Science.gov

Sample records for motion control applications

  1. Controlled motion: an enabling technology for photonics applications

    NASA Astrophysics Data System (ADS)

    Powers, Galen D.; Fasick, John C.; Xu, Qin

    2002-07-01

    Assembly and measurement of photonic subsystems or integrated optical components is transitioning from manual to semi-automated and fully automated configurations. Controlled motion, which allows movement in the 10-millimeter range with resolution of nanometers, is a critical requirement for successful assembly or functional verification of an assembly. Application specific requirements may include holding position at sub-micrometer levels for hours, repeatability of 0.1 percent over 100 micrometers to 0.005 percent over 10 millimeters, and simple controls for systems as basic as 2 degrees of freedom to multiple robots with 6 degrees of freedom each. New clamping technology, in an INCHWORM(brand motor, utilizes a combination of MEMS fabricated features and proprietary clamp interface materials to increase the clamp friction. This allows much higher push forces to be generated or the design freedom to trade force for size. Power versus Force curves are presented. Resolution, velocity, stiffness, and simple control are maintained in a much smaller package. Single mode fiber optic devices have active areas in the 5-10 micrometer range. Assembly needs are going smaller. A relatively powerful motor with dimensional resolution and time stability that can be incorporated into ever smaller robots will be needed to meet future photonic automation requirements.

  2. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  3. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework.

    PubMed

    Kesner, Adam L; Schleyer, Paul J; Büther, Florian; Walter, Martin A; Schäfers, Klaus P; Koo, Phillip J

    2014-12-01

    Positron emission tomography (PET) is increasingly used for the detection, characterization, and follow-up of tumors located in the thorax. However, patient respiratory motion presents a unique limitation that hinders the application of high-resolution PET technology for this type of imaging. Efforts to transcend this limitation have been underway for more than a decade, yet PET remains for practical considerations a modality vulnerable to motion-induced image degradation. Respiratory motion control is not employed in routine clinical operations. In this article, we take an opportunity to highlight some of the recent advancements in data-driven motion control strategies and how they may form an underpinning for what we are presenting as a fully automated data-driven motion control framework. This framework represents an alternative direction for future endeavors in motion control and can conceptually connect individual focused studies with a strategy for addressing big picture challenges and goals. PMID:26501450

  4. Two non-contact photoelectric angular position sensors for motion control applications

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Xiaolu; Bo, Jiang

    2013-01-01

    The angular position sensor can be integrated into most motion control applications where precision monitoring of angular position is required. In order to eliminate mechanical wear of present angular position sensors for determining the rotation orientation, two new non-contact methods utilizing photoelectric switches are proposed and the corresponding sensors are established. One sensor comprises a gravitational ball, one or more light sources and a circular array of photodetectors, and realizes angular position measurement by setting a block between the light source and the corresponding photodetector which is rotated to the lowest point. Another sensor consists of transmitter-receiver sets and an optical encoder. Different from traditional rotary encoder, the transmitter-receiver sets are arranged around the circumference of rotation, and the optical encoder is only one-turn encoder. The concrete configurations of the sensors are described in detail and typical prototypes are illustrated. Both the angular position sensors are non-contact, compact, and low-cost. They can resist harsh environmental conditions such as vibration, excessive ambient temperature, dirt, moisture and dew, so it is especially well-suited for motion control applications.

  5. Viscoelastic model based force control for soft tissue interaction and its application in physiological motion compensation.

    PubMed

    Moreira, Pedro; Zemiti, Nabil; Liu, Chao; Poignet, Philippe

    2014-09-01

    Controlling the interaction between robots and living soft tissues has become an important issue as the number of robotic systems inside the operating room increases. Many researches have been done on force control to help surgeons during medical procedures, such as physiological motion compensation and tele-operation systems with haptic feedback. In order to increase the performance of such controllers, this work presents a novel force control scheme using Active Observer (AOB) based on a viscoelastic interaction model. The control scheme has shown to be stable through theoretical analysis and its performance was evaluated by in vitro experiments. In order to evaluate how the force control scheme behaves under the presence of physiological motion, experiments considering breathing and beating heart disturbances are presented. The proposed control scheme presented a stable behavior in both static and moving environment. The viscoelastic AOB presented a compensation ratio of 87% for the breathing motion and 79% for the beating heart motion.

  6. Dynamics and control of motion on the ground and in the air with application to biped robots

    NASA Astrophysics Data System (ADS)

    Hemami, H.; Zheng, Y.-F.

    The dynamics of a multi-linkage model of natural or man-made systems with arbitrary holonomic and non-holonomic constraints at the joints are formulated. The formulation is equally applicable to movements on the ground or in the air. Nonlinear control strategies for postural balance and rhythmic motion are presented. A predictive algorithm to compensate for computation or transmission delay is proposed. Digital computer simulations are presented to demonstrate the effectiveness of the control strategy for a five-link three-dimensional biped.

  7. Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control.

    PubMed

    Uragami, Daisuke; Takahashi, Tatsuji; Matsuo, Yoshiki

    2014-02-01

    Many algorithms and methods in artificial intelligence or machine learning were inspired by human cognition. As a mechanism to handle the exploration-exploitation dilemma in reinforcement learning, the loosely symmetric (LS) value function that models causal intuition of humans was proposed (Shinohara et al., 2007). While LS shows the highest correlation with causal induction by humans, it has been reported that it effectively works in multi-armed bandit problems that form the simplest class of tasks representing the dilemma. However, the scope of application of LS was limited to the reinforcement learning problems that have K actions with only one state (K-armed bandit problems). This study proposes LS-Q learning architecture that can deal with general reinforcement learning tasks with multiple states and delayed reward. We tested the learning performance of the new architecture in giant-swing robot motion learning, where uncertainty and unknown-ness of the environment is huge. In the test, the help of ready-made internal models or functional approximation of the state space were not given. The simulations showed that while the ordinary Q-learning agent does not reach giant-swing motion because of stagnant loops (local optima with low rewards), LS-Q escapes such loops and acquires giant-swing. It is confirmed that the smaller number of states is, in other words, the more coarse-grained the division of states and the more incomplete the state observation is, the better LS-Q performs in comparison with Q-learning. We also showed that the high performance of LS-Q depends comparatively little on parameter tuning and learning time. This suggests that the proposed method inspired by human cognition works adaptively in real environments.

  8. Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control.

    PubMed

    Uragami, Daisuke; Takahashi, Tatsuji; Matsuo, Yoshiki

    2014-02-01

    Many algorithms and methods in artificial intelligence or machine learning were inspired by human cognition. As a mechanism to handle the exploration-exploitation dilemma in reinforcement learning, the loosely symmetric (LS) value function that models causal intuition of humans was proposed (Shinohara et al., 2007). While LS shows the highest correlation with causal induction by humans, it has been reported that it effectively works in multi-armed bandit problems that form the simplest class of tasks representing the dilemma. However, the scope of application of LS was limited to the reinforcement learning problems that have K actions with only one state (K-armed bandit problems). This study proposes LS-Q learning architecture that can deal with general reinforcement learning tasks with multiple states and delayed reward. We tested the learning performance of the new architecture in giant-swing robot motion learning, where uncertainty and unknown-ness of the environment is huge. In the test, the help of ready-made internal models or functional approximation of the state space were not given. The simulations showed that while the ordinary Q-learning agent does not reach giant-swing motion because of stagnant loops (local optima with low rewards), LS-Q escapes such loops and acquires giant-swing. It is confirmed that the smaller number of states is, in other words, the more coarse-grained the division of states and the more incomplete the state observation is, the better LS-Q performs in comparison with Q-learning. We also showed that the high performance of LS-Q depends comparatively little on parameter tuning and learning time. This suggests that the proposed method inspired by human cognition works adaptively in real environments. PMID:24296286

  9. RHIC stochastic cooling motion control

    SciTech Connect

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  10. Machine learning in motion control

    NASA Technical Reports Server (NTRS)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  11. Optimum control forces for multibody systems with intermittent motion

    NASA Technical Reports Server (NTRS)

    Ider, Sitki Kemal; Amirouche, F. M. L.

    1989-01-01

    The objective is to address the continuity of motion when a dynamical system is suddenly subjected to constraint conditions. Motion discontinuity due to the initial constraint violation is avoided by prior control forces that adjust the motion and yield velocity and acceleration consistent at the point of application of the constraint. The optimum control forces are determined for a specified control interval. The method proposed provides an optimum adjustment of the system's motion and assures that the stresses developed at the system components are kept within acceptable limits. The procedures developed will be illustrated making use of inequality constraints applied to obstacle avoidance problems in robotics.

  12. Video motion detection for physical security applications

    SciTech Connect

    Matter, J.C. )

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost-effectiveness. In recent years, significant advances in image-processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Early video motion detectors (VMDs) were useful for interior applications of volumetric sensing. Success depended on having a relatively well-controlled environment. Attempts to use these systems outdoors frequently resulted in an unacceptable number of nuisance alarms. Currently, Sandia National Laboratories (SNL) is developing several advanced systems that employ image-processing techniques for a broader set of safeguards and security applications. The Target Cueing and Tracking System (TCATS), the Video Imaging System for Detection, Tracking, and Assessment (VISDTA), the Linear Infrared Scanning Array (LISA); the Mobile Intrusion Detection and Assessment System (MIDAS), and the Visual Artificially Intelligent Surveillance (VAIS) systems are described briefly.

  13. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    NASA Astrophysics Data System (ADS)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  14. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  15. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  16. Adaptive Force Control in Compliant Motion

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1994-01-01

    This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.

  17. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  18. High bandwidth control of precision motion instrumentation

    NASA Astrophysics Data System (ADS)

    Bristow, Douglas A.; Dong, Jingyan; Alleyne, Andrew G.; Ferreira, Placid; Salapaka, Srinivas

    2008-10-01

    This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant bandwidth and precision improvements over the feedback controller, and the ability to achieve precision motion control at frequencies higher than multiple system resonances.

  19. The AFIT gross motion control project

    NASA Technical Reports Server (NTRS)

    Leahy, M. B., Jr.

    1991-01-01

    The objective of the Gross Motion Control project is to study alternative control approaches that will provide payload invariant high speed trajectory tracking for nonrepetitive motions in free space. The research has concentrated on modifications to the model-based control structure. Development and evaluation is being actively pursued of both adaptive primary (inner loop) and robust secondary (output loop) controllers. In-house developments are compared and contrasted to the techniques proposed by other researchers. The case study for the evaluation is the first three links of a PUMA-560. Incorporating the principals of multiple model adaptive estimation, artificial neural networks, and Lyapunov theory into the model based paradigm has shown the potential for enhanced tracking. Secondary controllers based on Quantitative Feedback Theory, or augmented with auxiliary inputs, significantly improve the robustness to payload variations and unmodeled drive system dynamics. An overview is presented of the different concepts under investigation and a sample is provided of the latest experimental results.

  20. Galvanometer control system design of aerial camera motion compensation

    NASA Astrophysics Data System (ADS)

    Qiao, Mingrui; Cao, Jianzhong; Wang, Huawei; Guo, Yunzeng; Hu, Changchang; Tang, Hong; Niu, Yuefeng

    2015-10-01

    Aerial cameras exist the image motion on the flight. The image motion has seriously affected the image quality, making the image edge blurred and gray scale loss. According to the actual application situation, when high quality and high precision are required, the image motion compensation (IMC) should be adopted. This paper designs galvanometer control system of IMC. The voice coil motor as the actuator has a simple structure, fast dynamic response and high positioning accuracy. Double-loop feedback is also used. PI arithmetic and Hall sensors are used at the current feedback. Fuzzy-PID arithmetic and optical encoder are used at the speed feedback. Compared to conventional PID control arithmetic, the simulation results show that the control system has fast response and high control accuracy.

  1. Decentralized digital adaptive control of robot motion

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.

  2. Application of Long-period Ground Motion Prediction using Earthquake Early Warning System to Elevator Emergency Operation Control System of a High-Rise Building

    NASA Astrophysics Data System (ADS)

    Kubo, Tomohiro; Hisada, Yoshiaki; Horiuchi, Shigeki; Yamamoto, Shunroku

    We propose the method of the elevator operation control for the long-period ground motion using Earthquake Early Warning System (EEWS) and apply this method to the elevator operation control system of the 29-story building of Kogakuin University in the downtown Tokyo, Shinjuku, Japan. First, we estimate the velocity of surface wave that travels through the crustal calculated by the theoretical method, and we estimate the long-period ground motion by Green's function and calculate the lumped mass model response by the estimated long-period ground motion. Next we develop the trigger condition stopping the elevator based on above results. When EEWS is received, we reference the trigger condition and stop the elevator. Next, we apply the elevator operation control for the long-period ground motion proposed method to Kogakuin University, which is high-rise building and located at the central of Tokyo. We compare the estimation the long-period ground motion by the wavenumber integration with the observation data. As a result, the estimated waves between 2 sec and 4 sec almost correspond the observed waves, but the estimated waves between 4 sec and 6 sec underestimate the observed waves because of the 3D effects of the Kanto sedimentary basin. Thus, we estimate the long-period ground motion to the estimation on the side of prudence given the assumption of the source model, because EEWS provides only the location and magnitude of an earthquake. We confirm that the proposed method is able to control the elevator for the long-period ground motion.

  3. Motion Imagery and Robotics Application Project (MIRA)

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney P.

    2010-01-01

    This viewgraph presentation describes the Motion Imagery and Robotics Application (MIRA) Project. A detailed description of the MIRA camera service software architecture, encoder features, and on-board communications are presented. A description of a candidate camera under development is also shown.

  4. Video motion detection for physical security applications

    SciTech Connect

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost effectiveness. In recent years significant advances in image processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Currently Sandia is developing several advanced systems that employ image processing techniques for a broader set of safeguards and security applications. TCATS (Target Cueing and Tracking System) uses a set of powerful, flexible, modular algorithms and software to alarm on purposeful target motion. Custom TCATS hardware optimized for perimeter security applications is currently being evaluated with video input. VISDTA (Video Imaging System for Detection, Tracking, and Assessment) uses some of the same TCATS algorithms and operates with a thermal imager input. In the scan mode, VISDTA detects changes in a scene from the previous image at a given scan point; in the stare mode, VISDTA detects purposeful motion similar to TCATS.

  5. Sensor motion control and mobile platforms for aquatic remote sensing

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    2006-09-01

    Modern remote sensing systems used in repetitive environmental monitoring and surveillance applications are used on various platforms. These platforms can be categorized as stationary (fixed) or moving platforms. The sensing systems monitor the ambient environment which also may have inherent motion, such as the water surface with water waves. This is particularly the case for airborne or ship borne sensing of aquatic environments and is true for ground based walking or crawling systems. The time sequential comparison and spatial registration of sensor images, particularly "hyperspectral imagery" requires pixel to pixel registration for science based change and target (or medium) detection applications. These applications require sensor motion control combined with platform motion control. If the pixel sizes are small - on the order of 1 meter to less than 1 mm, then "nano-positioning accuracy" may be necessary for various aspects of the camera or surveillance sensor system, and/or related sensors used to control the moving platform. In this paper and presentation, an overview of converging technologies to sensor motion control and nano-positioning is discussed. The paper and presentation will demonstrate that the technologies converging on this aspect of remote sensing monitoring systems will require professionals with a combination of skills that are not readily available in today's workforce nor taught in educational programs today - especially at the undergraduate level. Thus there is a need to consider new avenues for educating professionals necessary to engineer and apply these converging technologies to important social environmental monitoring and surveillance needs.

  6. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  7. Animation control of surface motion capture.

    PubMed

    Tejera, Margara; Casas, Dan; Hilton, Adrian

    2013-12-01

    Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.

  8. Tracking Motions Of Manually Controlled Welding Torches

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Gangl, Ken

    1996-01-01

    Techniques for measuring motions of manually controlled welding torches undergoing development. Positions, orientations, and velocities determined in real time during manual arc welding. Makes possible to treat manual welding processes more systematically so manual welds made more predictable, especially in cases in which mechanical strengths and other properties of welded parts highly sensitive to heat inputs and thus to velocities and orientations of welding torches.

  9. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  10. Motion control of 7-DOF arms - The configuration control approach

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.

    1993-01-01

    Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.

  11. Development of motion control method for laser soldering process

    SciTech Connect

    Yerganian, S.S.

    1997-05-01

    Development of a method to generate the motion control data for sealing an electronic housing using laser soldering is described. The motion required to move the housing under the laser is a nonstandard application and was performed with a four-axis system using the timed data streaming mode capabilities of a Compumotor AT6400 indexer. A Microsoft Excel 5.0 spreadsheet (named Israuto.xls) was created to calculate the movement of the part under the laser, and macros were written into the spreadsheet to allow the user to easily create this data. A data verification method was developed for simulating the motion data. The geometry of the assembly was generated using Parametric Technology Corporation Pro/E version 15. This geometry was then converted using Pro/DADS version 3.1 from Computer Aided Design Software Inc. (CADSI), and the simulation was carried out using DADS version 8.0 from CADSI.

  12. Effects of motion control footwear on running: a systematic review.

    PubMed

    Cheung, Roy T H; Wong, Michael Y M; Ng, Gabriel Y F

    2011-09-01

    Excessive foot pronation is a risk factor of running injuries and motion control footwear is designed to control foot pronation. With the movement transfer between foot pronation and tibial rotation, motion control footwear may not only be confined to controlling foot pronation. In view of the controversies in the literature on effectiveness of motion control footwear, this paper reviewed the efficacy of motion control footwear functions as reported in the literature. Eligible studies were identified from seven electronic databases. Two independent authors extracted the data and assessed the methodological qualities using the Jadad Scale. A total of 14 quasi randomised controlled trials were included. Even though the included studies were rated as "low quality" according to the Jadad Scale, the data were pooled and analysed. Results revealed that motion control footwear was effective in reducing the amount of foot pronation and the peak vertical impact during landing. There is no evidence that suggests motion control footwear for controlling kinematics of the proximal segments.

  13. A Realization of Motion Copying System Based on Multilateral Control

    NASA Astrophysics Data System (ADS)

    Yokokura, Yuki; Katsura, Seiichiro; Ohishi, Kiyoshi

    This paper proposes a motion copying system in order to reproduce motion of human operators. The motion copying system consists of both motion saving system and motion loading system based on multilateral controller. The motion saving system is realized by master systems and a slave system. The motion saving system saves motion of a slave system when human operator moves the master systems. At the same time, identity ratio is introduced to decouple the masters motions. The identity ratio of each master system is calculated by force of all master systems, and are saved to memory. On the contrary, real-world master systems and a virtual-world slave system realize the motion loading system. The motion loading system reproduces the motion using saved motion data and value of the identity ratio. The paper confirms that the motion saving system and motion loading system based on multilateral controller is generalized. The reproduced position and force correspond to the saved ones by the proposed method.

  14. Fine-Motion-Control Method for Realizing High-Accuracy and High-Speed Contact Motion of Industrial Robots by Employing Sensorless Force Control

    NASA Astrophysics Data System (ADS)

    Shimada, Naoki; Yoshioka, Takashi; Ohishi, Kiyoshi; Miyazaki, Toshimasa

    This paper proposes a new fine-motion-control method for realizing high-accuracy and high-speed contact motion of industrial robots by employing sensorless force control. Today, although industrial robots have become considerably important in the modern industrial society, their functions are limited. A typical limited function is the positioning motion control of robots used in the manufacturing industry. Contact motion is necessary for almost all new applications. In this study, by employing the proposed motion control, smooth and quick contact motion of industrial robots is realized by using a sensorless I-P (Integral-Proportional) force feedback controller. The proposed method is simple and effective, takes into account both the inertia of a robot and the behavior of the I-P force controller. In the experiments, a three-degree-of-freedom robot is brought into contact with an object (a concrete block or a rubber board) by the I-P force control using the proposed method. Further, in the experiment, the motion of the robot's end-effector was considered. The validity of the proposed method is confirmed by using a six-axis force sensor and an acceleration sensor in the contact motion experiments.

  15. Validation of the Leap Motion Controller using markered motion capture technology.

    PubMed

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. PMID:27102160

  16. Control strategies for planetary rover motion and manipulator control

    NASA Technical Reports Server (NTRS)

    Trautwein, W.

    1973-01-01

    An unusual insect-like vehicle designed for planetary surface exploration is made the occasion for a discussion of control concepts in path selection, hazard detection, obstacle negotiation, and soil sampling. A control scheme which actively articulates the pitching motion between a single-loop front module and a dual loop rear module leads to near optimal behavior in soft soil; at the same time the vehicle's front module acts as a reliable tactile forward probe with a detection range much longer than the stopping distance. Some optimal control strategies are discussed, and the photos of a working scale model are displayed.

  17. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  18. Motion sickness: Can it be controlled

    NASA Technical Reports Server (NTRS)

    Carnes, David

    1988-01-01

    NASA is one of the few research centers concerned with motion sickness. Since the physiology of man has been developed in the one-gravity field Earth, the changes experienced by man in space are unique, and often result in symptoms that resemble motion sickness on Earth. NASA is concerned with motion sickness because it is very uncomfortable for the astronauts. Another concern of NASA is the possibility of a motion sickness astronaut regurgitating while he or she is sealed in an airtight space suit. This could be fatal. Motivated by these reasons, NASA spent thousands of dollars in research and development for a drug or technique for combating motion sickness. Several different treatments were developed for this disorder. Three of the most effective ways of combatting motion sickness are discussed.

  19. Modular motion control produces cost-effective conveying

    SciTech Connect

    Yackel, R.A.

    1997-08-01

    Collectively, US power plants move as much as 800 million tons of coal a year through the mining, transport, off-loading, stockpiling and consumption sequence, most typically through the use of belt conveyors. Plant operators oversee a process that moves mountains of coal accurately and dependably, guarding against overloading, loss of conveyor-to-conveyor synchronization, belt slippage and other malfunctions. A coal-conveying motion-control system should consist of modular, turnkey motion-sensing components that can be assembled and interconnected for any application without custom engineering. Such a system can be fail-safe, provide uninterrupted protection, resist difficult environmental conditions, integrate complex multiple functions and allow power plant operators to take instant action to protect against damage in the event of a system fault.

  20. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  1. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  2. Proposal of Method for Control of Muscle Activation Level for Limbs during Motion and Application of this Method in Strength Training

    NASA Astrophysics Data System (ADS)

    Komada, Satoshi; Murakami, Yosuke; Hirai, Junji

    With an increase in the number of elderly people in our society, the need for equipments that ensure activities of daily living and that can be used in strength training for reducing the need for nursing care is increasing. In this paper, we propose a method for controlling the level of muscle activation for a particular muscle group without EMG sensors; the force exerted by the tips of the limbs during motion is used to control the level of muscle activation. The method is based on a musculoskeletal model for limbs called functionally different effective muscles of three antagonistic pairs of six muscles in 2D space. Hill's equation is incorporated in the method to consider force-velocity characteristics of muscles. EMG measurement results for two muscles under isokinetic contraction in the lower limbs of a subject show that difference between the achieved activation level and the desired activation level is less than the error of the output force distribution. Moreover, the control method is applied to strength training. A manipulator that can facilitate the isokinetic contraction with more than the desired activation level for a specific muscle group is developed.

  3. Motion control simulation based on VR for humanoid robot

    NASA Astrophysics Data System (ADS)

    He, Huaiqing; Tang, Haoxuan

    2004-03-01

    This paper describes the motion control simulation based on VR for humanoid robot aiming at walking and running. To insure that the motion rhythm of humanoid robot conforms to the motion laws of humans, the body geometrical model based on skeleton and its kinematics models based on the graph of time sequences are presented firstly. Then a control algorithm based on Jacobian matrix is proposed to generate the periodical walking and running. Finally, computer simulation experiments demonstrate the feasibility of the models and the algorithm. The simulation system developed makes us interactively regulate the motion direction and velocity for humanoid robot.

  4. Multi-application controls: Robust nonlinear multivariable aerospace controls applications

    NASA Technical Reports Server (NTRS)

    Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob

    1994-01-01

    This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented

  5. Orientation Control Method and System for Object in Motion

    NASA Technical Reports Server (NTRS)

    Whorton, Mark Stephen (Inventor); Redmon, Jr., John W. (Inventor); Cox, Mark D. (Inventor)

    2012-01-01

    An object in motion has a force applied thereto at a point of application. By moving the point of application such that the distance between the object's center-of-mass and the point of application is changed, the object's orientation can be changed/adjusted.

  6. Pebble bed pebble motion: Simulation and Application

    NASA Astrophysics Data System (ADS)

    Cogliati, Joshua J.

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This dissertation presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  7. Calculation of the transient motion of elastic airfoils forced by control surface motion and gusts

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.; Edwards, J. W.

    1980-01-01

    The time-domain equations of motion of elastic airfoil sections forced by control surface motions and gusts were developed for the case of incompressible flow. Extensive use was made of special functions related to the inverse transform of Theodorsen's function. Approximations for the special cases of zero stream velocity, small time, large and time are given. A numerical solution technique for the solution of the general case is given. Examples of the exact transient response of an airfoil are presented.

  8. Toolkits Control Motion of Complex Robotics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    That space is a hazardous environment for humans is common knowledge. Even beyond the obvious lack of air and gravity, the extreme temperatures and exposure to radiation make the human exploration of space a complicated and risky endeavor. The conditions of space and the space suits required to conduct extravehicular activities add layers of difficulty and danger even to tasks that would be simple on Earth (tightening a bolt, for example). For these reasons, the ability to scout distant celestial bodies and perform maintenance and construction in space without direct human involvement offers significant appeal. NASA has repeatedly turned to complex robotics for solutions to extend human presence deep into space at reduced risk and cost and to enhance space operations in low Earth orbit. At Johnson Space Center, engineers explore the potential applications of dexterous robots capable of performing tasks like those of an astronaut during extravehicular activities and even additional ones too delicate or dangerous for human participation. Johnson's Dexterous Robotics Laboratory experiments with a wide spectrum of robot manipulators, such as the Mitsubishi PA-10 and the Robotics Research K-1207i robotic arms. To simplify and enhance the use of these robotic systems, Johnson researchers sought generic control methods that could work effectively across every system.

  9. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  10. Electric Wheelchair Controlled by Human Body Motion Interface

    NASA Astrophysics Data System (ADS)

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  11. Motion and force control for multiple cooperative manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  12. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  13. Low frequency motion measurement and control of spacecrafts and satellites

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Giordano, G.; Romano, R.; Barone, F.

    2015-04-01

    This paper describes a new mechanical application of the Watt-linkage for the development and implementation of mono-axial sensors aimed to low frequency motion measurement and control of spacecrafts and satellites. The basic component of these sensors is the one dimensional UNISA Folded Pendulum mechanical sensor, developed for ground-based applications, whose unique features are due to a very effective optimization of the effects of gravitational force on the folded pendulum mechanical components, that allowed the design and implementation of FP sensors compact (< 20 cm), light (< 300 g), scalable, tunable resonance frequency < 200mHz), with large band (10-6 Hz - 100Hz), high quality factor (Q > 15000 in vacuum at 1Hz), with good immunity to environmental noises and sensitivity, guaranteed by an integrated laser optical readout, and fully adaptable to the specific requirements of the application. In this paper we show how to extend the application of ground-based FP also to space, in absence of gravity, still keeping all the above interesting features and characteristics that make this class of sensors very effective in terms of large band, especially in the low frequency, sensitivity and long term reliability. Preliminary measurements on a prototype confirm the feasibility, showing also that very good performances can be relatively easily obtained.

  14. The influence of ship motion of manual control skills

    NASA Technical Reports Server (NTRS)

    Mcleod, P.; Poulton, C.; Duross, H.; Lewis, W.

    1981-01-01

    The effects of ship motion on a range of typical manual control skills were examined on the Warren Spring ship motion simulator driven in heave, pitch, and roll by signals taken from the frigate HMS Avenger at 13 m/s (25 knots) into a force 4 wind. The motion produced a vertical r.m.s. acceleration of 0.024g, mostly between 0.1 and 0.3 Hz, with comparatively little pitch or roll. A task involving unsupported arm movements was seriously affected by the motion; a pursuit tracking task showed a reliable decrement although it was still performed reasonably well (pressure and free moving tracking controls were affected equally by the motion); a digit keying task requiring ballistic hand movements was unaffected. There was no evidence that these effects were caused by sea sickness. The differing response to motion of the different tasks, from virtual destruction to no effect, suggests that a major benefit could come from an attempt to design the man/control interface onboard ship around motion resistant tasks.

  15. Motion and force control of multiple robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  16. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  17. The Digital Motion Control System for the Submillimeter Array Antennas

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  18. Sensing human hand motions for controlling dexterous robots

    NASA Technical Reports Server (NTRS)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  19. Nonlinear friction effects on precise motion control of a manipulator

    NASA Astrophysics Data System (ADS)

    Warshaw, G. D.; Jnifene, A.; Necsulescu, D.

    1991-05-01

    The need for accurate robot manipulators generated in the last few years an active interest in the effects of nonlinear friction on position and force control of a robot arm. Linear viscous friction has been easily included in robot dynamics models while the inclusion of nonlinear discontinuous friction, and in particular stiction end Coulomb friction resulted in more complex computational requirement for robot dynamic simulation and compensation. A detailed analysis, based on simulations, is performed in order to identify the problem posed by stiction end Coulomb friction on controlling low speed motion in the vicinity of a target point for a robot servomotor and a jointed two-degree of freedom robot arm. The effect of the limited bandwidth of the actuators on filtering the discontinuous friction torque in the closed loop control scheme is investigated. The local effects, around the low speed motion in the vicinity of a moving target for a two-degree of freedom arm is also analyzed. It was shown that the discontinuous nature of the nonlinear stiction end Coulomb friction around zero velocity motion leads to positioning accuracy problems in robot motion control. The apparent erratic behavior at low velocity motion is caused by the discontinuous friction torques which can also excite higher frequency vibration modes which are not usually taken into account in the controller design.

  20. Visual Features Involving Motion Seen from Airport Control Towers

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Liston, Dorion

    2010-01-01

    Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.

  1. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M.; Raghavan, Kamaldev

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  2. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  3. Micro manipulator motion control to counteract macro manipulator structural vibrations

    SciTech Connect

    Lew, J.Y.; Trudnowski, D.J.; Evans, M.S.; Bennett, D.W.

    1995-02-01

    Inertial force damping control by micro manipulator modulation is proposed to suppress the vibrations of a micro/macro manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro manipulator system using micro-manipulator-based inertial active damping control.

  4. Controlling the motion of multiple objects on a Chladni plate

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-09-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.

  5. Controlling the motion of multiple objects on a Chladni plate

    PubMed Central

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-01-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts. PMID:27611347

  6. Controlling the motion of multiple objects on a Chladni plate.

    PubMed

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-01-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts. PMID:27611347

  7. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  8. Analysis of the accuracy and robustness of the leap motion controller.

    PubMed

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  9. Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment

    PubMed Central

    Kim, Ikhwan; Kim, Taehyoun

    2015-01-01

    Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives. PMID:26076407

  10. Controllable motion of optical vortex arrays using electromagnetically induced transparency.

    PubMed

    Shwa, David; Shtranvasser, Evgeny; Shalibo, Yoni; Katz, Nadav

    2012-10-22

    We demonstrate control of the collective motion of an optical vortex array using an electromagnetically induced transparency media. Scanning the frequency detuning between the pump and probe fields changes the susceptibility of the media, producing a unique effective diffraction of the vortex array for each detuning. We measure several experimental configurations and compare them to numerical simulations.

  11. Design of a linear-motion dual-stage actuation system for precision control

    NASA Astrophysics Data System (ADS)

    Dong, W.; Tang, J.; El Deeb, Y.

    2009-09-01

    Actuators with high linear-motion speed, high positioning resolution and a long motion stroke are needed in many precision machining systems. In some current systems, voice coil motors (VCMs) are implemented for servo control. While the voice coil motors may provide the long motion stroke needed in many applications, the main obstacle that hinders the improvement of the machining accuracy and efficiency is their limited bandwidth. To fundamentally solve this issue, we propose to develop a dual-stage actuation system that consists of a voice coil motor that covers the coarse motion, and a piezoelectric stack actuator that induces the fine motion, thus enhancing the positioning accuracy. The focus of this present research is the mechatronics design and synthesis of the new actuation system. In particular, a flexure hinge based mechanism is developed to provide a motion guide and preload to the piezoelectric stack actuator that is serially connected to the voice coil motor. This mechanism is built upon parallel plane flexure hinges. A series of numerical and experimental studies are carried out to facilitate the system design and the model identification. The effectiveness of the proposed system is demonstrated through open-loop studies and preliminary closed-loop control practice. While the primary goal of this particular design is aimed at enhancing optical lens machining, the concept and approach outlined are generic and can be extended to a variety of applications.

  12. Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory.

    PubMed

    Kang, Wang; Huang, Yangqi; Zheng, Chentian; Lv, Weifeng; Lei, Na; Zhang, Youguang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2016-01-01

    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM. PMID:26975697

  13. Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory.

    PubMed

    Kang, Wang; Huang, Yangqi; Zheng, Chentian; Lv, Weifeng; Lei, Na; Zhang, Youguang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2016-03-15

    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM.

  14. Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory

    NASA Astrophysics Data System (ADS)

    Kang, Wang; Huang, Yangqi; Zheng, Chentian; Lv, Weifeng; Lei, Na; Zhang, Youguang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2016-03-01

    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM.

  15. Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory

    PubMed Central

    Kang, Wang; Huang, Yangqi; Zheng, Chentian; Lv, Weifeng; Lei, Na; Zhang, Youguang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2016-01-01

    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM. PMID:26975697

  16. Motion Imagery and Robotics Application (MIRA)

    NASA Technical Reports Server (NTRS)

    Martinez, Lindolfo; Rich, Thomas

    2011-01-01

    Objectives include: I. Prototype a camera service leveraging the CCSDS Integrated protocol stack (MIRA/SM&C/AMS/DTN): a) CCSDS MIRA Service (New). b) Spacecraft Monitor and Control (SM&C). c) Asynchronous Messaging Service (AMS). d) Delay/Disruption Tolerant Networking (DTN). II. Additional MIRA Objectives: a) Demo of Camera Control through ISS using CCSDS protocol stack (Berlin, May 2011). b) Verify that the CCSDS standards stack can provide end-to-end space camera services across ground and space environments. c) Test interoperability of various CCSDS protocol standards. d) Identify overlaps in the design and implementations of the CCSDS protocol standards. e) Identify software incompatibilities in the CCSDS stack interfaces. f) Provide redlines to the SM&C, AMS, and DTN working groups. d) Enable the CCSDS MIRA service for potential use in ISS Kibo camera commanding. e) Assist in long-term evolution of this entire group of CCSDS standards to TRL 6 or greater.

  17. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    PubMed

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem. PMID:26863183

  18. Stepping-Motion Motor-Control Subsystem For Testing Bearings

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1992-01-01

    Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).

  19. Chaotic neural network applied to two-dimensional motion control.

    PubMed

    Yoshida, Hiroyuki; Kurata, Shuhei; Li, Yongtao; Nara, Shigetoshi

    2010-03-01

    Chaotic dynamics generated in a chaotic neural network model are applied to 2-dimensional (2-D) motion control. The change of position of a moving object in each control time step is determined by a motion function which is calculated from the firing activity of the chaotic neural network. Prototype attractors which correspond to simple motions of the object toward four directions in 2-D space are embedded in the neural network model by designing synaptic connection strengths. Chaotic dynamics introduced by changing system parameters sample intermediate points in the high-dimensional state space between the embedded attractors, resulting in motion in various directions. By means of adaptive switching of the system parameters between a chaotic regime and an attractor regime, the object is able to reach a target in a 2-D maze. In computer experiments, the success rate of this method over many trials not only shows better performance than that of stochastic random pattern generators but also shows that chaotic dynamics can be useful for realizing robust, adaptive and complex control function with simple rules.

  20. Knowledge-Based Motion Control of AN Intelligent Mobile Autonomous System

    NASA Astrophysics Data System (ADS)

    Isik, Can

    An Intelligent Mobile Autonomous System (IMAS), which is equipped with vision and low level sensors to cope with unknown obstacles, is modeled as a hierarchy of path planning and motion control. This dissertation concentrates on the lower level of this hierarchy (Pilot) with a knowledge-based controller. The basis of a theory of knowledge-based controllers is established, using the example of the Pilot level motion control of IMAS. In this context, the knowledge-based controller with a linguistic world concept is shown to be adequate for the minimum time control of an autonomous mobile robot motion. The Pilot level motion control of IMAS is approached in the framework of production systems. The three major components of the knowledge-based control that are included here are the hierarchies of the database, the rule base and the rule evaluator. The database, which is the representation of the state of the world, is organized as a semantic network, using a concept of minimal admissible vocabulary. The hierarchy of rule base is derived from the analytical formulation of minimum-time control of IMAS motion. The procedure introduced for rule derivation, which is called analytical model verbalization, utilizes the concept of causalities to describe the system behavior. A realistic analytical system model is developed and the minimum-time motion control in an obstacle strewn environment is decomposed to a hierarchy of motion planning and control. The conditions for the validity of the hierarchical problem decomposition are established, and the consistency of operation is maintained by detecting the long term conflicting decisions of the levels of the hierarchy. The imprecision in the world description is modeled using the theory of fuzzy sets. The method developed for the choice of the rule that prescribes the minimum-time motion control among the redundant set of applicable rules is explained and the usage of fuzzy set operators is justified. Also included in the

  1. Hummingbirds control hovering flight by stabilizing visual motion

    PubMed Central

    Goller, Benjamin; Altshuler, Douglas L.

