Science.gov

Sample records for motion control applications

  1. Robotic Compliant Motion Control for Aircraft Refueling Applications

    DTIC Science & Technology

    1988-12-01

    Science in Astronautical Engineering Acceso : or NTIS -; David J. Duvall, B.S. Captain, USAF ................ December, 1988 D,: . 6 Approved for public...discussed techniques for coordinated compliant motion control of multiple ma- nipulators. He also described techniques for handling coupling between...analysis con- sidering only a single degree of freedom, the results were later shown to be equally applicable to a multiple degree of freedom arm (1, p

  2. Towards bioreactor development with physiological motion control and its applications.

    PubMed

    Stoffel, Marcus; Willenberg, Wolfgang; Azarnoosh, Marzieh; Fuhrmann-Nelles, Nadine; Zhou, Bei; Markert, Bernd

    2017-01-01

    In biomedical applications bioreactors are used, which are able to apply mechanical loadings under cultivation conditions on biological tissues. However, complex mechanobiological evolutions, such as the dependency between mechanical properties and cell activity, depend strongly on the applied loading conditions. This requires correct physiological movements and loadings in bioreactors. The aim of the present study is to develop bioreactors, in which native and artificial biological tissues can be cultivated under physiological conditions in knee joints and spinal motion segments. However, in such complex systems, where motions with different degrees of freedom are applied to whole body parts, it is necessary to investigate elements of joints and spinal parts separately. Consequently, two further bioreactors for investigating tendons and cartilage specimens are proposed additionally. The study is complemented by experimental and numerical examples with emphasis on medical and engineering applications, such as biomechanical properties of cartilage replacement materials, injured tendons, and intervertebral discs.

  3. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  4. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework.

    PubMed

    Kesner, Adam L; Schleyer, Paul J; Büther, Florian; Walter, Martin A; Schäfers, Klaus P; Koo, Phillip J

    2014-12-01

    Positron emission tomography (PET) is increasingly used for the detection, characterization, and follow-up of tumors located in the thorax. However, patient respiratory motion presents a unique limitation that hinders the application of high-resolution PET technology for this type of imaging. Efforts to transcend this limitation have been underway for more than a decade, yet PET remains for practical considerations a modality vulnerable to motion-induced image degradation. Respiratory motion control is not employed in routine clinical operations. In this article, we take an opportunity to highlight some of the recent advancements in data-driven motion control strategies and how they may form an underpinning for what we are presenting as a fully automated data-driven motion control framework. This framework represents an alternative direction for future endeavors in motion control and can conceptually connect individual focused studies with a strategy for addressing big picture challenges and goals.

  5. Two non-contact photoelectric angular position sensors for motion control applications

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Xiaolu; Bo, Jiang

    2013-01-01

    The angular position sensor can be integrated into most motion control applications where precision monitoring of angular position is required. In order to eliminate mechanical wear of present angular position sensors for determining the rotation orientation, two new non-contact methods utilizing photoelectric switches are proposed and the corresponding sensors are established. One sensor comprises a gravitational ball, one or more light sources and a circular array of photodetectors, and realizes angular position measurement by setting a block between the light source and the corresponding photodetector which is rotated to the lowest point. Another sensor consists of transmitter-receiver sets and an optical encoder. Different from traditional rotary encoder, the transmitter-receiver sets are arranged around the circumference of rotation, and the optical encoder is only one-turn encoder. The concrete configurations of the sensors are described in detail and typical prototypes are illustrated. Both the angular position sensors are non-contact, compact, and low-cost. They can resist harsh environmental conditions such as vibration, excessive ambient temperature, dirt, moisture and dew, so it is especially well-suited for motion control applications.

  6. Viscoelastic model based force control for soft tissue interaction and its application in physiological motion compensation.

    PubMed

    Moreira, Pedro; Zemiti, Nabil; Liu, Chao; Poignet, Philippe

    2014-09-01

    Controlling the interaction between robots and living soft tissues has become an important issue as the number of robotic systems inside the operating room increases. Many researches have been done on force control to help surgeons during medical procedures, such as physiological motion compensation and tele-operation systems with haptic feedback. In order to increase the performance of such controllers, this work presents a novel force control scheme using Active Observer (AOB) based on a viscoelastic interaction model. The control scheme has shown to be stable through theoretical analysis and its performance was evaluated by in vitro experiments. In order to evaluate how the force control scheme behaves under the presence of physiological motion, experiments considering breathing and beating heart disturbances are presented. The proposed control scheme presented a stable behavior in both static and moving environment. The viscoelastic AOB presented a compensation ratio of 87% for the breathing motion and 79% for the beating heart motion.

  7. Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos

    NASA Astrophysics Data System (ADS)

    Russell, Ryan P.; Lantoine, Gregory

    2012-06-01

    A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations ( CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials.

  8. Pit disassembly motion control

    SciTech Connect

    Christensen, L.; Pittman, P. C.

    2001-01-01

    A Department of Energy (DOE) Pit Disassembly and Conversion Facility (PDCF) is being designed for the Savannah River Site in South Carolina. The facility will recover plutonium from excess nuclear weapon pits defined in START II and START III treaties. The plutonium will be stored and used to produce mixed oxide reactor fuel at another new DOE facility. Because of radiation dose issues, much of the pit disassembly work and material transfer will be automated. Automated material handling systems will interface with disassembly lathes, conversion reactors that produce oxide for storage, robotic container welding stations, vault retrieval systems, and nondestructive assay (NDA) instrumentation. The goal is to use common motion control hardware for material transfer and possibly common motion controllers for the unique PDCF systems. The latter is complicated by the different directions manufactures are considering for distributed control, such as Firewire, SERCOS, etc., and by the unique control requirements of machines such as lathes compared to controls for an integrated NDA system. The current design approach is to standardize where possible, use network cables to replace wire bundles where possible, but to first select hardware and motion controllers that meet specific machine or process requirements.

  9. Novel coordinates for nonlinear multibody motion with applications to spacecraft dynamics and control

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter

    1998-12-01

    Novel sets of attitude coordinates called the Stereographic Parameters (SPs) and configuration quasivelocity coordinates called the Eigenfactor Quasivelocities (EQVs) are discussed. The SPs are generated through stereographic projections of the Euler parameter constraint hypersphere onto hyperplanes. SP sets are non-unique and have distinct alternate sets referred to as shadow sets. They abide by the same differential kinematic equation, but generally display a different singular behavior. Explicit expressions are developed that map the original SP set to the shadow set and thus avoid any singularities. Both symmetric SPs such as the classical and Modified Rodrigues Parameters (MRPs), as well as asymmetric SPs are discussed. A globally asymptotically stable MRP feedback law which tracks any reference trajectory is presented. Both unsaturated and saturated control cases are discussed. Further, an MRP costate switching condition is developed that allows both original and shadow MRPs to be used simultaneously in optimal control problems. The Lagrange equations of motion in terms of the n-dimensional EQV vector are developed. The EQV formulation has an identity mass matrix which results in no matrix inverse being taken in numerical simulations. An explicit expression is presented that incorporates Pfaffian non-holonomic constraints into the EQV formulation without increasing the system order. Unfortunately, the use of EQV in numerical simulations only proved beneficial in selected cases. Generally the computational burden proved too high. However, the EQVs are found to be valuable when used as velocity feedback coordinates. EQV feedback laws have an exponentially decaying kinetic energy, superior performance to traditional state velocity feedback laws and are found to decouple the motion of multi-link robotic systems. The equations of motion and steering laws of spacecraft containing Variable Speed Control Moment Gyroscopes (VSCMGs) are developed. Contrary to classical

  10. Dynamics and control of motion on the ground and in the air with application to biped robots

    NASA Astrophysics Data System (ADS)

    Hemami, H.; Zheng, Y.-F.

    The dynamics of a multi-linkage model of natural or man-made systems with arbitrary holonomic and non-holonomic constraints at the joints are formulated. The formulation is equally applicable to movements on the ground or in the air. Nonlinear control strategies for postural balance and rhythmic motion are presented. A predictive algorithm to compensate for computation or transmission delay is proposed. Digital computer simulations are presented to demonstrate the effectiveness of the control strategy for a five-link three-dimensional biped.

  11. Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control.

    PubMed

    Uragami, Daisuke; Takahashi, Tatsuji; Matsuo, Yoshiki

    2014-02-01

    Many algorithms and methods in artificial intelligence or machine learning were inspired by human cognition. As a mechanism to handle the exploration-exploitation dilemma in reinforcement learning, the loosely symmetric (LS) value function that models causal intuition of humans was proposed (Shinohara et al., 2007). While LS shows the highest correlation with causal induction by humans, it has been reported that it effectively works in multi-armed bandit problems that form the simplest class of tasks representing the dilemma. However, the scope of application of LS was limited to the reinforcement learning problems that have K actions with only one state (K-armed bandit problems). This study proposes LS-Q learning architecture that can deal with general reinforcement learning tasks with multiple states and delayed reward. We tested the learning performance of the new architecture in giant-swing robot motion learning, where uncertainty and unknown-ness of the environment is huge. In the test, the help of ready-made internal models or functional approximation of the state space were not given. The simulations showed that while the ordinary Q-learning agent does not reach giant-swing motion because of stagnant loops (local optima with low rewards), LS-Q escapes such loops and acquires giant-swing. It is confirmed that the smaller number of states is, in other words, the more coarse-grained the division of states and the more incomplete the state observation is, the better LS-Q performs in comparison with Q-learning. We also showed that the high performance of LS-Q depends comparatively little on parameter tuning and learning time. This suggests that the proposed method inspired by human cognition works adaptively in real environments.

  12. Possible applications of the LEAP motion controller for more interactive simulated experiments in augmented or virtual reality

    NASA Astrophysics Data System (ADS)

    Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan

    2016-09-01

    Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.

  13. Open architecture CMM motion controller

    NASA Astrophysics Data System (ADS)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John

    2001-12-01

    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  14. Motion Control of Micro-/Nanomotors.

    PubMed

    Teo, Wei Zhe; Pumera, Martin

    2016-10-10

    As we progress towards employing self-propelled micro-/nanomotors in envisioned applications such as cargo delivery, environmental remediation, and therapeutic treatments, precise control of the micro-/nanomotors direction and their speed is essential. In this Review, major emerging approaches utilized for the motion control of micro-/nanomotors have been discussed, together with the lastest publications describing these approaches. Future studies could incorporate investigations on micro-/nanomotors motion control in a real-world environment in which matrix complexity might disrupt successful manipulation of these small-scale devices.

  15. RHIC stochastic cooling motion control

    SciTech Connect

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  16. Machine learning in motion control

    NASA Technical Reports Server (NTRS)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  17. Optimum control forces for multibody systems with intermittent motion

    NASA Technical Reports Server (NTRS)

    Ider, Sitki Kemal; Amirouche, F. M. L.

    1989-01-01

    The objective is to address the continuity of motion when a dynamical system is suddenly subjected to constraint conditions. Motion discontinuity due to the initial constraint violation is avoided by prior control forces that adjust the motion and yield velocity and acceleration consistent at the point of application of the constraint. The optimum control forces are determined for a specified control interval. The method proposed provides an optimum adjustment of the system's motion and assures that the stresses developed at the system components are kept within acceptable limits. The procedures developed will be illustrated making use of inequality constraints applied to obstacle avoidance problems in robotics.

  18. In Search of Bibliographic Control for Instructional Motion Picture Films.

    ERIC Educational Resources Information Center

    Coover, Robert W.

    This historical study report describes phases in the development of applicable standards for cataloging instructional motion picture films. Steps leading to the present state of the art are objectively presented, focusing on standards developed to establish bibliographic control of instructional motion picture films, contemporary reaction to such…

  19. On the motion control of microparticles by means of an electromagnetic field increasing with time for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Izmailov, A. Ch.

    2017-02-01

    The possibility of controlling the motion of microparticles by means of external electromagnetic fields (nonresonance laser radiation, in particular) that induce potential wells for such particles, which are characterized by fixed spatial distribution but deepen over time to a certain level, are analyzed. It is assumed that the particles are located in high vacuum and are affected by nondissipative external forces. Slowing down of relatively fast particles when they pass through the discussed potential wells is shown. Such slowing down of particles is demonstrated using a nonresonance laser beam with intensity increasing over time as an example. Specific features of particle dynamics in the electromagnetic fields under consideration in the case of a one-dimensional rectangular potential well are studied in detail based on simple analytical relations derived from the fundamental equations of classical mechanics. The methods of particle cooling and localization demonstrated in the present work can substantially increase spectroscopy resolution of various microparticles, including, under certain conditions, atoms and molecules.

  20. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    NASA Astrophysics Data System (ADS)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  1. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  2. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  3. Adaptive Force Control in Compliant Motion

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1994-01-01

    This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.

  4. Comprehensive Control of Atomic Motion

    NASA Astrophysics Data System (ADS)

    Raizen, Mark G.

    2009-06-01

    Recent work provides a general two-step solution to trapping and cooling of atoms. The first step is magnetic stopping of paramagnetic atoms with the use of a sequence of pulsed fields. The second step is single-photon cooling, which is based on a one-way barrier. This cooling method is related intimately to the historic problem of “Maxwell’s Demon” and subsequent work by L. Szilard. Here, I discuss the connections between single-photon cooling and information entropy. I also outline future application of these methods to fundamental tests with hydrogen isotopes.

  5. Terahertz Generation & Vortex Motion Control in Superconductors

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2005-03-01

    A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint

  6. Galvanometer control system design of aerial camera motion compensation

    NASA Astrophysics Data System (ADS)

    Qiao, Mingrui; Cao, Jianzhong; Wang, Huawei; Guo, Yunzeng; Hu, Changchang; Tang, Hong; Niu, Yuefeng

    2015-10-01

    Aerial cameras exist the image motion on the flight. The image motion has seriously affected the image quality, making the image edge blurred and gray scale loss. According to the actual application situation, when high quality and high precision are required, the image motion compensation (IMC) should be adopted. This paper designs galvanometer control system of IMC. The voice coil motor as the actuator has a simple structure, fast dynamic response and high positioning accuracy. Double-loop feedback is also used. PI arithmetic and Hall sensors are used at the current feedback. Fuzzy-PID arithmetic and optical encoder are used at the speed feedback. Compared to conventional PID control arithmetic, the simulation results show that the control system has fast response and high control accuracy.

  7. The AFIT gross motion control project

    NASA Technical Reports Server (NTRS)

    Leahy, M. B., Jr.

    1991-01-01

    The objective of the Gross Motion Control project is to study alternative control approaches that will provide payload invariant high speed trajectory tracking for nonrepetitive motions in free space. The research has concentrated on modifications to the model-based control structure. Development and evaluation is being actively pursued of both adaptive primary (inner loop) and robust secondary (output loop) controllers. In-house developments are compared and contrasted to the techniques proposed by other researchers. The case study for the evaluation is the first three links of a PUMA-560. Incorporating the principals of multiple model adaptive estimation, artificial neural networks, and Lyapunov theory into the model based paradigm has shown the potential for enhanced tracking. Secondary controllers based on Quantitative Feedback Theory, or augmented with auxiliary inputs, significantly improve the robustness to payload variations and unmodeled drive system dynamics. An overview is presented of the different concepts under investigation and a sample is provided of the latest experimental results.

  8. Controlling vortex motion and vortex kinetic friction

    NASA Astrophysics Data System (ADS)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  9. Damper-controlled switch for SMA motion smoothing

    NASA Astrophysics Data System (ADS)

    Aguayo, Clover; Utter, Brent; Luntz, Jonathan; Gonzalez, Richard; Brei, Diann; Johnson, Nancy L.; Alexander, Paul W.

    2014-04-01

    While the use of SMA-actuated devices continues to grow in many industries, current device limitations pose a challenge to successful adoption for certain classes of applications. SMA-actuated devices typically demonstrate motion with non-constant velocity due to the non-linear thermo-mechanically coupled behavior of SMA material transformation, and motion sensitivity to external factors such as voltage and load. This variation in motion can lead to the perception of poor device quality, limiting SMA-actuated devices to applications hidden from the sight of the product user, or requiring them to be augmented with higher cost controls to improve the motion quality. Therefore, a need exists for simple, passive, low-cost device technologies that enable the designer to prescribe desired motion characteristics with relative insensitivity to fluctuation in operating conditions. This paper presents a Damper Controlled Switch (DCS) mechanism that delivers constant velocity and relative insensitivity to operating conditions when combined with a standard SMA wire actuator. The DCS includes a damper that acts against a spring to open a switch when the velocity exceeds a tunable threshold. To validate the ability of the DCS to provide the desired motion quality, experiments were conducted comparing the normal motion of the SMA actuator to the motion produced when the same actuator was fitted with a DCS prototype. The addition of the DCS produced nearly constant actuator velocity, performing significantly better than the SMA actuator alone. The tunability of the DCS was demonstrated producing a wide range of attainable constant velocities. Finally, a set of experiments explored the DCS's sensitivity to voltage and load, indicating a low sensitivity to a wide range of operating parameters for which the operating limits were identified. The DCS represents a simple, compact technology based on passive, low-cost components, providing a very practical solution that will enable

  10. Development of DSP and FPGA based 4-axis motion controller

    NASA Astrophysics Data System (ADS)

    He, Shuai; Gao, Xiaorong; Peng, Chaoyong; Zhang, Yu

    2010-08-01

    This paper presents a DSP and FPGA based 4-axis motion controller, which use host PC as the platform. By adopting the strategy of two stage interpolation, the proposed motion controller supports 2-axis circular interpolation and 3-axis linear interpolation, and its maximum output pulse frequency of each axis can be up to 8 MHz. The controlling algorithms, such as improved coarse interpolation based on the time division principle, T-curve and S-curve velocity profile generation and the error compensation for the position loop, are implemented by DSP to ensure the high performance of the proposed motion controller. Meanwhile, the FPGA integrates PCI bus controller, dual port RAM, second-stage interpolation, encoder feedback logic circuit etc., which allows a flexible, compact, low-cost solution for various applications. Experimental results demonstrate that the presented motion controller features the merits such as the good real-time performance and high machining precision, and it can be used for a wide range of applications in numerical control system.

  11. Optimal control of spacecraft motion in the Newtonian gravitational field: application of quaternions to describe orbit orientation.

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    1999-08-01

    The problem of rendezvous of a controllable spacecraft with a spacecraft moving along a Keplerian orbit is solved. Four variants of solutions to the problem and specific cases of the problem solution are considered.

  12. Motion Imagery and Robotics Application Project (MIRA)

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney P.

    2010-01-01

    This viewgraph presentation describes the Motion Imagery and Robotics Application (MIRA) Project. A detailed description of the MIRA camera service software architecture, encoder features, and on-board communications are presented. A description of a candidate camera under development is also shown.

  13. Video motion detection for physical security applications

    SciTech Connect

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost effectiveness. In recent years significant advances in image processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Currently Sandia is developing several advanced systems that employ image processing techniques for a broader set of safeguards and security applications. TCATS (Target Cueing and Tracking System) uses a set of powerful, flexible, modular algorithms and software to alarm on purposeful target motion. Custom TCATS hardware optimized for perimeter security applications is currently being evaluated with video input. VISDTA (Video Imaging System for Detection, Tracking, and Assessment) uses some of the same TCATS algorithms and operates with a thermal imager input. In the scan mode, VISDTA detects changes in a scene from the previous image at a given scan point; in the stare mode, VISDTA detects purposeful motion similar to TCATS.

  14. Sensor motion control and mobile platforms for aquatic remote sensing

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    2006-09-01

    Modern remote sensing systems used in repetitive environmental monitoring and surveillance applications are used on various platforms. These platforms can be categorized as stationary (fixed) or moving platforms. The sensing systems monitor the ambient environment which also may have inherent motion, such as the water surface with water waves. This is particularly the case for airborne or ship borne sensing of aquatic environments and is true for ground based walking or crawling systems. The time sequential comparison and spatial registration of sensor images, particularly "hyperspectral imagery" requires pixel to pixel registration for science based change and target (or medium) detection applications. These applications require sensor motion control combined with platform motion control. If the pixel sizes are small - on the order of 1 meter to less than 1 mm, then "nano-positioning accuracy" may be necessary for various aspects of the camera or surveillance sensor system, and/or related sensors used to control the moving platform. In this paper and presentation, an overview of converging technologies to sensor motion control and nano-positioning is discussed. The paper and presentation will demonstrate that the technologies converging on this aspect of remote sensing monitoring systems will require professionals with a combination of skills that are not readily available in today's workforce nor taught in educational programs today - especially at the undergraduate level. Thus there is a need to consider new avenues for educating professionals necessary to engineer and apply these converging technologies to important social environmental monitoring and surveillance needs.

  15. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  16. Biquaternion solution of the kinematic control problem for the motion of a rigid body and its application to the solution of inverse problems of robot-manipulator kinematics

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2013-01-01

    The problem of reducing the body-attached coordinate system to the reference (programmed) coordinate system moving relative to the fixed coordinate system with a given instantaneous velocity screw along a given trajectory is considered in the kinematic statement. The biquaternion kinematic equations of motion of a rigid body in normalized and unnormalized finite displacement biquaternions are used as the mathematical model of motion, and the dual orthogonal projections of the instantaneous velocity screw of the body motion onto the body coordinate axes are used as the control. Various types of correction (stabilization), which are biquaternion analogs of position and integral corrections, are proposed. It is shown that the linear (obtained without linearization) and stationary biquaternion error equations that are invariant under any chosen programmed motion of the reference coordinate system can be obtained for the proposed types of correction and the use of unnormalized finite displacement biquaternions and four-dimensional dual controls allows one to construct globally regular control laws. The general solution of the error equation is constructed, and conditions for asymptotic stability of the programmed motion are obtained. The constructed theory of kinematic control of motion is used to solve inverse problems of robot-manipulator kinematics. The control problem under study is a generalization of the kinematic problem [1, 2] of reducing the body-attached coordinate system to the reference coordinate system rotating at a given (programmed) absolute angular velocity, and the presentedmethod for solving inverse problems of robotmanipulator kinematics is a development of the method proposed in [3-5].

  17. Animation control of surface motion capture.

    PubMed

    Tejera, Margara; Casas, Dan; Hilton, Adrian

    2013-12-01

    Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.

  18. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  19. Position Control of Motion Compensation Cardiac Catheters

    PubMed Central

    Kesner, Samuel B.; Howe, Robert D.

    2011-01-01

    Robotic catheters have the potential to revolutionize cardiac surgery by enabling minimally invasive structural repairs within the beating heart. This paper presents an actuated catheter system that compensates for the fast motion of cardiac tissue using 3D ultrasound image guidance. We describe the design and operation of the mechanical drive system and catheter module and analyze the catheter performance limitations of friction and backlash in detail. To mitigate these limitations, we propose and evaluate mechanical and control system compensation methods, including inverse and model-based backlash compensation, to improve the system performance. Finally, in vivo results are presented that demonstrate that the catheter can track the cardiac tissue motion with less than 1 mm RMS error. The ultimate goal of this research is to create a fast and dexterous robotic catheter system that can perform surgery on the delicate structures inside of the beating heart. PMID:21874124

  20. Motion control of 7-DOF arms: The configuration control approach

    SciTech Connect

    Homayoun Seraji; Long, M.K.; Lee, T.S. . Jet Propulsion Lab.)

    1993-04-01

    Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is then followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals for the 7-DOF arm. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola 68020/VME bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control of the 7-DOF arm.

  1. Motion control of 7-DOF arms - The configuration control approach

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.

    1993-01-01

    Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.

  2. Development of motion control method for laser soldering process

    SciTech Connect

    Yerganian, S.S.

    1997-05-01

    Development of a method to generate the motion control data for sealing an electronic housing using laser soldering is described. The motion required to move the housing under the laser is a nonstandard application and was performed with a four-axis system using the timed data streaming mode capabilities of a Compumotor AT6400 indexer. A Microsoft Excel 5.0 spreadsheet (named Israuto.xls) was created to calculate the movement of the part under the laser, and macros were written into the spreadsheet to allow the user to easily create this data. A data verification method was developed for simulating the motion data. The geometry of the assembly was generated using Parametric Technology Corporation Pro/E version 15. This geometry was then converted using Pro/DADS version 3.1 from Computer Aided Design Software Inc. (CADSI), and the simulation was carried out using DADS version 8.0 from CADSI.

  3. Rapid prototyping of an advanced motion controller

    NASA Astrophysics Data System (ADS)

    Cooper, R. S.

    This paper illustrates how, using existing research material, an advanced motion control system was developed both rapidly and economically. The paper emphasizes the approach used to put the system together, rather than the results of the evaluation (which is still under way). The system consists of a field-oriented controlled (FOC) induction motor, along with a pulse-population modulated current motor drive. Specific areas addressed in this paper include: a thorough overview of the technologies involved in the project (with emphasis on FOC theory); use of advanced simulation tools and models to aid in system design and debug; use of existing systems wherever possible to help speed up development; and developing the system in an environment suited to true development work.

