relationship between socioeconomic status (SES) and course and outcome of patients with psychosis. Two hypotheses were examined: a) patients with higher best-ever SES will have better course and outcome than those with lower best-ever SES, and b) patients with greater downward drift in SES will have poorer course and outcome than those with less downward drift. Data were drawn from the baseline and 2-year follow-up assessments of the UK700 Case Management Trial of 708 patients with severe psychosis. The indicators of SES used were occupational status and educational achievement. Drift in SES was defined as change from best-ever occupation to occupation at baseline. For the baseline data highly significant differences were found between best-ever groups and negative symptoms (non-manual vs. unemployed--coef -10.5, p=0.000, 95% CIs 5.1-15.8), functioning (non-manual vs. unemployed--coef -0.6, p=0.000, 95% CIs 0.3 to -0.8) and unmet needs (manual vs. unemployed - coef 0.5, p=0.004, 95% CIs 0.2-0.9). No significant differences between best-ever groups were found for days in hospital, symptoms, perceived quality of life and dissatisfaction with services. Significant differences for clinical and social variables were found between drift and non-drift SES groups. There were no significant findings between educational groups and clinical and social variables. Best-ever occupation, but not educational qualifications, appeared to predict prognosis in patients with severe psychosis. Downward drift in occupational status did not result in poorer illness course and outcome.

  14. Reply [to “Comment on ‘Changes in relative mean sea level’”

    NASA Astrophysics Data System (ADS)

    Carter, W. E.

    There is little question that the International Latitude Service (ILS) polar motion time series displays a statistically significant drift in the mean position of the pole. The difficult problem is to determine “Whether this secular motion is apparent (a consequence of the measuring process, local crustal deformation and deflections of the vertical) or real (due to continental drift or a secular motion of the axis of rotation) …,” (K. Lambeck, The Earth's Variable Rotation: Geophysical Causes and Consequences, Cambridge University Press, London, 1980). Neither the n-sigma nor the theoretical plausibility arguments presented by S.R. Dickman are of much use in answering that question. The best evidence that at least some portion of the observed motion may be real is the loose agreement among the ILS, IPMS, and Doppler series during the limited periods of overlap.

  15. Full-field drift Hamiltonian particle orbits in 3D geometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu

    2011-02-01

    A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.

  16. Climate-driven polar motion: 2003-2015.

    PubMed

    Adhikari, Surendra; Ivins, Erik R

    2016-04-01

    Earth's spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003-2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate.

  17. Climate-driven polar motion: 2003–2015

    PubMed Central

    Adhikari, Surendra; Ivins, Erik R.

    2016-01-01

    Earth’s spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003–2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate. PMID:27152348

  18. Visual motion perception predicts driving hazard perception ability.

    PubMed

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  19. Two-stream instability with time-dependent drift velocity

    DOE PAGES

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  20. Drift of suspended ferromagnetic particles due to the Magnus effect

    NASA Astrophysics Data System (ADS)

    Denisov, S. I.; Pedchenko, B. O.

    2017-01-01

    A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the phenomenon of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.

  1. Drift mobility of photo-electrons in organic molecular crystals: Quantitative comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Reineker, P.; Kenkre, V. M.; Kühne, R.

    1981-08-01

    A quantitative comparison of a simple theoretical prediction for the drift mobility of photo-electrons in organic molecular crystals, calculated within the model of the coupled band-like and hopping motion, with experiments in napthalene of Schein et al. and Karl et al. is given.

  2. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    DOE PAGES

    Lee, Sangyeop; Lindsay, Lucas

    2017-05-18

    Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. Themore » dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.« less

  3. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangyeop; Lindsay, Lucas

    Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. Themore » dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.« less

  4. Response of trapped particles to a collapsing dipole moment.

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.; Lindstrom, P. J.

    1972-01-01

    Particle motion in the secularly varying geomagnetic field is investigated in terms of a dipolar magnetic field with decreasing magnetic moment M. For dM/dt equal to the rate of decay of the earth's dipole component, we find there is drift in B-L space, resulting in an inward drift of particles accompanied with increased energy and unidirectional intensity. Secular variation of the geomagnetic field appears to be a dominant mechanism for radial drift in the inner radiation belt.

  5. New stochastic approach for extreme response of slow drift motion of moored floating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Shunji; Okazaki, Takashi

    1995-12-31

    A new stochastic method for investigating the flow drift response statistics of moored floating structures is described. Assuming that wave drift excitation process can be driven by a Gaussian white noise process, an exact stochastic equation governing a time evolution of the response Probability Density Function (PDF) is derived on a basis of Projection operator technique in the field of statistical physics. In order to get an approximate solution of the GFP equation, the authors develop the renormalized perturbation technique which is a kind of singular perturbation methods and solve the GFP equation taken into account up to third ordermore » moments of a non-Gaussian excitation. As an example of the present method, a closed form of the joint PDF is derived for linear response in surge motion subjected to a non-Gaussian wave drift excitation and it is represented by the product of a form factor and the quasi-Cauchy PDFs. In this case, the motion displacement and velocity processes are not mutually independent if the excitation process has a significant third order moment. From a comparison between the response PDF by the present solution and the exact one derived by Naess, it is found that the present solution is effective for calculating both the response PDF and the joint PDF. Furthermore it is shown that the displacement-velocity independence is satisfied if the damping coefficient in equation of motion is not so large and that both the non-Gaussian property of excitation and the damping coefficient should be taken into account for estimating the probability exceedance of the response.« less

  6. inertial orientation tracker having automatic drift compensation using an at rest sensor for tracking parts of a human body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2004-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive sate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  7. Inertial orientation tracker having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2000-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  8. Inertial orientation tracker having gradual automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2002-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  9. Inertial orientation tracker apparatus method having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1998-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  10. Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1997-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  11. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    NASA Astrophysics Data System (ADS)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  12. Space infrared telescope pointing control system. Infrared telescope tracking in the presence of target motion

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schneider, J. B.

    1986-01-01

    The use of charge-coupled-devices, or CCD's, has been documented by a number of sources as an effective means of providing a measurement of spacecraft attitude with respect to the stars. A method exists of defocussing and interpolation of the resulting shape of a star image over a small subsection of a large CCD array. This yields an increase in the accuracy of the device by better than an order of magnitude over the case when the star image is focussed upon a single CCD pixel. This research examines the effect that image motion has upon the overall precision of this star sensor when applied to an orbiting infrared observatory. While CCD's collect energy within the visible spectrum of light, the targets of scientific interest may well have no appreciable visible emissions. Image motion has the effect of smearing the image of the star in the direction of motion during a particular sampling interval. The presence of image motion is incorporated into a Kalman filter for the system, and it is shown that the addition of a gyro command term is adequate to compensate for the effect of image motion in the measurement. The updated gyro model is included in this analysis, but has natural frequencies faster than the projected star tracker sample rate for dim stars. The system state equations are reduced by modelling gyro drift as a white noise process. There exists a tradeoff in selected star tracker sample time between the CCD, which has improved noise characteristics as sample time increases, and the gyro, which will potentially drift further between long attitude updates. A sample time which minimizes pointing estimation error exists for the random drift gyro model as well as for a random walk gyro model.

  13. Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.

  14. Misconceptions and Conceptual Changes Concerning Continental Drift and Plate Tectonics among Portuguese Students Aged 16-17.

    ERIC Educational Resources Information Center

    Marques, Luis; Thompson, David

    1997-01-01

    This study investigates student misconceptions in the areas of continent, ocean, permanence of ocean basins, continental drift, Earth's magnetic field, and plates and plate motions. A teaching-learning model was designed based on a constructivist approach. Results show that students held a substantial number of misconceptions. (Author/DKM)

  15. Epeirogeny and plate tectonics

    NASA Technical Reports Server (NTRS)

    Menard, H. W.

    1975-01-01

    Vertical motions of the earth crust and their causes are considered in relation to epeirogenic phenomena. Factors discussed include: external loading and unloading; bending at subduction zones; internal density changes; and dynamic effects of mantle motion. The relationship between epeirogeny and drift is briefly reviewed along with oceanic epeirogeny.

  16. Mission definition study for Stanford relativity satellite. Volume 1: Systems and program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The objective of the relativity satellite mission is to perform an experiment in which a gyroscope in motion about the earth undergoes precession, presumably relativistic, with respect to the fixed stars. Performance of this experiment would clearly test the general theory of relativity and its various modifications. This is the only experiment suggested to date which would confirm the existence of motional drift as well. A mission is defined in which the measurement of the geodetic effect term to 0.2 arc sec/yr is achievable and the measurement of both geodetic and motional drift terms to an accuracy of 0.001 arc sec/yr may be possible. The design of the flying dewar satellite needed to maintain the experiment at cryogenic temperatures is discussed. The gyroscopes, magnetometer, and optical contacting method for dimensional stability of the experimental assembly are considered.

  17. Microwave fields driven domain wall motions in antiferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Yan, Z. R.; Zhang, Y. L.; Qin, M. H.; Fan, Z.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2018-06-01

    In this work, we study the microwave field driven domain wall (DW) motion in an antiferromagnetic nanowire, using the numerical calculations based on a classical Heisenberg spin model with the biaxial magnetic anisotropy. We show that a proper combination of a static magnetic field plus an oscillating field perpendicular to the nanowire axis is sufficient to drive the DW propagation along the nanowire. More importantly, the drift velocity at the resonance frequency is comparable to that induced by temperature gradients, suggesting that microwave field can be a very promising tool to control DW motions in antiferromagnetic nanostructures. The dependences of resonance frequency and drift velocity on the static and oscillating fields, the axial anisotropy, and the damping constant are discussed in details. Furthermore, the optimal orientations of the field are also numerically determined and explained. This work provides useful information for the spin dynamics in antiferromagnetic nanostructures for spintronics applications.

  18. Parallel Molecular Distributed Detection With Brownian Motion.

    PubMed

    Rogers, Uri; Koh, Min-Sung

    2016-12-01

    This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.

  19. Sea ice motions in the Central Arctic pack ice as inferred from AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Emery, William; Maslanik, James; Fowler, Charles

    1995-01-01

    Synoptic observations of ice motion in the Arctic Basin are currently limited to those acquired by drifting buoys and, more recently, radar data from ERS-1. Buoys are not uniformly distributed throughout the Arctic, and SAR coverage is currently limited regionally and temporally due to the data volume, swath width, processing requirements, and power needs of the SAR. Additional ice-motion observations that can map ice responses simultaneously over large portions of the Arctic on daily to weekly time intervals are thus needed to augment the SAR and buoys data and to provide an intermediate-scale measure of ice drift suitable for climatological analyses and ice modeling. Principal objectives of this project were to: (1) demonstrate whether sufficient ice features and ice motion existed within the consolidated ice pack to permit motion tracking using AVHRR imagery; (2) determine the limits imposed on AVHRR mapping by cloud cover; and (3) test the applicability of AVHRR-derived motions in studies of ice-atmosphere interactions. Each of these main objectives was addressed. We conclude that AVHRR data, particularly when blended with other available observations, provide a valuable data set for studying sea ice processes. In a follow-on project, we are now extending this work to cover larger areas and to address science questions in more detail.

  20. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    PubMed

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Leveraging probabilistic peak detection to estimate baseline drift in complex chromatographic samples.

    PubMed

    Lopatka, Martin; Barcaru, Andrei; Sjerps, Marjan J; Vivó-Truyols, Gabriel

    2016-01-29

    Accurate analysis of chromatographic data often requires the removal of baseline drift. A frequently employed strategy strives to determine asymmetric weights in order to fit a baseline model by regression. Unfortunately, chromatograms characterized by a very high peak saturation pose a significant challenge to such algorithms. In addition, a low signal-to-noise ratio (i.e. s/n<40) also adversely affects accurate baseline correction by asymmetrically weighted regression. We present a baseline estimation method that leverages a probabilistic peak detection algorithm. A posterior probability of being affected by a peak is computed for each point in the chromatogram, leading to a set of weights that allow non-iterative calculation of a baseline estimate. For extremely saturated chromatograms, the peak weighted (PW) method demonstrates notable improvement compared to the other methods examined. However, in chromatograms characterized by low-noise and well-resolved peaks, the asymmetric least squares (ALS) and the more sophisticated Mixture Model (MM) approaches achieve superior results in significantly less time. We evaluate the performance of these three baseline correction methods over a range of chromatographic conditions to demonstrate the cases in which each method is most appropriate. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Filament Tension and Phase Locking of Meandering Scroll Waves

    NASA Astrophysics Data System (ADS)

    Dierckx, Hans; Biktasheva, I. V.; Verschelde, H.; Panfilov, A. V.; Biktashev, V. N.

    2017-12-01

    Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.

  3. Filament Tension and Phase Locking of Meandering Scroll Waves.

    PubMed

    Dierckx, Hans; Biktasheva, I V; Verschelde, H; Panfilov, A V; Biktashev, V N

    2017-12-22

    Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.

  4. Atmospheric and oceanic forcing of Weddell Sea ice motion

    NASA Astrophysics Data System (ADS)

    Kottmeier, C.; Sellmann, Lutz

    1996-09-01

    The data from sea ice buoys, which were deployed during the Winter Weddell Sea Project 1986, the Winter Weddell Gyre Studies 1989 and 1992, the Ice Station Weddell in 1992, the Antarctic Zone Flux Experiment in 1994, and several ship cruises in Austral summers, are uniformly reanalyzed by the same objective methods. Geostrophic winds are derived after matching of the buoy pressure data with the surface pressure fields of the European Centre for Medium Range Weather Forecasts. The ratio between ice drift and geostrophic wind speeds is reduced when winds and currents oppose each other, when the atmospheric surface layer is stably stratified, and when the ice is under pressure near coasts. Over the continental shelves, the spatial inhomogeneity of tidal and inertial motion effectively controls the variability of divergence for periods below 36 hours. Far from coasts, speed ratios, which presumably reflect internal stress variations in the ice cover, are independent of drift divergence on the spatial scale of 100 km. To study basin-scale ice dynamics, all ice drift data are related to the geostrophic winds based on the complex linear model [Thorndike and Colony, 1982] for daily averaged data. The composite patterns of mean ice motion, geostrophic winds, and geostrophic surface currents document cyclonic basin-wide circulations. Geostrophic ocean currents are generally small in the Weddell Sea. Significant features are the coastal current near the southeastern coasts and the bands of larger velocities of ≈6 cm s-1 following the northward and eastward orientation of the continental shelf breaks in the western and northwestern Weddell Sea. In the southwestern Weddell Sea the mean ice drift speed is reduced to less than 0.5% of the geostrophic wind speed and increases rather continuously to 1.5% in the northern, central, and eastern Weddell Sea. The linear model accounts for less than 50% of the total variance of drift speeds in the southwestern Weddell Sea and up to 80% in the northern and eastern Weddell Sea.

  5. Diffusion in the presence of a local attracting factor: Theory and interdisciplinary applications.

    PubMed

    Veermäe, Hardi; Patriarca, Marco

    2017-06-01

    In many complex diffusion processes the drift of random walkers is not caused by an external force, as in the case of Brownian motion, but by local variations of fitness perceived by the random walkers. In this paper, a simple but general framework is presented that describes such a type of random motion and may be of relevance in different problems, such as opinion dynamics, cultural spreading, and animal movement. To this aim, we study the problem of a random walker in d dimensions moving in the presence of a local heterogeneous attracting factor expressed in terms of an assigned position-dependent "attractiveness function." At variance with standard Brownian motion, the attractiveness function introduced here regulates both the advection and diffusion of the random walker, thus providing testable predictions for a specific form of fluctuation-relations. We discuss the relation between the drift-diffusion equation based on the attractiveness function and that describing standard Brownian motion, and we provide some explicit examples illustrating its relevance in different fields, such as animal movement, chemotactic diffusion, and social dynamics.

  6. Diffusion in the presence of a local attracting factor: Theory and interdisciplinary applications

    NASA Astrophysics Data System (ADS)

    Veermäe, Hardi; Patriarca, Marco

    2017-06-01

    In many complex diffusion processes the drift of random walkers is not caused by an external force, as in the case of Brownian motion, but by local variations of fitness perceived by the random walkers. In this paper, a simple but general framework is presented that describes such a type of random motion and may be of relevance in different problems, such as opinion dynamics, cultural spreading, and animal movement. To this aim, we study the problem of a random walker in d dimensions moving in the presence of a local heterogeneous attracting factor expressed in terms of an assigned position-dependent "attractiveness function." At variance with standard Brownian motion, the attractiveness function introduced here regulates both the advection and diffusion of the random walker, thus providing testable predictions for a specific form of fluctuation-relations. We discuss the relation between the drift-diffusion equation based on the attractiveness function and that describing standard Brownian motion, and we provide some explicit examples illustrating its relevance in different fields, such as animal movement, chemotactic diffusion, and social dynamics.

  7. A combined method to calculate co-seismic displacements through strong motion acceleration baseline correction

    NASA Astrophysics Data System (ADS)

    Zhan, W.; Sun, Y.

    2015-12-01

    High frequency strong motion data, especially near field acceleration data, have been recorded widely through different observation station systems among the world. Due to tilting and a lot other reasons, recordings from these seismometers usually have baseline drift problems when big earthquake happens. It is hard to obtain a reasonable and precision co-seismic displacement through simply double integration. Here presents a combined method using wavelet transform and several simple liner procedures. Owning to the lack of dense high rate GNSS data in most of region of the world, we did not contain GNSS data in this method first but consider it as an evaluating mark of our results. This semi-automatic method unpacks a raw signal into two portions, a summation of high ranks and a low ranks summation using a cubic B-spline wavelet decomposition procedure. Independent liner treatments are processed against these two summations, which are then composed together to recover useable and reasonable result. We use data of 2008 Wenchuan earthquake and choose stations with a near GPS recording to validate this method. Nearly all of them have compatible co-seismic displacements when compared with GPS stations or field survey. Since seismometer stations and GNSS stations from observation systems in China are sometimes quite far from each other, we also test this method with some other earthquakes (1999 Chi-Chi earthquake and 2011 Tohoku earthquake). And for 2011 Tohoku earthquake, we will introduce GPS recordings to this combined method since the existence of a dense GNSS systems in Japan.

  8. Space charge effect in spectrometers of ion mobility increment with planar drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.

  9. SELF-SUSTAINED RECYCLING IN THE INNER DUST RING OF PRE-TRANSITIONAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husmann, T.; Loesche, C.; Wurm, G., E-mail: tim.jankowski@uni-due.de

    Observations of pre-transitional disks show a narrow inner dust ring and a larger outer one. They are separated by a cavity with no or only little dust. We propose an efficient recycling mechanism for the inner dust ring which keeps it in a steady state. No major particle sources are needed for replenishment. Dust particles and pebbles drift outwards by radiation pressure and photophoresis. The pebbles grow during outward drift until they reach a balanced position where residual gravity compensates photophoresis. While still growing larger they reverse their motion and drift inward. Eventually, their speed is fast enough for themmore » to be destroyed in collisions with other pebbles and drift outward again. We quantify the force balance and drift velocities for the disks LkCa15 and HD 135344B. We simulate single-particle evolution and show that this scenario is viable. Growth and drift timescales are on the same order and a steady state can be established in the inner dust ring.« less

  10. Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.

  11. Numerical Modeling of Pulsed Electrical Discharges for High-Speed Flow Control

    DTIC Science & Technology

    2012-02-01

    dimensions , and later on more complex problems. Subsequent work compared different physical models for pulsed discharges: one-moment (drift-diffusion with...two dimensions , and later on more complex problems. Subsequent work compared different physical models for pulsed discharges: one-moment (drift...The state of a particle can be specified by its position and velocity. In principal, the motion of a large group of particles can be predicted from

  12. Comparison of spirometry and abdominal height as four-dimensional computed tomography metrics in lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Wei; Low, Daniel A.; Parikh, Parag J.

    2005-07-15

    An important consideration in four-dimensional CT scanning is the selection of a breathing metric for sorting the CT data and modeling internal motion. This study compared two noninvasive breathing metrics, spirometry and abdominal height, against internal air content, used as a surrogate for internal motion. Both metrics were shown to be accurate, but the spirometry showed a stronger and more reproducible relationship than the abdominal height in the lung. The abdominal height was known to be affected by sensor placement and patient positioning while the spirometer exhibited signal drift. By combining these two, a normalization of the drift-free metric tomore » tidal volume may be generated and the overall metric precision may be improved.« less

  13. Time since maximum of Brownian motion and asymmetric Lévy processes

    NASA Astrophysics Data System (ADS)

    Martin, R. J.; Kearney, M. J.

    2018-07-01

    Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T  ‑  t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.

  14. Characteristics of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright point suggest that the sigmoid is the progenitor of the jet. Conclusions: The enhancement in the light curves of low-temperature EIS lines in the later phase of the jet lifetime and the shape of the jet's stack plots suggests that the jet material falls back, and most likely cools down. To further support this conclusion, the observed drifts were interpreted within a scenario where reconnection progressively shifts along a magnetic structure, leading to the sequential appearance of jets of about the same size and physical characteristics. On this basis, we also propose a simple qualitative model that mimics the observations. Movies 1-3 are available in electronic form at http://www.aanda.org Warning, no authors found for 2014A&A...561A..97.

  15. “Real-Time” Cosmology with Extragalactic Proper Motions: the Secular Aberration Drift and Evolution of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra; Darling, Jeremy

    2018-01-01

    We present the VLBA Extragalactic Proper Motion Catalog, a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ~ 24 microarcsec/yr, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. We detect the secular aberration drift – the apparent motion of extragalactic objects caused by the solar system's acceleration around the Galactic Center – at 6.3 sigma significance with an amplitude of 1.69 +/- 0.27 microarcsec/yr and an apex consistent with the Galactic Center (275.2 +/- 10.0 deg, -29.4 +/- 8.8 deg). Our dipole model detects the aberration drift at a higher significance than some previous studies (e.g., Titov & Lambert 2013), but at a lower amplitude than expected or previously measured. We then use the correlated relative proper motions of extragalactic objects to place upper limits on the rate of large-scale structure collapse (e.g., Quercellini et al. 2009; Darling 2013). Pairs of small separation objects that are in gravitationally interacting structures such as filaments of large-scale structure will show a net decrease in angular separation (> - 15.5 microarcsec/yr) as they move towards each other, while pairs of large separation objects that are gravitationally unbound and move with the Hubble expansion will show no net change in angular separation. With our catalog, we place a 3 sigma limit on the rate of convergence of large-scale structure of -11.4 microarcsec/yr for extragalactic objects within 100 comoving Mpc of each other. We also confirm that large separation objects (> 800 comoving Mpc) move with the Hubble flow to within ~ 2.2 microarcsec/yr. In the future, we plan to incorporate the upcoming Gaia proper motions into our catalog to achieve a higher precision measurement of the average relative proper motion of gravitationally interacting extragalactic objects and to refine our measurement of the collapse of large-scale structure. This research was performed with support from the NSF grant AST-1411605.Darling, J. 2013, AJ, 777, L21; Quercellini et al. 2009. Phys. Rev. Lett., 102, 151302; Titov, O. & Lambert, S. 2013, A&A, 559, A95

  16. Unsteady steady-states: Central causes of unintentional force drift

    PubMed Central

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2016-01-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely, the fingertip referent coordinate (RFT) and its apparent stiffness (CFT). The system's state is defined by a point in the {RFT; CFT} space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback, and attempted to maintain this force for 15 s after the feedback was removed. We used the “inverse piano” apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of RFT and CFT showed that force drop was mostly due to a drift in RFT towards the actual fingertip position. Three analysis techniques, namely, hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong co-variation in RFT and CFT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {RFT; CFT} relative to their average trends also displayed covariation. On the whole the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system towards a low-energy state, and (b) a faster synergic motion of RFT and CFT that tends to stabilize the output fingertip force about the slowly-drifting equilibrium point. PMID:27540726

  17. Unsteady steady-states: central causes of unintentional force drift.

    PubMed

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-12-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.

  18. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those of the corresponding baseline frames. In addition, the drift demands of all study frames as computed by the energy spectrum method were in excellent agreement with those obtained from detailed inelastic dynamic analyses.

  19. Estimation of Acoustic Particle Motion and Source Bearing Using a Drifting Hydrophone Array Near a River Current Turbine to Assess Disturbances to Fish

    NASA Astrophysics Data System (ADS)

    Murphy, Paul G.

    River hydrokinetic turbines may be an economical alternative to traditional energy sources for small communities on Alaskan rivers. However, there is concern that sound from these turbines could affect sockeye salmon (Oncorhynchus nerka), an important resource for small, subsistence based communities, commercial fisherman, and recreational anglers. The hearing sensitivity of sockeye salmon has not been quantified, but behavioral responses to sounds at frequencies less than a few hundred Hertz have been documented for Atlantic salmon (Salmo salar), and particle motion is thought to be the primary mode of stimulation. Methods of measuring acoustic particle motion are well-established, but have rarely been necessary in energetic areas, such as river and tidal current environments. In this study, the acoustic pressure in the vicinity of an operating river current turbine is measured using a freely drifting hydrophone array. Analysis of turbine sound reveals tones that vary in frequency and magnitude with turbine rotation rate, and that may sockeye salmon may sense. In addition to pressure, the vertical components of particle acceleration and velocity are estimated by calculating the finite difference of the pressure signals from the hydrophone array. A method of determining source bearing using an array of hydrophones is explored. The benefits and challenges of deploying drifting hydrophone arrays for marine renewable energy converter monitoring are discussed.

  20. Shear-driven motion of supported lipid bilayers in microfluidic channels.

    PubMed

    Jönsson, Peter; Beech, Jason P; Tegenfeldt, Jonas O; Höök, Fredrik

    2009-04-15

    In this work, we demonstrate how a lateral motion of a supported lipid bilayer (SLB) and its constituents can be created without relying on self-spreading forces. The force driving the SLB is instead a viscous shear force arising from a pressure-driven bulk flow acting on the SLB that is formed on a glass wall inside a microfluidic channel. In contrast to self-spreading bilayers, this method allows for accurate control of the bilayer motion by altering the bulk flow in the channel. Experiments showed that an egg yolk phosphatidylcholine SLB formed on a glass support moved in a rolling motion under these shear forces, with the lipids in the upper leaflet of the bilayer moving at twice the velocity of the bilayer front. The drift velocity of different lipid probes in the SLB was observed to be sensitive to the interactions between the lipid probe and the surrounding molecules, resulting in drift velocities that varied by up to 1 order of magnitude for the different lipid probes in our experiments. Since the method provides a so far unattainable control of the motion of all molecules in an SLB, we foresee great potential for this technique, alone or in combination with other methods, for studies of lipid bilayers and different membrane-associated molecules.

  1. Characteristics of the equatorial plasma drifts as obtained by using Canadian Doppler ionosonde over southern tip of India

    NASA Astrophysics Data System (ADS)

    Sripathi, S.; Singh, Ram; Banola, S.; Sreekumar, Sreeba; Emperumal, K.; Selvaraj, C.

    2016-08-01

    We present here characteristics of the Doppler drift measurements over Tirunelveli (8.73°N, 77.70°E; dip 0.5°N), an equatorial site over Southern India using Doppler interferometry technique of Canadian ionosonde. Three-dimensional bulk motions of the scatterers as reflected from the ionosphere are derived by using Doppler interferometry technique at selected frequencies using spaced receivers arranged in magnetic E-W and N-S directions. After having compared with Lowell's digisonde drifts at Trivandrum, we studied the temporal and seasonal variabilities of quiet time drifts for the year 2012. The observations showed higher vertical drifts during post sunset in the equinox followed by winter and summer seasons. The comparison of Doppler vertical drifts with the drifts obtained from (a) virtual height and (b) Fejer drift model suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height methods. Further, it is seen that vertical drifts exhibited equinoctial asymmetry in prereversal enhancement quite similar to such asymmetry observed in the spread F in the ionograms and GPS L band scintillations. The zonal drifts, on the other hand, showed westward during daytime with mean drifts of ~150-200 m/s and correlated well with equatorial electrojet strength indicating the role of E region dynamo during daytime, while they are eastward during nighttime with mean drifts of ~100 m/s resembling F region dynamo process. Also, zonal drifts showed large westward prior to the spread F onset during autumn equinox than vernal equinox, suggesting strong zonal shears which might cause equinoctial asymmetry in spread F.

  2. Sudden appearance of sub-keV structured ions in the inner magnetosphere within one hour: drift simulation

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Ebihara, Yusuke; Dandouras, Iannis; Nilsson, Hans

    2014-05-01

    Energy-latitude dispersed structured sub-keV ions in the inner magnetosphere drifts very slowly in the noon-to-afternoon sectors because the eastward corotation and the westward magnetic drift balances to each other there. However, majority of Cluster ion observation by the Cluster Ion Spectrometry (CIS) COmposition DIstribution Function (CODIF) instrument during 2001-2006 showed significant development or intensification (by more than factor of 3) within 1-2 h in that sector during the Cluster perigee traversals that quickly scans latitudinal structure at a fixed local time (Yamauchi et al., 2013). The frequent observations of significant inbound-outbound differences in the wedge-like dispersed ions by Cluster indicates either new injections or high eastward drift velocity even in the afternoon sector. To examine the former possibility, i.e., whether such sudden appearances in the dayside can be explained by the drift motion of ions that are formed during substorm-related injections, we numerically simulated two such examples, one at noon (8 September 2002) and the other in the afternoon (9 July 2001), based on the same ion drift simulation model that has successfully reproduced the ion pattern of an inbound-outbound symmetric event at 5 MLT observed by the Cluster CIS/CODIF instrument. The model uses backward phase-space mapping to a boundary at the nightside 8 Earth radii and forward numerical simulation using re-constructed distribution function at that boundary. For both examples, the ion drift model with finite duration (limited to 1-2 hours) of proton source in the nightside can explain the observed large inbound-outbound differences in the sub-keV proton population without any new sources. Ion drift motion is thus able to cause rapid changes of complicated ion populations, at remote places from the source long time after the substorm activities, although this result does not eliminate the possibility of having independent ionospheric sources. References: Yamauchi, M. et al.: Cluster observation of few-hour-scale evolution of structured plasma in the inner magnetosphere, Ann. Geophys., 31, 1569-1578, doi:10.5194/angeo-31-1569-2013, 2013.

  3. SU-F-T-279: Impact of Beam Energy Drifts On IMRT Delivery Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddu, S; Kamal, G; Herman, A

    Purpose: According to TG-40 percent-depth-dose (PDD) tolerance is ±2% but TG-142 is ±1%. Now the question is, which one is relevant in IMRT era? The primary objective of this study is to evaluate dosimetric impact of beam-energy-drifts on IMRT-delivery. Methods: Beam-energy drifts were simulated by adjusting Linac’s bending-magnet-current (BMC) followed by tuning the pulse-forming network and adjusting gun-current. PDD change of −0.6% and +1.2% were tested. Planar-dosimetry measurements were performed using an ionization-chamber-array in solid-water phantoms. Study includes 10-head-and-neck and 3-breast cancer patients. en-face beam-deliveries were also tested at 1.3cm and 5.3cm depths. Composite and single-field dose-distributions were compared againstmore » the plans to determine %Gamma pass-rates (%GPRs). For plan dose comparisons, changes in %Gamma pass-rates (cPGPRs) were computed/reported to exclude the differences between dose-computation and delivery. Dose distributions of the drifted-energies were compared against their baseline measurements to determine the% GPRs. A Gamma criteria of 3%/3mm was considered for plan-dose comparisons while 3%/1mm used for measured dose intercomparisons. Results: For composite-dose delivery, average cPGPRs were 0.41%±2.48% and −2.54%±3.65% for low-energy (LE) and high-energy (HE) drifts, respectively. For measured dose inter-comparisons, the average%GPRs were 98.4%±2.2% (LE-drift) and 95.8%±4.0 (HE-drift). The average %GPR of 92.6%±4.3% was noted for the worst-case scenario comparing LE-drift to HE-drift. All en-face beams at 5.3 cm depth have cPGPRs within ±4% of the baseline-energy measurements. However, greater variations were noted for 1.3cm depth. Average %GPRs for drifted energies were >99% at 5.3cm and >97% at 1.3cm depths. However, for the worst-case scenario (LE-drift to HE-drift) these numbers dropped to 95.2% at 5.3cm and 93.1% at 1.3cm depths. Conclusion: The dosimetric impact of beam-energy drifts was found to be within clinically acceptable tolerance. However, this study includes a single energy with limited range of PDD change. Further studies are on going and the results will be presented. Received funding from Varian Medical Systems, Palo Alto, CA.« less

  4. Heat flux modeling using ion drift effects in DIII-D H-mode plasmas with resonant magnetic perturbations

    DOE PAGES

    Wingen, Andreas; Schmitz, Oliver; Evans, Todd E.; ...

    2014-01-01

    The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts.more » This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show di fferent drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q95. This analysis provides evidence for the dominate e ect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line while low-energy ions can travel into the striated magnetic topology.« less

  5. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: First results.

    PubMed

    Poulsen, Per Rugaard; Worm, Esben Schjødt; Hansen, Rune; Larsen, Lars Peter; Grau, Cai; Høyer, Morten

    2015-01-01

    Intrafraction motion may compromise the target dose in stereotactic body radiation therapy (SBRT) of tumors in the liver. Respiratory gating can improve the treatment delivery, but gating based on an external surrogate signal may be inaccurate. This is the first paper reporting on respiratory gating based on internal electromagnetic monitoring during liver SBRT. Two patients with solitary liver metastases were treated with respiratory-gated SBRT guided by three implanted electromagnetic transponders. The treatment was delivered in end-exhale with beam-on when the centroid of the three transponders deviated less than 3 mm [left-right (LR) and anterior-posterior (AP) directions] and 4mm [cranio-caudal (CC)] from the planned position. For each treatment fraction, log files were used to determine the transponder motion during beam-on in the actual gated treatments and in simulated treatments without gating. The motion was used to reconstruct the dose to the clinical target volume (CTV) with and without gating. The reduction in D95 (minimum dose to 95% of the CTV) relative to the plan was calculated for both treatment courses. With gating the maximum course mean (standard deviation) geometrical error in any direction was 1.2 mm (1.8 mm). Without gating the course mean error would mainly increase for Patient 1 [to -2.8 mm (1.6 mm) (LR), 7.1 mm (5.8 mm) (CC), -2.6 mm (2.8mm) (AP)] due to a large systematic cranial baseline drift at each fraction. The errors without gating increased only slightly for Patient 2. The reduction in CTV D95 was 0.5% (gating) and 12.1% (non-gating) for Patient 1 and 0.3% (gating) and 1.7% (non-gating) for Patient 2. The mean duty cycle was 55%. Respiratory gating based on internal electromagnetic motion monitoring was performed for two liver SBRT patients. The gating added robustness to the dose delivery and ensured a high CTV dose even in the presence of large intrafraction motion.