    2014-01-01

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow—image movement across the retina—is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position. PMID:25489117

  2. Hummingbirds control hovering flight by stabilizing visual motion.

    PubMed

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.

  3. Hummingbirds control hovering flight by stabilizing visual motion.

    PubMed

    Goller, Benjamin; Altshuler, Douglas L

    2014-12-23

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position. PMID:25489117

  4. Decentralized reinforcement-learning control and emergence of motion patterns

    NASA Astrophysics Data System (ADS)

    Svinin, Mikhail; Yamada, Kazuyaki; Okhura, Kazuhiro; Ueda, Kanji

    1998-10-01

    In this paper we propose a system for studying emergence of motion patterns in autonomous mobile robotic systems. The system implements an instance-based reinforcement learning control. Three spaces are of importance in formulation of the control scheme. They are the work space, the sensor space, and the action space. Important feature of our system is that all these spaces are assumed to be continuous. The core part of the system is a classifier system. Based on the sensory state space analysis, the control is decentralized and is specified at the lowest level of the control system. However, the local controllers are implicitly connected through the perceived environment information. Therefore, they constitute a dynamic environment with respect to each other. The proposed control scheme is tested under simulation for a mobile robot in a navigation task. It is shown that some patterns of global behavior--such as collision avoidance, wall-following, light-seeking--can emerge from the local controllers.

  5. Smart Rehabilitation Devices: Part II – Adaptive Motion Control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2008-01-01

    This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human–machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject. PMID:18548131

  6. Constrained motion control on a hemispherical surface: path planning.

    PubMed

    Berman, Sigal; Liebermann, Dario G; McIntyre, Joseph

    2014-03-01

    Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path (the shortest path between 2 points on a sphere) is advantageous not only in terms of path length but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from 11 healthy subjects. The task comprised point-to-point motion between targets at two elevations (30° and 60°). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements compared with the others. The "better" performance reflects the dynamical advantages of following the geodesic path and may also reflect invariant features of control policies used to produce such a surface-constrained motion.

  7. Heralded Control of Mechanical Motion by Single Spins.

    PubMed

    Rao, D D Bhaktavatsala; Momenzadeh, S Ali; Wrachtrup, Jörg

    2016-08-12

    We propose a method to achieve a high degree of control of nanomechanical oscillators by coupling their mechanical motion to single spins. Manipulating the spin alone and measuring its quantum state heralds the cooling or squeezing of the oscillator even for weak spin-oscillator couplings. We analytically show that the asymptotic behavior of the oscillator is determined by a spin-induced thermal filter function whose overlap with the initial thermal distribution of the oscillator determines its cooling, heating, or squeezing. Counterintuitively, the rate of cooling dependence on the instantaneous thermal occupancy of the oscillator renders robust cooling or squeezing even for high initial temperatures and damping rates. We further estimate how the proposed scheme can be used to control the motion of a thin diamond cantilever by coupling it to its defect centers at low temperature. PMID:27563995

  8. Heralded Control of Mechanical Motion by Single Spins

    NASA Astrophysics Data System (ADS)

    Rao, D. D. Bhaktavatsala; Momenzadeh, S. Ali; Wrachtrup, Jörg

    2016-08-01

    We propose a method to achieve a high degree of control of nanomechanical oscillators by coupling their mechanical motion to single spins. Manipulating the spin alone and measuring its quantum state heralds the cooling or squeezing of the oscillator even for weak spin-oscillator couplings. We analytically show that the asymptotic behavior of the oscillator is determined by a spin-induced thermal filter function whose overlap with the initial thermal distribution of the oscillator determines its cooling, heating, or squeezing. Counterintuitively, the rate of cooling dependence on the instantaneous thermal occupancy of the oscillator renders robust cooling or squeezing even for high initial temperatures and damping rates. We further estimate how the proposed scheme can be used to control the motion of a thin diamond cantilever by coupling it to its defect centers at low temperature.

  9. What Is Being Done to Control Motion Sickness?

    NASA Technical Reports Server (NTRS)

    Hall, Y. D.

    1985-01-01

    AFT (Autogenic Feedback Training) involves practicing a series of mental exercises to speed up or slow down the control of autonomic activity. This produces a reduced tendency for autonomic activity levels to diverge from baseline (at rest) under stressful motion-sickness-inducing conditions. Subjects conditions. Subjects engaged in applying AFT exercises are required to closely monitor their own bodily sensations during motion-sickness-eliciting tests. These tests include the Coriolis Sickness Susceptibility Index (CSSI), which consists of sitting a subject into a rotating chair that moves at various speeds while a visual background turns at differing speeds and directions, and the Vertical Acceleration Rotation Device (VARD) test, which involves the placing of a subject in a drum that moves in an upward and downward motion until he or she is sick, while simultaneously monitoring the subject's vital signs. These tests provide investigators with evidence of slight changes in autonomic activities such as increases in heart rate, skin temperature, and sweat. All of these symptoms occur in subjects that experience bodily weakness or discomfort with the onset of motion sickness.

  10. Motion Controlled Gait Enhancing Mobile Shoe for Rehabilitation

    PubMed Central

    Handzic, Ismet; Vasudevan, Erin V.; Reed, Kyle B.

    2011-01-01

    Walking on a split-belt treadmill, which has two belts that can be run at different speeds, has been shown to improve walking patterns post-stroke. However, these improvements are only temporarily retained once individuals transition to walking over ground. We hypothesize that longer-lasting effects would be observed if the training occurred during natural walking over ground, as opposed to on a treadmill. In order to study such long-term effects, we have developed a mobile and portable device which can simulate the same gait altering movements experienced on a split-belt treadmill. The new motion controlled gait enhancing mobile shoe improves upon the previous version’s drawbacks. This version of the GEMS has motion that is continuous, smooth, and regulated with on-board electronics. A vital component of this new design is the Archimedean spiral wheel shape that redirects the wearer’s downward force into a horizontal backward motion. The design is passive and does not utilize any motors. Its motion is regulated only by a small magnetic particle brake. Further experimentation is needed to evaluate the long-term after-effects. PMID:22275620

  11. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  12. Motion Control of the Soccer Robot Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Coman, Daniela; Ionescu, Adela

    2009-08-01

    Robot soccer is a challenging platform for multi-agent research, involving topics such as real-time image processing and control, robot path planning, obstacle avoidance and machine learning. The conventional robot control consists of methods for path generation and path following. When a robot moves away the estimated path, it must return immediately, and while doing so, the obstacle avoidance behavior and the effectiveness of such a path are not guaranteed. So, motion control is a difficult task, especially in real time and high speed control. This paper describes the use of fuzzy logic control for the low level motion of a soccer robot. Firstly, the modelling of the soccer robot is presented. The soccer robot based on MiroSoT Small Size league is a differential-drive mobile robot with non-slipping and pure-rolling. Then, the design of fuzzy controller is describes. Finally, the computer simulations in MATLAB Simulink show that proposed fuzzy logic controller works well.

  13. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution. PMID:24987749

  14. Design, performance characteristics and application examples of a new 4D motion platform.

    PubMed

    Grohmann, Carsten; Frenzel, Thorsten; Werner, René; Cremers, Florian

    2015-06-01

    In this publication, a three-dimensionally movable motion phantom is described and its performance characteristics are evaluated. The intended primary fields of application for the phantom are the quality assurance (QA) of respiratory motion management devices in radiation therapy (RT) like gating or tumour tracking systems, training for clinical use of these techniques, and related 4DRT research. Considering especially the QA aspect, the phantom was designed as a motion platform that can be equipped with an appropriate add-on like standard QA phantoms for dosimetric measurements. The platform is driven by three computer-controlled independent linear motors (motion range: 40 × 50 × 50 mm in anterior-posterior/superior-inferior/lateral direction; max. velocity: 3.9 m/s; max. acceleration: 10 m/s(2)), which allow the simulation of normal breathing patterns as well as arbitrary trajectories and anomalous events like coughing or baseline drift. For normal breathing patterns (here: sinusoidal curves with an amplitude of 20mm and a period of 3 s/6 s), the accuracy of the simulated motion paths was measured to be within 0,521 mm even for the ArcCHECK (weight: 20 kg) as a platform load - values that we consider to be sufficient for the intended fields of application. The respective use of the motion phantom is illustrated.

  15. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  16. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Motion and effect of cockpit controls. 23... Construction Personnel and Cargo Accommodations § 23.779 Motion and effect of cockpit controls. Cockpit...) Aerodynamic controls: Motion and effect (1) Primary controls: Aileron Right (clockwise) for right wing...

  17. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Motion and effect of cockpit controls. 23... Construction Personnel and Cargo Accommodations § 23.779 Motion and effect of cockpit controls. Cockpit...) Aerodynamic controls: Motion and effect (1) Primary controls: Aileron Right (clockwise) for right wing...

  18. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Motion and effect of cockpit controls. 23... Construction Personnel and Cargo Accommodations § 23.779 Motion and effect of cockpit controls. Cockpit...) Aerodynamic controls: Motion and effect (1) Primary controls: Aileron Right (clockwise) for right wing...

  19. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 23... Construction Personnel and Cargo Accommodations § 23.779 Motion and effect of cockpit controls. Cockpit...) Aerodynamic controls: Motion and effect (1) Primary controls: Aileron Right (clockwise) for right wing...

  20. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  1. Pharmacology in space. Part 2. Controlling motion sickness

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.; Bungo, M. W.

    1989-01-01

    In this second article in the two-part series on pharmacology in space, Claire Lathers and colleagues discuss the pharmacology of drugs used to control motion sickness in space and note that the pharmacology of the 'ideal' agent has yet to be worked out. That motion sickness may impair the pharmacological action of a drug by interfering with its absorption and distribution because of alteration of physiology is a problem unique to pharmacology in space. The authors comment on the problem of designing suitable ground-based studies to evaluate the pharmacological effect of drugs to be used in space and discuss the use of salivary samples collected during space flight to allow pharmacokinetic evaluations necessary for non-invasive clinical drug monitoring.

  2. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a

  3. Multi-motion robots control based on bioelectric signals from single-channel dry electrode.

    PubMed

    Shen, Hui-Min; Hu, Liang; Lee, Kok-Meng; Fu, Xin

    2015-02-01

    This article presents a multi-motion control system to help severe disabled people operate an auxiliary appliance using neck-up bioelectric signals measured by a single-channel dry electrode on the forehead. The single-channel dry-electrode multi-motion control system exhibits several practical advantages over its conventional counterparts that use multi-channel wet-electrodes; among the challenges is an effective technique to extract bioelectric features for reliable implementation of multi degrees-of-freedom motion control. Using both time and frequency characteristics of the single-channel dry-electrode measurements, motion commands are derived from multiple feature signals associated with concentration demands and different eye-blink actions for use in a two-level control strategy that has been developed to control predefined multi degrees-of-freedom motion trajectories. Test paradigms were designed to pre-calibrate the users' feature signals to statistically account for individual variances. Experimental trials were then carried out on able-bodied and disabled volunteers to validate the universal applicability of the algorithms. The classification success rates for two different eye-blink feature signals were approximately 95% with an average time of 2.4 s for executing a concentration feature signal. The single-channel dry-electrode-based technique has been validated on a 6-degree-of-freedom robot arm demonstrating its significant potentials to help patients suffering severe motor dysfunctions operate a multi-motion auxiliary appliance in everyday living where the ease of use is a priority.

  4. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of

  5. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose up. Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or...

  6. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose up. Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or...

  7. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose up. Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or...

  8. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    PubMed

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles. PMID:27269182

  9. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    PubMed

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles.

  10. On Motion Planning and Control of Multi-Link Lightweight Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri

    1987-01-01

    A general gross and fine motion planning and control strategy is needed for lightweight robotic manipulator applications such as painting, welding, material handling, surface finishing, and spacecraft servicing. The control problem of lightweight manipulators is to perform fast, accurate, and robust motions despite the payload variations, structural flexibility, and other environmental disturbances. Performance of the rigid manipulator model based computed torque and decoupled joint control methods are determined and simulated for the counterpart flexible manipulators. A counterpart flexible manipulator is defined as a manipulator which has structural flexibility, in addition to having the same inertial, geometric, and actuation properties of a given rigid manipulator. An adaptive model following control (AMFC) algorithm is developed to improve the performance in speed, accuracy, and robustness. It is found that the AMFC improves the speed performance by a factor of two over the conventional non-adaptive control methods for given accuracy requirements while proving to be more robust with respect to payload variations. Yet there are clear limitations on the performance of AMFC alone as well, which are imposed by the arm flexibility. In the search to further improve speed performance while providing a desired accuracy and robustness, a combined control strategy is developed. Furthermore, the problem of switching from one control structure to another during the motion and implementation aspects of combined control are discussed.

  11. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  12. Topography-Dependent Motion Compensation: Application to UAVSAR Data

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Hensley, Scott; Michel, Thierry

    2009-01-01

    The UAVSAR L-band synthetic aperture radar system has been designed for repeat track interferometry in support of Earth science applications that require high-precision measurements of small surface deformations over timescales from hours to years. Conventional motion compensation algorithms, which are based upon assumptions of a narrow beam and flat terrain, yield unacceptably large errors in areas with even moderate topographic relief, i.e., in most areas of interest. This often limits the ability to achieve sub-centimeter surface change detection over significant portions of an acquired scene. To reduce this source of error in the interferometric phase, we have implemented an advanced motion compensation algorithm that corrects for the scene topography and radar beam width. Here we discuss the algorithm used, its implementation in the UAVSAR data processor, and the improvement in interferometric phase and correlation achieved in areas with significant topographic relief.

  13. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  14. Controlled motion of electrically neutral microparticles by pulsed direct current

    PubMed Central

    Zhang, Xinfang; Qin, Rongshan

    2015-01-01

    A controlled motion of electrically neutral microparticles in a conductive liquid at high temperatures has not yet been realized under the uniform direct electric current field. We propose a simple method, which employs pulsed direct current to a conductive liquid metal containing low-conductivity objects at high temperature. The electric current enables the low-conductivity particles to pass from the centre towards the various surfaces of the high-conductivity liquid metal. Most interestingly, the directionality of microparticles can be controlled and their speed can be easily regulated by adjusting pulsed current density. We find that the movement may arise from the configuration of electrical domains which generates a driving force which exceeds the force of gravity and viscous friction. All of these features are of potential benefit in separating the particles of nearly equal density but distinctly different electrical conductivities, and also offer considerable promise for the precise and selective positioning of micro-objects or the controlled motion of minute quantities of surrounding fluids. PMID:25955864

  15. Motion control solution for new PLC-based standard development platform for VLT instrument control systems

    NASA Astrophysics Data System (ADS)

    Popovic, D.; Brast, R.; Di Lieto, N.; Kiekebusch, M.; Knudstrup, J.; Lucuix, C.

    2014-07-01

    More than a decade ago, due to obsolescence issues, ESO initiated the design and implementation of a custom-made CANbus based motion controller (CAN-RMC) to provide, together with a tailor-made software library (motor library), the motion control capabilities for the VME platform needed for the second generation VLT/VLTI instruments. The CAN-RMC controller has been successfully used in a number of VLT instruments but it has high production costs compared to the commercial off-the-shelf (COTS) industrial solutions available on the market today. In the scope of the selection of a new PLC-based platform for the VLT instrument control systems, ESO has evaluated motion control solutions from the company Beckhoff. This paper presents the investigation, implementation and testing of the PLC/TwinCAT/EtherCAT motion controllers for DC and stepper motors and their adaptation and integration into the VLT instrumentation framework. It reports functional and performance test results for the most typical use cases of astronomical instruments like initialization sequences, tracking, switch position detections, backslash compensation, brake handling, etc. In addition, it gives an overview of the main features of TwinCAT NC/PTP, PLCopen MC, EtherCAT motion control terminals and the engineering tools like TwinCAT Scope that are integrated into the development environment and simplify software development, testing and commissioning of motorized instrument functions.

  16. Adaptive Force Control For Compliant Motion Of A Robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Two adaptive control schemes offer robust solutions to problem of stable control of forces of contact between robotic manipulator and objects in its environment. They are called "adaptive admittance control" and "adaptive compliance control." Both schemes involve use of force-and torque sensors that indicate contact forces. These schemes performed well when tested in computational simulations in which they were used to control seven-degree-of-freedom robot arm in executing contact tasks. Choice between admittance or compliance control is dictated by requirements of the application at hand.

  17. Motion Control of Inverted Pendulum Robots Using a Kalman Filter Based Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Shimada, Akira; Yongyai, Chaisamorn

    A high-speed motion control technique for inverted pendulum robots, utilizing instability and a disturbance observer, based on the Kalman filtering technique, is introduced. Inverted pendulums are basically controlled as they do not topple. Shimada and Hatakeyama developed a contrary idea and presented a controller that deliberately off balanced the robot when it moved. To implement the idea, a controller was designed using zero dynamics, which was derived by partial feedback linearization. However, the control system was not robust or sufficiently reliable. Although they presented a revised method using H∞ control law, it was complex. Shimada et al. also presented a design method for a disturbance observer using Kalman filtering. This paper presents the latest control technique, combining both control laws to solve the problem, and introduces an application with respect to inverted pendulum robots. It further shows experimental results to confirm its validity.

  18. Independent ankle motion control improves robotic balance simulator.

    PubMed

    Pospisil, Eric R; Luu, Billy L; Blouin, Jean-Sébastien; Van der Loos, H F Machiel; Croft, Elizabeth A

    2012-01-01

    We present a validation study for the effectiveness of an additional ankle-tilt platform to enhance somatosensory ankle feedback available to subjects actuating a 6-axis robotic balance simulator platform. To address this need, we have developed and integrated a device to permit independent manipulation of ankle rotation while the whole-body is actuated by the balance simulator. The addition of ankle rotation is shown to provide both quantitative and qualitative improvements to the balance simulation experience compared to when the ankle joint is referenced to the motion of the balance simulator. Eight out of ten subjects reported that balancing on the simulator with ankle motion required less conscious effort. This self-reported improvement corresponded to a 32% decrease in the mean-removed RMS amplitude for sway angle, demonstrating better balance control for subjects actuating the simulator. The new ankle-tilt platform enables examination of the contributions of ankle proprioception to the control of standing balance in human subjects.

  19. Relative dynamics and motion control of nanosatellite formation flying

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Hiraki, Koju

    2016-04-01

    Orbit selection is a necessary factor in nanosatellite formation mission design/meanwhile, to keep the formation, it is necessary to consume fuel. Therefore, the best orbit design for nanosatellite formation flying should be one that requires the minimum fuel consumption. The purpose of this paper is to analyse orbit selection with respect to the minimum fuel consumption, to provide a convenient way to estimate the fuel consumption for keeping nanosatellite formation flying and to present a simplified method of formation control. The formation structure is disturbed by J2 gravitational perturbation and other perturbing accelerations such as atmospheric drag. First, Gauss' Variation Equations (GVE) are used to estimate the essential ΔV due to the J2 perturbation and atmospheric drag. The essential ΔV presents information on which orbit is good with respect to the minimum fuel consumption. Then, the linear equations which account for J2 gravitational perturbation of Schweighart-Sedwick are presented and used to estimate the fuel consumption to maintain the formation structure. Finally, the relative dynamics motion is presented as well as a simplified motion control of formation structure by using GVE.

  20. Motion artifact removal in FNIR spectroscopy for real-world applications

    NASA Astrophysics Data System (ADS)

    Devaraj, Ajit; Izzetoglu, Meltem; Izzetoglu, Kurtulus; Bunce, Scott C.; Li, Connie Y.; Onaral, Banu

    2004-12-01

    Near infrared spectroscopy as a neuroimaging modality is a recent development. Near infrared neuroimagers are typically safe, portable, relatively affordable and non-invasive. The ease of sensor setup and non-intrusiveness make functional near infrared (fNIR) imaging an ideal candidate for monitoring human cortical function in a wide range of real world situations. However optical signals are susceptible to motion-artifacts, hindering the application of fNIR in studies where subject mobility cannot be controlled. In this paper, we present a filtering framework for motion-artifact cancellation to facilitate the deployment of fNIR imaging in real-world scenarios. We simulate a generic field environment by having subjects walk on a treadmill while performing a cognitive task and demonstrate that measurements can be effectively cleaned of motion-artifacts.

  1. [Bionic model for coordinated head-eye motion control].

    PubMed

    Mao, Xiaobo; Chen, Tiejun

    2011-10-01

    The relationships between eye movements and head movements of the primate during gaze shifts are analyzed in detail in the present paper. Applying the mechanisms of neurophysiology to engineering domain, we have improved the robot eye-head coordination. A bionic control strategy of coordinated head-eye motion was proposed. The processes of gaze shifts are composed of an initial fast phase followed by a slow phase. In the fast phase saccade eye movements and slow head movements were combined, which cooperate to bring gaze from an initial resting position toward the new target rapidly, while in the slow phase the gaze stability and target fixation were ensured by the action of the vestibulo-ocular reflex (VOR) where the eyes and head rotate by equal amplitudes in opposite directions. A bionic gaze control model was given. The simulation results confirmed the effectiveness of the model by comparing with the results of neurophysiology experiments.

  2. Localization/mapping motion control system for a mobile robot

    NASA Astrophysics Data System (ADS)

    Yang-Syu, Jr.; Su, Chiun-Shiang; Yang, Chan-Yun

    2011-12-01

    The objective of this paper is to design a mobile robot with automatic motion behaviors and obstacle avoidance functions. The robot is also able to make the SLAM (Simultaneous Localization And Mapping) at an unknown environment. The robot position is calculated by the developed software program from the motor encoders. An obstacle avoidance controller is developed by the fuzzy theory. A LRF(laser ranger finder) is installed on the robot. The sensing data of this LRF are applied to calculate the environmental information for the obstacle avoidance controller. Then, the ICP (Iterative Closest Point) algorithm is applied to compare the position error of the environmental data in order to obtain the estimated position of the LRF. Finally, these estimated position data are used to calculate the final SLAM of this mobile robot. Both the simulation and experimental results show that this developed robot system work very well.

  3. 75 FR 10230 - Inglis Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Soliciting Motions To Intervene and Protests February 26, 2010. Take notice that the following hydroelectric....adams@ferc.gov . j. Deadline for filing motions to intervene and protests: 60 days from the issuance... served on the applicant(s) names in this public notice. Anyone may submit a protest or a motion...

  4. Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach

    PubMed Central

    Kumar De, Arijit; Goswami, Debabrata

    2013-01-01

    This account reviews some recent studies pursued in our group on several control experiments with important applications in (one-photon) confocal and two-photon fluorescence laser-scanning microscopy and optical trapping with laser tweezers. We explore the simultaneous control of internal and external (i.e. centre-of-mass motion) degrees of freedom, which require the coupling of various control parameters to result in the spatiotemporal control. Of particular interest to us is the implementation of such control schemes in living systems. A live cell is a system of a large number of different molecules which combine and interact to generate complex structures and functions. These combinations and interactions of molecules need to be choreographed perfectly in time and space to achieve intended intra-cellular functions. Spatiotemporal control promises to be a versatile tool for dynamical control of spatially manipulated bio-molecules. PMID:23814326

  5. Development of a cost-effective PC-based motion control system

    SciTech Connect

    Hollar, D.L.

    1998-01-01

    A cost-effective PC-based motion control system was developed and evaluated for use on a laser welding system. The motion system is capable of X-Y simultaneous contouring and provides a rotary axis of motion also. The system motion paths can be specified in either Relative or Absolute motion. The PC controls all of the laser power supply and shutter I/O operations. All of the motion programming and operator interfacing is via the Windows {reg_sign}95 operating system.

  6. Space motion sickness: The sensory motor controls and cardiovascular correlation

    NASA Astrophysics Data System (ADS)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  7. Effect of kinesio tape application on calf pain and ankle range of motion in duathletes.

    PubMed

    Merino-Marban, Rafael; Mayorga-Vega, Daniel; Fernandez-Rodriguez, Emilio

    2013-01-01

    The purpose of this study was to examine the effect of the kinesio tape immediately after its application and after a duathlon competition on calf pain and the ankle range of motion in duathletes. A sample of 28 duathletes (age 29.11 ± 10.35 years; body height 172.57 ± 6.17 cm; body mass 66.63 ± 9.01 kg; body mass index 22.29 ± 2.00 kg/m(2)) were recruited from the competitors in a duathlon sprint. The Numerical Pain Rating Scale and ankle dorsiflexion range of motion measures were obtained at baseline, immediately after taping and 10 to 15 minutes after ending the duathlon competition. The kinesio tape was applied on the calf of duathletes 20 to 90 minutes before the competition, only on one of their legs (experimental leg) with the other leg acting as a control (control leg) in a randomized order. According to the between-group comparison, no differences were found immediately after the application of the kinesio tape and after the competition in the ankle range of motion and calf pain. However, a significant difference from baseline to immediately after taping was found in the ankle range of motion in the experimental leg. Applying the kinesio tape on the calf seems to immediately increase ankle dorsiflexion range of motion, but not after a duathlon competition. Applying the kinesio tape on the calf does not reduce muscle pain immediately or after a duathlon competition, but it appears to control an increase in pain.

  8. Effect of Kinesio Tape Application on Calf Pain and Ankle Range of Motion in Duathletes

    PubMed Central

    Merino-Marban, Rafael; Mayorga-Vega, Daniel; Fernandez-Rodriguez, Emilio

    The purpose of this study was to examine the effect of the kinesio tape immediately after its application and after a duathlon competition on calf pain and the ankle range of motion in duathletes. A sample of 28 duathletes (age 29.11 ± 10.35 years; body height 172.57 ± 6.17 cm; body mass 66.63 ± 9.01 kg; body mass index 22.29 ± 2.00 kg/m 2 ) were recruited from the competitors in a duathlon sprint. The Numerical Pain Rating Scale and ankle dorsiflexion range of motion measures were obtained at baseline, immediately after taping and 10 to 15 minutes after ending the duathlon competition. The kinesio tape was applied on the calf of duathletes 20 to 90 minutes before the competition, only on one of their legs (experimental leg) with the other leg acting as a control (control leg) in a randomized order. According to the between-group comparison, no differences were found immediately after the application of the kinesio tape and after the competition in the ankle range of motion and calf pain. However, a significant difference from baseline to immediately after taping was found in the ankle range of motion in the experimental leg. Applying the kinesio tape on the calf seems to immediately increase ankle dorsiflexion range of motion, but not after a duathlon competition. Applying the kinesio tape on the calf does not reduce muscle pain immediately or after a duathlon competition, but it appears to control an increase in pain. PMID:24146713

  9. Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring

    PubMed Central

    Kitaguchi, Yuya; Habuka, Satoru; Hatta, Shinichiro; Aruga, Tetsuya; Paulsson, Magnus; Ueba, Hiromu

    2015-01-01

    Summary Mechanical methods for single-molecule control have potential for wide application in nanodevices and machines. Here we demonstrate the operation of a single-molecule switch made functional by the motion of a phenyl ring, analogous to the lever in a conventional toggle switch. The switch can be actuated by dual triggers, either by a voltage pulse or by displacement of the electrode, and electronic manipulation of the ring by chemical substitution enables rational control of the on-state conductance. Owing to its simple mechanics, structural robustness, and chemical accessibility, we propose that phenyl rings are promising components in mechanical molecular devices. PMID:26665080

  10. Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring.

    PubMed

    Kitaguchi, Yuya; Habuka, Satoru; Okuyama, Hiroshi; Hatta, Shinichiro; Aruga, Tetsuya; Frederiksen, Thomas; Paulsson, Magnus; Ueba, Hiromu

    2015-01-01

    Mechanical methods for single-molecule control have potential for wide application in nanodevices and machines. Here we demonstrate the operation of a single-molecule switch made functional by the motion of a phenyl ring, analogous to the lever in a conventional toggle switch. The switch can be actuated by dual triggers, either by a voltage pulse or by displacement of the electrode, and electronic manipulation of the ring by chemical substitution enables rational control of the on-state conductance. Owing to its simple mechanics, structural robustness, and chemical accessibility, we propose that phenyl rings are promising components in mechanical molecular devices. PMID:26665080

  11. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  12. Active control of heave motion for TLP-type offshore platform under random waves

    NASA Astrophysics Data System (ADS)

    Battista, Ronaldo C.; Alves, Rosane M.

    1999-05-01

    In deep waters scenarios Tension Leg Platforms (TLP), under severe sea/wind conditions, may experience large response amplitudes of the hull motion. Large heave amplitudes caused by random dynamic loads appear as one of the most deleterious effects to the structural safety and integrity of the most critical components: mooring system and the handing risers. In a preliminary design reduction of these amplitudes is in general tentatively sought by compromised measures and concurrent design criteria like: high flutuability and deck payload vs. tendons and risers submerged weight; deck hydrodynamic vs. length variation of pretension tendons, etc. This paper shows that active control system may be installed inside the hull to attenuate dynamic amplitudes in heave motion. Optimal control theory are applicated for the idealization of mechanism to reduce the dynamic response amplitude, improving the safety conditions and increasing service life of tendons and risers, insuring the system functioning at all. The uncontrolled and controlled dynamic behaviors of a TLP prototype are investigated by using simplified mathematical models. The numerical results lead to the conclusion that active systems have good performance and efficiency in reducing and controlling the heave motion amplitudes and consequently the stress variations in tendons and risers of a TLP.

  13. The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation.

    PubMed

    Bartenbach, V; Sander, C; Pöschl, M; Wilging, K; Nelius, T; Doll, F; Burger, W; Stockinger, C; Focke, A; Stein, T

    2013-03-15

    Robotic manipulanda are an established tool for the investigation of human motor control and learning. Potentially, robotic manipulanda could also be valuable in the investigation of skill learning in more natural movement tasks. Most current designs have been developed for studying dynamic learning and rehabilitation and are restricted to 2D space. However, natural upper limb movements take place in 3D space, sometimes with high underlying forces. In this paper, we introduce a robotic device, the BioMotionBot, that can be used in established applications of dynamic learning and rehabilitation but also enables the investigation of skill learning in more natural 3D movement tasks with large dynamic perturbations. The design of the BioMotionBot is based on a mechanism with hybrid serial and parallel kinematics. We first describe the BioMotionBot's mechanical design, the electronic components, the software structure and the control system. To investigate the performance of the BioMotionBot, its stiffness, endpoint mass, endpoint viscosity, haptic resolution, force depth and impedance ratio are evaluated. Additionally, we develop a detailed multi-body simulation model to validate aspects of the structure and behavior of the BioMotionBot. Finally, we present experimental data from a dynamic learning task in 2D and test a 3D scenario with virtual walls. Our results demonstrate that the BioMotionBot can be used for research in human motor learning and rehabilitation and also has potential for the investigation of skill learning in more natural 3D movement tasks.

  14. Dynamics and control of satellite relative motion in proximity operations

    NASA Astrophysics Data System (ADS)

    Okasha, Mohamed Elsayed Aly Abd Elaziz

    In this dissertation, the development of relative navigation, guidance, and control algorithms of an autonomous space rendezvous and docking system are presented. These algorithms are based on innovative formulations of the relative motion equations that are completely explicit in time. The navigation system uses an extended Kalman filter based on these formulations to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle and the chaser attitude and gyro biases. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system, along with the star tracker and gyro measurements of the chaser. The corresponding measurement models, process noise matrix, and other filter parameters are provided. The guidance and control algorithms are based on the glideslope used in the past for rendezvous and proximity operations of the Space Shuttle with other vehicles. These algorithms are used to approach, flyaround, and to depart from a target vehicle in elliptic orbits. The algorithms are general and able to translate the chaser vehicle in any direction, decelerate while approaching the target vehicle, and accelerate when moving away. Numerical nonlinear simulations that illustrate the relative navigation, attitude estimation, guidance, and control algorithm's, as well as performance and accuracy are evaluated in the research study.

  15. Controlled motion of domain walls in submicron amorphous wires

    NASA Astrophysics Data System (ADS)

    Ťibu, Mihai; Lostun, Mihaela; Allwood, Dan A.; Rotǎrescu, Cristian; Atiťoaie, Alexandru; Lupu, Nicoleta; Óvári, Tibor-Adrian; Chiriac, Horia

    2016-05-01

    Results on the control of the domain wall displacement in cylindrical Fe77.5Si7.5B15 amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the first time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.

  16. Persistent Cellular Motion Control and Trapping Using Mechanotactic Signaling

    PubMed Central

    Zhu, Xiaoying; Bouffanais, Roland; Yue, Dick K. P.

    2014-01-01

    Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i) optimal level of extracellular calcium ([Ca2+ ]ext mM) we found, (ii) controllable fluid shear stress of low magnitude (), and (iii) the ability to swiftly reverse flow direction (within one second), we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011) Proc Natl Acad Sci USA 108:11417–11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus. PMID:25207940

  17. Passive Motion Paradigm: An Alternative to Optimal Control

    PubMed Central

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of

  18. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  19. An adaptive recurrent-neural-network motion controller for X-Y table in CNC machine.

    PubMed

    Lin, Faa-Jeng; Shieh, Hsin-Jang; Shieh, Po-Huang; Shen, Po-Hung

    2006-04-01

    In this paper, an adaptive recurrent-neural-network (ARNN) motion control system for a biaxial motion mechanism driven by two field-oriented control permanent magnet synchronous motors (PMSMs) in the computer numerical control (CNC) machine is proposed. In the proposed ARNN control system, a RNN with accurate approximation capability is employed to approximate an unknown dynamic function, and the adaptive learning algorithms that can learn the parameters of the RNN on line are derived using Lyapunov stability theorem. Moreover, a robust controller is proposed to confront the uncertainties including approximation error, optimal parameter vectors, higher-order terms in Taylor series, external disturbances, cross-coupled interference and friction torque of the system. To relax the requirement for the value of lumped uncertainty in the robust controller, an adaptive lumped uncertainty estimation law is investigated. Using the proposed control, the position tracking performance is substantially improved and the robustness to uncertainties including cross-coupled interference and friction torque can be obtained as well. Finally, some experimental results of the tracking of various reference contours demonstrate the validity of the proposed design for practical applications. PMID:16602590

  20. Abdominal muscle activation changes if the purpose is to control pelvis motion or thorax motion.

    PubMed

    Vera-Garcia, Francisco J; Moreside, Janice M; McGill, Stuart M

    2011-12-01

    The aim of this study was to compare trunk muscular recruitment and lumbar spine kinematics when motion was constrained to either the thorax or the pelvis. Nine healthy women performed four upright standing planar movements (rotations, anterior-posterior translations, medial-lateral translations, and horizontal circles) while constraining pelvis motion and moving the thorax or moving the pelvis while minimizing thorax motion, and four isometric trunk exercises (conventional curl-up, reverse curl-up, cross curl-up, and reverse cross curl-up). Surface EMG (upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, and latissimus dorsi) and 3D lumbar displacements were recorded. Pelvis movements produced higher EMG amplitudes of the oblique abdominals than thorax motions in most trials, and larger lumbar displacements in the medial-lateral translations and horizontal circles. Conversely, thorax movements produced larger rotational lumbar displacement than pelvis motions during rotations and higher EMG amplitudes for latissimus dorsi during rotations and anterior-posterior translations and for lower rectus abdominis during the crossed curl-ups. Thus, different neuromuscular compartments appear when the objective changes from pelvis to thorax motion. This would suggest that both movement patterns should be considered when planning spine stabilization programs, to optimize exercises for the movement and muscle activations desired.

  1. Space motion sickness: The sensory motor controls and cardiovascular correlation

    NASA Astrophysics Data System (ADS)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  2. 78 FR 38702 - Brenda Wirkkala See; Notice of Application Accepted for Filing, Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has....woo@ferc.gov . j. Deadline for filing comments, motions to intervene, and protests, is 30 days from... Secretary of the Commission. n. Comments, Protests, or Motions to Intervene: Anyone may submit comments,...

  3. 77 FR 42715 - North American Hydro Holdings, LLC; Notice of Application Accepted for Filing, Soliciting Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Filing, Soliciting Motions To Intervene, Protests, and Comments Take notice that the following... . j. Deadline for filing motions to intervene, protests, and comments is 15 days from the issuance... (P-9784-002) on any motions, protests, or comments filed. k. Description of Application:...