  4. Model-Based Motion Estimation and Its Application to Restoration and Interpolation of Motion Pictures.

    DTIC Science & Technology

    1987-06-01

    A common example of this problem occurs when motion picture films are shown on a conventional NTSC television system. The motion picture industry...second, or 30 frames per second. In order to show a motion picture film on an NTSC television system, temporal interpolation is necessary. The technique...Application to Restoration and Interpolation of Motion Pictures ", Dennis Michael Martinez Technical Report No. 530 June 1987 DTIO aELECTE SEp 2 3N DWM I

  5. Fine-Motion-Control Method for Realizing High-Accuracy and High-Speed Contact Motion of Industrial Robots by Employing Sensorless Force Control

    NASA Astrophysics Data System (ADS)

    Shimada, Naoki; Yoshioka, Takashi; Ohishi, Kiyoshi; Miyazaki, Toshimasa

    This paper proposes a new fine-motion-control method for realizing high-accuracy and high-speed contact motion of industrial robots by employing sensorless force control. Today, although industrial robots have become considerably important in the modern industrial society, their functions are limited. A typical limited function is the positioning motion control of robots used in the manufacturing industry. Contact motion is necessary for almost all new applications. In this study, by employing the proposed motion control, smooth and quick contact motion of industrial robots is realized by using a sensorless I-P (Integral-Proportional) force feedback controller. The proposed method is simple and effective, takes into account both the inertia of a robot and the behavior of the I-P force controller. In the experiments, a three-degree-of-freedom robot is brought into contact with an object (a concrete block or a rubber board) by the I-P force control using the proposed method. Further, in the experiment, the motion of the robot's end-effector was considered. The validity of the proposed method is confirmed by using a six-axis force sensor and an acceleration sensor in the contact motion experiments.

  6. Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.

    PubMed

    Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max

    2013-04-01

    In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.

  7. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  8. Visual-Motion Cueing in Altitude and Yaw Control

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Schroeder, Jeffery; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Research conducted using the Vertical Motion Simulator at the NASA Ames Research Center examined the contributions of platform motion and visual level-of-detail (LOD) cueing to tasks that required altitude and/or yaw control in a simulated AH-64 Apache helicopter. Within the altitude control tasks the LOD manipulation caused optical density to change across altitudes by a small, moderate, or large amount; while platform motion was either present or absent. The results from these tasks showed that both constant optical density and platform motion improved altitude awareness in an altitude repositioning task, while the presence of platform motion also led to improved performance in a vertical rate control task. The yaw control tasks had pilots'sit 4.5 ft in front of the center of rotation, thus subjecting them to both rotational and lateral motions during a yaw. The pilots were required to regulate their yaw, while the platform motion was manipulated in order to present all combinations of the resulting rotational and lateral motion components. Ratings of simulation fidelity and sensed platform motion showed that the pilots were relatively insensitive to the rotational component, but highly aware of the lateral component. Together these findings show that: 1) platform motion cues are important when speed regulation is required during altitude change; 2) platform motion contributes to the perception of movement amplitude; 3) lateral, but not rotational, motion cues are essential to the perception of vehicle yaw; and 4) LOD management yielding constant optical density across altitudes improves altitude awareness.

  9. Motion sickness: Can it be controlled

    NASA Technical Reports Server (NTRS)

    Carnes, David

    1988-01-01

    NASA is one of the few research centers concerned with motion sickness. Since the physiology of man has been developed in the one-gravity field Earth, the changes experienced by man in space are unique, and often result in symptoms that resemble motion sickness on Earth. NASA is concerned with motion sickness because it is very uncomfortable for the astronauts. Another concern of NASA is the possibility of a motion sickness astronaut regurgitating while he or she is sealed in an airtight space suit. This could be fatal. Motivated by these reasons, NASA spent thousands of dollars in research and development for a drug or technique for combating motion sickness. Several different treatments were developed for this disorder. Three of the most effective ways of combatting motion sickness are discussed.

  10. Control strategies for planetary rover motion and manipulator control

    NASA Technical Reports Server (NTRS)

    Trautwein, W.

    1973-01-01

    An unusual insect-like vehicle designed for planetary surface exploration is made the occasion for a discussion of control concepts in path selection, hazard detection, obstacle negotiation, and soil sampling. A control scheme which actively articulates the pitching motion between a single-loop front module and a dual loop rear module leads to near optimal behavior in soft soil; at the same time the vehicle's front module acts as a reliable tactile forward probe with a detection range much longer than the stopping distance. Some optimal control strategies are discussed, and the photos of a working scale model are displayed.

  11. Adaptive Animation of Human Motion for E-Learning Applications

    ERIC Educational Resources Information Center

    Li, Frederick W. B.; Lau, Rynson W. H.; Komura, Taku; Wang, Meng; Siu, Becky

    2007-01-01

    Human motion animation has been one of the major research topics in the field of computer graphics for decades. Techniques developed in this area help present human motions in various applications. This is crucial for enhancing the realism as well as promoting the user interest in the applications. To carry this merit to e-learning applications,…

  12. Immunoglobulin Structure Exhibits Control over CDR Motion

    PubMed Central

    Zimmermann, Michael T.; Skliros, Aris; Kloczkowski, Andrzej; Jernigan, Robert L.

    2014-01-01

    Motions of the IgG structure are evaluated using normal mode analysis of an elastic network model to detect hinges, the dominance of low frequency modes, and the most important internal motions. One question we seek to answer is whether or not IgG hinge motions facilitate antigen binding. We also evaluate the protein crystal and packing effects on the experimental temperature factors and disorder predictions. We find that the effects of the protein environment on the crystallographic temperature factors may be misleading for evaluating specific functional motions of IgG. The extent of motion of the antigen binding domains is computed to show their large spatial sampling. We conclude that the IgG structure is specifically designed to facilitate large excursions of the antigen binding domains. Normal modes are shown as capable of computationally evaluating the hinge motions and the spatial sampling by the structure. The antigen binding loops and the major hinge appear to behave similarly to the rest of the structure when we consider the dominance of the low frequency modes and the extent of internal motion. The full IgG structure has a lower spectral dimension than individual Fab domains, pointing to more efficient information transfer through the antibody than through each domain. This supports the claim that the IgG structure is specifically constructed to facilitate antigen binding by coupling motion of the antigen binding loops with the large scale hinge motions. PMID:25191522

  13. Control Strategies for Guided Collective Motion

    DTIC Science & Technology

    2015-01-30

    Control, Atlanta, GA, USA, December 2010, pp. 5468-5473. [19] C. Rorres and H. Anton, “ Elementary linear algebra applications version,” 9th Edition...work addresses and analyses deviated linear cyclic pursuit in which an Distribution Code A: Approved for public release, distribution is unlimited...Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and Asynchronous Heterogeneous Cyclic

  14. Proposal of Method for Control of Muscle Activation Level for Limbs during Motion and Application of this Method in Strength Training

    NASA Astrophysics Data System (ADS)

    Komada, Satoshi; Murakami, Yosuke; Hirai, Junji

    With an increase in the number of elderly people in our society, the need for equipments that ensure activities of daily living and that can be used in strength training for reducing the need for nursing care is increasing. In this paper, we propose a method for controlling the level of muscle activation for a particular muscle group without EMG sensors; the force exerted by the tips of the limbs during motion is used to control the level of muscle activation. The method is based on a musculoskeletal model for limbs called functionally different effective muscles of three antagonistic pairs of six muscles in 2D space. Hill's equation is incorporated in the method to consider force-velocity characteristics of muscles. EMG measurement results for two muscles under isokinetic contraction in the lower limbs of a subject show that difference between the achieved activation level and the desired activation level is less than the error of the output force distribution. Moreover, the control method is applied to strength training. A manipulator that can facilitate the isokinetic contraction with more than the desired activation level for a specific muscle group is developed.

  15. Discrete Event Supervisory Control and Nonlinear Motion Control for DoD and Industrial Systems

    DTIC Science & Technology

    2014-03-17

    fault diagnosis in Industrial machines. We won the Best Application Paper Award at 2011 Asian Control Conference. Technology Transfer NAME Total Number... Automation , Shanghai, May 2011. [12] G. Gu, L. Marinovici, and F.L. Lewis, “Consensusability of discrete-time multi-agent systems under state feedback...Nonlinear Motion Control for DoD and Industrial Systems 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 611102 6. AUTHORS 5d. PROJECT NUMBER FrankL

  16. Human Motion Energy Harvesting for AAL Applications

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Becker, P.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    Research and development into the topic of ambient assisted living has led to an increasing range of devices that facilitate a person's life. The issue of the power supply of these modern mobile systems however has not been solved satisfactorily yet. In this paper a flat inductive multi-coil harvester for integration into the shoe sole is presented. The device is designed for ambient assisted living (AAL) applications and particularly to power a self-lacing shoe. The harvester exploits the horizontal swing motion of the foot to generate energy. Stacks of opposing magnets move through a number of equally spaced coils to induce a voltage. The requirement of a flat structure which can be integrated into the shoe sole is met by a reduced form factor of the magnet stack. In order to exploit the full width of the shoe sole, supporting structures are used to parallelize the harvester and therefore increase the number of active elements, i.e. magnets and coils. The development and characterization of different harvester variations is presented with the best tested design generating an average power of up to 2.14 mW at a compact device size of 75 × 41.5 × 15 mm3 including housing.

  17. Controlling the motion of a group of mobile agents

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Osipov, G. V.

    2016-03-01

    We propose a method of controlling an ensemble of mobile agents with variable coupling topology that is based on the principles of phase synchronization in a system of regular and chaotic oscillators. Results of modeling of the controlled motion of mobile agents in systems with serial, parallel, and strictly preset motion are presented.

  18. Control Design for a Motion Cueing on Driving Simulator

    NASA Astrophysics Data System (ADS)

    de-J. Lozoya-Santos, Jorge; Tudon-Martinez, Juan C.; Salinas, Julio

    2017-01-01

    A Linear Quadratic Regulator (LQR) has been designed to simulate the pitch and roll vehicle dynamics of a platform which is connected to the real time simulation environment of Dynacar. The motion cueing algorithm translates the movement of the simulated vehicle to the platform using three rotary actuators, by satisfying all actuation boundaries. Experimental results illustrate that the LQR motion cueing algorithm performs satisfactory the tracking control at low frequencies, close to the resonance frequencies of the pitch and roll motion.

  19. Orientation Control Method and System for Object in Motion

    NASA Technical Reports Server (NTRS)

    Whorton, Mark Stephen (Inventor); Redmon, Jr., John W. (Inventor); Cox, Mark D. (Inventor)

    2012-01-01

    An object in motion has a force applied thereto at a point of application. By moving the point of application such that the distance between the object's center-of-mass and the point of application is changed, the object's orientation can be changed/adjusted.

  20. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  1. Multi-application controls: Robust nonlinear multivariable aerospace controls applications

    NASA Technical Reports Server (NTRS)

    Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob

    1994-01-01

    This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented

  2. Toolkits Control Motion of Complex Robotics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    That space is a hazardous environment for humans is common knowledge. Even beyond the obvious lack of air and gravity, the extreme temperatures and exposure to radiation make the human exploration of space a complicated and risky endeavor. The conditions of space and the space suits required to conduct extravehicular activities add layers of difficulty and danger even to tasks that would be simple on Earth (tightening a bolt, for example). For these reasons, the ability to scout distant celestial bodies and perform maintenance and construction in space without direct human involvement offers significant appeal. NASA has repeatedly turned to complex robotics for solutions to extend human presence deep into space at reduced risk and cost and to enhance space operations in low Earth orbit. At Johnson Space Center, engineers explore the potential applications of dexterous robots capable of performing tasks like those of an astronaut during extravehicular activities and even additional ones too delicate or dangerous for human participation. Johnson's Dexterous Robotics Laboratory experiments with a wide spectrum of robot manipulators, such as the Mitsubishi PA-10 and the Robotics Research K-1207i robotic arms. To simplify and enhance the use of these robotic systems, Johnson researchers sought generic control methods that could work effectively across every system.

  3. Electric Wheelchair Controlled by Human Body Motion Interface

    NASA Astrophysics Data System (ADS)

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  4. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  5. Motion and force control for multiple cooperative manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  6. Dual-Arm Generalized Compliant Motion With Shared Control

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1994-01-01

    Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).

  7. Standing and sitting motion of inverted pendulum type assist robot using whole-body motion with force control

    NASA Astrophysics Data System (ADS)

    Jeong, SeongHee; Takahashi, Takayuki

    2007-12-01

    This paper describes quick and stable standing and sitting motion of an inverted pendulum type robot by wholebody motion including force control. The whole-body motion is achieved by controlling composite center of gravity of the robot, and damping force control of a wrist-roller is employed to assure the stability of inverted pendulum control on a contact situation with the ground. Motion planning of standing and sitting based on the proposed control method is also proposed. Standing and sitting motion using the proposed motion control and motion planning is simulated with a dynamic simulator, ODE(Open Dynamics Engine). From the simulation results, it was confirmed that the robot successively realized the standing and sitting motion quickly and stably.

  8. The influence of ship motion of manual control skills

    NASA Technical Reports Server (NTRS)

    Mcleod, P.; Poulton, C.; Duross, H.; Lewis, W.

    1981-01-01

    The effects of ship motion on a range of typical manual control skills were examined on the Warren Spring ship motion simulator driven in heave, pitch, and roll by signals taken from the frigate HMS Avenger at 13 m/s (25 knots) into a force 4 wind. The motion produced a vertical r.m.s. acceleration of 0.024g, mostly between 0.1 and 0.3 Hz, with comparatively little pitch or roll. A task involving unsupported arm movements was seriously affected by the motion; a pursuit tracking task showed a reliable decrement although it was still performed reasonably well (pressure and free moving tracking controls were affected equally by the motion); a digit keying task requiring ballistic hand movements was unaffected. There was no evidence that these effects were caused by sea sickness. The differing response to motion of the different tasks, from virtual destruction to no effect, suggests that a major benefit could come from an attempt to design the man/control interface onboard ship around motion resistant tasks.

  9. Motion and force control of multiple robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  10. Motion cue effects on human pilot dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.

    1977-01-01

    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.

  11. The Digital Motion Control System for the Submillimeter Array Antennas

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  12. Sensing human hand motions for controlling dexterous robots

    NASA Technical Reports Server (NTRS)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  13. Study of Neuro-Controllers for Motion Control Systems with Distributed Mechanical Flexibility.

    DTIC Science & Technology

    2007-11-02

    Control of motion systems involving distributed mechanical flexibility is studied using artificial neural networks . Infinite dimensional nature of...into consideration. Three different neuro controller architectures are studied: 1) Hopfield nets for modal parameter estimation and real time solution of...neural network controller for high precision motion control. Thre results are summarized and details are presented in refereed publications.

  14. Control Strategies for Guided Collective Motion

    DTIC Science & Technology

    2015-02-27

    Rorres and H. Anton, “ Elementary linear algebra applications version,” 9th Edition, Wiley India Pvt. Ltd., 2011. [20] S.H. Strogatz, “From Kuramoto to... linear cyclic pursuit in which an agent pursues its leader with an angle of deviation. The sufficient conditions for the stability of such systems are...Generalized Hierarchical Cyclic Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and

  15. Motion synchronization in unmanned aircrafts formation control with communication delays

    NASA Astrophysics Data System (ADS)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2013-03-01

    This paper proposes a formation control strategy for unmanned aircrafts using a virtual structure. Cross coupled sliding mode controllers are introduced to cope with uncertainties in the attitude measurement systems of the unmanned aircrafts and unmeasurable bounded external disturbances such as wind effects, and also to provide motion synchronization in the multi-agent system. This motion synchronization strategy improves the agents convergence to their desired positions, and this is useful for a multi-agent system with faulty agents. Moreover, the proposed motion synchronization strategy is not restricted to specific communication topologies, and sufficient conditions are provided to guarantee the multi-agent system stability in the presence of communication delays. Numerical simulations are presented for a team of five unmanned aircrafts to make a pentagon formation and confirm the accepted performance of the proposed control strategy.

  16. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  17. Visual Features Involving Motion Seen from Airport Control Towers

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Liston, Dorion

    2010-01-01

    Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.

  18. Robust, Flexible Motion Control for the Mars Explorer Rovers

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Biesiadecki, Jeffrey

    2007-01-01

    The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.

  19. Do common systems control eye movements and motion extrapolation?

    PubMed

    Makin, Alexis D J; Poliakoff, Ellen

    2011-07-01

    People are able to judge the current position of occluded moving objects. This operation is known as motion extrapolation. It has previously been suggested that motion extrapolation is independent of the oculomotor system. Here we revisited this question by measuring eye position while participants completed two types of motion extrapolation task. In one task, a moving visual target travelled rightwards, disappeared, then reappeared further along its trajectory. Participants discriminated correct reappearance times from incorrect (too early or too late) with a two-alternative forced-choice button press. In the second task, the target travelled rightwards behind a visible, rectangular occluder, and participants pressed a button at the time when they judged it should reappear. In both tasks, performance was significantly different under fixation as compared to free eye movement conditions. When eye movements were permitted, eye movements during occlusion were related to participants' judgements. Finally, even when participants were required to fixate, small changes in eye position around fixation (<2°) were influenced by occluded target motion. These results all indicate that overlapping systems control eye movements and judgements on motion extrapolation tasks. This has implications for understanding the mechanism underlying motion extrapolation.

  20. Micro manipulator motion control to counteract macro manipulator structural vibrations

    SciTech Connect

    Lew, J.Y.; Trudnowski, D.J.; Evans, M.S.; Bennett, D.W.

    1995-02-01

    Inertial force damping control by micro manipulator modulation is proposed to suppress the vibrations of a micro/macro manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro manipulator system using micro-manipulator-based inertial active damping control.

  1. Controlling the motion of multiple objects on a Chladni plate

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-09-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.

  2. Controlling the motion of multiple objects on a Chladni plate

    PubMed Central

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-01-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts. PMID:27611347

  3. Large motion tracking control for thrust magnetic bearings with fuzzy logic, sliding mode, and direct linearization

    NASA Astrophysics Data System (ADS)

    Minihan, T. P.; Lei, S.; Sun, G.; Palazzolo, A.; Kascak, A. F.; Calvert, T.

    2003-06-01

    Conventional use of magnetic bearings relies on a zero reference to keep the rotor centered in the radial and axial axes. This paper compares different control methods developed for the alternate control task of tracking an axial dynamic target. Controllers based on fuzzy logic, sliding mode, and direct linearization were designed to meet this task. Performance criteria, such as maximum axial displacement, minimum phase lag and I2R power losses were compared for each controller. The large motion, tracking problem for a rotor has utility in applications where dynamic seal clearances are required. This has a variety of potential applications in turbo-machinery, such as active stall control.

  4. Optimal control of the ballistic motion of Airy beams.

    PubMed

    Hu, Yi; Zhang, Peng; Lou, Cibo; Huang, Simon; Xu, Jingjun; Chen, Zhigang

    2010-07-01

    We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with controllable range and height. We show that the peak beam intensity can be delivered to any desired location along the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or turbulent media.

  5. Controllable motion of optical vortex arrays using electromagnetically induced transparency.

    PubMed

    Shwa, David; Shtranvasser, Evgeny; Shalibo, Yoni; Katz, Nadav

    2012-10-22

    We demonstrate control of the collective motion of an optical vortex array using an electromagnetically induced transparency media. Scanning the frequency detuning between the pump and probe fields changes the susceptibility of the media, producing a unique effective diffraction of the vortex array for each detuning. We measure several experimental configurations and compare them to numerical simulations.

  6. Motion Imagery and Robotics Application (MIRA)

    NASA Technical Reports Server (NTRS)

    Martinez, Lindolfo; Rich, Thomas

    2011-01-01

    Objectives include: I. Prototype a camera service leveraging the CCSDS Integrated protocol stack (MIRA/SM&C/AMS/DTN): a) CCSDS MIRA Service (New). b) Spacecraft Monitor and Control (SM&C). c) Asynchronous Messaging Service (AMS). d) Delay/Disruption Tolerant Networking (DTN). II. Additional MIRA Objectives: a) Demo of Camera Control through ISS using CCSDS protocol stack (Berlin, May 2011). b) Verify that the CCSDS standards stack can provide end-to-end space camera services across ground and space environments. c) Test interoperability of various CCSDS protocol standards. d) Identify overlaps in the design and implementations of the CCSDS protocol standards. e) Identify software incompatibilities in the CCSDS stack interfaces. f) Provide redlines to the SM&C, AMS, and DTN working groups. d) Enable the CCSDS MIRA service for potential use in ISS Kibo camera commanding. e) Assist in long-term evolution of this entire group of CCSDS standards to TRL 6 or greater.

  7. Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment.

    PubMed

    Kim, Ikhwan; Kim, Taehyoun

    2015-06-12

    Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives.

  8. Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment

    PubMed Central

    Kim, Ikhwan; Kim, Taehyoun

    2015-01-01

    Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives. PMID:26076407

  9. Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory

    NASA Astrophysics Data System (ADS)

    Kang, Wang; Huang, Yangqi; Zheng, Chentian; Lv, Weifeng; Lei, Na; Zhang, Youguang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2016-03-01

    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM.

  10. Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory.

    PubMed

    Kang, Wang; Huang, Yangqi; Zheng, Chentian; Lv, Weifeng; Lei, Na; Zhang, Youguang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2016-03-15

    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM.

  11. Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory

    PubMed Central

    Kang, Wang; Huang, Yangqi; Zheng, Chentian; Lv, Weifeng; Lei, Na; Zhang, Youguang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2016-01-01

    Magnetic skyrmion, vortex-like swirling topologically stable spin configurations, is appealing as information carrier for future nanoelectronics, owing to the stability, small size and extremely low driving current density. One of the most promising applications of skyrmion is to build racetrack memory (RM). Compared to domain wall-based RM (DW-RM), skyrmion-based RM (Sky-RM) possesses quite a few benefits in terms of energy, density and speed etc. Until now, the fundamental behaviors, including nucleation/annihilation, motion and detection of skyrmion have been intensively investigated. However, one indispensable function, i.e., pinning/depinning of skyrmion still remains an open question and has to be addressed before applying skyrmion for RM. Furthermore, Current research mainly focuses on physical investigations, whereas the electrical design and evaluation are still lacking. In this work, we aim to promote the development of Sky-RM from fundamental physics to realistic electronics. First, we investigate the pinning/depinning characteristics of skyrmion in a nanotrack with the voltage-controlled magnetic anisotropy (VCMA) effect. Then, we propose a compact model and design framework of Sky-RM for electrical evaluation. This work completes the elementary memory functionality of Sky-RM and fills the technical gap between the physicists and electronic engineers, making a significant step forward for the development of Sky-RM. PMID:26975697

  12. Evaluation of Grasping Motion Using a Virtual Prosthetic Control System

    NASA Astrophysics Data System (ADS)

    Fukuda, Osamu; Bu, Nan; Ueno, Naohiro

    Electromyogram (EMG) signals can be measured from human muscles and can be used to anticipate movements. In fact, many researchers have tried to use these signals as an interface tool for a prosthetic hand. However, most of these studies focused on the discrimination performance of the EMG signals, and only discussed the control method for the prosthetic hand. Evaluation of the operating performance was seldom reported. This paper proposes a virtual prosthetic control system and presents the analyses of a grasp motion under two different EMG control methods: on/off control and proportional control. The proportional control is able to proportionally control the grasping velocity based on the amplitude of the EMG signal. The on/off control controls the hand at a uniform rate while the amplitude of the EMG signal is greater than a predefined threshold. We conducted experiments with five subjects, and confirmed the usefulness of the developed system.

  13. Dynamical and thermodynamical control of open quantum Brownian motion

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    Open quantum Brownian motion was introduced as a new type of quantum Brownian motion for Brownian particles with internal quantum degrees of freedom. Recently, an example of the microscopic derivation of open quantum Brownian motion has been presented [I. Sinayskiy and F. Petruccione, Phys. Scr. T165, 014017 (2015)]. The microscopic derivation allows to relate the dynamical properties of open Quantum Brownian motion and the thermodynamical properties of the environment. In the present work, we study the possibility of control of the external degrees of freedom of the ''walker'' (position) by manipulating the internal one, e.g. spin, polarization, occupation numbers. In the particular example of the known microscopic derivation the connection between dynamics of the ''walker'' and thermodynamical parameters of the system is established. For the system of open Brownian walkers coupled to the same environment controllable creation of quantum correlations is investigated. This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  14. Hummingbirds control hovering flight by stabilizing visual motion

    PubMed Central

    Goller, Benjamin; Altshuler, Douglas L.

    2014-01-01

    Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow—image movement across the retina—is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position. PMID:25489117

  15. Motion Control for Nonholonomic Systems on Matrix Lie Groups

    DTIC Science & Technology

    1998-01-01

    representations of systems on a certain nilpotent matrix group. After studying the technique of nilpotentization in the setting of systems on matrix ...the technique of nilpotentization in the setting of systems on matrix Lie groups we show how motion control laws derived for nilpotent systems can be...of systems on a certain nilpotent matrix group. After studying the technique of nilpotentization in the setting of systems on matrix Lie groups we show

  16. What Is Being Done to Control Motion Sickness?

    NASA Technical Reports Server (NTRS)

    Hall, Y. D.