  6. Avionics GPB Control System Analysis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Gravity Probe B is a Satellite being developed by Lockheed Martin under NASA contract through MSFC and managed by Stanford University. The goal of the satellite experiment is to test the accuracy of drift predictions made using Einstein s General Theory of Relativity. The drift in the direction of the spin axes of 4 highly precise quartz spherical gyroscopes induced by motion in the earth s gravitational field will be measured over a year s duration with the known, non-relativistic effects removed. The expected angles of drift for a one year period are approximately 6.6 arcsec for drift in the orbit plane called geodetic drift and 0.033 arcsec of drift normal to the orbit plane called frame dragging. The aerodynamic drag force on the GPB Satellite is compensated by a translation control system. It is pointed at a guide star and maintained in spin at a rate to be selected in the range 0.1 - 1 rpm. The purpose of our task is to update the TREETOPS GPB spacecraft simulation and to assist MSFC in assessing the affect of Helium slosh dynamics on spacecraft pointing performance.

  7. Unsteady force estimation using a Lagrangian drift-volume approach

    NASA Astrophysics Data System (ADS)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  8. Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Hill, T. W.; Wolf, R. A.

    1988-01-01

    Expressions are derived for the mirror point, the bounce period, the second adiabatic invariant, and the bounce-averaged azimuthal drift velocity as functions of equatorial pitch angle for a charged particle in a dipole magnetic field in the presence of centrifugal, gravitational, and Coriolis forces. These expressions are evaluated numerically, and the results are displayed graphically. The average azimuthal drift speed for a flux tube containing a thermal equilibrium plasma distribution is also evaluated.

  9. Drift due to viscous vortex rings

    NASA Astrophysics Data System (ADS)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc

    2016-11-01

    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  10. Very Long Baseline Interferometry Applied to Polar Motion, Relativity and Geodesy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.

  11. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  12. Symbol interval optimization for molecular communication with drift.

    PubMed

    Kim, Na-Rae; Eckford, Andrew W; Chae, Chan-Byoung

    2014-09-01

    In this paper, we propose a symbol interval optimization algorithm in molecular communication with drift. Proper symbol intervals are important in practical communication systems since information needs to be sent as fast as possible with low error rates. There is a trade-off, however, between symbol intervals and inter-symbol interference (ISI) from Brownian motion. Thus, we find proper symbol interval values considering the ISI inside two kinds of blood vessels, and also suggest no ISI system for strong drift models. Finally, an isomer-based molecule shift keying (IMoSK) is applied to calculate achievable data transmission rates (achievable rates, hereafter). Normalized achievable rates are also obtained and compared in one-symbol ISI and no ISI systems.

  13. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  14. Visual motion modulates pattern sensitivity ahead, behind, and beside motion

    PubMed Central

    Arnold, Derek H.; Marinovic, Welber; Whitney, David

    2014-01-01

    Retinal motion can modulate visual sensitivity. For instance, low contrast drifting waveforms (targets) can be easier to detect when abutting the leading edges of movement in adjacent high contrast waveforms (inducers), rather than the trailing edges. This target-inducer interaction is contingent on the adjacent waveforms being consistent with one another – in-phase as opposed to out-of-phase. It has been suggested that this happens because there is a perceptually explicit predictive signal at leading edges of motion that summates with low contrast physical input – a ‘predictive summation’. Another possible explanation is a phase sensitive ‘spatial summation’, a summation of physical inputs spread across the retina (not predictive signals). This should be non-selective in terms of position – it should be evident at leading, adjacent, and at trailing edges of motion. To tease these possibilities apart, we examined target sensitivity at leading, adjacent, and trailing edges of motion. We also examined target sensitivity adjacent to flicker, and for a stimulus that is less susceptible to spatial summation, as it sums to grey across a small retinal expanse. We found evidence for spatial summation in all but the last condition. Finally, we examined sensitivity to an absence of signal at leading and trailing edges of motion, finding greater sensitivity at leading edges. These results are inconsistent with the existence of a perceptually explicit predictive signal in advance of drifting waveforms. Instead, we suggest that phase-contingent target-inducer modulations of sensitivity are explicable in terms of a directionally modulated spatial summation. PMID:24699250

  15. Detection of Yarkovsky acceleration in the context of precovery observations and the future Gaia catalogue

    NASA Astrophysics Data System (ADS)

    Desmars, J.

    2015-03-01

    Context. The Yarkovsky effect is a weak non-gravitational force leading to a small variation of the semi-major axis of an asteroid. Using radar measurements and astrometric observations, it is possible to measure a drift in semi-major axis through orbit determination. Aims: This paper aims to detect a reliable drift in semi-major axis of near-Earth asteroids (NEAs) from ground-based observations and to investigate the impact of precovery observations and the future Gaia catalogue in the detection of a secular drift in semi-major axis. Methods: We have developed a precise dynamical model of an asteroid's motion taking the Yarkovsky acceleration into account and allowing the fitting of the drift in semi-major axis. Using statistical methods, we investigate the quality and the robustness of the detection. Results: By filtering spurious detections with an estimated maximum drift depending on the asteroid's size, we found 46 NEAs with a reliable drift in semi-major axis in good agreement with the previous studies. The measure of the drift leads to a better orbit determination and constrains some physical parameters of these objects. Our results are in good agreement with the 1 /D dependence of the drift and with the expected ratio of prograde and retrograde NEAs. We show that the uncertainty of the drift mainly depends on the length of orbital arc and in this way we highlight the importance of the precovery observations and data mining in the detection of consistent drift. Finally, we discuss the impact of Gaia catalogue in the determination of drift in semi-major axis.

  16. Altitude-dependent Drift of a Chemical Release Cloud at Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Pedersen, T.; Holmes, J. M.; Sutton, E. K.

    2017-12-01

    A chemical release experiment conducted at the White Sands Missile Range in February 2015 consisted of firing of three identical canisters at different altitudes along a near-vertical trajectory, creating a large structured cloud after diffusion and expansion of the three initial dispersals. Dedicated optical observations from near the launch site and a remote site allow determination of the position and motion of the extended optical cloud as a function of time, while photographs captured and posted by members of the general public provide additional look angles to constrain the cloud shape in more detail. We compare the observed drift and evolution of the cloud with empirical and theoretical models of the neutral winds to examine the altitudinal shear in the neutral winds and their effects on the motion and shape of the extended optical cloud.

  17. Charged particle motions in the distended magnetospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1982-01-01

    Charged particle motion in the guiding center approximation is analyzed for models of the Jovian and Saturnian magnetospheric magnetic fields based on Voyager magnetometer observations. Field lines are traced and exhibit the distention which arises from azimuthally circulating magnetospheric currents. The spatial dependencies of the guiding center bounce period and azimuthal drift rate are investigated for the model fields. Non-dipolar effects in the gradient-curvature drift rate are most important at the equator and affect particles with all mirror latitudes. The effect is a factor of 10-15 for Jupiter with its strong magnetodisc current and 1-2 for Saturn with its more moderate ring current. Limits of adiabaticity, where particle gyroradii become comparable with magnetic scale lengths, are discussed and are shown to occur at quite modest kinetic energies for protons and heavier ions.

  18. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.

    PubMed

    Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You

    2013-11-04

    A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.

  19. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Shi, F; Tian, Z

    2014-06-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less

  20. Optimization of training periods for the estimation model of three-dimensional target positions using an external respiratory surrogate.

    PubMed

    Iramina, Hiraku; Nakamura, Mitsuhiro; Iizuka, Yusuke; Mitsuyoshi, Takamasa; Matsuo, Yukinori; Mizowaki, Takashi; Kanno, Ikuo

    2018-04-19

    During therapeutic beam irradiation, an unvisualized three-dimensional (3D) target position should be estimated using an external surrogate with an estimation model. Training periods for the developed model with no additional imaging during beam irradiation were optimized using clinical data. Dual-source 4D-CBCT projection data for 20 lung cancer patients were used for validation. Each patient underwent one to three scans. The actual target positions of each scan were equally divided into two equal parts: one for the modeling and the other for the validating session. A quadratic target position estimation equation was constructed during the modeling session. Various training periods for the session-i.e., modeling periods (T M )-were employed: T M  ∈ {5,10,15,25,35} [s]. First, the equation was used to estimate target positions in the validating session of the same scan (intra-scan estimations). Second, the equation was then used to estimate target positions in the validating session of another temporally different scan (inter-scan estimations). The baseline drift of the surrogate and target between scans was corrected. Various training periods for the baseline drift correction-i.e., correction periods (T C s)-were employed: T C  ∈ {5,10,15; T C  ≤ T M } [s]. Evaluations were conducted with and without the correction. The difference between the actual and estimated target positions was evaluated by the root-mean-square error (RMSE). The range of mean respiratory period and 3D motion amplitude of the target was 2.4-13.0 s and 2.8-34.2 mm, respectively. On intra-scan estimation, the median 3D RMSE was within 1.5-2.1 mm, supported by previous studies. On inter-scan estimation, median elapsed time between scans was 10.1 min. All T M s exhibited 75th percentile 3D RMSEs of 5.0-6.4 mm due to baseline drift of the surrogate and the target. After the correction, those for each T M s fell by 1.4-2.3 mm. The median 3D RMSE for both the 10-s T M and the T C period was 2.4 mm, which plateaued when the two training periods exceeded 10 s. A widely-applicable estimation model for the 3D target positions during beam irradiation was developed. The optimal T M and T C for the model were both 10 s, to allow for more than one respiratory cycle. UMIN000014825 . Registered: 11 August 2014.

  1. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    PubMed Central

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.; Sereno, N.; Yang, B.

    The Advanced Photon Source (APS) is currently in the preliminary design phase for the multi-bend achromat (MBA) lattice upgrade. Beam stability is critical for the MBA and will require long term drift defined as beam mo-tion over a seven-day timescale to be no more than 1 mi-cron at the insertion device locations and beam angle change no more than 0.25 micro-radian. Mechanical stabil-ity of beam position monitor (BPM) pickup electrodes mounted on insertion device vacuum chambers place a fun-damental limitation on long-term beam stability for inser-tion device beamlines. We present the design and imple-mentation of prototype mechanical motion system (MMS)more » instrumentation for quantifying this type of motion specif-ically in the APS accelerator tunnel and experiment hall floor under normal operating conditions. The MMS pres-ently provides critical position information on the vacuum chamber and BPM support systems. Initial results of the R&D prototype systems have demonstrated that the cham-ber movements far exceed the long-term drift tolerance specified for the APS Upgrade MBA storage ring.« less

  3. Tracking without perceiving: a dissociation between eye movements and motion perception.

    PubMed

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-02-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.

  4. Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception

    PubMed Central

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-01-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept. PMID:21189353

  5. Rocking behavior of an instrumented unique building on the MIT campus identified from ambient shaking data

    USGS Publications Warehouse

    Çelebi, Mehmet; Toksöz, Nafi; Büyüköztürk, Oral

    2014-01-01

    A state-of-the-art seismic monitoring system comprising 36 accelerometers and a data-logger with real-time capability was recently installed at Building 54 on the Massachusetts Institute of Technology's (MIT) Cambridge, MA, campus. The system is designed to record translational, torsional, and rocking motions, and to facilitate the computation of drift between select pairs of floors. The cast-in-place, reinforced concrete building is rectangular in plan but has vertical irregularities. Heavy equipment is installed asymmetrically on the roof. Spectral analyses and system identification performed on five sets of low-amplitude ambient data reveal distinct and repeatable fundamental translational frequencies in the structural NS and EW directions (0.75 Hz and 0.68 Hz, respectively), a torsional frequency of 1.49 Hz, a rocking frequency of 0.75 Hz, and very low damping. Such results from low-amplitude data serve as a baseline against which to compare the behavior and performance of the building during stronger shaking caused by future earthquakes in the region.

  6. Effect of intrafractional prostate motion on simultaneous boost intensity-modulated radiotherapy to the prostate: A simulation study based on intrafractional motion in the prone position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Itaru; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Ono, Tomohiro

    2015-01-01

    Although the prostate displacement of patients in the prone position is affected by respiration-induced motion, the effect of intrafractional prostate motion in the prone position during “simultaneous integrated boost intensity-modulated radiotherapy” (SIB-IMRT) is unclear. The purpose of this study was to evaluate the dosimetric effects of intrafractional motion on SIB-IMRT to a dominant intraprostatic lesion (IPL) using measured motion data of patients in a prone position, fixed with a thermoplastic shell. We obtained 2 orthogonal x-ray fluoroscopic images at the same moment every 0.2 seconds for 30 seconds before and after treatment, once weekly, from 7 patients with localized prostatemore » cancer with detectable prostatic calcification. Prostate displacements in the left-right (LR), anteroposterior (AP), and superoinferior (SI) directions were calculated using the prostatic calcification as a fiducial marker. We defined the displacement between pretreatment and posttreatment as baseline drift (BD). An SIB-IMRT plan was generated in which each IPL + 3 mm received a dose of 94.5 Gy, whereas the remainder of the prostate + 7 mm received a dose of 75.6 Gy in 9 fields. A simulated plan of dose blurring was generated by the convolution of isocenter-shifted plans using measured motion data in 30 seconds and motion in 30 seconds + distance between pretreatment and posttreatment position (BD) for each of the 7 patients. The motion in 30 seconds mainly reflected respiration-induced motion. The mean displacements of BD were 1.4 mm (− 3.1 to 8.2 mm), − 2.2 mm (− 9.1 to 1.5 mm), and − 0.3 mm (− 5.0 to 1.8 mm) in the AP, SI, and LR directions, respectively. The differences in the target coverage with V{sub 90%} of the IPL and V{sub 100%} of the prostate between the simulated plan and original plan were − 3.9% to − 0.3% and − 0.6% to 1.1% for respiration-induced motion and 3.1% to − 67.8% and 3.6% to − 13.3% for BD with respiration-induced motion, respectively. The large motion of BD resulted in an inadequate coverage by the prescribed dose of the SIB-IMRT to the IPL. A 7-mm margin is recommended when real-time tracking techniques are not applied. The effect of respiration-induced motion was small, so long as a 3-mm margin was added.« less

  7. Methods and reproducibility of grading optimized digital color fundus photographs in the Age-Related Eye Disease Study 2 (AREDS2 Report Number 2).

    PubMed

    Danis, Ronald P; Domalpally, Amitha; Chew, Emily Y; Clemons, Traci E; Armstrong, Jane; SanGiovanni, John Paul; Ferris, Frederick L

    2013-07-08

    To establish continuity with the grading procedures and outcomes from the historical data of the Age-Related Eye Disease Study (AREDS), color photographic imaging and evaluation procedures for the assessment of age-related macular degeneration (AMD) were modified for digital imaging in the AREDS2. The reproducibility of the grading of index AMD lesion components and for the AREDS severity scale was tested at the AREDS2 reading center. Digital color stereoscopic fundus photographs from 4203 AREDS2 subjects collected at baseline and annual follow-up visits were optimized for tonal balance and graded according to a standard protocol slightly modified from AREDS. The reproducibility of digital grading of AREDS2 images was assessed by reproducibility exercises, temporal drift (regrading a subset of baseline annually, n = 88), and contemporaneous masked regrading (ongoing, monthly regrade on 5% of submissions, n = 1335 eyes). In AREDS2, 91% and 96% of images received replicate grades within two steps of the baseline value on the AREDS severity scale for temporal drift and contemporaneous assessment, respectively (weighted Kappa of 0.73 and 0.76). Historical data for temporal drift in replicate gradings on the AREDS film-based images were 88% within two steps (weighted Kappa = 0.88). There was no difference in AREDS2-AREDS concordance for temporal drift (exact P = 0.57). Digital color grading has nearly the same reproducibility as historical film grading. There is substantial agreement for testing the predictive utility of the AREDS severity scale in AREDS2 as a clinical trial outcome. (ClinicalTrials.gov number, NCT00345176.)

  8. High power linear pulsed beam annealer. [Patent application

    DOEpatents

    Strathman, M.D.; Sadana, D.K.; True, R.B.

    1980-11-26

    A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

  9. Effect Of Contrast On Perceived Motion Of A Plaid

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Watson, A. B.; Mulligan, J. B.

    1992-01-01

    Report desribes series of experiments examining effect of contrast on perception of moving plaids. Each plaid pattern used in experiments was sum of two drifting sinusoidal gratings of different orientations. One of many studies helping to show how brain processes visual information on moving patterns. When gratings forming plaid differ in contrast, apparent direction of motion of plaid biased up to 20 degrees toward direction of grating of higher contrast.

  10. High power linear pulsed beam annealer

    DOEpatents

    Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  11. Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin

    2018-03-01

    Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.

  12. Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra.

    PubMed

    Lund, Steven P; Hubbard, Joseph B; Halter, Michael

    2014-11-06

    Diffusion processes superimposed upon deterministic motion play a key role in understanding and controlling the transport of matter, energy, momentum, and even information in physics, chemistry, material science, biology, and communications technology. Given functions defining these random and deterministic components, the Fokker-Planck (FP) equation is often used to model these diffusive systems. Many methods exist for estimating the drift and diffusion profiles from one or more identifiable diffusive trajectories; however, when many identical entities diffuse simultaneously, it may not be possible to identify individual trajectories. Here we present a method capable of simultaneously providing nonparametric estimates for both drift and diffusion profiles from evolving density profiles, requiring only the validity of Langevin/FP dynamics. This algebraic FP manipulation provides a flexible and robust framework for estimating stationary drift and diffusion coefficient profiles, is not based on fluctuation theory or solved diffusion equations, and may facilitate predictions for many experimental systems. We illustrate this approach on experimental data obtained from a model lipid bilayer system exhibiting free diffusion and electric field induced drift. The wide range over which this approach provides accurate estimates for drift and diffusion profiles is demonstrated through simulation.

  13. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  14. Increased Arctic sea ice drift alters adult female polar bear movements and energetics

    USGS Publications Warehouse

    Durner, George M.; Douglas, David C.; Albeke, Shannon; Whiteman, John P.; Amstrup, Steven C.; Richardson, Evan; Wilson, Ryan R.; Ben-David, Merav

    2017-01-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987–1998 and 1999–2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%–9.6%) or by increasing their travel speed (8.5%–8.9%). This increased their calculated annual energy expenditure by 1.8%–3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1–3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.

  15. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.

    PubMed

    Kontaxis, C; Bol, G H; Stemkens, B; Glitzner, M; Prins, F M; Kerkmeijer, L G W; Lagendijk, J J W; Raaymakers, B W

    2017-08-21

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system's capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  16. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac

    NASA Astrophysics Data System (ADS)

    Kontaxis, C.; Bol, G. H.; Stemkens, B.; Glitzner, M.; Prins, F. M.; Kerkmeijer, L. G. W.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2017-09-01

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system’s capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  17. The Role of Mean-motion Resonances in Semimajor Axis Mobility of Asteroids

    NASA Astrophysics Data System (ADS)

    Milić Žitnik, Ivana; Novaković, Bojan

    2016-01-01

    Here, we report our findings about the effect of 11 two-body mean-motion resonances (MMRs) with Jupiter, on the mobility of an asteroid’s semimajor axis caused by the Yarkovsky effect. This study is accomplished using numerical integrations of test particles. The obtained results reveal that MMRs could either speed up or slow down the drift in the semimajor axis. Moreover, this allows us to determine the distribution that represents the best data obtained for time delays dtr caused by the resonances on the mobility of an asteroid. We also found a certain functional relationship that describes dependence of the average time lead/lag < {dtr}> on the strength of the resonance SR and the semimajor axis drift speed da/dt. As the Yarkovsky effect scales as 1/D, an important consequence of this relationship is that average time lead/lag < {dtr}> is directly proportional to the diameter D of an asteroid.

  18. Manipulation of particles by weak forces

    NASA Technical Reports Server (NTRS)

    Adler, M. S.; Savkar, S. D.; Summerhayes, H. R.

    1972-01-01

    Quantitative relations between various force fields and their effects on the motion of particles of various sizes and physical characteristics were studied. The forces considered were those derived from light, heat, microwaves, electric interactions, magnetic interactions, particulate interactions, and sound. A physical understanding is given of the forces considered as well as formulae which express how the size of the force depends on the physical and electrical properties of the particle. The drift velocity in a viscous fluid is evaluated as a function of initial acceleration and the effects of thermal random motion are considered. A means of selectively sorting or moving particles by choosing a force system and/or environment such that the particle of interest reacts uniquely was developed. The forces considered and a demonstration of how the initial acceleration, drift velocity, and ultimate particle density distribution is affected by particle, input, and environmental parameters are tabulated.

  19. Peculiar motions, accelerated expansion, and the cosmological axis

    NASA Astrophysics Data System (ADS)

    Tsagas, Christos G.

    2011-09-01

    Peculiar velocities change the expansion rate of any observer moving relative to the smooth Hubble flow. As a result, observers in a galaxy like our Milky Way can experience accelerated expansion within a globally decelerating universe, even when the drift velocities are small. The effect is local, but the affected scales can be large enough to give the false impression that the whole cosmos has recently entered an accelerating phase. Generally, peculiar velocities are also associated with dipolelike anisotropies, triggered by the fact that they introduce a preferred spatial direction. This implies that observers experiencing locally accelerated expansion, as a result of their own drift motion, may also find that the acceleration is maximized in one direction and minimized in the opposite. We argue that, typically, such a dipole anisotropy should be relatively small and the axis should probably lie fairly close to the one seen in the spectrum of the cosmic microwave background.

  20. Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers

    DTIC Science & Technology

    2013-09-01

    right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event detected by the filter. (d) A mild curse word...experimental conditions were chosen to simulate testing cognitively impaired observers. Reflex Stimulus Functions Visual Nystagmus luminance grating low-level...developed a new stimulus for visual nystagmus to 8 test visual motion processing in the presence of incoherent motion noise. The drifting equiluminant

  1. Multiscale Observation System for Sea Ice Drift and Deformation

    NASA Astrophysics Data System (ADS)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.

    2011-12-01

    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when combined with SAR images gives information on how large scale ice cover motions manifest as local scale deformations. The research includes also ice stress measurements for relating the kinematic state and modeled stresses to local scale ice cover stresses, and ice thickness mappings with profiling sonars and EM methods. Downscaling results based on four-month campaing during winter 2011 are presented.

  2. Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.

    2018-01-01

    Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.

  3. On the inward drift of runaway electrons during the plateau phase of runaway current

    DOE PAGES

    Hu, Di; Qin, Hong

    2016-03-29

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less

  4. On the inward drift of runaway electrons during the plateau phase of runaway current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Di, E-mail: hudi-2@pku.edu.cn; Qin, Hong; School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.« less

  5. On the inward drift of runaway electrons during the plateau phase of runaway current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Di; Qin, Hong

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less

  6. Fishing for drifts: detecting buoyancy changes of a top marine predator using a step-wise filtering method

    PubMed Central

    Gordine, Samantha Alex; Fedak, Michael; Boehme, Lars

    2015-01-01

    ABSTRACT In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8–2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75–150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed. PMID:26486362

  7. Increased Arctic sea ice drift alters adult female polar bear movements and energetics.

    PubMed

    Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav

    2017-09-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Siddiq, M.; Karim, S.

    2009-04-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  9. Gyro-Landau fluid models for toroidal geometry

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Dominguez, R. R.; Hammett, G. W.

    1992-10-01

    Gyro-Landau fluid model equations provide first-order time advancement for a limited number of moments of the gyrokinetic equation, while approximately preserving the effects of the gyroradius averaging and Landau damping. This paper extends the work of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for electrostatic motion parallel to the magnetic field and E×B motion to include the gyroaveraging linearly and the curvature drift motion. The equations are tested by comparing the ion-temperature-gradient mode linear growth rates for the model equations with those of the exact gyrokinetic theory over a full range of parameters.

  10. Free and controlled motion of a body with a moving internal mass through a fluid in the presence of circulation around the body

    NASA Astrophysics Data System (ADS)

    Vetchanin, E. V.; Kilin, A. A.

    2016-01-01

    The free and controlled motion of an arbitrary two-dimensional body with a moving internal mass and constant circulation around the body in an ideal fluid is studied. Bifurcation analysis of the free motion is performed (under the condition of a fixed internal mass). It is shown that the body can be moved to a given point by varying the position of the internal mass. Some problems related to the presence of a nonzero drift of the body with a fixed internal mass are noted.

  11. Stock price prediction using geometric Brownian motion

    NASA Astrophysics Data System (ADS)

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  12. Classifying vulnerability to sleep deprivation using baseline measures of psychomotor vigilance.

    PubMed

    Patanaik, Amiya; Kwoh, Chee Keong; Chua, Eric C P; Gooley, Joshua J; Chee, Michael W L

    2015-05-01

    To identify measures derived from baseline psychomotor vigilance task (PVT) performance that can reliably predict vulnerability to sleep deprivation. Subjects underwent total sleep deprivation and completed a 10-min PVT every 1-2 h in a controlled laboratory setting. Participants were categorized as vulnerable or resistant to sleep deprivation, based on a median split of lapses that occurred following sleep deprivation. Standard reaction time, drift diffusion model (DDM), and wavelet metrics were derived from PVT response times collected at baseline. A support vector machine model that incorporated maximum relevance and minimum redundancy feature selection and wrapper-based heuristics was used to classify subjects as vulnerable or resistant using rested data. Two academic sleep laboratories. Independent samples of 135 (69 women, age 18 to 25 y), and 45 (3 women, age 22 to 32 y) healthy adults. In both datasets, DDM measures, number of consecutive reaction times that differ by more than 250 ms, and two wavelet features were selected by the model as features predictive of vulnerability to sleep deprivation. Using the best set of features selected in each dataset, classification accuracy was 77% and 82% using fivefold stratified cross-validation, respectively. In both datasets, DDM measures, number of consecutive reaction times that differ by more than 250 ms, and two wavelet features were selected by the model as features predictive of vulnerability to sleep deprivation. Using the best set of features selected in each dataset, classification accuracy was 77% and 82% using fivefold stratified cross-validation, respectively. Despite differences in experimental conditions across studies, drift diffusion model parameters associated reliably with individual differences in performance during total sleep deprivation. These results demonstrate the utility of drift diffusion modeling of baseline performance in estimating vulnerability to psychomotor vigilance decline following sleep deprivation. © 2015 Associated Professional Sleep Societies, LLC.

  13. One-impulse targeting strategy for longitudinal drift control of geosynchronous spacecraft subject to tesseral harmonics and luni-solar gravity perturbations

    NASA Technical Reports Server (NTRS)

    Kechichian, J. A.

    1984-01-01

    Kamel's (1973) East-West Stationkeeping Analysis is extended and an algorithm is presented that targets the geosynchronous spacecraft to the ideal initial conditions starting from any given relative longitude deviation within a given tolerance deadband in order to repeat the ideal longitudinal drift cycle that results in the longest possible period of time between maneuvers. The motion description takes into account the perturbations introduced by earth's tesseral harmonics and by the luni-solar gravity, assuming a near-circular orbit that requires only the control of orbital energy to repeat the ideal drift cycle via a single impulsive velocity change. The location of the maneuver along the orbit is such that the post-Delta-V eccentricity is always minimized.

  14. SU-D-207A-07: The Effects of Inter-Cycle Respiratory Motion Variation On Dose Accumulation in Single Fraction MR-Guided SBRT Treatment of Renal Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stemkens, B; Glitzner, M; Kontaxis, C

    Purpose: To assess the dose deposition in simulated single-fraction MR-Linac treatments of renal cell carcinoma, when inter-cycle respiratory motion variation is taken into account using online MRI. Methods: Three motion characterization methods, with increasing complexity, were compared to evaluate the effect of inter-cycle motion variation and drifts on the accumulated dose for an SBRT kidney MR-Linac treatment: 1) STATIC, in which static anatomy was assumed, 2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, based on the respiratory phase and 3) PCA, in which 3D volumes were generated using a PCA-model, enabling the detection of inter-cycle variations and drifts. An experimentalmore » ITV-based kidney treatment was simulated in a 1.5T magnetic field on three volunteer datasets. For each volunteer a retrospectively sorted 4D-MRI (ten respiratory phases) and fast 2D cine-MR images (temporal resolution = 476ms) were acquired to simulate MR-imaging during radiation. For each method, the high spatio-temporal resolution 3D volumes were non-rigidly registered to obtain deformation vector fields (DVFs). Using the DVFs, pseudo-CTs (generated from the 4D-MRI) were deformed and the dose was accumulated for the entire treatment. The accuracies of all methods were independently determined using an additional, orthogonal 2D-MRI slice. Results: Motion was most accurately estimated using the PCA method, which correctly estimated drifts and inter-cycle variations (RMSE=3.2, 2.2, 1.1mm on average for STATIC, AVG-RESP and PCA, compared to the 2DMRI slice). Dose-volume parameters on the ITV showed moderate changes (D99=35.2, 32.5, 33.8Gy for STATIC, AVG-RESP and PCA). AVG-RESP showed distinct hot/cold spots outside the ITV margin, which were more distributed for the PCA scenario, since inter-cycle variations were not modeled by the AVG-RESP method. Conclusion: Dose differences were observed when inter-cycle variations were taken into account. The increased inter-cycle randomness in motion as captured by the PCA model mitigates the local (erroneous) hotspots estimated by the AVG-RESP method.« less

  15. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  16. Kinematic Repulsions Between Inertial Systems in AN Expanding Inflationary Universe

    NASA Astrophysics Data System (ADS)

    Savickas, D.

    2013-09-01

    The cosmological background radiation is observed to be isotropic only within a coordinate system that is at rest relative to its local Hubble drift. This indicates that the Hubble motion describes the recessional motion of an inertial system that is at rest relative to its local Hubble drift. It is shown that when the Hubble parameter is kinematically defined directly in terms of the positions and velocities of mass particles in the universe, it then also defines inertial systems themselves in terms of the distribution and motion of mass particles. It is independent of the velocity of photons because photons always have a speed c relative to the inertial system in which they are located. Therefore the definition of their velocity depends on the definition of the Hubble parameter itself and cannot be used to define H. The derivative of the kinematically defined Hubble parameter with respect to time is shown to always be positive and highly repulsive at the time of the origin of the universe. A model is used which describes a universe that is balanced at the time of its origin so that H approaches zero as the universe expands to infinity.

  17. Estimation of cyclic interstory drift capacity of steel framed structures and future applications for seismic design.

    PubMed

    Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E; Terán-Gilmore, Amador

    2014-01-01

    Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  18. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    PubMed Central

    Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E.; Terán-Gilmore, Amador

    2014-01-01

    Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions. PMID:25089288

  19. Baffin Bay Ice Drift and Export: 2002-2007

    NASA Technical Reports Server (NTRS)

    Kwok, Ron

    2007-01-01

    Multiyear estimates of sea ice drift in Baffin Bay and Davis Strait are derived for the first time from the 89 GHz channel of the AMSR-E instrument. Uncertainties in the drift estimates, assessed with Envisat ice motion, are approximately 2-3 km/day. A persistent atmospheric trough, between the coast of Greenland and Baffin Island, drives the prevailing southward drift pattern with average daily displacements in excess of 18-20 km during winter. Over the 5-year record, the ice export ranges between 360 and 675 x 10(exp 3) km(exp 2), with an average of 530 x 10(exp 3) km(exp 2). Sea ice area inflow from the Nares Strait, Lancaster Sound and Jones Sound potentially contribute up to a third of the net area outflow while ice production at the North Water Polynya contributes the balance. Rough estimates of annual volume export give approximately 500-800 km(exp 3). Comparatively, these are approximately 70% and approximately 30% of the annual area and Strait.

  20. Observation of a Unipolar Field-aligned Current System Associated With IMF By-triggered Theta Auroras

    NASA Astrophysics Data System (ADS)

    Hairston, M. R.; Watanabe, M.

    2016-12-01

    We investigate the existence of a specific field-aligned current (FAC) system predicted by numerical magnetohydrodynamic simulations in a past study. The FAC system is expected to occur when a drifting theta aurora is formed in response to a stepwise transition of interplanetary magnetic field (IMF) By during strongly northward IMF periods. When the IMF By changes from positive to negative, a crossbar forms in the Northern Hemisphere that moves dawnward, while in the Southern Hemisphere the crossbar moves in the opposite direction. The crossbar motion reverses when the IMF By changes from negative to positive. The FAC system appears on the trailing side of the drifting crossbar of the theta aurora as it moves either dawnward or duskward. When the theta aurora is drifting dawnward, the FACs flow into the ionosphere. The FAC polarity reverses when the theta aurora is drifting duskward. Using low-altitude satellite data, we confirmed the real existence of the above model-predicted FAC system.

  1. A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows

    NASA Astrophysics Data System (ADS)

    Ionescu-Kruse, Delia

    2018-04-01

    We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.

  2. A Prospective Cohort Study of Gated Stereotactic Liver Radiation Therapy Using Continuous Internal Electromagnetic Motion Monitoring.

    PubMed

    Worm, Esben S; Høyer, Morten; Hansen, Rune; Larsen, Lars P; Weber, Britta; Grau, Cai; Poulsen, Per R

    2018-06-01

    Intrafraction motion can compromise the treatment accuracy in liver stereotactic body radiation therapy (SBRT). Respiratory gating can improve treatment delivery; however, gating based on external motion surrogates is inaccurate. The present study reports the use of Calypso-based internal electromagnetic motion monitoring for gated liver SBRT. Fifteen patients were included in a study of 3-fraction respiratory gated liver SBRT guided by 3 implanted electromagnetic transponders. The planning target volume was created by a 5-mm axial and 7-mm (n = 12) or 10-mm (n = 3) craniocaudal expansion of the clinical target volume (CTV) and covered with 67% of the prescribed CTV mean dose. Treatment was gated to the end-exhale phase of the respiratory cycle with beam-on when the target deviated <3 mm (left-right/anteroposterior) and 4 mm (craniocaudal) from the planned position, according to the monitored (25-Hz) transponder centroid position. The couch was adjusted remotely if baseline drifts >1 to 2 mm occurred. Log files of transponder motion were used to determine the geometric error and reconstruct the delivered CTV dose in the actual gated treatments and in simulated nongated treatments. No severe side effects were observed in relation to transponder implantation. All 45 treatment fractions were successfully guided using the Calypso system. The mean number of couch corrections during each gated fraction was 2.8 (range 0-7). The mean duty cycle during gated treatment was 62.5% (range 29.1%-84.9%). Without gating, the mean 3-dimensional geometric error during a fraction would have been 5.4 mm (range 2.7-12.1). Gating reduced this error to 2.0 mm (range 1.2-3.0). The patient mean reduction in minimum dose to 95% of the CTV relative to the planned dose was 6.0 percentage points (range 0.7-22.0) without gating and 0.8 percentage point (range 0.2-2.0) with gating. Gating using internal motion monitoring was successfully applied for liver SBRT. It markedly improved the geometric and dosimetric accuracy compared with nongated standard treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Psilocybin impairs high-level but not low-level motion perception.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X

    2004-08-26

    The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.