  4. 78 FR 44555 - Alabama Power Company; Notice of Application Accepted for Filing Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has....alvey@ferc.gov j. Deadline for filing comments, motions to intervene, and protests: August 19, 2013 All.... n. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a...

  5. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    SciTech Connect

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-07-08

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V{sub s30}, etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  6. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Motion and effect of cockpit controls. 25.779 Section 25.779 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that...

  7. Large band high sensitivity motion measurement and control of spacecrafts and satellites

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-04-01

    In this paper we describe the characteristics and performances of mono-axial monolithic sensors aimed to low frequency motion measurement and control of spacecrafts and satellites. The mechanical part of these sensors is based on the UNISA Folded Pendulum, a mechanical architecture developed for ground-based applications. The unique features of the UNISA class of folded pendulum sensors (compactness, lightness, scalability, low resonance frequency and high quality factor) are based on the action of the gravitational force on the the moving part of the sensor. In this paper we show how to extend the application of ground-based folded pendulum also to space, in absence of gravity, still keeping all their peculiar features and characteristics. Tests on a prototype confirm the feasibility of this application, demonstrating also that interesting performances can be relatively easily obtained.

  8. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  9. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  10. Projection of controlled repeatable real-time moving targets to test and evaluate motion imagery quality

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen D.; Mendez, Michael; Trent, Randall

    2015-05-01

    The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.

  11. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Aerodynamic controls: Motion and effect (1) Primary controls: Aileron Right (clockwise) for right wing down... auxiliary lift devices) Forward or up for flaps up or auxiliary device stowed; rearward or down for flaps down or auxiliary device deployed. Trim tabs (or equivalent) Switch motion or mechanical rotation...

  12. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose up... lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to...) Auxiliary. Controls Motion and effect Landing gear Down to extend....

  13. The Art and Literature of Motion Pictures. A Study in Bibliographic and Filmographic Control.

    ERIC Educational Resources Information Center

    Anderson, Barbara E.

    This survey of efforts in the bibliographic control of film literature includes a review of cataloging practices for motion pictures, an analysis of the handling and control of the major works about motion pictures, a comparison of the major film cataloging codes used in the United States, Great Britain, and Europe, and a survey of the major…

  14. An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control

    ERIC Educational Resources Information Center

    Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.

    2012-01-01

    Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…

  15. 75 FR 34725 - Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ..., Motions To Intervene, and Competing Applications; Mahoning Hydropower, LLC June 10, 2010. On May 25, 2010, Mahoning Hydropower, LLC filed an application, pursuant to section 4(f) of the Federal Power Act,...

  16. Center of gravity motions and ankle joint stiffness control in upright undisturbed stance modeled through a fractional Brownian motion framework.

    PubMed

    Rougier, P; Caron, O

    2000-12-01

    The authors modeled the center of gravity vertical projection (CG(v)) and the difference, CP - CG(v), which, combined, constitute the center of pressure (CP) trajectory, as fractional Brownian motion in order to investigate their relative contributions and their spatiotemporal articulation. The results demonstrated that CG(v) and CP - CG(v) motions are both endowed in complementary fashion with strong stochastic and part-deterministic behaviors. In addition, if the temporal coordinates remain similar for all 3 trajectories by definition, the switch between the successive control mechanisms appears for shorter displacements for CP - CG(v) and CG(v) than for CP trajectories. Results deduced from both input (CG(v)) and muscular stiffness (CP - CG(v)) thus provide insight into the way the central nervous system regulates stance control and in particular how CG and CP - CG are controlled. PMID:11114233

  17. Multi-robot motion control for cooperative observation

    SciTech Connect

    Parker, L.E.

    1997-06-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the authors investigate the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. They focus primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The authors then present a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. They analyze the effectiveness of the approach by comparing it to 3 other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  18. Cooperative motion control for multi-target observation

    SciTech Connect

    Parker, L.E.

    1997-08-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The focus is primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The author then presents a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. The effectiveness of the approach is analyzed by comparing it to three other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  19. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  20. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  1. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  2. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  3. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  4. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  5. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  6. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  7. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  8. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operate in accordance with the following movements and actuation: (a) Flight controls, including the... forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  9. Stirling engine power control and motion conversion mechanism

    DOEpatents

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  10. Control-structure interaction/mirror motion compensation

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark; Chu, Peter; Price, Xen

    1992-01-01

    Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.

  11. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  12. Transderm scopolamine efficacy related to time of application prior to the onset of motion.

    PubMed

    Levy, G D; Rapaport, M H

    1985-06-01

    We evaluated Transdermal Scopolamine related to the time of application prior to the onset of motion. In this study 44 subjects participated. The first group applied the transdermal disc within 4 h and the second group 8 h or more prior to the onset of motion. We observed a significant decrease in the incidence and the degree of motion sickness for the group with at least 8 h of scopolamine application prior to sea travel. Therefore, the transdermal scopolamine system should be applied at least 8 h before potentially disturbing motion to provide adequate prophylaxis against motion sickness. We found no significant difference in motion sickness susceptibility between men and women, in contrast to earlier reports.

  13. Auricular Acupressure for Managing Postoperative Pain and Knee Motion in Patients with Total Knee Replacement: A Randomized Sham Control Study

    PubMed Central

    Chang, Ling-hua; Hsu, Chung-Hua; Jong, Gwo-Ping; Ho, Shungtai; Tsay, Shiow-luan; Lin, Kuan-Chia

    2012-01-01

    Background. Postoperative pain management remains a significant challenge for all healthcare providers. A randomized controlled trial was conducted to examine the adjuvant effects of auricular acupressure on relieving postoperative pain and improving the passive range of motion in patients with total knee replacement (TKR). Method. Sixty-two patients who had undergone a TKR were randomly assigned to the acupressure group and the sham control group. The intervention was delivered three times a day for 3 days. A visual analog scale (VAS) and the Short-Form McGill Pain Questionnaire were used to assess pain intensity. Pain medication consumption was recorded, and the knee motion was measured using a goniometer. Results. The patients experienced a moderately severe level of pain postoperatively (VAS 58.66 ± 20.35) while being on the routine PCA. No differences were found in pain scores between the groups at all points. However, analgesic drug usage in the acupressure group patients was significantly lower than in the sham control group (P < 0.05), controlling for BMI, age, and pain score. On the 3rd day after surgery, the passive knee motion in the acupressure group patients was significantly better than in the sham control group patients (P < 0.05), controlling for BMI. Conclusion. The application of auricular acupressure at specific therapeutic points significantly reduces the opioid analgesia requirement and improves the knee motion in patients with TKR. PMID:22844334

  14. The Application of Optimisation Methods to Constrain Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Tetley, M. G.; Williams, S.; Hardy, S.; Müller, D.

    2015-12-01

    Plate tectonic reconstructions are an excellent tool for understanding the configuration and behaviour of continents through time on both global and regional scales, and are relatively well understood back to ~200 Ma. However, many of these models represent only relative motions between continents, providing little information of absolute tectonic motions and their relationship with the deep Earth. Significant issues exist in solving this problem, including how to combine constraints from multiple, diverse data into a unified model of absolute plate motions; and how to address uncertainties both in the available data, and in the assumptions involved in this process (e.g. hotspot motion, true polar wander). In deep time (pre-Pangea breakup), plate reconstructions rely more heavily on paleomagnetism, but these data often imply plate velocities much larger than those observed since the breakup of the supercontinent Pangea where plate velocities are constrained by the seafloor spreading record. Here we present two complementary techniques to address these issues, applying parallelized numerical methods to quantitatively investigate absolute plate motions through time. Firstly, we develop a data-fit optimized global absolute reference frame constrained by kinematic reconstruction data, hotspot-trail observations, and trench migration statistics. Secondly we calculate optimized paleomagnetic data-derived apparent polar wander paths (APWPs) for both the Phanerozoic and Precambrian. Paths are generated from raw pole data with optimal spatial and temporal pole configurations calculated using all known uncertainties and quality criteria to produce velocity-optimized absolute motion paths through deep time.

  15. A visual motion detecting module for dragonfly-controlled robots.

    PubMed

    Pham, Thuy T; Higgins, Charles M

    2014-01-01

    When imitating biological sensors, we have not completely understood the early processing of the input to reproduce artificially. Building hybrid systems with both artificial and real biological components is a promising solution. For example, when a dragonfly is used as a living sensor, the early processing of visual information is performed fully in the brain of the dragonfly. The only significant remaining tasks are recording and processing neural signals in software and/or hardware. Based on existing works which focused on recording neural signals, this paper proposes a software application of neural information processing to design a visual processing module for dragonfly hybrid bio-robots. After a neural signal is recorded in real-time, the action potentials can be detected and matched with predefined templates to detect when and which descending neurons fire. The output of the proposed system will be used to control other parts of the robot platform. PMID:25570294

  16. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  17. Analytic Theory and Control of the Motion of Spinning Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Tsiotras, Panagiotis

    1993-01-01

    -fixed torques. Assessment of the analytic solutions reveals that they are very accurate; for symmetric bodies the solutions of Euler's equations of motion are, in fact, exact. Second, the results of this research have a fundamental impact on practical scientific and mechanical applications in terms of the analysis and control of all finite-sized rigid bodies ranging from nanomachines to very large bodies, both man made and natural. After all, Euler's equations of motion apply to all physical bodies, barring only the extreme limits of quantum mechanics and relativity.

  18. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control

    PubMed Central

    Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-01-01

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. PMID:27733607

  19. Regularization and control of irregular vehicular motion through a series of signals at disordered intervals

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2011-06-01

    We study the control and regularization of irregular motion of a vehicle moving through the series of traffic signals positioned at disordered intervals. All signals are controlled by both cycle time and phase shift. The nonlinear dynamic model of the vehicular motion controlled by signals is described in terms of the stochastic nonlinear map. The vehicle exhibits a very complex behavior with varying both cycle time and strength of disordered intervals. The delay or advance of tour time is compensated by synchronizing the phase shift with disordered intervals. The irregular motion induced by the disordered configuration of signals is regularized for various values of cycle time.

  20. Handbook on astronaut crew motion disturbances for control system design. [in skylab

    NASA Technical Reports Server (NTRS)

    Kullas, M. C.

    1979-01-01

    The analyses and results pertinent to the characterization of the disturbances imparted to the Skylab vehicle by the T-013 crew motion experiments are summarized. Guidelines to help control system designers assess anticipated crew motion disturbances during the design cycle of a new manned spacecraft control system are provided. These guidelines, in conjunction with the T-013 characterizations outlined, begin with the control system conceptual design and conclude with preliminary expectations for pointing performance as affected by crew motions. Block diagrams to highlight the contents so that the reader can easily identify the information and data flow are used. These diagrams provide a handy cross reference of related topics.

  1. Adaptive motion artifact reducing algorithm for wrist photoplethysmography application

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Wang, Guijin; Shi, Chenbo

    2016-04-01

    Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.

  2. Enhanced Modeling of First-Order Plant Equations of Motion for Aeroelastic and Aeroservoelastic Applications

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2010-01-01

    A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.

  3. 78 FR 35015 - Alabama Power Company; Notice of Application Accepted for Filing, Soliciting Comments, Motions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Comments, Motions to Intervene, And Protests Take notice that the following hydroelectric application has... intervene, and protests: July 8, 2013. All documents may be filed electronically via the Internet. See, 18.... n. Comments, Protests, or Motions to Intervene: Anyone may submit comments, a protest, or a...

  4. 76 FR 71005 - Brazos River Authority; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ..., Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric... comments, motions to intervene, and protests, is 30 days from the issuance date of this notice. All... protests filed. k. Description of Request: The applicant proposes to surrender the license and...

  5. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  6. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  7. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  8. Quantitative analysis of motion control in long term microgravity.

    PubMed

    Baroni, G; Ferrigno, G; Anolli, A; Andreoni, G; Pedotti, A

    1998-01-01

    In the frame of the 179-days EUROMIR '95 space mission, two in-flight experiments have foreseen quantitative three-dimensional human movement analysis in microgravity. For this aim, a space qualified opto-electronic motion analyser based on passive markers has been installed onboard the Russian Space Station MIR and 8 in flight sessions have been performed. Techhology and method for the collection of kinematics data are described, evaluating the accuracy in three-dimensional marker localisation. Results confirm the suitability of opto-electronic technology for quantitative human motion analysis on orbital modules and raise a set of "lessons learned", leading to the improvement of motion analyser performance with a contemporary swiftness of the on-board operations. Among the experimental program of T4, results of three voluntary posture perturbation protocols are described. The analysis suggests that a short term reinterpretation of proprioceptive information and re-calibration of sensorimotor mechanisms seem to end within the first weeks of flight, while a continuous long term adaptation process allows the refinement of motor performance, in the frame of never abandoned terrestrial strategies.

  9. Pebble-bed pebble motion: Simulation and Applications

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine

  10. Abstracted Workow Framework with a Structure from Motion Application

    NASA Astrophysics Data System (ADS)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense

  11. 78 FR 7770 - Boyce Hydro Power, LLC; Notice of Application Accepted for Filing, Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Boyce Hydro Power, LLC; Notice of Application Accepted for Filing, Soliciting Motions To Intervene, Protests, and Comments Take notice that the following...

  12. 77 FR 53880 - Portland General Electric Company; Notice of Application Accepted for Filing, Soliciting Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Portland General Electric Company; Notice of Application Accepted for Filing, Soliciting Motions To Intervene, Protests, and Comments Take notice that the following...

  13. Controlling aliased dynamics in motion systems? An identification for sampled-data control approach

    NASA Astrophysics Data System (ADS)

    Oomen, Tom

    2014-07-01

    Sampled-data control systems occasionally exhibit aliased resonance phenomena within the control bandwidth. The aim of this paper is to investigate the aspect of these aliased dynamics with application to a high performance industrial nano-positioning machine. This necessitates a full sampled-data control design approach, since these aliased dynamics endanger both the at-sample performance and the intersample behaviour. The proposed framework comprises both system identification and sampled-data control. In particular, the sampled-data control objective necessitates models that encompass the intersample behaviour, i.e., ideally continuous time models. Application of the proposed approach on an industrial wafer stage system provides a thorough insight and new control design guidelines for controlling aliased dynamics.

  14. Coordinating robot motion, sensing, and control in plans. LDRD project final report

    SciTech Connect

    Xavier, P.G.; Brown, R.G.; Watterberg, P.A.

    1997-08-01

    The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The project considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.

  15. Watt-linkage based sensors for low frequency motion measurement and control of spacecrafts and satellites

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Giordano, G.; Romano, R.; Barone, F.

    2014-03-01

    This paper describes a new mechanical application of the Watt-linkage for the development and implementation of mono-axial sensors aimed to low frequency motion measurement and control of spacecrafts and satellites. The basic component of these sensors is the one dimensional UNISA Folded Pendulum mechanical sensor, developed for ground-based applications, whose unique features are due to a very effective optimization of the effects of gravitational force on the folded pendulum mechanical components, that allowed the design and implementation of FP sensors compact (< 10 cm), light (< 200 g), scalable, tunable resonance frequency < 100mHz), with large band (10-7 Hz - 10Hz), high quality factor (Q > 15000 in vacuum at 1Hz), with good immunity to environmental noises and sensitivity, guaranteed by an integrated laser optical readout, and fully adaptable to the specific requirements of the application. In this paper we show how to extend the application of ground-based FP also to space, in absence of gravity, still keeping all the above interesting features and characteristics that make this class of sensors very effective in terms of large band, especially in the low frequency, sensitivity and long term reliability. Preliminary measurements on a prototype confirm the feasibility, showing also that very good performances can be relatively easily obtained.

  16. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  17. Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation.

    PubMed

    Liaw, Hwee Choo; Shirinzadeh, Bijan; Smith, Julian

    2009-02-01

    This paper presents a robust neural network motion tracking control methodology for piezoelectric actuation systems employed in micro/nanomanipulation. This control methodology is proposed for tracking of desired motion trajectories in the presence of unknown system parameters, nonlinearities including the hysteresis effect and external disturbances in the control systems. In this paper, the related control issues are investigated, and a control methodology is established including the neural networks and a sliding control scheme. In particular, the radial basis function (RBF) neural networks are chosen for function approximations. The stability of the closed-loop system, as well as the convergence of the position and velocity tracking errors to zero, is assured by the control methodology in the presence of the aforementioned conditions. An offline learning procedure is also proposed for the improvement of the motion tracking performance. Precise tracking results of the proposed control methodology for a desired motion trajectory are demonstrated in the experimental study. With such a motion tracking capability, the proposed control methodology promises the realization of high-performance piezoelectric actuated micro/nanomanipulation systems.

  18. 78 FR 64486 - Alabama Power Company; Notice of Application Accepted for Filing, Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... Energy Regulatory Commission Alabama Power Company; Notice of Application Accepted for Filing, Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection: a. Application Type:...

  19. 77 FR 107 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... Comments, Motions To Intervene, and Competing Applications; Earth By Design, Inc. On October 13, 2011, and supplemented on October 30, 2011, Earth By Design, Inc. filed an application for a preliminary permit, pursuant... generation of the project would be 7.2 gigawatt-hours. Applicant Contact: Mr. Jim Gordon, President, Earth...

  20. Fractional Brownian Motion:. Theory and Application to DNA Walk

    NASA Astrophysics Data System (ADS)

    Lim, S. C.; Muniandy, S. V.

    2001-09-01

    This paper briefly reviews the theory of fractional Brownian motion (FBM) and its generalization to multifractional Brownian motion (MBM). FBM and MBM are applied to a biological system namely the DNA sequence. By considering a DNA sequence as a fractal random walk, it is possible to model the noncoding sequence of human retinoblastoma DNA as a discrete version of FBM. The average scaling exponent or Hurst exponent of the DNA walk is estimated to be H = 0.60 ± 0.05 using the monofractal R/S analysis. This implies that the mean square fluctuation of DNA walk belongs to anomalous superdiffusion type. We also show that the DNA landscape is not monofractal, instead one has multifractal DNA landscape. The empirical estimates of the Hurst exponent falls approximately within the range H ~ 0.62 - 0.72. We propose two multifractal models, namely the MBM and multiscale FBM to describe the existence of different Hurst exponents in DNA walk.

  1. On the Motions of an Oscillating System Under the Influence of Flip-Flop Controls

    NASA Technical Reports Server (NTRS)

    Fluegge-Lotz, I.; Klotter, K.

    1949-01-01

    So-called flip-flop controls (also called "on-off-course controls") are frequently preferred to continuous controls because of their simple construction. Thus they are used also for the steering control of airplanes. Such a body possesses-even if one thinks, for instance, only of the symmetric longitudinal motion - three degrees of freedom so that a study of its motions under the influence of an intermittent control is at least lengthy. Thus, it is suggested that an investigation of the basic effect of such a control first be made on a system with one degree of freedom. Furthermore, we limit ourselves in the resent report to the investigation of an "ideal" control where the control surface immediately obeys the command given by the "steering control function". Thus the oscillation properties of the control surface and the defects in linkage, sensing element, and mixing device are, at first, neglected. As long as the deviations from the "ideal" control may be neglected in practice, also the motion of the control surface takes place at the heat of the motion of the principal system. The aim of our investigation is to obtain a survey of the influence of the system and control coefficients on the damping behavior which is to be attained.

  2. Unified Approach To Control Of Motions Of Mobile Robots

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Improved computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Present scheme similar to one described in "Coordinated Control of Mobile Robotic Manipulators" (NPO-19109). Both schemes based on configuration-control formalism. Present one incorporates explicit distinction between holonomic and nonholonomic constraints. Several other prior articles in NASA Tech Briefs discussed aspects of configuration-control formalism. These include "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes with Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).

  3. Abstracted Workow Framework with a Structure from Motion Application

    NASA Astrophysics Data System (ADS)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense

  4. Dimensional coordinate measurements: application in characterizing cervical spine motion

    NASA Astrophysics Data System (ADS)

    Zheng, Weilong; Li, Linan; Wang, Shibin; Wang, Zhiyong; Shi, Nianke; Xue, Yuan

    2014-06-01

    Cervical spine as a complicated part in the human body, the form of its movement is diverse. The movements of the segments of vertebrae are three-dimensional, and it is reflected in the changes of the angle between two joint and the displacement in different directions. Under normal conditions, cervical can flex, extend, lateral flex and rotate. For there is no relative motion between measuring marks fixed on one segment of cervical vertebra, the cervical vertebrae with three marked points can be seen as a body. Body's motion in space can be decomposed into translational movement and rotational movement around a base point .This study concerns the calculation of dimensional coordinate of the marked points pasted to the human body's cervical spine by an optical method. Afterward, these measures will allow the calculation of motion parameters for every spine segment. For this study, we choose a three-dimensional measurement method based on binocular stereo vision. The object with marked points is placed in front of the CCD camera. Through each shot, we will get there two parallax images taken from different cameras. According to the principle of binocular vision we can be realized three-dimensional measurements. Cameras are erected parallelly. This paper describes the layout of experimental system and a mathematical model to get the coordinates.

  5. DIESEL NOX CONTROL APPLICATION

    EPA Science Inventory

    The paper gives results of a project to design, develop, and demonstrate a diesel engine nitrogen oxide (NOx) and particulate matter (PM) control package that will meet the U.S. Navy's emission control requirements. (NOTE: In 1994, EPA issued a Notice for Proposed Rule Making (NP...

  6. Geometric Properties of a Mechanical Forward Motion Compensation System Controlled by a Piezoelectric Drive

    NASA Astrophysics Data System (ADS)

    Collette, F.; Gline, S.; Losseau, J.; Lecharlier, L.

    2012-07-01

    Forward Motion Compensation (FMC) systems have been designed to ensure the radiometric quality of motion acquisition in airborne cameras. If the radiometric benefits of FMC have been acknowledged, what are its effects on the geometrical properties of the camera? This paper demonstrates that FMC significantly improves geometrical properties of a camera. Aspects of FMC theory are discussed, with a focus on the near-lossless implementation of this technology into digital aerial camera systems. Among mechanical FMC technologies, the piezoelectric drive is proving to excel in dynamic positioning in both accuracy and repeatability. The patented piezoelectric drive integrated into Optech aerial camera systems allows for continuous and precise sensor motion to ensure exact compensation of the aircraft's forward motion. This paper presents findings that demonstrate the validity of this assertion. The paper also discusses the physical principles involved in motion acquisition. Equations are included that define the motion effect at image level and illustrate how FMC acts to prevent motion effects. The residual motion effect or compensation error is formulated and a practical computation applied to the more restrictive camera case. The assessment concludes that, in the range of airborne camera utilization, the mechanical FMC technique is free of "visible" error at both human eye and computer assessment level. Lastly, the paper proceeds to a detailed technical discussion of piezoelectric drives and why they have proven to be so effective as nanopositioning devices for optical applications. The effectiveness of the patented piezoelectric drives used to achieve FMC in Optech cameras is conclusively demonstrated.

  7. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms.

    PubMed

    Cowings, P S; Toscano, W B

    2000-10-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  8. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  9. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  10. Applications of markerless motion capture in gait recognition.

    PubMed

    Sandau, Martin

    2016-03-01

    This thesis is based on four manuscripts where two of them were accepted and two were submitted to peer-reviewed journals. The experimental work behind the thesis was conducted at the Institute of Neuroscience and Pharmacology, University of Copenhagen. The purpose of the studies was to explore the variability of human gait and to conduct new methods for precise estimation of the kinematic parameters applied in forensic gait analysis. The gait studies were conducted in a custom built gait laboratory designed to obtain optimal conditions for markerless motion analysis. The set-up consisted of eight synchronised cameras located in the corners of the laboratory, which were connected to a single computer. The captured images were processed with stereovision-based algorithms to provide accurate 3D reconstructions of the participants. The 3D reconstructions of the participants were obtained during normal walking and the kinematics were extracted with manual and automatic methods. The kinematic results from the automatic approach were compared to marker-based motion capture to validate the precision. The results showed that the proposed markerless motion capture method had a precision comparable to marker-based methods in the frontal plane and the sagittal plane. Similar markerless motion capture methods could therefore provide the basis for reliable gait recognition based on kinematic parameters. The manual annotations were compared to the actual anthropometric measurements obtained from MRI scans and the intra- and inter-observer variability was also quantified to observe the associated effect on recognition. The results showed not only that the kinematics in the lower extremities were important but also that the kinematics in the shoulders had a high discriminatory power. Likewise, the shank length was also highly discriminatory, which has not been previously reported. However, it is important that the same expert performs all annotations, as the inter

  11. The Development of a Computer Controlled Super 8 Motion Picture Projector.

    ERIC Educational Resources Information Center

    Reynolds, Eldon J.

    Instructors in Child Development at the University of Texas at Austin selected sound motion pictures as the most effective medium to simulate the observation of children in nursery laboratories. A computer controlled projector was designed for this purpose. An interface and control unit controls the Super 8 projector from a time-sharing computer…

  12. Three axis electronic flight motion simulator real time control system design and implementation

    SciTech Connect

    Gao, Zhiyuan; Miao, Zhonghua Wang, Xiaohua; Wang, Xuyong

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  13. Three axis electronic flight motion simulator real time control system design and implementation.

    PubMed

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system. PMID:25554333

  14. Do motion controllers make action video games less sedentary? A randomized experiment.

    PubMed

    Lyons, Elizabeth J; Tate, Deborah F; Ward, Dianne S; Ribisl, Kurt M; Bowling, J Michael; Kalyanaraman, Sriram

    2012-01-01

    Sports- and fitness-themed video games using motion controllers have been found to produce physical activity. It is possible that motion controllers may also enhance energy expenditure when applied to more sedentary games such as action games. Young adults (N = 100) were randomized to play three games using either motion-based or traditional controllers. No main effect was found for controller or game pair (P > .12). An interaction was found such that in one pair, motion control (mean [SD] 0.96 [0.20] kcal · kg(-1) · hr(-1)) produced 0.10 kcal · kg(-1) · hr(-1) (95% confidence interval 0.03 to 0.17) greater energy expenditure than traditional control (0.86 [0.17] kcal · kg(-1) · hr(-1), P = .048). All games were sedentary. As currently implemented, motion control is unlikely to produce moderate intensity physical activity in action games. However, some games produce small but significant increases in energy expenditure, which may benefit health by decreasing sedentary behavior.

  15. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.

    PubMed

    Li, Tzuu-Hseng S; Su, Yu-Te; Lai, Shao-Wei; Hu, Jhen-Jia

    2011-06-01

    This paper proposes the implementation of fuzzy motion control based on reinforcement learning (RL) and Lagrange polynomial interpolation (LPI) for gait synthesis of biped robots. First, the procedure of a walking gait is redefined into three states, and the parameters of this designed walking gait are determined. Then, the machine learning approach applied to adjusting the walking parameters is policy gradient RL (PGRL), which can execute real-time performance and directly modify the policy without calculating the dynamic function. Given a parameterized walking motion designed for biped robots, the PGRL algorithm automatically searches the set of possible parameters and finds the fastest possible walking motion. The reward function mainly considered is first the walking speed, which can be estimated from the vision system. However, the experiment illustrates that there are some stability problems in this kind of learning process. To solve these problems, the desired zero moment point trajectory is added to the reward function. The results show that the robot not only has more stable walking but also increases its walking speed after learning. This is more effective and attractive than manual trial-and-error tuning. LPI, moreover, is employed to transform the existing motions to the motion which has a revised angle determined by the fuzzy motion controller. Then, the biped robot can continuously walk in any desired direction through this fuzzy motion control. Finally, the fuzzy-based gait synthesis control is demonstrated by tasks and point- and line-target tracking. The experiments show the feasibility and effectiveness of gait learning with PGRL and the practicability of the proposed fuzzy motion control scheme.

  16. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  17. Motion and force controlled vibration testing. [of aerospace hardware

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.; Boatman, David J.; Kern, Dennis L.

    1990-01-01

    A technique for controlling both the input acceleration and force in vibration tests is proposed to alleviate the overtesting risks and the problems associated with response limiting in conventional vibration tests of aerospace hardware. Previous research on impedance and force controlled vibration tests is reviewed and a simple equation governing the dual control of acceleration and force is derived. A practical method for implementing the dual control technique in random vibration tests has been demonstrated in JPL's environmental test facility using a conventional digital controller operating in the extremal mode. The dual control technique provides appropriate real-time notching of the input acceleration and a corresponding reduction of the test item response at resonances. Issues concerning the need for force and acceleration phase information, the adequacy of specifying the blocked force, and the derivation of the total force for multipoint supports are discussed.

  18. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  19. Flight experience with manually controlled unconventional aircraft motions

    NASA Technical Reports Server (NTRS)

    Barfield, A. F.

    1978-01-01

    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed.

  20. Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit

    NASA Astrophysics Data System (ADS)

    Cho, Hancheol; Park, Sang-Young; Choi, Kyu-Hong

    2008-09-01

    The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.

  1. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  2. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  3. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  4. Reduction of vortex induced forces and motion through surface roughness control

    SciTech Connect

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  5. Theory Of Controlling Spacecraft Motion With Pulsed Thrusters

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.; Flashner, Henryk

    1996-01-01

    Report presents new class of flight-control laws for making spacecraft follow desired trajectory by use of pulsed thrusters during such maneuvers as automated rendezvous on orbit and soft landing on planet. Although emphasis in report on guidance, ultimately shown same techniques also useful for attitude control and station keeping.

  6. Prediction and control of limit cycling motions in boosting rockets

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    An investigation concerning the prediction and control of observed limit cycling behavior in a boosting rocket is considered. The suspected source of the nonlinear behavior is the presence of Coulomb friction in the nozzle pivot mechanism. A classical sinusoidal describing function analysis is used to accurately recreate and predict the observed oscillatory characteristic. In so doing, insight is offered into the limit cycling mechanism and confidence is gained in the closed-loop system design. Nonlinear simulation results are further used to support and verify the results obtained from describing function theory. Insight into the limit cycling behavior is, in turn, used to adjust control system parameters in order to passively control the oscillatory tendencies. Tradeoffs with the guidance and control system stability/performance are also noted. Finally, active control of the limit cycling behavior, using a novel feedback algorithm to adjust the inherent nozzle sticking-unsticking characteristics, is considered.

  7. Application of interactive motion charts for displaying liver transplantation data in public websites.

    PubMed

    Santori, G

    2014-09-01

    In the past several years a vast amount of digital information has become available in every field of science, and ideas to apply improved strategies for obtaining a more in-depth knowledge of the data are considered in many areas. Although several American and European organizations show regularly in their public websites the aggregated results of organ donation and transplantation, no tools are provided to engage with the final users and to enable them to handle these data. In this study, a new model of Web-based interactive motion charts was applied to aggregated liver transplantation data obtained from a consecutive 28-year series of liver transplantation performed in a single Italian center. The interactive charts were obtained by combining the Google visualization application programming interface and the googleVis package within the open source statistical environment R. The interactive charts may be embedded into online/offline Web pages and rendered in each common browser. The users may interact with the charts by selecting chart type (bubble, bar, or line chart), x- and y-axis scales (linear or logarithmic), variables, bubble size, color, and even changing opacity of unselected items. Moreover, the charts may dynamically display the trend over time of each continuous/categoric variable, allowing users both to trace how the lines changes over time and to control the animation speed. The interactive motion charts should be used in the public websites that manage aggregated data concerning organ donation and transplantation. PMID:25242769

  8. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    SciTech Connect

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-04-15

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  9. An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation

    SciTech Connect

    D'Souza, Warren D.; McAvoy, Thomas J.

    2006-12-15

    Sophisticated methods for real-time motion compensation include using the linear accelerator, MLC, or treatment couch. To design such a couch, the required couch and control system dynamics need to be investigated. We used an existing treatment couch known as the Hexapod{sup TM} to gain insight into couch dynamics and an internal model controller to simulate feedback control of respiration-induced motion. The couch dynamics, described using time constants and dead times, were investigated using step inputs. The resulting data were modeled as first and second order systems with dead time. The couch was determined to have a linear response for step inputs {<=}1 cm. Motion data from 12 patients were obtained using a skin marker placed on the abdomen of the patient and the marker data were assumed to be an exact surrogate of tumor motion. The feedback system was modeled with the couch as a second-ordersystem and the controller as a first order system. The time constants of the couch and controller and the dead times were varied starting with parameters obtained from the Hexapod{sup TM} couch and the performance of the feedback system was evaluated. The resulting residual motion under feedback control was generally <0.3 cm when a fast enough couch was simulated.

  10. Sparse deformable models with application to cardiac motion analysis.

    PubMed

    Yu, Yang; Zhang, Shaoting; Huang, Junzhou; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from compressed sensing, a technique for efficiently reconstructing a signal based on its sparseness in some domain. In this problem, we employ sparsity to represent the outliers or gross errors, and combine it seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion, using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels. PMID:24683970

  11. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  12. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    PubMed

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  13. Optimal control of molecular motion expressed through quantum fluid dynamics

    NASA Astrophysics Data System (ADS)

    Dey, Bijoy K.; Rabitz, Herschel; Askar, Attila

    2000-04-01

    A quantum fluid-dynamic (QFD) control formulation is presented for optimally manipulating atomic and molecular systems. In QFD the control quantum system is expressed in terms of the probability density ρ and the quantum current j. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid-dynamical variables. The QFD approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.

  14. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  15. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    PubMed

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  16. Motion of the two-control airplane in rectilinear flight after initial disturbances with introduction of controls following an exponential law

    NASA Technical Reports Server (NTRS)

    Klemin, Alexander

    1937-01-01

    An airplane in steady rectilinear flight was assumed to experience an initial disturbance in rolling or yawing velocity. The equations of motion were solved to see if it was possible to hasten recovery of a stable airplane or to secure recovery of an unstable airplane by the application of a single lateral control following an exponential law. The sample computations indicate that, for initial disturbances complex in character, it would be difficult to secure correlation with any type of exponential control. The possibility is visualized that the two-control operation may seriously impair the ability to hasten recovery or counteract instability.

  17. Motion control of the satellite mounted robot arm which assures satellite attitude stability

    NASA Astrophysics Data System (ADS)

    Mitsushige, Oda

    When a robot arm is mounted on a satellite to perform some tasks, the satellite's attitude must be stabilized to retain the communication link and to generate electrical power from solar panels. It is not realistic to control the total system as one dynamic system, since the number of degrees of freedom becomes too large to be handled by state-of-the-art satellite mounted computers. This paper proposes a coordinated control between the satellite's attitude control system and the robot-arm control system. The robot-arm control system estimates the angular momentum of the planned robot-arm's motion. The satellite's attitude control system will compensate for the reaction by using feed-forward control. The robot-arm controller also manages the motion plan of the robot arm in order not to disturb the satellite's attitude stability.

  18. 78 FR 79427 - Greenwood County; Notice of Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Greenwood County; Notice of Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and...

  19. 76 FR 57731 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Comments, Motions To Intervene, and Competing Applications; McKay Dam Hydropower, LLC On May 31, 2011, McKay Dam Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the McKay Dam Hydroelectric...

  20. 76 FR 57731 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Comments, Motions To Intervene, and Competing Applications; Kachess Dam Hydropower, LLC On May 31, 2011, Kachess Dam Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Kachess Dam Hydroelectric...

  1. 76 FR 57732 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Comments, Motions To Intervene, and Competing Applications; Pacific Gas and Electric Company On September 1, 2011, Pacific Gas and Electric Company filed an application for a successive preliminary permit.... The annual electrical production would be between 396 and 1,584 gigawatt-hours. Besides the...

  2. Application and API for Real-time Visualization of Ground-motions and Tsunami

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are

  3. Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics

    NASA Technical Reports Server (NTRS)

    Martinez, Lindolfo; Rich, Thomas; Lucord, Steven; Diegelman, Thomas; Mireles, James; Gonzalez, Pete

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions.

  4. Computer Controlled Interactive Motion and Still Image Film Projection System for Vocational Education for the Deaf.

    ERIC Educational Resources Information Center

    Fox, Raymond G.

    1978-01-01

    Describes a micro-processor controlled instruction delivery system being developed for use with deaf students which incorporates film cassette, frame or sequence addressable, color motion or still visuals under computer program control for local or remote delivery. An authoring capability for development and validation and a program are also…

  5. Approaches to creating and controlling motion in MRI.

    PubMed

    Fischer, Gregory S; Cole, Gregory; Su, Hao

    2011-01-01

    Magnetic Resonance Imaging (MRI) can provide three dimensional (3D) imaging with excellent resolution and sensitivity making it ideal for guiding and monitoring interventions. The development of MRI-compatible interventional devices is complicated by factors including: the high magnetic field strength, the requirement that such devices should not degrade image quality, and the confined physical space of the scanner bore. Numerous MRI guided actuated devices have been developed or are currently being developed utilizing piezoelectric actuators as their primary means of mechanical energy generation to enable better interventional procedure performance. While piezoelectric actuators are highly desirable for MRI guided actuation for their precision, high holding force, and non-magnetic operation they are often found to cause image degradation on a large enough to scale to render live imaging unusable. This paper describes a newly developed piezoelectric actuator driver and control system designed to drive a variety of both harmonic and non-harmonic motors that has been demonstrated to be capable of operating both harmonic and non-harmonic piezoelectric actuators with less than 5% SNR loss under closed loop control. The proposed system device allows for a single controller to control any supported actuator and feedback sensor without any physical hardware changes.