    1985-01-01

    AFT (Autogenic Feedback Training) involves practicing a series of mental exercises to speed up or slow down the control of autonomic activity. This produces a reduced tendency for autonomic activity levels to diverge from baseline (at rest) under stressful motion-sickness-inducing conditions. Subjects conditions. Subjects engaged in applying AFT exercises are required to closely monitor their own bodily sensations during motion-sickness-eliciting tests. These tests include the Coriolis Sickness Susceptibility Index (CSSI), which consists of sitting a subject into a rotating chair that moves at various speeds while a visual background turns at differing speeds and directions, and the Vertical Acceleration Rotation Device (VARD) test, which involves the placing of a subject in a drum that moves in an upward and downward motion until he or she is sick, while simultaneously monitoring the subject's vital signs. These tests provide investigators with evidence of slight changes in autonomic activities such as increases in heart rate, skin temperature, and sweat. All of these symptoms occur in subjects that experience bodily weakness or discomfort with the onset of motion sickness.

  17. Motion Controlled Gait Enhancing Mobile Shoe for Rehabilitation

    PubMed Central

    Handzic, Ismet; Vasudevan, Erin V.; Reed, Kyle B.

    2011-01-01

    Walking on a split-belt treadmill, which has two belts that can be run at different speeds, has been shown to improve walking patterns post-stroke. However, these improvements are only temporarily retained once individuals transition to walking over ground. We hypothesize that longer-lasting effects would be observed if the training occurred during natural walking over ground, as opposed to on a treadmill. In order to study such long-term effects, we have developed a mobile and portable device which can simulate the same gait altering movements experienced on a split-belt treadmill. The new motion controlled gait enhancing mobile shoe improves upon the previous version’s drawbacks. This version of the GEMS has motion that is continuous, smooth, and regulated with on-board electronics. A vital component of this new design is the Archimedean spiral wheel shape that redirects the wearer’s downward force into a horizontal backward motion. The design is passive and does not utilize any motors. Its motion is regulated only by a small magnetic particle brake. Further experimentation is needed to evaluate the long-term after-effects. PMID:22275620

  18. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution.

  19. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  20. Active Motion Control of Tetrahymena pyriformis by Galvanotaxis and Geotaxis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Byun, Doyoung; Kim, Min Jun

    2013-11-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. These microorganisms naturally accompanied by complex motions. Therefore it is important to understand the flow characteristics as well as control mechanisms. One of eukaryotic cells, the protozoa are a diverse group of unicellular organisms, many of which are motile cilia. Motile cilia are cover on the surface of cell in large numbers and beat in oriented waves. Sequential beating motions of a single cilium form metachronal strokes, producing a propagation wave, and therefore the body is achieved propulsion force. So preliminary studies are achieved to understand the flow induced by swimming microorganisms. Based on hydrodynamic results, the follow study of a few micro-scale protozoa cell, such as the Tetrahymena pyriformis, has provided active or passive control into several external stimuli. In typical control methods, the galvanotaxis and geotaxis were adopted active and passive control, respectively. The validation of galvanotaxis is used DC and AC voltage. In terms of geotaxis, corrugated microstructures were used to control in the microchannel. This research was supported by the Ministry of Education, Science and Technology (MEST, 2011-0016461), National Science Foundation (NSF) CMMI Control Systems Program (#1000255) and Army Research Office (W911NF-11-1-0490).

  1. Dual-arm generalized compliant motion with shared control

    NASA Astrophysics Data System (ADS)

    Backes, Paul G.

    1993-03-01

    A multiple arm generalized compliant motion robot control system governs dual multi-joint robot arms handling an object with both of the arms in accordance with input parameters governing plural respective behaviors to be exhibited by the robot in respective behavior spaces simultaneously. A move-squeeze decomposition processor computes actual move and squeeze decomposition forces based upon current robot force sensor outputs. A compliant motion processor transforms plural object position perturbations of the plural behaviors from the respective behavior spaces to a common space and computes a relative transformation to a behavior-commanded object position in accordance with the object position perturbations of the plural behaviors. A kinematics processor updates a transformation to a current commanded object position based upon the relative transformation to the behavior-commanded object position. A multiple arm squeeze control processor computes from appropriate squeeze force input parameters and from actual squeeze forces for each of the arms, a squeeze control position perturbation for each of the arms, to provide squeeze control. An inverse kinematics processor computes from the commanded object position transformation and from the squeeze control position perturbation, new robot joint angles, and controls respective joints of the robot arms in accordance with the new robot joint angles.

  2. Dual arm generalized compliant motion with shared control

    NASA Astrophysics Data System (ADS)

    Backes, Paul G.

    1993-03-01

    A multiple arm generalized compliant motion robot control system governs dual multi-joint robot arms handling an object with both of the arms in accordance with input parameters governing plural respective behaviors to be exhibited by the robot in respective behavior spaces simultaneously. A move-squeeze decomposition processor computes actual move and squeeze decomposition forces based upon current robot force sensor outputs. A compliant motion processor transforms plural object position perturbations of the plural behaviors from the respective behavior spaces to a common space and computes a relative transformation to a behavior-commanded object position in accordance with the object position perturbations of the plural behaviors. A kinematics processor updates a transformation to a current commanded object position based upon the relative transformation to the behavior-commanded object position. A multiple arm squeeze control processor computes from appropriate squeeze force input parameters and from actual squeeze forces for each of the arms, a squeeze control position perturbation for each of the arms, to provide squeeze control. An inverse kinematics processor computes from the commanded object position transformation and from the squeeze control position perturbation, new robot joint angles, and controls respective joints of the robot arms in accordance with the new robot joint angles.

  3. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  4. Pharmacology in space. Part 2. Controlling motion sickness

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.; Bungo, M. W.

    1989-01-01

    In this second article in the two-part series on pharmacology in space, Claire Lathers and colleagues discuss the pharmacology of drugs used to control motion sickness in space and note that the pharmacology of the 'ideal' agent has yet to be worked out. That motion sickness may impair the pharmacological action of a drug by interfering with its absorption and distribution because of alteration of physiology is a problem unique to pharmacology in space. The authors comment on the problem of designing suitable ground-based studies to evaluate the pharmacological effect of drugs to be used in space and discuss the use of salivary samples collected during space flight to allow pharmacokinetic evaluations necessary for non-invasive clinical drug monitoring.

  5. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a

  6. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of

  7. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  8. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  9. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  10. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    PubMed

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles.

  11. Topography-Dependent Motion Compensation: Application to UAVSAR Data

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Hensley, Scott; Michel, Thierry

    2009-01-01

    The UAVSAR L-band synthetic aperture radar system has been designed for repeat track interferometry in support of Earth science applications that require high-precision measurements of small surface deformations over timescales from hours to years. Conventional motion compensation algorithms, which are based upon assumptions of a narrow beam and flat terrain, yield unacceptably large errors in areas with even moderate topographic relief, i.e., in most areas of interest. This often limits the ability to achieve sub-centimeter surface change detection over significant portions of an acquired scene. To reduce this source of error in the interferometric phase, we have implemented an advanced motion compensation algorithm that corrects for the scene topography and radar beam width. Here we discuss the algorithm used, its implementation in the UAVSAR data processor, and the improvement in interferometric phase and correlation achieved in areas with significant topographic relief.

  12. Integration of commercial video motion detection into USAF flightline applications

    NASA Astrophysics Data System (ADS)

    Reis, John M.; Resca, Philip J.

    1997-02-01

    A short duration evaluation of a variety of commercially available Video Motion Detection products served to demonstrate application in detecting intrusion into protected areas of a military flightline. To be effective on a military flightline requires coverage over wide areas, adaptability to thermal imagery and ease of operator use. Opportunities exist to incorporate panning cameras with video motion detection to expand the awareness of Air Force Security Police. The interest in maximizing the utilization of relatively expensive and highly capable thermal imager cameras makes this a high interest priority. In the evaluation, the available products demonstrated an ability to perform intrusion detection, but flexibility in set-up and operation were seen as areas where improvement will be welcome.

  13. On Motion Planning and Control of Multi-Link Lightweight Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri

    1987-01-01

    A general gross and fine motion planning and control strategy is needed for lightweight robotic manipulator applications such as painting, welding, material handling, surface finishing, and spacecraft servicing. The control problem of lightweight manipulators is to perform fast, accurate, and robust motions despite the payload variations, structural flexibility, and other environmental disturbances. Performance of the rigid manipulator model based computed torque and decoupled joint control methods are determined and simulated for the counterpart flexible manipulators. A counterpart flexible manipulator is defined as a manipulator which has structural flexibility, in addition to having the same inertial, geometric, and actuation properties of a given rigid manipulator. An adaptive model following control (AMFC) algorithm is developed to improve the performance in speed, accuracy, and robustness. It is found that the AMFC improves the speed performance by a factor of two over the conventional non-adaptive control methods for given accuracy requirements while proving to be more robust with respect to payload variations. Yet there are clear limitations on the performance of AMFC alone as well, which are imposed by the arm flexibility. In the search to further improve speed performance while providing a desired accuracy and robustness, a combined control strategy is developed. Furthermore, the problem of switching from one control structure to another during the motion and implementation aspects of combined control are discussed.

  14. LQR Controller for Toroidal Continuously Variable Transmission in Reverse Motion

    NASA Astrophysics Data System (ADS)

    Mensler, Michel; Kawabe, Taketoshi; Joe, Shinichiro

    The system considered in this paper is a Toroidal Continuously Variable Transmission (TCVT) system for cars. This system is unstable in reverse motion as some mechanical parts have been removed from the original one for cost reduction, and the gear ratio has to be regulated around its nominal value for car reverse motion. The control theory used here is the Linear Quadratic Regulator (LQR) associated to a gain-scheduling technique, as the TCVT system is nonlinear according to the car speed. Moreover, as the LQR method requires the entire TCVT state vector and as the only available signal is the gear ratio, a full-order observer is designed. In order to take the other nonlinearities of the system into account, the observer is nonlinear: a diffeomorphism is then used for converting the variables provided by the nonlinear observer into the needed variables. In order to verify the effectiveness and the robustness of the controller against the car speed and the torque shift disturbance phenomenon, several experiments with a test-bed and with an actual vehicle have been performed and showed the efficiency of the proposed controller.

  15. Research on Hybrid Seismic Response Control System for Motion Control of Two Span Bridge

    NASA Astrophysics Data System (ADS)

    Heo, G.; Kim, C.; Jeon, S.; Seo, S.; Jeon, J.

    2016-09-01

    In this paper, a hybrid seismic response control (HSRC) system was developed to control bridge motion caused by seismic load. It was aimed at optimum vibration control, composed of a rubber bearing of passive type and a MR-damper of semi-active type. The bridge model was built for experiment, a two-span bridge of 8.3 meters in length with the HSRC system put up on it. Then, inflicting El-centro seismic load on it, shaking table tests were carried out to confirm the system's validity. The experiments were conducted under the basic structure state (without an MR-damper applied) first, and then under the state with an MR-damper applied. It was also done under the basic structure state with a reinforced rubber bearing applied, then the passive on/off state of the HSRC system, and finally the semi-active state where the control algorithm was applied to the system. From the experiments, it was observed that collision rather increased when the MR-damper alone was applied, and also that the application of the HSRC system effectively prevented it from occurring. As a result, the HSRC system was proven to be effective in mitigating responses of the two-span bridge under seismic load.

  16. Conditions of the Maximum Principle in the Problem of Optimal Control over an Aggregate of Dynamic Systems and Their Application to Solution of the Problems of Optimal Control of Spacecraft Motion

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. S.; Grigoriev, K. G.

    2003-05-01

    The necessary first-order conditions of strong local optimality (conditions of maximum principle) are considered for the problems of optimal control over a set of dynamic systems. To derive them a method is suggested based on the Lagrange principle of removing constraints in the problems on a conditional extremum in a functional space. An algorithm of conversion from the problem of optimal control of an aggregate of dynamic systems to a multipoint boundary value problem is suggested for a set of systems of ordinary differential equations with the complete set of conditions necessary for its solution. An example of application of the methods and algorithm proposed is considered: the solution of the problem of constructing the trajectories of a spacecraft flight at a constant altitude above a preset area (or above a preset point) of a planet's surface in a vacuum (for a planet with atmosphere beyond the atmosphere). The spacecraft is launched from a certain circular orbit of a planet's satellite. This orbit is to be determined (optimized). Then the satellite is injected to the desired trajectory segment (or desired point) of a flyby above the planet's surface at a specified altitude. After the flyby the satellite is returned to the initial circular orbit. A method is proposed of correct accounting for constraints imposed on overload (mixed restrictions of inequality type) and on the distance from the planet center: extended (nonpointlike) intermediate (phase) restrictions of the equality type.

  17. Adaptive Force Control For Compliant Motion Of A Robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Two adaptive control schemes offer robust solutions to problem of stable control of forces of contact between robotic manipulator and objects in its environment. They are called "adaptive admittance control" and "adaptive compliance control." Both schemes involve use of force-and torque sensors that indicate contact forces. These schemes performed well when tested in computational simulations in which they were used to control seven-degree-of-freedom robot arm in executing contact tasks. Choice between admittance or compliance control is dictated by requirements of the application at hand.

  18. Motion control solution for new PLC-based standard development platform for VLT instrument control systems

    NASA Astrophysics Data System (ADS)

    Popovic, D.; Brast, R.; Di Lieto, N.; Kiekebusch, M.; Knudstrup, J.; Lucuix, C.

    2014-07-01

    More than a decade ago, due to obsolescence issues, ESO initiated the design and implementation of a custom-made CANbus based motion controller (CAN-RMC) to provide, together with a tailor-made software library (motor library), the motion control capabilities for the VME platform needed for the second generation VLT/VLTI instruments. The CAN-RMC controller has been successfully used in a number of VLT instruments but it has high production costs compared to the commercial off-the-shelf (COTS) industrial solutions available on the market today. In the scope of the selection of a new PLC-based platform for the VLT instrument control systems, ESO has evaluated motion control solutions from the company Beckhoff. This paper presents the investigation, implementation and testing of the PLC/TwinCAT/EtherCAT motion controllers for DC and stepper motors and their adaptation and integration into the VLT instrumentation framework. It reports functional and performance test results for the most typical use cases of astronomical instruments like initialization sequences, tracking, switch position detections, backslash compensation, brake handling, etc. In addition, it gives an overview of the main features of TwinCAT NC/PTP, PLCopen MC, EtherCAT motion control terminals and the engineering tools like TwinCAT Scope that are integrated into the development environment and simplify software development, testing and commissioning of motorized instrument functions.

  19. Active motion and load control of floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jalili, Kaveh

    The research in this thesis is focused on stabilization and load reduction of floating offshore wind turbine (FOWT) structures for both the fore-aft (pitch) and side-to-side (roll) directions. Based on the Tuned Mass Damper (TMD) and Active Vane concepts recently proposed, two composite actuation schemes are investigated. The first scheme is to apply the horizontal vane and vertical vane to platform pitch and roll, respectively, resulting in the so-called Double Vane Actuation (DVA) scheme. The second scheme is the combination of the TMD based pitch control and active vertical vane based roll control, resulting in the so-called Hybrid Actuation (HA) scheme. Simulation results of DVA show great reductions of motions and loads in the fore-aft and side-to-side directions. Performance of HA is investigated by extensive simulations based on the IEC61400-3 standard and results show significant and consistent motions and loads reductions in both FA and SS directions.

  20. The DESDEMONA Motion Facility: Applications for Space Research

    NASA Astrophysics Data System (ADS)

    Bles, Willem; Groen, Eric

    2009-11-01

    The research facility DESDEMONA features a unique motion platform, combining a fully gimbaled cabin with the capability of producing sustained g-loads. Originally designed for ground-based simulation as well as training of spatial disorientation in aviation, the motion capabilities are also interesting for other areas. In this paper we will provide examples of space-related research questions that can be addressed on DESDEMONA. Some questions are concerned with centrifugation as a means to create artificial gravity. For instance, with its variable radius and gimbaled cabin, DESDEMONA allows for studying possible trade-offs between g-load and angular velocity. Other questions relate to the effects of g-level transitions on the astronauts' well-being and performance. During the last two decades, research at TNO has shown that after prolonged exposure to centrifugation at 3 g astronauts experience the same vestibular adaptation symptoms as observed in real space flight. In DESDEMONA, the hyper-gravity stimulus can be applied and the consequences for control of simulated spacecraft can be examined in the same device. Furthermore, DESDEMONA also provides a `clinical' tool for vestibular examination of astronauts, and for the provocation and desensitization of motion sickness in unusual G-environments.

  1. [Bionic model for coordinated head-eye motion control].

    PubMed

    Mao, Xiaobo; Chen, Tiejun

    2011-10-01

    The relationships between eye movements and head movements of the primate during gaze shifts are analyzed in detail in the present paper. Applying the mechanisms of neurophysiology to engineering domain, we have improved the robot eye-head coordination. A bionic control strategy of coordinated head-eye motion was proposed. The processes of gaze shifts are composed of an initial fast phase followed by a slow phase. In the fast phase saccade eye movements and slow head movements were combined, which cooperate to bring gaze from an initial resting position toward the new target rapidly, while in the slow phase the gaze stability and target fixation were ensured by the action of the vestibulo-ocular reflex (VOR) where the eyes and head rotate by equal amplitudes in opposite directions. A bionic gaze control model was given. The simulation results confirmed the effectiveness of the model by comparing with the results of neurophysiology experiments.

  2. Manipulating motions of elastomer films by electrostatically-controlled aperiodicity

    NASA Astrophysics Data System (ADS)

    Shmuel, Gal; Pernas-Salomón, René

    2016-12-01

    We investigate the effect electrostatically-controlled aperiodicity has on the propagation of flexural waves in two-component elastomeric films. We first determine the static response of the film to a combination of an axial force and voltage over selected segments. Thus, in response to the accumulated charge, the elastomer confined geometrical and physical changes introduce aperiodicity in the film. We then develop the equation governing superposed flexural motions, accounting for the elastomer stiffening and static finite deformation. We adapt a stable matrix method based on this equation to compute the transmission characteristics of the film. Through numerical examples, we show that these characteristics significantly depend on which segments are actuated, i.e., on the resultant aperiodicity. These findings promise a new strategy to control elastic waves.

  3. Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach

    PubMed Central

    Kumar De, Arijit; Goswami, Debabrata

    2013-01-01

    This account reviews some recent studies pursued in our group on several control experiments with important applications in (one-photon) confocal and two-photon fluorescence laser-scanning microscopy and optical trapping with laser tweezers. We explore the simultaneous control of internal and external (i.e. centre-of-mass motion) degrees of freedom, which require the coupling of various control parameters to result in the spatiotemporal control. Of particular interest to us is the implementation of such control schemes in living systems. A live cell is a system of a large number of different molecules which combine and interact to generate complex structures and functions. These combinations and interactions of molecules need to be choreographed perfectly in time and space to achieve intended intra-cellular functions. Spatiotemporal control promises to be a versatile tool for dynamical control of spatially manipulated bio-molecules. PMID:23814326

  4. Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach.

    PubMed

    Kumar De, Arijit; Goswami, Debabrata

    2011-09-26

    This account reviews some recent studies pursued in our group on several control experiments with important applications in (one-photon) confocal and two-photon fluorescence laser-scanning microscopy and optical trapping with laser tweezers. We explore the simultaneous control of internal and external (i.e. centre-of-mass motion) degrees of freedom, which require the coupling of various control parameters to result in the spatiotemporal control. Of particular interest to us is the implementation of such control schemes in living systems. A live cell is a system of a large number of different molecules which combine and interact to generate complex structures and functions. These combinations and interactions of molecules need to be choreographed perfectly in time and space to achieve intended intra-cellular functions. Spatiotemporal control promises to be a versatile tool for dynamical control of spatially manipulated bio-molecules.

  5. Monolithic sensors for low frequency motion measurement and control of spacecrafts and satellites

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-10-01

    In this paper we describe the characteristics and performances of a monolithic sensor designed for low frequency motion measurement and control of spacecrafts and satellites, whose mechanics is based on the UNISA Folded Pendulum. The latter, developed for ground-based applications, exhibits unique features (compactness, lightness, scalability, low resonance frequency and high quality factor), consequence of the action of the gravitational force on its inertial mass. In this paper we introduce and discuss the general methodology used to extend the application of ground-based folded pendulums to space, also in total absence of gravity, still keeping all their peculiar features and characteristics.

  6. Relative roughness controls on incipient sediment motion in steep channels

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Fuller, B. M.

    2012-12-01

    For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These

  7. Effect of Kinesio Tape Application on Calf Pain and Ankle Range of Motion in Duathletes

    PubMed Central

    Merino-Marban, Rafael; Mayorga-Vega, Daniel; Fernandez-Rodriguez, Emilio

    The purpose of this study was to examine the effect of the kinesio tape immediately after its application and after a duathlon competition on calf pain and the ankle range of motion in duathletes. A sample of 28 duathletes (age 29.11 ± 10.35 years; body height 172.57 ± 6.17 cm; body mass 66.63 ± 9.01 kg; body mass index 22.29 ± 2.00 kg/m 2 ) were recruited from the competitors in a duathlon sprint. The Numerical Pain Rating Scale and ankle dorsiflexion range of motion measures were obtained at baseline, immediately after taping and 10 to 15 minutes after ending the duathlon competition. The kinesio tape was applied on the calf of duathletes 20 to 90 minutes before the competition, only on one of their legs (experimental leg) with the other leg acting as a control (control leg) in a randomized order. According to the between-group comparison, no differences were found immediately after the application of the kinesio tape and after the competition in the ankle range of motion and calf pain. However, a significant difference from baseline to immediately after taping was found in the ankle range of motion in the experimental leg. Applying the kinesio tape on the calf seems to immediately increase ankle dorsiflexion range of motion, but not after a duathlon competition. Applying the kinesio tape on the calf does not reduce muscle pain immediately or after a duathlon competition, but it appears to control an increase in pain. PMID:24146713

  8. Effect of kinesio tape application on calf pain and ankle range of motion in duathletes.

    PubMed

    Merino-Marban, Rafael; Mayorga-Vega, Daniel; Fernandez-Rodriguez, Emilio

    2013-01-01

    The purpose of this study was to examine the effect of the kinesio tape immediately after its application and after a duathlon competition on calf pain and the ankle range of motion in duathletes. A sample of 28 duathletes (age 29.11 ± 10.35 years; body height 172.57 ± 6.17 cm; body mass 66.63 ± 9.01 kg; body mass index 22.29 ± 2.00 kg/m(2)) were recruited from the competitors in a duathlon sprint. The Numerical Pain Rating Scale and ankle dorsiflexion range of motion measures were obtained at baseline, immediately after taping and 10 to 15 minutes after ending the duathlon competition. The kinesio tape was applied on the calf of duathletes 20 to 90 minutes before the competition, only on one of their legs (experimental leg) with the other leg acting as a control (control leg) in a randomized order. According to the between-group comparison, no differences were found immediately after the application of the kinesio tape and after the competition in the ankle range of motion and calf pain. However, a significant difference from baseline to immediately after taping was found in the ankle range of motion in the experimental leg. Applying the kinesio tape on the calf seems to immediately increase ankle dorsiflexion range of motion, but not after a duathlon competition. Applying the kinesio tape on the calf does not reduce muscle pain immediately or after a duathlon competition, but it appears to control an increase in pain.

  9. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  10. Attitude motion of a non-attitude-controlled cylindrical satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. K.

    1988-01-01

    In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.

  11. A comparison of drive mechanisms for precision motion controlled stages

    SciTech Connect

    Buice, E S; Yang, H; Otten, D; Smith, S T; Hocken, R J; Trumper, D L; Seugling, R M

    2006-03-22

    This abstract presents a comparison of two drive mechanisms, a Rohlix{reg_sign} drive and a polymer nut drive, for precision motion controlled stages. A single-axis long-range stage with a 50 mm traverse combined with a short-range stage with a 16 {micro}m traverse at a operational bandwidth of 2.2 kHz were developed to evaluate the performance of the drives. The polymer nut and Rohlix{reg_sign} drives showed 4 nm RMS and 7 nm RMS positioning capabilities respectively, with traverses of 5 mm at a maximum velocity of 0.15 mm{sup -}s{sup -1} with the short range stage operating at a 2.2 kHz bandwidth. Further results will be presented in the subsequent sections.

  12. 14 CFR 27.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rotorcraft. (b) Twist-grip engine power controls must be designed so that, for lefthand operation, the motion... the index finger. Other engine power controls, excluding the collective control, must operate with a forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  13. 14 CFR 29.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rotorcraft. (b) Twist-grip engine power controls must be designed so that, for lefthand operation, the motion... the index finger. Other engine power controls, excluding the collective control, must operate with a forward motion to increase power. (c) Normal landing gear controls must operate downward to extend...