  4. Stokes drift

    NASA Astrophysics Data System (ADS)

    van den Bremer, T. S.; Breivik, Ø.

    2017-12-01

    During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc. 8, 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections. This article is part of the theme issue 'Nonlinear water waves'.

  5. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    NASA Technical Reports Server (NTRS)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  6. Passive appendages generate drift through symmetry breaking

    PubMed Central

    Lācis, U.; Brosse, N.; Ingremeau, F.; Mazzino, A.; Lundell, F.; Kellay, H.; Bagheri, S.

    2014-01-01

    Plants and animals use plumes, barbs, tails, feathers, hairs and fins to aid locomotion. Many of these appendages are not actively controlled, instead they have to interact passively with the surrounding fluid to generate motion. Here, we use theory, experiments and numerical simulations to show that an object with a protrusion in a separated flow drifts sideways by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in a fluid flow is unstable and how it stabilizes either to the left or right of the incoming flow direction. It is plausible that organisms with appendages in a separated flow use this newly discovered mechanism for locomotion; examples include the drift of plumed seeds without wind and the passive reorientation of motile animals. PMID:25354545

  7. Field-aligned Poynting flux observations in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Gary, J. B.; Heelis, R. A.; Hanson, W. B.; Slavin, J. A.

    1994-06-01

    We have used data from Dynamics Explorer 2 to investigate the rate of conversion of electromagnetic energy into both thermal and bulk flow particle kinetic energy in the high-latitude ionosphere. The flux tube integrated conversion rate E.J can be determined from spacecraft measurements of the electric and magnetic field vectors by deriving the field-aligned Poynting flux, S∥=S.B0, where B0 is in the direction of the geomagnetic field. Determination of the Poynting flux from satellite observations is critically dependent upon the establishment of accurate values of the fields and is especially sensitive to errors in the baseline (unperturbed) geomagnetic field. We discuss our treatment of the data in some detail, particularly in regard to systematically correcting the measured magnetic field to account for attitude changes and model deficiencies. S∥ can be used to identify the relative strengths of the magnetosphere and thermospheric winds as energy drivers and we present observations demonstrating the dominance of each of these. Dominance of the magnetospheric driver is indicated by S∥ directed into the ionosphere. Electromagnetic energy is delivered to and dissipated within the region. Dominance of the neutral wind requires that the conductivity weighted neutral wind speed in the direction of the ion drift be larger than the ion drift, resulting in observations of an upward directed Poynting flux. Electromagnetic energy is generated within the ionospheric region in this case. We also present observations of a case where the neutral atmosphere motion may be reaching a state of sustained bulk flow velocity as evidenced by very small Poynting flux in the presence of large electric fields.

  8. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  9. Motion of charged particles normal to an irregular magnetic field. [astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1975-01-01

    The motion is analyzed of charged particles in a fluctuating magnetic field which varies only in directions normal to its mean direction, such as that which would be generated by an ensemble of magnetosonic waves propagating normal to an ambient magnetic field. The appropriate generalization of gradient-drift motion is derived in terms of the power spectrum of the magnetic fluctuations, and an effective spatial diffusion coefficient is obtained. Several special cases are considered, including a Gaussian power spectrum, a power-law spectrum with a cutoff, and a general power-law spectrum. A possible magnitude is calculated for the spatial diffusion coefficient of the solar wind.

  10. Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Nithyanandan, K.; Andral, Ugo; Tchofo-Dinda, Patrice; Grelu, Philippe

    2017-06-01

    Real-time access to the internal ultrafast dynamics of complex dissipative optical systems opens new explorations of pulse-pulse interactions and dynamic patterns. We present the first direct experimental evidence of the internal motion of a dissipative optical soliton molecule generated in a passively mode-locked erbium-doped fiber laser. We map the internal motion of a soliton pair molecule by using a dispersive Fourier-transform imaging technique, revealing different categories of internal pulsations, including vibrationlike and phase drifting dynamics. Our experiments agree well with numerical predictions and bring insights to the analogy between self-organized states of lights and states of the matter.

  11. Responses of a 58-story RC dual core shear wall and outrigger frame building inferred from two earthquakes

    USGS Publications Warehouse

    Çelebi, Mehmet

    2016-01-01

    Responses of a dual core shear-wall and outrigger-framed 58-story building recorded during the Mw6.0 Napa earthquake of 24 August 2014 and the Mw3.8 Berkeley earthquake of 20 October 2011 are used to identify its dynamic characteristics and behavior. Fundamental frequencies are 0.28 Hz (NS), 0.25 Hz (EW), and 0.43 Hz (torsional). Rigid body motions due to rocking are not significant. Average drift ratios are small. Outrigger frames do not affect average drift ratios or mode shapes. Local site effects do not affect the response; however, response associated with deeper structure may be substantial. A beating effect is observed from data of both earthquakes but beating periods are not consistent. Low critical damping ratios may have contributed to the beating effect. Torsion is relatively larger above outriggers as indicated by the time-histories of motions at the roof, possibly due to the discontinuity of the stiffer shear walls above level 47.

  12. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    PubMed Central

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  13. On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion

    NASA Astrophysics Data System (ADS)

    Lim, Soon Hoe; Wehr, Jan; Lampo, Aniello; García-March, Miguel Ángel; Lewenstein, Maciej

    2018-01-01

    We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particle's observables using a quantum stochastic calculus approach. We set the mass of the particle to equal m = m0 ɛ , the reduced Planck constant to equal \\hbar = ɛ and the cutoff frequency to equal Λ = E_{Λ}/ɛ , where m_0 and E_{Λ} are positive constants, so that the particle's de Broglie wavelength and the largest energy scale of the bath are fixed as ɛ → 0. We study the limit as ɛ → 0 of the rescaled model and derive a limiting equation for the (slow) particle's position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.

  14. Effect of baseline corrections on response spectra for two recordings of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Boore, David M.

    1999-01-01

    Displacements derived from the accelerogram recordings of the 1999 Chi-Chi, Taiwan earthquake at stations TCU078 and TCU129 show drifts when only a simple baseline derived from the pre-event portion of the record is removed from the records. The appearance of the velocity and displacement records suggests that changes in the zero-level of the acceleration are responsible for these drifts. The source of the shifts in zero-level are unknown, but might include tilts in the instruments or the response of the instruments to strong shaking. This note illustrates the effect on the velocity, displacement, and response spectra of several schemes for accounting for these baseline shifts. The most important conclusion for earthquake engineering purposes is that the response spectra for periods less than about 20 sec are unaffected by the baseline correction. The results suggest, however, that staticdisplac ements estimated from the instruments should be used with caution. Although limited to the analysis of only two recordings, the results may have more general significance both for the many other recordings of this earthquake and for data that will be obtained in the future from similar high-quality accelerograph networks now being installed or soon to be installed in many parts of the world.

  15. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    DOE PAGES

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%,more » which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.« less

  16. Front-end electronics of the Belle II drift chamber

    NASA Astrophysics Data System (ADS)

    Shimazaki, Shoichi; Taniguchi, Takashi; Uchida, Tomohisa; Ikeno, Masahiro; Taniguchi, Nanae; Tanaka, Manobu M.

    2014-01-01

    This paper describes the performance of the Belle II central drift chamber (CDC) front-end electronics. The front-end electronics consists of a current sensitive preamplifier, a 1/t cancellation circuit, baseline restorers, a comparator for timing measurement and an analog buffer for the dE/dx measurement on a CDC readout card. The CDC readout card is located on the endplate of the CDC. Mass production will be completed after the performance of the chip is verified. The electrical performance and results of a neutron/gamma-ray irradiation test are reported here.

  17. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE PAGES

    Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...

    2017-01-17

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  18. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sándor, Csand; Libál, Andras; Reichhardt, Charles

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  19. Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Chen, Yang; Parker, Scott

    2017-10-01

    A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.

  20. SU-E-J-67: Evaluation of Breathing Patterns for Respiratory-Gated Radiation Therapy Using Respiration Regularity Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheong, K; Lee, M; Kang, S

    2014-06-01

    Purpose: Despite the importance of accurately estimating the respiration regularity of a patient in motion compensation treatment, an effective and simply applicable method has rarely been reported. The authors propose a simple respiration regularity index based on parameters derived from a correspondingly simplified respiration model. Methods: In order to simplify a patient's breathing pattern while preserving the data's intrinsic properties, we defined a respiration model as a power of cosine form with a baseline drift. According to this respiration formula, breathing-pattern fluctuation could be explained using four factors: sample standard deviation of respiration period, sample standard deviation of amplitude andmore » the results of simple regression of the baseline drift (slope and standard deviation of residuals of a respiration signal. Overall irregularity (δ) was defined as a Euclidean norm of newly derived variable using principal component analysis (PCA) for the four fluctuation parameters. Finally, the proposed respiration regularity index was defined as ρ=ln(1+(1/ δ))/2, a higher ρ indicating a more regular breathing pattern. Subsequently, we applied it to simulated and clinical respiration signals from real-time position management (RPM; Varian Medical Systems, Palo Alto, CA) and investigated respiration regularity. Moreover, correlations between the regularity of the first session and the remaining fractions were investigated using Pearson's correlation coefficient. Results: The respiration regularity was determined based on ρ; patients with ρ<0.3 showed worse regularity than the others, whereas ρ>0.7 was suitable for respiratory-gated radiation therapy (RGRT). Fluctuations in breathing cycle and amplitude were especially determinative of ρ. If the respiration regularity of a patient's first session was known, it could be estimated through subsequent sessions. Conclusions: Respiration regularity could be objectively determined using a respiration regularity index, ρ. Such single-index testing of respiration regularity can facilitate determination of RGRT availability in clinical settings, especially for free-breathing cases. This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean Ministry of Science, ICT and Future Planning (No. 2013043498)« less

  1. pH-Taxis of Biohybrid Microsystems

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiang; Wright Carlsen, Rika; Sitti, Metin

    2015-06-01

    The last decade has seen an increasing number of studies developing bacteria and other cell-integrated biohybrid microsystems. However, the highly stochastic motion of these microsystems severely limits their potential use. Here, we present a method that exploits the pH sensing of flagellated bacteria to realize robust drift control of multi-bacteria propelled microrobots. Under three specifically configured pH gradients, we demonstrate that the microrobots exhibit both unidirectional and bidirectional pH-tactic behaviors, which are also observed in free-swimming bacteria. From trajectory analysis, we find that the swimming direction and speed biases are two major factors that contribute to their tactic drift motion. The motion analysis of microrobots also sheds light on the propulsion dynamics of the flagellated bacteria as bioactuators. It is expected that similar driving mechanisms are shared among pH-taxis, chemotaxis, and thermotaxis. By identifying the mechanism that drives the tactic behavior of bacteria-propelled microsystems, this study opens up an avenue towards improving the control of biohybrid microsystems. Furthermore, assuming that it is possible to tune the preferred pH of bioactuators by genetic engineering, these biohybrid microsystems could potentially be applied to sense the pH gradient induced by cancerous cells in stagnant fluids inside human body and realize targeted drug delivery.

  2. Algebraic motion of vertically displacing plasmas

    DOE PAGES

    Pfefferle, D.; Bhattacharjee, A.

    2018-02-27

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  3. Algebraic motion of vertically displacing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, D.; Bhattacharjee, A.

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  4. Cathode signal in a TPC directional detector: implementation and validation measuring the drift velocity

    NASA Astrophysics Data System (ADS)

    Couturier, C.; Riffard, Q.; Sauzet, N.; Guillaudin, O.; Naraghi, F.; Santos, D.

    2017-11-01

    Low-pressure gaseous TPCs are well suited detectors to correlate the directions of nuclear recoils to the galactic Dark Matter (DM) halo. Indeed, in addition to providing a measure of the energy deposition due to the elastic scattering of a DM particle on a nucleus in the target gas, they allow for the reconstruction of the track of the recoiling nucleus. In order to exclude the background events originating from radioactive decays on the surfaces of the detector materials within the drift volume, efforts are ongoing to precisely localize the track nuclear recoil in the drift volume along the axis perpendicular to the cathode plane. We report here the implementation of the measure of the signal induced on the cathode by the motion of the primary electrons toward the anode in a MIMAC chamber. As a validation, we performed an independent measurement of the drift velocity of the electrons in the considered gas mixture, correlating in time the cathode signal with the measure of the arrival times of the electrons on the anode.

  5. Status of the DRIFT-II Directional Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Ghag, Chamkaur

    2006-10-01

    DRIFT is a directional dark matter detection programme that utilises the fact that as the Earth rotates and revolves around the Sun, an annual and diurnal signal modulation could be detected as a result of relative motion between the Earth and the non-rotating WIMP halo. This would provide very strong evidience of WIMPs since such a signal could not be mimicked by background sources. DRIFT II is an array of gas filled time projection chambers (TPCs) with Multi Wire Proportional Counter (MWPC) readout. Signals from different types of events differ greatly, between nuclear and electron recoils for example, due to the amount of ionisation initially produced and recombination times. This provides phenomenal discrimination capabilities. The first module of the DRIFT-II detector was successfully installed underground at Boulby Mine, N. Yorkshire early last year and has proven very stable, collecting high quality calibration and WIMP data. Since then a second module has been installed and is also currently operational. This presentation will describe the status of the detector and will focus on the determination of neutron efficiency and gamma rejection factors.

  6. Adiabatic theory in regions of strong field gradients. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Northrop, T. G.; Birmingham, T. J.

    1986-01-01

    The theory for the generalized first invariant for adiabatic motion of charged particles in regions where there are large gradients in magnetic or electric fields is developed. The general condition for an invariant to exist in such regions is that the potential well in which the particle oscillates change its shape slowly as the particle drifts. It is shown how the Kruskal (1962) procedure can be applied to obtain expressions for the invariant and for drift velocities that are asymptotic in a smallness parameter epsilon. The procedure is illustrated by obtaining the invariant and drift velocities for particles traversing a perpendicular shock, and the generalized invariant is compared with the magnetic moment, and the drift orbits with the actual orbits, for a particular case. In contrast to the magnetic moment, the generalized first invariant is better for large gyroradii (large kinetic energies) than for small gyroradii. Expressions for the invariant when an electrostatic potential jump is imposed across the perpendicular shock, and when the particle traverses a rotational shear layer with a small normal component of the magnetic field are given.

  7. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Boore, D.M.

    2001-01-01

    Displacements derived from many of the accelerogram recordings of the 1999 Chi-Chi, Taiwan, earthquake show drifts when only a simple baseline derived from the pre-event portion of the record is removed from the records. The appearance of the velocity and displacement records suggests that changes in the zero level of the acceleration are responsible for these drifts. The source of the shifts in zero level are unknown, but in at least one case it is almost certainly due to tilting of the ground. This article illustrates the effect on the ground velocity, ground displacement, and response spectra of several schemes for accounting for these baseline shifts. A wide range of final displacements can be obtained for various choices of baseline correction, and comparison with nearby GPS stations (none of which are colocated with the accelerograph stations) do not help in choosing the appropriate baseline correction. The results suggest that final displacements estimated from the records should be used with caution. The most important conclusion for earthquake engineering purposes, however, is that the response spectra for periods less than about 20 sec are usually unaffected by the baseline correction. Although limited to the analysis of only a small number of recordings, the results may have more general significance both for the many other recordings of this earthquake and for data that will be obtained in the future from similar high-quality accelerograph networks now being installed or soon to be installed in many parts of the world.

  8. Damage assessment of RC buildings subjected to the different strong motion duration

    NASA Astrophysics Data System (ADS)

    Mortezaei, Alireza; mohajer Tabrizi, Mohsen

    2015-07-01

    An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.

  9. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  10. Hurst Estimation of Scale Invariant Processes with Stationary Increments and Piecewise Linear Drift

    NASA Astrophysics Data System (ADS)

    Modarresi, N.; Rezakhah, S.

    The characteristic feature of the discrete scale invariant (DSI) processes is the invariance of their finite dimensional distributions by dilation for certain scaling factor. DSI process with piecewise linear drift and stationary increments inside prescribed scale intervals is introduced and studied. To identify the structure of the process, first, we determine the scale intervals, their linear drifts and eliminate them. Then, a new method for the estimation of the Hurst parameter of such DSI processes is presented and applied to some period of the Dow Jones indices. This method is based on fixed number equally spaced samples inside successive scale intervals. We also present some efficient method for estimating Hurst parameter of self-similar processes with stationary increments. We compare the performance of this method with the celebrated FA, DFA and DMA on the simulated data of fractional Brownian motion (fBm).

  11. Burst Oscillation Probes of Neutron Stars and Nuclear Burning with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2012-01-01

    X-ray brightness oscillations during thermonuclear X-ray bursts--burst oscillations--have provided a new probe of neutron star spins as well as of the dependent nuclear burning processes. The frequency drift and amplitude evolution of the oscillations observed during bursts can in principle place constraints on the physics of thermonuclear flame spreading and the dynamics of the burning atmosphere. I use simulations appropriate to LOFT to explore the precision with which the time dependence of the oscillation frequency can be inferred. This can test, for example, different models for the frequency drift, such as up-lift versus geostrophic drift. I also explore the precision with which asymptotic frequencies can be constrained in order to estimate the capability for LOFT to detect the Doppler shifts induced by orbital motion of the neutron star from a sample of bursts at different orbital phases.

  12. A baseline drift detrending technique for fast scan cyclic voltammetry.

    PubMed

    DeWaele, Mark; Oh, Yoonbae; Park, Cheonho; Kang, Yu Min; Shin, Hojin; Blaha, Charles D; Bennet, Kevin E; Kim, In Young; Lee, Kendall H; Jang, Dong Pyo

    2017-11-06

    Fast scan cyclic voltammetry (FSCV) has been commonly used to measure extracellular neurotransmitter concentrations in the brain. Due to the unstable nature of the background currents inherent in FSCV measurements, analysis of FSCV data is limited to very short amounts of time using traditional background subtraction. In this paper, we propose the use of a zero-phase high pass filter (HPF) as the means to remove the background drift. Instead of the traditional method of low pass filtering across voltammograms to increase the signal to noise ratio, a HPF with a low cutoff frequency was applied to the temporal dataset at each voltage point to remove the background drift. As a result, the HPF utilizing cutoff frequencies between 0.001 Hz and 0.01 Hz could be effectively used to a set of FSCV data for removing the drifting patterns while preserving the temporal kinetics of the phasic dopamine response recorded in vivo. In addition, compared to a drift removal method using principal component analysis, this was found to be significantly more effective in reducing the drift (unpaired t-test p < 0.0001, t = 10.88) when applied to data collected from Tris buffer over 24 hours although a drift removal method using principal component analysis also showed the effective background drift reduction. The HPF was also applied to 5 hours of FSCV in vivo data. Electrically evoked dopamine peaks, observed in the nucleus accumbens, were clearly visible even without background subtraction. This technique provides a new, simple, and yet robust, approach to analyse FSCV data with an unstable background.

  13. Motion of a virtual cathode in a cylindrical channel with electron beam transport in the “compressed” state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belomyttsev, S. Ya.; Grishkov, A. A.; Tsygankov, R. V.

    2014-03-15

    This paper studies the motion of a virtual cathode in a two-section drift tube with the formation and breakup of the “compressed” state of an electron beam. Experimental arrangements to intercept part of the injected current during the voltage pulse and to provide virtual cathode motion toward the collector are proposed. The arrangements were implemented on the SINUS-7 high-current electron accelerator. Theoretical and experimental dependences of the virtual cathode velocity on the injected current and cathode voltage are presented. The experimental data on virtual cathode motion agree with its theoretical model based on analytical solutions of equations assisted by computermore » simulation with the PIC code KARAT. The results of the work demonstrate the feasibility of controlling the virtual cathode motion which can be used in collective ion acceleration and microwave generation.« less

  14. Motion fading is driven by perceived, not actual angular velocity.

    PubMed

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  16. The influence of orbit selection on the accuracy of the Stanford Relativity gyroscope experiment

    NASA Technical Reports Server (NTRS)

    Vassar, R.; Everitt, C. W. F.; Vanpatten, R. A.; Breakwell, J. V.

    1980-01-01

    This paper discusses an error analysis for the Stanford Relativity experiment, designed to measure the precession of a gyroscope's spin-axis predicted by general relativity. Measurements will be made of the spin-axis orientations of 4 superconducting spherical gyroscopes carried by an earth-satellite. Two relativistic precessions are predicted: a 'geodetic' precession associated with the satellite's orbital motion and a 'motional' precession due to the earth's rotation. Using a Kalman filter covariance analysis with a realistic error model we have computed the error in determining the relativistic precession rates. Studies show that a slightly off-polar orbit is better than a polar orbit for determining the 'motional' drift.

  17. Characteristic power spectrum of diffusive interface dynamics in the two-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Masumoto, Yusuke; Takesue, Shinji

    2018-05-01

    We investigate properties of the diffusive motion of an interface in the two-dimensional Ising model in equilibrium or nonequilibrium situations. We focused on the relation between the power spectrum of a time sequence of spins and diffusive motion of an interface which was already clarified in one-dimensional systems with a nonequilibrium phase transition like the asymmetric simple exclusion process. It is clarified that the interface motion is a diffusion process with a drift force toward the higher-temperature side when the system is in contact with heat reservoirs at different temperatures and heat transfers through the system. Effects of the width of the interface are also discussed.

  18. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Kent, D.

    2017-12-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system that results in simultaneous change in latitude and orientation for all lithospheric plates. One of the most recent candidate TPW events consists of a 30˚ rotation during Late Jurassic time (160 - 145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continental studies. Because all major landmasses except China were connected directly or via spreading centers in the Late Jurassic, the velocities of these continents were mutually constrained and their motion as a group over the underlying mantle would be indistinguishable from TPW using only continental data. On the other hand, plates of the Pacific Basin constituted a kinematically independent domain, interfacing with continents at subduction zones and slip-strike boundaries. Coherent motion of both Pacific Basin and continental plates would therefore indicate uniform motion of virtually the entire lithosphere, providing a means to distinguish TPW from continental drift. We performed thermal demagnetization on remaining samples from Ocean Drilling Program (ODP) Site 801B, which were cored from the oldest sampled oceanic crust in the Western Pacific, to determine its change in paleolatitude during the Late Jurassic and Early Cretaceous (167 - 134 Ma). We find that the Pacific Plate likely underwent a steady southward drift during this time period, consistent with previous results from magnetic anomalies, except for an episode of northward motion between Oxfordian and Tithonian time (161 - 147 Ma). Although the amplitude of this northward shift is subject to significant uncertainty due to the sparse recovery of core samples, the trajectory of the Pacific Plate is most simply explained by TPW in the 160 - 145 Ma interval as inferred from continental data. Furthermore, such an interpretation is consistent with the sense of shear inferred at the Farallon-North American Plate boundary, whereas uniform motion of the Pacific Plate without TPW contradicts inferred relative motions. The Late Jurassic motion of the Pacific Plate therefore provides support for the occurrence of TPW. Candidate drivers for such an event include subducting slabs at the western margin of North America and the Mongol-Okhotsk Ocean and mantle plumes associated with the Paraná LIP.

  19. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives.

    PubMed

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2014-01-01

    In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.

  20. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives

    PubMed Central

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2014-01-01

    In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a “reshaping” function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal “reshaping” functions). In this article, we use this architecture with the actor-critic algorithms for finding a good “reshaping” function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion. PMID:25324773

  1. Final report on the development of the geographic position locator (GPL). Volume 12. Data reduction A3FIX: subroutine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niven, W.A.

    The long-term position accuracy of an inertial navigation system depends primarily on the ability of the gyroscopes to maintain a near-perfect reference orientation. Small imperfections in the gyroscopes cause them to drift slowly away from their initial orientation, thereby producing errors in the system's calculations of position. The A3FIX is a computer program subroutine developed to estimate inertial navigation system gyro drift rates with the navigator stopped or moving slowly. It processes data of the navigation system's position error to arrive at estimates of the north- south and vertical gyro drift rates. It also computes changes in the east--west gyromore » drift rate if the navigator is stopped and if data on the system's azimuth error changes are also available. The report describes the subroutine, its capabilities, and gives examples of gyro drift rate estimates that were computed during the testing of a high quality inertial system under the PASSPORT program at the Lawrence Livermore Laboratory. The appendices provide mathematical derivations of the estimation equations that are used in the subroutine, a discussion of the estimation errors, and a program listing and flow diagram. The appendices also contain a derivation of closed form solutions to the navigation equations to clarify the effects that motion and time-varying drift rates induce in the phase-plane relationships between the Schulerfiltered errors in latitude and azimuth snd between the Schulerfiltered errors in latitude and longitude. (auth)« less

  2. Application of a net-based baseline correction scheme to strong-motion records of the 2011 Mw 9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.

    2014-06-01

    The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.

  3. Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India

    NASA Astrophysics Data System (ADS)

    Gupta, I. D.

    2018-03-01

    This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.

  4. Stokes drift.

    PubMed

    van den Bremer, T S; Breivik, Ø

    2018-01-28

    During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc. 8 , 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  5. Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey

    NASA Astrophysics Data System (ADS)

    Athamnia, B.; Ounis, A.; Abdeddaim, M.

    2017-12-01

    This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.

  6. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  7. In vitro validation of a new respiratory ultrasonic plethysmograph.

    PubMed

    Schramel, Johannes; van den Hoven, René; Moens, Yves

    2012-07-01

    The in-vitro validation of a novel Respiratory Ultrasonic Plethysmography (RUP) system designed to detect circumference changes of rib cage and abdominal compartments in large and small animals. Experimental in vitro study. The experimental system includes two compliant fluid-filled rubber tubes functioning as ultrasonic waveguides. Each has an ultrasonic transmitter and a detector at the opposing ends. Sensor length can be individually adapted in the range of 0.15-2 m. Data are downloaded to a computer at a sampling rate of 10 or 100 Hz. Measurements have a resolution of 0.3 mm. Baseline stability, linearity and repeatability were investigated with dedicated experiments. The base line drift was tested measuring a fixed distance for 2 hours continuously and then 18 hours later. A hand-operated horse thorax dummy (elliptically shaped, circumference 1.73 m) was used to compare waveforms of RUP with a respiratory inductive plethysmograph (RIP). The electromagnetic interference was tested by approaching metallic objects. Baseline drift and repeatability (10 repeated steps of 1.6% and 6.6% elongations and contractions) were within ± 0.3 mm. The response of the system for tube stretching up to 11% of total length was linear with a coefficient of determination for linearity of 0.998. In contrast to RIP, electromagnetic interference could not be observed with RUP. The low baseline drift and the lack of electromagnetic interference favours the use of RUP compared to an RIP device when studying the breathing pattern and end expiratory lung volume changes in conscious and anaesthetized animals. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  8. A comment on plasma 'pile-up' in the F-region

    NASA Technical Reports Server (NTRS)

    Rishbeth, H.; Hanson, W. B.

    1974-01-01

    At ionospheric heights, the geomagnetic field is virtually incompressible. In consequence, an electromagnetic drift can only compress the F-region plasma by moving it in a direction in which the field becomes stronger. This paper examines the rate of compression at mid-latitudes for three different assumptions about the ion motion.

  9. Self-Motion Perception during Locomotor Recalibration: More than Meets the Eye

    ERIC Educational Resources Information Center

    Durgin, Frank H.; Pelah, Adar; Fox, Laura F.; Lewis, Jed; Kane, Rachel; Walley, Katherine A.

    2005-01-01

    Do locomotor after effects depend specifically on visual feedback? In 7 experiments, 116 college students were tested, with closed eyes, at stationary running or at walking to a previewed target after adaptation, with closed eyes, to treadmill locomotion. Subjects showed faster inadvertent drift during stationary running and increased distance…

  10. Variational principles for stochastic fluid dynamics

    PubMed Central

    Holm, Darryl D.

    2015-01-01

    This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083

  11. Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, John

    2015-09-01

    We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.

  12. Electromagnetic effects on dynamics of high-beta filamentary structures

    DOE PAGES

    Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; ...

    2015-01-12

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation,more » it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.« less

  13. Three-dimensional relativistic field-electron interaction in a multicavity high-power klystron. 1: Basic theory

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    A theoretical investigation of three dimensional relativistic klystron action is described. The relativistic axisymmetric equations of motion are derived from the time-dependent Lagrangian function for a charged particle in electromagnetic fields. An analytical expression of the fringing RF electric and magnetic fields within and in the vicinity of the interaction gap and the space-charge forces between axially and radially elastic deformable rings of charges are both included in the formulation. This makes an accurate computation of electron motion through the tunnel of the cavities and the drift tube spaces possible. Method of analysis is based on Lagrangian formulation. Bunching is computed using a disk model of electron stream in which the electron stream is divided into axisymmetric disks of equal charge and each disk is assumed to consist of a number of concentric rings of equal charges. The Individual representative groups of electrons are followed through the interaction gaps and drift tube spaces. Induced currents and voltages in interacting cavities are calculated by invoking the Shockley-Ramo theorem.

  14. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.

    PubMed

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  15. Winds and tides of Ligeia Mare, with application to the drift of the proposed time TiME (Titan Mare Explorer) capsule

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Tokano, Tetsuya; Newman, Claire E.

    2012-01-01

    We use two independent General Circulation Models (GCMs) to estimate surface winds at Titan’s Ligeia Mare (78° N, 250° W), motivated by a proposed mission to land a floating capsule in this ∼500 km hydrocarbon sea. The models agree on the overall magnitude (∼0.5-1 m/s) and seasonal variation (strongest in summer) of windspeeds, but details of seasonal and diurnal variation of windspeed and direction differ somewhat, with the role of surface exchanges being more significant than that of gravitational tides in the atmosphere. We also investigate the tidal dynamics in the sea using a numerical ocean dynamics model: assuming a rigid lithosphere, the tidal amplitude is up to ∼0.8 m. Tidal currents are overall proportional to the reciprocal of depth-with an assumed central depth of 300 m, the characteristic tidal currents are ∼1 cm/s, with notable motions being a slosh between Ligeia’s eastern and western lobes, and a clockwise flow pattern. We find that a capsule will drift at approximately one tenth of the windspeed, unless measures are adopted to augment the drag areas above or below the waterline. Thus motion of a floating capsule is dominated by the wind, and is likely to be several km per Earth day, a rate that will be readily measured from Earth by radio navigation methods. In some instances, the wind vector rotates diurnally such that the drift trajectory is epicyclic.

  16. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses?

    USGS Publications Warehouse

    Luco, N.; Bazzurro, P.

    2007-01-01

    Limitations of the existing earthquake ground motion database lead to scaling of records to obtain seismograms consistent with a ground motion target for structural design and evaluation. In the engineering seismology community, acceptable limits for 'legitimate' scaling vary from one (no scaling allowed) to 10 or more. The concerns expressed by detractors of scaling are mostly based on the knowledge of, for example, differences in ground motion characteristics for different earthquake magnitude-distance (Mw-Rclose) scenarios, and much less on their effects on structures. At the other end of the spectrum, proponents have demonstrated that scaling is not only legitimate but also useful for assessing structural response statistics for Mw-Rclose scenarios. Their studies, however, have not investigated more recent purposes of scaling and have not always drawn conclusions for a wide spectrum of structural vibration periods and strengths. This article investigates whether scaling of records randomly selected from an Mw-Rclose bin (or range) to a target fundamental-mode spectral acceleration (Sa) level introduces bias in the expected nonlinear structural drift response of both single-degree-of-freedom oscillators and one multi-degree-of-freedom building. The bias is quantified relative to unscaled records from the target Mw-Rclose bin that are 'naturally' at the target Sa level. We consider scaling of records from the target Mw-Rclose bin and from other Mw-Rclose bins. The results demonstrate that scaling can indeed introduce a bias that, for the most part, ca be explained by differences between the elastic response spectra of the scaled versus unscaled records. Copyright ?? 2007 John Wiley & Sons, Ltd.

  17. A new method of derived equatorial plasma bubbles motion by tracing OI 630 nm emission all-sky images

    NASA Astrophysics Data System (ADS)

    Li, M.; Yu, T.; Chunliang, X.; Zuo, X.; Liu, Z.

    2017-12-01

    A new method for estimating the equatorial plasma bubbles (EPBs) motions from airglow emission all-sky images is presented in this paper. This method, which is called 'cloud-derived wind technology' and widely used in satellite observation of wind, could reasonable derive zonal and meridional velocity vectors of EPBs drifts by tracking a series of successive airglow 630.0 nm emission images. Airglow emission images data are available from an all sky airglow camera in Hainan Fuke (19.5°N, 109.2°E) supported by China Meridional Project, which can receive the 630.0nm emission from the ionosphere F region at low-latitudes to observe plasma bubbles. A series of pretreatment technology, e.g. image enhancement, orientation correction, image projection are utilized to preprocess the raw observation. Then the regions of plasma bubble extracted from the images are divided into several small tracing windows and each tracing window can find a target window in the searching area in following image, which is considered as the position tracing window moved to. According to this, velocities in each window are calculated by using the technology of cloud-derived wind. When applying the cloud-derived wind technology, the maximum correlation coefficient (MCC) and the histogram of gradient (HOG) methods to find the target window, which mean to find the maximum correlation and the minimum euclidean distance between two gradient histograms in respectively, are investigated and compared in detail. The maximum correlation method is fianlly adopted in this study to analyze the velocity of plasma bubbles because of its better performance than HOG. All-sky images from Hainan Fuke, between August 2014 and October 2014, are analyzed to investigate the plasma bubble drift velocities using MCC method. The data at different local time at 9 nights are studied and find that zonal drift velocity in different latitude at different local time ranges from 50 m/s to 180 m/s and there is a peak value at about 20°N. For comparison and validation, EPBs motions obtained from three traditional methods are also investigated and compared with MC method. The advantages and disadvantages of using cloud-derived wind technology to calculate EPB drift velocity are discussed.