  6. Application of vibrotactile feedback of body motion to improve rehabilitation in individuals with imbalance

    PubMed Central

    Wall, Conrad

    2010-01-01

    Background and Purpose Balance rehabilitation and vestibular/balance prostheses are both emerging fields that have a potential for synergistic interaction. This paper reviews vibrotactile prosthetic devices that have been developed to date and ongoing work related to the application of vibrotactile feedback for enhanced postural control. A vibrotactile feedback device developed in the author’s laboratory is described. Methods Twelve subjects with vestibular hypofunction were tested on a platform that moved randomly in a plane, while receiving vibrotactile feedback in the anterio-posterior direction. The feedback allowed subjects to significantly decrease their anterio-posterior body tilt, but did not change mediolateral tilt. A tandem walking task using subjects with vestibulopathies demonstrated a reduction in their medio-lateral sway due to vibrotactile feedback of medio-lateral body tilt, after controlling for the effects of task learning. The findings from two additional experiments conducted in the laboratories of collaborating physical therapists are summarized. Results The Dynamic Gait Index scores in community-dwelling elderly individuals who were prone-to-fall were significantly improved with the use of medio-lateral body tilt feedback. Discussion and Conclusions While more work is needed, these results suggest that vibrotactile tilt feedback of subjects’ body motion can be used effectively by physical therapists for balance rehabilitation. A preliminary description of the 3rd generation device that has been reduced from a vest format to a belt format is described to demonstrate the progressive evolution from research to clinical application. PMID:20588096

  7. Controllers, observers, and applications thereof

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zhou, Wankun (Inventor); Zheng, Qing (Inventor)

    2011-01-01

    Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.

  8. DNA motion induced by electrokinetic flow near an Au coated nanopore surface as voltage controlled gate.

    PubMed

    Sugimoto, Manabu; Kato, Yuta; Ishida, Kentaro; Hyun, Changbae; Li, Jiali; Mitsui, Toshiyuki

    2015-02-13

    We used fluorescence microscopy to investigate the diffusion and drift motion of λ DNA molecules on an Au-coated membrane surface near nanopores, prior to their translocation through solid-state nanopores. With the capability of controlling electric potential at the Au surface as a gate voltage, Vgate, the motions of DNA molecules, which are presumably generated by electrokinetic flow, vary dramatically near the nanopores in our observations. We carefully investigate these DNA motions with different values of Vgate in order to alter the densities and polarities of the counterions, which are expected to change the flow speed or direction, respectively. Depending on Vgate, our observations have revealed the critical distance from a nanopore for DNA molecules to be attracted or repelled-DNA's anisotropic and unsteady drifting motions and accumulations of DNA molecules near the nanopore entrance. Further finite element method (FEM) numerical simulations indicate that the electrokinetic flow could qualitatively explain these unusual DNA motions near metal-collated gated nanopores. Finally, we demonstrate the possibility of controlling the speed and direction of DNA motion near or through a nanopore, as in the case of recapturing a single DNA molecule multiple times with alternating current voltages on the Vgate. PMID:25611963

  9. DNA Motion Induced by Electrokinetic Flow near an Au Coated Nanopore Surface as Voltage Controlled Gate

    PubMed Central

    Sugimoto, Manabu; Kato, Yuta; Ishida, Kentaro; Hyun, Changbae; Li, Jiali

    2014-01-01

    The diffusion and drift motion of λ DNA molecules on Au coated membrane surface near nanopores prior to their translocation through solid-state nanopores are investigated using fluorescence microscopy. With the capability of controlling electric potential at the Au surface as a gate voltage, Vgate, the motions of DNA molecules vary dramatically near the nanopores in our observations, presumably generated by electrokinetic flow. We carefully investigate theses DNA motions with different values of Vgate in order to alter the densities and polarities of counterions; which are expected to change the flow speed or direction, respectively. Depending on Vgate, our observations have revealed the critical distance from a nanopore for DNA molecules to be attracted or to be repelled, DNA’s anisotropic and unsteady drifting motions and accumulations of DNA molecules near the nanopore entrance. Further finite element method (FEM) numerical simulations indicate that the electrokinetic flow could explain these unusual DNA motions near metal collated gated nanopores qualitatively. Finally, we demonstrate the possibility to control the speed and direction of DNA motion near or through a nanopore, for example, recapturing a single DNA molecule multiple times with AC voltages on the Vgate. PMID:25611963

  10. Autogenic-Feedback Training for the Control of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human physiological responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and "test-only" controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  11. Controlling Motion Sickness and Spatial Disorientation and Enhancing Vestibular Rehabilitation with a User-Worn See-Through Display

    PubMed Central

    Krueger, Wesley W.O.

    2010-01-01

    Objectives/Hypotheses An eyewear mounted visual display (“User-worn see-through display”) projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Study Design Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-post test design for patients in vestibular rehabilitation. Methods Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales while 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. Results All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to post-therapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. Conclusions A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon

  12. Controlling Motion at the Nanoscale: Rise of the Molecular Machines.

    PubMed

    Abendroth, John M; Bushuyev, Oleksandr S; Weiss, Paul S; Barrett, Christopher J

    2015-08-25

    As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies. PMID:26172380

  13. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  14. Controlling Motion at the Nanoscale: Rise of the Molecular Machines.

    PubMed

    Abendroth, John M; Bushuyev, Oleksandr S; Weiss, Paul S; Barrett, Christopher J

    2015-08-25

    As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.

  15. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  16. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  17. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  18. Evaluation of the leap motion controller as a new contact-free pointing device.

    PubMed

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  19. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  20. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    PubMed Central

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2015-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC. PMID:25609043

  1. Method for neural network control of motion using real-time environmental feedback

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1997-01-01

    A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.

  2. Interfacing and Motion Control of the UNC Heliostat

    NASA Astrophysics Data System (ADS)

    McMains, Lee

    2002-04-01

    The interface between a PC and existing & planned components of a solar telescope (Heliostat) is being revamped and the new configuration is expected to reduce complexity while increasing the precision of collected data. The automated solar tracking system, controlled by the PC and run using planned Simu-Link modules, will be used with optical sensing equipment to collect data from the visible and near-visible spectrum. The Heliostat would be used in the classroom for increased understanding of the physical properties of the Sun. A progress report on this aspect of the project will be given.

  3. Controlling the Motion of Knotted Polymers through Nanopores

    NASA Astrophysics Data System (ADS)

    Narsimhan, Vivek; Renner, C. Benjamin; Doyle, Patrick

    Nanopore sequencing is a technique where DNA moves through a pore and base-pair information is read along the chain as an electric signal. One hurdle facing this technique is that DNA passes too quickly through the pore, rendering the signal to be too noisy. In this talk, we discuss one strategy to control the speed by which polymers move through pores. By tying a knot on a polymer chain, we find that we can jam the polymer at the pore's entrance and halt translocation completely. This idea by itself may not seem useful, but by cycling the field on and off at the relaxation time scale of the knot, we can control the swelling dynamics of the knot at the pore's entrance, and hence ratchet the polymer through the pore. This talk focuses on two parts. First, we will discuss the dynamics of a knot jamming at the pore entrance and determine what sets the critical tension to halt translocation. We will determine how knot topology affects these results and discuss what regimes lead to large fluctuations in the translocation speed. We will then discuss the dynamics of a knot under a time-dependent, periodic force. Lastly, we develop a model to describe the knot's swelling dynamics during relaxation, and use this to explain some of the trends observed in our simulations. Now at Liquiglide.

  4. Electric-field-controlled suppression of Walker breakdown and chirality switching in magnetic domain wall motion

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bo; Li, You-Quan

    2016-07-01

    We theoretically study the dynamics of a magnetic domain wall controlled by an electric field in the presence of the spin flexoelectric interaction. We reveal that this interaction generates an effective spin torque and results in significant changes in the current-driven domain wall motion. In particular, the electric field can stabilize the domain wall motion, leading to strong suppression of the current-induced Walker breakdown and thus allowing a higher maximum wall velocity. We can furthermore use this electric-field control to efficiently switch the chirality of a moving domain wall in the steady regime.

  5. Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1992-01-01

    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area.

  6. Bacterial flagella-based propulsion and on/off motion control of microscale objects

    NASA Astrophysics Data System (ADS)

    Behkam, Bahareh; Sitti, Metin

    2007-01-01

    Miniaturization of the power source and on-board actuation is the main bottleneck for the development of microscale mobile robots. As a possible solution, this letter proposes the use of flagellar motors inside the intact cell of Serratia marcescens bacteria for controlled propulsion of swimming robotic bodies. The feasibility of the proposed idea is demonstrated by propelling 10μm polystyrene beads at an average speed of 15±6μm/s by several bacteria randomly attached on their surface. On/off motion control of the bead is achieved by introducing copper ions to stop the bacteria flagellar motors and ethylenediaminetetraacetic acid to resume their motion.

  7. Focused ultrasound treatment of VX2 tumors controlled by local harmonic motion.

    PubMed

    Curiel, Laura; Huang, Yuexi; Vykhodtseva, Natalia; Hynynen, Kullervo

    2009-06-01

    The purpose of this study was to evaluate the feasibility of using localized harmonic motion (LHM) to monitor and control focused ultrasound surgery (FUS) in VX2 tumors in vivo. FUS exposures were performed on 13 VX2 tumors implanted in nine rabbits. The same transducer induced coagulation and generated a localized oscillatory motion by periodically varying the radiation force. A separate diagnostic ultrasound transducer tracked motion by cross-correlating echo signals at different instances. A threshold in motion amplitude was instituted to cease exposure. Coagulation was confirmed by T2-weighted MR images, thermal dose obtained through MR thermometry and histological examinations. For tumor locations achieving coagulation, the LHM amplitude was 9% (p = 0.04) to 57% (p < 0.0001) lower than that before exposure. Control was successful for 74 (69%) out of 108 cases, with 52 (48%) reaching the threshold and achieving coagulation and 22 (21%) never reaching threshold nor coagulating. For the 34 (31%) unsuccessful exposures, 16 (15%) never reached the threshold but coagulation occurred, and 18 (16%) reached threshold without coagulation confirmed. Noise or radio-frequency signal changes explained motion over- or underestimation in 24 (22%) cases; the remaining 10 (9%) had other causes of error. The control was generally successful, but sudden change or noise in the acquired echo signal caused failure. Coagulation after exposure could be validated by comparing amplitudes before and after exposure.

  8. Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia.

    PubMed

    Kawamoto, Hiroaki; Taal, Stefan; Niniss, Hafid; Hayashi, Tomohiro; Kamibayashi, Kiyotaka; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2010-01-01

    Our goal is to enhance the quality of life of patients with hemiplegia by means of an active motion support system that assists the impaired motion such as to make it as close as possible to the motion of an able bodied person. We have developed the Robot Suit HAL (Hybrid Assistive Limb) to actively support and enhance the human motor functions. The purpose of the research presented in this paper is to propose the required control method to support voluntarily motion using a trigger based on patient's bioelectrical signal. Clinical trials were conducted in order to investigate the effectiveness of the proposed control method. The first stage of the trials, described in this paper, involved the participation of one hemiplegic patient who is not able to bend his right knee. As a result, the motion support provided by the HAL moved the paralyzed knee joint according to his intention and improved the range of the subject's knee flexion. The first evaluation of the control method with one subject showed promising results for future trials to explore the effectiveness for a wide range of types of hemiplegia. PMID:21095652

  9. Motion estimation performance models with application to hardware error tolerance

    NASA Astrophysics Data System (ADS)

    Cheong, Hye-Yeon; Ortega, Antonio

    2007-01-01

    The progress of VLSI technology towards deep sub-micron feature sizes, e.g., sub-100 nanometer technology, has created a growing impact of hardware defects and fabrication process variability, which lead to reductions in yield rate. To address these problems, a new approach, system-level error tolerance (ET), has been recently introduced. Considering that a significant percentage of the entire chip production is discarded due to minor imperfections, this approach is based on accepting imperfect chips that introduce imperceptible/acceptable system-level degradation; this leads to increases in overall effective yield. In this paper, we investigate the impact of hardware faults on the video compression performance, with a focus on the motion estimation (ME) process. More specifically, we provide an analytical formulation of the impact of single and multiple stuck-at-faults within ME computation. We further present a model for estimating the system-level performance degradation due to such faults, which can be used for the error tolerance based decision strategy of accepting a given faulty chip. We also show how different faults and ME search algorithms compare in terms of error tolerance and define the characteristics of search algorithm that lead to increased error tolerance. Finally, we show that different hardware architectures performing the same metric computation have different error tolerance characteristics and we present the optimal ME hardware architecture in terms of error tolerance. While we focus on ME hardware, our work could also applied to systems (e.g., classifiers, matching pursuits, vector quantization) where a selection is made among several alternatives (e.g., class label, basis function, quantization codeword) based on which choice minimizes an additive metric of interest.

  10. Decision Making and Finite-Time Motion Control for a Group of Robots.

    PubMed

    Lu, Qiang; Liu, Shirong; Xie, Xiaogao; Wang, Jian

    2013-04-01

    This paper deals with the problem of odor source localization by designing and analyzing a decision-control system (DCS) for a group of robots. In the decision level, concentration magnitude information and wind information detected by robots are used to predict a probable position of the odor source. Specifically, the idea of particle swarm optimization is introduced to give a probable position of the odor source in terms of concentration magnitude information. Moreover, an observation model of the position of the odor source is built according to wind information, and a Kalman filter is used to estimate the position of the odor source, which is combined with the position obtained by using concentration magnitude information in order to make a decision on the position of the odor source. In the control level, two types of the finite-time motion control algorithms are designed; one is a finite-time parallel motion control algorithm, while the other is a finite-time circular motion control algorithm. Precisely, a nonlinear finite-time consensus algorithm is first proposed, and a Lyapunov approach is used to analyze the finite-time convergence of the proposed consensus algorithm. Then, on the basis of the proposed finite-time consensus algorithm, a finite-time parallel motion control algorithm, which can control the group of robots to trace the plume and move toward the probable position of odor source, is derived. Next, a finite-time circular motion control algorithm, which can enable the robot group to circle the probable position of the odor source in order to search for odor clues, is also developed. Finally, the performance capabilities of the proposed DCS are illustrated through the problem of odor source localization. PMID:23033435

  11. Caterpillar-like flow of the Greenland Ice Sheet: observations of basal control on ice motion

    NASA Astrophysics Data System (ADS)

    Ryser, C.; Luethi, M. P.; Funk, M.; Catania, G. A.; Andrews, L. C.; Hawley, R. L.; Neumann, T.; Hoffman, M. J.

    2012-12-01

    Varying basal motion due to episodic basal water supply is a long-established component of ice flow. However, the physical processes that govern the role of water in basal motion still remain only weakly understood. We instrumented four boreholes at two sites with sensor systems to better understand the processes controlling seasonal flow velocity variations in the marginal zone of the Greenland Ice Sheet. We present measurements of borehole deformation, subglacial water pressure and surface motion during one year (July 2011 to September 2012). Subglacial water pressure and ice deformation show periodic variations on several time scales which are delayed by up to half a period, depending on sensor depth. These observations are interpreted as ice motion in a caterpillar-like fashion, as opposed to the conventionally assumed shear flow. Using a time-dependent, Full-Stokes ice flow model we find that spatially and temporally varying basal motion can explain the observed variations in deformation, and the delayed reaction at different depths. These new data show that the reaction to basal motion is not uniform throughout the ice column, but varies with depth.

  12. The application of biological motion research: biometrics, sport, and the military.

    PubMed

    Steel, Kylie; Ellem, Eathan; Baxter, David

    2015-02-01

    The body of research that examines the perception of biological motion is extensive and explores the factors that are perceived from biological motion and how this information is processed. This research demonstrates that individuals are able to use relative (temporal and spatial) information from a person's movement to recognize factors, including gender, age, deception, emotion, intention, and action. The research also demonstrates that movement presents idiosyncratic properties that allow individual discrimination, thus providing the basis for significant exploration in the domain of biometrics and social signal processing. Medical forensics, safety garments, and victim selection domains also have provided a history of research on the perception of biological motion applications; however, a number of additional domains present opportunities for application that have not been explored in depth. Therefore, the purpose of this paper is to present an overview of the current applications of biological motion-based research and to propose a number of areas where biological motion research, specific to recognition, could be applied in the future.

  13. An Interface for Specifying Rigid-Body Motions for CFD Applications

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Chan, William; Aftosmis, Michael; Meakin, Robert L.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    An interface for specifying rigid-body motions for CFD applications is presented. This interface provides a means of describing a component hierarchy in a geometric configuration, as well as the motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists of a general set of datatypes, along with rules for their interaction, and is designed to be flexible in order to evolve as future needs dictate. The specification is currently implemented with an XML file format which is portable across platforms and applications. The motion specification is capable of describing general rigid body motions, and eliminates the need to write and compile new code within the application software for each dynamic configuration, allowing client software to automate dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples, as well as the raw XML source of the file specifications, are included.

  14. Controlled Laboratory Comparison Study of Motion With Football Equipment in a Destabilized Cervical Spine

    PubMed Central

    Prasarn, Mark L.; Horodyski, MaryBeth; DiPaola, Matthew J.; DiPaola, Christian P.; Del Rossi, Gianluca; Conrad, Bryan P.; Rechtine, Glenn R.

    2015-01-01

    Background Numerous studies have shown that there are better alternatives to log rolling patients with unstable spinal injuries, although this method is still commonly used for placing patients onto a spine board. No previous studies have examined transfer maneuvers involving an injured football player with equipment in place onto a spine board. Purpose To test 3 different transfer maneuvers of an injured football player onto a spine board to determine which method most effectively minimizes spinal motion in an injured cervical spine model. Study Design Controlled laboratory study. Methods Five whole, lightly embalmed cadavers were fitted with shoulder pads and helmets and tested both before and after global instability was surgically created at C5-C6. An electromagnetic motion analysis device was used to assess the amount of angular and linear motion with sensors placed above and below the injured segment during transfer. Spine-boarding techniques evaluated were the log roll, the lift and slide, and the 8-person lift. Results The 8-person lift technique resulted in the least amount of angular and linear motion for all planes tested as compared with the lift-and-slide and log-roll techniques. This reached statistical significance for lateral bending (P = .031) and medial-lateral translation (P = .030) when compared with the log-roll maneuver. The lift-and-slide technique was significantly more effective at reducing motion than the log roll for axial rotation (P = .029) and lateral bending (P = .006). Conclusion The log roll resulted in the most motion at an unstable cervical injury as compared with the other 2 spine-boarding techniques examined. The 8-person lift and lift-and-slide techniques may both be more effective than the log roll at reducing unwanted cervical spine motion when spine boarding an injured football player. Reduction of such motion is critical in the prevention of iatrogenic injury. PMID:26535397

  15. Neural Control of Motion-to-Force Transitions with the Fingertip

    PubMed Central

    Venkadesan, Madhusudhan; Valero-Cuevas, Francisco J.

    2010-01-01

    The neural control of tasks such as rapid acquisition of precision pinch remains unknown. Therefore, we investigated the neural control of finger musculature when the index fingertip abruptly transitions from motion to static force production. Nine subjects produced a downward tapping motion followed by vertical fingertip force against a rigid surface. We simultaneously recorded three-dimensional fingertip force, plus the complete muscle coordination pattern using intramuscular electromyograms from all seven index finger muscles. We found that the muscle coordination pattern clearly switched from that for motion to that for isometric force ~5 ms before contact (p = 0.0004). Mathematical modeling and analysis revealed that the underlying neural control also switched between mutually incompatible strategies in a time-critical manner. Importantly, this abrupt switch in underlying neural control polluted fingertip force vector direction beyond what is explained by muscle activation-contraction dynamics and neuromuscular noise (p ≤0.003). We further ruled out an impedance control strategy in a separate test showing no systematic change in initial force magnitude for catch trials where the tapping surface was surreptitiously lowered and raised (p = 0.93). We conclude that the nervous system predictively switches between mutually incompatible neural control strategies to bridge the abrupt transition in mechanical constraints between motion and static force. Moreover because the nervous system cannot switch between control strategies instantaneously or exactly, there arise physical limits to the accuracy of force production on contact. The need for such a neurally demanding and time-critical strategy for routine motion-to-force transitions with the fingertip may explain the existence of specialized neural circuits for the human hand. PMID:18256256

  16. On the correlation between motion data captured from low-cost gaming controllers and high precision encoders.

    PubMed

    Purkayastha, Sagar N; Byrne, Michael D; O'Malley, Marcia K

    2012-01-01

    Gaming controllers are attractive devices for research due to their onboard sensing capabilities and low-cost. However, a proper quantitative analysis regarding their suitability for use in motion capture, rehabilitation and as input devices for teleoperation and gesture recognition has yet to be conducted. In this paper, a detailed analysis of the sensors of two of these controllers, the Nintendo Wiimote and the Sony Playstation 3 Sixaxis, is presented. The acceleration and angular velocity data from the sensors of these controllers were compared and correlated with computed acceleration and angular velocity data derived from a high resolution encoder. The results show high correlation between the sensor data from the controllers and the computed data derived from the position data of the encoder. From these results, it can be inferred that the Wiimote is more consistent and better suited for motion capture applications and as an input device than the Sixaxis. The applications of the findings are discussed with respect to potential research ventures.

  17. Applications of statistical mechanics to non-Brownian random motion

    NASA Astrophysics Data System (ADS)

    Kutner, Ryszard; Wysocki, Krzysztof

    1999-12-01

    We analysed discrete and continuous Weierstrass-Mandelbrot representations of the Lévy flights occasionally interrupted by spatial localizations. We chose the discrete representation to easily detect by Monte Carlo simulation which stochastic quantity could be a candidate for describing the real processes. We found that the particle propagator is able to reveal surprisingly close, stable long-range algebraic tail. Unfortunately, long flights present in the system make, in practice, the particle mean-square displacement an irregular step-like function; such a behavior was expected since it is an experimental reminiscence of divergence of the mean-square displacement, predicted by the theory. We developed the continuous representation in the context of random motion of a particle in an amorphous environment; we established a correspondence between the stochastic quantities of both representations in which the latter quantities contain some material constants. The material constants appear due to the thermal average of the space-dependent stretch exponent which defines the probability of the particle passing a given distance. This averaging was performed for intermediate or even high temperatures, as well as for low or even intermediate internal friction regimes where long but not extremely long flights are readily able to construct a significant part of the Lévy distribution. This supplies a kind of self-cut-off of the length of flights. By way of example, we considered a possibility of observing the Lévy flights of hydrogen in amorphous low-concentration, high-temperature Pd 85Si 15H 7.5 phase; this conclusion is based on the results of a real experiment (Driesen et al., in: Janot et al. (Eds.), Atomic Transport and Defects in Metals by Neutron Scattering, Proceedings in Physics, Vol. 10, Springer, Berlin, 1986, p. 126; Richter et al., Phys. Rev. Lett. 57 (1986) 731; Driesen, Doctoral Thesis, Antwerpen University, 1987), performed by detecting the incoherent

  18. Detection and Control of Mobile Robot Motion by Real-Time Computer Vision

    NASA Astrophysics Data System (ADS)

    Wunsche, H. J.

    1987-02-01

    An approach is presented that combines dynamical models of 3D motion with geometric models of the scene and the laws of perspective projection to estimate all motion parameters necessary to control a mobile robot vehicle. The approach is demonstrated by autonomous con-trol of a jet propelled air-cushion vehicle, navigating through a technical environment with three degrees of motion freedom and performing a rendezvous maneuver with a passive partner. Features of the partner and other objects in the scene, the 3D shapes of which are known, are looked for and then tracked by the processors of a multimicroprocessor system. A sequential Kalman filter formulation is used to detect and to cope with variable feature visibility due to occlusion and motion while determining the complete relative motion state without inversion of the projection equations. A scheme is developed for always selecting those features for tracking which yield the best state estimate, the quality of which is demonstrated by physical docking with a static partner. The system operates at 0.13 seconds cycle time, half of which is spent for I/O operations. Experimental results are given.

  19. Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation

    PubMed Central

    Frankel, Mitchell A.; Mathews, V John; Clark, Gregory A.; Normann, Richard A.; Meek, Sanford G.

    2016-01-01

    Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles. The controller was successful in evoking steps in joint position with 2.4% overshoot, 2.3-s rise time, 4.5-s settling time, and near-zero steady-state error. Controlled step responses were consistent across changes in step size, stable against external disturbances, and reliable over time. The controller was able to evoke smooth eccentric motion at joint velocities up to 8 deg./s, as well as sinusoidal trajectories with frequencies up to 0.1 Hz, with time delays less than 1.5 s. These experiments provide important insights toward creating a robust closed-loop aIFMS controller that can evoke precise fatigue-resistant motion in paralyzed individuals, despite the complexities introduced by aIFMS. PMID:27679557

  20. Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation

    PubMed Central

    Frankel, Mitchell A.; Mathews, V John; Clark, Gregory A.; Normann, Richard A.; Meek, Sanford G.

    2016-01-01

    Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles. The controller was successful in evoking steps in joint position with 2.4% overshoot, 2.3-s rise time, 4.5-s settling time, and near-zero steady-state error. Controlled step responses were consistent across changes in step size, stable against external disturbances, and reliable over time. The controller was able to evoke smooth eccentric motion at joint velocities up to 8 deg./s, as well as sinusoidal trajectories with frequencies up to 0.1 Hz, with time delays less than 1.5 s. These experiments provide important insights toward creating a robust closed-loop aIFMS controller that can evoke precise fatigue-resistant motion in paralyzed individuals, despite the complexities introduced by aIFMS.

  1. Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation.

    PubMed

    Frankel, Mitchell A; Mathews, V John; Clark, Gregory A; Normann, Richard A; Meek, Sanford G

    2016-01-01

    Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles. The controller was successful in evoking steps in joint position with 2.4% overshoot, 2.3-s rise time, 4.5-s settling time, and near-zero steady-state error. Controlled step responses were consistent across changes in step size, stable against external disturbances, and reliable over time. The controller was able to evoke smooth eccentric motion at joint velocities up to 8 deg./s, as well as sinusoidal trajectories with frequencies up to 0.1 Hz, with time delays less than 1.5 s. These experiments provide important insights toward creating a robust closed-loop aIFMS controller that can evoke precise fatigue-resistant motion in paralyzed individuals, despite the complexities introduced by aIFMS.

  2. Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation.

    PubMed

    Frankel, Mitchell A; Mathews, V John; Clark, Gregory A; Normann, Richard A; Meek, Sanford G

    2016-01-01

    Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles. The controller was successful in evoking steps in joint position with 2.4% overshoot, 2.3-s rise time, 4.5-s settling time, and near-zero steady-state error. Controlled step responses were consistent across changes in step size, stable against external disturbances, and reliable over time. The controller was able to evoke smooth eccentric motion at joint velocities up to 8 deg./s, as well as sinusoidal trajectories with frequencies up to 0.1 Hz, with time delays less than 1.5 s. These experiments provide important insights toward creating a robust closed-loop aIFMS controller that can evoke precise fatigue-resistant motion in paralyzed individuals, despite the complexities introduced by aIFMS. PMID:27679557

  3. Design and Evaluation of an Integrated Online Motion Control Training Package

    ERIC Educational Resources Information Center

    Buiu, C.

    2009-01-01

    The aim of this paper is to present an integrated Internet-based package for teaching the fundamentals of motion control by using a wide range of resources: theory, videos, simulators, games, quizzes, and a remote lab. The package is aimed at automation technicians, pupils at vocational schools and students taking an introductory course in…

  4. Vestibular Stimulation for ADHD: Randomized Controlled Trial of Comprehensive Motion Apparatus

    ERIC Educational Resources Information Center

    Clark, David L.; Arnold, L. Eugene; Crowl, Lindsay; Bozzolo, Hernan; Peruggia, Mario; Ramadan, Yaser; Bornstein, Robert; Hollway, Jill A.; Thompson, Susan; Malone, Krista; Hall, Kristy L.; Shelton, Sara B.; Bozzolo, Dawn R.; Cook, Amy

    2008-01-01

    Objective: This research evaluates effects of vestibular stimulation by Comprehensive Motion Apparatus (CMA) in ADHD. Method: Children ages 6 to 12 (48 boys, 5 girls) with ADHD were randomized to thrice-weekly 30-min treatments for 12 weeks with CMA, stimulating otoliths and semicircular canals, or a single-blind control of equal duration and…

  5. Multi-polarization quantum control of rotational motion through dipole coupling

    NASA Astrophysics Data System (ADS)

    Turinici, Gabriel; Rabitz, Herschel

    2010-03-01

    In this work we analyze the quantum controllability of rotational motion under the influence of an external laser field coupled through a permanent dipole moment. The analysis takes into consideration up to three polarization fields, but we also discuss the consequences for working with fewer polarized fields.

  6. Motion Controllers for Learners to Manipulate and Interact with 3D Objects for Mental Rotation Training

    ERIC Educational Resources Information Center

    Yeh, Shih-Ching; Wang, Jin-Liang; Wang, Chin-Yeh; Lin, Po-Han; Chen, Gwo-Dong; Rizzo, Albert

    2014-01-01

    Mental rotation is an important spatial processing ability and an important element in intelligence tests. However, the majority of past attempts at training mental rotation have used paper-and-pencil tests or digital images. This study proposes an innovative mental rotation training approach using magnetic motion controllers to allow learners to…

  7. Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types.

    PubMed

    Sung, Hak-Joon; Yee, Andrew; Eskin, Suzanne G; McIntire, Larry V

    2007-07-01

    The phenotype of endothelial cells (ECs) is specific to the vascular bed from which they originate. To examine how mechanical forces alter the phenotype of different ECs, we compared the effects of cyclic strain and motion control on reactive oxygen species (ROS) production and metabolism and cell adhesion molecule expression in human umbilical vein endothelial cells (HUVEC) vs. human aortic endothelial cells (HAEC). HUVEC and HAEC were subjected to cyclic strain (10% or 20%, 1 Hz), to a motion control that simulated fluid agitation over the cells without strain, or to static conditions for 24 h. We measured H(2)O(2) production with dichlorodihydrofluorescein acetate and superoxide with dihydroethidium fluorescence changes; superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities spectrophotometrically; and vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 protein expression with Western blot analyses. HUVEC under cyclic strain showed 1) higher intracellular H(2)O(2) levels, 2) increased SOD, catalase, and GPx activities, and 3) greater VCAM-1 and ICAM-1 protein expression, compared with motion control or static conditions. However, in HAEC, motion control induced higher levels of ROS, enzyme activities associated with ROS defense, and VCAM-1 and ICAM-1 expression than cyclic strain. The opposite responses obtained with these two human EC types may reflect their vessels of origin, in that HAEC are subjected to higher cyclic strain deformations in vivo than HUVEC.

  8. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding

    PubMed Central

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-01-01

    Background/aim This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Methods Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. Results The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). Conclusions The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. PMID:26746907

  9. Laser control of atomic and molecular motion by sequences of counterpropagating light pulses

    NASA Astrophysics Data System (ADS)

    Romanenko, Victor I.; Romanenko, Alexander V.; Udovitskaya, Yelena G.; Yatsenko, Leonid P.

    2014-06-01

    The analysis of atomic motion in the field formed by sequences of counterpropagating light pulses reveals the conditions when the field creates the trap in which the temperature of trapped atoms drops to the Doppler limit. The atomic state is described by the wave function using the Monte Carlo wave function method, whereas the atomic motion is considered in the framework of classical mechanics. Laser cooling and trapping is achieved only for non-resonant atom-field interaction. The pulse area does not matter for this effect, in contrast to the repetition period. When the motion of a trapped atom is slowed down, it oscillates around the anti-nodes of a non-stationary standing wave formed by the counterpropagating light pulses at the point where they 'collide'. The discussed trap is also applicable for trapping and cooling of the molecules for which the matrix of Frank-Condon factors is almost diagonal.

  10. Motion-Based System Identification and Fault Detection and Isolation Technologies for Thruster Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Sutter, David W.; Berkovitz, Dustin; Betts, Bradley J.; Kong, Edmund; delMundo, Rommel; Lages, Christopher R.; Mah, Robert W.; Papasin, Richard

    2003-01-01

    By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the improved system robustness and performance that comes with the thruster fault tolerance and system ID can be achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test results from the SPHERES implementation, as flown aboard the NASA KC-1 35A 0-g simulator aircraft in November 2003 are presented.

  11. 76 FR 24467 - Fire Mountain Lodge; Notice of Application Accepted for Filing, Soliciting Motions To Intervene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Fire Mountain Lodge; Notice of Application Accepted for Filing, Soliciting Motions To Intervene and Protests, Ready for Environmental Analysis, and Soliciting Comments, Recommendations, Terms and Conditions,...

  12. 77 FR 22312 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Soliciting Comments, Motions To Intervene, and Competing Applications On March 23, 2012, Cave Run Energy, LLC...' (Corps) Cave Run Dam, located on the Licking River in Rowan and Bath Counties, Kentucky. The sole purpose... generation of 34,164 megawatt-hours (MWh), and operate utilizing surplus water from the Cave Run Dam,...

  13. Control over molecular motion using the cis–trans photoisomerization of the azo group

    PubMed Central

    Ribagorda, María

    2012-01-01

    Summary Control over molecular motion represents an important objective in modern chemistry. Aromatic azobenzenes are excellent candidates as molecular switches since they can exist in two forms, namely the cis (Z) and trans (E) isomers, which can interconvert both photochemically and thermally. This transformation induces a molecular movement and a significant geometric change, therefore the azobenzene unit is an excellent candidate to build dynamic molecular devices. We describe selected examples of systems containing an azobenzene moiety and their motions and geometrical changes caused by external stimuli. PMID:23019434

  14. Disturbing effects of attitude control maneuvers on the orbital motion of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    The position of the spin axis of the Helios A spacecraft has been maintained and updated by a series of attitude control maneuvers, by means of a sequence of unbalanced jet forces which produce an additional disturbed motion of the spacecraft's center of mass. The character of this motion, its magnitude and direction was studied. For practical purposes of the orbit determination of the spacecraft, a computer program is given which shows how the components of the disturbing acceleration in the spacecraft-fixed reference frame can be easily computed.

  15. Mitigation of ground motion effects in linear accelerators via feed-forward control

    NASA Astrophysics Data System (ADS)

    Pfingstner, J.; Artoos, K.; Charrondiere, C.; Janssens, St.; Patecki, M.; Renier, Y.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2014-12-01

    Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders). Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems) such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2), ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  16. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    SciTech Connect

    Lamare, F. Fernandez, P.; Fayad, H.; Visvikis, D.

    2015-10-15

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid

  17. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  18. Complementary limb motion estimation for the control of active knee prostheses.

    PubMed

    Vallery, Heike; Burgkart, Rainer; Hartmann, Cornelia; Mitternacht, Jürgen; Riener, Robert; Buss, Martin

    2011-02-01

    To restore walking after transfemoral amputation, various actuated exoprostheses have been developed, which control the knee torque actively or via variable damping. In both cases, an important issue is to find the appropriate control that enables user-dominated gait. Recently, we suggested a generic method to deduce intended motion of impaired or amputated limbs from residual human body motion. Based on interjoint coordination in physiological gait, statistical regression is used to estimate missing motion. In a pilot study, this complementary limb motion estimation (CLME) strategy is applied to control an active knee exoprosthesis. A motor-driven prosthetic knee with one degree of freedom has been realized, and one above-knee amputee has used it with CLME. Performed tasks are walking on a treadmill and alternating stair ascent and descent. The subject was able to walk on the treadmill at varying speeds, but needed assistance with the stairs, especially to descend. The promising results with CLME are compared with the subject's performance with her own prosthesis, the C-Leg from Otto Bock.

  19. Complementary limb motion estimation for the control of active knee prostheses.

    PubMed

    Vallery, Heike; Burgkart, Rainer; Hartmann, Cornelia; Mitternacht, Jürgen; Riener, Robert; Buss, Martin

    2011-02-01

    To restore walking after transfemoral amputation, various actuated exoprostheses have been developed, which control the knee torque actively or via variable damping. In both cases, an important issue is to find the appropriate control that enables user-dominated gait. Recently, we suggested a generic method to deduce intended motion of impaired or amputated limbs from residual human body motion. Based on interjoint coordination in physiological gait, statistical regression is used to estimate missing motion. In a pilot study, this complementary limb motion estimation (CLME) strategy is applied to control an active knee exoprosthesis. A motor-driven prosthetic knee with one degree of freedom has been realized, and one above-knee amputee has used it with CLME. Performed tasks are walking on a treadmill and alternating stair ascent and descent. The subject was able to walk on the treadmill at varying speeds, but needed assistance with the stairs, especially to descend. The promising results with CLME are compared with the subject's performance with her own prosthesis, the C-Leg from Otto Bock. PMID:21303189

  20. Vibrating barrier: a novel device for the passive control of structures under ground motion

    PubMed Central

    Cacciola, P.; Tombari, A.