  14. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  15. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    NASA Astrophysics Data System (ADS)

    Scasserra, Giuseppe; Lanzo, Giuseppe; Stewart, Jonathan P.; D'Elia, Beniamino

    2008-07-01

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, Vs30, etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.).

  16. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    SciTech Connect

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-07-08

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V{sub s30}, etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  17. Passive Motion Paradigm: An Alternative to Optimal Control

    PubMed Central

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of

  18. Space motion sickness: The sensory motor controls and cardiovascular correlation

    NASA Astrophysics Data System (ADS)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  19. An intelligent control scheme for precise tip-motion control in atomic force microscopy.

    PubMed

    Wang, Yanyan; Hu, Xiaodong; Xu, Linyan

    2016-01-01

    The paper proposes a new intelligent control method to precisely control the tip motion of the atomic force microscopy (AFM). The tip moves up and down at a high rate along the z direction during scanning, requiring the utilization of a rapid feedback controller. The standard proportional-integral (PI) feedback controller is commonly used in commercial AFMs to enable topography measurements. The controller's response performance is determined by the set of the proportional (P) parameter and the integral (I) parameter. However, the two parameters cannot be automatically altered simultaneously according to the scanning speed and the surface topography during continuors scanning, leading to an inaccurate measurement. Thus a new intelligent controller combining the fuzzy controller and the PI controller is put forward in the paper. The new controller automatically selects the most appropriate PI parameters to achieve a fast response rate on basis of the tracking errors. In the experimental setup, the new controller is realized with a digital signal process (DSP) system, implemented in a conventional AFM system. Experiments are carried out by comparing the new method with the standard PI controller. The results demonstrate that the new method is more robust and effective for the precise tip motion control, corresponding to the achievement of a highly qualified image by shortening the response time of the controller.

  20. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control.

    PubMed

    Leib, Raz; Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-10-12

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior.

  1. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  2. Analysis of achievable disturbance attenuation in a precision magnetically-suspended motion control system

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.

    1994-01-01

    The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.

  3. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  4. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  5. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  6. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  7. Switched control of vehicle suspension based on motion-mode detection

    NASA Astrophysics Data System (ADS)

    Du, Haiping; Zhang, Nong; Wang, Lifu

    2014-01-01

    This paper presents a study on switched control of vehicle suspension based on motion-mode detection. This control strategy can be potentially implemented via the interconnected suspension such as hydraulically interconnected suspension by actively switching its interconnection configuration in terms of the dominant vehicle body motion-mode. The design of the switched control law is developed focusing on three vehicle body motion-modes: bounce, pitch, and roll. At first, an H∞ optimal controller will be designed for each motion-mode with the use of a common quadratic Lyapunov function, which guarantees the stability of the switched system under arbitrary switching functions. Then, a motion-mode detection method based on the calculation of the motion-mode energy is introduced. And then, the possible implementation of the control system in practice is discussed. Finally, numerical simulations are used to validate the proposed study.

  8. Application of nonlinear adaptive motion washout to transport ground-handling simulation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Martin, D. J., Jr.

    1983-01-01

    The application of a nonlinear coordinated adaptive motion washout to the transport ground-handling environment is documented. Additions to both the aircraft math model and the motion washout system are discussed. The additions to the simulated-aircraft math model provided improved modeling fidelity for braking and reverse-thrust application, and the additions to the motion-base washout system allowed transition from the desired flight parameters to the less restrictive ground parameters of the washout.

  9. The Application of Leap Motion in Astronaut Virtual Training

    NASA Astrophysics Data System (ADS)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  10. 75 FR 34725 - Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ..., Motions To Intervene, and Competing Applications; Mahoning Hydropower, LLC June 10, 2010. On May 25, 2010, Mahoning Hydropower, LLC filed an application, pursuant to section 4(f) of the Federal Power Act,...

  11. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  12. Projection of controlled repeatable real-time moving targets to test and evaluate motion imagery quality

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen D.; Mendez, Michael; Trent, Randall

    2015-05-01

    The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.

  13. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  14. Applications of structure-from-motion photogrammetry to fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    Dietrich, James Thomas

    Since 2011, Structure-from-Motion Multi-View Stereo Photogrammetry (SfM or SfM-MVS) has gone from an overlooked computer vision technique to an emerging methodology for collecting low-cost, high spatial resolution three-dimensional data for topographic or surface modeling in many academic fields. This dissertation examines the applications of SfM to the field of fluvial geomorphology. My research objectives for this dissertation were to determine the error and uncertainty that are inherent in SfM datasets, the use of SfM to map and monitor geomorphic change in a small river restoration project, and the use of SfM to map and extract data to examine multi-scale geomorphic patterns for 32 kilometers of the Middle Fork John Day River. SfM provides extremely consistent results, although there are systematic errors that result from certain survey patterns that need to be accounted for in future applications. Monitoring change on small restoration stream channels with SfM gave a more complete spatial perspective than traditional cross sections on small-scale geomorphic change. Helicopter-based SfM was an excellent platform for low-cost, large scale fluvial remote sensing, and the data extracted from the imagery provided multi-scalar perspectives of downstream patterns of channel morphology. This dissertation makes many recommendations for better and more efficient SfM surveys at all of the spatial scales surveyed. By implementing the improvements laid out here and by other authors, SfM will be a powerful tool that will make 3D data collection more accessible to the wider geomorphic community.

  15. An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control

    ERIC Educational Resources Information Center

    Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.

    2012-01-01

    Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…

  16. Center of gravity motions and ankle joint stiffness control in upright undisturbed stance modeled through a fractional Brownian motion framework.

    PubMed

    Rougier, P; Caron, O

    2000-12-01

    The authors modeled the center of gravity vertical projection (CG(v)) and the difference, CP - CG(v), which, combined, constitute the center of pressure (CP) trajectory, as fractional Brownian motion in order to investigate their relative contributions and their spatiotemporal articulation. The results demonstrated that CG(v) and CP - CG(v) motions are both endowed in complementary fashion with strong stochastic and part-deterministic behaviors. In addition, if the temporal coordinates remain similar for all 3 trajectories by definition, the switch between the successive control mechanisms appears for shorter displacements for CP - CG(v) and CG(v) than for CP trajectories. Results deduced from both input (CG(v)) and muscular stiffness (CP - CG(v)) thus provide insight into the way the central nervous system regulates stance control and in particular how CG and CP - CG are controlled.

  17. An application of site response functions to ground motion prediction

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Archuleta, R.; Steidl, J.; Koketsu, K.

    2006-12-01

    The prediction of ground motion from large future earthquakes is very important for hazard mitigation in urban areas of Japan. Because the observed ground motions are affected by three factors; the seismic source, attenuation (quality factor) of seismic wave propagation inside the earth, and the effects of the local surface geology, understanding each factor is essential for the ground motion prediction. The effect of surface geology (local soil conditions) on ground motions was documented as early as the 1906 San Francisco earthquake. The correlation between soil type and the degree of damage was again recognized in the 1923 Kanto earthquake. Additionally, accelerometer records from almost all recent large events also have reinforced the role of site effects in the level of strong shaking. Because most cities in Japan are located on thick sedimentary basins, accounting for site response is essential for realistic predictions of ground motion. However, predicting ground motion has uncertainties that arise from all three factors: source, path, and site. The analysis of well-recorded data from dense seismograph arrays can reduce these uncertainties for ground motion prediction. The new technique presented here provides a site response correlation function for estimation of the spatial distribution of site response. This function is based on the known site responses at instrumented sites and is used to estimate the site response at a site for which there is no instrumental records. We initially predict the level of ground motion by using this estimate with the assumption of linear wave propagation. This method is applied to the data from a relatively dense seismic array located near the city of Sendai, Japan by using moderate sized earthquakes with small ground motion levels to estimate linear site response. The array consists of 29 stations: 20 managed by Tohoku Institute of Technology, 6 by Building Research Institute, and 3 by NIED within an area of 20 x 30 km

  18. Multi-robot motion control for cooperative observation

    SciTech Connect

    Parker, L.E.

    1997-06-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the authors investigate the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. They focus primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The authors then present a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. They analyze the effectiveness of the approach by comparing it to 3 other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  19. Cooperative motion control for multi-target observation

    SciTech Connect

    Parker, L.E.

    1997-08-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The focus is primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The author then presents a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. The effectiveness of the approach is analyzed by comparing it to three other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  20. Photonic equation of motion with application to the Lamb shift

    SciTech Connect

    Ritchie, A B

    2006-12-21

    A photonic equation of motion is proposed which is the scalar product of four-vectors and therefore a Lorentz invariant. A photonic equation of motion, which has not been heretofore established in quantum electrodynamics (QED), would capture the quantum nature of light but yet not have the standard field-operator form, thereby making practical calculations easier to perform. The equation of motion proposed here is applied to the Lamb shift. No divergences exist, and the result agrees with the observed Lamb shift for the 1S{sub 1/2} state of hydrogen within experimental error.

  1. Stirling engine power control and motion conversion mechanism

    DOEpatents

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  2. Control-structure interaction/mirror motion compensation

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark; Chu, Peter; Price, Xen

    1992-01-01

    Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.

  3. Controlling the motion and placement of micrometer-sized metal particles using patterned polymer brush surfaces.

    PubMed

    Dunderdale, Gary J; Howse, Jonathan R; Fairclough, J Patrick A

    2011-10-04

    In this paper, we show that silicon surfaces patterned with poly(methacrylic acid) brushes are able to control the Brownian motion of 2-3 μm iron particles, which sediment onto the surface in aqueous solution and experience differences in repulsive force depending upon their position. Differences in repulsion lead to different gravitational potential energies across the surface, which gives bias to the Brownian motion taking place. Three regimes have been identified depending upon the brush height: (i) no control of Brownian motion when the brush height is small, (ii) Brownian motion that is influenced by the polymer brush when the brush 17 height is intermediate, (iii) Brownian motion that is confined by polymer brush barriers when the brush height is greatest. The height of brush found necessary to significantly influence iron particle motion was small at 39 nm or 2% of the particle diameter.

  4. Application of Structure-from-Motion photogrammetry in laboratory flumes

    NASA Astrophysics Data System (ADS)

    Morgan, Jacob A.; Brogan, Daniel J.; Nelson, Peter A.

    2017-01-01

    Structure-from-Motion (SfM) photogrammetry has become widely used for topographic data collection in field and laboratory studies. However, the relative performance of SfM against other methods of topographic measurement in a laboratory flume environment has not been systematically evaluated, and there is a general lack of guidelines for SfM application in flume settings. As the use of SfM in laboratory flume settings becomes more widespread, it is increasingly critical to develop an understanding of how to acquire and process SfM data for a given flume size and sediment characteristics. In this study, we: (1) compare the resolution and accuracy of SfM topographic measurements to terrestrial laser scanning (TLS) measurements in laboratory flumes of varying physical dimensions containing sediments of varying grain sizes; (2) explore the effects of different image acquisition protocols and data processing methods on the resolution and accuracy of topographic data derived from SfM techniques; and (3) provide general guidance for image acquisition and processing for SfM applications in laboratory flumes. To investigate the effects of flume size, sediment size, and photo overlap on the density and accuracy of SfM data, we collected topographic data using both TLS and SfM in five flumes with widths ranging from 0.22 to 6.71 m, lengths ranging from 9.14 to 30.48 m, and median sediment sizes ranging from 0.2 to 31 mm. Acquisition time, image overlap, point density, elevation data, and computed roughness parameters were compared to evaluate the performance of SfM against TLS. We also collected images of a pan of gravel where we varied the distance and angle between the camera and sediment in order to explore how photo acquisition affects the ability to capture grain-scale microtopographic features in SfM-derived point clouds. A variety of image combinations and SfM software package settings were also investigated to determine optimal processing techniques. Results from this

  5. Auricular Acupressure for Managing Postoperative Pain and Knee Motion in Patients with Total Knee Replacement: A Randomized Sham Control Study

    PubMed Central

    Chang, Ling-hua; Hsu, Chung-Hua; Jong, Gwo-Ping; Ho, Shungtai; Tsay, Shiow-luan; Lin, Kuan-Chia

    2012-01-01

    Background. Postoperative pain management remains a significant challenge for all healthcare providers. A randomized controlled trial was conducted to examine the adjuvant effects of auricular acupressure on relieving postoperative pain and improving the passive range of motion in patients with total knee replacement (TKR). Method. Sixty-two patients who had undergone a TKR were randomly assigned to the acupressure group and the sham control group. The intervention was delivered three times a day for 3 days. A visual analog scale (VAS) and the Short-Form McGill Pain Questionnaire were used to assess pain intensity. Pain medication consumption was recorded, and the knee motion was measured using a goniometer. Results. The patients experienced a moderately severe level of pain postoperatively (VAS 58.66 ± 20.35) while being on the routine PCA. No differences were found in pain scores between the groups at all points. However, analgesic drug usage in the acupressure group patients was significantly lower than in the sham control group (P < 0.05), controlling for BMI, age, and pain score. On the 3rd day after surgery, the passive knee motion in the acupressure group patients was significantly better than in the sham control group patients (P < 0.05), controlling for BMI. Conclusion. The application of auricular acupressure at specific therapeutic points significantly reduces the opioid analgesia requirement and improves the knee motion in patients with TKR. PMID:22844334

  6. Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions

    DTIC Science & Technology

    2014-10-09

    motion, Warsaw, Poland: Banach Center Publications, (12 2014) TOTAL: 2 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Discipline Cody Clifton 0.25...Discipline Collin Eubanks 0.25 Mathematics 0.25 1 NAME Total Number: Cody Clifton Theodore Lindsey 2 NAME Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent

  7. A visual motion detecting module for dragonfly-controlled robots.

    PubMed

    Pham, Thuy T; Higgins, Charles M

    2014-01-01

    When imitating biological sensors, we have not completely understood the early processing of the input to reproduce artificially. Building hybrid systems with both artificial and real biological components is a promising solution. For example, when a dragonfly is used as a living sensor, the early processing of visual information is performed fully in the brain of the dragonfly. The only significant remaining tasks are recording and processing neural signals in software and/or hardware. Based on existing works which focused on recording neural signals, this paper proposes a software application of neural information processing to design a visual processing module for dragonfly hybrid bio-robots. After a neural signal is recorded in real-time, the action potentials can be detected and matched with predefined templates to detect when and which descending neurons fire. The output of the proposed system will be used to control other parts of the robot platform.

  8. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  9. Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control

    PubMed Central

    Mawase, Firas; Karniel, Amir; Donchin, Opher; Rothwell, John; Nisky, Ilana; Davare, Marco

    2016-01-01

    How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments. PMID:27733607

  10. Analytic Theory and Control of the Motion of Spinning Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Tsiotras, Panagiotis

    1993-01-01

    -fixed torques. Assessment of the analytic solutions reveals that they are very accurate; for symmetric bodies the solutions of Euler's equations of motion are, in fact, exact. Second, the results of this research have a fundamental impact on practical scientific and mechanical applications in terms of the analysis and control of all finite-sized rigid bodies ranging from nanomachines to very large bodies, both man made and natural. After all, Euler's equations of motion apply to all physical bodies, barring only the extreme limits of quantum mechanics and relativity.

  11. Adaptive motion artifact reducing algorithm for wrist photoplethysmography application

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Wang, Guijin; Shi, Chenbo

    2016-04-01

    Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.

  12. 76 FR 24467 - Fire Mountain Lodge; Notice of Application Accepted for Filing, Soliciting Motions To Intervene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Motions To Intervene and Protests, Ready for Environmental Analysis, and Soliciting Comments.... Deadline for filing motions to intervene and protests, comments, recommendations, terms and conditions, and..., a self-provider of electricity. m. A copy of the application is available for review at...

  13. Clinical applications of a quantitative analysis of regional lift ventricular wall motion

    NASA Technical Reports Server (NTRS)

    Leighton, R. F.; Rich, J. M.; Pollack, M. E.; Altieri, P. I.

    1975-01-01

    Observations were summarized which may have clinical application. These were obtained from a quantitative analysis of wall motion that was used to detect both hypokinesis and tardokinesis in left ventricular cineangiograms. The method was based on statistical comparisons with normal values for regional wall motion derived from the cineangiograms of patients who were found not to have heart disease.

  14. Novel Expressions of Equations of Relative Motion and Control in Keplerian Orbits

    DTIC Science & Technology

    2009-04-01

    spacecraft , and thus prediction and control of relative motion is significantly sensitive to relative orbit modeling errors [9...proposed a continuous feedback controller for rendezvous navigation in elliptical orbit . In this work, the full equations of relative motion (see [9... Rendezvous in Elliptical Orbits ,” Acta Astronautica, Vol. 41, No. 2, July 1997, pp. 95–101. doi:10.1016/S0094-5765(97)00204-X [19] Yu, S., “ Control

  15. Enhanced Modeling of First-Order Plant Equations of Motion for Aeroelastic and Aeroservoelastic Applications

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2010-01-01

    A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.

  16. Handbook on astronaut crew motion disturbances for control system design. [in skylab

    NASA Technical Reports Server (NTRS)

    Kullas, M. C.

    1979-01-01

    The analyses and results pertinent to the characterization of the disturbances imparted to the Skylab vehicle by the T-013 crew motion experiments are summarized. Guidelines to help control system designers assess anticipated crew motion disturbances during the design cycle of a new manned spacecraft control system are provided. These guidelines, in conjunction with the T-013 characterizations outlined, begin with the control system conceptual design and conclude with preliminary expectations for pointing performance as affected by crew motions. Block diagrams to highlight the contents so that the reader can easily identify the information and data flow are used. These diagrams provide a handy cross reference of related topics.

  17. Quantifying and controlling collective motion in externally guided cells

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Guven, Can; Wang, Chenlu; Ott, Edward; Losert, Wolfgang

    2015-03-01

    Many motile cells use chemical signals to coordinate their motion to aid in performing a larger task, be it healing a wound or aggregating to form a spore. This coordination can vary from subtle variations in overall alignment to broad, visibly structured patterns. Of particular interest of study are two organisms We introduce a model for motion towards a chemical signal and study these spatio-temporal correlations in the context of autocrine relay, such as seen in Dictyostelium discoideum, where we demonstrate that adhesion and chemical degradation both enhance visible ``streaming'' structures. We also study a model of paracrine signal relay relevant to human neutrophil migration and demonstrate how temporally varying chemical signals can be used to coordinate cell migration. We discuss both of these results in the context of their relevance to the survival of the organism and highlight future experimental tests.

  18. Pebble-bed pebble motion: Simulation and Applications

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine

  19. Quantitative analysis of motion control in long term microgravity.

    PubMed

    Baroni, G; Ferrigno, G; Anolli, A; Andreoni, G; Pedotti, A

    1998-01-01

    In the frame of the 179-days EUROMIR '95 space mission, two in-flight experiments have foreseen quantitative three-dimensional human movement analysis in microgravity. For this aim, a space qualified opto-electronic motion analyser based on passive markers has been installed onboard the Russian Space Station MIR and 8 in flight sessions have been performed. Techhology and method for the collection of kinematics data are described, evaluating the accuracy in three-dimensional marker localisation. Results confirm the suitability of opto-electronic technology for quantitative human motion analysis on orbital modules and raise a set of "lessons learned", leading to the improvement of motion analyser performance with a contemporary swiftness of the on-board operations. Among the experimental program of T4, results of three voluntary posture perturbation protocols are described. The analysis suggests that a short term reinterpretation of proprioceptive information and re-calibration of sensorimotor mechanisms seem to end within the first weeks of flight, while a continuous long term adaptation process allows the refinement of motor performance, in the frame of never abandoned terrestrial strategies.

  20. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  1. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  2. A Geometric Approach to Decouple Robotino Motions and its Functional Controllability

    NASA Astrophysics Data System (ADS)

    Straßberger, Daniel; Mercorelli, Paolo; Sergiyenko, Oleg

    2015-11-01

    This paper analyses a functional control of the Robotino. The proposed control strategy considers a functional decoupling control strategy realized using a geometric approach and the invertibility property of the DC-drives with which the Robotino is equipped. For a given control structure the functional controllability is proven for motion trajectories of class C3, continuous functions with third derivative also being continuous. Horizontal, Vertical and Angular motions are considered and the decoupling between these motions is obtained. Control simulation results using real data of the Robotino are shown. The used control which enables to produce the presented results is a standard Linear Model Predictive Control (LMPC), even though for sake of brevity the standard algorithm is not shown.

  3. 77 FR 107 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... Comments, Motions To Intervene, and Competing Applications; Earth By Design, Inc. On October 13, 2011, and supplemented on October 30, 2011, Earth By Design, Inc. filed an application for a preliminary permit, pursuant... generation of the project would be 7.2 gigawatt-hours. Applicant Contact: Mr. Jim Gordon, President, Earth...

  4. 77 FR 101 - Rumford Falls Hydro, LLC; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ..., 1024 Central Street, Millinocket, ME 04462, (207) 723-4341. i. FERC Contact: Mr. Jeremy Jessup, (202) 502-6779, Jeremy.Jessup@ferc.gov . j. Deadline for filing comments, motions to intervene, and protests... boundary because the applicant owned it. l. Locations of the Application: A copy of the application...

  5. Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups

    DTIC Science & Technology

    1995-09-01

    Prescribed by ANSI Std Z39-18 Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups Naomi Ehrich Leonardy Department of Mechanical ...SI R INSTITUTE FOR SYSTEMS RESEARCH Sponsored by the National Science Foundation Engineering Research Center Program, the University of Maryland...Harvard University, and Industry TECHNICAL RESEARCH REPORT Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups by N.E. Leonard, P.S

  6. Coordinating robot motion, sensing, and control in plans. LDRD project final report

    SciTech Connect

    Xavier, P.G.; Brown, R.G.; Watterberg, P.A.

    1997-08-01

    The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The project considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.

  7. Fractional Brownian Motion:. Theory and Application to DNA Walk

    NASA Astrophysics Data System (ADS)

    Lim, S. C.; Muniandy, S. V.

    2001-09-01

    This paper briefly reviews the theory of fractional Brownian motion (FBM) and its generalization to multifractional Brownian motion (MBM). FBM and MBM are applied to a biological system namely the DNA sequence. By considering a DNA sequence as a fractal random walk, it is possible to model the noncoding sequence of human retinoblastoma DNA as a discrete version of FBM. The average scaling exponent or Hurst exponent of the DNA walk is estimated to be H = 0.60 ± 0.05 using the monofractal R/S analysis. This implies that the mean square fluctuation of DNA walk belongs to anomalous superdiffusion type. We also show that the DNA landscape is not monofractal, instead one has multifractal DNA landscape. The empirical estimates of the Hurst exponent falls approximately within the range H ~ 0.62 - 0.72. We propose two multifractal models, namely the MBM and multiscale FBM to describe the existence of different Hurst exponents in DNA walk.

  8. Controlling aliased dynamics in motion systems? An identification for sampled-data control approach

    NASA Astrophysics Data System (ADS)

    Oomen, Tom

    2014-07-01

    Sampled-data control systems occasionally exhibit aliased resonance phenomena within the control bandwidth. The aim of this paper is to investigate the aspect of these aliased dynamics with application to a high performance industrial nano-positioning machine. This necessitates a full sampled-data control design approach, since these aliased dynamics endanger both the at-sample performance and the intersample behaviour. The proposed framework comprises both system identification and sampled-data control. In particular, the sampled-data control objective necessitates models that encompass the intersample behaviour, i.e., ideally continuous time models. Application of the proposed approach on an industrial wafer stage system provides a thorough insight and new control design guidelines for controlling aliased dynamics.

  9. Development of a motion-controlled in vitro elbow testing system.

    PubMed

    Dunning, Cynthia E; Gordon, Karen D; King, Graham J W; Johnson, James A

    2003-05-01

    Joint simulators can be used to study motion pathways of a human joint, to investigate changes in joint stability following injury, and to formulate improved reconstructive and rehabilitative procedures. Our objectives were: to develop a laboratory-based, motion-controlled elbow testing apparatus capable of simulating tendon (muscle) loading and displacement in a cadaveric specimen; to describe its performance while testing stable and unstable elbows; and to compare its operation to that of a previously designed load-controlled device. Velocity control of a pneumatic actuator was achieved using a custom-written, closed-loop feedback controller. This actuator was incorporated into an elbow testing system that used additional pneumatic actuators and a combination of motion- and load-control to achieve desired motions. Simulations achieved with this apparatus demonstrated small magnitudes of error in actuator position and highly repeatable flexion pathways with the specimens positioned in vertical, varus, and valgus orientations. The repeatability in motion pathways generated in both a stable and unstable elbow model was equivalent to or better than for similar tests performed using the load-controlled system, and the velocity of the resulting elbow motion was more reproducible.