  18. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.

    PubMed

    Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L

    2018-03-01

    We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.

  19. Measurements of vertical motions by the Saskatoon MF radar (1983-1985): Relationships with horizontal winds and gravity waves

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.

    1989-01-01

    The continuing series of horizontal wind measurements by the spaced-antenna real time winds (RTW) method was supplemented by a phase coherent system for two years. Vertical motions are inferred from the complex autocorrelation functions, and an RTW system provides 5 min samples from 60 to 110 km. Comparisons with full interferometric 3-D velocity measurements confirm the validity of this approach. Following comparisons and corrections with the horizontal winds, mean summer and winter (24 h) days of vertical motions are shown. Tidal fluctuations are evident. In summer the motions are downward, consistent with data from Poker Flat, and the suggestion of Coy et al. (1986) that these represent Eulerian motions. The expected upward Lagrangian motion then results from adding up upward Stokes' drift. The winter motions are more complex, and are discussed in the context of gravity wave fluxes and possible meridional cells. The divergence of the vertical flux of zonal momentum is also calculated and found to be similar to the coriolis torque due to the meridional winds.

  20. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  1. Spatiotemporal splitting of global eigenmodes due to cross-field coupling via vortex dynamics in drift wave turbulence.

    PubMed

    Brandt, C; Thakur, S C; Light, A D; Negrete, J; Tynan, G R

    2014-12-31

    Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross section have been experimentally observed to split at radial locations and recombine into the global eigenmode with a time shorter than the typical DW period (t≪fDW(-1)). The number of splits correlates with the increase of turbulence. The observed dynamics can be theoretically reproduced by a Kuramoto-type model of a network of radially coupled azimuthal eigenmodes. Coupling by E×B-vortex convection cell dynamics and ion gyro radii motion leads to cross-field synchronization and occasional mode splitting events.

  2. Brownian motion model with stochastic parameters for asset prices

    NASA Astrophysics Data System (ADS)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  3. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  4. Simulated Prompt Acceleration of Multi-MeV Electrons by the 17 March 2015 Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiao-Chen; Thaller, Scott; Wiltberger, Michael; Wygant, John

    2017-10-01

    Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by ˜1 MeV is inferred on less than a drift timescale as seen in prior shock compression events, which launch a magnetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.

  5. Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Kyle; Rong, Yi, E-mail: yrong@ucdavis.edu

    2015-11-15

    Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Methods: Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltagemore » (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. Results: The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139 ± 10 ms for MV beams and 92 ± 11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6 ± 3.1 ms for slow, 24.9 ± 2.9 ms for intermediate, and 23.0 ± 20.1 ms for fast speed. Conclusions: A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.« less

  6. Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating.

    PubMed

    Woods, Kyle; Rong, Yi

    2015-11-01

    To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltage (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139±10 ms for MV beams and 92±11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6±3.1 ms for slow, 24.9±2.9 ms for intermediate, and 23.0±20.1 ms for fast speed. A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.

  7. An Universal packaging technique for low-drift implantable pressure sensors.

    PubMed

    Kim, Albert; Powell, Charles R; Ziaie, Babak

    2016-04-01

    Monitoring bodily pressures provide valuable diagnostic and prognostic information. In particular, long-term measurement through implantable sensors is highly desirable in situations where percutaneous access can be complicated or dangerous (e.g., intracranial pressure in hydrocephalic patients). In spite of decades of progress in the fabrication of miniature solid-state pressure sensors, sensor drift has so far severely limited their application in implantable systems. In this paper, we report on a universal packaging technique for reducing the sensor drift. The described method isolates the pressure sensor from a major source of drift, i.e., contact with the aqueous surrounding environment, by encasing the sensor in a silicone-filled medical-grade polyurethane balloon. In-vitro soak tests for 100 days using commercial micromachined piezoresistive pressure sensors demonstrate a stable operation with the output remaining within 1.8 cmH2O (1.3 mmHg) of a reference pressure transducer. Under similar test conditions, a non-isolated sensor fluctuates between 10 and 20 cmH2O (7.4-14.7 mmHg) of the reference, without ever settling to a stable operation regime. Implantation in Ossabow pigs demonstrate the robustness of the package and its in-vivo efficacy in reducing the baseline drift.

  8. Relaxing USOS Solar Array Constraints for Russian Vehicle Undocking

    NASA Technical Reports Server (NTRS)

    Menkin, Evgeny; Schrock, Mariusz; Schrock, Rita; Zaczek, Mariusz; Gomez, Susan; Lee, Roscoe; Bennet, George

    2011-01-01

    With the retirement of Space Shuttle cargo delivery capability and the ten year life extension of the International Space Station (ISS) more emphasis is being put on preservation of the service life of ISS critical components. Current restrictions on the United States Orbital Segment (USOS) Solar Array (SA) positioning during Russian Vehicle (RV) departure from ISS nadir and zenith ports cause SA to be positioned in the plume field of Service Module thrusters and lead to degradation of SAs as well as potential damage to Sun tracking Beta Gimbal Assemblies (BGA). These restrictions are imposed because of the single fault tolerant RV Motion Control System (MCS), which does not meet ISS Safety requirements for catastrophic hazards and dictates 16 degree Solar Array Rotary Joint position, which ensures that ISS and RV relative motion post separation, does lead to collision. The purpose of this paper is to describe a methodology and the analysis that was performed to determine relative motion trajectories of the ISS and separating RV for nominal and contingency cases. Analysis was performed in three phases that included ISS free drift prior to Visiting Vehicle separation, ISS and Visiting Vehicle relative motion analysis and clearance analysis. First, the ISS free drift analysis determined the worst case attitude and attitude rate excursions prior to RV separation based on a series of different configurations and mass properties. Next, the relative motion analysis calculated the separation trajectories while varying the initial conditions, such as docking mechanism performance, Visiting Vehicle MCS failure, departure port location, ISS attitude and attitude rates at the time of separation, etc. The analysis employed both orbital mechanics and rigid body rotation calculations while accounting for various atmospheric conditions and gravity gradient effects. The resulting relative motion trajectories were then used to determine the worst case separation envelopes during the clearance analysis. Analytical models were developed individually for each stage and the results were used to build initial conditions for the following stages. In addition to the analysis approach, this paper also discusses the analysis results, showing worst case relative motion envelopes, the recommendations for ISS appendage positioning and the suggested approach for future analyses.

  9. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    NASA Astrophysics Data System (ADS)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross-correlated phase and power measurements from GNSS receivers. Results of horizontal drift velocities and anisotropy ellipses derived from the parameters are shown for several detected events. Results show the possibility of routinely quantifying ionospheric irregularities by drifts and anisotropy. Error analysis on estimated properties is performed to further evaluate the estimation quality. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts. A case study of a single scintillating satellite observed by the array is used to demonstrate the uncertainty estimation process. The distributed array is used in coordination with other measuring techniques such as incoherent scatter radar and optical all-sky imagers. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30-minute period are made and compared to a collocated incoherent scatter radar, and show good agreement in horizontal drift speed and direction during periods of scintillation for cases when the characteristic velocity is less than the drift velocity. The methods demonstrated are extensible to other zones and other GNSS arrays of varying size, number, ground distribution, and transmitter frequency.

  10. An Automated Baseline Correction Method Based on Iterative Morphological Operations.

    PubMed

    Chen, Yunliang; Dai, Liankui

    2018-05-01

    Raman spectra usually suffer from baseline drift caused by fluorescence or other reasons. Therefore, baseline correction is a necessary and crucial step that must be performed before subsequent processing and analysis of Raman spectra. An automated baseline correction method based on iterative morphological operations is proposed in this work. The method can adaptively determine the structuring element first and then gradually remove the spectral peaks during iteration to get an estimated baseline. Experiments on simulated data and real-world Raman data show that the proposed method is accurate, fast, and flexible for handling different kinds of baselines in various practical situations. The comparison of the proposed method with some state-of-the-art baseline correction methods demonstrates its advantages over the existing methods in terms of accuracy, adaptability, and flexibility. Although only Raman spectra are investigated in this paper, the proposed method is hopefully to be used for the baseline correction of other analytical instrumental signals, such as IR spectra and chromatograms.

  11. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  12. Guiding center model to interpret neutral particle analyzer results

    NASA Technical Reports Server (NTRS)

    Englert, G. W.; Reinmann, J. J.; Lauver, M. R.

    1974-01-01

    The theoretical model is discussed, which accounts for drift and cyclotron components of ion motion in a partially ionized plasma. Density and velocity distributions are systematically precribed. The flux into the neutral particle analyzer (NPA) from this plasma is determined by summing over all charge exchange neutrals in phase space which are directed into apertures. Especially detailed data, obtained by sweeping the line of sight of the apertures across the plasma of the NASA Lewis HIP-1 burnout device, are presented. Selection of randomized cyclotron velocity distributions about mean azimuthal drift yield energy distributions which compared well with experiment. Use of data obtained with a bending magnet on the NPA showed that separation between energy distribution curves of various mass species correlate well with a drift divided by mean cyclotron energy parameter of the theory. Use of the guiding center model in conjunction with NPA scans across the plasma aid in estimates of ion density and E field variation with plasma radius.

  13. High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang

    2009-10-01

    A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.

  14. Energetic Particles Dynamics in Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  15. Diffusion-plus-drift models for the mass leakage from centrifugal magnetospheres of magnetic hot-stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley P.; Cranmer, Steven R.

    2018-03-01

    In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.

  16. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  17. A Production Network Model and Its Diffusion Approximation.

    DTIC Science & Technology

    1982-09-01

    ordinary Riemann-Stieltjes integrals. Proof. By making minor changes in the proof of the Kunita-Watanabe [91 change of variable formula it can be shown...n.) converges meakly to I, where X Is a Brownian motion wlth drift p and covarlance mtrx A - (ajj) djj b I! (41) aij 2 f Puj(a) do The proof of Lemna

  18. Langmuir Turbulence

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Langmuir Turbulence Eric A. D’Asaro, Ramsey Harcourt...definitive experimental tests of the hypothesis that Langmuir Turbulence , specifically the equations of motion with the addition of the Craik-Leibovich...vortex force and advection by the surface wave Stokes drift, can accurately describe turbulence in the upper ocean boundary layer under conditions of

  19. Upgrades to the NOAA/NESDIS automated Cloud-Motion Vector system

    NASA Technical Reports Server (NTRS)

    Nieman, Steve; Menzel, W. Paul; Hayden, Christopher M.; Wanzong, Steve; Velden, Christopher S.

    1993-01-01

    The latest version of the automated cloud motion vector software has yielded significant improvements in the quality of the GOES cloud-drift winds produced operationally by NESDIS. Cloud motion vectors resulting from the automated system are now equal or superior in quality to those which had the benefit of manual quality control a few years ago. The single most important factor in this improvement has been the upgraded auto-editor. Improved tracer selection procedures eliminate targets in difficult regions and allow a higher target density and therefore enhanced coverage in areas of interest. The incorporation of the H2O-intercept height assignment method allows an adequate representation of the heights of semi-transparent clouds in the absence of a CO2-absorption channel. Finally, GOES-8 water-vapor motion winds resulting from the automated system are superior to any done previously by NESDIS and should now be considered as an operational product.

  20. Observations of Anomalous Refraction with Co-housed Telescopes

    NASA Astrophysics Data System (ADS)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  1. Particle sedimentation in curved tubes: A 3D simulation and optimization for treatment of vestibular vertigo

    NASA Astrophysics Data System (ADS)

    White, Brian; Squires, Todd M.; Hain, Timothy C.; Stone, Howard A.

    2003-11-01

    Benign paroxysmal positional vertigo (BPPV) is a mechanical disorder of the vestibular system where micron-size crystals abnormally drift into the semicircular canals of the inner ear that sense angular motion of the head. Sedimentation of these crystals causes sensation of motion after true head motion has stopped: vertigo results. The usual clinical treatment is through a series of head maneuvers designed to move the particles into a less sensitive region of the canal system. We present a three-dimensional model to simulate treatment of BPPV by determining the complete hydrodynamic motion of the particles through the course of a therapeutic maneuver while using a realistic representation of the actual geometry. Analyses of clinical maneuvers show the parameter range for which they are effective, and indicate inefficiencies in current practice. In addition, an optimization process determines the most effective head maneuver, which significantly differs from those currently in practice.

  2. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    PubMed

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  3. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    PubMed Central

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  4. An error-based micro-sensor capture system for real-time motion estimation

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li

    2017-10-01

    A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).

  5. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots.

    PubMed

    Zhang, Zhijun; Li, Zhijun; Zhang, Yunong; Luo, Yamei; Li, Yuanqing

    2015-12-01

    We propose a dual-arm cyclic-motion-generation (DACMG) scheme by a neural-dynamic method, which can remedy the joint-angle-drift phenomenon of a humanoid robot. In particular, according to a neural-dynamic design method, first, a cyclic-motion performance index is exploited and applied. This cyclic-motion performance index is then integrated into a quadratic programming (QP)-type scheme with time-varying constraints, called the time-varying-constrained DACMG (TVC-DACMG) scheme. The scheme includes the kinematic motion equations of two arms and the time-varying joint limits. The scheme can not only generate the cyclic motion of two arms for a humanoid robot but also control the arms to move to the desired position. In addition, the scheme considers the physical limit avoidance. To solve the QP problem, a recurrent neural network is presented and used to obtain the optimal solutions. Computer simulations and physical experiments demonstrate the effectiveness and the accuracy of such a TVC-DACMG scheme and the neural network solver.

  6. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows.

    PubMed

    Giesecke, André; Stefani, Frank; Burguete, Javier

    2012-12-01

    We present numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von Kármán-like flow subject to time-dependent nonaxisymmetric velocity perturbations. The numerical model is based on the setup of the French von Kármán-sodium dynamo (VKS) and on the flow measurements from a water experiment conducted at the University of Navarra in Pamplona, Spain. The principal experimental observations that are modeled in our simulations are nonaxisymmetric vortexlike structures which perform an azimuthal drift motion in the equatorial plane. Our simulations show that the interactions of these periodic flow perturbations with the fundamental drift of the magnetic eigenmode (including the special case of nondrifting fields) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an (m=2) vortexlike flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth rates and a drift of the magnetic eigenmode that is synchronized with the perturbation drift. The resonance-like enhancement of the growth rates takes place when the vortex drift frequency roughly equals the drift frequency of the magnetic eigenmode in the unperturbed system. Outside of this small window, the field generation is hampered compared to the unperturbed case, and the field amplitude of the magnetic eigenmode is modulated with approximately twice the vortex drift frequency. The abrupt transition between the resonant regime and the modulated regime is identified as a spectral exceptional point where eigenvalues (growth rates and frequencies) and eigenfunctions of two previously independent modes collapse. In the actual configuration the drift frequencies of the velocity perturbations that are observed in the water experiment are much larger than the fundamental drift frequency of the magnetic eigenmode that is obtained from our numerical simulations. Hence, we conclude that the fulfillment of the resonance condition might be unlikely in present day dynamo experiments. However, a possibility to increase the dynamo efficiency in the VKS experiment might be realized by an application of holes or fingers on the outer boundary in the equatorial plane. These mechanical distortions provoke an anchorage of the vortices at fixed positions thus allowing an adjustment of the temporal behavior of the nonaxisymmetric flow perturbations.

  7. Dim star fringe stabilization demonstration using pathlength feed-forward on the SIM testbed 3 (STB3)

    NASA Astrophysics Data System (ADS)

    Goullioud, Renaud; Alvarez-Salazar, Oscar S.; Nemati, Bijan

    2003-02-01

    Future space-based optical interferometers such as the Space Interferometer Mission require fringe stabilization to the level of nanometers in order to produce astrometric data at the micro-arc-second level. Even the best attitude control system available to date will not be able to stabilize the attitude of a several thousand pound spacecraft to a few milli-arc-seconds. Active pathlength control is usually implemented to compensate for attitude drift of the spacecraft. This issue has been addressed in previous experiments while tracking bright stars. In the case of dim stars, as the sensor bandwidth falls below one hertz, feedback control will not provide sufficient rejection. However, stabilization of the fringes from a dim-star down to the nanometer level can be done open loop using information from additional interferometers looking at bright guide stars. The STB3 testbed developed at the Jet Propulsion Laboratory features three optical interferometers sharing a common baseline, dynamically representative to the SIM interferometer. An artificial star feeding the interferometers is installed on a separate optics bench. Voice coils are used to simulate the attitude motion of the spacecraft by moving the entire bench. Data measured on STB3 show that fringe motion of a dim star due to spacecraft attitude changes can be attenuated by 80 dB at 0.1Hz without feedback control, using only information from two guide stars. This paper describes the STB3 setup, the pathlength feed-forward architecture, implementation issues and data collected with the system.

  8. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations

    PubMed Central

    May, Jody C.; McLean, John A.

    2013-01-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124

  9. A New Dark Vortex

    NASA Astrophysics Data System (ADS)

    Wong, Michael

    2015-10-01

    A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.

  10. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    PubMed

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  11. Brownian motion of massive skyrmions in magnetic thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com; Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl

    2014-12-15

    We report on the thermal effects on the motion of current-driven massive magnetic skyrmions. The reduced equation for the motion of skyrmion has the form of a stochastic generalized Thiele’s equation. We propose an ansatz for the magnetization texture of a non-rigid single skyrmion that depends linearly with the velocity. By using this ansatz it is found that the skyrmion mass tensor is closely related to intrinsic skyrmion parameters, such as Gilbert damping, skyrmion-charge and dissipative force. We have found an exact expression for the average drift velocity as well as the mean-square velocity of the skyrmion. The longitudinal andmore » transverse mobility of skyrmions for small spin-velocity of electrons is also determined and found to be independent of the skyrmion mass.« less

  12. Aether drift and the isotropy of the universe: a measurement of anisotropies in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1979-01-01

    This experiment detected and mapped large-angular-scale anisotropies in the 3 K primordial black-body radiation with a sensitivity of 2x.0001k and an angular resolution of about 10 degs. It measured the motion of the Earth with respect to the distant matter of the Universe (Aether Drift), and probed the homogeneity and isotropy of the Universe (the Cosmological Principle). The experiment used two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth Survey Aircraft (U-2), and operated successfully in a series of flights.

  13. Short-term effect of volume recruitment-derecruitment manoeuvre on chest-wall motion in Duchenne muscular dystrophy.

    PubMed

    Meric, Henri; Falaize, Line; Pradon, Didier; Lacombe, Matthieu; Petitjean, Michel; Orlikowski, David; Prigent, Hélène; Lofaso, Frédéric

    2017-05-01

    Because progressive respiratory muscle weakness leads to decreased chest-wall motion with eventual ribcage stiffening, the purpose was to compare vital capacity (VC) and contributions of chest-wall compartments before and after volume recruitment-derecruitment manoeuvres (VRDM) in Duchenne muscular dystrophy (DMD). We studied nine patients with DMD and VC lower than 30% of predicted. VRDM was performed using 15 insufflations-exsufflations of +30 to -30 cmH 2 O. VC and three-dimensional chest-wall motion were measured, as well as oxygen saturation, transcutaneous partial pressure of carbon dioxide and the rapid shallow breathing index (respiratory rate/tidal volume) before (baseline) and immediately and 1 hour after VRDM. VC increased significantly immediately after VRDM (108% ± 7% of baseline, p = 0.018) but returned to baseline within 1 hour, and the rapid shallow breathing index increased significantly. The non-dominant side systematically increased immediately after VRDM ( p = 0.0077), and in the six patients with abnormal breathing asymmetry (difference >10% of VC) at baseline, this asymmetry was corrected immediately and/or 1 hour after VRDM. VRDM improved VC and reduced chest-wall motion asymmetry, but this beneficial effect waned rapidly with respiratory muscle fatigue, suggesting that VRDM may need to be repeated during the day to produce lasting benefits.

  14. Neurobehavioral Effects of Carbon Monoxide (CO) Exposure in Humans: Elevated Carboxyhemoglobin (COHb) and Cerebrovascular Responses

    DTIC Science & Technology

    1989-05-19

    were (a) the dicrotic notch (see Figure 1) had to be present (b) no truncation or clipping could be present (c) the falling portion after the dichrotic... dicrotic notch or closing of the aortic valve (see Figure 1). The analog signal is fed to a delta z rebalancing circuit which has a maximum D.C. limit in... notch had to be relatively linear and (d) there could be only moderate baseline drift (maximum of approximately 30 degree baseline angle with respect

  15. Counterintuitive Behaviour of a Particle under the Action of an Oscillating Force

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz; Greenebaum, Ben

    2011-01-01

    When a free particle initially at rest is acted on by an oscillating force, it is intuitively expected to oscillate in place with the frequency of the force. However, careful solution of the classical equation of motion shows that this is only true for particular initial phases of the force; otherwise a steady drift is superimposed on the…

  16. Humans Optimize Decision-Making by Delaying Decision Onset

    PubMed Central

    Teichert, Tobias; Ferrera, Vincent P.; Grinband, Jack

    2014-01-01

    Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can strategically delay decision onset to increase response accuracy. To address this question we measured the time course of selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the decision process that can be adjusted to effectively improve decision accuracy. PMID:24599295

  17. Nonthermally dominated electron acceleration during magnetic reconnection in a low- β plasma

    DOE PAGES

    Li, Xiaocan; Guo, Fan; Li, Hui; ...

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  18. Visual tracking using objectness-bounding box regression and correlation filters

    NASA Astrophysics Data System (ADS)

    Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy

    2018-03-01

    Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.

  19. Scale Estimation and Correction of the Monocular Simultaneous Localization and Mapping (SLAM) Based on Fusion of 1D Laser Range Finder and Vision Data.

    PubMed

    Zhang, Zhuang; Zhao, Rujin; Liu, Enhai; Yan, Kun; Ma, Yuebo

    2018-06-15

    This article presents a new sensor fusion method for visual simultaneous localization and mapping (SLAM) through integration of a monocular camera and a 1D-laser range finder. Such as a fusion method provides the scale estimation and drift correction and it is not limited by volume, e.g., the stereo camera is constrained by the baseline and overcomes the limited depth range problem associated with SLAM for RGBD cameras. We first present the analytical feasibility for estimating the absolute scale through the fusion of 1D distance information and image information. Next, the analytical derivation of the laser-vision fusion is described in detail based on the local dense reconstruction of the image sequences. We also correct the scale drift of the monocular SLAM using the laser distance information which is independent of the drift error. Finally, application of this approach to both indoor and outdoor scenes is verified by the Technical University of Munich dataset of RGBD and self-collected data. We compare the effects of the scale estimation and drift correction of the proposed method with the SLAM for a monocular camera and a RGBD camera.

  20. Definitive test of the Rh = ct universe using redshift drift

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2016-11-01

    The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first- and second-order redshift derivatives appears to be well within the reach of upcoming surveys using as the Extremely Large Telescope high resolution spectrometer (ELT-HIRES) and the Square Kilometer Phase 2 Array (SKA). Here we show that an unambiguous prediction of the Rh = ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multiyear monitoring of sources at redshift z = 5 with the ELT-HIRES is expected to show a velocity shift Δv = -15 cm s-1 yr-1 due to the redshift drift in Planck ΛCDM, while Δv = 0 cm s-1 yr-1 in Rh = ct. With an anticipated ELT-HIRES measurement error of ±5 cm s-1 yr-1 after 5 yr, these upcoming redshift drift measurements might therefore be able to differentiate between Rh = ct and Planck ΛCDM at ˜3σ, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the Rh = ct cosmology. With a 20-yr baseline, these observations could favour one of these models over the other at better than 5σ.

  1. Martingales, detrending data, and the efficient market hypothesis

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.; Bassler, Kevin E.; Gunaratne, Gemunu H.

    2008-01-01

    We discuss martingales, detrending data, and the efficient market hypothesis (EMH) for stochastic processes x( t) with arbitrary diffusion coefficients D( x, t). Beginning with x-independent drift coefficients R( t) we show that martingale stochastic processes generate uncorrelated, generally non-stationary increments. Generally, a test for a martingale is therefore a test for uncorrelated increments. A detrended process with an x-dependent drift coefficient is generally not a martingale, and so we extend our analysis to include the class of ( x, t)-dependent drift coefficients of interest in finance. We explain why martingales look Markovian at the level of both simple averages and 2-point correlations. And while a Markovian market has no memory to exploit and presumably cannot be beaten systematically, it has never been shown that martingale memory cannot be exploited in 3-point or higher correlations to beat the market. We generalize our Markov scaling solutions presented earlier, and also generalize the martingale formulation of the EMH to include ( x, t)-dependent drift in log returns. We also use the analysis of this paper to correct a misstatement of the ‘fair game’ condition in terms of serial correlations in Fama's paper on the EMH. We end with a discussion of Levy's characterization of Brownian motion and prove that an arbitrary martingale is topologically inequivalent to a Wiener process.

  2. The study of key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai

    2016-08-01

    This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.

  3. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less

  4. Adaptive thresholding with inverted triangular area for real-time detection of the heart rate from photoplethysmogram traces on a smartphone.

    PubMed

    Jiang, Wen Jun; Wittek, Peter; Zhao, Li; Gao, Shi Chao

    2014-01-01

    Photoplethysmogram (PPG) signals acquired by smartphone cameras are weaker than those acquired by dedicated pulse oximeters. Furthermore, the signals have lower sampling rates, have notches in the waveform and are more severely affected by baseline drift, leading to specific morphological characteristics. This paper introduces a new feature, the inverted triangular area, to address these specific characteristics. The new feature enables real-time adaptive waveform detection using an algorithm of linear time complexity. It can also recognize notches in the waveform and it is inherently robust to baseline drift. An implementation of the algorithm on Android is available for free download. We collected data from 24 volunteers and compared our algorithm in peak detection with two competing algorithms designed for PPG signals, Incremental-Merge Segmentation (IMS) and Adaptive Thresholding (ADT). A sensitivity of 98.0% and a positive predictive value of 98.8% were obtained, which were 7.7% higher than the IMS algorithm in sensitivity, and 8.3% higher than the ADT algorithm in positive predictive value. The experimental results confirmed the applicability of the proposed method.

  5. Some observations on colocated and closely spaced strong ground-motion records of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Wang, G.-Q.; Boore, D.M.; Igel, H.; Zhou, X.-Y.

    2003-01-01

    The digital accelerograph network installed in Taiwan produced a rich set of records from the 20 September 1999 Chi-Chi, Taiwan earthquake (Mw 7.6). Teledyne Geotech model A-800 and A-900A* digital accelerographs were colocated at 22 stations that recorded this event. Comparisons of the amplitudes, frequency content, and baseline offsets show that records from several of the A-800 accelerographs are considerably different than those from the colocated A-900A accelerographs. On this basis, and in view of the more thorough predeployment testing of the newer A-900A instruments, we recommend that the records from the A-800 instruments be used with caution in analyses of the mainshock and aftershocks. At the Hualien seismic station two A-900A and one A-800 instruments were colocated, along with a Global Positioning System instrument. Although the records from the two A-900A instruments are much more similar than those from a colocated A-800 instrument, both three-component records contain unpredictable baseline offsets, which produced completely unrealistic ground displacements derived from the accelerations by double integration, as do many of the strong-motion data from this event; the details of the baseline offsets differ considerably on the two three-component records. There are probably numerous sources of the baseline offsets, including sources external to the instruments, such as tilting or rotation of the ground, and sources internal to the instruments, such as electrical or mechanical hysteresis in the sensors. For the two colocated A-900A records at the Hualien seismic station, however, the differences in the baseline offsets suggest that the principal source is some transient disturbance within the instrument. The baseline offsets generally manifest themselves in the acceleration time series as pulses or steps, either singly or in combination. We find a 0.015-Hz low-cut filter can almost completely eliminate the effects of the baseline offsets, but then information regarding the permanent displacements is lost. The causative mechanisms of the baseline offsets are unknown presently. Hence, it is very difficult to recover the permanent displacements from the modern digital records, although for records close to large earthquakes, the signal-to-noise ratio should theoretically be adequate to obtain ground motions with periods of hundreds of seconds. This study reinforces our conclusion from previous studies that the sources of baseline offsets occurring in digital strong-motion records are very complex and often unpredictable, and that, therefore, it is difficult to remove the baseline effects to maximize the information content of the record. The baseline offsets only affect very long period motions (e.g., >20 sec), however, and therefore are of little or no engineering concern.

  6. Assessing the learning curve for the acquisition of laparoscopic skills on a virtual reality simulator.

    PubMed

    Sherman, V; Feldman, L S; Stanbridge, D; Kazmi, R; Fried, G M

    2005-05-01

    The aim of this study was to develop summary metrics and assess the construct validity for a virtual reality laparoscopic simulator (LapSim) by comparing the learning curves of three groups with different levels of laparoscopic expertise. Three groups of subjects ('expert', 'junior', and 'naïve') underwent repeated trials on three LapSim tasks. Formulas were developed to calculate scores for efficiency ('time-error') and economy of 'motion' ('motion') using metrics generated by the software after each drill. Data (mean +/- SD) were evaluated by analysis of variance (ANOVA). Significance was set at p < 0.05. All three groups improved significantly from baseline to final for both 'time-error' and 'motion' scores. There were significant differences between groups in time error performances at baseline and final, due to higher scores in the 'expert' group. A significant difference in 'motion' scores was seen only at baseline. We have developed summary metrics for the LapSim that differentiate among levels of laparoscopic experience. This study also provides evidence of construct validity for the LapSim.

  7. Changes in active ankle dorsiflexion range of motion after acute inversion ankle sprain.

    PubMed

    Youdas, James W; McLean, Timothy J; Krause, David A; Hollman, John H

    2009-08-01

    Posterior calf stretching is believed to improve active ankle dorsiflexion range of motion (AADFROM) after acute ankle-inversion sprain. To describe AADFROM at baseline (postinjury) and at 2-wk time periods for 6 wk after acute inversion sprain. Randomized trial. Sports clinic. 11 men and 11 women (age range 11-54 y) with acute inversion sprain. Standardized home exercise program for acute inversion sprain. AADFROM with the knee extended. Time main effect on AADFROM was significant (F3,57 = 108, P < .001). At baseline, mean active sagittal-plane motion of the ankle was 6 degrees of plantar flexion, whereas at 2, 4, and 6 wk AADFROM was 7 degrees, 11 degrees, and 11 degrees, respectively. AADFROM increased significantly from baseline to week 2 and from week 2 to week 4. Normal AADFROM was restored within 4 wk after acute inversion sprain.

  8. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bono, R. K.

    2017-12-01

    Paleomagnetic study of volcanic rocks remains the gold standard on which to assess hotspot motion, true polar wander and plate motion recorded by oceanic plates. There is remarkable consistency between paleomagnetic results from basaltic lavas recovered by ocean drilling of the Emperor seamounts, and independent predictions of plate circuits. Both reveal greater than 40 mm/yr of southward hotspot motion; thus the dominant reason for the distinct bend morphology the Hawaiian-Emperor track is hotspot motion rather than plate motion. These findings provide the motivation for moving beyond hotspot fixity to understand mantle processes responsible for the observed motions. Global analyses as well as comparisons between the Hawaiian-Emperor and Louisville tracks indicate only a minor (if any) role for true polar wander. Two viable, non-mutually exclusive processes to explain the observed Hawaiian plume motion are: i. plume-ridge and ii plume-LLSVP interaction. Here we further explore these issues by paleomagnetic analyses of basalts from the Cenozoic Hawaiian chain and Late Cretaceous basalts of the southernmost Pacific Plate. The latter yield paleolatitudes consistent with those from the northern Pacific, indicating that long-standing non-dipole fields cannot have been large enough to affect conclusions on hotspot drift. Data from the former suggest some relative motions between the LLSVPs on tens-of-millions of year time scales, which probably record the continual reshaping of these provinces by plume motion in the lower mantle.

  9. Visual Analysis of the Daily QA Results of Photon and Electron Beams of a Trilogy Linac over a Five-year Period

    PubMed Central

    Chan, Maria F.; Li, Qiongge; Tang, Xiaoli; Li, Xiang; Li, Jingdong; Tang, Grace; Hunt, Margie A.; Deasy, Joseph O.

    2016-01-01

    Data visualization technique was applied to analyze the daily QA results of photon and electron beams. Special attention was paid to any trend the beams might display. A Varian Trilogy Linac equipped with dual photon energies and five electron energies was commissioned in early 2010. Daily Linac QA tests including the output constancy, beam flatness and symmetry (radial and transverse directions) were performed with an ionization chamber array device (QA BeamChecker Plus, Standard Imaging). The data of five years were collected and analyzed. For each energy, the measured data were exported and processed for visual trending using an in-house Matlab program. These daily data were cross-correlated with the monthly QA and annual QA results, as well as the preventive maintenance records. Majority of the output were within 1% of variation, with a consistent positive/upward drift for all seven energies (~+0.25% per month). The baseline of daily device is reset annually right after the TG-51 calibration. This results in a sudden drop of the output. On the other hand, the large amount of data using the same baseline exhibits a sinusoidal behavior (cycle = 12 months; amplitude = 0.8%, 0.5% for photons, electrons, respectively) on symmetry and flatness when normalization of baselines is accounted for. The well known phenomenon of new Linac output drift was clearly displayed. This output drift was a result of the air leakage of the over-pressurized sealed monitor chambers for the specific vendor. Data visualization is a new trend in the era of big data in radiation oncology research. It allows the data to be displayed visually and therefore more intuitive. Based on the visual display from the past, the physicist might predict the trend of the Linac and take actions proactively. It also makes comparisons, alerts failures, and potentially identifies causalities. PMID:27547595

  10. Influence of vestibular rehabilitation on neck pain and cervical range of motion among patients with whiplash-associated disorder: a randomized controlled trial.