    2015-01-01

    A novel device, called vibrating barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves is proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure–soil–structure interaction. The underlying theoretical aspects of the novel control strategy are scrutinized along with its numerical modelling. Closed-form solutions are also derived to design the ViBa in the case of harmonic excitation. Numerical and experimental analyses are performed in order to investigate the efficiency of the device in mitigating the effects of ground motion waves on the structural response. A significant reduction in the maximum structural acceleration of 87% has been achieved experimentally. PMID:26345731

  1. Analytical control laws of the heliocentric motion of the solar sail spacecraft

    NASA Astrophysics Data System (ADS)

    Gorbunova, Irina; Starinova, Olga

    2014-12-01

    The heliocentric motion of the solar sail spacecraft is described in classical Keplerian elements. The flat of solar sail with an ideal reflection coefficient is considered. The spacecraft performs a noncoplanar motion with the sun gravity and the light pressure. Disturbances of other celestial bodies gravity are not considered. We have received analytical terms for laws to control a solar sail, which ensure constancy or maximum rate of change of the Keplerian elements. To confirm the results correctness, we simulated the solar sail spacecraft. The spacecraft's initial orbit coincides with the average Earth orbit relative to the Sun. Authors developed a program complex to simulated the planar heliocentric movement and obtained results for motion simulation of flights to Mars and Venus. The results were compared with the simulation results obtained using the Pontryagin maximum principle.

  2. Robotically controlled slosh-free motion of an open container of liquid

    SciTech Connect

    Feddema, J.; Dohrmann, C.; Parker, G.; Robinett, R.; Romero, V.; Schmitt, D.

    1995-10-01

    This paper describes two methods for controlling the surface of a liquid in an open container as it is being carried by a robot arm. Both methods make use of the fundamental mode of oscillation and damping of the liquid in the container as predicted from a boundary element model of the fluid. The first method uses an infinite impulse response filter to alter an acceleration profile so that the liquid remains level except for a single wave at the beginning and end of the motion. The motion of the liquid is similar to that of a simple pendulum. The second method removes the remaining two surface oscillations by tilting the container parallel to the beginning and ending wave. A double pendulum model is used to determine the trajectory for this motion. Experimental results of a FANUC S-800 robot moving a 230 mm diameter hemispherical container of water are presented.

  3. The application of holography as a real-time three-dimensional motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    A historical introduction to holography is presented, as well as a basic description of sideband holography for stationary objects. A brief theoretical development of both time-dependent and time-independent holography is also provided, along with an analytical and intuitive discussion of a unique holographic arrangement which allows the resolution of front surface detail from an object moving at high speeds. As an application of such a system, a real-time three-dimensional motion picture camera system is discussed and the results of a recent demonstration of the world's first true three-dimensional motion picture are given.

  4. 3-d brownian motion simulator for high-sensitivity nanobiotechnological applications.

    PubMed

    Toth, Arpád; Banky, Dániel; Grolmusz, Vince

    2011-12-01

    A wide variety of nanobiotechnologic applications are being developed for nanoparticle based in vitro diagnostic and imaging systems. Some of these systems make possible highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes impossible the classical, partial differential equation-based mathematical simulation of the motion of the nanoparticles involved. We present a three-dimensional Brownian motion simulation tool for the prediction of the movement of nanoparticles in various thermal, viscosity, and geometric settings in a rectangular cuvette. For nonprofit users the server is freely available at the site http://brownian.pitgroup.org.

  5. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  6. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots

    NASA Astrophysics Data System (ADS)

    Kim, Dal Hyung; Cheang, U. Kei; Kőhidai, László; Byun, Doyoung; Kim, Min Jun

    2010-10-01

    We induce artificial magnetotaxis in Tetrahymena pyriformis, a eukaryotic ciliate, using ferro-magnetic nanoparticles and an external time-varying magnetic field. Magnetizing internalized iron oxide particles (magnetite), allows control of the swimming direction of an individual cell using two sets of electromagnets. Real-time feedback control was performed with a vision tracking system, which demonstrated controllability of a single cell. Since the endogenous motility of the cell is combined in one system with artificial magnetotaxis, the motion of artificially magnetotactic T. pyriformis is finely controllable. Thus, artificially magnetotactic T. pyriformis is a promising candidate microrobot for microassembly and transport in microfluidic environments.

  7. 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications

    NASA Astrophysics Data System (ADS)

    Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.

    2012-12-01

    High-resolution topographic surveying is traditionally associated with high capital and logistical costs, so that data acquisition is often passed on to specialist third party organisations. The high costs of data collection are, for many applications in the earth sciences, exacerbated by the remoteness and inaccessibility of many field sites, rendering cheaper, more portable surveying platforms (i.e. terrestrial laser scanning or GPS) impractical. This paper outlines a revolutionary, low-cost, user-friendly photogrammetric technique for obtaining high-resolution datasets at a range of scales, termed 'Structure-from-Motion' (SfM). Traditional softcopy photogrammetric methods require the 3-D location and pose of the camera(s), or the 3-D location of ground control points to be known to facilitate scene triangulation and reconstruction. In contrast, the SfM method solves the camera pose and scene geometry simultaneously and automatically, using a highly redundant bundle adjustment based on matching features in multiple overlapping, offset images. A comprehensive introduction to the technique is presented, followed by an outline of the methods used to create high-resolution digital elevation models (DEMs) from extensive photosets obtained using a consumer-grade digital camera. As an initial appraisal of the technique, an SfM-derived DEM is compared directly with a similar model obtained using terrestrial laser scanning. This intercomparison reveals that decimetre-scale vertical accuracy can be achieved using SfM even for sites with complex topography and a range of land-covers. Example applications of SfM are presented for three contrasting landforms across a range of scales including; an exposed rocky coastal cliff; a breached moraine-dam complex; and a glacially-sculpted bedrock ridge. The SfM technique represents a major advancement in the field of photogrammetry for geoscience applications. Our results and experiences indicate SfM is an inexpensive, effective, and

  8. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    NASA Technical Reports Server (NTRS)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  9. Control of humanoid robot via motion-onset visual evoked potentials.

    PubMed

    Li, Wei; Li, Mengfan; Zhao, Jing

    2014-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  10. PSD Camera Based Position and Posture Control of Redundant Robot Considering Contact Motion

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kotani, Kentaro

    The paper describes a position and posture controller design based on the absolute position by external PSD vision sensor for redundant robot manipulator. The redundancy enables a potential capability to avoid obstacle while continuing given end-effector jobs under contact with middle link of manipulator. Under contact motion, the deformation due to joint torsion obtained by comparing internal and external position sensor, is actively suppressed by internal/external position hybrid controller. The selection matrix of hybrid loop is given by the function of the deformation. And the detected deformation is also utilized in the compliant motion controller for passive obstacle avoidance. The validity of the proposed method is verified by several experimental results of 3link planar redundant manipulator.

  11. Focused Ultrasound Surgery Control Using Local Harmonic Motion: VX2 Tumor Study

    SciTech Connect

    Curiel, Laura; Chopra, Rajiv; Goertz, David; Hynynen, Kullervo

    2009-04-14

    The objective of this study was to develop a real-time method for controlling focused ultrasound surgery using ultrasound imaging. The approach uses measurements of localized harmonic motion (LHM) in order to perform controlled FUS exposures by detecting changes in the elastic properties of tissues during coagulation. Methods: Nine New Zealand rabbits with VX2 tumors implanted in the thigh were used for this study. LHM was generated within the tumors by periodic induction of radiation force using a FUS transducer (80-mm focal length, 100-mm diameter, 20-mm central hole, 1.485-MHz). Tissue motion was tracked by collecting and cross-correlating RF signals during the motion using a separate diagnostic transducer (3-kHz PRF, 5-MHz). After locating the tumor in MR images, a series of sonications were performed to treat the tumors using a reduction in LHM amplitude to control the exposure. Results: LHM was successfully used to control the sonications. A LHM amplitude threshold value was determined at which changes were considered significant and then the exposure was started and stopped when the LHM amplitude dropped below the threshold. The appearance of a lesion was then verified by MRI. The feasibility of LHM measurements to control FUS exposure was validated.

  12. Disturbance Compensating Control of a Biped Walking Machine Based on Reflex Motions

    NASA Astrophysics Data System (ADS)

    Funabashi, Hiroaki; Takeda, Yukio; Itoh, Shigenari; Higuchi, Masaru

    A control system that utilizes the concept of reflex control in animals is proposed for a biped walking machine with consideration of compensation of external disturbances. A walking machine was modeled as a sequential machine, and a series of single-reflex motions was synthesized for it. A hierarchical three-level control system was constructed. As disturbances, two types of external forces were considered: “impulsive” force with a large magnitude and short action-time and “continuous” force with a small magnitude and long action time. Appropriate state variables for rapid and reliable sensing of each disturbance were investigated and the thresholds of their values used as the triggers for changing the gait from a periodic gait to a disturbance compensation one were determined. Motions of disturbance compensation gaits were determined by combining some single-reflex motions. A control system for an experimental biped walking machine whose mass is 18kg, total height is 0.66m, step length is 0.25m and walking cycle is 133 steps/min was constructed and tested. The proposed control system enabled the walking machine to successfully avoid tumbling when it was subjected to the two external forces and return to a periodic gait.

  13. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  14. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h. PMID:26698958

  15. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  16. Modeling, system identification, and control for slosh-free motion of an open container of liquid

    SciTech Connect

    Feddema, J.; Baty, R.; Dykhuizen, R.; Dohrmann, C.; Parker, G.; Robinett, R.; Romero, V.; Schmitt, D.

    1996-04-01

    This report discusses work performed under a Cooperative Research And Development Agreement (CRADA) with Corning, Inc., to analyze and test various techniques for controlling the motion of a high speed robotic arm carrying an open container of viscous liquid, in this case, molten glass. A computer model was generated to estimate the modes of oscillation of the liquid based on the shape of the container and the viscosity of the liquid. This fluid model was experimentally verified and tuned based on experimental data from a capacitive sensor on the side of the container. A model of the robot dynamics was also developed and verified through experimental tests on a Fanuc S-800 robot arm. These two models were used to estimate the overall modes of oscillation of an open container of liquid being carried by a robot arm. Using the estimated modes, inverse dynamic control techniques were used to determine a motion profile which would eliminate waves on the liquid`s surface. Experimental tests showed that residual surface waves in an open container of water at the end of motion were reduced by over 95% and that in-motion surface waves were reduced by over 75%.

  17. Quality control procedures for dynamic treatment delivery techniques involving couch motion

    SciTech Connect

    Yu, Victoria Y.; Fahimian, Benjamin P.; Xing, Lei; Hristov, Dimitre H.

    2014-08-15

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  18. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  19. Adaptive momentum-based motion detection approach and its application on handoff in wireless networks.

    PubMed

    Chung, Tein-Yaw; Chen, Yung-Mu; Hsu, Chih-Hung

    2009-01-01

    Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%. PMID:22346724

  20. Adaptive Momentum-Based Motion Detection Approach and Its Application on Handoff in Wireless Networks

    PubMed Central

    Chung, Tein-Yaw; Chen, Yung-Mu; Hsu, Chih-Hung

    2009-01-01

    Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%. PMID:22346724

  1. Adaptive control with aerospace applications

    NASA Astrophysics Data System (ADS)

    Gadient, Ross

    Robust and adaptive control techniques have a rich history of theoretical development with successful application. Despite the accomplishments made, attempts to combine the best elements of each approach into robust adaptive systems has proven challenging, particularly in the area of application to real world aerospace systems. In this research, we investigate design methods for general classes of systems that may be applied to representative aerospace dynamics. By combining robust baseline control design with augmentation designs, our work aims to leverage the advantages of each approach. This research contributes the development of robust model-based control design for two classes of dynamics: 2nd order cascaded systems, and a more general MIMO framework. We present a theoretically justified method for state limiting via augmentation of a robust baseline control design. Through the development of adaptive augmentation designs, we are able to retain system performance in the presence of uncertainties. We include an extension that combines robust baseline design with both state limiting and adaptive augmentations. In addition we develop an adaptive augmentation design approach for a class of dynamic input uncertainties. We present formal stability proofs and analyses for all proposed designs in the research. Throughout the work, we present real world aerospace applications using relevant flight dynamics and flight test results. We derive robust baseline control designs with application to both piloted and unpiloted aerospace system. Using our developed methods, we add a flight envelope protecting state limiting augmentation for piloted aircraft applications and demonstrate the efficacy of our approach via both simulation and flight test. We illustrate our adaptive augmentation designs via application to relevant fixed-wing aircraft dynamics. Both a piloted example combining the state limiting and adaptive augmentation approaches, and an unpiloted example with

  2. A VTOL translational rate control system study on a six degrees-of-freedom motion simulator

    NASA Technical Reports Server (NTRS)

    Corliss, L. D.; Dugan, D. C.

    1972-01-01

    A linearized translational rate system for near hover flight was optimized on a large motion simulator under the constraints of no disturbances and limited control power. Both lateral and longitudinal modes were considered with the primary variables of investigation being control sensitivity and response stiffness and secondarily system damping. Yaw and height control characteristics were represented by an angular rate and acceleration system, respectively. General regions of desired sensitivity and stiffness for the longitudinal and lateral modes were determined under VFR conditions for both the rapid maneuver task and the station keeping/mild maneuver task.

  3. Using EMG to anticipate head motion for virtual-environment applications

    NASA Technical Reports Server (NTRS)

    Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion

    2005-01-01

    In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.

  4. Optimization of ferrofluid motion on solid substrate and its application to micro-mirror device

    NASA Astrophysics Data System (ADS)

    Yu, Seonuk; Kim, Dongil; Cho, Il-Joo; Yun, Kwang-Seok

    2015-06-01

    This paper presents and demonstrates the optimization of an oil-based ferrofluid droplet on a solid surface and its application to a micro-mirror device with a fast switching time. The motion of the ferrofluid droplet on a hydrophilic surface was examined at various surfactant concentrations for both rotational and linear reciprocating actuations. A maximum moving speed of 0.733 m/s was measured at a poly(vinyl alcohol) (PVA) concentration of 0.1 wt % during the rotational motion of the ferrofluid droplet. In addition, a fast reciprocating motion was successfully demonstrated during the linear operation experiment without droplet separation or surface contamination. A maximum acceleration and deceleration of 28 m/s2 was measured at a PVA concentration of 0.1 wt %. As an application of the fast motion of the ferrofluid, a current-driven micro-mirror was proposed and experimentally demonstrated. Switching times of 25 and 18 ms were measured for the closing and opening phases of the mirror, respectively.

  5. Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia.

    PubMed

    Levine, Max E; Stern, Robert M; Koch, Kenneth L

    2014-08-01

    Nausea is a debilitating condition that is typically accompanied by gastric dysrhythmia. The enhancement of perceived control and predictability has generally been found to attenuate the physiological stress response. The aim of the present study was to test the effect of these psychosocial variables in the context of nausea, motion sickness, and gastric dysrhythmia. A 2x2, independent-groups, factorial design was employed in which perceived control and predictability were each provided at high or low levels to 80 participants before exposure to a rotating optokinetic drum. Ratings of nausea were obtained throughout a 6-min baseline period and a 16-min drum rotation period. Noninvasive recordings of the electrical activity of the stomach called electrogastrograms were also obtained throughout the study. Nausea scores were significantly lower among participants with high control than among those with low control, and were significantly lower among participants with high predictability than among those with low predictability. Estimates of gastric dysrhythmia obtained from the EGG during drum rotation were significantly lower among participants with high predictability than among those with low predictability. A significant interaction effect of control and predictability on gastric dysrhythmia was also observed, such that high control was only effective for arresting the development of gastric dysrhythmia when high predictability was also available. Stronger perceptions of control and predictability may temper the development of nausea and gastric dysrhythmia during exposure to provocative motion. Psychosocial interventions in a variety of nausea contexts may represent an alternative means of symptom control. PMID:24748483

  6. Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia.

    PubMed

    Levine, Max E; Stern, Robert M; Koch, Kenneth L

    2014-08-01

    Nausea is a debilitating condition that is typically accompanied by gastric dysrhythmia. The enhancement of perceived control and predictability has generally been found to attenuate the physiological stress response. The aim of the present study was to test the effect of these psychosocial variables in the context of nausea, motion sickness, and gastric dysrhythmia. A 2x2, independent-groups, factorial design was employed in which perceived control and predictability were each provided at high or low levels to 80 participants before exposure to a rotating optokinetic drum. Ratings of nausea were obtained throughout a 6-min baseline period and a 16-min drum rotation period. Noninvasive recordings of the electrical activity of the stomach called electrogastrograms were also obtained throughout the study. Nausea scores were significantly lower among participants with high control than among those with low control, and were significantly lower among participants with high predictability than among those with low predictability. Estimates of gastric dysrhythmia obtained from the EGG during drum rotation were significantly lower among participants with high predictability than among those with low predictability. A significant interaction effect of control and predictability on gastric dysrhythmia was also observed, such that high control was only effective for arresting the development of gastric dysrhythmia when high predictability was also available. Stronger perceptions of control and predictability may temper the development of nausea and gastric dysrhythmia during exposure to provocative motion. Psychosocial interventions in a variety of nausea contexts may represent an alternative means of symptom control.

  7. Input-Shaped Link Motion Control of Planar Space Robot Equipped with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Kasai, Shinya; Kojima, Hirohisa

    Control of a space robot without actuators on the main body is an underactuated control problem. Various stabilization methods, such as the time-varying feedback control method, discontinuous feedback control method, center manifold-based method, zero-dynamics method and sliding-mode control method have been proposed. However, past studies have not considered underactuated space robots equipped with a flexible appendage, such as solar panels. If the manipulators are simply controlled to achieve the target state for the robot using the past controllers without taking a flexible appendage into consideration, residual vibration remains even after the link motion has finished. In order to suppress the residual vibration on the flexible appendage, we apply the input-shaping technique to the link motion of an underactuated planar space robot. Numerical and experimental studies are carried out to validate the proposed method for a planar dual-link space robot with a flexible appendage. The results show that the proposed method is capable of not only controlling the link angles and the main body attitude to the goal angles, but also suppressing the residual vibration on the flexible appendage.

  8. Insect-inspired high-speed motion vision system for robot control.

    PubMed

    Wu, Haiyan; Zou, Ke; Zhang, Tianguang; Borst, Alexander; Kühnlenz, Kolja

    2012-10-01

    The mechanism for motion detection in a fly's vision system, known as the Reichardt correlator, suffers from a main shortcoming as a velocity estimator: low accuracy. To enable accurate velocity estimation, responses of the Reichardt correlator to image sequences are analyzed in this paper. An elaborated model with additional preprocessing modules is proposed. The relative error of velocity estimation is significantly reduced by establishing a real-time response-velocity lookup table based on the power spectrum analysis of the input signal. By exploiting the improved velocity estimation accuracy and the simple structure of the Reichardt correlator, a high-speed vision system of 1 kHz is designed and applied for robot yaw-angle control in real-time experiments. The experimental results demonstrate the potential and feasibility of applying insect-inspired motion detection to robot control.

  9. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  10. Monotonically convergent algorithms for solving quantum optimal control problems described by an integrodifferential equation of motion

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yukiyoshi; Teranishi, Yoshiaki; Saalfrank, Peter; Turinici, Gabriel; Rabitz, Herschel

    2007-03-01

    A family of monotonically convergent algorithms is presented for solving a wide class of quantum optimal control problems satisfying an inhomogeneous integrodifferential equation of motion. The convergence behavior is examined using a four-level model system under the influence of non-Markovian relaxation. The results show that high quality solutions can be obtained over a wide range of parameters that characterize the algorithms, independent of the presence or absence of relaxation.

  11. Truss Climbing Robot for Space Station: Design, Analysis, and Motion Control

    NASA Astrophysics Data System (ADS)

    Chung, Wing Kwong

    The application of space robots has become more popular in performing tasks such as Intra and Extra Vehicular Activities (EVA) in Low Earth Orbit. For EVA, space robots were always designed as a chain-like manipulator with a joint configuration similar to on the earth robotic arm. Based on their joint configuration, they can be classified into two main categories. The first one is the six degrees of freedom (DOF) robotic arm including Shuttle Remote Manipulator System (SRMS), Engineering Test Satellite No. 7 (ETS-VII), the Main Arm (MA) and the Small Fine Arm (SFA) of Module Remote Manipulator System (JEMRMS). The other group is the seven-DOF space robotic arm which includes European Robotic Arm (ERA) and Space Station Remote Manipulator System (SSRMS), or Canadarm2. They not only perform manipulation tasks, but also be able to navigate on the exterior of the International Space Station (ISS). In a free floating environment, motions of a space robotic arm cause the attitude change of a space station because of their dynamic coupling effect. Hence, the stabilization of the space station attitude is important to maintain the electrical energy generated by the solar panels and the signal strength for communication. Most of research in this area focuses on the motion control of a space manipulator through the study of Generalized Jacobian Matrix. Little research has been conducted specifically on the design of locomotion mechanism of a space manipulator. This dissertation proposes a novel methodology for the locomotion on a space station which aims to lower the disturbance on a space station. Without modifying the joint configuration of conventional space manipulators, the use of a new gripping mechanism is proposed which combines the advantages of active wheels and conventional grippers. To realize the proposed gripping mechanism, this dissertation also presents the design of a novel frame climbing robot (Frambot) which is equipped with the new gripping mechanism

  12. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  13. Expenditure optimization in a problem of controlled motion of mechanical systems

    NASA Astrophysics Data System (ADS)

    Babadzanjanz, Levon K.; Pototskaya, Irina Yu.; Pupysheva, Yulia Yu.

    2016-06-01

    The controlled motion which is represented by the linear ODE system with constant coefficients is considered. The admissible control is a piecewise constant function that blanks selected frequency components of the solution of linear equations at the moment T. As "the expenditure" functional we use the integral of the sum of the modules of coordinates of the control along the interval [0, T]. The problem under consideration is to construct an admissible control which minimizes the Expenditure. To solve this problem the method is proposed which leads to explicit formulas. All results of research are formulated as the theorem. These results can be applied not only in mechanical controlled systems, but also in any problem that can be described by the system of ordinary differential equations with control.

  14. Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

    NASA Astrophysics Data System (ADS)

    Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.

    2016-05-01

    This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.

  15. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.

    PubMed

    Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik; Park, Yong Tae; Park, O Ok

    2015-03-25

    Because of their outstanding electrical and mechanical properties, graphene strain sensors have attracted extensive attention for electronic applications in virtual reality, robotics, medical diagnostics, and healthcare. Although several strain sensors based on graphene have been reported, the stretchability and sensitivity of these sensors remain limited, and also there is a pressing need to develop a practical fabrication process. This paper reports the fabrication and characterization of new types of graphene strain sensors based on stretchable yarns. Highly stretchable, sensitive, and wearable sensors are realized by a layer-by-layer assembly method that is simple, low-cost, scalable, and solution-processable. Because of the yarn structures, these sensors exhibit high stretchability (up to 150%) and versatility, and can detect both large- and small-scale human motions. For this study, wearable electronics are fabricated with implanted sensors that can monitor diverse human motions, including joint movement, phonation, swallowing, and breathing. PMID:25735398

  16. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.

    PubMed

    Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik; Park, Yong Tae; Park, O Ok

    2015-03-25

    Because of their outstanding electrical and mechanical properties, graphene strain sensors have attracted extensive attention for electronic applications in virtual reality, robotics, medical diagnostics, and healthcare. Although several strain sensors based on graphene have been reported, the stretchability and sensitivity of these sensors remain limited, and also there is a pressing need to develop a practical fabrication process. This paper reports the fabrication and characterization of new types of graphene strain sensors based on stretchable yarns. Highly stretchable, sensitive, and wearable sensors are realized by a layer-by-layer assembly method that is simple, low-cost, scalable, and solution-processable. Because of the yarn structures, these sensors exhibit high stretchability (up to 150%) and versatility, and can detect both large- and small-scale human motions. For this study, wearable electronics are fabricated with implanted sensors that can monitor diverse human motions, including joint movement, phonation, swallowing, and breathing.

  17. Applications of DNA Nanomechanical Devices to Molecular Biology and to Programmed Dynamic Motion

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua

    Not merely is DNA a favorable genetic material, but an effective supermolecular subunit for nanoconstruction as well. In structural DNA nanotechnology, rigid branched DNA motifs have been combined with sticky-ended cohesion to build DNA objects, arrays and devices for functional purposes. Reciprocating devices are key features in macroscopic machines. In Chapter II, I report the construction of two reciprocal PX-JX2 devices, wherein the control strands leading to the PX state in one device lead to the JX2 state in the other device, and vice versa. The formation, transformation and reciprocal motions of these two devices are confirmed utilizing gel electrophoresis, and atomic force microscopy. This system is likely to be of use for molecular robotic applications where reciprocal motions are of value in addition its inherent contribution to molecular choreography and molecular aesthetics. Recently, several DNA-based nanomechanical devices have been developed as an attractive tool for fine measurements on nanoscale objects. In Chapter III, I have constructed a device wherein two DNA triple crossover (TX) molecules are connected by a shaft, similar to a previous device that measured the amount of work that can be performed by integration host factor [Shen, W., Bruist, M., Goodman, S. & Seeman, N. C., Angew. Chemie Int. Ed. 43, 4750-4752 (2004)]. In the present case, the binding site on the shaft contains the sequence recognized by apo-SoxR, the apo-form of a protein that is a redox-sensing transcriptional activator; previous data suggest that it distorts its binding site by an amount that corresponds to about two base pairs. A pair of dyes reports the fluorescence resonance energy transfer (FRET) signal between the two TX domains, reflecting changes in the shape of the device upon binding the protein. The TX domains are used to amplify the signal expected from a relatively small distortion of the DNA binding site. From FRET analysis of apo-SoxR binding, the effect of

  18. New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.

    2008-01-01

    The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.

  19. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  20. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.

    PubMed

    Thygesen, Uffe Høgsbro

    2016-03-01

    We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion. PMID:27012850

  1. Folded Elastic Strip-Based Triboelectric Nanogenerator for Harvesting Human Motion Energy for Multiple Applications.

    PubMed

    Kang, Yue; Wang, Bo; Dai, Shuge; Liu, Guanlin; Pu, Yanping; Hu, Chenguo

    2015-09-16

    A folded elastic strip-based triboelectric nanogenerator (FS-TENG) made from two folded double-layer elastic strips of Al/PET and PTFE/PET can achieve multiple functions by low frequency mechanical motion. A single FS-TENG with strip width of 3 cm and length of 27 cm can generate a maximum output current, open-circuit voltage, and peak power of 55 μA, 840 V, and 7.33 mW at deformation frequency of 4 Hz with amplitude of 2.5 cm, respectively. This FS-TENG can work as a weight sensor due to its good elasticity. An integrated generator assembled by four FS-TENGs (IFS-TENG) can harvest the energy of human motion like flapping hands and walking steps. In addition, the IFS-TENG combined with electromagnetically induced electricity can achieve a completely self-driven doorbell with flashing lights. Moreover, a box-like generator integrated by four IFS-TENGs inside can work in horizontal or random motion modes and can be improved to harvest energy in all directions. This work promotes the research of completely self-driven systems and energy harvesting of human motion for applications in our daily life.

  2. Application of a novel spinal posture and motion measurement system in active and static sitting.

    PubMed

    Pries, Esther; Dreischarf, Marcel; Bashkuev, Maxim; Schmidt, Hendrik

    2015-01-01

    The quantification of work-related musculoskeletal risk factors is of great importance; however, only a few tools allow objective, unrestricted measurements of spinal posture and motion in workplaces. This study was performed to evaluate the applicability of the Epionics system in a sedentary workplace. The system is mobile and wireless and assesses lumbar lordosis, pelvic orientation and spinal motion, without restricting subjects in their movements. In total, 10 males were monitored while sitting for 2 h on static and dynamic office chairs and on an exercise ball, to evaluate the effect of dynamic sitting. The volunteers were able to perform their work unhampered. No differences among the tested furniture could be detected with respect to either the lordosis or the number of spinal movements after habituation to the furniture; however, differences in pelvic orientation were statistically significant. The results of the present study indicate that Epionics may be useful for the quantitative assessment of work-related risk factors. Practitioner Summary: Only a few tools allow objective, unrestricted measurements of spinal posture and motion in the workplace. Epionics SPINE measures lumbar lordosis, pelvic orientation and spinal motion under nearly unrestricted conditions and can be used to quantify work-related musculoskeletal risk factors. We demonstrated the use of this tool in the workplace-analysis. PMID:25712870

  3. Provision of Controlled Motion Accuracy of Industrial Robots and Multiaxis Machines by the Method of Integrated Deviations Correction

    NASA Astrophysics Data System (ADS)

    Krakhmalev, O. N.; Petreshin, D. I.; Fedonin, O. N.

    2016-04-01

    There is a developed method of correction of the integrated motion deviations of industrial robots and multiaxis machines, which are caused by the primary geometrical deviations of their segments. This method can be used to develop a control system providing the motion correction for industrial robots and multiaxis machines.

  4. GPS synchronization of a motion simulator for hardware-in-the-loop applications

    NASA Astrophysics Data System (ADS)

    Marchetti, Jay D.

    2011-06-01

    A typical hardware-in-the-loop (HWIL) lab normally integrates a wide array of digital equipment, each driven by its own internal oscillator. While the various equipment designers may strive to utilize high-precision oscillators in their products, if no synchronization scheme is employed, then time-base drift between the various HWIL components is inevitable. If real-time communications between components is required, such as between the motion simulator controller and the simulation (host) computer, this time-base drift, exacerbated by timing jitter in the communication channel and each component's internal processing loop, can degrade the simulation fidelity. By designing the motion simulator controller to synchronize to an externally provided, facility-wide, standards-based site timing reference such as the Global Positioning System (GPS), the relative time-base drift can be completely eliminated. This paper discusses the advantages of this approach for improving HWIL simulation performance.

  5. Controlled surface-induced flows from the motion of self-assembled colloidal walkers

    PubMed Central

    Sing, Charles E.; Schmid, Lothar; Schneider, Matthias F.; Franke, Thomas; Alexander-Katz, Alfredo

    2010-01-01

    Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that “walk” along surfaces in the presence of a rotating magnetic field. These rotors are held together solely by magnetic forces that allow for reversible assembly and disassembly of the chains. Furthermore, rotation of the magnetic field allows for straightforward manipulation of the shape and motion of these chains. This system offers a simple and versatile approach for designing microfluidic devices as well as for studying fundamental questions in cooperative-driven motion and transport at the microscopic level. PMID:20080716

  6. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands.

    PubMed

    Barboiu, Mihail; Stadler, Adrian-Mihail; Lehn, Jean-Marie

    2016-03-18

    General design principles have been developed for the control of the structural features of polyheterocyclic strands and their effector-modulated shape changes. Induced defined molecular motions permit designed enforcement of helical as well as linear molecular shapes. The ability of such molecular strands to bind metal cations allows the generation of coiling/uncoiling processes between helically folded and extended linear states. Large molecular motions are produced on coordination of metal ions, which may be made reversible by competition with an ancillary complexing agent and fueled by sequential acid/base neutralization energy. The introduction of hydrazone units into the strands confers upon them constitutional dynamics, whereby interconversion between different strand compositions is achieved through component exchange. These features have relevance for nanomechanical devices. We present a morphological and functional analysis of such systems developed in our laboratories.

  7. Design and performance evaluation of a coarse/fine precision motion control system

    SciTech Connect

    Yang, H; Buice, E S; Smith, S T; Hocken, R J; Fagan, T J; Trumper, D L; Otten, D; Seugling, R M

    2005-03-02

    This abstract presents current collaborative work on the development of a stage system for accurate nanometer level positioning for scanning specimens spanning an area of 50 mm x 50 mm. The completed system employs a coarse/fine approach which comprises a short-range, six degree-of-freedom fine-motion platform (5 microns 200 micro-radians) carried by a long-range, two-axis X-Y coarse positioning system. Relative motion of the stage to a fixed metrology frame will be measured using a heterodyne laser in an eight-pass interferometer configuration. The final stage system will be housed in a vacuum environment and operated in a temperature-controlled laboratory. Results from a simple single coarse/fine axis system will be the design basis for the final multi-axis system. It is expected that initial stage performance evaluation will be presented at the conference.

  8. 77 FR 7571 - City of Wadsworth, OH; Notice of Application Accepted for Filing and Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... Soliciting Motions To Intervene and Protests Take notice that the following hydroelectric application has... protests: 60 days from the issuance date of this notice. All documents may be filed electronically via the... a protest or a motion to intervene in accordance with the requirements of Rules of Practice...

  9. Control of self-motion in dynamic fluids: fish do it differently from bees.

    PubMed

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-05-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited.

  10. Control of self-motion in dynamic fluids: fish do it differently from bees.

    PubMed

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-05-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. PMID:24872463

  11. Control of self-motion in dynamic fluids: fish do it differently from bees

    PubMed Central

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-01-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. PMID:24872463

  12. SU-E-T-244: Motion Control Challenges in High Dose Rate Brachytherapy

    SciTech Connect

    Hyvarinen, M; Leventouri, T; Pella, S; Dumitru, N

    2014-06-01

    Purpose: High dose rate (HDR) brachytherapy dose distribution is highly localized and has a very sharp fall-off. Thus the one of the most important part of the treatment is the localization and immobilization of the applicator from the implantation to the setup verification to the treatment delivery. The smallest motions of the patient can induce a small rotation, tilt, or translational movement of the applicator that can convert into miss of a significant part of the tumor or to over irradiating a nearby critical organ.The purpose of this study is to revise most of the HDR types of treatments with their applicators and their localization challenges. Since every millimeter of misplacement counts the study will look into the necessity of increasing the immobilization for several types of applicators. Methods: The study took over 136 plans generated by the treatment planning system (TPS) looking into the applicator placement in regard to the organs at risk (OR) and simulated the three possible displacements at the hottest dose point on the critical organ for several accessories to evaluate the variation of the delivered dose at the point due to the displacement. Results: Many of the present immobilization devices produced for external radiotherapy can be used to improve the localization of HDR applicators during transportation of the patient and during treatment. Conclusion: This study data indicates that an improvement of the immobilization devices for HDR is absolutely necessary. Better applicator fixation devices are required too. Developing new immobilization devices for all the applicators is recommended.

  13. Comparison of three different techniques for camera and motion control of a teleoperated robot.

    PubMed

    Doisy, Guillaume; Ronen, Adi; Edan, Yael

    2017-01-01

    This research aims to evaluate new methods for robot motion control and camera orientation control through the operator's head orientation in robot teleoperation tasks. Specifically, the use of head-tracking in a non-invasive way, without immersive virtual reality devices was combined and compared with classical control modes for robot movements and camera control. Three control conditions were tested: 1) a condition with classical joystick control of both the movements of the robot and the robot camera, 2) a condition where the robot movements were controlled by a joystick and the robot camera was controlled by the user head orientation, and 3) a condition where the movements of the robot were controlled by hand gestures and the robot camera was controlled by the user head orientation. Performance, workload metrics and their evolution as the participants gained experience with the system were evaluated in a series of experiments: for each participant, the metrics were recorded during four successive similar trials. Results shows that the concept of robot camera control by user head orientation has the potential of improving the intuitiveness of robot teleoperation interfaces, specifically for novice users. However, more development is needed to reach a margin of progression comparable to a classical joystick interface.

  14. Externally Controlled Nanomachines on Mesoporous Silica Nanoparticles for Biomedical Applications.

    PubMed

    Rühle, Bastian; Saint-Cricq, Philippe; Zink, Jeffrey I

    2016-06-17

    Many machines (including nanomachines) consist of a solid support with moving parts that can undergo large amplitude motion to carry out specific tasks. In this Minireview, we will describe nanomachines that are supported on mesoporous silica nanoparticles that are typically 50-100 nanometers in diameter and have an array of open, readily accessible pores with an average width of a few nanometers. For triggering a large amplitude motion of the moving parts, we will focus primarily on external stimuli such as heat or light. As for the specific task the machines are carrying out, this Minireview will focus on the controlled release of pharmaceutically active agents in biomedical applications. We will discuss examples of how nanomachines can be used for remotely controlled cargo release and how existing machines that were originally designed to respond to internal physiological stimuli could be reconfigured to respond to external stimuli instead.