  10. Abstracted Workow Framework with a Structure from Motion Application

    NASA Astrophysics Data System (ADS)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense

  11. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  12. Biologically-inspired Devices for Controlling the Motion of Flux-Quanta

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2002-03-01

    Motor proteins employ non-equilibrium fluctuations in anisotropic media to transport cargo at the cellular level. Similarly, biologically-inspired devices could transport quanta at the nano-scale. We [1,2,3] have studied non-equilibrium thermal fluctuations in several new type of ratchet systems in superconductors with either (a) channel wall asymmetries, (b) graduated pinning density, (c) anisotropic pinning traps. We study stochastic transport of flux quanta in superconductors by alternating current (AC) rectification. Our simulated systems provide a variety of fluxon pumps, "lenses", or fluxon "rectifiers" because in them the applied electrical AC is transformed into a net DC motion of fluxons. Thermal fluctuations and the asymmetry of the potential (e.g., via channel walls, or inhomegeneous pinning distribution) induce this "diode" effect. The latter can have important applications in devices, like SQUID magnetometers, and for "fluxon optics", including convex and concave "fluxon lenses" that focus/concentrate or disperse flux quanta. Certain features are unique to these novel types of two-dimensional (2D) pumps, and different from the previously studied ratchets (mostly in 1D, with only one particle moving). [1] J. Wambaugh, et. al., Superconducting fluxon pumps and lenses. Phys. Rev. Lett. 83, 5106 (1999). [2] C. Olson, et al., Collective interaction-driven ratchet for transporting flux quanta. Phys. Rev. Lett. 87, 7002 (2001). [3] B.Y. Zhu et al., Biologically-inspired Devices for Controlling the Motion of Flux-Quanta, preprint.

  13. Dimensional coordinate measurements: application in characterizing cervical spine motion

    NASA Astrophysics Data System (ADS)

    Zheng, Weilong; Li, Linan; Wang, Shibin; Wang, Zhiyong; Shi, Nianke; Xue, Yuan

    2014-06-01

    Cervical spine as a complicated part in the human body, the form of its movement is diverse. The movements of the segments of vertebrae are three-dimensional, and it is reflected in the changes of the angle between two joint and the displacement in different directions. Under normal conditions, cervical can flex, extend, lateral flex and rotate. For there is no relative motion between measuring marks fixed on one segment of cervical vertebra, the cervical vertebrae with three marked points can be seen as a body. Body's motion in space can be decomposed into translational movement and rotational movement around a base point .This study concerns the calculation of dimensional coordinate of the marked points pasted to the human body's cervical spine by an optical method. Afterward, these measures will allow the calculation of motion parameters for every spine segment. For this study, we choose a three-dimensional measurement method based on binocular stereo vision. The object with marked points is placed in front of the CCD camera. Through each shot, we will get there two parallax images taken from different cameras. According to the principle of binocular vision we can be realized three-dimensional measurements. Cameras are erected parallelly. This paper describes the layout of experimental system and a mathematical model to get the coordinates.

  14. Applications of markerless motion capture in gait recognition.

    PubMed

    Sandau, Martin

    2016-03-01

    This thesis is based on four manuscripts where two of them were accepted and two were submitted to peer-reviewed journals. The experimental work behind the thesis was conducted at the Institute of Neuroscience and Pharmacology, University of Copenhagen. The purpose of the studies was to explore the variability of human gait and to conduct new methods for precise estimation of the kinematic parameters applied in forensic gait analysis. The gait studies were conducted in a custom built gait laboratory designed to obtain optimal conditions for markerless motion analysis. The set-up consisted of eight synchronised cameras located in the corners of the laboratory, which were connected to a single computer. The captured images were processed with stereovision-based algorithms to provide accurate 3D reconstructions of the participants. The 3D reconstructions of the participants were obtained during normal walking and the kinematics were extracted with manual and automatic methods. The kinematic results from the automatic approach were compared to marker-based motion capture to validate the precision. The results showed that the proposed markerless motion capture method had a precision comparable to marker-based methods in the frontal plane and the sagittal plane. Similar markerless motion capture methods could therefore provide the basis for reliable gait recognition based on kinematic parameters. The manual annotations were compared to the actual anthropometric measurements obtained from MRI scans and the intra- and inter-observer variability was also quantified to observe the associated effect on recognition. The results showed not only that the kinematics in the lower extremities were important but also that the kinematics in the shoulders had a high discriminatory power. Likewise, the shank length was also highly discriminatory, which has not been previously reported. However, it is important that the same expert performs all annotations, as the inter

  15. Geometric Properties of a Mechanical Forward Motion Compensation System Controlled by a Piezoelectric Drive

    NASA Astrophysics Data System (ADS)

    Collette, F.; Gline, S.; Losseau, J.; Lecharlier, L.

    2012-07-01

    Forward Motion Compensation (FMC) systems have been designed to ensure the radiometric quality of motion acquisition in airborne cameras. If the radiometric benefits of FMC have been acknowledged, what are its effects on the geometrical properties of the camera? This paper demonstrates that FMC significantly improves geometrical properties of a camera. Aspects of FMC theory are discussed, with a focus on the near-lossless implementation of this technology into digital aerial camera systems. Among mechanical FMC technologies, the piezoelectric drive is proving to excel in dynamic positioning in both accuracy and repeatability. The patented piezoelectric drive integrated into Optech aerial camera systems allows for continuous and precise sensor motion to ensure exact compensation of the aircraft's forward motion. This paper presents findings that demonstrate the validity of this assertion. The paper also discusses the physical principles involved in motion acquisition. Equations are included that define the motion effect at image level and illustrate how FMC acts to prevent motion effects. The residual motion effect or compensation error is formulated and a practical computation applied to the more restrictive camera case. The assessment concludes that, in the range of airborne camera utilization, the mechanical FMC technique is free of "visible" error at both human eye and computer assessment level. Lastly, the paper proceeds to a detailed technical discussion of piezoelectric drives and why they have proven to be so effective as nanopositioning devices for optical applications. The effectiveness of the patented piezoelectric drives used to achieve FMC in Optech cameras is conclusively demonstrated.

  16. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms.

    PubMed

    Cowings, P S; Toscano, W B

    2000-10-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  17. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  18. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  19. Robust cascade control for the horizontal motion of a vehicle with single-wheel actuators

    NASA Astrophysics Data System (ADS)

    Moseberg, Jan-Erik; Roppenecker, Günter

    2015-12-01

    The article presents a cascade control for the horizontal motion of a vehicle with single-wheel actuators. The outer control loop for the longitudinal and lateral accelerations and the yaw rate ensures a desired vehicle motion. By a combination of state feedback control and observer-based disturbance feedforward the inner control loop robustly stabilises the rotating and steering motions of the wheels in spite of unknown frictions between tyres and ground. Since the three degrees of freedom of the horizontal motion are affected by eight tyre forces, the vehicle considered is an over-actuated system. Thus additional control objectives can be realised besides the desired motion trajectory as, for example, a maximum in driving safety. The corresponding analytical tyre force allocation also guarantees real-time capability because of its relatively low computational effort. Provided suitable fault detection and isolation are available, the proposed cascade control has the potential of fault-tolerance, because the force allocation is adaptable. Another benefit results from the modular control structure, because it allows a stepwise implementation. Besides, it only requires a small number of measurements for control purposes. These measurements are the rotational speeds and steering angles of the wheels, the longitudinal and lateral acceleration and the yaw rate of the vehicle.

  20. Digital Control of Flight Simulator Motion Base Actuator.

    DTIC Science & Technology

    1984-01-01

    SYNTHESIS 3.1 Basic Considerations As a starting point for digital controller design a proportional plus integral ( PI ) control law of the form - V(s...on closed loop stability arising from digital realization of the PI control law, computational time delay and sampling have to be taken into

  1. The Development of a Computer Controlled Super 8 Motion Picture Projector.

    ERIC Educational Resources Information Center

    Reynolds, Eldon J.

    Instructors in Child Development at the University of Texas at Austin selected sound motion pictures as the most effective medium to simulate the observation of children in nursery laboratories. A computer controlled projector was designed for this purpose. An interface and control unit controls the Super 8 projector from a time-sharing computer…

  2. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and... controls must be designed so that they operate in accordance with the following movement and actuation: (a) Aerodynamic controls: Motion and effect (1) Primary controls: Aileron Right (clockwise) for right wing...

  3. Control of tip-to-sample distance in atomic force microscopy: A dual-actuator tip-motion control scheme

    NASA Astrophysics Data System (ADS)

    Jeong, Younkoo; Jayanth, G. R.; Menq, Chia-Hsiang

    2007-09-01

    The control of tip-to-sample distance in atomic force microscopy (AFM) is achieved through controlling the vertical tip position of the AFM cantilever. In the vertical tip-position control, the required z motion is commanded by laser reading of the vertical tip position in real time and might contain high frequency components depending on the lateral scanning rate and topographical variations of the sample. This paper presents a dual-actuator tip-motion control scheme that enables the AFM tip to track abrupt topographical variations. In the dual-actuator scheme, an additional magnetic mode actuator is employed to achieve high bandwidth tip-motion control while the regular z scanner provides the necessary motion range. This added actuator serves to make the entire cantilever bandwidth available for tip positioning, and thus controls the tip-to-sample distance. A fast programmable electronics board was employed to realize the proposed dual-actuator control scheme, in which model cancellation algorithms were implemented to enlarge the bandwidth of the magnetic actuation and to compensate the lightly damped dynamics of the cantilever. Experiments were conducted to illustrate the capabilities of the proposed dual-actuator tip-motion control in terms of response speed and travel range. It was shown that while the bandwidth of the regular z scanner was merely a small fraction of the cantilever's bandwidth, the dual-actuator control scheme led to a tip-motion control system, the bandwidth of which was comparable to that of the cantilever, where the dynamics overdamped, and the motion range comparable to that of the z scanner.

  4. Stress Drop and Depth Controls on Ground Motion From Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Rubinstein, J. L.; Terra, F. M.; Hanks, T. C.; Herrmann, R. B.

    2015-12-01

    Induced earthquakes in the central United States pose a risk to local populations, but there is not yet agreement on how to portray their hazard. A large source of uncertainty in the hazard arises from ground motion prediction, which depends on the magnitude and distance of the causative earthquake. However, ground motion models for induced earthquakes may be very different than models previously developed for either the eastern or western United States. A key question is whether ground motions from induced earthquakes are similar to those from natural earthquakes, yet there is little history of natural events in the same region with which to compare the induced ground motions. To address these problems, we explore how earthquake source properties, such as stress drop or depth, affect the recorded ground motion of induced earthquakes. Typically, due to stress drop increasing with depth, ground motion prediction equations model shallower events to have smaller ground motions, when considering the same absolute hypocentral distance to the station. Induced earthquakes tend to occur at shallower depths, with respect to natural eastern US earthquakes, and may also exhibit lower stress drops, which begs the question of how these two parameters interact to control ground motion. Can the ground motions of induced earthquakes simply be understood by scaling our known source-ground motion relations to account for the shallow depth or potentially smaller stress drops of these induced earthquakes, or is there an inherently different mechanism in play for these induced earthquakes? We study peak ground-motion velocity (PGV) and acceleration (PGA) from induced earthquakes in Oklahoma and Kansas, recorded by USGS networks at source-station distances of less than 20 km, in order to model the source effects. We compare these records to those in both the NGA-West2 database (primarily from California) as well as NGA-East, which covers the central and eastern United States and Canada

  5. Three axis electronic flight motion simulator real time control system design and implementation.

    PubMed

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  6. Three axis electronic flight motion simulator real time control system design and implementation

    SciTech Connect

    Gao, Zhiyuan; Miao, Zhonghua Wang, Xiaohua; Wang, Xuyong

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  7. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.

    PubMed

    Li, Tzuu-Hseng S; Su, Yu-Te; Lai, Shao-Wei; Hu, Jhen-Jia

    2011-06-01

    This paper proposes the implementation of fuzzy motion control based on reinforcement learning (RL) and Lagrange polynomial interpolation (LPI) for gait synthesis of biped robots. First, the procedure of a walking gait is redefined into three states, and the parameters of this designed walking gait are determined. Then, the machine learning approach applied to adjusting the walking parameters is policy gradient RL (PGRL), which can execute real-time performance and directly modify the policy without calculating the dynamic function. Given a parameterized walking motion designed for biped robots, the PGRL algorithm automatically searches the set of possible parameters and finds the fastest possible walking motion. The reward function mainly considered is first the walking speed, which can be estimated from the vision system. However, the experiment illustrates that there are some stability problems in this kind of learning process. To solve these problems, the desired zero moment point trajectory is added to the reward function. The results show that the robot not only has more stable walking but also increases its walking speed after learning. This is more effective and attractive than manual trial-and-error tuning. LPI, moreover, is employed to transform the existing motions to the motion which has a revised angle determined by the fuzzy motion controller. Then, the biped robot can continuously walk in any desired direction through this fuzzy motion control. Finally, the fuzzy-based gait synthesis control is demonstrated by tasks and point- and line-target tracking. The experiments show the feasibility and effectiveness of gait learning with PGRL and the practicability of the proposed fuzzy motion control scheme.

  8. Motion and force controlled vibration testing. [of aerospace hardware

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.; Boatman, David J.; Kern, Dennis L.

    1990-01-01

    A technique for controlling both the input acceleration and force in vibration tests is proposed to alleviate the overtesting risks and the problems associated with response limiting in conventional vibration tests of aerospace hardware. Previous research on impedance and force controlled vibration tests is reviewed and a simple equation governing the dual control of acceleration and force is derived. A practical method for implementing the dual control technique in random vibration tests has been demonstrated in JPL's environmental test facility using a conventional digital controller operating in the extremal mode. The dual control technique provides appropriate real-time notching of the input acceleration and a corresponding reduction of the test item response at resonances. Issues concerning the need for force and acceleration phase information, the adequacy of specifying the blocked force, and the derivation of the total force for multipoint supports are discussed.

  9. Coordinated joint motion control system with position error correction

    SciTech Connect

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  10. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  11. Flight experience with manually controlled unconventional aircraft motions

    NASA Technical Reports Server (NTRS)

    Barfield, A. F.

    1978-01-01

    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed.

  12. Application of interactive motion charts for displaying liver transplantation data in public websites.

    PubMed

    Santori, G

    2014-09-01

    In the past several years a vast amount of digital information has become available in every field of science, and ideas to apply improved strategies for obtaining a more in-depth knowledge of the data are considered in many areas. Although several American and European organizations show regularly in their public websites the aggregated results of organ donation and transplantation, no tools are provided to engage with the final users and to enable them to handle these data. In this study, a new model of Web-based interactive motion charts was applied to aggregated liver transplantation data obtained from a consecutive 28-year series of liver transplantation performed in a single Italian center. The interactive charts were obtained by combining the Google visualization application programming interface and the googleVis package within the open source statistical environment R. The interactive charts may be embedded into online/offline Web pages and rendered in each common browser. The users may interact with the charts by selecting chart type (bubble, bar, or line chart), x- and y-axis scales (linear or logarithmic), variables, bubble size, color, and even changing opacity of unselected items. Moreover, the charts may dynamically display the trend over time of each continuous/categoric variable, allowing users both to trace how the lines changes over time and to control the animation speed. The interactive motion charts should be used in the public websites that manage aggregated data concerning organ donation and transplantation.

  13. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  14. Reduction of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  15. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  16. Linear motion device and method for inserting and withdrawing control rods

    DOEpatents

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  17. DIESEL NOX CONTROL APPLICATION

    EPA Science Inventory

    The paper gives results of a project to design, develop, and demonstrate a diesel engine nitrogen oxide (NOx) and particulate matter (PM) control package that will meet the U.S. Navy's emission control requirements. (NOTE: In 1994, EPA issued a Notice for Proposed Rule Making (NP...

  18. Prediction and control of limit cycling motions in boosting rockets

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    An investigation concerning the prediction and control of observed limit cycling behavior in a boosting rocket is considered. The suspected source of the nonlinear behavior is the presence of Coulomb friction in the nozzle pivot mechanism. A classical sinusoidal describing function analysis is used to accurately recreate and predict the observed oscillatory characteristic. In so doing, insight is offered into the limit cycling mechanism and confidence is gained in the closed-loop system design. Nonlinear simulation results are further used to support and verify the results obtained from describing function theory. Insight into the limit cycling behavior is, in turn, used to adjust control system parameters in order to passively control the oscillatory tendencies. Tradeoffs with the guidance and control system stability/performance are also noted. Finally, active control of the limit cycling behavior, using a novel feedback algorithm to adjust the inherent nozzle sticking-unsticking characteristics, is considered.

  19. Fixed-base and two-body equations of motion for an Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1978-01-01

    Fixed base and two body equations of motion for an Annular Momentum Control Device (AMCD) are presented. An AMCD consists of a spinning annular rim which is suspended by noncontacting magnetic bearings and powered by a noncontacting linear electromagnetic motor. The fixed base equations are for a rigid AMCD rim suspended by magnetic bearings attached to a rigid fixed base. The two body equations are for a rigid AMCD rim suspended by magnetic bearings attached to a rigid body spacecraft. The fixed base equations are applicable to any potential ground based AMCD application such as energy storage.

  20. An analysis of the treatment couch and control system dynamics for respiration-induced motion compensation

    SciTech Connect

    D'Souza, Warren D.; McAvoy, Thomas J.

    2006-12-15

    Sophisticated methods for real-time motion compensation include using the linear accelerator, MLC, or treatment couch. To design such a couch, the required couch and control system dynamics need to be investigated. We used an existing treatment couch known as the Hexapod{sup TM} to gain insight into couch dynamics and an internal model controller to simulate feedback control of respiration-induced motion. The couch dynamics, described using time constants and dead times, were investigated using step inputs. The resulting data were modeled as first and second order systems with dead time. The couch was determined to have a linear response for step inputs {<=}1 cm. Motion data from 12 patients were obtained using a skin marker placed on the abdomen of the patient and the marker data were assumed to be an exact surrogate of tumor motion. The feedback system was modeled with the couch as a second-ordersystem and the controller as a first order system. The time constants of the couch and controller and the dead times were varied starting with parameters obtained from the Hexapod{sup TM} couch and the performance of the feedback system was evaluated. The resulting residual motion under feedback control was generally <0.3 cm when a fast enough couch was simulated.

  1. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    SciTech Connect

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-04-15

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  2. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  3. 75 FR 10230 - Inglis Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ...] Inglis Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and.... b. Project No.: P-12783-003. c. Date filed: July 22, 2009. d. Applicant: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project would be located at...

  4. 76 FR 57731 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Comments, Motions To Intervene, and Competing Applications; Kachess Dam Hydropower, LLC On May 31, 2011, Kachess Dam Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the... Contact: Carl Spetzler, Kachess Dam Hydropower, LLC, 745 Emerson Street, Palto Alto, CA 94301, phone...

  5. 75 FR 143 - Lockhart Power Company; Notice of Application Accepted for Filing, Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    .... Jeremy Jessup (202) 502-6779 or Jeremy.Jessup@ferc.gov . j. Deadline for filing motions to intervene and... the installation of the new unit. l. Locations of the Application: A copy of the application is... and reproduction at the address in item (h) above. m. Individuals desiring to be included on...

  6. 78 FR 30297 - Alabama Power Company; Notice of Application Accepted for Filing and Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Alabama Power Company; Notice of Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission...

  7. 78 FR 79427 - Greenwood County; Notice of Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Greenwood County; Notice of Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and...

  8. 78 FR 75553 - Cedar Rapids Water Board; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Cedar Rapids Water Board; Notice of Application Accepted for Filing, Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission...

  9. Application and API for Real-time Visualization of Ground-motions and Tsunami

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are

  10. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    PubMed

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  11. Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics

    NASA Technical Reports Server (NTRS)

    Martinez, Lindolfo; Rich, Thomas; Lucord, Steven; Diegelman, Thomas; Mireles, James; Gonzalez, Pete

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions.

  12. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  13. On the dynamics and control of the relative motion between two spacecraft

    NASA Astrophysics Data System (ADS)

    Yu, Shaohua

    1995-03-01

    The dynamics of the relative motion between two nearby spacecraft is investigated in a local orbital co-ordinate system. A phase plane analysis shows that a stable equilibrium state may exist in the motion. Based on this analysis, a control method called the range-rate control algorithm (RRCA) has been established. The controlled trajectory is stable and in a straight line. Furthermore, an omni-directional version of RRCA has also been introduced. The computation, measurement and propulsion scheme for the algorithm is very simple. As an illustrated example, the tethered satellite system as well as the in-orbit spacecraft rendezvous are simulated by the algorithm.

  14. Computer Controlled Interactive Motion and Still Image Film Projection System for Vocational Education for the Deaf.

    ERIC Educational Resources Information Center

    Fox, Raymond G.

    1978-01-01

    Describes a micro-processor controlled instruction delivery system being developed for use with deaf students which incorporates film cassette, frame or sequence addressable, color motion or still visuals under computer program control for local or remote delivery. An authoring capability for development and validation and a program are also…

  15. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  16. Approaches to creating and controlling motion in MRI.

    PubMed

    Fischer, Gregory S; Cole, Gregory; Su, Hao

    2011-01-01

    Magnetic Resonance Imaging (MRI) can provide three dimensional (3D) imaging with excellent resolution and sensitivity making it ideal for guiding and monitoring interventions. The development of MRI-compatible interventional devices is complicated by factors including: the high magnetic field strength, the requirement that such devices should not degrade image quality, and the confined physical space of the scanner bore. Numerous MRI guided actuated devices have been developed or are currently being developed utilizing piezoelectric actuators as their primary means of mechanical energy generation to enable better interventional procedure performance. While piezoelectric actuators are highly desirable for MRI guided actuation for their precision, high holding force, and non-magnetic operation they are often found to cause image degradation on a large enough to scale to render live imaging unusable. This paper describes a newly developed piezoelectric actuator driver and control system designed to drive a variety of both harmonic and non-harmonic motors that has been demonstrated to be capable of operating both harmonic and non-harmonic piezoelectric actuators with less than 5% SNR loss under closed loop control. The proposed system device allows for a single controller to control any supported actuator and feedback sensor without any physical hardware changes.

  17. DNA motion induced by electrokinetic flow near an Au coated nanopore surface as voltage controlled gate.

    PubMed

    Sugimoto, Manabu; Kato, Yuta; Ishida, Kentaro; Hyun, Changbae; Li, Jiali; Mitsui, Toshiyuki

    2015-02-13

    We used fluorescence microscopy to investigate the diffusion and drift motion of λ DNA molecules on an Au-coated membrane surface near nanopores, prior to their translocation through solid-state nanopores. With the capability of controlling electric potential at the Au surface as a gate voltage, Vgate, the motions of DNA molecules, which are presumably generated by electrokinetic flow, vary dramatically near the nanopores in our observations. We carefully investigate these DNA motions with different values of Vgate in order to alter the densities and polarities of the counterions, which are expected to change the flow speed or direction, respectively. Depending on Vgate, our observations have revealed the critical distance from a nanopore for DNA molecules to be attracted or repelled-DNA's anisotropic and unsteady drifting motions and accumulations of DNA molecules near the nanopore entrance. Further finite element method (FEM) numerical simulations indicate that the electrokinetic flow could qualitatively explain these unusual DNA motions near metal-collated gated nanopores. Finally, we demonstrate the possibility of controlling the speed and direction of DNA motion near or through a nanopore, as in the case of recapturing a single DNA molecule multiple times with alternating current voltages on the Vgate.

  18. DNA Motion Induced by Electrokinetic Flow near an Au Coated Nanopore Surface as Voltage Controlled Gate

    PubMed Central

    Sugimoto, Manabu; Kato, Yuta; Ishida, Kentaro; Hyun, Changbae; Li, Jiali

    2014-01-01

    The diffusion and drift motion of λ DNA molecules on Au coated membrane surface near nanopores prior to their translocation through solid-state nanopores are investigated using fluorescence microscopy. With the capability of controlling electric potential at the Au surface as a gate voltage, Vgate, the motions of DNA molecules vary dramatically near the nanopores in our observations, presumably generated by electrokinetic flow. We carefully investigate theses DNA motions with different values of Vgate in order to alter the densities and polarities of counterions; which are expected to change the flow speed or direction, respectively. Depending on Vgate, our observations have revealed the critical distance from a nanopore for DNA molecules to be attracted or to be repelled, DNA’s anisotropic and unsteady drifting motions and accumulations of DNA molecules near the nanopore entrance. Further finite element method (FEM) numerical simulations indicate that the electrokinetic flow could explain these unusual DNA motions near metal collated gated nanopores qualitatively. Finally, we demonstrate the possibility to control the speed and direction of DNA motion near or through a nanopore, for example, recapturing a single DNA molecule multiple times with AC voltages on the Vgate. PMID:25611963

  19. Controlling Motion Sickness and Spatial Disorientation and Enhancing Vestibular Rehabilitation with a User-Worn See-Through Display

    PubMed Central

    Krueger, Wesley W.O.