    PubMed

    Hansson, Eva Ekvall; Persson, Liselott; Malmström, Eva Maj

    2013-09-01

    To describe how vestibular rehabilitation influences pain and range of motion among patients with whiplash-associated disorder and dizziness, and to describe whether pain or range of motion correlated with balance performance or self-perceived dizziness handicap. A total of 29 patients, 20 women and 9 men, age range 22-76 years. Patients with whiplash-associated disorder and dizziness were randomized to either intervention (vestibular rehabilitation) or control. Neck pain intensity, cervical range of motion (CROM), balance and self-perceived dizziness handicap were measured at baseline, 6 weeks and 3 months. There were no differences in neck pain intensity or CROM between the 2 groups either at baseline, 6 weeks or 3 months (p = 0.10-0.89). At baseline, neck pain intensity correlated with CROM (-0.406) and self-perceived dizziness handicap (0.492). CROM correlated with self-perceived dizziness handicap and with 1 balance measure (-0.432). Neck pain intensity did not correlate with balance performance (-0.188-0.049). Neck pain intensity and CROM was not influenced by vestibular rehabilitation. Importantly, the programme did not appear to increase pain or decrease neck motion, as initially thought. Neck pain intensity and CROM correlated with self-perceived dizziness handicap. CROM also correlated with 1 balance measure.

  11. Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Noponen, Tommi; Kotilahti, Kalle; Virtanen, Juha; Ilmoniemi, Risto J.

    2011-08-01

    In medical near-infrared spectroscopy (NIRS), movements of the subject often cause large step changes in the baselines of the measured light attenuation signals. This prevents comparison of hemoglobin concentration levels before and after movement. We present an accelerometer-based motion artifact removal (ABAMAR) algorithm for correcting such baseline motion artifacts (BMAs). ABAMAR can be easily adapted to various long-term monitoring applications of NIRS. We applied ABAMAR to NIRS data collected in 23 all-night sleep measurements and containing BMAs from involuntary movements during sleep. For reference, three NIRS researchers independently identified BMAs from the data. To determine whether the use of an accelerometer improves BMA detection accuracy, we compared ABAMAR to motion detection based on peaks in the moving standard deviation (SD) of NIRS data. The number of BMAs identified by ABAMAR was similar to the number detected by the humans, and 79% of the artifacts identified by ABAMAR were confirmed by at least two humans. While the moving SD of NIRS data could also be used for motion detection, on average 2 out of the 10 largest SD peaks in NIRS data each night occurred without the presence of movement. Thus, using an accelerometer improves BMA detection accuracy in NIRS.

  12. Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Mobertz, Xander R. I.

    2017-01-01

    The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.

  13. Alaska Crustal Deformation: Finite Element Modeling Constrained by Geologic and Very Long Baseline Interferometry Data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul; Saucier, Fraancois; Palmer, Randy; Langon, Marc

    1995-01-01

    We compute crustal motions in Alaska by calculating the finite element solution for an elastic spherical shell problem. The method we use allows the finite element mesh to include faults and very long baseline interferometry (VLBI) baseline rates of change. Boundary conditions include Pacific-North American (PA-NA) plate motions. The solution is constrained by the oblique orientation of the Fairweather-Queen Charlotte strike-slip faults relative to the PA-NA relative motion direction and the oblique orientation from normal convergence of the eastern Aleutian trench fault systems, as well as strike-shp motion along the Denali and Totschunda fault systems. We explore the effects that a range of fault slip constraints and weighting of VLBI rates of change has on the solution. This allows us to test the motion on faults, such as the Denali fault, where there are conflicting reports on its present-day slip rate. We find a pattern of displacements which produce fault motions generally consistent with geologic observations. The motion of the continuum has the general pattern of radial movement of crust to the NE away from the Fairweather-Queen Charlotte fault systems in SE Alaska and Canada. This pattern of crustal motion is absorbed across the Mackenzie Mountains in NW Canada, with strike-slip motion constrained along the Denali and Tintina fault systems. In south central Alaska and the Alaska forearc oblique convergence at the eastern Aleutian trench and the strike-shp motion of the Denali fault system produce a counterclockwise pattern of motion which is partially absorbed along the Contact and related fault systems in southern Alaska and is partially extruded into the Bering Sea and into the forearc parallel the Aleutian trench from the Alaska Peninsula westward. Rates of motion and fault slip are small in western and northern Alaska, but the motions we compute are consistent with the senses of strike-slip motion inferred geologically along the Kaltag, Kobuk Trench, and Thompson Creek faults and with the normal faulting observed in NW Alaska near Nome. The nonrigid behavior of our finite element solution produces patterns of motion that would not have been expected from rigid block models: strike-slip faults can exist in a continuum that has motion mostly perpendicular to their strikes, and faults can exhibit along-strike differences in magnitudes and directions.

  14. Accounting for speed-accuracy tradeoff in perceptual learning

    PubMed Central

    Liu, Charles C.; Watanabe, Takeo

    2011-01-01

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d’. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. PMID:21958757

  15. Aether drift and the isotropy of the universe

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1976-01-01

    An experiment is proposed which will detect and map the large-angular-scale anisotropies in the 3 deg K primordial black-body radiation with a sensitivity of .0002 deg K and an angular resolution of about 10 deg . It will detect the motion of the earth with respect to the distant matter of the Universe ("Aether Drift"), and will probe the homogeneity and isotropy of the Universe (the "Cosmological Principle"). The experiment will use two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. An upper hatch for the NASA-AMES Earth Survey Aircraft (U-2) is being modified to accept the dual-radiometer system. A few hours of observation should be sufficient to detect an anisotropy.

  16. Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.

    PubMed

    Guérin, T; Dean, D S

    2015-12-01

    We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.

  17. Global plate tectonics and the secular motion of the pole

    NASA Technical Reports Server (NTRS)

    Soler, T.

    1977-01-01

    Astronomical data compiled during the last 70 years by the international organizations providing the coordinates of the instantaneous pole clearly shows a persistent drift of the mean pole. The differential contributions to the earth's second-order tensor of inertia were obtained and applied, resulting in no significant displacement of the earth's principal axis. In view of the above, the effect that theoretical geophysical models for absolute plate velocities may have on an apparent displacement of the mean pole as a consequence of station drifting was analyzed. The investigation also reports new values for the crustal tensor of inertia (assuming an ellipsoidal earth) and the orientation of its axis of figure, reopening the old speculation of a possible sliding of the whole crustover the upper mantle, including the supporting geophysical and astronomic evidence.

  18. Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering

    NASA Astrophysics Data System (ADS)

    Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo

    2011-01-01

    The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.

  19. Validation of the Calypso Surface Beacon Transponder.

    PubMed

    Belanger, Maxwell; Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli

    2016-07-08

    Calypso L-shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least-squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re-setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak-to-peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak-to-peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01 ± 0.04 mm and -19.65 ± 0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1 × 10-5 mm/s at phase 0% and -6.0 × 10-5 mm/s at phase 50%. Reproducibility: The SD of the setup was 0.06 mm and 0.02 mm for phases 0% and 50%, respectively. The combined SDs, including both setup and intrarun error of all runs at phases 0% and 50%, were 0.07mm and 0.11 mm, respectively. Beacon orientation: SD ranged from 0.032mm to 0.039 mm at phase 0% and from 0.084 mm to 0.096 mm at phase 50%. The SD was found not to vary linearly with Beacon angle in the range of 0° and 15°. A positive systematic error was observed with amplitude 0.07 mm/degree at phase 0% and 0.05 mm/degree at phase 50%. Rate dependence: SD and displacement amplitudes did not vary significantly between 0.2 Hz and 0.33 Hz. At 1 Hz, both 0% and 50% amplitude measurements shifted up appreciably, by 0.72 mm and 0.78mm, respectively. As compared with the 0.33 Hz data, SD at phase 0% was 1.6 times higher and 5.4 times higher at phase 50%. Respiratory waveform tracking accuracy: SD of 0.233 mm with approximately normal distribution in over 134 min of tracking (201468 data points). The Surface Beacon transponder appears to be stable, accurate, and reproducible. Submillimeter resolution is achieved throughout breathing and sinusoidal waveforms. © 2016 The Authors

  20. Validation of the Calypso Surface Beacon Transponder

    PubMed Central

    Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli

    2016-01-01

    Calypso L‐shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least‐squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re‐setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak‐to‐peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak‐to‐peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01±0.04 mm and ‐19.65±0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1×10‐5 mm/s at phase 0% and ‐6.0×10‐5 mm/s at phase 50%. Reproducibility: The SD of the setup was 0.06 mm and 0.02 mm for phases 0% and 50%, respectively. The combined SDs, including both setup and intrarun error of all runs at phases 0% and 50%, were 0.07 mm and 0.11 mm, respectively. Beacon orientation: SD ranged from 0.032 mm to 0.039 mm at phase 0% and from 0.084 mm to 0.096 mm at phase 50%. The SD was found not to vary linearly with Beacon angle in the range of 0° and 15°. A positive systematic error was observed with amplitude 0.07 mm/degree at phase 0% and 0.05 mm/degree at phase 50%. Rate dependence: SD and displacement amplitudes did not vary significantly between 0.2 Hz and 0.33 Hz. At 1 Hz, both 0% and 50% amplitude measurements shifted up appreciably, by 0.72 mm and 0.78 mm, respectively. As compared with the 0.33 Hz data, SD at phase 0% was 1.6 times higher and 5.4 times higher at phase 50%. Respiratory waveform tracking accuracy: SD of 0.233 mm with approximately normal distribution in over 134 min of tracking (201468 data points). The Surface Beacon transponder appears to be stable, accurate, and reproducible. Submillimeter resolution is achieved throughout breathing and sinusoidal waveforms. PACS number(s): 87.50.ct, 87.50.st, 87.50.ux, 87.50.wp, 87.50.yt PMID:27455489

  1. STS (Space Transportation System) Task Simulator.

    DTIC Science & Technology

    1985-08-15

    3 Clohessy - Wiltshire Coordinate System • • -1 1- .M 1°... "p ’. -. .’- 0 . _ -~:Q ~. ... . .o. ., 1. INTRODUCTION The Space Transportation System...motion is obtained by applying the Clohessy - Wiltshire equations for terminal rendezvous/docking with the earth modeled as a uni- form sphere...rotational accelerations to the present quaternions. The Clohessy - Wiltshire equations for terminal rendezvous/dockinq are used to model orbital drift

  2. Summer Sea Ice Motion from the 18 GHz Channel of AMSR-E and the Exchange of Sea Ice between the Pacific and Atlantic Sectors

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    2008-01-01

    We demonstrate that sea ice motion in summer can be derived reliably from the 18GHz channel of the AMSR-E instrument on the EOS Aqua platform. The improved spatial resolution of this channel with its lower sensitivity to atmospheric moisture seems to have alleviated various issues that have plagued summer motion retrievals from shorter wavelength observations. Two spatial filters improve retrieval quality: one reduces some of the microwave signatures associated with synoptic-scale weather systems and the other removes outliers. Compared with daily buoy drifts, uncertainties in motion are approx.3-4 km/day. Using the daily motion fields, we examine five years of summer ice area exchange between the Pacific and Atlantic sectors of the Arctic Ocean. With the sea-level pressure patterns during the summer of 2006 and 2007 favoring the export of sea ice into the Atlantic Sector, the regional outflow is approx.21% and approx.15% of the total sea ice retreat in the Pacific sector.

  3. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions

    USGS Publications Warehouse

    Luco, N.; Cornell, C.A.

    2007-01-01

    Introduced in this paper are several alternative ground-motion intensity measures (IMs) that are intended for use in assessing the seismic performance of a structure at a site susceptible to near-source and/or ordinary ground motions. A comparison of such IMs is facilitated by defining the "efficiency" and "sufficiency" of an IM, both of which are criteria necessary for ensuring the accuracy of the structural performance assessment. The efficiency and sufficiency of each alternative IM, which are quantified via (i) nonlinear dynamic analyses of the structure under a suite of earthquake records and (ii) linear regression analysis, are demonstrated for the drift response of three different moderate- to long-period buildings subjected to suites of ordinary and of near-source earthquake records. One of the alternative IMs in particular is found to be relatively efficient and sufficient for the range of buildings considered and for both the near-source and ordinary ground motions. ?? 2007, Earthquake Engineering Research Institute.

  4. Local position control: A new concept for control of manipulators

    NASA Technical Reports Server (NTRS)

    Kelly, Frederick A.

    1988-01-01

    Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.

  5. Stable Lévy motion with inverse Gaussian subordinator

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Wyłomańska, A.; Gajda, J.

    2017-09-01

    In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.

  6. Langevin dynamics for ramified structures

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel

    2017-06-01

    We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.

  7. Kernelized correlation tracking with long-term motion cues

    NASA Astrophysics Data System (ADS)

    Lv, Yunqiu; Liu, Kai; Cheng, Fei

    2018-04-01

    Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.

  8. Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer.

    PubMed

    Cohen, Adam E; Moerner, W E

    2008-05-12

    We present an Anti-Brownian Electrokinetic trap (ABEL trap) capable of trapping individual fluorescently labeled protein molecules in aqueous buffer. The ABEL trap operates by tracking the Brownian motion of a single fluorescent particle in solution, and applying a time-dependent electric field designed to induce an electrokinetic drift that cancels the Brownian motion. The trapping strength of the ABEL trap is limited by the latency of the feedback loop. In previous versions of the trap, this latency was set by the finite frame rate of the camera used for video-tracking. In the present system, the motion of the particle is tracked entirely in hardware (without a camera or image-processing software) using a rapidly rotating laser focus and lock-in detection. The feedback latency is set by the finite rate of arrival of photons. We demonstrate trapping of individual molecules of the protein GroEL in buffer, and we show confinement of single fluorophores of the dye Cy3 in water.

  9. Measuring changes in ambient noise levels from the installation and operation of a surge wave energy converter in the coastal ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haxel, Joe H; Henkel, Sarah K

    Ecosystem impacts resulting from elevated underwater noise levels generated by anthropogenic activities in the coastal ocean are poorly understood and remain difficult to address as a result of a significant gap in knowledge for existing nearshore sound levels. Ambient noise is an important habitat component for marine mammals and fish that use sound for essential functions such as communication, navigation, and foraging. Questions surrounding the amplitudes, frequency distributions, and durations of noise emissions from renewable wave energy conversion (WEC) projects during their construction and operation present concerns for long-term consequences in marine habitats. Oregon’s dynamic nearshore environment presents significant challengesmore » for passive acoustic monitoring that include flow noise contamination from wave orbital motions, turbulence from breaking surf, equipment burial, and fishing pressure from sport and commercial crabbers. This project included 2 techniques for passive acoustic data collection: 1) campaign style deployments of fixed hydrophone lander stations to capture temporal variations in noise levels and 2) a drifting hydrophone system to record spatial variations within the project site. The hydrophone lander deployments were effective and economically feasible for enabling robust temporal measurements of ambient noise levels in a variety of sea state conditions. Limiting factors for the fixed stations included 1) a flow shield mitigation strategy failure in the first deployment resulting in significant wideband data contamination and 2) flow noise contamination of the unshielded sensors restricting valuable analysis to frequencies above 500 Hz for subsequent deployments. Drifting hydrophone measurements were also effective and economically feasible (although logistically challenging in the beginning of the project due to vessel time constraints) providing a spatial distribution of sound levels, comparisons of noise levels in varying levels of vessel traffic during similar sea states, and reducing the frequencies contaminated by flow noise to f < 50 Hz by an effective drifting hydrophone system design strategy. Results from this project can still assist regulatory agencies and WEC developers in permitting and licensing, reducing project costs overall and assisting the economic development of the WEC industry, thus furthering the MHK energy industry and easing the U.S. reliance on foreign oil for energy production. Additionally, results from this project can be used to help inform coastal resource managers and regulatory agencies on existing baseline noise level variability and ecosystem health.« less

  10. An operational search and rescue model for the Norwegian Sea and the North Sea

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Allen, Arthur A.

    A new operational, ensemble-based search and rescue model for the Norwegian Sea and the North Sea is presented. The stochastic trajectory model computes the net motion of a range of search and rescue objects. A new, robust formulation for the relation between the wind and the motion of the drifting object (termed the leeway of the object) is employed. Empirically derived coefficients for 63 categories of search objects compiled by the US Coast Guard are ingested to estimate the leeway of the drifting objects. A Monte Carlo technique is employed to generate an ensemble that accounts for the uncertainties in forcing fields (wind and current), leeway drift properties, and the initial position of the search object. The ensemble yields an estimate of the time-evolving probability density function of the location of the search object, and its envelope defines the search area. Forcing fields from the operational oceanic and atmospheric forecast system of The Norwegian Meteorological Institute are used as input to the trajectory model. This allows for the first time high-resolution wind and current fields to be used to forecast search areas up to 60 h into the future. A limited set of field exercises show good agreement between model trajectories, search areas, and observed trajectories for life rafts and other search objects. Comparison with older methods shows that search areas expand much more slowly using the new ensemble method with high resolution forcing fields and the new leeway formulation. It is found that going to higher-order stochastic trajectory models will not significantly improve the forecast skill and the rate of expansion of search areas.

  11. Evidence accumulation in obsessive-compulsive disorder: the role of uncertainty and monetary reward on perceptual decision-making thresholds.

    PubMed

    Banca, Paula; Vestergaard, Martin D; Rankov, Vladan; Baek, Kwangyeol; Mitchell, Simon; Lapa, Tatyana; Castelo-Branco, Miguel; Voon, Valerie

    2015-03-13

    The compulsive behaviour underlying obsessive-compulsive disorder (OCD) may be related to abnormalities in decision-making. The inability to commit to ultimate decisions, for example, patients unable to decide whether their hands are sufficiently clean, may reflect failures in accumulating sufficient evidence before a decision. Here we investigate the process of evidence accumulation in OCD in perceptual discrimination, hypothesizing enhanced evidence accumulation relative to healthy volunteers. Twenty-eight OCD patients and thirty-five controls were tested with a low-level visual perceptual task (random-dot-motion task, RDMT) and two response conflict control tasks. Regression analysis across different motion coherence levels and Hierarchical Drift Diffusion Modelling (HDDM) were used to characterize response strategies between groups in the RDMT. Patients required more evidence under high uncertainty perceptual contexts, as indexed by longer response time and higher decision boundaries. HDDM, which defines a decision when accumulated noisy evidence reaches a decision boundary, further showed slower drift rate towards the decision boundary reflecting poorer quality of evidence entering the decision process in patients under low uncertainty. With monetary incentives emphasizing speed and penalty for slower responses, patients decreased the decision thresholds relative to controls, accumulating less evidence in low uncertainty. These findings were unrelated to visual perceptual deficits and response conflict. This study provides evidence for impaired decision-formation processes in OCD, with a differential influence of high and low uncertainty contexts on evidence accumulation (decision threshold) and on the quality of evidence gathered (drift rates). It further emphasizes that OCD patients are sensitive to monetary incentives heightening speed in the speed-accuracy tradeoff, improving evidence accumulation.

  12. Nonrelativistic Perpendicular Shocks Modeling Young Supernova Remnants: Nonstationary Dynamics and Particle Acceleration at Forward and Reverse Shocks

    NASA Astrophysics Data System (ADS)

    Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi

    2016-03-01

    For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.

  13. Parametric Simulations of the Great Dark Spots of Neptune

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolong; Le Beau, R.

    2006-09-01

    Observations by Voyager II and the Hubble Space Telescope of the Great Dark Spots (GDS) of Neptune suggest that large vortices with lifespans of years are not uncommon occurrences in the atmosphere of Neptune. The variability of these features over time, in particular the complex motions of GDS-89, make them challenging candidates to simulate in atmospheric models. Previously, using the Explicit Planetary Isentropic-Coordinate (EPIC) General Circulation Model, LeBeau and Dowling (1998) simulated the GDS-like vortex features. Qualitatively, the drift, oscillation, and tail-like features of GDS-89 were recreated, although precise numerical matches were only achieved for the meridional drift rate. In 2001, Stratman et al. applied EPIC to simulate the formation of bright companion clouds to the Great Dark Spots. In 2006, Dowling et al. presented a new version of EPIC, which includes hybrid vertical coordinate, cloud physics, advanced chemistry, and new turbulence models. With the new version of EPIC, more observation results, and more powerful computers, it is the time to revisit CFD simulations of the Neptune's atmosphere and do more detailed work on GDS-like vortices. In this presentation, we apply the new version of EPIC to simulate GDS-89. We test the influences of different parameters in the EPIC model: potential vorticity gradient, wind profile, initial latitude, vortex shape, and vertical structure. The observed motions, especially the latitudinal drift and oscillations in orientation angle and aspect ratio, are used as diagnostics of these unobserved atmospheric conditions. Increased computing power allows for more refined and longer simulations and greater coverage of the parameter space than previous efforts. Improved quantitative results have been achieved, including voritices with near eight-day oscillations and comparable variations in shape to GDS-89. This research has been supported by Kentucky NASA EPSCoR.

  14. Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling

    NASA Astrophysics Data System (ADS)

    Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.

    2016-02-01

    In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.

  15. Electron Drift Speed And Current-Induced Drive Torques On A Domain Wall

    NASA Astrophysics Data System (ADS)

    Berger, Luc

    2009-03-01

    It has become fashionable to describe [1] current-induced torques on a DW in terms of an electron drift speed u = - P*j*muB/e*M where muB is the Bohr magneton and M the saturation magnetization. While appropriate for adiabatic torques, this quantity u is misleading and not the best choice in the case of non-adiabatic torques. For example, it leads [2] to beta not equal to alpha, where beta represents the intensity of the non-adiabatic torque, and alpha is the damping parameter. By writing equations of motion for conduction- electron spins in a moving frame where the electron gas is at rest, we find [3] a direct relation between damping and non- adiabatic torques. The correct electron drift speed turns out to be the speed of the frame, and is v = P*j/(n*q) where n and q are the carrier density and charge. It is related to the ordinary Hall constant R0 by v P*R0*j. After substituting v for u in the expression of the non-adiabatic torque, we find that beta = alpha holds now. Because v is larger than u in Permalloy, it can explain better the large current-induced DW speeds found [4] experimentally. In materials where R0> 0 and the carriers are dominantly hole-like, v and u have opposite signs, leading to different predictions for the sense of DW motion. We discuss examples of such materials. 1. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004). 2. H. Kohno et al., J. Phys. Soc. Japan, 75, 113706 (2006). 3. L. Berger, Phys. Rev. B 75, 174401 (2007). 4. M. Hayashi et al., Phys. Rev. Lett. 98, 037204 (2007).

  16. Independent and additive repetition priming of motion direction and color in visual search.

    PubMed

    Kristjánsson, Arni

    2009-03-01

    Priming of visual search for Gabor patch stimuli, varying in color and local drift direction, was investigated. The task relevance of each feature varied between the different experimental conditions compared. When the target defining dimension was color, a large effect of color repetition was seen as well as a smaller effect of the repetition of motion direction. The opposite priming pattern was seen when motion direction defined the target--the effect of motion direction repetition was this time larger than for color repetition. Finally, when neither was task relevant, and the target defining dimension was the spatial frequency of the Gabor patch, priming was seen for repetition of both color and motion direction, but the effects were smaller than in the previous two conditions. These results show that features do not necessarily have to be task relevant for priming to occur. There is little interaction between priming following repetition of color and motion, these two features show independent and additive priming effects, most likely reflecting that the two features are processed at separate processing sites in the nervous system, consistent with previous findings from neuropsychology & neurophysiology. The implications of the findings for theoretical accounts of priming in visual search are discussed.

  17. The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation.

    PubMed

    VanRullen, Rufin

    2007-07-01

    The occurrence of perceived reversed motion while observers view a continuous, periodically moving stimulus (a bistable phenomenon coined the "continuous Wagon Wheel Illusion" or "c-WWI") has been taken as evidence that some aspects of motion perception rely on discrete sampling of visual information. Alternative accounts rely on the possibility of a motion aftereffect that may become visible even while the adapting stimulus is present. Here I show that motion adaptation might be necessary, but is not sufficient to explain the illusion. When local adaptation is prevented by slowly drifting the moving wheel across the retina, the c-WWI illusion tends to decrease, as do other bistable percepts (e.g. binocular rivalry). However, the strength of the c-WWI and that of adaptation (as measured by either the static or flicker motion aftereffects) are not directly related: although the c-WWI decreases with increasing eccentricity, the aftereffects actually intensify concurrently. A similar dissociation can be induced by manipulating stimulus contrast. This indicates that the c-WWI may be enabled by, but is not equivalent to, local motion adaptation - and that other factors such as discrete sampling may be involved in its generation.

  18. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knybel, Lukas; VŠB-Technical University of Ostrava, Ostrava; Cvek, Jakub, E-mail: Jakub.cvek@fno.cz

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, andmore » sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact with mediastinal structures, although adhesion to parietal pleura did not necessarily reduce tumor motion amplitudes. The most variable lung tumors were metastatic lesions in women.« less

  19. Ion profiling in an ambient drift tube-ion mobility spectrometer using a high pixel density linear array detector IonCCD.

    PubMed

    Davila, Stephen J; Hadjar, Omar; Eiceman, Gary A

    2013-07-16

    A linear pixel-based detector array, the IonCCD, is characterized for use under ambient conditions with thermal (<1 eV) positive ions derived from purified air and a 10 mCi (63)Ni foil. The IonCCD combined with a drift tube-ion mobility spectrometer permitted the direct detection of gas phase ions at atmospheric pressure and confirmed a limit of detection of 3000 ions/pixel/frame established previously in both the keV (1-2 keV) and the hyper-thermal (10-40 eV) regimes. Results demonstrate the "broad-band" application of the IonCCD over 10(5) orders in ion energy and over 10(10) in operating pressure. The Faraday detector of a drift tube for an ion mobility spectrometer was replaced with the IonCCD providing images of ion profiles over the cross-section of the drift tube. Patterns in the ion profiles were developed in the drift tube cross-section by control of electric fields between wires of Bradbury Nielson and Tyndall Powell shutter designs at distances of 1-8 cm from the detector. Results showed that ion beams formed in wire sets, retained their shape with limited mixing by diffusion and Coulombic repulsion. Beam broadening determined as 95 μm/cm for hydrated protons in air with moisture of ~10 ppmv. These findings suggest a value of the IonCCD in further studies of ion motion and diffusion of thermalized ions, enhancing computational results from simulation programs, and in the design or operation of ion mobility spectrometers.

  20. Ion Velocity Measurements for the Ionospheric Connections Explorer

    NASA Astrophysics Data System (ADS)

    Heelis, R. A.; Stoneback, R. A.; Perdue, M. D.; Depew, M. D.; Morgan, W. A.; Mankey, M. W.; Lippincott, C. R.; Harmon, L. L.; Holt, B. J.

    2017-10-01

    The Ionospheric Connections Explorer (ICON) payload includes an Ion Velocity Meter (IVM) to provide measurements of the ion drift motions, density, temperature and major ion composition at the satellite altitude near 575 km. The primary measurement goal for the IVM is to provide the meridional ion drift perpendicular to the magnetic field with an accuracy of 7.5 m s-1 for all daytime conditions encountered by the spacecraft within 15° of the magnetic equator. The IVM will derive this parameter utilizing two sensors, a retarding potential analyzer (RPA) and an ion drift meter (IDM) that have a robust and successful flight heritage. The IVM described here incorporates improvements in the design and operation to produce the most sensitive device that has been fielded to date. It will specify the ion drift vector, from which the component perpendicular to the magnetic field will be derived. In addition it will specify the total ion density, the ion temperature and the fractional ion composition. These data will be used in conjunction with measurements from the other ICON instruments to uncover the important connections between the dynamics of the neutral atmosphere and the ionosphere through the generation of dynamo currents perpendicular to the magnetic field and collisional forces parallel to the magnetic field. Here the configuration and operation of the IVM instrument are described, as well as the procedures by which the ion drift velocity is determined. A description of the subsystem characteristics, which allow a determination of the expected uncertainties in the derived parameters, is also given.

  1. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.

    PubMed

    Brenner, Howard

    2005-12-01

    A quiescent single-component gravity-free gas subject to a small steady uniform temperature gradient T, despite being at rest, is shown to experience a drift velocity UD=-D* gradient ln T, where D* is the gas's nonisothermal self-diffusion coefficient. D* is identified as being the gas's thermometric diffusivity alpha. The latter differs from the gas's isothermal isotopic self-diffusion coefficient D, albeit only slightly. Two independent derivations are given of this drift velocity formula, one kinematical and the other dynamical, both derivations being strictly macroscopic in nature. Within modest experimental and theoretical uncertainties, this virtual drift velocity UD=-alpha gradient ln T is shown to be constitutively and phenomenologically indistinguishable from the well-known experimental and theoretical formulas for the thermophoretic velocity U of a macroscopic (i.e., non-Brownian) non-heat-conducting particle moving under the influence of a uniform temperature gradient through an otherwise quiescent single-component rarefied gas continuum at small Knudsen numbers. Coupled with the size independence of the particle's thermophoretic velocity, the empirically observed equality, U=UD, leads naturally to the hypothesis that these two velocities, the former real and the latter virtual, are, in fact, simply manifestations of the same underlying molecular phenomenon, namely the gas's Brownian movement, albeit biased by the temperature gradient. This purely hydrodynamic continuum-mechanical equality is confirmed by theoretical calculations effected at the kinetic-molecular level on the basis of an existing solution of the Boltzmann equation for a quasi-Lorentzian gas, modulo small uncertainties pertaining to the choice of collision model. Explicitly, this asymptotically valid molecular model allows the virtual drift velocity UD of the light gas and the thermophoretic velocity U of the massive, effectively non-Brownian, particle, now regarded as the tracer particle of the light gas's drift velocity, to each be identified with the Chapman-Enskog "thermal diffusion velocity" of the quasi-Lorentzian gas, here designated by the symbol UM/M, as calculated by de la Mora and Mercer. It is further pointed out that, modulo the collective uncertainties cited above, the common velocities UD,U, and UM/M are identical to the single-component gas's diffuse volume current jv, the latter representing yet another, independent, strictly continuum-mechanical concept. Finally, comments are offered on the extension of the single-component drift velocity notion to liquids, and its application towards rationalizing Soret thermal-diffusion separation phenomena in quasi-Lorentzian liquid-phase binary mixtures composed of disparately sized solute and solvent molecules, with the massive Brownian solute molecules (e.g., colloidal particles) present in disproportionately small amounts relative to that of the solvent.

  2. Scanner baseliner monitoring and control in high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Samudrala, Pavan; Chung, Woong Jae; Aung, Nyan; Subramany, Lokesh; Gao, Haiyong; Gomez, Juan-Manuel

    2016-03-01

    We analyze performance of different customized models on baseliner overlay data and demonstrate the reduction in overlay residuals by ~10%. Smart Sampling sets were assessed and compared with the full wafer measurements. We found that performance of the grid can still be maintained by going to one-third of total sampling points, while reducing metrology time by 60%. We also demonstrate the feasibility of achieving time to time matching using scanner fleet manager and thus identify the tool drifts even when the tool monitoring controls are within spec limits. We also explore the scanner feedback constant variation with illumination sources.

  3. 76 FR 20655 - Kinder Morgan Texas Pipeline LLC; Notice of Baseline Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... participate in this rate proceeding must file a motion to intervene or to protest this filing must file in....214). Protests will be considered by the Commission in determining the appropriate action to be taken... must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or...

  4. 76 FR 26717 - NorthWestern Corporation; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... rate proceeding must file a motion to intervene or to protest this filing must file in accordance with...). Protests will be considered by the Commission in determining the appropriate action to be taken, but will... file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or...

  5. 76 FR 46283 - Peoples Natural Gas Company LLC; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... in this rate proceeding must file a motion to intervene or to protest this filing must file in....214). Protests will be considered by the Commission in determining the appropriate action to be taken... must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or...

  6. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  7. Assessing Impacts of Global Warming on Tropical Cyclone Tracks

    NASA Technical Reports Server (NTRS)

    Wu, Li-Guang; Wang, Bin

    2003-01-01

    A new approach is proposed to assess the possible impacts of the global climate change on tropical cyclone (TC) tracks in the western North Pacific (WNP) basin. The idea is based on the premise that the future change of TC track characteristics is primarily determined by changes in large-scale environmental steering flows. It is demonstrated that the main characteristics of the current climatology of TC tracks can be derived from the climatological mean velocity field of TC motion by using a trajectory model. The climatological mean velocity of TC motion, which is composed of the large-scale steering and beta drift, is determined on each grid of the basin. The mean beta drift is estimated from the best track data, and the mean large-scale steering flow is computed from the NCEP/NCAR reanalysis for the current climate state. The derived mean beta drift agrees well with the results of previous observational and numerical studies in terms of its direction and magnitude. The outputs of experiments A2 and B2 of the Geophysical Fluid Dynamics Laboratory (GFDL) R30 climate model suggest that the subtropical high will be persistently weak over the western part of the WNP or shift eastward during July-September in response to the future climate change. By assuming that the mean beta drift in the future climate state is unchanged, the change in the general circulation by 2059 will decrease the TC activities in the WNP, but favor a northward shift of typical TC tracks. As a result, the storm activities in the South China Sea will decrease by about 12%, while the Japan region will experience an increase of TCs by 12-15%. During the period of 2000-2029, the tropical storms that affect the China region will increase by 5-6%, but return to the current level during 2030-2059. It is also suggested that, during the period of 2030-2059 tropical storms will more frequently affect Japan and the middle latitude region of China given that the formation locations remain the same as in the current climate state.

  8. The flashing Brownian ratchet and Parrondo's paradox.

    PubMed

    Ethier, S N; Lee, Jiyeon

    2018-01-01

    A Brownian ratchet is a one-dimensional diffusion process that drifts towards a minimum of a periodic asymmetric sawtooth potential. A flashing Brownian ratchet is a process that alternates between two regimes, a one-dimensional Brownian motion and a Brownian ratchet, producing directed motion. These processes have been of interest to physicists and biologists for nearly 25 years. The flashing Brownian ratchet is the process that motivated Parrondo's paradox, in which two fair games of chance, when alternated, produce a winning game. Parrondo's games are relatively simple, being discrete in time and space. The flashing Brownian ratchet is rather more complicated. We show how one can study the latter process numerically using a random walk approximation.

  9. Technique to eliminate computational instability in multibody simulations employing the Lagrange multiplier

    NASA Technical Reports Server (NTRS)

    Watts, G.

    1992-01-01

    A programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier is presented. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel.

  10. Diffusion in different models of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Lindner, B.; Nicola, E. M.

    2008-04-01

    Active Brownian particles (ABP) have served as phenomenological models of self-propelled motion in biology. We study the effective diffusion coefficient of two one-dimensional ABP models (simplified depot model and Rayleigh-Helmholtz model) differing in their nonlinear friction functions. Depending on the choice of the friction function the diffusion coefficient does or does not attain a minimum as a function of noise intensity. We furthermore discuss the case of an additional bias breaking the left-right symmetry of the system. We show that this bias induces a drift and that it generally reduces the diffusion coefficient. For a finite range of values of the bias, both models can exhibit a maximum in the diffusion coefficient vs. noise intensity.