  15. Energy Consumption Analysis Procedure for Robotic Applications in different task motion

    NASA Astrophysics Data System (ADS)

    Ahmed, Iman; Aris, Ishak b.; Hamiruce Marhaban, Mohammad; Juraiza Ishak, Asnor

    2015-11-01

    This work proposes energy analysis method for humanoid robot, seen from simple motion task to complex one in energy chain. The research developed a procedure suitable for analysis, saving and modelling of energy consumption not only in this type of robot but also in most robots that based on electrical power as an energy source. This method has validated by an accurate integration using Matlab software for the power consumption curve to calculate the energy of individual and multiple servo motors. Therefore, this study can be considered as a procedure for energy analysis by utilizing the laboratory instruments capabilities to measure the energy parameters. We performed a various task motions with different angular speed to find out the speed limits in terms of robot stability and control strategy. A battery capacity investigation have been searched for several types of batteries to extract the power modelling equation and energy density parameter for each battery type, Matlab software have been built to design the algorithm and to evaluate experimental amount of the energy which is represented by area under the curve of the power curves. This will provide a robust estimation for the required energy in different task motions to be considered in energy saving (i.e., motion planning and real time scheduling).

  16. Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.

    PubMed

    Huo, Xueliang; Wang, Jia; Ghovanloo, Maysam

    2008-01-01

    Tongue Drive system (TDS) is a tongue-operated unobtrusive wireless assistive technology, which can potentially provide people with severe disabilities with effective computer access and environment control. It translates users' intentions into control commands by detecting and classifying their voluntary tongue motion utilizing a small permanent magnet, secured on the tongue, and an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. We have developed customized interface circuitry and implemented four control strategies to drive a powered wheelchair (PWC) using an external TDS prototype. The system has been evaluated by five able-bodied human subjects. The results showed that all subjects could easily operate the PWC using their tongue movements, and different control strategies worked better depending on the users' familiarity with the TDS.

  17. Motion-Capture-Enabled Software for Gestural Control of 3D Models

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony

    2012-01-01

    Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.

  18. Early testing of a coarse/fine precision motion control system

    SciTech Connect

    Buice, E S; Yang, H; Smith, S T; Hocken, R J; Seugling, R M; Trumper, D L; Otten, D

    2005-08-01

    This abstract presents a brief overview of key components of a motion control stage for accurate nanometer level positioning for scanning specimens over an area measuring 50 mm x 50 mm. The completed system will utilize a short-range, third generation 6 degree-of-freedom fine motion control platform (4 microns, 160 micro-radians) carried by a long-range, two-axis x-y positioning system (50 mm x 50 mm). Motion of the controlled platform relative to a measurement frame will be measured using a heterodyne laser interferometer and capacitance sensing. The final stage will be mounted onto an isolation table in a vacuum chamber, itself on isolation supports mounted to a granite slab on bed rock and isolated from the main floor of the building. This whole system is housed in a temperature-controlled laboratory. It is envisaged that the current system will provide the ability to ''pick and place'' at nanometer levels and be used for long range scanning of specimens (including biological specimens), micro- /macroassembly, lithography and as a coordinate measuring machine (CMM). Furthermore, the system performance will be compared with other comparable systems at international locations such as, National Physical Laboratory (NPL) in the UK, Technical University of Eindhoven (TUE) in the Netherlands, Physikalisch-Technische Bundesanstalt (PTB) in Germany, and our own sub-atomic measuring machine (SAMM) [1, 2] at UNC-Charlotte. Critical requirements of the system are as follows: (1) Vacuum compatible to better than 20 mPa; (2) Range of 50 mm x 50 mm x 4 microns; (3) Maximum translation velocity of 5 mm {center_dot} s{sup -1}; (4) Sub-nanometer resolution; and (5) System accuracy of better than 10 nm.

  19. Models of Postural Control: Shared Variance in Joint and COM Motions.

    PubMed

    Kilby, Melissa C; Molenaar, Peter C M; Newell, Karl M

    2015-01-01

    This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.

  20. Semi-active control of the rocking motion of monolithic art objects

    NASA Astrophysics Data System (ADS)

    Ceravolo, Rosario; Pecorelli, Marica Leonarda; Zanotti Fragonara, Luca

    2016-07-01

    The seismic behaviour of many art objects and obelisks can be analysed in the context of the seismic response of rigid blocks. Starting from the pioneering works by Housner, a large number of analytical studies of the rigid block dynamics were proposed. In fact, despite its apparent simplicity, the motion of a rigid block involves a number of complex dynamic phenomena such as impacts, sliding, uplift and geometric nonlinearities. While most of the current strategies to avoid toppling consist in preventing rocking motion, in this paper a novel semi-active on-off control strategy for protecting monolithic art objects was investigated. The control procedure under study follows a feedback-feedforward scheme that is realised by switching the stiffness of the anchorages located at the two lower corner of the block between two values. Overturning spectra have been calculated in order to clarify the benefits of applying a semi-active control instead of a passive control strategy. In accordance with similar studies, the numerical investigation took into account the dynamic response of blocks with different slenderness and size subject to one-sine pulse excitation.

  1. Complementary data fusion in guidance and control of robot compliant motion

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Ghosh, Bijoy K.; Xi, Ning; Tarn, Tzyh-Jong

    1998-10-01

    This paper is devoted to the control problem of a robot manipulator for a class of constrained motions in an unknown environment. To accomplish a task in the presence of uncertainties, we propose a new guidance and control strategy based on multisensor fusion. Three different sensors-robot joint encoders, a wrist force-torque sensor and a vision system--are utilized for our task. First of all, a sensor-based hybrid position/force control scheme is proposed for an unknown contact surface. Secondly, a new multisensor fusion scheme is utilized to handle an uncalibrated workcell, wherein the surface on which there is a path to be followed by a robot is assumed to be unknown but visible by the vision system and the precise position and orientation of camera(s) with respect to the base frame of the robot is also assumed to be unknown. Our work is related with areas such as visual servoing, multisensor fusion and robot control for constrained motion. The main features of the proposed approach are: (1) multi-sensor fusion is used both for two disparate sensors (i.e. force- torque and visual sensors) and for complementary observed data rather than redundant ones as in traditional way; (2) visual servoing is realized on the tangent space of the unknown surface; (3) calibration of the camera with respect to the robot is not needed.

  2. Results and applications of a space suit range-of-motion study

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL

    1989-01-01

    The range of motion of space suits has traditionally been described using limited 2-D mapping of limb, torso, or arm movements performed in front of an orthogonal grid. A new technique for recovering extra-vehicular (EVA) space suit range-of-motion data during underwater testing was described in a paper presented by the author at the 1988 conference. The new technique uses digitized data which is automatically acquired from video images of the subject. Three-dimensional trajectories are recovered from these data, and can be displayed using 2-D computer graphics. Results of using this technique for the current shuttle EVA suit during underwater simulated weightlessness testing are discussed. Application of the data for use in animating anthropometric computer models is highlighted.

  3. A kinetic equation for linear stable fractional motion with applications to space plasma physics

    SciTech Connect

    Watkins, Nicholas W; Credgington, Daniel; Sanchez, Raul; Rosenberg, SJ; Chapman, Sandra C

    2009-01-01

    Levy flights and fractional Brownian motion have become exemplars of the heavy-tailed jumps and long-ranged memory widely seen in physics. Natural time series frequently combine both effects, and linear fractional stable motion (lfsm) is a model process of this type, combining {alpha}-stable jumps with a memory kernel. In contrast complex physical spatiotemporal diffusion processes where both the above effects compete have for many years been modeled using the fully fractional kinetic equation for the continuous-time random walk (CTRW), with power laws in the probability density functions of both jump size and waiting time. We derive the analogous kinetic equation for lfsm and show that it has a diffusion coefficient with a power law in time rather than having a fractional time derivative like the CTRW. We discuss some preliminary results on the scaling of burst 'sizes' and 'durations' in lfsm time series, with applications to modeling existing observations in space physics and elsewhere.

  4. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  5. Motion Control of Drives for Prosthetic Hand Using Continuous Myoelectric Signals

    NASA Astrophysics Data System (ADS)

    Purushothaman, Geethanjali; Ray, Kalyan Kumar

    2016-03-01

    In this paper the authors present motion control of a prosthetic hand, through continuous myoelectric signal acquisition, classification and actuation of the prosthetic drive. A four channel continuous electromyogram (EMG) signal also known as myoelectric signals (MES) are acquired from the abled-body to classify the six unique movements of hand and wrist, viz, hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD) and radial deviation (RD). The classification technique involves in extracting the features/pattern through statistical time domain (TD) parameter/autoregressive coefficients (AR), which are reduced using principal component analysis (PCA). The reduced statistical TD features and or AR coefficients are used to classify the signal patterns through k nearest neighbour (kNN) as well as neural network (NN) classifier and the performance of the classifiers are compared. Performance comparison of the above two classifiers clearly shows that kNN classifier in identifying the hidden intended motion in the myoelectric signals is better than that of NN classifier. Once the classifier identifies the intended motion, the signal is amplified to actuate the three low power DC motor to perform the above mentioned movements.

  6. Self-sustained motion of microcapsules on a substrate controlled via the repressilator regulatory network

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    2014-11-01

    We design microcapsules that undergo self-induced motion in a fluid along a substrate and are able to collectively self-organize when controlled by a biomimetic signaling network. Three microcapsules act as localized sources of distinct chemicals that diffuse through the fluid. The production rate of each chemical is modulated by a regulatory network known as the repressilator: each species represses the production of the next in a cycle. We show that this system can exhibit sustained oscillations. We then allow the diffusing species to adsorb onto the substrate, altering the surface interaction energy. Gradients in surface energy lead to motion of the microcapsules. We find that regulation via the repressilator gives rise to qualitatively different outcomes. Chemical oscillations can facilitate aggregation of the microcapsules and the aggregate can undergo sustained translational or oscillatory motion. Numerical simulation of the fluid flow, microcapsule dynamics and concentration fields is achieved by a combination of the lattice Boltzmann, immersed boundary and finite difference methods. We assess the role of hydrodynamic interactions by comparison with a simplified model that assumes a constant drag coefficient relating the force on a microcapsule to its velocity.

  7. Robotic vision. [process control applications

    NASA Technical Reports Server (NTRS)

    Williams, D. S.; Wilf, J. M.; Cunningham, R. T.; Eskenazi, R.

    1979-01-01

    Robotic vision, involving the use of a vision system to control a process, is discussed. Design and selection of active sensors employing radiation of radio waves, sound waves, and laser light, respectively, to light up unobservable features in the scene are considered, as are design and selection of passive sensors, which rely on external sources of illumination. The segmentation technique by which an image is separated into different collections of contiguous picture elements having such common characteristics as color, brightness, or texture is examined, with emphasis on the edge detection technique. The IMFEX (image feature extractor) system performing edge detection and thresholding at 30 frames/sec television frame rates is described. The template matching and discrimination approach to recognize objects are noted. Applications of robotic vision in industry for tasks too monotonous or too dangerous for the workers are mentioned.

  8. Respiratory Motion of The Heart and Positional Reproducibility Under Active Breathing Control

    SciTech Connect

    Jagsi, Reshma; Moran, Jean M.; Kessler, Marc L.; Marsh, Robin B. C; Balter, James M.; Pierce, Lori J. . E-mail: ljpierce@umich.edu

    2007-05-01

    Purpose: To reduce cardiotoxicity from breast radiotherapy (RT), innovative techniques are under investigation. Information about cardiac motion with respiration and positional reproducibility under active breathing control (ABC) is necessary to evaluate these techniques. Methods and Materials: Patients requiring loco-regional RT for breast cancer were scanned by computed tomography using an ABC device at various breath-hold states, before and during treatment. Ten patients were studied. For each patient, 12 datasets were analyzed. Mutual information-based regional rigid alignment was used to determine the magnitude and reproducibility of cardiac motion as a function of breathing state. For each scan session, motion was quantified by evaluating the displacement of a point along the left anterior descending artery (LAD) with respect to its position at end expiration. Long-term positional reproducibility was also assessed. Results: Displacement of the LAD was greatest in the inferior direction, moderate in the anterior direction, and lowest in the left-right direction. At shallow breathing states, the average displacement of LAD position was up to 6 mm in the inferior direction. The maximum displacement in any patient was 2.8 cm in the inferior direction, between expiration and deep-inspiration breath hold. At end expiration, the long-term reproducibility (SD) of the LAD position was 3 mm in the A-P, 6 mm in the S-I, and 4 mm in the L-R directions. At deep-inspiration breath hold, long-term reproducibility was 3 mm in the A-P, 7 mm in the S-I, and 3 mm in the L-R directions. Conclusions: These data demonstrate the extent of LAD displacement that occurs with shallow breathing and with deep-inspiration breath hold. This information may guide optimization studies considering the effects of respiratory motion and reproducibility of cardiac position on cardiac dose, both with and without ABC.

  9. Upper plate absolute motion and slab-anchor force control on back-arc deformation

    NASA Astrophysics Data System (ADS)

    Heuret, A.; Lallemand, S.

    2003-04-01

    In order to test how the combined effects of overriding plate motion and trench migration can account for the variability of back-arc tectonic regimes, their "normal to the trench" absolute motion components and the strain regime of all oceanic subduction zones were compiled. Strain regime was estimated following Jarrard (1986), in a semiquantitative way. The upper plate absolute motion (Vup) is calculated in the hotspot HS3-NUVEL1A (Gripp and Gordon, 2002) reference frame and trench migration (Vt) from Vup, corrected from deformation rate of back-arc region, mainly given by GPS data. As slabs tend to sink because of their age-related-mass-excess relative to the surrounding mantle, it is generally assumed that most of the trenches have a spontaneous seaward motion (trench rollback). Ages at trench have thus also been compiled ( from Muller et al, 1997) to test a possible control of trench migration with slab age. Our values underline a high control of strain regime by Vup, but inconsistencies still remain with this single parameter. To account for all the observed deformations, trench migration is needed. There are more or less as much subduction zones with seaward Vt as landward ones, and, for 90% of subduction zones, Vt never reach 50 mm/y in the two directions. The expected relation between trench migration and slab age is far to be verified: landward trench migrations exist in many subduction zones, and, among them, many have old slabs. Several examples indicate that the slab tend to follow the trench migration and, so, to move transversely in the surrounding mantle. As a consequence, Vt is close to the "normal to the trench" slab migration and gives informations about the slab anchor force : slabs are not perfectly anchored but their possible motions appear to be limited. This 50 mm/y limitation of slab migration may provide new constraints on the poorly known slab-anchor force. No evidence of age related trench rollback have beeen found. It does not

  10. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  11. Theoretical Comparison of Translational and Rotational Motions of Nanoparticles in Cell Membrane and Consideration for Medical Applications

    NASA Astrophysics Data System (ADS)

    Nishida, Yasutaka; Katayama, Koichi; Araki, Tsutomu; Naruse, Yujiro

    2007-11-01

    The interaction between nanoparticles and biological cells under physical excitation is investigated theoretically. Our research aim is to thoroughly utilize a series of physical stimuli on a target cells (malignant cells or bacteria) in various medical applications. In this study, we focused on a theoretical comparison of the translational and rotational motions of nanoparticles in the cell membrane in terms of energy dissipation. The theoretical analysis suggested that rotational motion is more efficient than translational motion for providing frictional heat to the cells. The promising applications of rotational nanoparticles include their use as physical antibiotics and artificial immune system components for the selective destruction of bacteria and malignant cells.

  12. Design and Control of a Ship Motion Simulation Platform from an Energy Efficiency Perspective

    SciTech Connect

    Lind, Randall F; Jansen, John F; Love, Lonnie J; Lloyd, Peter D; Rowe, John C; Pin, Francois G

    2009-01-01

    Most hydraulic servo systems are designed with little consideration for energy efficiency. Pumps are selected based upon required peak power demands, valves are chosen primarily for their rated flow, actuators for the maximum force. However, the design of a hydraulic servo system has great potential in terms of energy efficiency that has, for the most part, been ignored. This paper describes the design and control of a large-scale ship motion simulation platform that was designed and built at Oak Ridge National Laboratory for the Office of Naval Research. The primary reasons to incorporate energy-efficiency features into the design are cost and size reduction. A preliminary survey of proposed designs based on traditional motion simulation platform configurations (Stuart Platforms) required hydraulic power supplies approaching 1.22 MW. This manuscript describes the combined design and control effort that led to a system with the same performance requirements, however requiring a primary power supply that was less than 112 kW. The objective of this paper is to illustrate alternative design and control approaches that can significantly reduce the power requirements of hydraulic systems and improve the overall energy-efficiency of large-scale hydraulically actuated systems.

  13. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  14. Leap Motion Gesture Control With Carestream Software in the Operating Room to Control Imaging: Installation Guide and Discussion.

    PubMed

    Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien

    2015-12-01

    Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article.

  15. Leap Motion Gesture Control With Carestream Software in the Operating Room to Control Imaging: Installation Guide and Discussion.

    PubMed

    Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien

    2015-12-01

    Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article. PMID:26002115

  16. Application of model based control to robotic manipulators

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1988-01-01

    A robot that can duplicate humam motion capabilities in such activities as balancing, reaching, lifting, and moving has been built and tested. These capabilities are achieved through the use of real time Model-Based Control (MBC) techniques which have recently been demonstrated. MBC accounts for all manipulator inertial forces and provides stable manipulator motion control even at high speeds. To effectively demonstrate the unique capabilities of MBC, an experimental robotic manipulator was constructed, which stands upright, balancing on a two wheel base. The mathematical modeling of dynamics inherent in MBC permit the control system to perform functions that are impossible with conventional non-model based methods. These capabilities include: (1) Stable control at all speeds of operation; (2) Operations requiring dynamic stability such as balancing; (3) Detection and monitoring of applied forces without the use of load sensors; (4) Manipulator safing via detection of abnormal loads. The full potential of MBC has yet to be realized. The experiments performed for this research are only an indication of the potential applications. MBC has no inherent stability limitations and its range of applicability is limited only by the attainable sampling rate, modeling accuracy, and sensor resolution. Manipulators could be designed to operate at the highest speed mechanically attainable without being limited by control inadequacies. Manipulators capable of operating many times faster than current machines would certainly increase productivity for many tasks.

  17. Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion

    PubMed Central

    Masuda, Tsukuru; Akimoto, Aya Mizutani; Nagase, Kenichi; Okano, Teruo; Yoshida, Ryo

    2016-01-01

    A gradient self-oscillating polymer brush surface with ordered, autonomous, and unidirectional ciliary motion has been designed. The self-oscillating polymer is a random copolymer composed of N-isopropylacrylamide and ruthenium tris(2,2′-bipyridine) [Ru(bpy)3], which acts as a catalyst for an oscillating chemical reaction, the Belousov-Zhabotinsky reaction. The target polymer brush surface was designed to have a thickness gradient by using sacrificial-anode atom transfer radical polymerization. The gradient structure of the polymer brush was confirmed by x-ray photoelectron spectroscopy, atomic force microscopy, and ultraviolet-visible spectroscopy. These analyses revealed that the thickness of the polymer brush was in the range of several tens of nanometers, and the amount of Ru(bpy)3 increased as the thickness increased. The gradient polymer brush induced a unidirectional propagation of the chemical wave from the region with small Ru(bpy)3 amounts to the region with large Ru(bpy)3 amounts. This spatiotemporal control of the ciliary motion would be useful in potential applications to functional surface such as autonomous mass transport systems.

  18. Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion.

    PubMed

    Masuda, Tsukuru; Akimoto, Aya Mizutani; Nagase, Kenichi; Okano, Teruo; Yoshida, Ryo

    2016-08-01

    A gradient self-oscillating polymer brush surface with ordered, autonomous, and unidirectional ciliary motion has been designed. The self-oscillating polymer is a random copolymer composed of N-isopropylacrylamide and ruthenium tris(2,2'-bipyridine) [Ru(bpy)3], which acts as a catalyst for an oscillating chemical reaction, the Belousov-Zhabotinsky reaction. The target polymer brush surface was designed to have a thickness gradient by using sacrificial-anode atom transfer radical polymerization. The gradient structure of the polymer brush was confirmed by x-ray photoelectron spectroscopy, atomic force microscopy, and ultraviolet-visible spectroscopy. These analyses revealed that the thickness of the polymer brush was in the range of several tens of nanometers, and the amount of Ru(bpy)3 increased as the thickness increased. The gradient polymer brush induced a unidirectional propagation of the chemical wave from the region with small Ru(bpy)3 amounts to the region with large Ru(bpy)3 amounts. This spatiotemporal control of the ciliary motion would be useful in potential applications to functional surface such as autonomous mass transport systems. PMID:27602405

  19. Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion

    PubMed Central

    Masuda, Tsukuru; Akimoto, Aya Mizutani; Nagase, Kenichi; Okano, Teruo; Yoshida, Ryo

    2016-01-01

    A gradient self-oscillating polymer brush surface with ordered, autonomous, and unidirectional ciliary motion has been designed. The self-oscillating polymer is a random copolymer composed of N-isopropylacrylamide and ruthenium tris(2,2′-bipyridine) [Ru(bpy)3], which acts as a catalyst for an oscillating chemical reaction, the Belousov-Zhabotinsky reaction. The target polymer brush surface was designed to have a thickness gradient by using sacrificial-anode atom transfer radical polymerization. The gradient structure of the polymer brush was confirmed by x-ray photoelectron spectroscopy, atomic force microscopy, and ultraviolet-visible spectroscopy. These analyses revealed that the thickness of the polymer brush was in the range of several tens of nanometers, and the amount of Ru(bpy)3 increased as the thickness increased. The gradient polymer brush induced a unidirectional propagation of the chemical wave from the region with small Ru(bpy)3 amounts to the region with large Ru(bpy)3 amounts. This spatiotemporal control of the ciliary motion would be useful in potential applications to functional surface such as autonomous mass transport systems. PMID:27602405

  20. Relative control effectiveness technique with application to airplane control coordination

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1985-01-01

    A method to select optimal combinations of the control variables of a linear system is reported. The combinations are chosen so that the control channels have their principal influences on selected fundamental modes of the system. A series of algebraic maximization problems is used to maximize the effects of the control channels on selected modes while simultaneously minimizing the effects on the remaining modes. The method is applied to the lateral and directional control of a linearized airplane model having ailerons, a rudder, and differential tail surfaces. Integration of these control eliminates oscillations present in the roll rate for a step lateral-control input and improves the sideslip response with reduced rolling motions for a step directional-control input. Inclusion of thrust-vectoring engine nozzles improves the roll rate capability of the airplane.

  1. In vivo quantification of motion in liver parenchyma and its application in shistosomiasis tissue characterization

    NASA Astrophysics Data System (ADS)

    Badawi, Ahmed M.; Hashem, Ahmed M.; Youssef, Abou-Bakr M.; Abdel-Wahab, Mohamed F.

    1995-03-01

    Schistosomiasis is a major problem in Egypt, despite an active control program it is estimated to exist in about 1/3 of the population. Deposition of less functioning fibrous tissues in the liver is the major contributory factor to the hepatic pathology. Fibrous tissues consist of a complex array of connective matrix material and a variety of collagen isotopes. As a result of an increased stromal density (collagen content), the parenchyma became more ectogenic and less elastic (hard). In this study we investigated the effect of cardiac mechanical impulses from the heart and aorta on the kinetics of the liver parenchyma. Under conditions of controlled patient movements and suspended respiration, a 30 frame per second of 588 X 512 ultrasound images (cineloop, 32 pels per cm) are captured from an aTL ultrasound machine then digitized. The image acquisition is triggered by the R wave of the ECG of the patient. The motion that has a forced oscillation form in the liver parenchyma is quantified by tracking of small box (20 - 30 pels) in 16 directions for all the successive 30 frames. The tracking was done using block matching techniques (the max correlation between boxes in time, frequency domains, and the minimum SAD (sum absolute difference) between boxes). The motion is quantified for many regions at different positions within the liver parenchyma for 80 cases of variable degrees of schisto., cirrhotic livers, and for normal livers. The velocity of the tissue is calculated from the displacement (quantified motion), time between frames, and the scan time for the ultrasound scanner. We found that the motion in liver parenchyma is small in the order of very few millimeters, and the attenuation of the mechanical wave for one ECG cycle is higher in the schisto. and cirrhotic livers than in the normal ones. Finally quantification of motion in liver parenchyma due to cardiac impulses under controlled limb movement and respiration may be of value in the characterization of

  2. Materials Control for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael

    2005-01-01

    The distant future of mankind and the ultimate survivability of the human race, as it is known today, will depend on mans' ability to break earthly bonds and establish new territorial positions throughout the universe. Man must therefore be positioned to not only travel to, but also, to readily adapt to numerous and varying environments. For this mass migration across the galaxies nothing is as import to the human race as is NASA's future missions into Low Earth Orbit (LEO), to the moon, and/or Mars. These missions will form the building blocks to eternity for mankind. From these missions, NASA will develop the foundations for these building blocks based on sound engineering and scientific principles, both known and yet to be discovered. The integrity of the program will lead to development, tracking and control of the most basic elements of hardware production: That being development and control of applications of space flight materials. Choosing the right material for design purposes involves many considerations, such as governmental regulations associated with manufacturing operations, both safety of usage and of manufacturing, general material usage requirements, material longevity and performance requirements, material interfacing compatibility and material usage environments. Material performance is subject to environmental considerations in as much as a given material may perform exceptionally well at standard temperatures and pressures while performing poorly under non-standard conditions. These concerns may be found true for materials relative to the extreme temperatures and vacuum gradients of high altitude usage. The only way to assure that flight worthy materials are used in design is through testing. However, as with all testing, it requires both time on schedule and cost to the operation. One alternative to this high cost testing approach is to rely on a materials control system established by NASA. The NASA community relies on the MAPTIS materials

  3. Optimization of inertial sensor-based motion capturing for magnetically distorted field applications.

    PubMed

    Schiefer, Christoph; Ellegast, Rolf P; Hermanns, Ingo; Kraus, Thomas; Ochsmann, Elke; Larue, Christian; Plamondon, André

    2014-12-01

    Inertial measurement units (IMU) are gaining increasing importance for human motion tracking in a large variety of applications. IMUs consist of gyroscopes, accelerometers, and magnetometers which provide angular rate, acceleration, and magnetic field information, respectively. In scenarios with a permanently distorted magnetic field, orientation estimation algorithms revert to using only angular rate and acceleration information. The result is an increasing drift error of the heading information. This article describes a method to compensate the orientation drift of IMUs using angular rate and acceleration readings in a quaternion-based algorithm. Zero points (ZP) were introduced, which provide additional heading and gyroscope bias information and were combined with bidirectional orientation computation. The necessary frequency of ZPs to achieve an acceptable error level is derived in this article. In a laboratory environment the method and the effect of varying interval length between ZPs was evaluated. Eight subjects were equipped with seven IMUs at trunk, head and upper extremities. They performed a predefined course of box handling for 40 min at different motion speeds and ranges of motion. The orientation estimation was compared to an optical motion tracking system. The resulting mean root mean squared error (RMSE) of all measurements ranged from 1.7 deg to 7.6 deg (roll and pitch) and from 3.5 deg to 15.0 deg (heading) depending on the measured segment, at a mean interval-length of 1.1 min between two ZPs without magnetometer usage. The 95% limits of agreement (LOA) ranged in best case from -2.9 deg to 3.6 deg at the hip roll angle and in worst case from -19.3 deg to 18.9 deg at the forearm heading angle. This study demonstrates that combining ZPs and bidirectional computation can reduce orientation error of IMUs in environments with magnetic field distortion.

  4. Optimization of inertial sensor-based motion capturing for magnetically distorted field applications.

    PubMed

    Schiefer, Christoph; Ellegast, Rolf P; Hermanns, Ingo; Kraus, Thomas; Ochsmann, Elke; Larue, Christian; Plamondon, André

    2014-12-01

    Inertial measurement units (IMU) are gaining increasing importance for human motion tracking in a large variety of applications. IMUs consist of gyroscopes, accelerometers, and magnetometers which provide angular rate, acceleration, and magnetic field information, respectively. In scenarios with a permanently distorted magnetic field, orientation estimation algorithms revert to using only angular rate and acceleration information. The result is an increasing drift error of the heading information. This article describes a method to compensate the orientation drift of IMUs using angular rate and acceleration readings in a quaternion-based algorithm. Zero points (ZP) were introduced, which provide additional heading and gyroscope bias information and were combined with bidirectional orientation computation. The necessary frequency of ZPs to achieve an acceptable error level is derived in this article. In a laboratory environment the method and the effect of varying interval length between ZPs was evaluated. Eight subjects were equipped with seven IMUs at trunk, head and upper extremities. They performed a predefined course of box handling for 40 min at different motion speeds and ranges of motion. The orientation estimation was compared to an optical motion tracking system. The resulting mean root mean squared error (RMSE) of all measurements ranged from 1.7 deg to 7.6 deg (roll and pitch) and from 3.5 deg to 15.0 deg (heading) depending on the measured segment, at a mean interval-length of 1.1 min between two ZPs without magnetometer usage. The 95% limits of agreement (LOA) ranged in best case from -2.9 deg to 3.6 deg at the hip roll angle and in worst case from -19.3 deg to 18.9 deg at the forearm heading angle. This study demonstrates that combining ZPs and bidirectional computation can reduce orientation error of IMUs in environments with magnetic field distortion. PMID:25321344

  5. Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

    ERIC Educational Resources Information Center

    Milne, Elizabeth; White, Sarah; Campbell, Ruth; Swettenham, John; Hansen, Peter; Ramus, Franck

    2006-01-01

    Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control,…

  6. ADAPTIVE CONTROL OF CENTER OF MASS (GLOBAL) MOTION AND ITS JOINT (LOCAL) ORIGIN IN GAIT

    PubMed Central

    Yang, Feng; Pai, Yi-Chung

    2014-01-01

    Dynamic gait stability can be quantified by the relationship of the motion state (i.e. the position and velocity) between the body center of mass (COM) and its base of support (BOS). Humans learn how to adaptively control stability by regulating the absolute COM motion state (i.e., its position and velocity) or by controlling the BOS (through stepping) in a predictable manner, or by doing both simultaneously following an external perturbation that disrupts their regular relationship. Post repeated-slip perturbation training, for instance, older adults learned to forward shift their COM position while walking with a reduced step length, hence reduced their likelihood of falls. How and to what extent each individual joint influences such adaptive alterations is mostly unknown. A three-dimensional individualized human kinematic model was established. Based on the human model, sensitivity analysis was used to systematically quantify the influence of each lower limb joint on the COM position relative to the BOS and the step length during gait. It was found that the leading foot had the greatest effect on regulating the COM position relative to the BOS; and both hips bear the most influence on the step length. These findings could guide cost-effective but efficient fall-reduction training paradigm among older population. PMID:24998991

  7. Manual control of yaw motion with combined visual and vestibular cues

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.; Young, L. R.

    1977-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  8. Research on the modeling of the missile's disturbance motion and the initial control point optimization

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhu, Dalin; Tang, Shengjing

    2012-11-01

    The initial trajectory design of the missile is an important part of the overall design, but often a tedious calculation and analysis process due to the large dimension nonlinear differential equations and the traditional statistical analysis methods. To improve the traditional design methods, a robust optimization concept and method are introduced in this paper to deal with the determination of the initial control point. First, the Gaussian Radial Basis Network is adopted to establish the approximate model of the missile's disturbance motion based on the disturbance motion and disturbance factors analysis. Then, a direct analytical relationship between the disturbance input and statistical results is deduced on the basis of Gaussian Radial Basis Network model. Subsequently, a robust optimization model is established aiming at the initial control point design problem and the niche Pareto genetic algorithm for multi-objective optimization is adopted to solve this optimization model. An integral design example is give at last and the simulation results have verified the validity of this method.

  9. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    NASA Astrophysics Data System (ADS)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  10. Organ motion due to respiration: the state of the art and applications in interventional radiology and radiation oncology

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Mulcahy, Maureen; Piyasena, Rohan; Zhou, Tong; Dieterich, Sonja; Xu, Sheng; Banovac, Filip; Wong, Kenneth H.

    2005-04-01

    Tracking organ motion due to respiration is important for precision treatments in interventional radiology and radiation oncology, among other areas. In interventional radiology, the ability to track and compensate for organ motion could lead to more precise biopsies for applications such as lung cancer screening. In radiation oncology, image-guided treatment of tumors is becoming technically possible, and the management of organ motion then becomes a major issue. This paper will review the state-of-the-art in respiratory motion and present two related clinical applications. Respiratory motion is an important topic for future work in image-guided surgery and medical robotics. Issues include how organs move due to respiration, how much they move, how the motion can be compensated for, and what clinical applications can benefit from respiratory motion compensation. Technology that can be applied for this purpose is now becoming available, and as that technology evolves, the subject will become an increasingly interesting and clinically valuable topic of research.

  11. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    SciTech Connect

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V.; Sykes, Jenna; Wong, Rebecca K.S.; Dinniwell, Rob E.; Kim, John; Ringash, Jolie; Brierley, James D.; Cummings, Bernard J.; Brade, Anthony; Dawson, Laura A.

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed by lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ≤5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ≤5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ≤10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ≥60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.

  12. Solar Sails as a Tool for Spacecraft Motion Control Near Solar-Terrestrial Libration Points.

    NASA Astrophysics Data System (ADS)

    Eismont, N. A.

    Two problems are considered connected with the use of solar sails on spacecraft (s/c) moving in the vicinity of solar-terrestrial libration points L1 and L2. First problem is related to the exploration of s/c trajectories modification under influence of solar radiation pressure in case with comparatively big solar sails are mounted on s/c. In this case trajectory is shifted further from the Earth and closer to the Sun along Sun-Earth line. The shift may reach one million km or more. Simultaneously its size and shape are also changed. The dependence of these variations upon the mass to area ratio is determined. Such trajectories are interesting for solar wind shock waves investigations because it allows earlier detection of these waves as compared with use of "usual" motion of the s/c in L1 proximity. The other problem explored in the paper is s/c motion control using variation of forces produced by solar radiation pressure. The following approach for this variation is supposed: the sails include liquid crystal films with controllable transparency. When electrical voltage is applied film becomes transparent and solar pressure is minimal, in opposite case it is opaque and pressure increases. The other version of transparency variation use is two layer film: one layer is liquid crystal film; the other one is aluminium foil. With transparent liquid crystal film we have approximately two times higher solar radiation pressure than with opaque one. It gives the possibilities to control as orbital motion of s/c as its attitude. It is shown in the paper that comparatively small solar sails not bigger than usual solar array panels may be used for orbital control of s/c in the vicinity Sun-Earth collinear libration points if above described technics is applied. The required sails area to s/c mass is determined for solving the task of keeping s/c in vicinity of libration point and for trajectory amplitude change maneuvers. Thus the paper shows rather good perspective for the

  13. Emulating a robotic manipulator arm with an hybrid motion-control system

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; León-Galicia, A.; Noriega-Hernández, M.; Salazar-Hueta, A.

    2015-01-01

    A motion control system with four and 1/2 degrees of freedom, designed to move small objects within a 0.25 m3 space, parallel to a horizontal table, with high speed and performance similar to a robotic manipulator arm was built. The machine employs several actuators and control devices. Its main characteristic is to incorporate a servomotor, steeper motors, electromechanical and fluid power actuators and diverse control resources. A group of actuators arranged on a spherical coordinates system is attached to the servomotor platform. A linear pneumatic actuator with an angular grip provides the radial extension and load clamping capacity. Seven inductive proximity sensors and one encoder provide feedback, for operating the actuators under closed loop conditions. Communication between the sensors and control devices is organized by a PLC. A touch screen allows governing the system remotely, easily and interactively, without knowing the specific programming language of each control component. The graphic environment on the touch screen guides the user to design and store control programs, establishing coordinated automatic routines for moving objects in space, simulation and implementation of industrial positioning or machining processes.

  14. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  15. Active Flow Control of the Near Wake of an Axisymmetric Body in Prescribed Motion

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2014-11-01

    Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric moving wind tunnel bluff body model are exploited for modification of its near wake and thereby its global unsteady aerodynamic loads. The model is supported by eight servo-controlled wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The body moves along a prescribed trajectory controllable in six degrees of freedom using closed loop feedback from an external camera system. Actuation is effected by an integrated azimuthally-segmented array of four aft-facing synthetic jet modules around the perimeter of the tail end. In the present investigations, the aerodynamic loads are controlled during time-periodic axial and rotational motions with varying reduced frequencies of up to 0.259. It is shown that this flow control approach modifies the near wake and induces aerodynamic loads that are comparable to the baseline model dynamic loads. Control of the model's unsteady aerodynamic characteristics may be adopted for in flight stabilization.

  16. Application of universal kriging for estimation of earthquake ground motion: Statistical significance of results

    SciTech Connect

    Carr, J.R.; Roberts, K.P.