    2010-01-01

    Objectives/Hypotheses An eyewear mounted visual display (“User-worn see-through display”) projecting an artificial horizon aligned with the user's head and body position in space can prevent or lessen motion sickness in susceptible individuals when in a motion provocative environment as well as aid patients undergoing vestibular rehabilitation. In this project, a wearable display device, including software technology and hardware, was developed and a phase I feasibility study and phase II clinical trial for safety and efficacy were performed. Study Design Both phase I and phase II were prospective studies funded by the NIH. The phase II study used repeated measures for motion intolerant subjects and a randomized control group (display device/no display device) pre-post test design for patients in vestibular rehabilitation. Methods Following technology and display device development, 75 patients were evaluated by test and rating scales in the phase II study; 25 subjects with motion intolerance used the technology in the display device in provocative environments and completed subjective rating scales while 50 patients were evaluated before and after vestibular rehabilitation (25 using the display device and 25 in a control group) using established test measures. Results All patients with motion intolerance rated the technology as helpful for nine symptoms assessed, and 96% rated the display device as simple and easy to use. Duration of symptoms significantly decreased with use of the technology displayed. In patients undergoing vestibular rehabilitation, there were no significant differences in amount of change from pre- to post-therapy on objective balance tests between display device users and controls. However, those using the technology required significantly fewer rehabilitation sessions to achieve those outcomes than the control group. Conclusions A user-worn see-through display, utilizing a visual fixation target coupled with a stable artificial horizon

  20. Autogenic-Feedback Training for the Control of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human physiological responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and "test-only" controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  1. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  2. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  3. Controlling Motion at the Nanoscale: Rise of the Molecular Machines.

    PubMed

    Abendroth, John M; Bushuyev, Oleksandr S; Weiss, Paul S; Barrett, Christopher J

    2015-08-25

    As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.

  4. Application of genetic algorithm to hexagon-based motion estimation.

    PubMed

    Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng

    2014-01-01

    With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.

  5. Application Of Image Processing To Human Motion Analysis

    NASA Astrophysics Data System (ADS)

    Baca, Arnold

    1989-10-01

    A novel method is presented for the determination of position and orientation of interconnected human body segments relative to a spatial coordinate system. The development of this new method was prompted by the inadequacy of the techniques currently in use for recorded images. In these techniques, markers are fixed to certain points on the skin of the subject. However, due to skin movement relative to the skeleton and various other factors, the configurational coordinates derived from digitized marker positions may be grossly erroneous with disastrous consequences for the subsequent motion analysis. The new method is based on body-segment shape recognition in the video-image domain. During the recording session, the subject carries special, tight-fitting clothing which permits the unambiguous recognition of segmental shapes and boundaries from the recorded video images. The recognition is performed by means of an edge detection algorithm followed by the computation of the positions and orientations relative to the spatial axes system of all segments of the body model. The new method is implemented on an advanced, special high speed graphic system (Impuls, System 2400) based on transputer chips. The parallel processing capability of this system permits the simultaneous computation of the configurational characteristics for all segments visible in the image. After processing one complete image frame, the video digitizer is instructed to automatically proceed to the next frame, thereby enabling the user to automatically evaluate large amounts of successive frames.

  6. Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators.

    PubMed

    Li, Zhijun; Ge, Shuzhi Sam; Ming, Aiguo

    2007-06-01

    In this paper, adaptive robust force/motion control strategies are presented for mobile manipulators under both holonomic and nonholonomic constraints in the presence of uncertainties and disturbances. The proposed control is robust not only to parameter uncertainties such as mass variations but also to external ones such as disturbances. The stability of the closed-loop system and the boundedness of tracking errors are proved using Lyapunov stability synthesis. The proposed control strategies guarantee that the system motion converges to the desired manifold with prescribed performance and the bounded constraint force. Simulation results validate that the motion of the system converges to the desired trajectory, and the constraint force converges to the desired force.

  7. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  8. Method for neural network control of motion using real-time environmental feedback

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1997-01-01

    A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.

  9. Numerical simulation of motion-induced dynamic noise in a ubiquitous ECG application.

    PubMed

    Kim, Young Tae; Lim, Ki Moo; Hong, Seong Bae; Ryu, Ah Jin; Ko, Byung Hoon; Bae, Sang Kon; Shin, Kun Soo; Shim, Eun Bo

    2011-01-01

    Wearable ubiquitous biomedical applications, such as ECG monitors, can generate dynamic noise as a person moves. However, the source of this noise is not clear. We postulated that the dynamic ECG noise has two causes: the change in displacement of the heart during motion and the change in the electrical impedance of the skin-gel interface due to motion-induced deformation of the skin-gel interface. Using a three-dimensional electrophysiological heart model coupled with a torso model, dynamic noise was simulated, while the displacement of the heart was changed in the vertical and horizontal directions, independently and while the skin-gel interface was deformed during motion. To determine the deformation rate of the skin and sol-gel layers, motion-induced deformation of the two layers was simulated using a three-dimensional finite element method.

  10. Interfacing and Motion Control of the UNC Heliostat

    NASA Astrophysics Data System (ADS)

    McMains, Lee

    2002-04-01

    The interface between a PC and existing & planned components of a solar telescope (Heliostat) is being revamped and the new configuration is expected to reduce complexity while increasing the precision of collected data. The automated solar tracking system, controlled by the PC and run using planned Simu-Link modules, will be used with optical sensing equipment to collect data from the visible and near-visible spectrum. The Heliostat would be used in the classroom for increased understanding of the physical properties of the Sun. A progress report on this aspect of the project will be given.

  11. Combining spanwise morphing, inline motion and model based optimization for force magnitude and direction control

    NASA Astrophysics Data System (ADS)

    Scheller, Johannes; Braza, Marianna; Triantafyllou, Michael

    2016-11-01

    Bats and other animals rapidly change their wingspan in order to control the aerodynamic forces. A NACA0013 type airfoil with dynamically changing span is proposed as a simple model to experimentally study these biomimetic morphing wings. Combining this large-scale morphing with inline motion allows to control both force magnitude and direction. Force measurements are conducted in order to analyze the impact of the 4 degree of freedom flapping motion on the flow. A blade-element theory augmented unsteady aerodynamic model is then used to derive optimal flapping trajectories.

  12. A superconducting reversible rectifier that controls the motion of magnetic flux quanta.

    PubMed

    Villegas, J E; Savel'ev, Sergey; Nori, Franco; Gonzalez, E M; Anguita, J V; García, R; Vicent, J L

    2003-11-14

    We fabricated a device that controls the motion of flux quanta in a niobium superconducting film grown on an array of nanoscale triangular pinning potentials. The controllable rectification of the vortex motion is due to the asymmetry of the fabricated magnetic pinning centers. The reversal in the direction of the vortex flow is explained by the interaction between the vortices trapped on the magnetic nanostructures and the interstitial vortices. The applied magnetic field and input current strength can tune both the polarity and magnitude of the rectified vortex flow. Our ratchet system is explained and modeled theoretically, taking the interactions between particles into consideration.

  13. Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1992-01-01

    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area.

  14. Focused ultrasound treatment of VX2 tumors controlled by local harmonic motion.

    PubMed

    Curiel, Laura; Huang, Yuexi; Vykhodtseva, Natalia; Hynynen, Kullervo

    2009-06-07

    The purpose of this study was to evaluate the feasibility of using localized harmonic motion (LHM) to monitor and control focused ultrasound surgery (FUS) in VX2 tumors in vivo. FUS exposures were performed on 13 VX2 tumors implanted in nine rabbits. The same transducer induced coagulation and generated a localized oscillatory motion by periodically varying the radiation force. A separate diagnostic ultrasound transducer tracked motion by cross-correlating echo signals at different instances. A threshold in motion amplitude was instituted to cease exposure. Coagulation was confirmed by T2-weighted MR images, thermal dose obtained through MR thermometry and histological examinations. For tumor locations achieving coagulation, the LHM amplitude was 9% (p = 0.04) to 57% (p < 0.0001) lower than that before exposure. Control was successful for 74 (69%) out of 108 cases, with 52 (48%) reaching the threshold and achieving coagulation and 22 (21%) never reaching threshold nor coagulating. For the 34 (31%) unsuccessful exposures, 16 (15%) never reached the threshold but coagulation occurred, and 18 (16%) reached threshold without coagulation confirmed. Noise or radio-frequency signal changes explained motion over- or underestimation in 24 (22%) cases; the remaining 10 (9%) had other causes of error. The control was generally successful, but sudden change or noise in the acquired echo signal caused failure. Coagulation after exposure could be validated by comparing amplitudes before and after exposure.

  15. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    PubMed

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  16. The paracrine control of vascular motion. A historical perspective.

    PubMed

    Nava, Eduardo; Llorens, Silvia

    2016-11-01

    During the last quarter of the past century, the leading role the endocrine and nervous systems had on the regulation of vasomotion, shifted towards a more paracrine-based regulation. This begun with the recognition of endothelial cells as active players of vascular control, when the vessel's intimal layer was identified as the main source of prostacyclin and was followed by the discovery of an endothelium-derived smooth muscle cell relaxing factor (EDRF). The new position acquired by endothelial cells prompted the discovery of other endothelium-derived regulatory products: vasoconstrictors, generally known as EDCFs, endothelin, and other vasodilators with hyperpolarizing properties (EDHFs). While this research was taking place, a quest for the discovery of the nature of EDRF carried back to a research line commenced a decade earlier: the recently found intracellular messenger cGMP and nitrovasodilators. Both were smooth muscle relaxants and appeared to interact in a hormonal fashion. Prejudice against an unconventional gaseous molecule delayed the acceptance that EDRF was nitric oxide (NO). When this happened, a new era of research that exceeded the vascular field commenced. The discovery of the pathway for NO synthesis from L-arginine involved the clever assembling of numerous unrelated observations of different areas of knowledge. The last ten years of research on the paracrine regulation of the vascular wall has shifted to perivascular fat (PVAT), which is beginning to be regarded as the fourth layer of the vascular wall. Starting with the discovery of an adipose-derived relaxing substance (ADRF), the role that different adipokines have on the paracrine control of vasomotion is now filling the research activity of many vascular pharmacology labs, and surprising interactions between the endothelium, PVAT and smooth muscle are being unveiled.

  17. Controllers, observers, and applications thereof

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Miklosovic, Robert (Inventor); Radke, Aaron (Inventor); Zhou, Wankun (Inventor); Zheng, Qing (Inventor)

    2011-01-01

    Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed.

  18. An Interface for Specifying Rigid-Body Motions for CFD Applications

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Chan, William; Aftosmis, Michael; Meakin, Robert L.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    An interface for specifying rigid-body motions for CFD applications is presented. This interface provides a means of describing a component hierarchy in a geometric configuration, as well as the motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists of a general set of datatypes, along with rules for their interaction, and is designed to be flexible in order to evolve as future needs dictate. The specification is currently implemented with an XML file format which is portable across platforms and applications. The motion specification is capable of describing general rigid body motions, and eliminates the need to write and compile new code within the application software for each dynamic configuration, allowing client software to automate dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples, as well as the raw XML source of the file specifications, are included.

  19. The application of biological motion research: biometrics, sport, and the military.

    PubMed

    Steel, Kylie; Ellem, Eathan; Baxter, David

    2015-02-01

    The body of research that examines the perception of biological motion is extensive and explores the factors that are perceived from biological motion and how this information is processed. This research demonstrates that individuals are able to use relative (temporal and spatial) information from a person's movement to recognize factors, including gender, age, deception, emotion, intention, and action. The research also demonstrates that movement presents idiosyncratic properties that allow individual discrimination, thus providing the basis for significant exploration in the domain of biometrics and social signal processing. Medical forensics, safety garments, and victim selection domains also have provided a history of research on the perception of biological motion applications; however, a number of additional domains present opportunities for application that have not been explored in depth. Therefore, the purpose of this paper is to present an overview of the current applications of biological motion-based research and to propose a number of areas where biological motion research, specific to recognition, could be applied in the future.

  20. Neural control of motion-to-force transitions with the fingertip.

    PubMed

    Venkadesan, Madhusudhan; Valero-Cuevas, Francisco J

    2008-02-06

    The neural control of tasks such as rapid acquisition of precision pinch remains unknown. Therefore, we investigated the neural control of finger musculature when the index fingertip abruptly transitions from motion to static force production. Nine subjects produced a downward tapping motion followed by vertical fingertip force against a rigid surface. We simultaneously recorded three-dimensional fingertip force, plus the complete muscle coordination pattern using intramuscular electromyograms from all seven index finger muscles. We found that the muscle coordination pattern clearly switched from that for motion to that for isometric force approximately 65 ms before contact (p = 0.0004). Mathematical modeling and analysis revealed that the underlying neural control also switched between mutually incompatible strategies in a time-critical manner. Importantly, this abrupt switch in underlying neural control polluted fingertip force vector direction beyond what is explained by muscle activation-contraction dynamics and neuromuscular noise (p < or = 0.003). We further ruled out an impedance control strategy in a separate test showing no systematic change in initial force magnitude for catch trials where the tapping surface was surreptitiously lowered and raised (p = 0.93). We conclude that the nervous system predictively switches between mutually incompatible neural control strategies to bridge the abrupt transition in mechanical constraints between motion and static force. Moreover because the nervous system cannot switch between control strategies instantaneously or exactly, there arise physical limits to the accuracy of force production on contact. The need for such a neurally demanding and time-critical strategy for routine motion-to-force transitions with the fingertip may explain the existence of specialized neural circuits for the human hand.

  1. Neural Control of Motion-to-Force Transitions with the Fingertip

    PubMed Central

    Venkadesan, Madhusudhan; Valero-Cuevas, Francisco J.

    2010-01-01

    The neural control of tasks such as rapid acquisition of precision pinch remains unknown. Therefore, we investigated the neural control of finger musculature when the index fingertip abruptly transitions from motion to static force production. Nine subjects produced a downward tapping motion followed by vertical fingertip force against a rigid surface. We simultaneously recorded three-dimensional fingertip force, plus the complete muscle coordination pattern using intramuscular electromyograms from all seven index finger muscles. We found that the muscle coordination pattern clearly switched from that for motion to that for isometric force ~5 ms before contact (p = 0.0004). Mathematical modeling and analysis revealed that the underlying neural control also switched between mutually incompatible strategies in a time-critical manner. Importantly, this abrupt switch in underlying neural control polluted fingertip force vector direction beyond what is explained by muscle activation-contraction dynamics and neuromuscular noise (p ≤0.003). We further ruled out an impedance control strategy in a separate test showing no systematic change in initial force magnitude for catch trials where the tapping surface was surreptitiously lowered and raised (p = 0.93). We conclude that the nervous system predictively switches between mutually incompatible neural control strategies to bridge the abrupt transition in mechanical constraints between motion and static force. Moreover because the nervous system cannot switch between control strategies instantaneously or exactly, there arise physical limits to the accuracy of force production on contact. The need for such a neurally demanding and time-critical strategy for routine motion-to-force transitions with the fingertip may explain the existence of specialized neural circuits for the human hand. PMID:18256256

  2. Respiratory motion correction for PET oncology applications using affine transformation of list mode data.

    PubMed

    Lamare, F; Cresson, T; Savean, J; Cheze Le Rest, C; Reader, A J; Visvikis, D

    2007-01-07

    Respiratory motion is a source of artefacts and reduced image quality in PET. Proposed methodology for correction of respiratory effects involves the use of gated frames, which are however of low signal-to-noise ratio. Therefore a method accounting for respiratory motion effects without affecting the statistical quality of the reconstructed images is necessary. We have implemented an affine transformation of list mode data for the correction of respiratory motion over the thorax. The study was performed using datasets of the NCAT phantom at different points throughout the respiratory cycle. List mode data based PET simulated frames were produced by combining the NCAT datasets with a Monte Carlo simulation. Transformation parameters accounting for respiratory motion were estimated according to an affine registration and were subsequently applied on the original list mode data. The corrected and uncorrected list mode datasets were subsequently reconstructed using the one-pass list mode EM (OPL-EM) algorithm. Comparison of corrected and uncorrected respiratory motion average frames suggests that an affine transformation in the list mode data prior to reconstruction can produce significant improvements in accounting for respiratory motion artefacts in the lungs and heart. However, the application of a common set of transformation parameters across the imaging field of view does not significantly correct the respiratory effects on organs such as the stomach, liver or spleen.

  3. Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation

    PubMed Central

    Frankel, Mitchell A.; Mathews, V John; Clark, Gregory A.; Normann, Richard A.; Meek, Sanford G.

    2016-01-01

    Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles. The controller was successful in evoking steps in joint position with 2.4% overshoot, 2.3-s rise time, 4.5-s settling time, and near-zero steady-state error. Controlled step responses were consistent across changes in step size, stable against external disturbances, and reliable over time. The controller was able to evoke smooth eccentric motion at joint velocities up to 8 deg./s, as well as sinusoidal trajectories with frequencies up to 0.1 Hz, with time delays less than 1.5 s. These experiments provide important insights toward creating a robust closed-loop aIFMS controller that can evoke precise fatigue-resistant motion in paralyzed individuals, despite the complexities introduced by aIFMS. PMID:27679557

  4. 75 FR 35007 - Portland Water Bureau; Notice of Application Accepted for Filing and Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Portland Water Bureau; Notice of Application Accepted for Filing and Soliciting Comments, Motions To Intervene, Protests, Recommendations, and Terms and Conditions June 15, 2010. Take notice that the...

  5. Design and Implementation of an Electromagnetic Energy Harvester for Linear and Rotary Motion Applications

    NASA Astrophysics Data System (ADS)

    Hekmati, Alireza

    This thesis presents a new design for an electromagnetic energy harvester to be used in both linear and rotary motion applications. This electromagnetic energy harvester consists of a moving coil within a fixed magnetic circuit. This magnetic circuit comprises of a permanent magnet (as a magnetic source), a magnetic conductor (such as iron), and an air gap to create a space for coil movement inside energy harvester setup. In the parameter study of this electromagnetic energy harvester, it has been demonstrated that applying design modifications will improve the amount of induced voltage by %50. For linear motion applications, the energy harvester has been mounted on a linear motor and the experimental results indicated that when the coil movements' speed is 70 [mm/s], the maximum harvested power is 5.320 [mW]. For rotary motion applications, first a voice coil speaker has been used as a single degree of freedom system to produce voltage through a rotating beam and hub. Since in lower resonance frequencies, the maximum induced voltage is quite low, thus in next step, the two degrees of freedom energy harvesting system for rotary motion applications has been introduced. This system has been mounted on a car ring and the result illustrated that at the resonance frequency (15 [Hz]), the induced voltage was 0.175 [V] for each coil.

  6. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  7. Safety analysis forseismic motion of control rods accounting for rod misalignment

    SciTech Connect

    Osmin, W.L.; Paik, I.K.

    1992-01-01

    The purpose of this report is to provide a summary of the results of three safety analyses performed by the SRL Safety Analysis Group (SAG) to assess the safety impact of control rod motion induced by a Design Basis Earthquake (DBE).

  8. Vestibular Stimulation for ADHD: Randomized Controlled Trial of Comprehensive Motion Apparatus

    ERIC Educational Resources Information Center

    Clark, David L.; Arnold, L. Eugene; Crowl, Lindsay; Bozzolo, Hernan; Peruggia, Mario; Ramadan, Yaser; Bornstein, Robert; Hollway, Jill A.; Thompson, Susan; Malone, Krista; Hall, Kristy L.; Shelton, Sara B.; Bozzolo, Dawn R.; Cook, Amy

    2008-01-01

    Objective: This research evaluates effects of vestibular stimulation by Comprehensive Motion Apparatus (CMA) in ADHD. Method: Children ages 6 to 12 (48 boys, 5 girls) with ADHD were randomized to thrice-weekly 30-min treatments for 12 weeks with CMA, stimulating otoliths and semicircular canals, or a single-blind control of equal duration and…

  9. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors.

    PubMed

    Savel'ev, Sergey; Nori, Franco

    2002-11-01

    A new generation of microscopic ratchet systems is currently being developed for controlling the motion of electrons and fluxons, as well as for particle separation and electrophoresis. Virtually all of these use static spatially asymmetric potential energies to control transport properties. Here we propose completely new types of ratchet-like systems that do not require fixed spatially asymmetric potentials in the samples. As specific examples of this novel general class of ratchets, we propose devices that control the motion of flux quanta in superconductors and could address a central problem in many superconducting devices; namely, the removal of trapped magnetic flux that produces noise. In layered superconductors there are two interpenetrating perpendicular vortex lattices consisting of Josephson vortices (JVs) and pancake vortices (PVs). We show that, owing to the JV-PV mutual interaction and asymmetric driving, the a.c. motion of JVs and/or PVs can provide a net d.c. vortex current. This controllable vortex motion can be used for making pumps, diodes and lenses of quantized magnetic flux. These proposed devices sculpt the microscopic magnetic flux profile by simply modifying the time dependence of the a.c. drive, without the need for samples with static pinning--for example, without lithography or irradiation.

  10. Design and Evaluation of an Integrated Online Motion Control Training Package

    ERIC Educational Resources Information Center

    Buiu, C.

    2009-01-01

    The aim of this paper is to present an integrated Internet-based package for teaching the fundamentals of motion control by using a wide range of resources: theory, videos, simulators, games, quizzes, and a remote lab. The package is aimed at automation technicians, pupils at vocational schools and students taking an introductory course in…

  11. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... down or auxiliary device deployed. Trim tabs (or equivalent) Switch motion or mechanical rotation of... roll trim control may be displaced to accommodate comfortable actuation by the pilot. For single-engine airplanes, direction of pilot's hand movement must be in the same sense as airplane response for rudder...

  12. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... down or auxiliary device deployed. Trim tabs (or equivalent) Switch motion or mechanical rotation of... roll trim control may be displaced to accommodate comfortable actuation by the pilot. For single-engine airplanes, direction of pilot's hand movement must be in the same sense as airplane response for rudder...

  13. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... down or auxiliary device deployed. Trim tabs (or equivalent) Switch motion or mechanical rotation of... roll trim control may be displaced to accommodate comfortable actuation by the pilot. For single-engine airplanes, direction of pilot's hand movement must be in the same sense as airplane response for rudder...

  14. 14 CFR 23.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... down or auxiliary device deployed. Trim tabs (or equivalent) Switch motion or mechanical rotation of... roll trim control may be displaced to accommodate comfortable actuation by the pilot. For single-engine airplanes, direction of pilot's hand movement must be in the same sense as airplane response for rudder...

  15. Motion Controllers for Learners to Manipulate and Interact with 3D Objects for Mental Rotation Training

    ERIC Educational Resources Information Center

    Yeh, Shih-Ching; Wang, Jin-Liang; Wang, Chin-Yeh; Lin, Po-Han; Chen, Gwo-Dong; Rizzo, Albert

    2014-01-01

    Mental rotation is an important spatial processing ability and an important element in intelligence tests. However, the majority of past attempts at training mental rotation have used paper-and-pencil tests or digital images. This study proposes an innovative mental rotation training approach using magnetic motion controllers to allow learners to…

  16. Experimental investigations of the controlled motion of a screwless underwater robot

    NASA Astrophysics Data System (ADS)

    Karavaev, Yury L.; Kilin, Alexander A.; Klekovkin, Anton V.

    2016-12-01

    In this paper we describe the results of experimental investigations of the motion of a screwless underwater robot controlled by rotating internal rotors. We present the results of comparison of the trajectories obtained with the results of numerical simulation using the model of an ideal fluid.

  17. Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control

    NASA Astrophysics Data System (ADS)

    Schiener, Jens; Witt, Susanne; Stark, Martin; Guckenberger, Reinhard

    2004-08-01

    We present an automated stabilization of the imaging process in tapping mode atomic force microscopy. For biological applications, the requirement of stable imaging conditions to achieve reliable high resolution is contradicted by the necessity to work in solution to ensure biological functionality: thermal and saline variations of the viscosity, in particular when exchanging the solution the sample is surrounded with, strongly affect the cantilever motion rendering the imaging process instable. Using anharmonic contributions in the deflection signal, the amplitude setpoint is controlled to compensate for unavoidable drift in the free oscillation. By this additional feedback, the tip-sample interaction is maintained stable at a low value, making the instrument robust against drift and tolerant to environmental changes. As a delicate test sample, the "single ring"-mutant of the bacterial chaperonin GroEL from E. coli was imaged. To prove the efficiency of our setup, we show highly stabilized, continuous imaging with minimized user interaction while strong perturbations by exchange of the buffer solution were imposed during the scanning.

  18. Motion-Based System Identification and Fault Detection and Isolation Technologies for Thruster Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Sutter, David W.; Berkovitz, Dustin; Betts, Bradley J.; Kong, Edmund; delMundo, Rommel; Lages, Christopher R.; Mah, Robert W.; Papasin, Richard

    2003-01-01

    By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the improved system robustness and performance that comes with the thruster fault tolerance and system ID can be achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test results from the SPHERES implementation, as flown aboard the NASA KC-1 35A 0-g simulator aircraft in November 2003 are presented.

  19. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding

    PubMed Central

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-01-01

    Background/aim This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Methods Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. Results The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). Conclusions The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. PMID:26746907

  20. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    SciTech Connect

    Lamare, F. Fernandez, P.; Fayad, H.; Visvikis, D.