  11. The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewhurst, J. M.; Hnat, B.; Dendy, R. O.

    2009-07-15

    The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emergemore » in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.« less

  12. Constraining proposed combinations of ice history and Earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories, these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the VLBI observations.

  13. Persistent aerial video registration and fast multi-view mosaicing.

    PubMed

    Molina, Edgardo; Zhu, Zhigang

    2014-05-01

    Capturing aerial imagery at high resolutions often leads to very low frame rate video streams, well under full motion video standards, due to bandwidth, storage, and cost constraints. Low frame rates make registration difficult when an aircraft is moving at high speeds or when global positioning system (GPS) contains large errors or it fails. We present a method that takes advantage of persistent cyclic video data collections to perform an online registration with drift correction. We split the persistent aerial imagery collection into individual cycles of the scene, identify and correct the registration errors on the first cycle in a batch operation, and then use the corrected base cycle as a reference pass to register and correct subsequent passes online. A set of multi-view panoramic mosaics is then constructed for each aerial pass for representation, presentation and exploitation of the 3D dynamic scene. These sets of mosaics are all in alignment to the reference cycle allowing their direct use in change detection, tracking, and 3D reconstruction/visualization algorithms. Stereo viewing with adaptive baselines and varying view angles is realized by choosing a pair of mosaics from a set of multi-view mosaics. Further, the mosaics for the second pass and later can be generated and visualized online as their is no further batch error correction.

  14. Torques on the gyro in the gyro relativity experiment

    NASA Technical Reports Server (NTRS)

    Eby, P.

    1982-01-01

    Whether the Newtonian drifts on the gyro as conceived in the gyro relativity experiment can be reduced to a level such that the geodetic and motional earth precessions of general relativity can be detected is addressed. Torques due to gas drag, electrical charging, mass unbalance, cosmic ray impacts, magnetic fields, and gravity gradients in a inclined orbit are calculated and discussed. The conditions necessary for the required accuracy are given.

  15. MMU (Manned Maneuvering Unit) Task Simulator.

    DTIC Science & Technology

    1986-01-15

    motion is obtained by applying the Clohessy - Wiltshire equations for terminal rendezvous/docking with the earth modeled as a uniform sphere " (Aj<endix...quaternions. The Clohessy - Wiltshire equations for terminal rendezvous/docking are used to model orbital drift. These are linearized equations of...system is the Clohessy - Wiltshire system, centered at the target and described in detail in Appendix A. The earth’s vector list is scaled at one distance

  16. Azimuthal ExB drift of electrons induced by the radial electric field flowing through a longitudinal magnetic channel with non-magnetized ions

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi

    2016-09-01

    To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.

  17. Hierarchical information fusion for global displacement estimation in microsensor motion capture.

    PubMed

    Meng, Xiaoli; Zhang, Zhi-Qiang; Wu, Jian-Kang; Wong, Wai-Choong

    2013-07-01

    This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.

  18. Kinetic feature of dipolarization fronts produced by interchange instability in the magnetotail

    NASA Astrophysics Data System (ADS)

    Lyu, Haoyu

    2017-04-01

    A two-dimensional extended MHD simulation is performed to study the kinetic feature of depolarization fronts (DF) in the scale of the ion inertial length / ion Larmor radius. The interchange instability, arising due to the force imbalance between the tailward gradient of thermal pressure and Earthward magnetic curvature force, self-consistently produces the DF in the near-Earth region. Numerical investigations indicate that the DF is a tangential discontinuity, which means that the normal plasma velocity across the DF should be zero in the reference system that is static with the DF structure. The electric system, including electric field and current, is determined by Hall effect arising in the scale of ion inertial length. Hall effect not only mainly contributes on the electric field normal to the tangent plane of the DF, increases the current along the tangent plane of the DF, but also makes the DF structure asymmetric. The drifting motion of the large-scale DF structure is determined by the FLR effect arising in the scale of ion Larmor radius. The ion magnetization velocity induced by the FLR effect is towards to duskward at the subsolar point of the DF, but the y component of velocity in the region after the DF, which dominantly results in the drifting motion of the whole mushroom structure towards the dawn.

  19. Constraining the Evolution of ZZ Ceti

    NASA Technical Reports Server (NTRS)

    Mukadam, Anjum S.; Kepler, S. O.; Winget, D. E.; Nather, R. E.; Kilic, M.; Mullally, F.; vonHippel, T.; Kleinman, S. J.; Nitta, A.; Guzik, J. A.

    2003-01-01

    We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt 5 (5.5 plus or minus 1.9) x 10(exp -15) ss(sup -1), after correcting for proper motion. Our results are consistent with previous P values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is |P||P(raised dot)|greater than or equal to 1.2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions.

  20. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  1. The urgency-gating model can explain the effects of early evidence.

    PubMed

    Carland, Matthew A; Thura, David; Cisek, Paul

    2015-12-01

    In a recent report, Winkel, Keuken, van Maanen, Wagenmakers & Forstmann (Psychonomics Bulletin and Review 21(3): 777-784, 2014) show that during a random-dot motion discrimination task, early differences in motion evidence can influence reaction times (RTs) and error rates in human subjects. They use this as an argument in favor of the drift-diffusion model and against the urgency-gating model. However, their implementation of the urgency-gating model is incomplete, as it lacks the low-pass filter that is necessary to deal with noisy input such as the motion signal used in their experimental task. Furthermore, by focusing analyses solely on comparison of mean RTs they overestimate how long early information influences individual trials. Here, we show that if the urgency-gating model is correctly implemented, including a low-pass filter with a 250 ms time constant, it can successfully reproduce the results of the Winkel et al. experiment.

  2. Large-deviation properties of Brownian motion with dry friction.

    PubMed

    Chen, Yaming; Just, Wolfram

    2014-10-01

    We investigate piecewise-linear stochastic models with regard to the probability distribution of functionals of the stochastic processes, a question that occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for non-negative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time, and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behavior in the asymptotic long time limit.

  3. Studies of water storage and other contributions to changes in the rotation of the Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Clark R.

    1991-01-01

    The effects were determined of the global redistribution of water mass on various geodetic observables, especially polar motion, and complementary observables such as geodetic satellite positions. The effect of water mass redistribution has been and continues to be less well known and more difficult to observe than effects of air mass distribution, yet the water contribution is potentially significant over a large range of periods. The current understanding is reviewed of the contribution of polar drift, decadal polar motion, Chandler and annual wobbles, and higher frequency polar motion, as determined through the efforts of the funded work within the NASA Crustal Dynamics Project, and in the context of the general literature on the subject. Water mass redistribution is either demonstrably important to the excitation of each of these, or is probably important given a lack of other likely excitation sources.

  4. Adaptation disrupts motion integration in the primate dorsal stream

    PubMed Central

    Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam

    2014-01-01

    Summary Sensory systems adjust continuously to the environment. The effects of recent sensory experience—or adaptation—are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in the downstream circuit. Here we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes. PMID:24507198

  5. Stokesian swimming of a helical swimmer across an interface

    NASA Astrophysics Data System (ADS)

    Godinez, Francisco; Ramos, Armando; Zenit, Roberto

    2016-11-01

    Microorganisms swim in flows dominated by viscous effects but in many instances the motion occurs across heterogeneous environments where the fluid properties may vary. To our knowledge, the effect of such in-homogeneity has not been addressed in depth. We conduct experiments in which a magnetic self-propelled helical swimmer displaces across the interface between two immiscible density stratified fluids. As the swimmer crosses the interface, at a fixed rotation rate, its speed is reduced and a certain volume of the lower fluid is dragged across. We quantify the drift volume and the change of swimming speed for different swimming speeds and different fluid combinations. We relate the reduction of the swimming speed with the interfacial tension of the interface. We also compare the measurements of the drift volume with some recent calculations found in the literature.

  6. Poloidal motion of trapped particle orbits in real-space coordinates

    NASA Astrophysics Data System (ADS)

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Leitold, G. O.

    2008-05-01

    The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of α-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantly also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].

  7. Satellite laser ranging and geological constraints on plate motion

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Douglas, Nancy B.

    1990-01-01

    Satellite laser ranging (SLR) observed baseline rates of change were measured and compared with rates determined from sea floor spreading rates and directions, and earth-quake solutions. With the number of years of observation now over six for many of the baselines, the inaccuracy of determining baseline rates of change has diminished so that in some cases it is less than a few mm per year. Thus, a direct comparison between baseline rates of change and rates of change established using geophysical information (called geological rates) is now feasible. In most cases, there is good agreement between the rates determined from SLR and geological rates, but in some cases there appear to be discrepancies. These discrepancies involve many of the data for which one end of the baseline is either Quincy (California), Huahine (French Polynesia), or Simosato (Japan). A method for looking at the discrepancies for these SLR observatories has been devised which makes it possible to calculate the motion not modeled by the geologic information.

  8. Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.

  9. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    NASA Astrophysics Data System (ADS)

    Lukovich, Jennifer V.; Geiger, Cathleen A.; Barber, David G.

    2017-07-01

    A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ˜ 3) to ballistic (α ˜ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  10. Secondary Mineral Deposits and Evidence of Past Seismicity and Heating of the Proposed Repository Horizon at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, Josheph F.

    2004-01-01

    The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that they were subjected to heated gases at approximately the temperatures expected from waste emplacement. These deposits provide at least limited textural and mineralogic analogs for waste-induced, high-humidity thermal alteration of emplacement drift wall rocks.

  11. Force-stabilizing synergies in motor tasks involving two actors

    PubMed Central

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2015-01-01

    We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the sub-spaces that affect and do not affect salient performance variables. PMID:26105756

  12. Sub-keV ring current ions as the tracer of substorm injection

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Lundin, R.

    2006-03-01

    The dynamics of the energy-latitude dispersed sub-keV trapped ions inside the ring current region, the so-called wedge-like dispersions structure, were statistically studied using Viking satellite data. Probabilities with/without these signatures at various local times in the dayside are obtained in terms of different time-lags from the substorm activity monitored by the AE index. The structure appears in the early morning sector within a few hours after the substorm, and it slowly propagates eastward while decaying with a time scale of several hours. The result qualitatively confirmed the previous model that the wedge-like dispersions are originated from past substorm-related plasma injections into the nightside ring current region, and that the dispersion is formed when these injected plasma slowly moves eastward to the dayside by the drift motion (E×B (eastward), grad-<|B| (westward), and curvature (westward) drifts). However, the appearance of the structure is twice or three times faster than the model prediction, and some structure reaches even to the evening sector. The results indicate that the start location of the drift is not as far as midnight and that the drift speed is slightly faster than the model prediction. The former means that the substorm-related increase of hot plasma in the ring current region shifts or extends to the early morning sector for large substorms, and the latter means that the substantial electric field driving the sub-keV ion drift is slightly different from the model field. We also detected the evacuating effect starting right after the substorm (or storm) onset. The electric field imposed in the dayside magnetosphere seems to remove the remainder of trapped ions.

  13. Force-stabilizing synergies in motor tasks involving two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-10-01

    We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the subspaces that affect and do not affect salient performance variables.

  14. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  15. On the origin of the crescent-shaped distributions observed by MMS at the magnetopause

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Berchem, J.; Zhou, M.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Ergun, R. E.; Khotyaintsev, Y. V.; Torbert, R. B.; Burch, J. L.

    2017-02-01

    MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we reexamine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, E × B drifts cannot cause the crescent shapes. We performed a high-resolution multiscale simulation capturing subelectron skin-depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an E × B drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.

  16. Drift of charge carriers in crystalline organic semiconductors

    NASA Astrophysics Data System (ADS)

    Dong, Jingjuan; Si, Wei; Wu, Chang-Qin

    2016-04-01

    We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ˜105 V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.

  17. Drift of charge carriers in crystalline organic semiconductors.

    PubMed

    Dong, Jingjuan; Si, Wei; Wu, Chang-Qin

    2016-04-14

    We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ∼10(5) V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.

  18. Accounting for speed-accuracy tradeoff in perceptual learning.

    PubMed

    Liu, Charles C; Watanabe, Takeo

    2012-05-15

    In the perceptual learning (PL) literature, researchers typically focus on improvements in accuracy, such as d'. In contrast, researchers who investigate the practice of cognitive skills focus on improvements in response times (RT). Here, we argue for the importance of accounting for both accuracy and RT in PL experiments, due to the phenomenon of speed-accuracy tradeoff (SAT): at a given level of discriminability, faster responses tend to produce more errors. A formal model of the decision process, such as the diffusion model, can explain the SAT. In this model, a parameter known as the drift rate represents the perceptual strength of the stimulus, where higher drift rates lead to more accurate and faster responses. We applied the diffusion model to analyze responses from a yes-no coherent motion detection task. The results indicate that observers do not use a fixed threshold for evidence accumulation, so changes in the observed accuracy may not provide the most appropriate estimate of learning. Instead, our results suggest that SAT can be accounted for by a modeling approach, and that drift rates offer a promising index of PL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. On Motion Planning with Uncertainty. Revised.

    DTIC Science & Technology

    1984-01-01

    drift to the right, sticking at the right corner. See Fig. 1.6. Given the uncertainty in the position sensor, it is impossible to execute corrective ...action once * sticking is detected. This is because the corrective action depends on knowing the side at which sticking occurred. Worse than being...unable to correct errors should they occur, is the inability to detect success. In the given example, it is possible that the peg may move smoothly into

  20. Stochastic modeling of experimental chaotic time series.

    PubMed

    Stemler, Thomas; Werner, Johannes P; Benner, Hartmut; Just, Wolfram

    2007-01-26

    Methods developed recently to obtain stochastic models of low-dimensional chaotic systems are tested in electronic circuit experiments. We demonstrate that reliable drift and diffusion coefficients can be obtained even when no excessive time scale separation occurs. Crisis induced intermittent motion can be described in terms of a stochastic model showing tunneling which is dominated by state space dependent diffusion. Analytical solutions of the corresponding Fokker-Planck equation are in excellent agreement with experimental data.

  1. Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers

    DTIC Science & Technology

    2012-10-01

    visual nystagmus much more robust. Because the absolute gaze is not measured in our paradigm (this would require a gaze calibration, involving...the dots were also drifting to the right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event...for automated 5 Reflex Stimulus Functions Visual Nystagmus luminance grating low-level motion equiluminant grating color vision contrast gratings at 3

  2. Analysis of Galaxy 15 Satellite Images from a Small-Aperture Telescope

    DTIC Science & Technology

    2011-09-01

    December 2010) during which it did not respond to commands from the ground. During this time period, the satellite drifted eastward causing...and 2) aberration. The light speed correction reflects the motion of the satellite along the orbit during the time Δt it takes for the signal to... time (or phase angle) with a separate photometric analysis performed at Oceanit. To obtain the photometry , we used AstroGraph software (Fig. 3

  3. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced.

  4. Effects of Vojta Therapy on Gait of Children with Spastic Diplegia

    PubMed Central

    Lim, Hyungwon; Kim, Tackhoon

    2014-01-01

    [Purpose] This study aimed to investigate the effects of Vojta therapy on spatiotemporal gait parameters in children with spastic diplegia. [Methods] The study population consisted of 3 children diagnosed with spastic diplegia. The subjects were treated with Vojta therapy for 8 weeks and followed up for 8 weeks after completion of the therapy. Vicon motion analysis was used to determine the subjects’ spatiotemporal gait parameters. [Results] The following results were noted in the changes of each joint angle in the sagittal plane after Vojta therapy. Subject 1 remained in phase throughout the entire gait cycle and did not show any noticeable improvement, even demonstrating a negative range of motion when compared to the baseline. Subject 2 showed a normal anti-phase in heel strike, and the mid-stance, and swing phases. Subject 3 showed a normal anti-phase in heel strike and mid-stance, but the anti-phase during the swing phase was not significantly different from the baseline. For subjects 2 and 3, compared to the baseline, the range of motion of the hip and knee increased but the range of motion of the ankle decreased. [Conclusion] The findings of this study indicate that Vojta therapy can do a good role in improve the spatiotemporal gait parameters of children with spastic diplegia. PMID:24409030

  5. Transverse motion of high-speed barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, H. G., Jr.; Fedder, J. A.; Huba, J. D.; Zalesak, S. T.

    1985-01-01

    Simulation results, based on a field-line-integrated, two-dimensional, electrostatic model, are presented for the motion of a barium cloud injected transverse to the geomagnetic field in the ionosphere at high speeds. It is found that the gross evaluation of injected plasma clouds depends on the initial conditions, as well as the nature of the background coupling. For a massive (mass of about 10 kg), orbital (velocity of about 5 km/s) release in the F region (350-450 km), it is found that plasma clouds can drift tens of kilometers across the magnetic field in tens of seconds after ionization. This type of release is similar to those which are planned for the Combined Release and Radiation Effects Satellite mission.

  6. The flashing Brownian ratchet and Parrondo’s paradox

    PubMed Central

    Ethier, S. N.

    2018-01-01

    A Brownian ratchet is a one-dimensional diffusion process that drifts towards a minimum of a periodic asymmetric sawtooth potential. A flashing Brownian ratchet is a process that alternates between two regimes, a one-dimensional Brownian motion and a Brownian ratchet, producing directed motion. These processes have been of interest to physicists and biologists for nearly 25 years. The flashing Brownian ratchet is the process that motivated Parrondo’s paradox, in which two fair games of chance, when alternated, produce a winning game. Parrondo’s games are relatively simple, being discrete in time and space. The flashing Brownian ratchet is rather more complicated. We show how one can study the latter process numerically using a random walk approximation. PMID:29410868

  7. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force

    NASA Astrophysics Data System (ADS)

    Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.

    2018-01-01

    In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.

  8. Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky-Golay filtering.

    PubMed

    Jahani, Sahar; Setarehdan, Seyed K; Boas, David A; Yücel, Meryem A

    2018-01-01

    Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.

  9. Estimate of procession and polar motion errors from planetary encounter station location solutions

    NASA Technical Reports Server (NTRS)

    Pease, G. E.

    1978-01-01

    Jet Propulsion Laboratory Deep Space Station (DSS) location solutions based on two JPL planetary ephemerides, DE 84 and DE 96, at eight planetary encounters were used to obtain weighted least squares estimates of precession and polar motion errors. The solution for precession error in right ascension yields a value of 0.3 X 10 to the minus 5 power plus or minus 0.8 X 10 to the minus 6 power deg/year. This maps to a right ascension error of 1.3 X 10 to the minus 5 power plus or minus 0.4 X 10 to the minus 5 power deg at the first Voyager 1979 Jupiter encounter if the current JPL DSS location set is used. Solutions for precession and polar motion using station locations based on DE 84 agree well with the solution using station locations referenced to DE 96. The precession solution removes the apparent drift in station longitude and spin axis distance estimates, while the encounter polar motion solutions consistently decrease the scatter in station spin axis distance estimates.

  10. EFFECTS OF TURBULENCE, ECCENTRICITY DAMPING, AND MIGRATION RATE ON THE CAPTURE OF PLANETS INTO MEAN MOTION RESONANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-01-01

    Pairs of migrating extrasolar planets often lock into mean motion resonance as they drift inward. This paper studies the convergent migration of giant planets (driven by a circumstellar disk) and determines the probability that they are captured into mean motion resonance. The probability that such planets enter resonance depends on the type of resonance, the migration rate, the eccentricity damping rate, and the amplitude of the turbulent fluctuations. This problem is studied both through direct integrations of the full three-body problem and via semi-analytic model equations. In general, the probability of resonance decreases with increasing migration rate, and with increasingmore » levels of turbulence, but increases with eccentricity damping. Previous work has shown that the distributions of orbital elements (eccentricity and semimajor axis) for observed extrasolar planets can be reproduced by migration models with multiple planets. However, these results depend on resonance locking, and this study shows that entry into-and maintenance of-mean motion resonance depends sensitively on the migration rate, eccentricity damping, and turbulence.« less

  11. Kinetic theory of passing energetic ion transport in presence of the resonant interactions with a rotating magnetic island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jinjia; Gong, Xueyu; Xiang, Dong

    The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: onemore » arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.« less

  12. Close similarity between spatiotemporal frequency tunings of human cortical responses and involuntary manual following responses to visual motion.

    PubMed

    Amano, Kaoru; Kimura, Toshitaka; Nishida, Shin'ya; Takeda, Tsunehiro; Gomi, Hiroaki

    2009-02-01

    Human brain uses visual motion inputs not only for generating subjective sensation of motion but also for directly guiding involuntary actions. For instance, during arm reaching, a large-field visual motion is quickly and involuntarily transformed into a manual response in the direction of visual motion (manual following response, MFR). Previous attempts to correlate motion-evoked cortical activities, revealed by brain imaging techniques, with conscious motion perception have resulted only in partial success. In contrast, here we show a surprising degree of similarity between the MFR and the population neural activity measured by magnetoencephalography (MEG). We measured the MFR and MEG induced by the same motion onset of a large-field sinusoidal drifting grating with changing the spatiotemporal frequency of the grating. The initial transient phase of these two responses had very similar spatiotemporal tunings. Specifically, both the MEG and MFR amplitudes increased as the spatial frequency was decreased to, at most, 0.05 c/deg, or as the temporal frequency was increased to, at least, 10 Hz. We also found in peak latency a quantitative agreement (approximately 100-150 ms) and correlated changes against spatiotemporal frequency changes between MEG and MFR. In comparison with these two responses, conscious visual motion detection is known to be most sensitive (i.e., have the lowest detection threshold) at higher spatial frequencies and have longer and more variable response latencies. Our results suggest a close relationship between the properties of involuntary motor responses and motion-evoked cortical activity as reflected by the MEG.

  13. Acute Stimulant Treatment and Reinforcement Increase the Speed of Information Accumulation in Children with ADHD.

    PubMed

    Fosco, Whitney D; White, Corey N; Hawk, Larry W

    2017-07-01

    The current studies utilized drift diffusion modeling (DDM) to examine how reinforcement and stimulant medication affect cognitive task performance in children with ADHD. In Study 1, children with (n = 25; 88 % male) and without ADHD (n = 33; 82 % male) completed a 2-choice discrimination task at baseline (100 trials) and again a week later under alternating reinforcement and no-reinforcement contingencies (400 trials total). In Study 2, participants with ADHD (n = 29; 72 % male) completed a double-blind, placebo-controlled trial of 0.3 and 0.6 mg/kg methylphenidate and completed the same task utilized in Study 1 at baseline (100 trials). Children with ADHD accumulated information at a much slower rate than controls, as evidenced by a lower drift rate. Groups were similar in nondecision time and boundary separation. Both reinforcement and stimulant medication markedly improved drift rate in children with ADHD (ds = 0.70 and 0.95 for reinforcement and methylphenidate, respectively); both treatments also reduced boundary separation (ds = 0.70 and 0.39). Reinforcement, which emphasized speeded accuracy, reduced nondecision time (d = 0.37), whereas stimulant medication increased nondecision time (d = 0.38). These studies provide initial evidence that frontline treatments for ADHD primarily impact cognitive performance in youth with ADHD by improving the speed/efficiency of information accumulation. Treatment effects on other DDM parameters may vary between treatments or interact with task parameters (number of trials, task difficulty). DDM, in conjunction with other approaches, may be helpful in clarifying the specific cognitive processes that are disrupted in ADHD, as well as the basic mechanisms that underlie the efficacy of ADHD treatments.

  14. Environmental Deflection: The Impact of Toxicant Exposures on the Aging Epigenome.

    PubMed

    Kochmanski, Joseph; Montrose, Luke; Goodrich, Jaclyn M; Dolinoy, Dana C

    2017-04-01

    Epigenetic drift and age-related methylation have both been used in the literature to describe changes in DNA methylation that occurs with aging. However, ambiguity remains regarding the exact definition of both of these terms, and neither of these fields of study explicitly considers the impact of environmental factors on the aging epigenome. Recent twin studies have demonstrated longitudinal, pair-specific discordance in DNA methylation patterns, suggesting an effect of the environment on age-related methylation and/or epigenetic drift. Supporting this idea, other new reports have shown clear environment- and toxicant-mediated shifts away from the baseline rates of age-related methylation and epigenetic drift within an organism, a process we now term "environmental deflection." By defining and delineating environmental deflection, this contemporary review aims to highlight the effects of specific toxicological factors on the rate of DNA methylation changes that occur over the life course. In an effort to inform future epigenetics-based toxicology studies, a field of research now classified as toxicoepigenetics, we provide clear definitions and examples of "epigenetic drift" and "age-related methylation," summarize the recent evidence for environmental deflection of the aging epigenome, and discuss the potential functional effects of environmental deflection. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Estimating Ocean Currents from Automatic Identification System Based Ship Drift Measurements

    NASA Astrophysics Data System (ADS)

    Jakub, Thomas D.

    Ship drift is a technique that has been used over the last century and a half to estimate ocean currents. Several of the shortcomings of the ship drift technique include obtaining the data from multiple ships, the time delay in getting those ship positions to a data center for processing and the limited resolution based on the amount of time between position measurements. These shortcomings can be overcome through the use of the Automatic Identification System (AIS). AIS enables more precise ocean current estimates, the option of finer resolution and more timely estimates. In this work, a demonstration of the use of AIS to compute ocean currents is performed. A corresponding error and sensitivity analysis is performed to help identify under which conditions errors will be smaller. A case study in San Francisco Bay with constant AIS message updates was compared against high frequency radar and demonstrated ocean current magnitude residuals of 19 cm/s for ship tracks in a high signal to noise environment. These ship tracks were only minutes long compared to the normally 12 to 24 hour ship tracks. The Gulf of Mexico case study demonstrated the ability to estimate ocean currents over longer baselines and identified the dependency of the estimates on the accuracy of time measurements. Ultimately, AIS measurements when combined with ship drift can provide another method of estimating ocean currents, particularly when other measurements techniques are not available.

  16. Evaluation of breathing patterns for respiratory-gated radiation therapy using the respiration regularity index

    NASA Astrophysics Data System (ADS)

    Cheong, Kwang-Ho; Lee, MeYeon; Kang, Sei-Kwon; Yoon, Jai-Woong; Park, SoAh; Hwang, Taejin; Kim, Haeyoung; Kim, KyoungJu; Han, Tae Jin; Bae, Hoonsik

    2015-01-01

    Despite the considerable importance of accurately estimating the respiration regularity of a patient in motion compensation treatment, not to mention the necessity of maintaining that regularity through the following sessions, an effective and simply applicable method by which those goals can be accomplished has rarely been reported. The authors herein propose a simple respiration regularity index based on parameters derived from a correspondingly simplified respiration model. In order to simplify a patient's breathing pattern while preserving the data's intrinsic properties, we defined a respiration model as a cos4( ω( t) · t) wave form with a baseline drift. According to this respiration formula, breathing-pattern fluctuation could be explained using four factors: the sample standard deviation of respiration period ( s f ), the sample standard deviation of amplitude ( s a ) and the results of a simple regression of the baseline drift (slope as β, and standard deviation of residuals as σ r ) of a respiration signal. The overall irregularity ( δ) was defined as , where is a variable newly-derived by using principal component analysis (PCA) for the four fluctuation parameters and has two principal components ( ω 1, ω 2). The proposed respiration regularity index was defined as ρ = ln(1 + (1/ δ))/2, a higher ρ indicating a more regular breathing pattern. We investigated its clinical relevance by comparing it with other known parameters. Subsequently, we applied it to 110 respiration signals acquired from five liver and five lung cancer patients by using real-time position management (RPM; Varian Medical Systems, Palo Alto, CA). Correlations between the regularity of the first session and the remaining fractions were investigated using Pearson's correlation coefficient. Additionally, the respiration regularity was compared between the liver and lung cancer patient groups. The respiration regularity was determined based on ρ; patients with ρ < 0.3 showed worse regularity than the others whereas ρ > 0.7 was suitable for respiratory-gated radiation therapy (RGRT). Fluctuations in the breathing cycle and the amplitude were especially determinative of ρ. If the respiration regularity of a patient's first session was known, it could be estimated through subsequent sessions. Notably, the breathing patterns of the lung cancer patients were more irregular than those of the liver cancer patients. Respiration regularity could be objectively determined by using a composite index, ρ. Such a single-index testing of respiration regularity can facilitate determination of RGRT availability in clinical settings, especially for free-breathing cases.

  17. On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities

    NASA Astrophysics Data System (ADS)

    Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.

    The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.

  18. An improved model of fission gas atom transport in irradiated uranium dioxide

    NASA Astrophysics Data System (ADS)

    Shea, J. H.

    2018-04-01

    The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.

  19. Designing of deployment sequence for braking and drift systems in atmosphere of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Vorontsov, Victor

    2006-07-01

    Analysis of project development and space research using contact method, namely, by means of automatic descent modules and balloons shows that designing formation of entry, descent and landing (EDL) sequence and operation in the atmosphere are of great importance. This process starts at the very beginning of designing, has undergone a lot of iterations and influences processing of normal operation results. Along with designing of descent module systems, including systems of braking in the atmosphere, designing of flight operation sequence and trajectories of motion in the atmosphere is performed. As the entire operation sequence and transfer from one phase to another was correctly chosen, the probability of experiment success on the whole and efficiency of application of various systems vary. By now the most extensive experience of Russian specialists in research of terrestrial planets has been gained with the help of automatic interplanetary stations “Mars”, “Venera”, “Vega” which had descent modules and drifting in the atmosphere balloons. Particular interest and complicity of formation of EDL and drift sequence in the atmosphere of these planets arise from radically different operation conditions, in particular, strongly rarefied atmosphere of the one planet and extremely dense atmosphere of another. Consequently, this determines the choice of braking systems and their parameters and method of EDL consequence formation. At the same time there are general fundamental methods and designed research techniques that allowed taking general technical approach to designing of EDL and drift sequence in the atmosphere.

  20. Aether Drift and the isotropy of the universe: A measurement of anisotropes in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.

    1981-01-01

    Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ("Aether Drift") was measured and the homogeneity and isotropy of the Universe (the "Cosmological Principle") was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.

  1. Compact modeling of nanoscale triple-gate junctionless transistors covering drift-diffusion to quasi-ballistic carrier transport

    NASA Astrophysics Data System (ADS)

    Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.

    2018-04-01

    In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.

  2. URSI and Nachrichtentechnische Gesellschaft, General Session, Kleinheubach, West Germany, Oct. 6-10, 1986, Reports

    NASA Astrophysics Data System (ADS)

    Factors affecting the atmospheric propagation of EM waves, research on the ionosphere, and advances in radar and communications technology are examined in reviews and reports. Topics discussed include refraction corrections for radio astronomy and geodesy, speckle masking, radar studies of atmospheric motion, EISCAT measurements in the polar electrojet, active experiments in the polar ionosphere, and dispersion relations for drift-Alfven and drift-acoustic waves. Consideration is given to a microcomputer prediction system for HF communications over Europe, frequency determination of a hyperfine line of CH4 at 88 THz, multipath propagation in digital mobile communication, a robust digital voice transmission technique for land mobile radio, CMOS LSI for digital signal processing in mobile radio equipment, the representation of EM fields by dyadic Green functions, scalarization of Maxwell's equations for anisotropic media, and satellite antennas for land vehicles and aircraft.

  3. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  4. Electron Jet Detected by MMS at Dipolarization Front

    NASA Astrophysics Data System (ADS)

    Liu, C. M.; Fu, H. S.; Vaivads, A.; Khotyaintsev, Y. V.; Gershman, D. J.; Hwang, K.-J.; Chen, Z. Z.; Cao, D.; Xu, Y.; Yang, J.; Peng, F. Z.; Huang, S. Y.; Burch, J. L.; Giles, B. L.; Ergun, R. E.; Russell, C. T.; Lindqvist, P.-A.; Le Contel, O.

    2018-01-01

    Using MMS high-resolution measurements, we present the first observation of fast electron jet (Ve 2,000 km/s) at a dipolarization front (DF) in the magnetotail plasma sheet. This jet, with scale comparable to the DF thickness ( 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a localized ring-current that can modify the DF topology. Associated with this fast jet, we observed a persistent normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong energy conversion is primarily attributed to the electron-jet-driven current (E ṡ je ≈ 2 E ṡ ji), rather than the ion current suggested in previous studies.

  5. Nonlinear waves in electron-positron-ion plasmas including charge separation

    NASA Astrophysics Data System (ADS)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  6. Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb

    NASA Technical Reports Server (NTRS)

    Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve

    2011-01-01

    This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.

  7. Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama

    USGS Publications Warehouse

    Stumpf, R.P.; Gelfenbaum, G.; Pennock, J.R.

    1993-01-01

    AVHRR satellite imagery and in situ observations were combined to study the motion of a buoyant plume at the mouth of Mobile Bay, Alabama. The plume extended up to 30 km from shore, with a thickness of about 1 m. The inner plume, which was 3-8 m thick, moved between the Bay and inner shelf in response to tidal forcing. The tidal prism could be identified through the movement of plume waters between satellite images. The plume responded rapidly to alongshore wind, with sections of the plume moving at speeds of more than 70 cm s-1, about 11% of the wind speed. The plume moved predominantly in the direction of the wind with a weak Ekman drift. The enhanced speed of the plume relative to normal surface drift is probably due to the strong stratification in the plume, which limits the transfer of momentum into the underlying ambient waters. ?? 1993.

  8. Scram signal generator

    DOEpatents

    Johanson, Edward W.; Simms, Richard

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  9. Scram signal generator

    DOEpatents

    Johanson, E.W.; Simms, R.

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  10. Source and identification of heavy ions in the equatorial F layer.

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sterling, D. L.; Woodman, R. F.

    1972-01-01

    Further evidence is presented to show that the interpretation of some Ogo 6 retarding potential analyzer (RPA) results in terms of ambient Fe+ ions is correct. The Fe+ ions are observed only within dip latitudes of plus or minus 30 deg, and the reason for this latitudinal specificity is discussed in terms of a low-altitude source region and F region diffusion and electrodynamic drift. It is shown that the polarization field associated with the equatorial electrojet will raise ions to 160 km out of a chemical source region below 100 km but it will do so only in a narrow region centered on the dip equator. Subsequent vertical ExB drift, coupled with motions along the magnetic fields, can move the ions to greater heights and greater latitudes. There should be a resultant fountain of metallic ions rising near the equator that subsequently descends back to the E and D layers at tropical latitudes.