    1989-02-01

    Universal kriging is compared with ordinary kriging for estimation of earthquake ground motion. Ordinary kriging is based on a stationary random function model; universal kriging is based on a nonstationary random function model representing first-order drift. Accuracy of universal kriging is compared with that for ordinary kriging; cross-validation is used as the basis for comparison. Hypothesis testing on these results shows that accuracy obtained using universal kriging is not significantly different from accuracy obtained using ordinary kriging. Test based on normal distribution assumptions are applied to errors measured in the cross-validation procedure; t and F tests reveal no evidence to suggest universal and ordinary kriging are different for estimation of earthquake ground motion. Nonparametric hypothesis tests applied to these errors and jackknife statistics yield the same conclusion: universal and ordinary kriging are not significantly different for this application as determined by a cross-validation procedure. These results are based on application to four independent data sets (four different seismic events).

  17. Altered sensory-motor control of the head as an etiological factor in space-motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1989-01-01

    Mechanical unloading during head movements in weightlessness may be an etiological factor in space-motion sickness. We simulated altered head loading on Earth without affecting vestibular stimulation by having subjects wear a weighted helmet. Eight subjects were exposed to constant velocity rotation about a vertical axis with direction reversals every 60 sec. for eight reversals with the head loaded and eight with the head unloaded. The severity of motion sickness elicited was significantly higher when the head was loaded. This suggests that altered sensory-motor control of the head is also an etiological factor in space-motion sickness.

  18. Application of a spring-dashpot system to clinical lung tumor motion data

    SciTech Connect

    Ackerley, E. J.; Wilson, P. L.; Cavan, A. E.; Berbeco, R. I.; Meyer, J.

    2013-02-15

    Purpose: The treatment efficacy of radiation therapy for lung tumors can be increased by compensating for breath-induced tumor motion. In this study, we quantitatively examine a mathematical model of pseudomechanical linkages between an external surrogate signal and lung tumor motion. Methods: A spring-dashpot system based on the Voigt model was developed to model the correlation between abdominal respiratory motion and tumor motion during lung radiotherapy. The model was applied to clinical data obtained from 52 treatments ('beams') from 10 patients, treated on the Mitsubishi Real-Time Radiation Therapy system, Sapporo, Japan. In Stage 1, model parameters were optimized for individual patients and beams to determine reference values and to investigate how well the model can describe the data. In Stage 2, for each patient the optimal parameters determined for a single beam were applied to data from other beams to investigate whether a beam-specific set of model parameters is sufficient to model tumor motion over a course of treatment. Results: In Stage 1, the baseline root mean square (RMS) residual error for all individually optimized beam data was 0.90 {+-} 0.40 mm (mean {+-} 1 standard deviation). In Stage 2, patient-specific model parameters based on a single beam were found to model the tumor position closely, even for irregular beam data, with a mean increase with respect to Stage 1 values in RMS error of 0.37 mm. On average, the obtained model output for the tumor position was 95% of the time within an absolute bound of 2.0 and 2.6 mm in Stages 1 and 2, respectively. The model was capable of dealing with baseline, amplitude and frequency variations of the input data, as well as phase shifts between the input abdominal and output tumor signals. Conclusions: These results indicate that it may be feasible to collect patient-specific model parameters during or prior to the first treatment, and then retain these for the rest of the treatment period. The model has

  19. Dynamic recurrent neural networks for stable adaptive control of wing rock motion

    NASA Astrophysics Data System (ADS)

    Kooi, Steven Boon-Lam

    Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to

  20. Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility

    NASA Technical Reports Server (NTRS)

    Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

    2014-01-01

    The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

  1. BEM for wave equation with boundary in arbitrary motion and applications to compressible potential aerodynamics of airplanes and helicopters

    NASA Technical Reports Server (NTRS)

    Morino, Luigi; Bharadvaj, Bala K.; Freedman, Marvin I.; Tseng, Kadin

    1988-01-01

    The wave equation for an object in arbitrary motion is investigated analytically using a BEM approach, and practical applications to potential flows of compressible fluids around aircraft wings and helicopter rotors are considered. The treatment accounts for arbitrary combined rotational and translational motion of the reference frame and for the wake motion. The numerical implementation as a computer algorithm is demonstrated on problems with prescribed and free wakes, the former in compressible flows and the latter for incompressible flows; results are presented graphically and briefly characterized.

  2. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  3. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training.

    PubMed

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  4. Applications of fuzzy logic to control and decision making

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

  5. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    ERIC Educational Resources Information Center

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  6. 76 FR 79673 - PacifiCorp; Notice of Application Accepted for Filing, Soliciting Comments, Motions To Intervene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission PacifiCorp; Notice of Application Accepted for Filing, Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been...

  7. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    PubMed Central

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  8. Controlled Release Applications of Organometals.

    ERIC Educational Resources Information Center

    Thayer, John S.

    1981-01-01

    Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)

  9. Hip and ankle range of motion and hip muscle strength in young female ballet dancersand controls

    PubMed Central

    Bennell, K.; Khan, K. M.; Matthews, B.; De Gruyter, M.; Cook, E.; Holzer, K.; Wark, J. D.

    1999-01-01

    OBJECTIVES: To compare the hip and ankle range of motion and hip muscle strength in 8-11 year old novice female ballet dancers and controls. METHODS: Subjects were 77 dancers and 49 controls (mean (SD) age 9.6 (0.8) and 9.6 (0.7) years respectively). Supine right active hip external rotation (ER) and internal rotation (IR) were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. The measure of ER achieved from below the hip during turnout (non-hip ER) was calculated by subtracting hip ER range from turnout range, and hip ER:IR was derived by dividing ER range by IR range. Range of right weight bearing ankle dorsiflexion was measured in a standing lunge using two methods: the distance from the foot to the wall (in centimetres) and the angle of the shank to the vertical via an inclinometer (in degrees). Right calf muscle range was measured in weight bearing using an inclinometer. A manual muscle tester was used to assess right isometric hip flexor, internal rotator, external rotator, abductor, and adductor strength. RESULTS: Dancers had less ER (p<0.05) and IR (p<0.01) range than controls but greater ER:IR (p<0.01). Although there was no difference in turnout between groups, the dancers had greater non-hip ER. Dancers had greater range of ankle dorsiflexion than controls, measured in both centimetres (p<0.01) and degrees (p<0.05), but similar calf muscle range. After controlling for body weight, controls had stronger hip muscles than dancers except for hip abductor strength which was similar. Regression analyses disclosed a moderate relation between turnout and hip ER (r = 0.40). There were no significant correlations between range of motion and training years and weekly training hours. CONCLUSIONS: Longitudinal follow up will assist in determining whether or not hip and ankle range in young dancers is genetically fixed and unable to be improved with further balletic training. 


 PMID:10522638

  10. Applications of robust control theory - Educational implications

    NASA Technical Reports Server (NTRS)

    Dorato, P.; Yedavalli, R. K.

    1992-01-01

    A survey is made of applications of robust control theory to problems of flight control, control of flexible space structures, and engine control which have appeared in recent conferences and journals. An analysis is made of which theoretical techniques are most commonly used and what implications this has for graduate and undergraduate education in aerospace engineering.

  11. SAR imagery of moving targets: application of time-frequency distributions for estimating motion parameters

    NASA Astrophysics Data System (ADS)

    Haimovich, Alexander M.; Peckham, C. D.; Teti, Joseph G., Jr.

    1994-06-01

    It is well known that targets moving along track within a Synthetic Aperture Radar (SAR) field of view are imaged as defocused objects. The SAR stripmap mode is tuned to stationary ground targets and the mismatch between the SAR processing parameters and the target motion parameters causes the energy to spill over to adjacent image pixels, thus not only hindering target feature extraction, but also reducing the probability of detection. The problem can be remedied by generating the image using a filter matched to the actual target motion parameters, effectively focusing the SAR image on the target. For a fixed rate of motion the target velocity can be estimated from the slope of the Doppler frequency characteristic. The processing is carried out on the range compressed data but before azimuth compression. The problem is similar to the classical problem of estimating the instantaneous frequency of a linear FM signal (chirp). This paper investigates the application of three different time-frequency analysis techniques to estimate the instantaneous Doppler frequency of range compressed SAR data. In particular, we compare the Wigner-Ville distribution, the Gabor expansion and the Short-Time Fourier transform with respect to their performance in noisy SAR data. Criteria are suggested to quantify the performance of each method in the joint time- frequency domain. It is shown that these methods exhibit sharp signal-to-noise threshold effects, i.e., a certain SNR below which the accuracy of the velocity estimation deteriorates rapidly. It is also shown that the methods differ with respect to their representation of the SAR data.

  12. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  13. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. PMID:27138460

  14. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices.

  15. Application of side-oblique image-motion blur correction to Kuaizhou-1 agile optical images.

    PubMed

    Sun, Tao; Long, Hui; Liu, Bao-Cheng; Li, Ying

    2016-03-21

    Given the recent development of agile optical satellites for rapid-response land observation, side-oblique image-motion (SOIM) detection and blur correction have become increasingly essential for improving the radiometric quality of side-oblique images. The Chinese small-scale agile mapping satellite Kuaizhou-1 (KZ-1) was developed by the Harbin Institute of Technology and launched for multiple emergency applications. Like other agile satellites, KZ-1 suffers from SOIM blur, particularly in captured images with large side-oblique angles. SOIM detection and blur correction are critical for improving the image radiometric accuracy. This study proposes a SOIM restoration method based on segmental point spread function detection. The segment region width is determined by satellite parameters such as speed, height, integration time, and side-oblique angle. The corresponding algorithms and a matrix form are proposed for SOIM blur correction. Radiometric objective evaluation indices are used to assess the restoration quality. Beijing regional images from KZ-1 are used as experimental data. The radiometric quality is found to increase greatly after SOIM correction. Thus, the proposed method effectively corrects image motion for KZ-1 agile optical satellites.

  16. Application of side-oblique image-motion blur correction to Kuaizhou-1 agile optical images.

    PubMed

    Sun, Tao; Long, Hui; Liu, Bao-Cheng; Li, Ying

    2016-03-21

    Given the recent development of agile optical satellites for rapid-response land observation, side-oblique image-motion (SOIM) detection and blur correction have become increasingly essential for improving the radiometric quality of side-oblique images. The Chinese small-scale agile mapping satellite Kuaizhou-1 (KZ-1) was developed by the Harbin Institute of Technology and launched for multiple emergency applications. Like other agile satellites, KZ-1 suffers from SOIM blur, particularly in captured images with large side-oblique angles. SOIM detection and blur correction are critical for improving the image radiometric accuracy. This study proposes a SOIM restoration method based on segmental point spread function detection. The segment region width is determined by satellite parameters such as speed, height, integration time, and side-oblique angle. The corresponding algorithms and a matrix form are proposed for SOIM blur correction. Radiometric objective evaluation indices are used to assess the restoration quality. Beijing regional images from KZ-1 are used as experimental data. The radiometric quality is found to increase greatly after SOIM correction. Thus, the proposed method effectively corrects image motion for KZ-1 agile optical satellites. PMID:27136855

  17. Telepresence system development for application to the control of remote robotic systems

    NASA Technical Reports Server (NTRS)

    Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien

    1989-01-01

    The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.

  18. Nonlinear mappings between discrete and simultaneous motions to decrease training burden of simultaneous pattern recognition myoelectric control.

    PubMed

    Ingraham, Kimberly A; Smith, Lauren H; Simon, Ann M; Hargrove, Levi J

    2015-08-01

    Real-time simultaneous pattern recognition (PR) control of multiple degrees of freedom (DOF) has been demonstrated using a set of parallel linear discriminant analysis (LDA) classifiers trained with both discrete (1-DOF) and simultaneous (2-DOF) motion data. However, this training method presents a clinical challenge, requiring large amounts of data necessary to re-train the system. This study presents a parallel classifier training method that aims to reduce the training burden. Artificial neural networks (ANNs) were used to determine a nonlinear mapping between surface EMG features of 2-DOF motions and their 1-DOF motion components. The mapping was then used to transform experimentally collected features of 1-DOF motions into simulated features of 2-DOF motions. A set of parallel LDA classifiers were trained using the novel training method and two previously reported training methods. The training methods evaluated were (1) using experimentally collected 1-DOF data and ANN-simulated 2-DOF data, (2) using only experimentally collected 1-DOF data and (3) using experimentally collected 1- and 2-DOF data. Using the novel training method resulted in significantly lower classification error overall (p<;0.01) and in predicting 2-DOF motions (p<;0.01) compared to training with experimental 1-DOF data only. These findings demonstrate that using a set of ANNs to predict 2-DOF data from 1-DOF data can improve system performance when only discrete training data are available, thus reducing the training burden of simultaneous PR control. PMID:26736598

  19. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.

    PubMed

    Miura, Shingo; Banno, Taisuke; Tonooka, Taishi; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2014-07-15

    Self-propelled motion of micrometer-sized substances has drawn much attention as an autonomous transportation system. One candidate vehicle is a chemically driven micrometer-sized oil droplet. However, to the best of our knowledge, there has been no report of a chemical reaction system controlling the three-dimensional motion of oil droplets underwater. In this study, we developed a molecular system that controlled the self-propelled motion of 4-heptyloxybenzaldehyde oil droplets by using novel gemini cationic surfactants containing carbonate linkages (2G12C). We found that, in emulsions containing sodium hydroxide, the motion time of the self-propelled oil droplets was longer in the presence of 2G12C than in the presence of gemini cationic surfactants without carbonate linkages. Moreover, in 2G12C solution, oil droplets at rest underwent unidirectional, self-propelled motion in a gradient field toward a higher concentration of sodium hydroxide. Even though they stopped within several seconds, they restarted in the same direction. 2G12C was gradually hydrolyzed under basic conditions to produce a pair of the corresponding monomeric surfactants, which exhibit different interfacial properties from 2G12C. The prolonged and restart motion of the oil droplets were explained by the increase in the heterogeneity of the interfacial tension of the oil droplets.

  20. Reversible control of F(1)-ATPase rotational motion using a photochromic ATP analog at the single molecule level.

    PubMed

    Sunamura, Ei-Ichiro; Kamei, Takashi; Konno, Hiroki; Tamaoki, Nobuyuki; Hisabori, Toru

    2014-03-28

    Motor enzymes such as F1-ATPase and kinesin utilize energy from ATP for their motion. Molecular motions of these enzymes are critical to their catalytic mechanisms and were analyzed thoroughly using a single molecule observation technique. As a tool to analyze and control the ATP-driven motor enzyme motion, we recently synthesized a photoresponsive ATP analog with a p-tert-butylazobenzene tethered to the 2' position of the ribose ring. Using cis/trans isomerization of the azobenzene moiety, we achieved a successful reversible photochromic control over a kinesin-microtubule system in an in vitro motility assay. Here we succeeded to control the hydrolytic activity and rotation of the rotary motor enzyme, F1-ATPase, using this photosensitive ATP analog. Subsequent single molecule observations indicated a unique pause occurring at the ATP binding angle position in the presence of cis form of the analog.

  1. Development of an assist controller with robot suit HAL for hemiplegic patients using motion data on the unaffected side.

    PubMed

    Kawamoto, Hiroaki; Kandone, Hideki; Sakurai, Takeru; Ariyasu, Ryohei; Ueno, Yukiko; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2014-01-01

    Among several characteristics seen in gait of hemiplegic patients after stroke, symmetry is known to be an indicator of the degree of impairment of walking ability. This paper proposes a control method for a wearable type lower limb motion assist robot to realize spontaneous symmetric gait for these individuals. This control method stores the motion of the unaffected limb during swing and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. This method is implemented on the robot suit HAL (Hybrid Assistive Limbs). Clinical tests were conducted in order to assess the feasibility of the control method. Our case study involved participation of one chronic stroke patient who was not able to flex his right knee. As a result, the walking support for hemiplegic leg provided by the HAL improved the subject's gait symmetry. The feasibility study showed promising basis for the future clinical study.

  2. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    PubMed

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities. PMID:22550128

  3. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    PubMed

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  4. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  5. Future applications of simulators in process control

    SciTech Connect

    Ruppel, F.; Wysor, W.

    1997-03-21

    Future applications of simulators in process control will see activities with high return on investment in areas such as concurrent engineering, hardware-in-the-loop controller testing, process fault detection, and Internet-retrievable simulation models and tools. These applications are based on advancing technology in the field of simulation technology. In this paper, the advancing technology will be reviewed, and projections to future uses of simulators in process control will be made.

  6. Coherent Control of Population Transfer via Linear Chirp in Liquid Solution: The Role of Motional Narrowing.

    PubMed

    McRobbie, Porscha L; Geva, Eitan

    2016-05-19

    The conditions under which linear chirp can be used to control population transfer between the electronic states of a chromophore dissolved in liquid solution are investigated. To this end, we model the chromophore as a two-state system with shifted electronic potential energy surfaces and a fluctuating electronic transition frequency. The fluctuations are described as an exponentially correlated Gaussian stochastic process, which can be characterized by the average fluctuation amplitude, σ, and correlation time, τc. The time-dependent Schrödinger equation is solved numerically for an ensemble of stochastic histories, at different values of σ and τc, and under a wide range of pulse intensities and linear chirp coefficients. In the limit τc → ∞, we find that control diminishes rapidly as soon as σ exceeds the bandwidth of the pulse. However, we also find that control can be regained by reducing τc. We attribute this trend to motional narrowing, whereby decreasing τc narrows down the effective bandwidth of the solvent-induced fluctuations. The results suggest that the choice of methanol as a solvent in the actual experimental demonstration of chirp control by Cerullo et al. [ Chem. Phys. Lett. 1996 , 262 , 362 - 368 ] may have contributed to its success, due to the particularly short τc (∼20 fs) that the rapid librations of this hydrogen bonded liquid give rise to. The results also give rise to the rather surprising prediction that coherent control in liquid solution can be strongly dependent on the choice of solvent and be improved upon by choosing solvents that correspond to lower values of στc.

  7. 76 FR 19334 - Pacific Gas and Electric Company; Notice of Application Accepted for Filing, Soliciting Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ..., Soliciting Motions To Intervene and Protests, Ready for Environmental Analysis, and Soliciting Comments...: Mary Greene, (202) 502-8865 or mary.greene@ferc.gov . j. Deadline for filing motions to intervene and... this notice. Motions to intervene, protests, comments, recommendations, preliminary terms...

  8. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    PubMed

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience.

  9. Hand interception of occluded motion in humans: a test of model-based vs. on-line control

    PubMed Central

    Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. PMID:26133803

  10. Quantification of vocal fold motion using echography: application to recurrent nerve paralysis detection

    NASA Astrophysics Data System (ADS)

    Cohen, Mike-Ely; Lefort, Muriel; Bergeret-Cassagne, Héloïse; Hachi, Siham; Li, Ang; Russ, Gilles; Lazard, Diane; Menegaux, Fabrice; Leenhardt, Laurence; Trésallet, Christophe; Frouin, Frédérique

    2015-03-01

    Recurrent nerve paralysis (RP) is one of the most frequent complications of thyroid surgery. It reduces vocal fold mobility. Nasal endoscopy, a mini-invasive procedure, is the conventional way to detect RP. We suggest a new approach based on laryngeal ultrasound and a specific data analysis was designed to help with the automated detection of RP. Ten subjects were enrolled for this feasibility study: four controls, three patients with RP and three patients without RP according to nasal endoscopy. The ultrasound protocol was based on a ten seconds B-mode acquisition in a coronal plane during normal breathing. Image processing included three steps: 1) automated detection of two consecutive closing and opening images, corresponding to extreme positions of vocal folds in the sequence of B-mode images, using principal component analysis of the image sequence; 2) positioning of three landmarks and robust tracking of these points using a multi-pyramidal refined optical flow approach; 3) estimation of quantitative parameters indicating left and right fractions of mobility, and motion symmetry. Results provided by automated image processing were compared to those obtained by an expert. Detection of extreme images was accurate; tracking of landmarks was reliable in 80% of cases. Motion symmetry indices showed similar values for controls and patients without RP. Fraction of mobility was reduced in cases of RP. Thus, our CAD system helped in the detection of RP. Laryngeal ultrasound combined with appropriate image processing helped in the diagnosis of recurrent nerve paralysis and could be proposed as a first-line method.

  11. Gain-compensated sinusoidal scanning of a galvanometer mirror in proportional-integral-differential control using the pre-emphasis technique for motion-blur compensation.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Senoo, Taku; Ishikawa, Masatoshi

    2016-07-20

    We propose a method to achieve precise sine-wave path tracking for real-time motion-blur compensation to extend the corresponding frequency spectrum in proportional-integral-differential (PID) control by using a pre-emphasis technique. We calculate pre-emphasis coefficients in advance to follow a sine wave with a gain of 0 dB and multiply the input signal by these pre-emphasis coefficients. In experiments, we were thus able to extend the greatest frequency from 100 to 500 Hz and achieve gain improvement of approximately 3 dB at 400 and 500 Hz. For the application of inspection, we confirmed that motion blur is significantly reduced when the system operates at high frequency, and we achieved a responsiveness 3.3 times higher than that of our previous system.

  12. Gain-compensated sinusoidal scanning of a galvanometer mirror in proportional-integral-differential control using the pre-emphasis technique for motion-blur compensation.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Senoo, Taku; Ishikawa, Masatoshi

    2016-07-20

    We propose a method to achieve precise sine-wave path tracking for real-time motion-blur compensation to extend the corresponding frequency spectrum in proportional-integral-differential (PID) control by using a pre-emphasis technique. We calculate pre-emphasis coefficients in advance to follow a sine wave with a gain of 0 dB and multiply the input signal by these pre-emphasis coefficients. In experiments, we were thus able to extend the greatest frequency from 100 to 500 Hz and achieve gain improvement of approximately 3 dB at 400 and 500 Hz. For the application of inspection, we confirmed that motion blur is significantly reduced when the system operates at high frequency, and we achieved a responsiveness 3.3 times higher than that of our previous system. PMID:27463919

  13. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  14. Finite set control transcription for optimal control applications

    NASA Astrophysics Data System (ADS)

    Stanton, Stuart Andrew

    An enhanced method in optimization rooted in direct collocation is formulated to treat the finite set optimal control problem. This is motivated by applications in which a hybrid dynamical system is subject to ordinary differential continuity constraints, but control variables are contained within finite spaces. Resulting solutions display control discontinuities as variables switch between one feasible value to another. Solutions derived are characterized as optimal switching schedules between feasible control values. The methodology allows control switches to be determined over a continuous spectrum, overcoming many of the limitations associated with discretized solutions. Implementation details are presented and several applications demonstrate the method's utility and capability. Simple applications highlight the effectiveness of the methodology, while complicated dynamic systems showcase its relevance. A key example considers the challenges associated with libration point formations. Extensions are proposed for broader classes of hybrid systems.

  15. Nonlinear dynamics and chaotic motions in feedback-controlled two- and three-degree-of-freedom robots

    SciTech Connect

    Ravishankar, A.S. Ghosal, A.

    1999-01-01

    The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper, the authors analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. The authors first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. The authors show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, they analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator, respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, the authors resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and the authors show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.

  16. Introduction to structure from motion and its applications in remote sensing

    SciTech Connect

    Fair, Matt B

    2011-01-11

    This talk discusses my experience at Los Alamos National Laboratories developing the Wide Area Persistent Surveillance (WAPS) system AngelFire and the problems with working with low resolution surface models. This experience provided a motivation to seek solutions to utilize the redundant WAPS imagery to build surface models of the urban environment. Structure from Motion (SfM) is a process that takes multiple view imagery and compute the 3D structure of a scene. We will walk through the basic algorithm and discuss areas for optimization. Military services and intelligence agencies face long-standing challenges with processing, exploiting, and disseminating ISR data. The problem is that too much data is being produced and not enough people to look at it and the problem is not going away. As a result of this data overload, we need to shift the way we think about data and find creative ways to use and present it so it can be easily digested by decision makers. SfM also provides a means for developing a data processing and organization architecture. Applications for various remote sensing applications will be discussed for motivation for why SfM and Multi-View Stereo rendering is an important area that needs to be continued to be developed.

  17. Multi-step motion planning: Application to free-climbing robots

    NASA Astrophysics Data System (ADS)

    Bretl, Timothy Wolfe

    This dissertation addresses the problem of planning the motion of a multi-limbed robot to "free-climb" vertical rock surfaces. Free-climbing relies on natural features and friction (such as holes or protrusions) rather than special fixtures or tools. It requires strength, but more importantly it requires deliberate reasoning: not only must the robot decide how to adjust its posture to reach the next feature without falling, it must plan an entire sequence of steps, where each one might have future consequences. This process of reasoning is called multi-step planning. A multi-step planning framework is presented for computing non-gaited, free-climbing motions. This framework derives from an analysis of a free-climbing robot's configuration space, which can be decomposed into constraint manifolds associated with each state of contact between the robot and its environment. An understanding of the adjacency between manifolds motivates a two-stage strategy that uses a candidate sequence of steps to direct the subsequent search for motions. Three algorithms are developed to support the framework. The first algorithm reduces the amount of time required to plan each potential step, a large number of which must be considered over an entire multi-step search. It extends the probabilistic roadmap (PRM) approach based on an analysis of the interaction between balance and the topology of closed kinematic chains. The second algorithm addresses a problem with the PRM approach, that it is unable to distinguish challenging steps (which may be critical) from impossible ones. This algorithm detects impossible steps explicitly, using automated algebraic inference and machine learning. The third algorithm provides a fast constraint checker (on which the PRM approach depends), in particular a test of balance at the initially unknown number of sampled configurations associated with each step. It is a method of incremental precomputation, fast because it takes advantage of the sample

  18. 78 FR 62348 - Erie Boulevard Hydropower, L.P.; Notice of Application Accepted for Filing and Soliciting Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Erie Boulevard Hydropower, L.P.; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and Protests Take notice that the following...

  19. Transdermal scopolamine for prevention of motion sickness : clinical pharmacokinetics and therapeutic applications.

    PubMed

    Nachum, Zohar; Shupak, Avi; Gordon, Carlos R

    2006-01-01

    A transdermal therapeutic system for scopolamine (TTS-S) was developed to counter the adverse effects and short duration of action that has restricted the usefulness of scopolamine when administered orally or parenterally. The plaster contains a reservoir of 1.5 mg of scopolamine programmed to deliver 0.5 mg over a 3-day period. A priming dose (140 microg) is incorporated into the adhesive layer to saturate certain binding sites within the skin and to accelerate the achievement of steady-state blood levels. The remainder is released at a constant rate of approximately 5 microg/hour. The protective plasma concentration of scopolamine is estimated to be 50 pg/mL. TTS-S attains that concentration after 6 hours; a steady state of about 100 pg/mL is achieved 8-12 hours after application. Yet 20-30% of subjects failed to attain the estimated protective concentration, and plasma concentrations measured in subjects who failed to respond to TTS-S were lower than in responders. These findings may explain some of the treatment failures. Overall, the product appears to be the approximate functional equivalent of a 72-hour slow intravenous infusion. A combination of transdermal and oral scopolamine (0.3 or 0.6 mg) was effective and well tolerated in producing desired plasma concentrations 1-hour post-treatment. TTS-S has proved to be significantly superior to placebo in reducing the incidence and severity of motion sickness by 60-80%. It was more effective than oral meclizine or cinnarizine, similar to oral scopolamine 0.6 mg or promethazine plus ephedrine, and the same as or superior to dimenhydrinate. The addition of ephedrine or the use of two patches did not improve its efficacy, but rather increased the rate of adverse effects. TTS-S was most effective against motion sickness 8-12 hours after application. Despite previous evidence to the contrary, a recent bioavailability study demonstrated similar intraindividual absorption and sustained clinical efficacy with long

  20. Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles.

    PubMed

    Mou, Fangzhi; Li, Yan; Chen, Chuanrui; Li, Wei; Yin, Yixia; Ma, Huiru; Guan, Jianguo

    2015-06-01

    In this work, light-controlled bubble-propelled single-component metal oxide tubular microengines have for the first time been demonstrated. For such a simple single-component TiO2 tubular microengine in H2O2 aqueous solution under UV irradiation, when the inner diameter and length of the tube are regulated, the O2 molecules will nucleate and grow into bubbles preferentially on the inner concave surface rather than on the outer surface, resulting in a vital propulsion of the microengine. More importantly, the motion state and speed can be modulated reversibly, fast (the response time is less than 0.2 s) and wirelessly by adjusting UV irradiation. Consequently, the as-developed TiO2 tubular microengine promises potential challenged applications related to photocatalysis, such as "on-the-fly" photocatalytic degradation of organic pollutes and photocatalytic inactivation of bacteria due to the low cost, single component, and simple structure, as well as the facile fabrication in a large-scale.

  1. Investigation and control of dynamic stall of an aerofoil ramp up motion

    NASA Astrophysics Data System (ADS)

    Rosti, Marco Edoardo; Omidyeganeh, Mohammad; Pinelli, Alfredo

    2015-11-01

    Direct Numerical Simulations of the flow around a NACA0020 aerofoil at Rec = 20 ×103 undergoing a ramp up motion has been undertaken (α ∈ [0° ,20° ] ,α˙rad c /U∞ = 0 . 12). New insights on the vorticity dynamics in the baseline case are discussed using a number of post-processing techniques. We will also present and discuss the effects of a passive control technique based on the use of a thin flap hinged via a torsional spring to the suction side of the aerofoil. The interaction between the flap dynamics (modelled as an infinitely thin plate) and the fluid have been carried out using an original Immersed Boundary Method applied to a finite volume solver. When the spring constant is chosen to lock the flap oscillations into the main shedding frequency, the back flow induced by the primary vortex is strongly reduced by the presence of the flap inhibiting the generation of massive separation. Moreover, the flap is capable to enhance and protract the lift overshoot typical of the dynamic stall also alleviating the subsequent lift-breakdown. These beneficial behaviour is mainly due to the establishment of a fluid structure interaction cycle that continuously regenerate the primary vortex which is ultimately responsible for the enhanced lift.

  2. Input relegation control for gross motion of a kinematically redundant manipulator

    SciTech Connect

    Unseren, M.A.

    1992-10-01

    This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the joint velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.

  3. MRI-Compatible Manipulator With Remote-Center-of-Motion Control

    PubMed Central

    Hata, Nobuhiko; Tokuda, Junichi; Hurwitz, Shelley; Morikawa, Shigehiro

    2010-01-01

    Purpose To develop and assess a needle-guiding manipulator for MRI-guided therapy that allows a physician to freely select the needle insertion path while maintaining remote center of motion (RCM) at the tumor site. Materials and Methods The manipulator consists of a three-degrees-of-freedom (DOF) base stage and passive needle holder with unconstrained two-DOF rotation. The synergistic control keeps the Virtual RCM at the preplanned target using encoder outputs from the needle holder as input to motorize the base stage. Results The manipulator assists in searching for an optimal needle insertion path which is a complex and time-consuming task in MRI-guided ablation therapy for liver tumors. The assessment study showed that accuracy of keeping the virtual RCM to predefined position is 3.0 mm. In a phantom test, the physicians found the needle insertion path faster with than without the manipulator (number of physicians = 3, P = 0.001). However, the alignment time with the virtual RCM was not shorter when imaging time for planning were considered. Conclusion The study indicated that the robot holds promise as a tool for accurately and interactively selecting the optimal needle insertion path in liver ablation therapy guided by open-configuration MRI. PMID:18407542

  4. Coherent control of atomic motion in an optical lattice for precise measurements of gravity

    NASA Astrophysics Data System (ADS)

    Tarallo, Marco; Alberti, Andrea; Poli, Nicola; Prevedelli, Marco; Wang, Fu-Yuan; Tino, Guglielmo

    2011-05-01

    Coherent control of atomic motion inside an optical lattice allows precise measurement of forces by means amplitude-modulation (AM) driven resonant tunneling. We report about the recently-performed high precision measurements of gravitational acceleration using ultracold strontium atoms trapped in an AM driven vertical optical lattice. We reached an uncertainty Δg / g ~10-7 by measuring at the 5th harmonic of the Bloch oscillation frequency. We analyzed the systematic effects induced by the trapping optical lattice, such as the intensity gradient and the lattice frequency-induced shift. We accurately measured the lattice frequency by means of an fiber link with a home-made frequency comb. The value of g obtained with this microscopic quantum system is consistent with the one we measured with a classical absolute gravimeter. Short-distance measurements of gravity near dielectric surfaces are discussed. These results prospect a new way to new tests of gravity at micrometer scale. A. Alberti et al., New J. Phys. 12, 065037 (2010).

  5. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  6. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.

    PubMed

    Liang, Jiajie; Huang, Lu; Li, Na; Huang, Yi; Wu, Yingpeng; Fang, Shaoli; Oh, Jiyoung; Kozlov, Mikhail; Ma, Yanfeng; Li, Feifei; Baughman, Ray; Chen, Yongsheng

    2012-05-22

    Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational isomerization of polydiacetylene (PDA) and the outstanding intrinsic features of graphene together for the first time, we design and fabricate an electromechanical bimorph actuator composed of a layer of PDA crystal and a layer of flexible graphene paper through a simple yet versatile solution approach. Under low applied direct current (dc), the graphene-PDA bimorph actuator with strong mechanical strength can generate large actuation motion (curvature is about 0.37 cm(-1) under a current density of 0.74 A/mm(2)) and produce high actuation stress (more than 160 MPa/g under an applied dc of only 0.29 A/mm(2)). When applying alternating current (ac), this actuator can display reversible swing behavior with long cycle life under high frequencies even up to 200 Hz; significantly, while the frequency and the value of applied ac and the state of the actuators reach an appropriate value, the graphene-PDA actuator can produce a strong resonance and the swing amplitude will jump to a peak value. Moreover, this stable graphene-PDA actuator also demonstrates rapidly and partially reversible electrochromatic phenomenon when applying an ac. Two mechanisms-the dominant one, electric-induced deformation, and a secondary one, thermal-induced expansion of PDA-are proposed to contribute to these interesting actuation performances of the graphene-PDA actuators. On the basis of these results, a mini-robot with controllable direction of motion based on the graphene-PDA actuator is designed to illustrate the great potential of our discoveries for practical use. Combining the unique actuation mechanism and many outstanding properties of

  7. Time-frequency response spectrum of rotational ground motion and its application

    NASA Astrophysics Data System (ADS)

    Che, Wei; Luo, Qifeng

    2010-02-01

    The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.

  8. An application of oscillation-damped motion for suspended payloads to the advanced integrated maintenance system

    SciTech Connect

    Noakes, M.W. ); Petterson, B.J.; Werner, J.C. )

    1990-06-01

    The transportation of objects using overhead cranes can induce pendular motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories has shown that oscillation-damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. Initial studies have been completed using a CIMCORP XR6100 gantry robot. The Advanced Integrated Maintenance System (AIMS) is an engineering and operations test bed developed for remote maintenance and handling studies within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory. The goal of CFRP has been to advanced the technology of in-cell systems planned for future nuclear fuel cycle facilities. The AIMS provides the capabilities to examine the needs and constraints necessary for hot-cell remote maintenance and includes a force-reflecting master/slave teleoperator and overhead transporter system. The associated control system provides a flexible programming environment conducive to controls experimentation. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific implementation of the oscillation damping methods for the AIMS transporter. Hardware and software requirements and constraints for proper operation are discussed.

  9. MOTION FLOW ESTIMATION FROM IMAGE SEQUENCES WITH APPLICATIONS TO BIOLOGICAL GROWTH AND MOTILITY

    PubMed Central

    Dong, Gang; Baskin, Tobias I.; Palaniappan, Kannappan

    2009-01-01

    In this paper, a new method for motion flow estimation that considers errors in all the derivative measurements is presented. Based on the total least squares (TLS) model, we accurately estimate the motion flow in the general noise case by combining noise model (in form of covariance matrix) with a parametric motion model. The proposed algorithm is tested on two different types of biological motion, a growing plant root and a gastrulating embryo, with sequences obtained microscopically. The local, instantaneous velocity field estimated by the algorithm reveals the behavior of the underlying cellular elements. PMID:19424454

  10. A simple motion differential game with different constraints on controls and under phase constraint on the state of the evader

    NASA Astrophysics Data System (ADS)

    Rakhmanov, Askar; Ibragimov, Gafurjan

    2016-06-01

    We consider a simple motion pursuit differential game of one pursuer and one evader. Control of the pursuer is subjected to integral constraint, and that of the evader is subjected to geometric constraint. More precisely, value of control parameter of the evader belongs to a given convex subset of ℝn. Pursuit is completed if the evader becomes in l vicinity of the pursuer. Sufficient conditions of completion of pursuit are obtained.