    2015-10-15

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid

  1. Control over molecular motion using the cis–trans photoisomerization of the azo group

    PubMed Central

    Ribagorda, María

    2012-01-01

    Summary Control over molecular motion represents an important objective in modern chemistry. Aromatic azobenzenes are excellent candidates as molecular switches since they can exist in two forms, namely the cis (Z) and trans (E) isomers, which can interconvert both photochemically and thermally. This transformation induces a molecular movement and a significant geometric change, therefore the azobenzene unit is an excellent candidate to build dynamic molecular devices. We describe selected examples of systems containing an azobenzene moiety and their motions and geometrical changes caused by external stimuli. PMID:23019434

  2. Electric-field control of magnetic domain wall motion and local magnetization reversal

    PubMed Central

    Lahtinen, Tuomas H. E.; Franke, Kévin J. A.; van Dijken, Sebastiaan

    2012-01-01

    Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO3 heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics. PMID:22355770

  3. The application of holography as a real-time three-dimensional motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    A historical introduction to holography is presented, as well as a basic description of sideband holography for stationary objects. A brief theoretical development of both time-dependent and time-independent holography is also provided, along with an analytical and intuitive discussion of a unique holographic arrangement which allows the resolution of front surface detail from an object moving at high speeds. As an application of such a system, a real-time three-dimensional motion picture camera system is discussed and the results of a recent demonstration of the world's first true three-dimensional motion picture are given.

  4. Vibrating barrier: a novel device for the passive control of structures under ground motion.

    PubMed

    Cacciola, P; Tombari, A

    2015-07-08

    A novel device, called vibrating barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves is proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. The underlying theoretical aspects of the novel control strategy are scrutinized along with its numerical modelling. Closed-form solutions are also derived to design the ViBa in the case of harmonic excitation. Numerical and experimental analyses are performed in order to investigate the efficiency of the device in mitigating the effects of ground motion waves on the structural response. A significant reduction in the maximum structural acceleration of 87% has been achieved experimentally.

  5. Vibrating barrier: a novel device for the passive control of structures under ground motion

    PubMed Central

    Cacciola, P.; Tombari, A.

    2015-01-01

    A novel device, called vibrating barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves is proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure–soil–structure interaction. The underlying theoretical aspects of the novel control strategy are scrutinized along with its numerical modelling. Closed-form solutions are also derived to design the ViBa in the case of harmonic excitation. Numerical and experimental analyses are performed in order to investigate the efficiency of the device in mitigating the effects of ground motion waves on the structural response. A significant reduction in the maximum structural acceleration of 87% has been achieved experimentally. PMID:26345731

  6. Analytical control laws of the heliocentric motion of the solar sail spacecraft

    NASA Astrophysics Data System (ADS)

    Gorbunova, Irina; Starinova, Olga

    2014-12-01

    The heliocentric motion of the solar sail spacecraft is described in classical Keplerian elements. The flat of solar sail with an ideal reflection coefficient is considered. The spacecraft performs a noncoplanar motion with the sun gravity and the light pressure. Disturbances of other celestial bodies gravity are not considered. We have received analytical terms for laws to control a solar sail, which ensure constancy or maximum rate of change of the Keplerian elements. To confirm the results correctness, we simulated the solar sail spacecraft. The spacecraft's initial orbit coincides with the average Earth orbit relative to the Sun. Authors developed a program complex to simulated the planar heliocentric movement and obtained results for motion simulation of flights to Mars and Venus. The results were compared with the simulation results obtained using the Pontryagin maximum principle.

  7. The vestibular system: multimodal integration and encoding of self-motion for motor control

    PubMed Central

    Cullen, Kathleen E.

    2014-01-01

    Understanding how sensory pathways transmit information under natural conditions remains a major goal in neuroscience. The vestibular system plays a vital role in everyday life, contributing to a wide range of functions from reflexes to the highest levels of voluntary behavior. Recent experiments establishing that vestibular (self-motion) processing is inherently multimodal also provide insight into a set of interrelated questions: What neural code is used to represent sensory information in vestibular pathways? How does the organism’s interaction with the environment shape encoding? How is self-motion information processing adjusted to meet the needs of specific tasks? This review highlights progress that has recently been made towards understanding how the brain encodes and processes self-motion to ensure accurate motor control. PMID:22245372

  8. Robotically controlled slosh-free motion of an open container of liquid

    SciTech Connect

    Feddema, J.; Dohrmann, C.; Parker, G.; Robinett, R.; Romero, V.; Schmitt, D.

    1995-10-01

    This paper describes two methods for controlling the surface of a liquid in an open container as it is being carried by a robot arm. Both methods make use of the fundamental mode of oscillation and damping of the liquid in the container as predicted from a boundary element model of the fluid. The first method uses an infinite impulse response filter to alter an acceleration profile so that the liquid remains level except for a single wave at the beginning and end of the motion. The motion of the liquid is similar to that of a simple pendulum. The second method removes the remaining two surface oscillations by tilting the container parallel to the beginning and ending wave. A double pendulum model is used to determine the trajectory for this motion. Experimental results of a FANUC S-800 robot moving a 230 mm diameter hemispherical container of water are presented.

  9. Hydrodynamic ratchet: Controlled motion of a polymer in an alternating microchannel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Stark, Holger; Mikhailov, Alexander S.

    2013-10-01

    Using ratchets, periodic or irregular oscillations can be transformed into steady translational or rotational motions. Here, we consider a model system that operates as a hydrodynamic ratchet. A polymer is placed inside a narrow channel where an oscillating Poiseuille flow is externally created. The ratchet mechanism is implemented by introducing a feedback control for the lateral position of the polymer through which its mobility becomes effectively dependent on the direction of its motion along the channel. We employ the semi-flexible elastic chain modeling for the polymer and use the method of multi-particle collision dynamics to simulate the fluid. We indeed observe directed motion of the polymer and determine the dependence of the propagation velocity on the model parameters.

  10. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  11. A Motion Control Method of Multi-joint Robots Utilizing Stiffness Adaptation for Energy Saving

    NASA Astrophysics Data System (ADS)

    Uemura, Mitsunori; Kawamura, Sadao

    This paper investigates a new motion control method of multi-joint robots utilizing stiffness adjustment of mechanical elastic elements for the purpose of energy saving. This control method is designed to realize a condition similar to resonance of linear systems by the stiffness adjustment, even though the controlled systems have nonlinear dynamics and multi degree-of-freedom. The control method has two control objectives. One is to realize trajectory tracking control. The other is to reduce actuator torque as much as possible by the stiffness adjustment. This controller does not require exact parameter values of the controlled systems. Some fundamental parts of stability analysis and an energy saving effect are discussed mathematically. Some simulation results demonstrate the effectiveness of the proposed control method.

  12. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  13. Control of humanoid robot via motion-onset visual evoked potentials

    PubMed Central

    Li, Wei; Li, Mengfan; Zhao, Jing

    2015-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918

  14. Control of humanoid robot via motion-onset visual evoked potentials.

    PubMed

    Li, Wei; Li, Mengfan; Zhao, Jing

    2014-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  15. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    NASA Technical Reports Server (NTRS)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  16. Adaptive momentum-based motion detection approach and its application on handoff in wireless networks.

    PubMed

    Chung, Tein-Yaw; Chen, Yung-Mu; Hsu, Chih-Hung

    2009-01-01

    Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%.

  17. Adaptive Momentum-Based Motion Detection Approach and Its Application on Handoff in Wireless Networks

    PubMed Central

    Chung, Tein-Yaw; Chen, Yung-Mu; Hsu, Chih-Hung

    2009-01-01

    Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%. PMID:22346724

  18. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  19. When brain damage "improves" perception: neglect patients can localize motion-shifted probes better than controls.

    PubMed

    de Vito, Stefania; Lunven, Marine; Bourlon, Clémence; Duret, Christophe; Cavanagh, Patrick; Bartolomeo, Paolo

    2015-12-01

    When we look at bars flashed against a moving background, we see them displaced in the direction of the upcoming motion (flash-grab illusion). It is still debated whether these motion-induced position shifts are low-level, reflexive consequences of stimulus motion or high-level compensation engaged only when the stimulus is tracked with attention. To investigate whether attention is a causal factor for this striking illusory position shift, we evaluated the flash-grab illusion in six patients with damaged attentional networks in the right hemisphere and signs of left visual neglect and six age-matched controls. With stimuli in the top, right, and bottom visual fields, neglect patients experienced the same amount of illusion as controls. However, patients showed no significant shift when the test was presented in their left hemifield, despite having equally precise judgments. Thus, paradoxically, neglect patients perceived the position of the flash more veridically in their neglected hemifield. These results suggest that impaired attentional processes can reduce the interaction between a moving background and a superimposed stationary flash, and indicate that attention is a critical factor in generating the illusory motion-induced shifts of location.

  20. Modeling, system identification, and control for slosh-free motion of an open container of liquid

    SciTech Connect

    Feddema, J.; Baty, R.; Dykhuizen, R.; Dohrmann, C.; Parker, G.; Robinett, R.; Romero, V.; Schmitt, D.

    1996-04-01

    This report discusses work performed under a Cooperative Research And Development Agreement (CRADA) with Corning, Inc., to analyze and test various techniques for controlling the motion of a high speed robotic arm carrying an open container of viscous liquid, in this case, molten glass. A computer model was generated to estimate the modes of oscillation of the liquid based on the shape of the container and the viscosity of the liquid. This fluid model was experimentally verified and tuned based on experimental data from a capacitive sensor on the side of the container. A model of the robot dynamics was also developed and verified through experimental tests on a Fanuc S-800 robot arm. These two models were used to estimate the overall modes of oscillation of an open container of liquid being carried by a robot arm. Using the estimated modes, inverse dynamic control techniques were used to determine a motion profile which would eliminate waves on the liquid`s surface. Experimental tests showed that residual surface waves in an open container of water at the end of motion were reduced by over 95% and that in-motion surface waves were reduced by over 75%.

  1. Quality control procedures for dynamic treatment delivery techniques involving couch motion.

    PubMed

    Yu, Victoria Y; Fahimian, Benjamin P; Xing, Lei; Hristov, Dimitre H

    2014-08-01

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  2. Using EMG to anticipate head motion for virtual-environment applications

    NASA Technical Reports Server (NTRS)

    Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion

    2005-01-01

    In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.

  3. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T.; Swanson, D. A.; Lev, E.

    2016-12-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering - a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  4. Low Thrust Relative Motion Control of Satellite Formations in Deep Space

    NASA Astrophysics Data System (ADS)

    Prioroc, Claudiu-Lucian; Mikkola, Seppo

    The problem of placing and controlling a formation of satellites on a Halo orbit is studied. The Earth-Sun circular restricted three body problem is considered. A family of artificial Halo orbits with the same periods, around the L 1 and L 2 Lagrange points in the Earth-Sun system is found using the pseudo-arc-length continuation method. The orbits are used are reference trajectories for satellites to track. The problem of orbit stability, bounding and controlling the relative motion by means of nonlinear control is addressed.

  5. Input-Shaped Link Motion Control of Planar Space Robot Equipped with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Kasai, Shinya; Kojima, Hirohisa

    Control of a space robot without actuators on the main body is an underactuated control problem. Various stabilization methods, such as the time-varying feedback control method, discontinuous feedback control method, center manifold-based method, zero-dynamics method and sliding-mode control method have been proposed. However, past studies have not considered underactuated space robots equipped with a flexible appendage, such as solar panels. If the manipulators are simply controlled to achieve the target state for the robot using the past controllers without taking a flexible appendage into consideration, residual vibration remains even after the link motion has finished. In order to suppress the residual vibration on the flexible appendage, we apply the input-shaping technique to the link motion of an underactuated planar space robot. Numerical and experimental studies are carried out to validate the proposed method for a planar dual-link space robot with a flexible appendage. The results show that the proposed method is capable of not only controlling the link angles and the main body attitude to the goal angles, but also suppressing the residual vibration on the flexible appendage.

  6. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  7. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger.

    PubMed

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human's ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  8. Adaptive control with aerospace applications

    NASA Astrophysics Data System (ADS)

    Gadient, Ross

    Robust and adaptive control techniques have a rich history of theoretical development with successful application. Despite the accomplishments made, attempts to combine the best elements of each approach into robust adaptive systems has proven challenging, particularly in the area of application to real world aerospace systems. In this research, we investigate design methods for general classes of systems that may be applied to representative aerospace dynamics. By combining robust baseline control design with augmentation designs, our work aims to leverage the advantages of each approach. This research contributes the development of robust model-based control design for two classes of dynamics: 2nd order cascaded systems, and a more general MIMO framework. We present a theoretically justified method for state limiting via augmentation of a robust baseline control design. Through the development of adaptive augmentation designs, we are able to retain system performance in the presence of uncertainties. We include an extension that combines robust baseline design with both state limiting and adaptive augmentations. In addition we develop an adaptive augmentation design approach for a class of dynamic input uncertainties. We present formal stability proofs and analyses for all proposed designs in the research. Throughout the work, we present real world aerospace applications using relevant flight dynamics and flight test results. We derive robust baseline control designs with application to both piloted and unpiloted aerospace system. Using our developed methods, we add a flight envelope protecting state limiting augmentation for piloted aircraft applications and demonstrate the efficacy of our approach via both simulation and flight test. We illustrate our adaptive augmentation designs via application to relevant fixed-wing aircraft dynamics. Both a piloted example combining the state limiting and adaptive augmentation approaches, and an unpiloted example with

  9. Truss Climbing Robot for Space Station: Design, Analysis, and Motion Control

    NASA Astrophysics Data System (ADS)

    Chung, Wing Kwong

    The application of space robots has become more popular in performing tasks such as Intra and Extra Vehicular Activities (EVA) in Low Earth Orbit. For EVA, space robots were always designed as a chain-like manipulator with a joint configuration similar to on the earth robotic arm. Based on their joint configuration, they can be classified into two main categories. The first one is the six degrees of freedom (DOF) robotic arm including Shuttle Remote Manipulator System (SRMS), Engineering Test Satellite No. 7 (ETS-VII), the Main Arm (MA) and the Small Fine Arm (SFA) of Module Remote Manipulator System (JEMRMS). The other group is the seven-DOF space robotic arm which includes European Robotic Arm (ERA) and Space Station Remote Manipulator System (SSRMS), or Canadarm2. They not only perform manipulation tasks, but also be able to navigate on the exterior of the International Space Station (ISS). In a free floating environment, motions of a space robotic arm cause the attitude change of a space station because of their dynamic coupling effect. Hence, the stabilization of the space station attitude is important to maintain the electrical energy generated by the solar panels and the signal strength for communication. Most of research in this area focuses on the motion control of a space manipulator through the study of Generalized Jacobian Matrix. Little research has been conducted specifically on the design of locomotion mechanism of a space manipulator. This dissertation proposes a novel methodology for the locomotion on a space station which aims to lower the disturbance on a space station. Without modifying the joint configuration of conventional space manipulators, the use of a new gripping mechanism is proposed which combines the advantages of active wheels and conventional grippers. To realize the proposed gripping mechanism, this dissertation also presents the design of a novel frame climbing robot (Frambot) which is equipped with the new gripping mechanism

  10. Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control.

    PubMed

    Ueki, Satoshi; Nishimoto, Yutaka; Abe, Motoyuki; Kawasaki, Haruhisa; Ito, Satoshi; Ishigure, Yasuhiko; Mizumoto, Jun; Ojika, Takeo

    2008-01-01

    This paper presents a virtual reality-enhanced hand rehabilitation support system with a symmetric master-slave motion assistant for independent rehabilitation therapies. Our aim is to provide fine motion exercise for a hand and fingers, which allows the impaired hand of a patient to be driven by his or her healthy hand on the opposite side. Since most disabilities caused by cerebral vascular accidents or bone fractures are hemiplegic, we adopted a symmetric master-slave motion assistant system in which the impaired hand is driven by the healthy hand on the opposite side. A VR environment displaying an effective exercise was created in consideration of system's characteristic. To verify the effectiveness of this system, a clinical test was executed by applying to six patients.

  11. Quaternion regularization and trajectory motion control in celestial mechanics and astrodynamics: II

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2014-07-01

    Problems of regularization in celestial mechanics and astrodynamics are considered, and basic regular quaternion models for celestial mechanics and astrodynamics are presented. It is shown that the effectiveness of analytical studies and numerical solutions to boundary value problems of controlling the trajectory motion of spacecraft can be improved by using quaternion models of astrodynamics. In this second part of the paper, specific singularity-type features (division by zero) are considered. They result from using classical equations in angular variables (particularly in Euler variables) in celestial mechanics and astrodynamics and can be eliminated by using Euler (Rodrigues-Hamilton) parameters and Hamilton quaternions. Basic regular (in the above sense) quaternion models of celestial mechanics and astrodynamics are considered; these include equations of trajectory motion written in nonholonomic, orbital, and ideal moving trihedrals whose rotational motions are described by Euler parameters and quaternions of turn; and quaternion equations of instantaneous orbit orientation of a celestial body (spacecraft). New quaternion regular equations are derived for the perturbed three-dimensional two-body problem (spacecraft trajectory motion). These equations are constructed using ideal rectangular Hansen coordinates and quaternion variables, and they have additional advantages over those known for regular Kustaanheimo-Stiefel equations.

  12. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  13. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  14. Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

    NASA Astrophysics Data System (ADS)

    Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.

    2016-05-01

    This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.

  15. Applications of DNA Nanomechanical Devices to Molecular Biology and to Programmed Dynamic Motion

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua

    Not merely is DNA a favorable genetic material, but an effective supermolecular subunit for nanoconstruction as well. In structural DNA nanotechnology, rigid branched DNA motifs have been combined with sticky-ended cohesion to build DNA objects, arrays and devices for functional purposes. Reciprocating devices are key features in macroscopic machines. In Chapter II, I report the construction of two reciprocal PX-JX2 devices, wherein the control strands leading to the PX state in one device lead to the JX2 state in the other device, and vice versa. The formation, transformation and reciprocal motions of these two devices are confirmed utilizing gel electrophoresis, and atomic force microscopy. This system is likely to be of use for molecular robotic applications where reciprocal motions are of value in addition its inherent contribution to molecular choreography and molecular aesthetics. Recently, several DNA-based nanomechanical devices have been developed as an attractive tool for fine measurements on nanoscale objects. In Chapter III, I have constructed a device wherein two DNA triple crossover (TX) molecules are connected by a shaft, similar to a previous device that measured the amount of work that can be performed by integration host factor [Shen, W., Bruist, M., Goodman, S. & Seeman, N. C., Angew. Chemie Int. Ed. 43, 4750-4752 (2004)]. In the present case, the binding site on the shaft contains the sequence recognized by apo-SoxR, the apo-form of a protein that is a redox-sensing transcriptional activator; previous data suggest that it distorts its binding site by an amount that corresponds to about two base pairs. A pair of dyes reports the fluorescence resonance energy transfer (FRET) signal between the two TX domains, reflecting changes in the shape of the device upon binding the protein. The TX domains are used to amplify the signal expected from a relatively small distortion of the DNA binding site. From FRET analysis of apo-SoxR binding, the effect of

  16. Controlling Chaos of Magnetic-Domain-Wall Motion by using Delayed-Feedback-Control with Automatic Gain-Adjustment

    NASA Astrophysics Data System (ADS)

    Utsumi, Takuya; Okuno, Hikaru

    In this research, the chaotic motion of magnetic domain wall is controlled by using Delayed-Feedback-Control (DFC) with automatic gain-adjustment, modified by Nakajima and Ueda in 1995. The method of automatic gain-adjustment is newly applied to Extended-DFC (E-DFC) for more highly performance. It is clearly confirmed that the control-gain was automatically adjusted on each results. But, in this case, the response of E-DFC has not been improved. It is found that the delayed time has strongly influenced on the response. The selective E-DFC is proposed and the response was best.

  17. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.

    PubMed

    Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik; Park, Yong Tae; Park, O Ok

    2015-03-25

    Because of their outstanding electrical and mechanical properties, graphene strain sensors have attracted extensive attention for electronic applications in virtual reality, robotics, medical diagnostics, and healthcare. Although several strain sensors based on graphene have been reported, the stretchability and sensitivity of these sensors remain limited, and also there is a pressing need to develop a practical fabrication process. This paper reports the fabrication and characterization of new types of graphene strain sensors based on stretchable yarns. Highly stretchable, sensitive, and wearable sensors are realized by a layer-by-layer assembly method that is simple, low-cost, scalable, and solution-processable. Because of the yarn structures, these sensors exhibit high stretchability (up to 150%) and versatility, and can detect both large- and small-scale human motions. For this study, wearable electronics are fabricated with implanted sensors that can monitor diverse human motions, including joint movement, phonation, swallowing, and breathing.

  18. Micropositioning and Control of an Underactuated Platform for Microscopic Applications.

    PubMed

    Park, Kihan; Desai, Jaydev P

    2016-12-01

    For automation of biological experiments at the micro-scale, highly precise manipulator equipped with a microscope is required. However, current micropositioning stages have several limitations, such as: 1) manual operation, 2) lack of rotational capability, 3) incompatibility with a microscope, and 4) small range of motion (RoM). This research aims to develop a microscope compatible XYθ micropositioning stage with large RoM for phenotyping multiple biological samples rapidly for various microscopic applications. An underactuated planar mechanism, kinematic analysis, and control of the XYθ stage are presented in this paper. The planar mechanism consists of two piezoelectric linear actuators for translational motion capability and two passive revolute joints at the tip of each linear actuator for rotational capability. Based on the kinematic analysis of the stage, controllability and control strategy of the underactuated stage is described. Finally, the feasibility of the micropositioning stage for a general positioning and orienting task is verified by both simulation and tissue core experiments.

  19. The influence of range of motion versus application of force on vertical jump performance in prepubescent girls and adult females.

    PubMed

    Floría, Pablo; Harrison, Andrew J

    2014-01-01

    This study examined whether during childhood, the parameters for the range of motion had more influence on vertical jump height than parameters for application of force. Counter-movement jumps performed by 36 girls aged between 5 and 8 years and 20 adult females were examined using force platform analysis. Multiple regression analysis of the data indicated that the parameters for the range of motion had more influence on jump height than the parameters for application of force. This was demonstrated by standardised coefficients for range of motion which were higher than the standardised coefficients for application of force. Although this trend was observed in both groups, the influence of the range of motion was relatively greater in prepubescent girls than in adult females. The present results suggest that prepubescent girls increased their jump height by increasing the range of motion over which force is applied.

  20. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  1. Folded Elastic Strip-Based Triboelectric Nanogenerator for Harvesting Human Motion Energy for Multiple Applications.

    PubMed

    Kang, Yue; Wang, Bo; Dai, Shuge; Liu, Guanlin; Pu, Yanping; Hu, Chenguo

    2015-09-16

    A folded elastic strip-based triboelectric nanogenerator (FS-TENG) made from two folded double-layer elastic strips of Al/PET and PTFE/PET can achieve multiple functions by low frequency mechanical motion. A single FS-TENG with strip width of 3 cm and length of 27 cm can generate a maximum output current, open-circuit voltage, and peak power of 55 μA, 840 V, and 7.33 mW at deformation frequency of 4 Hz with amplitude of 2.5 cm, respectively. This FS-TENG can work as a weight sensor due to its good elasticity. An integrated generator assembled by four FS-TENGs (IFS-TENG) can harvest the energy of human motion like flapping hands and walking steps. In addition, the IFS-TENG combined with electromagnetically induced electricity can achieve a completely self-driven doorbell with flashing lights. Moreover, a box-like generator integrated by four IFS-TENGs inside can work in horizontal or random motion modes and can be improved to harvest energy in all directions. This work promotes the research of completely self-driven systems and energy harvesting of human motion for applications in our daily life.

  2. Cervical Motion Segment Percent Contributions to Flexion-Extension During Continuous Functional Movement in Control Subjects and Arthrodesis Patients

    PubMed Central

    Anderst, William J; Donaldson, William F; Lee, Joon Y; Kang, James D

    2013-01-01

    Study Design Case-control. Objective To precisely quantify and compare intervertebral segmental contributions to cervical spine flexion-extension during continuous, functional flexion-extension in asymptomatic subjects to single-level anterior arthrodesis patients. Summary of Background Data Segmental contributions to cervical flexion-extension have traditionally been determined using single images collected at full flexion and full extension. These calculations neglect mid-range motion, and assume percentage contributions to motion remain constant throughout the entire flexion-extension range of motion (ROM). Methods 6 single-level (C5/C6) anterior arthrodesis patients and 18 asymptomatic control subjects performed flexion-extension while biplane radiographs were collected at 30 images per second. A previously validated tracking process determined three-dimensional vertebral position with sub-millimeter accuracy during continuous flexion-extension. Mixed-effects models of segmental percentage contribution to C2/C7 flexion-extension were developed to identify differences in percentage contribution within each motion segment, among motion segments, and between control and arthrodesis patients over the full ROM. Results The C2/C3, C3/C4 and C4/C5 motion segments made their maximum contributions during the mid-range of motion. The C5/C6 and C6/C7 motion segments, in contrast, made their maximum contributions near the start and end of the ROM. Arthrodesis patients’ contribution from the C4/C5 motion segment increased significantly over the range of motion from 30% to 95% of the total flexion-extension ROM (average increased contribution of 5.1%) and arthrodesis patients’ contribution from the C6/C7 motion segment increased significantly over the entire flexion-extension ROM (average increased percentage contribution of 8.9%) in comparison to controls. Conclusion Cervical motion segment contributions to flexion-extension change significantly during the flexion

  3. New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.

    2008-01-01

    The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.