  11. Poloidal motion of trapped particle orbits in real-space coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.

    The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of {alpha}-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantlymore » also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].« less

  12. GPS in dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.

    2000-01-01

    Global Positioning System (GPS) technology with high sampling rates (??? 10 samples per second) allows scientifically justified and economically feasible dynamic measurements of relative displacements of long-period structures-otherwise difficult to measure directly by other means, such as the most commonly used accelerometers that require post-processing including double integration. We describe an experiment whereby the displacement responses of a simulated tall building are measured clearly and accurately in real-time. Such measurements can be used to assess average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the building performance during extreme motions caused by earthquakes and strong winds. By establishing threshold displacements or drift ratios and identifying changing dynamic characteristics, procedures can be developed to use such information to secure public safety and/or take steps to improve the performance of the building. Published by Elsevier Science Ltd.

  13. Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which would be spontaneously created by the ambipolar radial particle losses, can make drift trajectories closed, which substantially improves particle confinement. It is remarkable that the improvement acts both for positive and negative charges.

  14. An analysis of the upper atmospheric wind observed by LOGACS. [satellite Low-G Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Matsushita, S.; Devries, L. L.

    1974-01-01

    Wind velocities at 140 to 200 km altitude were observed by a low-g accelerometer calibration system (LOGACS) flown on an Agena satellite during a geomagnetic storm. An interesting wind reversal observed by the satellite at auroral latitudes is satisfactorily explained by the neutral air motion caused by the E x B drift deduced from the ground-based geomagnetic data recorded at stations near the meridian of the satellite orbit.

  15. Dynamo action with wave motion.

    PubMed

    Tilgner, A

    2008-03-28

    It is shown that time dependent velocity fields in a fluid conductor can act as dynamos even when the same velocity fields frozen in at any particular time cannot. This effect is observed in propagating waves in which the time dependence is simply a steady drift of a fixed velocity pattern. The effect contributes to magnetic field generation in numerical models of planetary dynamos and relies on the property that eigenmodes of the induction equation are not all orthogonal to each other.

  16. Perceived spatial displacement of motion-defined contours in peripheral vision.

    PubMed

    Fan, Zhao; Harris, John

    2008-12-01

    The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging patterns, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern.

  17. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  18. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  19. Did glacially induced TPW end the ice age? A reanalysis

    NASA Astrophysics Data System (ADS)

    Chan, Ngai-Ham; Mitrovica, Jerry X.; Daradich, Amy

    2015-09-01

    Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called `unidirectional TPW', that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.

  20. Significant motions between GPS sites in the New Madrid region: implications for seismic hazard

    USGS Publications Warehouse

    Frankel, Arthur; Smalley, Robert; Paul, J.

    2012-01-01

    Position time series from Global Positioning System (GPS) stations in the New Madrid region were differenced to determine the relative motions between stations. Uncertainties in rates were estimated using a three‐component noise model consisting of white, flicker, and random walk noise, following the methodology of Langbein, 2004. Significant motions of 0.37±0.07 (one standard error) mm/yr were found between sites PTGV and STLE, for which the baseline crosses the inferred deep portion of the Reelfoot fault. Baselines between STLE and three other sites also show significant motion. Site MCTY (adjacent to STLE) also exhibits significant motion with respect to PTGV. These motions are consistent with a model of interseismic slip of about 4  mm/yr on the Reelfoot fault at depths between 12 and 20 km. If constant over time, this rate of slip produces sufficient slip for an M 7.3 earthquake on the shallow portion of the Reelfoot fault, using the geologically derived recurrence time of 500 years. This model assumes that the shallow portion of the fault has been previously loaded by the intraplate stress. A GPS site near Little Rock, Arkansas, shows significant southward motion of 0.3–0.4  mm/yr (±0.08  mm/yr) relative to three sites to the north, indicating strain consistent with focal mechanisms of earthquake swarms in northern Arkansas.

  1. Relationships of earthquakes (and earthquake-associated mass movements) and polar motion as determined by Kalman filtered, Very-Long-Baseline-Interferometry

    NASA Technical Reports Server (NTRS)

    Preisig, Joseph Richard Mark

    1988-01-01

    A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.

  2. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.

    PubMed

    Bahaz, Mohamed; Benzid, Redha

    2018-03-01

    Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

  3. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm.

    PubMed

    Zhang, Xiao-Hua; Wu, Hai-Long; Wang, Jian-Yao; Tu, De-Zhu; Kang, Chao; Zhao, Juan; Chen, Yao; Miu, Xiao-Xia; Yu, Ru-Qin

    2013-05-01

    This paper describes the use of second-order calibration for development of HPLC-DAD method to quantify nine polyphenols in five kinds of honey samples. The sample treatment procedure was simplified effectively relative to the traditional ways. Baselines drift was also overcome by means of regarding the drift as additional factor(s) as well as the analytes of interest in the mathematical model. The contents of polyphenols obtained by the alternating trilinear decomposition (ATLD) method have been successfully used to distinguish different types of honey. This method shows good linearity (r>0.99), rapidity (t<7.60 min) and accuracy, which may be extremely promising as an excellent routine strategy for identification and quantification of polyphenols in the complex matrices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Neptune's New Dark Vortex: Imaging with HST/WFC3

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Tollefson, J.; De Pater, I.; de Kleer, K.; Hammel, H. B.; Luszcz-Cook, S.; Hueso, R.; Sanchez-Lavega, A.; Simon, A. A.; Delcroix, M.; Sromovsky, L. A.; Fry, P. M.; Orton, G. S.; Baranec, C.

    2016-12-01

    A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015 (Hueso et al. 2015, DPS 400.02). This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2: Smith et al. 1989, Science 246, 1422). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for "southern dark spot discovered in 2015" (Wong et al. 2016, CBET 4278). Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We will present imaging observations of SDS-2015 obtained with the WFC3/UVIS camera on the Hubble Space Telescope, covering the discovery of the vortex in September 2015 and follow-up observations in May 2016. No significant latitudinal drift was seen over this time span. We will compare size estimates, which are complicated by the continual presence of companion clouds, and by the low contrast between the vortex and its surroundings. The 2015 observations included 7 filters spanning 467-845 nm, weighted toward longer wavelengths to study general cloud motions and vertical distributions. The 2016 observations included 7 filters spanning 336-763 nm, weighted toward shorter wavelengths where the dark spot itself can be detected. A companion abstract (Tollefson et al., this meeting) will present results from radiative transfer modeling of the multispectral data. [This conference abstract is based on observations made with the NASA/ESA Hubble Space Telescope, associated with programs GO-13937 ("OPAL") and GO-14492.

  5. Efficient Wide Baseline Structure from Motion

    NASA Astrophysics Data System (ADS)

    Michelini, Mario; Mayer, Helmut

    2016-06-01

    This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness, image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is demonstrated by results for several complex image sets also in comparison with VisualSFM.

  6. Seismic Excitation of the Polar Motion, 1977-1993

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by CHAO and GROSS (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approximately 140deg E, away from the actual observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by CHAO and GROSS (1987), manifests some geodynamic behavior yet to be explored.

  7. Seismic Excitation of the Polar Motion

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approx. 140 deg E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  8. Storm-time Convection Dynamics Viewed from Optical Auroras: from Streamer to Patchy Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Yang, B.; Donovan, E.; Liang, J.; Grono, E.

    2016-12-01

    In a series of statistical and event studies we have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to if not exactly convection. Thus, 2D maps of PPA motion provides us the opportunity to remote sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI aurora observations (streamers and patchy pulsating aurora) combined with SuperDARN convection measurements, Swarm ion drift velocity measurements, and RBSP electric field measurements to explore the convection dynamics in storm time. From 0500 UT to 0600 UT on March 19 2015, convection observations across 5 magnetic local time (MLT) inferred from the motion of PPA patches and SuperDARN measurements show that a westward SAPS (Subauroral Polarized Streams) enhancement occurs after an auroral streamer. This suggests that plasma sheet fast flows can affect the inner magnetospheric convection, and possibly trigger very fast flows in the inner magnetosphere.

  9. Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity

    NASA Astrophysics Data System (ADS)

    Block, Stephan; Fast, Björn Johansson; Lundgren, Anders; Zhdanov, Vladimir P.; Höök, Fredrik

    2016-09-01

    Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.

  10. Seismic excitation of the polar motion, 1977 1993

    NASA Astrophysics Data System (ADS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-09-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0 1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards ˜140°E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  11. Comparison of 2 Dosages of Stretching Treatment in Infants with Congenital Muscular Torticollis: A Randomized Trial.

    PubMed

    He, Lu; Yan, Xiaohua; Li, Jinling; Guan, Buyun; Ma, Liying; Chen, Ying; Mai, Jianning; Xu, Kaishou

    2017-05-01

    To compare the short-term efficacy of 2 dosages of stretching treatment on the clinical outcomes in infants with congenital muscular torticollis. This was a prospective randomized controlled study. Fifty infants with congenital muscular torticollis who were randomly assigned to 100-times stretching group and 50-times stretching group received stretching treatment for the affected sternocleidomastoid muscle. The outcomes including the head tilt, the cervical passive range of motion, and the muscle function of cervical lateral flexors determined by the muscle function scale were assessed at baseline and at 4 and 8 weeks after treatment. The sternocleidomastoid muscle growth analyzed by the thickness ratio of sternocleidomastoid muscles was measured using ultrasonography at baseline and 8 weeks after treatment. Except the ratio of muscle function scale scores, the postintervention outcomes were all significantly improved in both groups compared with baseline (P < 0.05). The 100-times stretching group showed greater improvement compared with 50-times stretching group in head tilt and cervical passive range of motion at 4 and 8 weeks after treatment (P < 0.05). Stretching treatment of 2 dosages may effectively improve head tilt, cervical passive range of motion, and sternocleidomastoid muscle growth in infants with congenital muscular torticollis. The stretching treatment of 100 times per day is likely to associate with greater improvement in head tilt and cervical passive range of motion.

  12. Multiple spacecraft configuration designs for coordinated flight missions

    NASA Astrophysics Data System (ADS)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  13. Note on in situ (scanning) transmission electron microscopy study of liquid samples.

    PubMed

    Jiang, Nan

    2017-08-01

    Liquid cell (scanning) transmission electron microscopy has been developed rapidly, using amorphous SiN x membranes as electron transparent windows. The current interpretations of electron beam effects are mainly based on radiolytic processes. In this note, additional effects of the electric field due to electron-beam irradiation are discussed. The electric field can be produced by the charge accumulation due to the emission of secondary and Auger electrons. Besides various beam-induced phenomena, such as nanoparticle precipitation and gas bubble formation and motion, two other effects need to be considered; one is the change of Gibbs free energy of nucleation and the other is the violation of Brownian motion due to ion drifting driven by the electric field. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Universal portfolios generated by weakly stationary processes

    NASA Astrophysics Data System (ADS)

    Tan, Choon Peng; Pang, Sook Theng

    2014-12-01

    Recently, a universal portfolio generated by a set of independent Brownian motions where a finite number of past stock prices are weighted by the moments of the multivariate normal distribution is introduced and studied. The multivariate normal moments as polynomials in time consequently lead to a constant rebalanced portfolio depending on the drift coefficients of the Brownian motions. For a weakly stationary process, a different type of universal portfolio is proposed where the weights on the stock prices depend only on the time differences of the stock prices. An empirical study is conducted on the returns achieved by the universal portfolios generated by the Ornstein-Uhlenbeck process on selected stock-price data sets. Promising results are demonstrated for increasing the wealth of the investor by using the weakly-stationary-process-generated universal portfolios.

  15. VLBI2020: From Reality to Vision

    NASA Technical Reports Server (NTRS)

    Titov, Oleg

    2010-01-01

    The individual apparent motions of distant radio sources are believed to be caused by the effect of intrinsic structure variations of the active galactic nuclei (AGN). However, some cosmological models of the expanded Universe predict that systematic astrometric proper motions of distant quasars do not vanish as the radial distance from the observer to the quasar grows. These systematic effects can even increase with the distance, making it possible to measure them with high-precision astrometric techniques like VLBI. The Galactocentric acceleration of the Solar System barycenter may cause a secular aberration drift with a magnitude of 4 uas/yr. The Solar System motion relative to the cosmic microwave background produces an additional dipole effect, proportional to red shift. We analyzed geodetic VLBI data spanning from 1979 until 2009 to estimate the vector spherical harmonics in the expansion of the vector field of the proper motion of 687 radio sources. The dipole and quadrupole vector spherical harmonics were estimated with an accuracy of 1-5 as/yr. We have shown that over the next decade the geodetic VLBI may approach the level of accuracy on which the cosmological models of the Universe could be tested. Hence, it is important to organize a dedicated observational program to increase the number of measured proper motions to 3000.

  16. Revisiting the pole tide for and from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Desai, Shailen; Wahr, John; Beckley, Brian

    2015-12-01

    Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole tide, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole tide model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole tide by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole tide model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole tide model impacts interpretation of regional sea level rise by ± 0.25 mm/year.

  17. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins.

    PubMed Central

    Nakata, T; Sato-Yoshitake, R; Okada, Y; Noda, Y; Hirokawa, N

    1993-01-01

    One-dimensional diffusion of microtubules (MTs), a back-and-forth motion of MTs due to thermal diffusion, was reported in dynein motility assay. The interaction between MTs and dynein that allows such motion was implicated in its importance in the force generating cycle of dynein ATPase cycle. However, it was not known whether the phenomenon is special to motor proteins. Here we show two independent examples of one-dimensional diffusion of MTs in the absence of motor proteins. Dynamin, a MT-activated GTPase, causes a nucleotide dependent back-and-forth movement of single MT up to 1 micron along the longitudinal axes, although the MT never showed unidirectional consistent movement. Quantitative analysis of the motion and its nucleotide condition indicates that the motion is due to a thermal driven diffusion, restricted to one dimension, under the weak interaction between MT and dynamin. However, specific protein-protein interaction is not essential for the motion, because similar back-and-forth movement of MT was achieved on coverslips coated with only 0.8% methylcellulose. Both cases demonstrate that thermal diffusion could provide a considerable sliding of MTs only if MTs are restricted on the surface appropriately. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7906153

  18. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    PubMed

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  19. Looking at Op Art: Gaze stability and motion illusions.

    PubMed

    Hermens, Frouke; Zanker, Johannes

    2012-01-01

    Various Op artists have used simple geometrical patterns to create the illusion of motion in their artwork. One explanation for the observed illusion involves retinal shifts caused by small involuntary eye movements that observers make while they try to maintain fixation. Earlier studies have suggested a prominent role of the most conspicuous of these eye movements, small rapid position shifts called microsaccades. Here, we present data that could expand this view with a different interpretation. In three experiments, we recorded participants' eye movements while they tried to maintain visual fixation when being presented with variants of Bridget Riley's Fall, which were manipulated such as to vary the strength of induced motion. In the first two experiments, we investigated the properties of microsaccades for a set of stimuli with known motion strengths. In agreement with earlier observations, microsaccade rates were unaffected by the stimulus pattern and, consequently, the strength of induced motion illusion. In the third experiment, we varied the stimulus pattern across a larger range of parameters and asked participants to rate the perceived motion illusion. The results revealed that motion illusions in patterns resembling Riley's Fall are perceived even in the absence of microsaccades, and that the reported strength of the illusion decreased with the number of microsaccades in the trial. Together, the three experiments suggest that other sources of retinal image instability than microsaccades, such as slow oculomotor drift, should be considered as possible factors contributing to the illusion.

  20. Looking at Op Art: Gaze stability and motion illusions

    PubMed Central

    Hermens, Frouke; Zanker, Johannes

    2012-01-01

    Various Op artists have used simple geometrical patterns to create the illusion of motion in their artwork. One explanation for the observed illusion involves retinal shifts caused by small involuntary eye movements that observers make while they try to maintain fixation. Earlier studies have suggested a prominent role of the most conspicuous of these eye movements, small rapid position shifts called microsaccades. Here, we present data that could expand this view with a different interpretation. In three experiments, we recorded participants' eye movements while they tried to maintain visual fixation when being presented with variants of Bridget Riley's Fall, which were manipulated such as to vary the strength of induced motion. In the first two experiments, we investigated the properties of microsaccades for a set of stimuli with known motion strengths. In agreement with earlier observations, microsaccade rates were unaffected by the stimulus pattern and, consequently, the strength of induced motion illusion. In the third experiment, we varied the stimulus pattern across a larger range of parameters and asked participants to rate the perceived motion illusion. The results revealed that motion illusions in patterns resembling Riley's Fall are perceived even in the absence of microsaccades, and that the reported strength of the illusion decreased with the number of microsaccades in the trial. Together, the three experiments suggest that other sources of retinal image instability than microsaccades, such as slow oculomotor drift, should be considered as possible factors contributing to the illusion. PMID:23145284

  1. Quasiperiodicity and chaos in post-AGB stars

    NASA Astrophysics Data System (ADS)

    Icke, V.

    2003-03-01

    This is a mini-presentation of three subjects, which are all related to the atmospheric motion in post-AGB stars. First, a summary of my 1990 equation of a driven stellar oscillator that exhibits chaotic solutions. Second, an advertisement for the subtle interplay of hydrodynamics, gas/dust drift, gas chemistry, dust formation, and radiation pressure, as presented in the thesis by Simis. Third, a new model equation for nonspherical stellar oscillations that resembles the FPU-equation which shows permanent non-equilibrium, with possibly intermittent solutions.

  2. Wheels within Wheels: Hamiltonian Dynamics as a Hierarchy of Action Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Rory J.; Bellan, Paul M.

    2010-09-17

    In systems where one coordinate undergoes periodic oscillation, the net displacement in any other coordinate over a single period is shown to be given by differentiation of the action integral associated with the oscillating coordinate. This result is then used to demonstrate that the action integral acts as a Hamiltonian for slow coordinates providing time is scaled to the 'tick time' of the oscillating coordinate. Numerous examples, including charged particle drifts and relativistic motion, are supplied to illustrate the varied application of these results.

  3. Physical properties of glasses in the Ag2GeS3-AgBr system

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  4. Interaction of a neutral cloud moving through a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Lu, G.

    1990-01-01

    Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.

  5. Energetic-particle drift motions in the outer dayside magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, R.C.

    1987-01-01

    Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B pockets in the geomagnetic field. These pockets are theoretically capable of temporarily trapping azimuthally-drifting electrons and modifying electron directional distributions. The Lawrence Livermore National Laboratory's scanning electron spectrometer aboard the OGO-5 satellite provided detailed energetic (E > 70 keV) electron pitch-angle distributions throughout the magnetosphere. Distributions obtained in the outer dayside magnetosphere over a wide range of longitudes show unusual flux features. This study analyzes drift-shell branching caused by themore » minimum-B pockets, and interprets the observed flux features in terms of an adiabatic-shell branching and rejoining process. The author examines the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field mode. He finds that shell branching and rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. He also finds a good correlation between the itch angles that mark the transition from branched to unbranched shells in the model and the distinctive features of the OGO-5 distributions.« less

  6. The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region

    NASA Astrophysics Data System (ADS)

    Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.

    2008-10-01

    The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos||VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and described by Kudeki and Farley (1989), Lu et al. (2008) for the equatorial electrojet and studied in numerical simulation by Otani and Oppenheim (1998, 2006).

  7. Mitigating Backgrounds with a Novel Thin-Film Cathode in the DRIFT-IId Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Miller, Eric H.

    The nature of dark matter, which comprises 85% of the matter density in the universe, is a major outstanding question in physics today. The standard hypothesis is that the dark matter is a new weakly interacting massive particle, which is present throughout the galaxy. These particles could interact within detectors on Earth, producing low-energy nuclear recoils. Two distinctive signatures arise from the solar motion through the galaxy. The DRIFT experiment aims to measure one of these, the directional signature that is based on the sidereal modulation of the nuclear recoil directions. Although DRIFT has demonstrated its capability for detecting this signature, it has been plagued by a large number of backgrounds that have limited its reach. The focus of this thesis is on characterizing these backgrounds and describing techniques that have essentially eliminated them. The background events in the DRIFT-IId detector are predominantly caused by alpha decays on the central cathode in which the alpha particles completely or partially absorbed by the cathode material. This thesis describes the installation a 0.9 mum thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on identifying and quantifying the sources of alpha decay backgrounds, as well as their contributions to the background rate in the detector. This in-situ study is based on alpha range spectroscopy and the determination of the absolute alpha detection efficiency. The results for the final radiologically clean version of the cathode give a contamination of 3.3 +/- 0.1 ppt 234U and 73 +/- 2 ppb 238U, and an efficiency for rejecting an RPR from an alpha decay that is a factor 70 +/- 20 higher than for the original wire cathode. Along with other background reduction measures, the thin-film cathode has reduced the observed background rate from 130/day to 1.7/day in the DRIFT experiment. The complete elimination of the remaining RPR backgrounds requires fiducialization of the detector along the drift direction. We describe two methods for doing this: one involving the detection of positive ions at the cathode, and the other using multiple species of charge carriers with variable drift speeds. With the recent successful implementation of the latter technique, the DRIFT experiment has run background-free for 46 days.

  8. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness

    PubMed Central

    Spering, Miriam; Carrasco, Marisa

    2012-01-01

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth pursuit eye movements in response to moving dichoptic plaids–stimuli composed of two orthogonally-drifting gratings, presented separately to each eye–in human observers. Monocular adaptation to one grating prior to the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating’s motion direction or to both (neutral condition). We show that observers were better in detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating’s motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted towards the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it. PMID:22649238

  9. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness.

    PubMed

    Spering, Miriam; Carrasco, Marisa

    2012-05-30

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.

  10. Hamilton-Jacobi modelling of relative motion for formation flying.

    PubMed

    Kolemen, Egemen; Kasdin, N Jeremy; Gurfil, Pini

    2005-12-01

    A precise analytic model for the relative motion of a group of satellites in slightly elliptic orbits is introduced. With this aim, we describe the relative motion of an object relative to a circular or slightly elliptic reference orbit in the rotating Hill frame via a low-order Hamiltonian, and solve the Hamilton-Jacobi equation. This results in a first-order solution to the relative motion identical to the Clohessy-Wiltshire approach; here, however, rather than using initial conditions as our constants of the motion, we utilize the canonical momenta and coordinates. This allows us to treat perturbations in an identical manner, as in the classical Delaunay formulation of the two-body problem. A precise analytical model for the base orbit is chosen with the included effect of zonal harmonics (J(2), J(3), J(4)). A Hamiltonian describing the real relative motion is formed and by differing this from the nominal Hamiltonian, the perturbing Hamiltonian is obtained. Using the Hamilton equations, the variational equations for the new constants are found. In a manner analogous to the center manifold reduction procedure, the non-periodic part of the motion is canceled through a magnitude analysis leading to simple boundedness conditions that cancel the drift terms due to the higher order perturbations. Using this condition, the variational equations are integrated to give periodic solutions that closely approximate the results from numerical integration (1 mm/per orbit for higher order and eccentricity perturbations and 30 cm/per orbit for zonal perturbations). This procedure provides a compact and insightful analytic description of the resulting relative motion.

  11. Three-dimensional analysis of the respiratory interplay effect in helical tomotherapy: Baseline variations cause the greater part of dose inhomogeneities seen.

    PubMed

    Tudor, G Samuel J; Harden, Susan V; Thomas, Simon J

    2014-03-01

    Dose differences from those planned can occur due to the respiratory interplay effect on helical tomotherapy. The authors present a technique to calculate single-fraction doses in three-dimensions resulting from craniocaudal motion applied to a patient CT set. The technique is applied to phantom and patient plans using patient respiratory traces. An additional purpose of the work is to determine the contribution toward the interplay effect of different components of the respiratory trace. MATLAB code used to calculate doses to a CT dataset from a helical tomotherapy plan has been modified to permit craniocaudal motion and improved temporal resolution. Real patient traces from seven patients were applied to ten phantom plans of differing field width, modulation factor, pitch and fraction dose, and simulations made with peak-to-peak amplitudes ranging from 0 to 2.5 cm. PTV voxels near the superior or inferior limits of the PTV are excluded from the analysis. The maximum dose discrepancy compared with the static case recorded along with the proportion of voxels receiving more than 10% and 20% different from prescription dose. The analysis was repeated with the baseline variation of the respiratory trace removed, leaving the cyclic component of motion only. Radiochromic film was used on one plan-trace combination and compared with the software simulation. For one case, filtered traces were generated and used in simulations which consisted only of frequencies near to particular characteristic frequencies of the treatment delivery. Intraslice standard deviation of dose differences was used to identify potential MLC interplay, which was confirmed using nonmodulated simulations. Software calculations were also conducted for four realistic patient plans and modeling movement of a patient CT set with amplitudes informed by the observed motion of the GTV on 4DCT. The maximum magnitude of dose difference to a PTV voxel due to the interplay effect within a particular plan-trace combination for peak-to-peak amplitudes of up to 2.5 cm ranged from 4.5% to 51.6% (mean: 23.8%) of the dose delivered in the absence of respiratory motion. For cyclic motion only, the maximum dose differences in each combination ranged from 2.1% to 26.2% (mean: 9.2%). There is reasonable correspondence between an example of the phantom plan simulations and radiochromic film measurement. The filtered trace simulations revealed that frequencies close to the characteristic frequency of the jaw motion across the target were found to generate greater interplay effect than frequencies close to the gantry frequency or MLC motion. There was evidence of interplay between respiratory motion and MLC modulation, but this is small compared with the interplay between respiratory motion and jaw motion. For patient-plan simulations, dose discrepancies are seen of up to 9.0% for a patient with 0.3 cm peak-to-peak respiratory amplitude and up to 17.7% for a patient with 0.9 cm peak-to-peak amplitude. These values reduced to 1.3% and 6.5%, respectively, when only cyclic motion was considered. Software has been developed to simulate craniocaudal respiratory motion in phantom and patient plans using real patient respiratory traces. Decomposition of the traces into baseline andcyclic components reveals that the large majority of the interplay effect seen with the full trace is due to baseline variation during treatment.

  12. The Barberplaid Illusion

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Mulligan, J. B.; Stone, L. S.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Mulligan showed that the perceived direction of a moving grating can be biased by the shape of the Gaussian window in which it is viewed. We sought to determine if a 2-D pattern with an unambiguous velocity would also show such biases. Observers viewed a drifting plaid (sum of two orthogonal 2.5 c/d sinusoidal gratings of 12% contrast, each with a TF of 4 Hz.) whose contrast was modulated spatially by a stationary, asymmetric 2-D Gaussian window (i.e. unequal standard deviations in the principal directions). The direction of plaid motion with respect to the orientation of the window's major axis (Delta Theta) was varied while all other motion parameters were held fixed. Observers reported the perceived plaid direction of motion by adjusting the orientation of a pointer. All five observers showed systematic biases in perceived plaid direction that depended on Delta Theta and the aspect ratio of the Gaussian window (lambda). For circular Gaussian windows Lambda = 1), plaid direction was veridically perceived. However, biases of up to 10 deg. were found for lambda = 2 and Delta Theta = 30 deg. These data present a challenge to models of motion perception which do not explicitly consider the integration of information across the visual field.

  13. Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.

    PubMed

    Nesti, Alessandro; de Winkel, Ksander; Bülthoff, Heinrich H

    2017-01-01

    While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence.

  14. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  15. Measurement of horizontal motions in Alaska using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ma, C.; Sauber, J. M.; Clark, T. A.; Ryan, J. W.; Bell, L. J.; Gordon, D.; Himwich, W. E.

    1990-01-01

    Results are presented on an analysis of VLBI measurements performed between 1984 and 1990 by means of a network of 53 sites in Alaska, the Yukon Territory, and the conterminous United States to determine the extent of horizontal motions in Alaska. Results are presented in two ways, one showing the evolution of individual baselines and the other yielding site velocities; both approaches use VLBI data from other permanent stations in order to define a global reference frame. It was found that VLBI sites within the Alaska-Aleutian subduction boundary zone (Yakataga, Kodiak, and Sand Point) had higher instantaneous velocities relative to eastern North America than the interior sites of Alaska. The results of Yakataga data modeling suggests that the observed motion is the result of elastic straining of the overriding plate due to a locked main thrust zone with a component of oblique slip.

  16. Effect of Immobilization and Performance Status on Intrafraction Motion for Stereotactic Lung Radiotherapy: Analysis of 133 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Winnie, E-mail: winnie.li@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Purdie, Thomas G.

    2011-12-01

    Purpose: To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Methods and Materials: Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board-approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic ({Sigma}) and randommore » ({sigma}) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n = 75], evacuated cushion plus abdominal compression [n = 33], or chest board [n = 25]) and by patients' Eastern Cooperative Oncology Group performance status (PS): 0 (n = 31), 1 (n = 70), or 2 (n = 32). Results: Using CBCT internal target volume was matched within {+-}3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (<1 mm) in the cranial-caudal direction of target position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (p < 0.01). Positional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p = 0.04). Conclusions: Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization method or PS. A 5-mm setup margin suffices to address intrafraction motion. This setup margin may be further reduced by strategies such as frequent image guidance or volumetric arc therapy to correct or limit intrafraction motion.« less

  17. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients.

    PubMed

    Li, Winnie; Purdie, Thomas G; Taremi, Mojgan; Fung, Sharon; Brade, Anthony; Cho, B C John; Hope, Andrew; Sun, Alexander; Jaffray, David A; Bezjak, Andrea; Bissonnette, Jean-Pierre

    2011-12-01

    To assess intrafractional geometric accuracy of lung stereotactic body radiation therapy (SBRT) patients treated with volumetric image guidance. Treatment setup accuracy was analyzed in 133 SBRT patients treated via research ethics board-approved protocols. For each fraction, a localization cone-beam computed tomography (CBCT) scan was acquired for soft-tissue registration to the internal target volume, followed by a couch adjustment for positional discrepancies greater than 3 mm, verified with a second CBCT scan. CBCT scans were also performed at intrafraction and end fraction. Patient positioning data from 2047 CBCT scans were recorded to determine systematic (Σ) and random (σ) uncertainties, as well as planning target volume margins. Data were further stratified and analyzed by immobilization method (evacuated cushion [n=75], evacuated cushion plus abdominal compression [n=33], or chest board [n=25]) and by patients' Eastern Cooperative Oncology Group performance status (PS): 0 (n=31), 1 (n=70), or 2 (n=32). Using CBCT internal target volume was matched within ±3 mm in 16% of all fractions at localization, 89% at verification, 72% during treatment, and 69% after treatment. Planning target volume margins required to encompass residual setup errors after couch corrections (verification CBCT scans) were 4 mm, and they increased to 5 mm with target intrafraction motion (post-treatment CBCT scans). Small differences (<1 mm) in the cranial-caudal direction of target position were observed between the immobilization cohorts in the localization, verification, intrafraction, and post-treatment CBCT scans (p<0.01). Positional drift varied according to patient PS, with the PS 1 and 2 cohorts drifting out of position by mid treatment more than the PS 0 cohort in the cranial-caudal direction (p=0.04). Image guidance ensures high geometric accuracy for lung SBRT irrespective of immobilization method or PS. A 5-mm setup margin suffices to address intrafraction motion. This setup margin may be further reduced by strategies such as frequent image guidance or volumetric arc therapy to correct or limit intrafraction motion. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Cognitive and Neural Bases of Skilled Performance

    DTIC Science & Technology

    1990-08-09

    torso. The only significant source of noise was a slow variation of the ambient field, which produces a drift of the baseline. The first depended upon...brief survey. Scand. J. of Psychology, Suppl. 1:170-174, 1982. [25] S. A. Hillyard, R. F. Hink , V. L. Schwent, and T. W. Picton. Electrical signs of...Okada, L. Kaufman, and S. J. Williamson. The hippocampal formation as a source of the slow endogenous potentials. Electroencepk. Clin. Neurophysiol

  19. Exploration of the region near the sun-earth collinear libration points for the control of large formations

    NASA Astrophysics Data System (ADS)

    Heritier, Aurelie

    Spacecraft formations possess many applications in the future of space exploration. During the last decade, due to the detection of a large number of extrasolar planets, new studies on formation flying in multi-body regimes have emerged to support searches for Earth-like planets in other solar systems. The L2 Sun-Earth libration point region has been a popular destination in creating an architecture for astronomical missions. It is a relatively cold environment, far from the disturbances of the Sun and, therefore, ideal for astronomical instruments. However, controlling multiple spacecraft in a multi-body environment is challenging and a good understanding of the natural dynamics in this regime is essential. The current investigation explores the dynamical environment near the L2 Sun-Earth libration point to aid in the control of formations of spacecraft. By exploiting the natural dynamics in the circular restricted three-body model (CR3BP), natural regions are determined that are particularly suitable for maintaining formations of spacecraft. The natural dynamics at small distances from a given reference trajectory are initially investigated for the placement of small formations of spacecraft. Some regions with low relative drift represent suitable locations to maintain small formations and are derived analytically using variational equations. Spacecraft located in such regions avoid large variations in their mutual distances while maintaining the orientation of the formation. These regions represent quadric surfaces, and the type of quadric surfaces, either ellipsoids or elliptic cylinders, depends on the eigenstructure reflecting the phase space along the given reference trajectory. The natural flow at large distances from a given reference trajectory is explored next to characterize regions that are suitable to maintain large formations, i.e., when the mutual distances between the spacecraft reaches tens of thousands of kilometers. Spheres of points at various locations along the reference orbit are constructed to classify the space, and regions of low natural drift on the spheres are numerically identified when the distance between two vehicles is large. These low drift regions are examined in detail, and a correspondance with the quadric surfaces that are derived for small formations is established. In particular, the orientation of these low drift zones along a given reference orbit are investigated as some parameters vary, such as the size of the formation as well as the reference orbit. Using the low natural drift regions, control strategies are then developed for large formations. Traditional controllers, such as impulsive maneuvers and linear quadratic regulators (LQR), are employed to quantify the level of control that is required to maintain large formations along specific directions in the CR3BP. Designs of new controllers are also investigated to produce some set of desired relative motions between two spacecraft placed at large mutual distances. In a potential formation option investigated in this analysis, a deputy vehicle maintains a fixed circular motion in a plane relative to a chief spacecraft moving along its reference trajectory. Finally, the effectiveness of using the low natural drift regions as derived for large formations is tested for the New Worlds Observer mission concept. This scenario involves a large telescope-occulter formation for star observations, to detect and characterize habitable terrestrial exoplanets. The low drift zones are employed to reduce the control effort to maintain a large telescope-occulter formation during the observation of inertially-fixed target stars. In particular, the occulter is maintained via a linear quadratic regulator during star observations. Given a set of inertially-fixed target stars, an automatic star sequence design process is proposed with observation and reconfiguration phases using the low drift regions. This design creates star sequences that lead to relatively small overall maneuver costs for this particular mission concept.