  11. Excitation of Intra-bunch Vertical Motion in the SPS - Implications for Feedback Control of Ecloud and TMCI Instabilities

    SciTech Connect

    Cesaratto, J.M.; Fox, J.D.; Pivi, M.T.; Rivetta, C.H.; Turgut, O.; Uemura, S.; Hofle, W.; Wehrle, U.; /CERN

    2012-06-01

    Electron cloud (ecloud) and transverse mode coupled-bunch instabilities (TMCI) limit the bunch intensity in the CERN SPS. This paper presents experimental measurements in the SPS of single-bunch motion driven by a GHz bandwidth vertical excitation system. The final goal is to quantify the change in internal bunch dynamics as instability thresholds are approached, and quantify the frequencies of internal modes as ecloud effects become significant. Initially, we have been able to drive the beam and view its motion. We show the excitation of barycentric, head-tail and higher vertical modes at different bunch intensities. The beam motion is analyzed in the time domain, via animated presentations of the sampled vertical signals, and in the frequency domain, via spectrograms showing the modal frequencies vs. time. The demonstration of the excitation of selected internal modes is a significant step in the development of the feedback control techniques.

  12. Space and motion discomfort and abnormal balance control in patients with anxiety disorders

    PubMed Central

    Jacob, R G; Redfern, M S; Furman, J M

    2016-01-01

    Objective Previous research suggested that panic disorder with agoraphobia is associated with abnormalities on vestibular and balance function tests. The purpose of this study was to further examine psychiatric correlates of vestibular/balance dysfunction in patients with anxiety disorders and the specific nature of the correlated vestibular abnormalities. The psychiatric variables considered included anxiety disorder versus normal control status, panic disorder versus non-panic anxiety disorder diagnosis, presence or absence of comorbid fear of heights, and degree of space and motion discomfort (SMD). The role of anxiety responses to vestibular testing was also re-examined. Methods 104 subjects were recruited: 29 psychiatrically normal individuals and 75 psychiatric patients with anxiety disorders. Anxiety patients were assigned to four subgroups depending on whether or not they had panic disorder and comorbid fear of heights. SMD and anxiety responses were measured by questionnaires. Subjects were examined for abnormal unilateral vestibular hypofunction on caloric testing indicative of peripheral vestibular dysfunction, asymmetric responses on rotational testing as an indicator of an ongoing vestibular imbalance and balance function using Equitest dynamic posturography as an indicator of balance control. Logistic regression was used to establish the association between the psychiatric variables and vestibular or balance test abnormalities. Results Rotational test results were not significantly related to any of the psychiatric variables. The presence of either panic attacks or fear of heights increased the probability of having caloric hypofunction in a non-additive fashion. SMD and anxiety responses were independently associated with abnormal balance. Among specific posturography conditions, the association with SMD was significant for a condition that involved the balance platform tilting codirectionally with body sway, suggesting an abnormal dependence on

  13. Reactionless camera inspection with a free-flying space robot under reaction null-space motion control

    NASA Astrophysics Data System (ADS)

    Sone, Hiroki; Nenchev, Dragomir

    2016-11-01

    The possibility of implementing reactionless motion control w.r.t. base orientation of a free-flying space robot in practical tasks is addressed. It is shown that such possibility depends strongly on the kinematic/dynamic design parameters as well as on the mission task. A successful implementation of a camera inspection task is reported. The presence of kinematic redundancy and the manipulator attachment position are shown to play important roles. More specifically, for a manipulator arm with a typical seven degree-of-freedom (DoF) kinematic structure, it is shown that two motion patterns, wrist reorientation and folding/unfolding of the arm, result in almost reactionless motion. The orientation pattern is adopted as the main task for camera inspection, while the remaining four DoFs are used to ensure complete reactionless motion and to minimize the position errors. Since the composition of these tasks introduces the so-called algorithmic singularities, two methods are suggested to alleviate the problem. Furthermore, it is shown that other types of singularities may also be introduced in case of an inappropriate choice of the manipulator attachment position. At the end, numerical analysis is performed to show that reactionless motion provides an advantage in terms of kinetic energy as well.

  14. Tools for monitoring and controlling distributed applications

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Wood, Mark D.

    1991-01-01

    The Meta system is a UNIX-based toolkit that assists in the construction of reliable reactive systems, such as distributed monitoring and debugging systems, tool integration systems and reliable distributed applications. Meta provides mechanisms for instrumenting a distributed application and the environment in which it executes, and Meta supplies a service that can be used to monitor and control such an instrumented application. The Meta toolkit is built on top of the ISIS toolkit; they can be used together in order to build fault-tolerant and adaptive, distributed applications.

  15. On-Chip Single-Cell-Shape Control Technology for Understanding Contractile Motion of Cardiomyocytes Measured Using Optical Image Analysis System

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoyuki; Takizawa, Eikei; Nomura, Fumimasa; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    Quantitative evaluation of mechanophysiological responses of cardiomyocytes has become more important for more precise prediction of cardiotoxicity. For the accurate detection of cardiomyocyte contraction, we have developed an on-chip single-cell-shape control technology on the basis of an agarose microchamber system and an on-chip optical image analysis system that records the contractile motions of cardiomyocytes with noninvasive/nondestructive measurement for long-term experiments. Using this on-chip single-cell-shape control technology, the shape of single cardiomyocytes was controlled by seeding the cells in 21-µm-radius (circular) or 20×70 µm2 (rectangular) agarose microchambers. To detect the contractility of cardiomyocytes, the cells were labeled with microbeads attached onto the surface of target cells and the motion of beads was acquired and analyzed using a newly developed wider-depth-of-field optics equipped with a 1/100 s high-speed digital camera. Mechanophysiological properties such as displacement and direction of movement were obtained using a real-time processing system module at spatial and temporal resolutions of 0.15 µm and 10 ms, respectively. Comparisons of displacement and direction of contraction between circular and rectangular cardiomyocytes indicated that the rectangular cardiomyocytes tended to contract along the longitudinal direction as in a real heart. This result suggests that the shape of cells affected the function of cells. The on-chip single-cell-shape control technology and optical image analysis system enable the detection of the motion of contraction of single-shape-controlled cardiomyocytes, and are expected to be applicable to the more precise prediction of cardiotoxicity.

  16. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery.

    PubMed

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore-Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  17. A comparison of line enhancement techniques: applications to guide-wire detection and respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Bismuth, Vincent; Vancamberg, Laurence; Gorges, Sébastien

    2009-02-01

    During interventional radiology procedures, guide-wires are usually inserted into the patients vascular tree for diagnosis or healing purpose. These procedures are monitored with an Xray interventional system providing images of the interventional devices navigating through the patient's body. The automatic detection of such tools by image processing means has gained maturity over the past years and enables applications ranging from image enhancement to multimodal image fusion. Sophisticated detection methods are emerging, which rely on a variety of device enhancement techniques. In this article we reviewed and classified these techniques into three families. We chose a state of the art approach in each of them and built a rigorous framework to compare their detection capability and their computational complexity. Through simulations and the intensive use of ROC curves we demonstrated that the Hessian based methods are the most robust to strong curvature of the devices and that the family of rotated filters technique is the most suited for detecting low CNR and low curvature devices. The steerable filter approach demonstrated less interesting detection capabilities and appears to be the most expensive one to compute. Finally we demonstrated the interest of automatic guide-wire detection on a clinical topic: the compensation of respiratory motion in multimodal image fusion.

  18. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery

    PubMed Central

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore–Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  19. The effect of object motion in Fraunhofer holography with application to velocity measurements

    NASA Technical Reports Server (NTRS)

    Dotson, W. P., Jr.

    1970-01-01

    Experimental results extend the Fraunhofer holography theory to include moving objects. Conclusions indicate objects may move up to ten times their mean diameter during observation time. Their motion produces fringe patterns descriptive of that motion from which it is possible to reconstruct the hologram and measure the velocity.

  20. On some properties of reflected skew Brownian motions and applications to dispersion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Song, Shiyu; Wang, Suxin; Wang, Yongjin

    2016-08-01

    Motivated by the close connection between the skew Brownian motion and the random particle motion in heterogeneous media, we investigate the reflected skew Brownian motion and try to find out its relationship with the corresponding dispersion problem when there exists a reflecting boundary. Through the use of the knowledge of stochastic analysis, we provide some basic properties of reflected skew Brownian motions, including the transition density, the Laplace transform of the first passage time, and some related results. A simple method to generate the sample path is also proposed. At the end of this paper, we reveal the strong relationship between the reflected skew Brownian motion and the solute dispersion in the presence of a sharp interface and a reflecting boundary.

  1. Efficiency of the motion amplification device with viscous dampers and its application in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Huang, Henry C.

    2009-12-01

    After nearly a decade of application and investigation, a motion amplification device with viscous dampers for energy dissipation has been recognized as an effective solution to mitigate wind or seismic excitation, especially for stiff structural systems. As a result of compensation of amplified motion, it has been proved that the efficiency of viscous damper largely depends on the motion amplification device configuration, particularly for device stiffness. In this paper, a “scissor-jack” type of motion amplification device, called a “toggle brace damper” system, is studied. It is demonstrated that the efficiency of such a device reflected by its amplification factor is not merely a function of its geometric configuration, but is highly dependent on the support elements’ stiffness as well, similar to the mechanism of a leverage arm. Accordingly, a mathematical model in terms of complex modulus of the viscous damper with consideration of the support brace’s stiffness is established. The results indicate that the efficiency of the motion amplification device with viscous dampers significantly depends on the stiffness of the support elements. Other parameters, such as toggle brace configuration and damping values of the viscous damper, are studied and compared. As an application example, numerical analyses are conducted to study the dynamic performance of a 39-story office tower installed with toggle brace dampers constructed on soft soil in a reclaimed area, under a combined effect of the vortex shedding of an adjacent existing 52-story building and earthquakes. The results show that viscous dampers with a motion amplification system using a properly designed toggle brace device proved to be an effective solution to alleviate the external excitations.

  2. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  3. Application-Defined Decentralized Access Control.

    PubMed

    Xu, Yuanzhong; Dunn, Alan M; Hofmann, Owen S; Lee, Michael Z; Mehdi, Syed Akbar; Witchel, Emmett

    2014-01-01

    DCAC is a practical OS-level access control system that supports application-defined principals. It allows normal users to perform administrative operations within their privilege, enabling isolation and privilege separation for applications. It does not require centralized policy specification or management, giving applications freedom to manage their principals while the policies are still enforced by the OS. DCAC uses hierarchically-named attributes as a generic framework for user-defined policies such as groups defined by normal users. For both local and networked file systems, its execution time overhead is between 0%-9% on file system microbenchmarks, and under 1% on applications. This paper shows the design and implementation of DCAC, as well as several real-world use cases, including sandboxing applications, enforcing server applications' security policies, supporting NFS, and authenticating user-defined sub-principals in SSH, all with minimal code changes.

  4. Energy intake and expenditure during sedentary screen time and motion-controlled video gaming123

    PubMed Central

    Tate, Deborah F; Ward, Dianne S; Wang, Xiaoshan

    2012-01-01

    Background: Television watching and playing of video games (VGs) are associated with higher energy intakes. Motion-controlled video games (MC) may be a healthier alternative to sedentary screen-based activities because of higher energy expenditures, but little is known about the effects of these games on energy intakes. Objective: Energy intake, expenditure, and surplus (intake − expenditure) were compared during sedentary (television and VG) and active (MC) screen-time use. Design: Young adults (n = 120; 60 women) were randomly assigned to the following 3 groups: television watching, playing traditional VGs, or playing MCs for 1 h while snacks and beverages were provided. Energy intakes, energy expenditures, and appetites were measured. Results: Intakes across these 3 groups showed a trend toward a significant difference (P = 0.065). The energy expenditure (P < 0.001) was higher, and the energy surplus (P = 0.038) was lower, in MC than in television or VG groups. All conditions produced a mean (±SD) energy surplus as follows: 638 ± 408 kcal in television, 655 ± 533 kcal in VG, and 376 ± 487 kcal in MC groups. The OR for consuming ≥500 kcal in the television compared with the MC group was 3.2 (95% CI: 1.2, 8.4). Secondary analyses, in which the 2 sedentary conditions were collapsed, showed an intake that was 178 kcal (95% CI: 8, 349 kcal) lower in the MC condition than in the sedentary groups (television and VG). Conclusion: MCs may be a healthier alternative to sedentary screen time because of a lower energy surplus, but the playing of these games still resulted in a positive energy balance. This trial was registered at clinicaltrials.gov as NCT01523795. PMID:22760571

  5. Development and Application of a Rubric for Evaluating Students' Performance on Newton's Laws of Motion

    NASA Astrophysics Data System (ADS)

    Kocakülah, Mustafa Sabri

    2010-04-01

    This study aims to develop and apply a rubric to evaluate the solutions of pre-service primary science teachers to questions about Newton's Laws of Motion. Two groups were taught the topic using the same teaching methods and administered four questions before and after teaching. Furthermore, 76 students in the experiment group were instructed about the features and use of the rubric and asked to construct a rubric, while 77 students in the control group were not. Students' solutions were evaluated with the agreed rubric by the instructor, an independent coder and the peers in the experiment class. The effectiveness of the rubric on students' achievement was examined by applying descriptive statistics and linear regression to scores obtained from both tests. T-test statistics and analysis of variance procedures were also used to analyze the reliability and validity of the assessments made. The results revealed that the developed rubric was used consistently by the instructor and peers and significant correlations ( p < 0.001) were found among the scores. The inter-coder reliabilities were 0.98 and 0.93 in the pre- and post-tests with 76 peer coders. A generalizability study showed that the estimates of 16 peer coders on average matched the reliability of single-instructor assessments. It was concluded that the developed rubric was able to highlight the aspects of the problem solutions and helped increase students' achievement.

  6. Challenges in DNA motion control and sequence readout using nanopore devices

    PubMed Central

    Carson, Spencer; Wanunu, Meni

    2016-01-01

    Nanopores are being hailed as a potential next-generation DNA sequencer that could provide cheap, high-throughput DNA analysis. In this review we present a detailed summary of the various sensing techniques being investigated for use in DNA sequencing and mapping applications. A crucial impasse to the success of nanopores as a reliable DNA analysis tool is the fast and stochastic nature of DNA translocation. We discuss the incorporation of biological motors to step DNA through a pore base-by-base, as well as the many experimental modifications attempted for the purpose of slowing and controlling DNA transport. PMID:25642629

  7. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  8. Synthetic Ground Motions for Engineering Applications and the Role of Nonlinear Site Response

    NASA Astrophysics Data System (ADS)

    Assimaki, D.; Li, W.

    2008-12-01

    Quantitative criteria are being developed for the efficient integration of site response models in broadband ground motion simulations. For this purpose, downhole array observations and broadband synthetics are combined, and the sensitivity of ground motion and nonlinear structural performance attributed to bias and uncertainty in nonlinear site response models is investigated. Results from medium-to-soft soil sites in Southern California are here presented, subjected to synthetic ground motions estimated for finite-source dynamic rupture scenarios of weak, medium and large magnitude events (M = 3.5~7.5), on a surface station grid of epicentral distances 2km~75km. For each site, elastic and nonlinear site response analyses are evaluated using multiple soil models, and the modeling ground motion variability is estimated by means of the COV (coefficient of variation) of site amplification. For each soil model, the parametric uncertainty of ground motion predictions is next estimated by systematically randomizing selected model parameters. Quantitative measures are developed that may describe the site properties and ground motion characteristics where the nonlinear models show large prediction COV, namely where incremental nonlinear analyses significantly deviate from empirical methodologies. Finally, the role of nonlinear soil response in physics-based seismic hazard predictions is illustrated by subjecting a series of inelastic SDOF (single-degree-of-freedom) oscillators to the ensemble of ground motion predictions, and evaluating the bias and uncertainty introduced as a result, in the structural response predictions. It is shown that the bias and uncertainty introduced in structural performance analyses when nonlinear site effects are not accounted for, strongly correlates with the deviation observed when the assessment of structural response is evaluated using synthetic seismograms from existing methodologies as opposed to real motions. It is concluded that soil

  9. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  10. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management.

    PubMed

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-07-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities.

  11. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management

    PubMed Central

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-01-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities. PMID:26922090

  12. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  13. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  14. The Relationship Between Engagement and Neurophysiological Measures of Attention in Motion-Controlled Video Games: A Randomized Controlled Trial

    PubMed Central

    Brewer, Lauren; Nelson, Monica; Siow, Maria

    2016-01-01

    Background Video games and virtual environments continue to be the subject of research in health sciences for their capacity to augment practice through user engagement. Creating game mechanics that increase user engagement may have indirect benefits on learning (ie, engaged learners are likely to practice more) and may also have direct benefits on learning (ie, for a fixed amount of practice, engaged learners show superior retention of information or skills). Objective To manipulate engagement through the aesthetic features of a motion-controlled video game and measure engagement’s influence on learning. Methods A group of 40 right-handed participants played the game under two different conditions (game condition or sterile condition). The mechanics of the game and the amount of practice were constant. During practice, event-related potentials (ERPs) to task-irrelevant probe tones were recorded during practice as an index of participants’ attentional reserve. Participants returned for retention and transfer testing one week later. Results Although both groups improved in the task, there was no difference in the amount of learning between the game and sterile groups, countering previous research. A new finding was a statistically significant relationship between self-reported engagement and the amplitude of the early-P3a (eP3a) component of the ERP waveform, such that participants who reported higher levels of engagement showed a smaller eP3a (beta=−.08, P=.02). Conclusions This finding provides physiological data showing that engagement elicits increased information processing (reducing attentional reserve), which yields new insight into engagement and its underlying neurophysiological properties. Future studies may objectively index engagement by quantifying ERPs (specifically the eP3a) to task-irrelevant probes. PMID:27103052

  15. Bilharziasis control by application of molluscicides

    PubMed Central

    Paulini, Ernest

    1958-01-01

    The author discusses various aspects of the control of bilharziasis by the application of molluscicides, including the chemicals to be used, the preparation of molluscicidal suspensions or emulsions, the rate, season, frequency and methods of application, tests for evaluating the results of treatment, factors affecting the efficacy of molluscicides and the repopulation of snails after treatment, and the cost of molluscicidal operations. In addition, he reviews briefly some of the encouraging results obtained in the field with three of the most effective molluscicides—sodium pentachlorophenate, dinitro-cyclohexylphenol and copper sulfate—and puts forward a number of suggestions as to future research on this method of snail control. PMID:13573121

  16. Experimental studies of pulsatile flows through compliant tubes undergoing forced wall motion: Applications to hemodynamics and stability

    NASA Astrophysics Data System (ADS)

    Sturgeon, Victoria Carolyn Savedge

    An experimental investigation is made into the effects of forced wall motion on hemodynamic simulations and into transitional behaviors and instability of oscillatory input flows through elastic tubes. A novel mechanism allows active control and feedback over the pressure on the tube exterior. By comparing the pressure within and outside the tube and modifying the exterior pressure accordingly, the tube is inflated in a controlled manner without altering the input flow. Thus, both input flow rate and wall motion waveforms may be specified for a single experiment. Two distinct experimental series were performed: the first examined the effects of wall motion on physiological flows in regions prone to atherosclerosis, and the second series examined the effects of wall motion on transitional behaviors in oscillatory flows. In both cases, particle image velocimetry (PIV) was used to obtain quantitative velocity data from the flow field. For the first of these experimental series, the flow rate and arterial wall motion are replicated for two physiological regions that are particularly susceptible to atherosclerotic deposits: the abdominal aorta and the coronary arteries. Wall shear stress, cross-sectional velocity profiles, and energy spectra are used to analyze the flow fields and address questions of the effects of accurate wall motion simulation, the possibility of transitional behaviors in these physiological settings, and the hemodynamic effects of implanted stents. Flows through the coronary arteries were characterized by a low value of the Sexl-Womersley parameter a=rnn , where r is the tube radius, n the angular velocity of the input flow, and nu the kinematic viscosity. Because of this low periodicity, the cross-sectional velocity profiles were found to be nearly parabolic throughout the waveform, and wall motion affected the amplitude of the cross-sectional profiles but had little effect on the shape. In contrast, flows in the abdominal aorta occur at a much

  17. Application-Defined Decentralized Access Control

    PubMed Central

    Xu, Yuanzhong; Dunn, Alan M.; Hofmann, Owen S.; Lee, Michael Z.; Mehdi, Syed Akbar; Witchel, Emmett

    2014-01-01

    DCAC is a practical OS-level access control system that supports application-defined principals. It allows normal users to perform administrative operations within their privilege, enabling isolation and privilege separation for applications. It does not require centralized policy specification or management, giving applications freedom to manage their principals while the policies are still enforced by the OS. DCAC uses hierarchically-named attributes as a generic framework for user-defined policies such as groups defined by normal users. For both local and networked file systems, its execution time overhead is between 0%–9% on file system microbenchmarks, and under 1% on applications. This paper shows the design and implementation of DCAC, as well as several real-world use cases, including sandboxing applications, enforcing server applications’ security policies, supporting NFS, and authenticating user-defined sub-principals in SSH, all with minimal code changes. PMID:25426493

  18. A new analysis methodology for the motion of self-propelled particles and its application

    NASA Astrophysics Data System (ADS)

    Byun, Young-Moo; Lammert, Paul; Crespi, Vincent

    2011-03-01

    The self-propelled particle (SPP) on the microscale in the solution is a growing field of study, which has a potential to be used for nanomedicine and nanorobots. However, little detailed quantitative analysis on the motion of the SPP has been performed so far because its self-propelled motion is strongly coupled to Brownian motion, which makes the extraction of intrinsic propulsion mechanisms problematic, leading to inconsistent conclusions. Here, we present a novel way to decompose the motion of the SPP into self-propelled and Brownian components; accurate values for self-propulsion speed and diffusion coefficients of the SPP are obtained for the first time. Then, we apply our analysis methodology to ostensible chemotaxis of SPP, and reveal the actual (non-chemotactic) mechanism of the phenomenon, demonstrating that our analysis methodology is a powerful and reliable tool.

  19. The damping of spin motions in ultrathin films: Is the Landau Lifschitz Gilbert phenomenology applicable?

    NASA Astrophysics Data System (ADS)

    Mills, D. L.; Arias, Rodrigo

    2006-10-01

    The Landau-Lifschitz-Gilbert (LLG) equation is used widely in device design to describe spin motions in magnetic nanoscale structures. The damping term in this equation plays an essential role in the description of the magnetization dynamics. The form of this term is simple and appealing, but it is derived through use of elementary phenomenological considerations. An important question is whether or not it provides a proper description of the damping of the magnetization in real materials. Recently, it was predicted that a mechanism called two magnon damping should contribute importantly to linewidths and consequently spin damping in ultrathin ferromagnetic films. This process yields ferromagnetic resonance (FMR) linewidths whose frequency dependence is incompatible with the linear variation expected from the Landau-Lifschitz equation. This prediction has now been confirmed experimentally. Furthermore, subsequent experimental and theoretical studies have demonstrated that the damping rate depends strongly on wave vector as well. It is thus clear that for many samples, the LLG equation fails to account for the systematics of the damping of the magnetization in ultrathin ferromagnets, at the linear response level. The paper will review the recent literature on this topic relevant to this issue. One must then inquire into the nature of a proper phenomenology to describe these materials. At the linear response level, the theory of the two magnon mechanism is sufficiently complete that one can describe the response of these systems without resort to LLG phenomenology. However, currently there is very great interest in the large amplitude response of the magnetization in magnetic nanostructures. In the view of the authors, it is difficult to envision a generally applicable extension of linear response theory into the large amplitude regime.

  20. Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children.

    PubMed

    Crisco, Joseph J; Schwartz, Joel B; Wilcox, Bethany; Brideau, Holly; Basseches, Benjamin; Kerman, Karen

    2015-08-20

    Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP.

  1. Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children.

    PubMed

    Crisco, Joseph J; Schwartz, Joel B; Wilcox, Bethany; Brideau, Holly; Basseches, Benjamin; Kerman, Karen

    2015-08-20

    Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP. PMID:25935686

  2. Extension of the stability of motions in a combustion chamber by non- linear active control based on hysteresis

    SciTech Connect

    Knoop, P.; Culick, F.E.C.; Zukoski, E.E.

    1996-07-01

    This report presents the first quantitative data establishing the details of hysteresis whose existence in dynamical behavior was reported by Sterling and Zukoski. The new idea was demonstrated that the presence of dynamical hysteresis provides opportunity for a novel strategy of active nonlinear control of unsteady motions in combustors. A figure shows the hysteresis exhibited for the amplitude of pressure oscillations as a function of equivalence ratio in a combustor having a recirculation zone, in this case a dump combustor.

  3. Processing of translational and rotational motions of surface waves: performance analysis and applications to single sensor and to array measurements

    NASA Astrophysics Data System (ADS)

    Maranò, Stefano; Fäh, Donat

    2014-01-01

    The analysis of rotational seismic motions has received considerable attention in the last years. Recent advances in sensor technologies allow us to measure directly the rotational components of the seismic wavefield. Today this is achieved with improved accuracy and at an affordable cost. The analysis and the study of rotational motions are, to a certain extent, less developed than other aspects of seismology due to the historical lack of instrumental observations. This is due to both the technical challenges involved in measuring rotational motions and to the widespread belief that rotational motions are insignificant. This paper addresses the joint processing of translational and rotational motions from both the theoretical and the practical perspectives. Our attention focuses on the analysis of motions of both Rayleigh waves and Love waves from recordings of single sensors and from an array of sensors. From the theoretical standpoint, analysis of Fisher information (FI) allows us to understand how the different measurement types contribute to the estimation of quantities of geophysical interest. In addition, we show how rotational measurements resolve ambiguity on parameter estimation in the single sensor setting. We quantify the achievable estimation accuracy by means of Cramér-Rao bound (CRB). From the practical standpoint, a method for the joint processing of rotational and translational recordings to perform maximum likelihood (ML) estimation is presented. The proposed technique estimates parameters of Love waves and Rayleigh waves from single sensor or array recordings. We support and illustrate our findings with a comprehensive collection of numerical examples. Applications to real recordings are also shown.

  4. Application of parametric equations of motion to study the laser induced multiphoton dissociation of H2+ in intense laser field.

    PubMed

    Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K

    2011-06-14

    We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.

  5. Continuous Passive Motion Provides Good Pain Control in Patients with Adhesive Capsulitis

    ERIC Educational Resources Information Center

    Dundar, Umit; Toktas, Hasan; Cakir, Tuncay; Evcik, Deniz; Kavuncu, Vural

    2009-01-01

    Painful stiffening of the shoulder, "frozen shoulder" is a common cause of shoulder pain and disability. Continuous passive motion (CPM) is an established method of preventing joint stiffness and of overcoming it. A randomized, comparative prospective clinical trial was planned to compare the early response with different rehabilitation methods…

  6. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  7. Space infrared telescope pointing control system. Infrared telescope tracking in the presence of target motion

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schneider, J. B.

    1986-01-01

    The use of charge-coupled-devices, or CCD's, has been documented by a number of sources as an effective means of providing a measurement of spacecraft attitude with respect to the stars. A method exists of defocussing and interpolation of the resulting shape of a star image over a small subsection of a large CCD array. This yields an increase in the accuracy of the device by better than an order of magnitude over the case when the star image is focussed upon a single CCD pixel. This research examines the effect that image motion has upon the overall precision of this star sensor when applied to an orbiting infrared observatory. While CCD's collect energy within the visible spectrum of light, the targets of scientific interest may well have no appreciable visible emissions. Image motion has the effect of smearing the image of the star in the direction of motion during a particular sampling interval. The presence of image motion is incorporated into a Kalman filter for the system, and it is shown that the addition of a gyro command term is adequate to compensate for the effect of image motion in the measurement. The updated gyro model is included in this analysis, but has natural frequencies faster than the projected star tracker sample rate for dim stars. The system state equations are reduced by modelling gyro drift as a white noise process. There exists a tradeoff in selected star tracker sample time between the CCD, which has improved noise characteristics as sample time increases, and the gyro, which will potentially drift further between long attitude updates. A sample time which minimizes pointing estimation error exists for the random drift gyro model as well as for a random walk gyro model.

  8. Strain-mediated deterministic control of 360° domain wall motion in magnetoelastic nanorings

    NASA Astrophysics Data System (ADS)

    Liang, Cheng-Yen; Sepulveda, Abdon E.; Hoff, Daniel; Keller, Scott M.; Carman, Gregory. P.

    2015-11-01

    This study provides numerical simulations for deterministic 360° magnetization rotation of the transverse domain walls in a nickel nano-ring (outer diameter: 500 nm, inner diameter: 300 nm, and thickness: 10 nm) on a lead zirconate titanate (Pb[ZrxTi1-x]O3 0 < x < 1) (PZT) thin film (500 nm) deposited onto a Si substrate with surface patterned electrodes. Two alternative electrode architectures are studied, namely, a 4-electrode and a 6-electrode configuration. The 4-electrode configuration relies on magnetization dynamics to produce an overshoot coupled with proper timing control of the voltage applied to achieve 360° magnetization rotation. In contrast, the 6-electrode configuration only requires sequential voltage application to successive pairs of electrodes and thus can be operated at quasi-static speeds and does not rely on magnetization dynamics to achieve 360° magnetization rotation. These analytical models provide support for developing new devices such as nanoscale multiferroic driven electromagnetic motors.

  9. Compound Velocity Synchronizing Control Strategy for Electro-Hydraulic Load Simulator and Its Engineering Application.

    PubMed

    Han, Songshan; Jiao, Zongxia; Yao, Jianyong; Shang, Yaoxing

    2014-09-01

    An electro-hydraulic load simulator (EHLS) is a typical case of torque systems with strong external disturbances from hydraulic motion systems. A new velocity synchronizing compensation strategy is proposed in this paper to eliminate motion disturbances, based on theoretical and experimental analysis of a structure invariance method and traditional velocity synchronizing compensation controller (TVSM). This strategy only uses the servo-valve's control signal of motion system and torque feedback of torque system, which could avoid the requirement on the velocity and acceleration signal in the structure invariance method, and effectively achieve a more accurate velocity synchronizing compensation in large loading conditions than a TVSM. In order to facilitate the implementation of this strategy in engineering cases, the selection rules for compensation parameters are proposed. It does not rely on any accurate information of structure parameters. This paper presents the comparison data of an EHLS with various typical operating conditions using three controllers, i.e., closed loop proportional integral derivative (PID) controller, TVSM, and the proposed improved velocity synchronizing controller. Experiments are conducted to confirm that the new strategy performs well against motion disturbances. It is more effective to improve the tracking accuracy and is a more appropriate choice for engineering applications.

  10. Compound Velocity Synchronizing Control Strategy for Electro-Hydraulic Load Simulator and Its Engineering Application.

    PubMed

    Han, Songshan; Jiao, Zongxia; Yao, Jianyong; Shang, Yaoxing

    2014-09-01

    An electro-hydraulic load simulator (EHLS) is a typical case of torque systems with strong external disturbances from hydraulic motion systems. A new velocity synchronizing compensation strategy is proposed in this paper to eliminate motion disturbances, based on theoretical and experimental analysis of a structure invariance method and traditional velocity synchronizing compensation controller (TVSM). This strategy only uses the servo-valve's control signal of motion system and torque feedback of torque system, which could avoid the requirement on the velocity and acceleration signal in the structure invariance method, and effectively achieve a more accurate velocity synchronizing compensation in large loading conditions than a TVSM. In order to facilitate the implementation of this strategy in engineering cases, the selection rules for compensation parameters are proposed. It does not rely on any accurate information of structure parameters. This paper presents the comparison data of an EHLS with various typical operating conditions using three controllers, i.e., closed loop proportional integral derivative (PID) controller, TVSM, and the proposed improved velocity synchronizing controller. Experiments are conducted to confirm that the new strategy performs well against motion disturbances. It is more effective to improve the tracking accuracy and is a more appropriate choice for engineering applications. PMID:24895465

  11. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  12. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  13. Wireless video monitoring and robot control in security applications

    NASA Astrophysics Data System (ADS)

    Nurkkala, Eero A.; Pyssysalo, Tino; Roning, Juha

    1998-10-01

    This research focuses on applications based on wireless monitoring and robot control, utilizing motion image and augmented reality. These applications include remote services and surveillance-related functions such as remote monitoring. A remote service can be, for example, a way to deliver products at a hospital or old people's home. Due to the mobile nature of the system, monitoring at places with privacy concerns is possible. On the other hand, mobility demands wireless communications. Suitable and present technologies for wireless video transfer are weighted. Identification of objects with the help of Radio Frequency Identifying (RFID) technology and facial recognition results in intelligent actions, for example, where the control of a robot does not require extensive workload from the user. In other words, tasks can be partially autonomous, RFID can be also used in augmentation of the video view with virtual objects. As a real-life experiment, a prototype environment is being constructed that consists of a robot equipped with a video camera and wireless links to the network and multimedia computer.

  14. Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Computer program description

    NASA Technical Reports Server (NTRS)

    Petrarca, J. R.; Harrison, B. A.; Redman, M. C.; Rowe, W. S.

    1979-01-01

    A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated.

  15. Integrating motion, illumination, and structure in video sequences with applications in illumination-invariant tracking.

    PubMed

    Xu, Yilei; Roy-Chowdhury, Amit K

    2007-05-01

    In this paper, we present a theory for combining the effects of motion, illumination, 3D structure, albedo, and camera parameters in a sequence of images obtained by a perspective camera. We show that the set of all Lambertian reflectance functions of a moving object, at any position, illuminated by arbitrarily distant light sources, lies "close" to a bilinear subspace consisting of nine illumination variables and six motion variables. This result implies that, given an arbitrary video sequence, it is possible to recover the 3D structure, motion, and illumination conditions simultaneously using the bilinear subspace formulation. The derivation builds upon existing work on linear subspace representations of reflectance by generalizing it to moving objects. Lighting can change slowly or suddenly, locally or globally, and can originate from a combination of point and extended sources. We experimentally compare the results of our theory with ground truth data and also provide results on real data by using video sequences of a 3D face and the entire human body with various combinations of motion and illumination directions. We also show results of our theory in estimating 3D motion and illumination model parameters from a video sequence. PMID:17356200

  16. Validation of attenuation models for ground motion applications in central and eastern North America

    SciTech Connect

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for the rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.

  17. Validation of attenuation models for ground motion applications in central and eastern North America

    DOE PAGES

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for themore » rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.« less

  18. Industrial application of fuzzy control in bioprocesses.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    In a bioprocess, for example a fermentation process, many biological reactions are always working in intracellular space and the control of such a process is very complicated. Bioprocesses have therefore been controlled by the judgment of the experts who are the skilled operators and have much experience in the control of such processes. Such experience is normally described in terms of linguistic IF-THEN rules. Fuzzy inference is a powerful tool for incorporating linguistic rules into computer control of such processes. Fuzzy control is divided into two types--direct fuzzy control of process variables, for example sugar feed rate and fermentation temperature, and indirect control via phase recognition. In bioprocess control the experts decide the value of controllable process variables such as sugar feed rate or temperature as output data from several state variables as input data. Fuzzy control is regarded as a computational algorithm in which the causal relationship between input and output data are incorporated. In Japan fuzzy control has already been applied to practical industrial processes such as production of pravastatin precursor and vitamin B2 and to the Japanese sake mashing process; these examples are reviewed. In addition, an advanced control tool developed from a study on fuzzy control, fuzzy neural networks (FNN), are introduced. FNN can involve complicated causality between input and output data in a network model. FNN have been proven to be applicable to a research in biomedicine, for example modeling of the complicated causality between electroencephalogram or gene expression profiling data and prognostic prediction. Successful results on this research will be also explained.

  19. An invariance principle for reversible Markov processes. Applications to random motions in random environments

    SciTech Connect

    De Masi, A.; Ferrari, P.A.; Goldstein, S.; Wick, W.D. )

    1989-05-01

    The authors present an invariance principle for antisymmetric functions of a reversible Markov process which immediately implies convergence to Brownian motion for a wide class of random motions in random environments. They apply it to establish convergence to Brownian motion (i) for a walker moving in the infinite cluster of the two-dimensional bond percolation model, (ii) for a d-dimensional walker moving in a symmetric random environment under very mild assumptions on the distribution of the environment, (iii) for a tagged particle in a d-dimensional symmetric lattice gas which allows interchanges, (iv) for a tagged particle in a d-dimensional system of interacting Brownian particles. Their formulation also leads naturally to bounds on the diffusion constant.

  20. Applications toolkit for accelerator control and analysis

    SciTech Connect

    Borland, M.

    1997-06-01

    The Advanced Photon Source (APS) has taken a unique approach to creating high-level software applications for accelerator operation and analysis. The approach is based on self-describing data, modular program toolkits, and scripts. Self-describing data provide a communication standard that aids the creation of modular program toolkits by allowing compliant programs to be used in essentially arbitrary combinations. These modular programs can be used as part of an arbitrary number of high-level applications. At APS, a group of about 70 data analysis, manipulation, and display tools is used in concert with about 20 control-system-specific tools to implement applications for commissioning and operations. High-level applications are created using scripts, which are relatively simple interpreted programs. The Tcl/Tk script language is used, allowing creating of graphical user interfaces (GUIs) and a library of algorithms that are separate from the interface. This last factor allows greater automation of control by making it easy to take the human out of the loop. Applications of this methodology to operational tasks such as orbit correction, configuration management, and data review will be discussed.