  20. Design and Outcomes of a "Mothers In Motion" Behavioral Intervention Pilot Study

    ERIC Educational Resources Information Center

    Chang, Mei-Wei; Nitzke, Susan; Brown, Roger

    2010-01-01

    Objective: This paper describes the design and findings of a pilot "Mothers In Motion" (P-"MIM") program. Design: A randomized controlled trial that collected data via telephone interviews and finger stick at 3 time points: baseline and 2 and 8 months post-intervention. Setting: Three Special Supplemental Nutrition Program for…

  1. Crustal dynamics project observing plan for highly mobile systems 1981 - 1986

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1980-01-01

    Measurement of crustal motion in the western United States and other tectonically active regions makes use of fixed, movable and highly mobile satellite laser ranging and very long baseline interferometry systems. Measurement of the rotational dynamics of the Earth as well as regional deformation and plate motion are discussed.

  2. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

    PubMed

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly

    2017-01-01

    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The use of EEG to measure cerebral changes during computer-based motion-sickness-inducing tasks

    NASA Astrophysics Data System (ADS)

    Strychacz, Christopher; Viirre, Erik; Wing, Shawn

    2005-05-01

    Motion sickness (MS) is a stressor commonly attributed with causing serious navigational and performance errors. The distinct nature of MS suggests this state may have distinct neural markers distinguishable from other states known to affect performance (e.g., stress, fatigue, sleep deprivation, high workload). This pilot study used new high-resolution electro-encephalograph (EEG) technologies to identify distinct neuronal activation changes that occur during MS. Brain EEG activity was monitored while subjects performed a ball-tracking task and viewed stimuli on a projection screen intended to induce motion sickness/spatial disorientation. Results show the presence of EEG spectral changes in all subjects who developed motion sickness when compared to baseline levels. These changes included: 1) low frequency (1 to 10 Hz) changes that may reflect oculomotor movements rather than intra-cerebral sources; 2) increased spectral power across all frequencies (attributable to increased scalp conductivity related to sweating), 3) local increases of power spectra in the 20-50 Hz range (likely attributable to external muscles on the skull) and; 4) a central posterior (occipital) independent component that shows suppression of a 20 Hz peak in the MS condition when compared to baseline. Further research is necessary to refine neural markers, characterize their origin and physiology, to distinguish between motion sickness and other states and to enable markers to be used for operator state monitoring and the designing of interventions for motion sickness.

  4. Inertial Orientation Trackers with Drift Compensation

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M.

    2008-01-01

    A class of inertial-sensor systems with drift compensation has been invented for use in measuring the orientations of human heads (and perhaps other, similarly sized objects). These systems can be designed to overcome some of the limitations of prior orientation-measuring systems that are based, variously, on magnetic, optical, mechanical-linkage, and acoustical principles. The orientation signals generated by the systems of this invention could be used for diverse purposes, including controlling head-orientation-dependent virtual reality visual displays or enabling persons whose limbs are paralyzed to control machinery by means of head motions. The inventive concept admits to variations too numerous to describe here, making it necessary to limit this description to a typical system, the selected aspects of which are illustrated in the figure. A set of sensors is mounted on a bracket on a band or a cap that gently but firmly grips the wearer s head to be tracked. Among the sensors are three drift-sensitive rotationrate sensors (e.g., integrated-circuit angular- rate-measuring gyroscopes), which put out DC voltages nominally proportional to the rates of rotation about their sensory axes. These sensors are mounted in mutually orthogonal orientations for measuring rates of rotation about the roll, pitch, and yaw axes of the wearer s head. The outputs of these rate sensors are conditioned and digitized, and the resulting data are fed to an integrator module implemented in software in a digital computer. In the integrator module, the angular-rate signals are jointly integrated by any of several established methods to obtain a set of angles that represent approximately the orientation of the head in an external, inertial coordinate system. Because some drift is always present as a component of an angular position computed by integrating the outputs of angular-rate sensors, the orientation signal is processed further in a drift-compensator software module.

  5. Plate tectonics from VLBI and SLR global data

    NASA Technical Reports Server (NTRS)

    Harrison, Christopher G. A.; Robaudo, Stefano

    1992-01-01

    This study is based on data derived from fifteen years of observations of the SLR (side-looking radar) network and six years of the VLBI (very long baseline interferometry) network. In order to use all available information VLBI and SLR global data sets were combined in a least squares fashion to calculate station horizontal velocities. All significant data pertaining to a single site contribute to the station horizontal motion. The only constraint on the solution is that no vertical motion is allowed. This restriction does not greatly affect the precision of the overall solution given the fact that the expected vertical motion for most stations, even those experiencing post glacial uplift, is well under 1 cm/yr. Since the average baseline is under 4,000 km, only a small fraction of the station vertical velocity is translated into baseline rates so that the error introduced in the solution by restricting up-down station movement is minimal. As a reference, station velocities were then compared to the ones predicted by the NUVEL-1 geological model of DeMets et al. (1990). The focus of the study is on analyzing these discrepancies for global plate tectonics as well as regional tectonic settings. The method used also allows us not only to derive horizontal motion for individual stations but also to calculate Euler vectors for those plates that have enough stations located on the stable interior like North America, Pacific, Eurasia, and Australia.

  6. Beam Stability R&D for the APS MBA Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sereno, Nicholas S.; Arnold, Ned D.; Bui, Hanh D.

    2015-01-01

    Beam diagnostics required for the APS Multi-bend acromat (MBA) are driven by ambitious beam stability requirements. The major AC stability challenge is to correct rms beam motion to 10% the rms beam size at the insertion device source points from0.01 to 1000 Hz. The vertical plane represents the biggest challenge forAC stability, which is required to be 400 nm rms for a 4-micron vertical beam size. In addition to AC stability, long-term drift over a period of seven days is required to be 1 micron or less. Major diagnostics R&D components include improved rf beam position processing using commercially availablemore » FPGA-based BPM processors, new X-ray beam position monitors based on hard X-ray fluorescence from copper and Compton scattering off diamond, mechanical motion sensing to detect and correct long-term vacuum chamber drift, a new feedback system featuring a tenfold increase in sampling rate, and a several-fold increase in the number of fast correctors and BPMs in the feedback algorithm. Feedback system development represents a major effort, and we are pursuing development of a novel algorithm that integrates orbit correction for both slow and fast correctors down to DC simultaneously. Finally, a new data acquisition system (DAQ) is being developed to simultaneously acquire streaming data from all diagnostics as well as the feedback processors for commissioning and fault diagnosis. Results of studies and the design effort are reported.« less

  7. Early return to baseline range of motion and strength after anterior shoulder instability surgery: a Multicenter Orthopaedic Outcomes Network (MOON) shoulder group cohort study.

    PubMed

    Buckwalter V, Joseph A; Wolf, Brian R; Glass, Natalie; Bollier, Matt; Kuhn, John E; Hettrich, Carolyn M

    2018-03-23

    Patients often return to higher-level activities and sports at 4 to 8 months after anterior shoulder stabilization procedures. It is unknown what percentage of patients have regained normal function at this time frame and what factors predict residual deficits, range of motion (ROM), and strength after anterior shoulder instability surgery. Ten participating sites throughout the United States enrolled patients in a prospective cohort study including primary, revision, arthroscopic, and open anterior stabilization procedures. Baseline demographic data and patient outcomes questionnaires were collected with initial physical examination, treatment, surgical findings, and surgical repair details. At the 6-month follow-up visit, ROM and strength measurements were collected and compared with preoperative measurements. There were 348 patients identified who underwent surgical treatment for anterior shoulder instability. Of these, 259 patients (74.0%) returned to baseline, and 89 (26.0%) did not return to baseline shoulder ROM (≥20° loss of ROM) or strength. A higher Beighton score (P = .01) and number of dislocations (P < .01) were associated with failure to regain baseline ROM and strength at early follow-up. No surgical variables were found to influence return to baseline function, including open vs. arthroscopic surgery, primary vs. revision surgery, and number of suture anchors. By 4 to 8 months postoperatively, 76% of patients return to baseline ROM, 98% return to baseline strength, and 74% return to both baseline ROM and strength. An increased number of dislocations and generalized joint laxity were associated with failure to return to baseline ROM and strength at early follow-up after anterior shoulder instability surgery. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback

    NASA Astrophysics Data System (ADS)

    Gurevich, Svetlana V.

    2013-05-01

    We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.

  9. Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2015-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.

  10. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D.

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  11. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  12. Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect

    NASA Technical Reports Server (NTRS)

    Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)

    2001-01-01

    The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.

  13. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serpa, Marco; University Clinic for Radiotherapy and Radio-Oncology, Landeskrankenhaus Salzburg, Paracelsus Medical University Clinics, 5020 Salzburg; Department of Physics and Astronomy, University of Canterbury, Christchurch 8140

    2014-03-15

    Purpose: To maximize the benefits of respiratory gated radiotherapy (RGRT) of lung tumors real-time verification of the tumor position is required. This work investigates the feasibility of markerless tracking of lung tumors during beam-on time in electronic portal imaging device (EPID) images of the MV therapeutic beam. Methods: EPID movies were acquired at ∼2 fps for seven lung cancer patients with tumor peak-to-peak motion ranges between 7.8 and 17.9 mm (mean: 13.7 mm) undergoing stereotactic body radiotherapy. The external breathing motion of the abdomen was synchronously measured. Both datasets were retrospectively analyzed inPortalTrack, an in-house developed tracking software. The authorsmore » define a three-step procedure to run the simulations: (1) gating window definition, (2) gated-beam delivery simulation, and (3) tumor tracking. First, an amplitude threshold level was set on the external signal, defining the onset of beam-on/-off signals. This information was then mapped onto a sequence of EPID images to generate stamps of beam-on/-hold periods throughout the EPID movies in PortalTrack, by obscuring the frames corresponding to beam-off times. Last, tumor motion in the superior-inferior direction was determined on portal images by the tracking algorithm during beam-on time. The residual motion inside the gating window as well as target coverage (TC) and the marginal target displacement (MTD) were used as measures to quantify tumor position variability. Results: Tumor position monitoring and estimation from beam's-eye-view images during RGRT was possible in 67% of the analyzed beams. For a reference gating window of 5 mm, deviations ranging from 2% to 86% (35% on average) were recorded between the reference and measured residual motion. TC (range: 62%–93%; mean: 77%) losses were correlated with false positives incidence rates resulting mostly from intra-/inter-beam baseline drifts, as well as sudden cycle-to-cycle fluctuations in exhale positions. Both phenomena can lead to considerable deviations (with MTD values up to a maximum of 7.8 mm) from the intended tumor position, and in turn may result in a marginal miss. The difference between tumor traces determined within the gating window against ground truth trajectory maps was 1.1 ± 0.7 mm on average (range: 0.4–2.3 mm). Conclusions: In this retrospective analysis of motion data, it is demonstrated that the system is capable of determining tumor positions in the plane perpendicular to the beam direction without the aid of fiducial markers, and may hence be suitable as an online verification tool in RGRT. It may be possible to use the tracking information to enable on-the-fly corrections to intra-/inter-beam variations by adapting the gating window by means of a robotic couch.« less

  14. 76 FR 53426 - Moss Bluff Hub, LLC; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... desiring to participate in this rate proceeding must file a motion to intervene or to protest this filing... action to be taken, but will not serve to make protestants parties to the proceeding. Any person wishing to become a party must file a notice of intervention or motion to intervene, as appropriate. Such...

  15. Probabilistic seismic demand analysis using advanced ground motion intensity measures

    USGS Publications Warehouse

    Tothong, P.; Luco, N.

    2007-01-01

    One of the objectives in performance-based earthquake engineering is to quantify the seismic reliability of a structure at a site. For that purpose, probabilistic seismic demand analysis (PSDA) is used as a tool to estimate the mean annual frequency of exceeding a specified value of a structural demand parameter (e.g. interstorey drift). This paper compares and contrasts the use, in PSDA, of certain advanced scalar versus vector and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a well-chosen IM is that more accurate evaluations of seismic performance are achieved without the need to perform detailed ground motion record selection for the nonlinear dynamic structural analyses involved in PSDA (e.g. record selection with respect to seismic parameters such as earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural demands that are dominated by a first mode of vibration, using inelastic spectral displacement (Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and the vector IM consisting of Sa and epsilon (??). This paper demonstrates that this is true for ordinary and for near-source pulse-like earthquake records. The latter ground motions cannot be adequately characterized by either Sa alone or the vector of Sa and ??. For structural demands with significant higher-mode contributions (under either of the two types of ground motions), even Sdi (alone) is not sufficient, so an advanced scalar IM that additionally incorporates higher modes is used.

  16. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    NASA Astrophysics Data System (ADS)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  17. Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood-brain barrier permeability using dynamic contrast-enhanced MRI.

    PubMed

    Barnes, Samuel R; Ng, Thomas S C; Montagne, Axel; Law, Meng; Zlokovic, Berislav V; Jacobs, Russell E

    2016-05-01

    To determine optimal parameters for acquisition and processing of dynamic contrast-enhanced MRI (DCE-MRI) to detect small changes in near normal low blood-brain barrier (BBB) permeability. Using a contrast-to-noise ratio metric (K-CNR) for Ktrans precision and accuracy, the effects of kinetic model selection, scan duration, temporal resolution, signal drift, and length of baseline on the estimation of low permeability values was evaluated with simulations. The Patlak model was shown to give the highest K-CNR at low Ktrans . The Ktrans transition point, above which other models yielded superior results, was highly dependent on scan duration and tissue extravascular extracellular volume fraction (ve ). The highest K-CNR for low Ktrans was obtained when Patlak model analysis was combined with long scan times (10-30 min), modest temporal resolution (<60 s/image), and long baseline scans (1-4 min). Signal drift as low as 3% was shown to affect the accuracy of Ktrans estimation with Patlak analysis. DCE acquisition and modeling parameters are interdependent and should be optimized together for the tissue being imaged. Appropriately optimized protocols can detect even the subtlest changes in BBB integrity and may be used to probe the earliest changes in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. © 2015 Wiley Periodicals, Inc.

  18. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  19. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: Detectability and effectiveness of a flexible monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, Hidenobu; Kitamura, Nozomi; Ito, Yasushi

    2011-07-15

    Purpose: In respiratory-gated radiation therapy, a baseline shift decreases the accuracy of target coverage and organs at risk (OAR) sparing. The effectiveness of audio-feedback and audio-visual feedback in correcting the baseline shift in the breathing pattern of the patient has been demonstrated previously. However, the baseline shift derived from the intrafraction motion of the patient's body cannot be corrected by these methods. In the present study, the authors designed and developed a simple and flexible system. Methods: The system consisted of a web camera and a computer running our in-house software. The in-house software was adapted to template matching andmore » also to no preimage processing. The system was capable of monitoring the baseline shift in the intrafraction motion of the patient's body. Another marker box was used to monitor the baseline shift due to the flexible setups required of a marker box for gated signals. The system accuracy was evaluated by employing a respiratory motion phantom and was found to be within AAPM Task Group 142 tolerance (positional accuracy <2 mm and temporal accuracy <100 ms) for respiratory-gated radiation therapy. Additionally, the effectiveness of this flexible and independent system in gated treatment was investigated in healthy volunteers, in terms of the results from the differences in the baseline shift detectable between the marker positions, which the authors evaluated statistically. Results: The movement of the marker on the sternum [1.599 {+-} 0.622 mm (1 SD)] was substantially decreased as compared with the abdomen [6.547 {+-} 0.962 mm (1 SD)]. Additionally, in all of the volunteers, the baseline shifts for the sternum [-0.136 {+-} 0.868 (2 SD)] were in better agreement with the nominal baseline shifts than was the case for the abdomen [-0.722 {+-} 1.56 mm (2 SD)]. The baseline shifts could be accurately measured and detected using the monitoring system, which could acquire the movement of the marker on the sternum. The baseline shift-monitoring system with the displacement-based methods for highly accurate respiratory-gated treatments should be used to make most of the displacement-based gating methods. Conclusions: The advent of intensity modulated radiation therapy and volumetric modulated radiation therapy facilitates margin reduction for the planning target volumes and the OARs, but highly accurate irradiation is needed to achieve target coverage and OAR sparing with a small margin. The baseline shifts can affect treatment not only with the respiratory gating system but also without the system. Our system can manage the baseline shift and also enables treatment irradiation to be undertaken with high accuracy.« less

  20. An appraisal of the value of vitamin B12 in the prevention of motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Lacey, C. L.; Homick, J. L.

    1983-01-01

    It has been suggested that vitamin B12 given by intramuscular injection can significantly reduce the occurrence of motion sickness in susceptible individuals (Banks, 1980). Since it is known that B12 influences the metabolism of histidine and choline, dietary precursors to neurotransmitters with established roles in motion sickness, an experimental evaluation has been undertaken of the efficacy of B12 in the prevention of motion sickness induced by controlled coriolis simulation. Subjects executed standardized head movements at successively higher rpm until a malaise III endpoint was reached. Following two baseline tests with this motion stressor, subjects received a B12 injection, a second injection two weeks later, and a final motion sickness test three weeks later. No significant differences in the susceptibility to motion sickness were noted after B12.

  1. A drift line bias estimator: ARMA-based filter or calibration method, and its application in BDS/GPS-based attitude determination

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Yanqing, Hou; Jie, Wu

    2016-12-01

    The multi-antenna synchronized receiver (using a common clock) is widely applied in GNSS-based attitude determination (AD) or terrain deformations monitoring, and many other applications, since the high-accuracy single-differenced carrier phase can be used to improve the positioning or AD accuracy. Thus, the line bias (LB) parameter (fractional bias isolating) should be calibrated in the single-differenced phase equations. In the past decades, all researchers estimated the LB as a constant parameter in advance and compensated it in real time. However, the constant LB assumption is inappropriate in practical applications because of the physical length and permittivity changes of the cables, caused by the environmental temperature variation and the instability of receiver-self inner circuit transmitting delay. Considering the LB drift (or colored LB) in practical circumstances, this paper initiates a real-time estimator using auto regressive moving average-based (ARMA) prediction/whitening filter model or Moving average-based (MA) constant calibration model. In the ARMA-based filter model, four cases namely AR(1), ARMA(1, 1), AR(2) and ARMA(2, 1) are applied for the LB prediction. The real-time relative positioning model using the ARMA-based predicting LB is derived and it is theoretically proved that the positioning accuracy is better than the traditional double difference carrier phase (DDCP) model. The drifting LB is defined with a phase temperature changing rate integral function, which is a random walk process if the phase temperature changing rate is white noise, and is validated by the analysis of the AR model coefficient. The auto covariance function shows that the LB is indeed varying in time and estimating it as a constant is not safe, which is also demonstrated by the analysis on LB variation of each visible satellite during a zero and short baseline BDS/GPS experiment. Compared to the DDCP approach, in the zero-baseline experiment, the LB constant calibration (LBCC) and MA approaches improved the positioning accuracy of the vertical component, while slightly degrading the accuracy of the horizontal components. The ARMA(1, 0) model, however, improved the positioning accuracy of all three components, with 40 and 50 % improvement of the vertical component for BDS and GPS, respectively. In the short baseline experiment, compared to the DDCP approach, the LBCC approach yielded bad positioning solutions and degraded the AD accuracy; both MA and ARMA-based filter approaches improved the AD accuracy. Moreover, the ARMA(1, 0) and ARMA(1, 1) models have relatively better performance, improving to 55 % and 48 % the elevation angle in ARMA(1, 1) and MA model for GPS, respectively. Furthermore, the drifting LB variation is found to be continuous and slowly cumulative; the variation magnitudes in the unit of length are almost identical on different frequency carrier phases, so the LB variation does not show obvious correlation between different frequencies. Consequently, the wide-lane LB in the unit of cycle is very stable, while the narrow-lane LB varies largely in time. This reasoning probably also explains the phenomenon that the wide-lane LB originating in the satellites is stable, while the narrow-lane LB varies. The results of ARMA-based filters are better than the MA model, which probably implies that the modeling for drifting LB can further improve the precise point positioning accuracy.

  2. Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot

    PubMed Central

    Maus, Gerrit W.; Whitney, David

    2016-01-01

    We usually do not notice the blind spot, a receptor-free region on the retina. Stimuli extending through the blind spot appear filled in. However, if an object does not reach through but ends in the blind spot, it is perceived as “cut off” at the boundary. Here we show that even when there is no corresponding stimulation at opposing edges of the blind spot, well known motion-induced position shifts also extend into the blind spot and elicit a dynamic filling-in process that allows spatial structure to be extrapolated into the blind spot. We presented observers with sinusoidal gratings that drifted into or out of the blind spot, or flickered in counterphase. Gratings moving into the blind spot were perceived to be longer than those moving out of the blind spot or flickering, revealing motion-dependent filling-in. Further, observers could perceive more of a grating’s spatial structure inside the blind spot than would be predicted from simple filling-in of luminance information from the blind spot edge. This is evidence for a dynamic filling-in process that uses spatiotemporal information from the motion system to extrapolate visual percepts into the scotoma of the blind spot. Our findings also provide further support for the notion that an explicit spatial shift of topographic representations contributes to motion-induced position illusions. PMID:27100795

  3. Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot.

    PubMed

    Maus, Gerrit W; Whitney, David

    2016-01-01

    We usually do not notice the blind spot, a receptor-free region on the retina. Stimuli extending through the blind spot appear filled in. However, if an object does not reach through but ends in the blind spot, it is perceived as "cut off" at the boundary. Here we show that even when there is no corresponding stimulation at opposing edges of the blind spot, well known motion-induced position shifts also extend into the blind spot and elicit a dynamic filling-in process that allows spatial structure to be extrapolated into the blind spot. We presented observers with sinusoidal gratings that drifted into or out of the blind spot, or flickered in counterphase. Gratings moving into the blind spot were perceived to be longer than those moving out of the blind spot or flickering, revealing motion-dependent filling-in. Further, observers could perceive more of a grating's spatial structure inside the blind spot than would be predicted from simple filling-in of luminance information from the blind spot edge. This is evidence for a dynamic filling-in process that uses spatiotemporal information from the motion system to extrapolate visual percepts into the scotoma of the blind spot. Our findings also provide further support for the notion that an explicit spatial shift of topographic representations contributes to motion-induced position illusions.

  4. Multi-field inflation with a random potential

    NASA Astrophysics Data System (ADS)

    Tye, S.-H. Henry; Xu, Jiajun; Zhang, Yang

    2009-04-01

    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian-like motion with a drift in the D-dimensional field space, allowing entropic perturbation modes to continuously and randomly feed into the adiabatic mode. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario where the stochastic scatterings are frequent but mild, the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, in which the coarse-grained motion of the inflaton is significantly slowed down by the scatterings, leads to rich phenomenologies. The power spectrum exhibits primordial fluctuations on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and have been smoothed out by binning of data points. With more data coming in the future, we expect these features can be detected or falsified. On the other hand the tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced by the large ratio of the Brownian-like motion speed over the drift speed. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, and is negligible in the weakly random scenario. However, non-Gaussianity can possibly be enhanced by resonant effects in the strongly random scenario or arise from the entropic perturbations during the onset of (p)reheating if the background inflaton trajectory exhibits particular properties. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.

  5. A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion

    PubMed Central

    Landy, Michael S.

    2016-01-01

    Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. SIGNIFICANCE STATEMENT Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is consistent with the behavioral data. PMID:27807167

  6. A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion.

    PubMed

    Sun, Peng; Landy, Michael S

    2016-11-02

    Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with duration that depends on the signal-to-noise ratio achieved by the first stage. Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrimination decision. This model is consistent with the behavioral data. Copyright © 2016 the authors 0270-6474/16/3611259-16$15.00/0.

  7. Maser mechanism of optical pulsations from anomalous X-ray pulsar 4U 0142+61

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Zhang, S. N.

    2004-11-01

    Based on the work of Luo & Melrose from the early 1990s, a maser curvature emission mechanism in the presence of curvature drift is used to explain the optical pulsations from anomalous X-ray pulsars (AXPs). The model comprises a rotating neutron star with a strong surface magnetic field, i.e. a magnetar. Assuming the space-charge-limited flow acceleration mechanism, in which the strongly magnetized neutron star induces strong electric fields that pull the charges from its surface and flow along the open field lines, the neutron star generates a dense flow of electrons and positrons (relativistic pair plasma) by either two-photon pair production or one-photon pair creation resulting from inverse Compton scattering of the thermal photons above the pulsar polar cap (PC). The motion of the pair plasma is essentially one-dimensional along the field lines. We propose that optical pulsations from AXPs are generated by a curvature-drift-induced maser developing in the PC of magnetars. Pair plasma is considered as an active medium that can amplify its normal modes. The curvature drift, which is energy-dependent, is another essential ingredient in allowing negative absorption (maser action) to occur. For the source AXP 4U 0142+61, we find that the optical pulsation triggered by curvature-drift maser radiation occurs at the radial distance R(νM) ~ 4.75 × 109 cm to the neutron star. The corresponding curvature maser frequency is about νM~ 1.39 × 1014 Hz, and the pulse component from the maser amplification is about 27 per cent. The result is consistent with the observation of the optical pulsations from AXP 4U 0142+61.

  8. Near-Fault Strong Ground Motions during the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.

    2016-12-01

    The 2016 Kumamoto mainshock (Mw7.0) produced a surface ruptured fault of about 20km long with maximum 2m offset, and identified as a surface ruptured event. Two strong motion records were observed near the surface ruptured fault at Mashiki town hall and Nishihara village hall. We investigated characteristics of those strong ground motions. As the acceleration records consisted of the baseline errors caused by nonzero initial acceleration and tilting of the accelerograph, we carefully removed the baseline errors (c.f. Chiu, 2001, Boore and Bommer, 2005) so as to obtain velocity and displacements. The observed permanent displacements were about 1.2m in horizontal direction and about 0.7m sinking in vertical direction at Mashiki town hall, and about 1.7m and 1.8m, respectively, at Nishihara village hall. Those permanent displacements almost coincide to results by GNSS and InSAR analysis (e.g., GSI, 2016). It takes about only 3 s to reach the permanent displacement. Somerville (2003) pointed out that ground motions from earthquakes producing large surface ruptures appeared to have systematically weaker ground motions than ground motions from earthquakes whose rupture were confined to the subsurface using the Ground Motion Prediction Equation (GMPE) for response spectra (Abrahamson and Silva, 1997). We calculated the response spectra of those records, compared them to the GMPE with the same manner and found two records were systematically larger than the expected from the GMPE in the period range of 0.3 s to 5 s. We need to re-consider the working hypothesis that the near-fault ground motions are weaker and to separate the near-fault and site effects on ground motions. Strong motions in the longer period range would be mainly caused by the near-fault (near-field term) effect.We used the acceleration data of the Kumamoto seismic intensity information network, provided by JMA.

  9. Biased Brownian motion in narrow channels with asymmetry and anisotropy

    NASA Astrophysics Data System (ADS)

    To, Kiwing; Peng, Zheng

    2016-11-01

    We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments of tilted channel, is found to be consistent to those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energies transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.

  10. Biased Brownian motion in narrow channels with asymmetry and anisotropy

    NASA Astrophysics Data System (ADS)

    Peng, Zheng; To, Kiwing

    2016-08-01

    We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments on a tilted channel, is found to be consistent with those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energy transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.

  11. Probabilistic seismic hazard analyses for ground motions and fault displacement at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stepp, J.C.; Wong, I.; Whitney, J.; Quittmeyer, R.; Abrahamson, N.; Toro, G.; Young, S.R.; Coppersmith, K.; Savy, J.; Sullivan, T.

    2001-01-01

    Probabilistic seismic hazard analyses were conducted to estimate both ground motion and fault displacement hazards at the potential geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The study is believed to be the largest and most comprehensive analyses ever conducted for ground-shaking hazard and is a first-of-a-kind assessment of probabilistic fault displacement hazard. The major emphasis of the study was on the quantification of epistemic uncertainty. Six teams of three experts performed seismic source and fault displacement evaluations, and seven individual experts provided ground motion evaluations. State-of-the-practice expert elicitation processes involving structured workshops, consensus identification of parameters and issues to be evaluated, common sharing of data and information, and open exchanges about the basis for preliminary interpretations were implemented. Ground-shaking hazard was computed for a hypothetical rock outcrop at -300 m, the depth of the potential waste emplacement drifts, at the designated design annual exceedance probabilities of 10-3 and 10-4. The fault displacement hazard was calculated at the design annual exceedance probabilities of 10-4 and 10-5.

  12. Hydronium ion motion in nanometer 3-methyl-pentane films

    NASA Astrophysics Data System (ADS)

    Bell, Richard C.; Wu, Kai; Iedema, Martin J.; Cowin, James P.

    2007-07-01

    An ion soft-landing approach was applied to study the motion of hydronium (D3O+) and cesium (Cs+) ions from 84to104K in glassy 3-methyl-pentane (3MP) films vapor deposited on Pt(111). Both ions were found to have very similar mobilities in 3MP. The span of ion mobilities probed is from ˜10-18to˜10-13m2V-1s-1. Ion transport in these films was studied as a function of film thickness and electric field strength. The drift velocity was found to be linear with applied field below about 2×108V/m and deviated from linearity above this. To a large extent, D3O+ and Cs+ motion in 3MP was well predicted by a simple continuum-based ion mobility model in films from 25 to 20 000 ML thick (including pronounced perturbations 7 ML from both the vacuum and Pt interfaces). The mobility varied with temperature more slowly than predicted by Stokes' law, which may be due to extended inhomogeneous structures in the 3MP near its glass transition at 77K.

  13. The Gaia–WISE Extragalactic Astrometric Catalog

    NASA Astrophysics Data System (ADS)

    Paine, Jennie; Darling, Jeremy; Truebenbach, Alexandra

    2018-06-01

    The Gaia mission has detected a large number of active galactic nuclei (AGNs) and galaxies, but these objects must be identified among the thousandfold more numerous stars. Extant astrometric AGN catalogs do not have the uniform sky coverage required to detect and characterize the all-sky, low-multipole proper motion signals produced by the barycenter motion, gravitational waves, and cosmological effects. To remedy this, we present an all-sky sample of 567,721 AGNs in Gaia Data Release 1, selected using WISE two-color criteria. The catalog has fairly uniform sky coverage beyond the Galactic plane, with a mean density of 12.8 AGNs per square degree. The objects have magnitudes ranging from G = 8.8 down to Gaia’s magnitude limit, G = 20.7. The catalog is approximately 50% complete but suffers from low stellar contamination, roughly 0.2%. We predict that the end-of-mission Gaia proper motions for this catalog will enable detection of the secular aberration drift to high significance (23σ) and will place an upper limit on the anisotropy of the Hubble expansion of about 2%.

  14. Ionic-Electronic Ambipolar Transport in Metal Halide Perovskites: Can Electronic Conductivity Limit Ionic Diffusion?

    PubMed

    Kerner, Ross A; Rand, Barry P

    2018-01-04

    Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.

  15. Vision sensor and dual MEMS gyroscope integrated system for attitude determination on moving base

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Huang, Lu

    2018-01-01

    To determine the relative attitude between the objects on a moving base and the base reference system by a MEMS (Micro-Electro-Mechanical Systems) gyroscope, the motion information of the base is redundant, which must be removed from the gyroscope. Our strategy is to add an auxiliary gyroscope attached to the reference system. The master gyroscope is to sense the total motion, and the auxiliary gyroscope is to sense the motion of the moving base. By a generalized difference method, relative attitude in a non-inertial frame can be determined by dual gyroscopes. With the vision sensor suppressing accumulative drift of the MEMS gyroscope, the vision and dual MEMS gyroscope integration system is formed. Coordinate system definitions and spatial transform are executed in order to fuse inertial and visual data from different coordinate systems together. And a nonlinear filter algorithm, Cubature Kalman filter, is used to fuse slow visual data and fast inertial data together. A practical experimental setup is built up and used to validate feasibility and effectiveness of our proposed attitude determination system in the non-inertial frame on the moving base.

  16. Comments on baseline correction of digital strong-motion data: Examples from the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Boore, D.M.; Stephens, C.D.; Joyner, W.B.

    2002-01-01

    Residual displacements for large earthquakes can sometimes be determined from recordings on modern digital instruments, but baseline offsets of unknown origin make it difficult in many cases to do so. To recover the residual displacement, we suggest tailoring a correction scheme by studying the character of the velocity obtained by integration of zeroth-order-corrected acceleration and then seeing if the residual displacements are stable when the various parameters in the particular correction scheme are varied. For many seismological and engineering purposes, however, the residual displacement are of lesser importance than ground motions at periods less than about 20 sec. These ground motions are often recoverable with simple baseline correction and low-cut filtering. In this largely empirical study, we illustrate the consequences of various correction schemes, drawing primarily from digital recordings of the 1999 Hector Mine, California, earthquake. We show that with simple processing the displacement waveforms for this event are very similar for stations separated by as much as 20 km. We also show that a strong pulse on the transverse component was radiated from the Hector Mine earthquake and propagated with little distortion to distances exceeding 170 km; this pulse leads to large response spectral amplitudes around 10 sec.

  17. Example-based human motion denoising.

    PubMed

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  18. On the Spatial Power Spectrum of the E x B Gradient Drift Instability in Ionospheric Plasma Clouds.

    DTIC Science & Technology

    1981-04-14

    Perkins et al., 1973]. In reality, an artificially injected plasma cloud will, initially, be two- dimensional in the plane perpendicular to the magnetic...Motion of Artificial Ion Clouds in the Upper Atmosphere, Planet. Space Sci., 15, 1, 1967. Kelley, M.C., K.D. Baker, and J.C. Ulwick, Late Time Barium...42960 COMiANDER WORLOA’AY POS’AL CENTER J.S. ARMY MISSILE INTELLIGENCE AGENCY "’OS ANGELES, CA. 90009 REDSTONE ARSENAL, AL 35809 OICY ATTN CODE 52 0ICY

  19. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  20. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    2015-12-10

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

Top