  4. The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    1982-01-01

    Twenty-four men were randomly assigned to four equal groups matched in terms of their Coriolis Sickness Susceptibility Index (CSSI). Two groups of subjects were highly susceptible to motion sickness, and two groups were moderately susceptible. All subjects were given six C551 tests at 5-d intervals. Treatment Groups I (highly susceptible) and II (moderately susceptible) were taught to control their autonomic responses, using a training method called autogenic-feedback training (AFT) before the third, fourth, and fifth CSSI tests. Control groups III (highly susceptible) and IV (moderately susceptible) received no treatment. Results showed that both treatment groups significantly improved performance on CSSI tests after training; neither of the control groups changed significantly. Highly and moderately susceptible subjects in the two treatment groups improved at comparable rates. Highly susceptible control group subjects did not habituate across tests as readily as the moderately susceptible controls.

  5. Effect of reduced cutaneous cues on motion perception and postural control.

    PubMed

    Yi, Yongwoo; Park, Sukyung

    2009-05-01

    To investigate whether the sensory perception could be a more direct assessment of sensory deficit as oppose to the postural performance, we examined the effect of reduced cutaneous cues on motion perception and motion control. The subject was translated in a mediolateral direction with a single sinusoidal acceleration at a stimulus frequency of 0.25 Hz with a peak acceleration magnitude ranging from 0.25 to 8 mG in the dark. Two different plantar cutaneous conditions were provided: the control condition (barefoot) and the reduced cutaneous condition (foot on a spongy surface). For each foot-sole sensory condition, the subject completed six sets of 33 randomly ordered translation stimuli. After each translational stimulus, the subject reported their perceived direction of motion by pressing a hand-held button. The center of pressure (COP) and joint kinematics of the quiet stance were also measured. The results showed a significant increase in perception threshold as well as COP variation in the anteroposterior direction in the reduced cutaneous cue trials. However, a non-significant increase in COP in the mediolateral direction was shown. Multivariate covariance analysis of joint kinematics showed changes in postural coordination, such as increased reliance on hip strategy under reduced cutaneous cues condition, that have not been differentiated by univariate measures. The observed discrepancy in the significance of the contribution of plantar cutaneous cues to the detection threshold and the COP variation implies that the 'perception' could provide more direct and sensitive assessment of the sensory degradation than the 'action'.

  6. Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2015-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility. PMID:19362901

  7. The role of zygapophysial joint orientation and uncinate processes in controlling motion in the cervical spine.

    PubMed Central

    Milne, N

    1991-01-01

    Five linear and 2 angular measurements on each of C3 to T1 in a sample of 67 human skeletons were used to examine 3 hypotheses about the function of uncinate processes and zygapophysial joints in the cervical vertebral column. The material was sexed and each vertebra was rated for pathological changes. The effects of gender and pathology on the measures was assessed. The upper 4 vertebrae studied had the largest disc-facet angles, supporting the view that the articular facet orientation is responsible for the greater intervertebral disc translation occurring during sagittal motion in the neck. These upper 4 vertebrae also have the largest uncinate processes, and this observation supports the hypothesis that uncinate processes function to guide and control the anteroposterior translation which occurs during sagittal motion. The 3rd hypothesis that uncinate processes function to facilitate axial rotation is not supported by the recorded interfacet angles which appear to promote axial rotation only in the lower 4 vertebrae. Two further hypothesis are suggested. First, that the interfacet angle is responsible for controlling how strictly lateral flexion and axial rotation are coupled in cervical motion segments. Second, the suggestion is made that the high frequency of pathological change seen at the disc margins of the middle cervical vertebrae may be a result of the unusual combination of disc-facet and interfacet angles permitting more degrees of freedom than the cervical intervertebral discs can withstand. Images Fig. 3 Fig. 6 PMID:1810926

  8. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.

    PubMed

    Huo, Xueliang; Ghovanloo, Maysam

    2009-06-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.

  9. SU-E-T-244: Motion Control Challenges in High Dose Rate Brachytherapy

    SciTech Connect

    Hyvarinen, M; Leventouri, T; Pella, S; Dumitru, N

    2014-06-01

    Purpose: High dose rate (HDR) brachytherapy dose distribution is highly localized and has a very sharp fall-off. Thus the one of the most important part of the treatment is the localization and immobilization of the applicator from the implantation to the setup verification to the treatment delivery. The smallest motions of the patient can induce a small rotation, tilt, or translational movement of the applicator that can convert into miss of a significant part of the tumor or to over irradiating a nearby critical organ.The purpose of this study is to revise most of the HDR types of treatments with their applicators and their localization challenges. Since every millimeter of misplacement counts the study will look into the necessity of increasing the immobilization for several types of applicators. Methods: The study took over 136 plans generated by the treatment planning system (TPS) looking into the applicator placement in regard to the organs at risk (OR) and simulated the three possible displacements at the hottest dose point on the critical organ for several accessories to evaluate the variation of the delivered dose at the point due to the displacement. Results: Many of the present immobilization devices produced for external radiotherapy can be used to improve the localization of HDR applicators during transportation of the patient and during treatment. Conclusion: This study data indicates that an improvement of the immobilization devices for HDR is absolutely necessary. Better applicator fixation devices are required too. Developing new immobilization devices for all the applicators is recommended.

  10. Provision of Controlled Motion Accuracy of Industrial Robots and Multiaxis Machines by the Method of Integrated Deviations Correction

    NASA Astrophysics Data System (ADS)

    Krakhmalev, O. N.; Petreshin, D. I.; Fedonin, O. N.

    2016-04-01

    There is a developed method of correction of the integrated motion deviations of industrial robots and multiaxis machines, which are caused by the primary geometrical deviations of their segments. This method can be used to develop a control system providing the motion correction for industrial robots and multiaxis machines.

  11. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands.

    PubMed

    Barboiu, Mihail; Stadler, Adrian-Mihail; Lehn, Jean-Marie

    2016-03-18

    General design principles have been developed for the control of the structural features of polyheterocyclic strands and their effector-modulated shape changes. Induced defined molecular motions permit designed enforcement of helical as well as linear molecular shapes. The ability of such molecular strands to bind metal cations allows the generation of coiling/uncoiling processes between helically folded and extended linear states. Large molecular motions are produced on coordination of metal ions, which may be made reversible by competition with an ancillary complexing agent and fueled by sequential acid/base neutralization energy. The introduction of hydrazone units into the strands confers upon them constitutional dynamics, whereby interconversion between different strand compositions is achieved through component exchange. These features have relevance for nanomechanical devices. We present a morphological and functional analysis of such systems developed in our laboratories.

  12. Design and performance evaluation of a coarse/fine precision motion control system

    SciTech Connect

    Yang, H; Buice, E S; Smith, S T; Hocken, R J; Fagan, T J; Trumper, D L; Otten, D; Seugling, R M

    2005-03-02

    This abstract presents current collaborative work on the development of a stage system for accurate nanometer level positioning for scanning specimens spanning an area of 50 mm x 50 mm. The completed system employs a coarse/fine approach which comprises a short-range, six degree-of-freedom fine-motion platform (5 microns 200 micro-radians) carried by a long-range, two-axis X-Y coarse positioning system. Relative motion of the stage to a fixed metrology frame will be measured using a heterodyne laser in an eight-pass interferometer configuration. The final stage system will be housed in a vacuum environment and operated in a temperature-controlled laboratory. Results from a simple single coarse/fine axis system will be the design basis for the final multi-axis system. It is expected that initial stage performance evaluation will be presented at the conference.

  13. Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores

    PubMed Central

    Belkin, Maxim; Maffeo, Christopher; Wells, David B.

    2013-01-01

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013

  14. Control of self-motion in dynamic fluids: fish do it differently from bees.

    PubMed

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-05-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited.

  15. Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter

    NASA Astrophysics Data System (ADS)

    Jiménez-Lozano, Joel; Sen, Mihir; Dunn, Patrick F.

    2009-04-01

    Particle motion in an unsteady peristaltic fluid flow is analyzed. The fluid is incompressible and Newtonian in a two-dimensional planar geometry. A perturbation method based on a small ratio of wave height to wavelength is used to obtain a closed-form solution for the fluid velocity field. This analytical solution is used in conjunction with an equation of motion for a small rigid sphere in nonuniform flow taking Stokes drag, virtual mass, Faxén, Basset, and gravity forces into account. Fluid streamlines and velocity profiles are calculated. Theoretical values for pumping rates are compared with available experimental data. An application to ureteral peristaltic flow is considered since fluid flow in the ureter is sometimes accompanied by particles such as stones or bacteriuria. Particle trajectories for parameters that correspond to calcium oxalates for calculosis and Escherichia coli type for bacteria are analyzed. The findings show that retrograde or reflux motion of the particles is possible and bacterial transport can occur in the upper urinary tract when there is a partial occlusion of the wave. Dilute particle mixing is also investigated, and it is found that some of the particles participate in the formation of a recirculating bolus, and some of them are delayed in transit and eventually reach the walls. This can explain the failure of clearing residuals from the upper urinary tract calculi after successful extracorporeal shock wave lithotripsy. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.

  16. Application of Sampling Based Model Predictive Control to an Autonomous Underwater Vehicle

    DTIC Science & Technology

    2010-07-01

    55 Application of Sampling Based Model Predictive Control to an Autonomous Underwater Vehicle Unmanned Underwater Vehicles (UUVs) can be utilized...the vehicle can feasibly traverse. As a result, Sampling- Based Model Predictive Control (SBMPC) is proposed to simultaneously generate control...inputs and system trajectories for an autonomous underwater vehicle (AUV). The algorithm combines the benefits of sampling- based motion planning with

  17. Comparison of three different techniques for camera and motion control of a teleoperated robot.

    PubMed

    Doisy, Guillaume; Ronen, Adi; Edan, Yael

    2017-01-01

    This research aims to evaluate new methods for robot motion control and camera orientation control through the operator's head orientation in robot teleoperation tasks. Specifically, the use of head-tracking in a non-invasive way, without immersive virtual reality devices was combined and compared with classical control modes for robot movements and camera control. Three control conditions were tested: 1) a condition with classical joystick control of both the movements of the robot and the robot camera, 2) a condition where the robot movements were controlled by a joystick and the robot camera was controlled by the user head orientation, and 3) a condition where the movements of the robot were controlled by hand gestures and the robot camera was controlled by the user head orientation. Performance, workload metrics and their evolution as the participants gained experience with the system were evaluated in a series of experiments: for each participant, the metrics were recorded during four successive similar trials. Results shows that the concept of robot camera control by user head orientation has the potential of improving the intuitiveness of robot teleoperation interfaces, specifically for novice users. However, more development is needed to reach a margin of progression comparable to a classical joystick interface.

  18. Results and applications of a space suit range-of-motion study

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL

    1989-01-01

    The range of motion of space suits has traditionally been described using limited 2-D mapping of limb, torso, or arm movements performed in front of an orthogonal grid. A new technique for recovering extra-vehicular (EVA) space suit range-of-motion data during underwater testing was described in a paper presented by the author at the 1988 conference. The new technique uses digitized data which is automatically acquired from video images of the subject. Three-dimensional trajectories are recovered from these data, and can be displayed using 2-D computer graphics. Results of using this technique for the current shuttle EVA suit during underwater simulated weightlessness testing are discussed. Application of the data for use in animating anthropometric computer models is highlighted.

  19. Measurements of human force control during a constrained arm motion using a force-actuated joystick.

    PubMed

    McIntyre, J; Gurfinkel, E V; Lipshits, M I; Droulez, J; Gurfinkel, V S

    1995-03-01

    1. When interacting with the environment, human arm movements may be prevented in certain directions (i.e., when sliding the hand along a surface) resulting in what is called a "constrained motion." In the directions that the movement is restricted, the subject is instead free to control the forces against the constraint. 2. Control strategies for constrained motion may be characterized by two extreme models. Under the active compliance model, an essentially feedback-based approach, measurements of contact force may be used in real time to modify the motor command and precisely control the forces generated against the constraint. Under the passive compliance model the motion would be executed in a feedforward manner, using an internal model of the constraint geometry. The feedforward model relies on the compliant behavior of the passive mechanical system to maintain contact while avoiding excessive contact forces. 3. Subjects performed a task in which they were required to slide the hand along a rigid surface. This task was performed in a virtual force environment in which contact forces were simulated by a two-dimensional force-actuated joystick. Unknown to the subject, the orientation of the surface constraint was varied from trial to trial, and contact force changes induced by these perturbations were measured. 4. Subjects showed variations in contact force correlated with the direction of the orientation perturbation. "Upward" tilts resulted in higher contact forces, whereas "downward" tilts resulted in lower contact forces. This result is consistent with a feedforward-based control of a passively compliant system. 5. Subject responses did not, however, correspond exactly to the predictions of a static analysis of a passive, feedforward-controlled system. A dynamic analysis reveals a much closer resemblance between a passive, feedforward model and the observed data. Numerical simulations demonstrate that a passive, dynamic system model of the movement captures

  20. DLP technology application: 3D head tracking and motion correction in medical brain imaging

    NASA Astrophysics Data System (ADS)

    Olesen, Oline V.; Wilm, Jakob; Paulsen, Rasmus R.; Højgaard, Liselotte; Larsen, Rasmus

    2014-03-01

    In this paper we present a novel sensing system, robust Near-infrared Structured Light Scanning (NIRSL) for three-dimensional human model scanning application. Human model scanning due to its nature of various hair and dress appearance and body motion has long been a challenging task. Previous structured light scanning methods typically emitted visible coded light patterns onto static and opaque objects to establish correspondence between a projector and a camera for triangulation. In the success of these methods rely on scanning objects with proper reflective surface for visible light, such as plaster, light colored cloth. Whereas for human model scanning application, conventional methods suffer from low signal to noise ratio caused by low contrast of visible light over the human body. The proposed robust NIRSL, as implemented with the near infrared light, is capable of recovering those dark surfaces, such as hair, dark jeans and black shoes under visible illumination. Moreover, successful structured light scan relies on the assumption that the subject is static during scanning. Due to the nature of body motion, it is very time sensitive to keep this assumption in the case of human model scan. The proposed sensing system, by utilizing the new near-infrared capable high speed LightCrafter DLP projector, is robust to motion, provides accurate and high resolution three-dimensional point cloud, making our system more efficient and robust for human model reconstruction. Experimental results demonstrate that our system is effective and efficient to scan real human models with various dark hair, jeans and shoes, robust to human body motion and produces accurate and high resolution 3D point cloud.

  1. Early testing of a coarse/fine precision motion control system

    SciTech Connect

    Buice, E S; Yang, H; Smith, S T; Hocken, R J; Seugling, R M; Trumper, D L; Otten, D

    2005-08-01

    This abstract presents a brief overview of key components of a motion control stage for accurate nanometer level positioning for scanning specimens over an area measuring 50 mm x 50 mm. The completed system will utilize a short-range, third generation 6 degree-of-freedom fine motion control platform (4 microns, 160 micro-radians) carried by a long-range, two-axis x-y positioning system (50 mm x 50 mm). Motion of the controlled platform relative to a measurement frame will be measured using a heterodyne laser interferometer and capacitance sensing. The final stage will be mounted onto an isolation table in a vacuum chamber, itself on isolation supports mounted to a granite slab on bed rock and isolated from the main floor of the building. This whole system is housed in a temperature-controlled laboratory. It is envisaged that the current system will provide the ability to ''pick and place'' at nanometer levels and be used for long range scanning of specimens (including biological specimens), micro- /macroassembly, lithography and as a coordinate measuring machine (CMM). Furthermore, the system performance will be compared with other comparable systems at international locations such as, National Physical Laboratory (NPL) in the UK, Technical University of Eindhoven (TUE) in the Netherlands, Physikalisch-Technische Bundesanstalt (PTB) in Germany, and our own sub-atomic measuring machine (SAMM) [1, 2] at UNC-Charlotte. Critical requirements of the system are as follows: (1) Vacuum compatible to better than 20 mPa; (2) Range of 50 mm x 50 mm x 4 microns; (3) Maximum translation velocity of 5 mm {center_dot} s{sup -1}; (4) Sub-nanometer resolution; and (5) System accuracy of better than 10 nm.

  2. Motion-Capture-Enabled Software for Gestural Control of 3D Models

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony

    2012-01-01

    Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.

  3. Precision motion control with a high gain disturbance compensator for linear motors.

    PubMed

    Tan, Kok Kiong; Zhao, Shao

    2004-07-01

    In this paper, we address the problem relating to the precision control of permanent magnet linear motors to track repeated motion trajectories. A high gain disturbance compensator is developed to improve the control performance degraded due to the presence of significant disturbances. An inverse gain of the overall system model is used to set up a disturbance observer. The observed disturbance is then used to generate a "knocker" signal, to be augmented to the control signal, which can provide the additional energy necessary to overcome the effects of the disturbances. A learning scheme is used to adjust the knocker signal iteratively over the repeated cycles. Simulation and experimental results are furnished to demonstrate the effectiveness of the proposed control scheme.

  4. Real-time cooperating motion generation for man-machine systems and its application to medical technology.

    PubMed

    Seto, Fumi; Hirata, Yasuhisa; Kosuge, Kazuhiro

    2007-01-01

    In this paper, we propose a cooperating motion generation method for man-machine cooperation systems in which the machines are controlled based on the intentional force applied by a human/humans for realizing several tasks in cooperation with a human/humans. By applying this method, the systems could avoid self-collisions, collisions with obstacles and other dangerous situations during the tasks. Proposed method consists of two parts; representation method of robots' body referred to as "RoBE (Representation of Body by Elastic elements)", and cooperating motion generation method using RoBE. As the application examples of proposed method, we focused on robots cooperating with a human/humans and surgery robot tools from the aspect of medical and welfare field. We did the experiments using human-friendly robot, referred to as MR Helper, for illustrating the validity of the proposed method. We also did the computer simulation to indicate the prospects of applications of our self-collision avoidance method to surgery robot tools.

  5. Applications of AVHRR-Derived Ice Motions for the Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Maslanik, James; Emery, William

    1998-01-01

    Characterization and diagnosis of sea ice/atmosphere/ocean interactions require a synthesis of observations and modeling to identify the key mechanisms controlling the ice/climate system. In this project, we combined product generation, observational analyses, and modeling to define and interpret variability in ice motion in conjunction with thermodynamic factors such as surface temperature and albedo. The goals of this work were twofold: (1) to develop and test procedures to produce an integrated set of polar products from remotely-sensed and supporting data; and (2) to apply these data to understand processes at work in controlling sea ice distribution.

  6. Self-sustained motion of microcapsules on a substrate controlled via the repressilator regulatory network

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    2014-11-01

    We design microcapsules that undergo self-induced motion in a fluid along a substrate and are able to collectively self-organize when controlled by a biomimetic signaling network. Three microcapsules act as localized sources of distinct chemicals that diffuse through the fluid. The production rate of each chemical is modulated by a regulatory network known as the repressilator: each species represses the production of the next in a cycle. We show that this system can exhibit sustained oscillations. We then allow the diffusing species to adsorb onto the substrate, altering the surface interaction energy. Gradients in surface energy lead to motion of the microcapsules. We find that regulation via the repressilator gives rise to qualitatively different outcomes. Chemical oscillations can facilitate aggregation of the microcapsules and the aggregate can undergo sustained translational or oscillatory motion. Numerical simulation of the fluid flow, microcapsule dynamics and concentration fields is achieved by a combination of the lattice Boltzmann, immersed boundary and finite difference methods. We assess the role of hydrodynamic interactions by comparison with a simplified model that assumes a constant drag coefficient relating the force on a microcapsule to its velocity.

  7. Motion Control of Drives for Prosthetic Hand Using Continuous Myoelectric Signals

    NASA Astrophysics Data System (ADS)

    Purushothaman, Geethanjali; Ray, Kalyan Kumar

    2016-03-01

    In this paper the authors present motion control of a prosthetic hand, through continuous myoelectric signal acquisition, classification and actuation of the prosthetic drive. A four channel continuous electromyogram (EMG) signal also known as myoelectric signals (MES) are acquired from the abled-body to classify the six unique movements of hand and wrist, viz, hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD) and radial deviation (RD). The classification technique involves in extracting the features/pattern through statistical time domain (TD) parameter/autoregressive coefficients (AR), which are reduced using principal component analysis (PCA). The reduced statistical TD features and or AR coefficients are used to classify the signal patterns through k nearest neighbour (kNN) as well as neural network (NN) classifier and the performance of the classifiers are compared. Performance comparison of the above two classifiers clearly shows that kNN classifier in identifying the hidden intended motion in the myoelectric signals is better than that of NN classifier. Once the classifier identifies the intended motion, the signal is amplified to actuate the three low power DC motor to perform the above mentioned movements.

  8. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  9. Respiratory Motion of The Heart and Positional Reproducibility Under Active Breathing Control

    SciTech Connect

    Jagsi, Reshma; Moran, Jean M.; Kessler, Marc L.; Marsh, Robin B. C; Balter, James M.; Pierce, Lori J. . E-mail: ljpierce@umich.edu

    2007-05-01

    Purpose: To reduce cardiotoxicity from breast radiotherapy (RT), innovative techniques are under investigation. Information about cardiac motion with respiration and positional reproducibility under active breathing control (ABC) is necessary to evaluate these techniques. Methods and Materials: Patients requiring loco-regional RT for breast cancer were scanned by computed tomography using an ABC device at various breath-hold states, before and during treatment. Ten patients were studied. For each patient, 12 datasets were analyzed. Mutual information-based regional rigid alignment was used to determine the magnitude and reproducibility of cardiac motion as a function of breathing state. For each scan session, motion was quantified by evaluating the displacement of a point along the left anterior descending artery (LAD) with respect to its position at end expiration. Long-term positional reproducibility was also assessed. Results: Displacement of the LAD was greatest in the inferior direction, moderate in the anterior direction, and lowest in the left-right direction. At shallow breathing states, the average displacement of LAD position was up to 6 mm in the inferior direction. The maximum displacement in any patient was 2.8 cm in the inferior direction, between expiration and deep-inspiration breath hold. At end expiration, the long-term reproducibility (SD) of the LAD position was 3 mm in the A-P, 6 mm in the S-I, and 4 mm in the L-R directions. At deep-inspiration breath hold, long-term reproducibility was 3 mm in the A-P, 7 mm in the S-I, and 3 mm in the L-R directions. Conclusions: These data demonstrate the extent of LAD displacement that occurs with shallow breathing and with deep-inspiration breath hold. This information may guide optimization studies considering the effects of respiratory motion and reproducibility of cardiac position on cardiac dose, both with and without ABC.

  10. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  11. [An attempt to evaluate postural control with a magnetic motion capture system].

    PubMed

    Kudo, Koji; Mitobe, Kazutaka; Honda, Kohei; Ishikawa, Kazuo

    2013-10-01

    Measurement of the body sway can be useful in the assessment of the ability to maintain posture. It is, however, difficult to quantitatively evaluate the chronological changes in the equilibrium function in the elderly. Although it is considered that not only sway movement of body center of gravity but also head movement should be measured for essential assessment of postural control, few methods are suitable for a clinical test. In this study, we investigated the head and trunk movement in elderly subjects standing upright, using a magnetic motion capture system to substantiate its usefulness. Seven subjects aged 66 to 83 years old were instructed to stand with their feet close together on the stabilometer with eyes open and then eyes closed for periods of 30 seconds each, while the movement of the head, cervix and lumbar region (MH, MC and ML) were monitored three-dimensionally with the magnetic motion capture system. The obtained data were compared with the movement of the body's center of gravity (MCG). The results were as follows: The MH was the largest, followed by MC and ML, and the ML trace was similar to that of the MCG. MH, MC, ML and the ratio of the MH to ML increased with age, and they were considered to be a valid index for assessment of postural control. A magnetic motion capture system, which can record the movements of the head, cervix and lumbar region accurately and conveniently, is seen as potentially and clinically useful apparatus for evaluation of postural control in dizzy patients, especially the elderly.

  12. Electromechanical actuation with controllable motion based on a single-walled carbon nanotube and natural biopolymer composite.

    PubMed

    Hu, Ying; Chen, Wei; Lu, Luhua; Liu, Jinghai; Chang, Chunrui

    2010-06-22

    This paper reports novel electromechanical behavior for a natural biopolymer film due to the incorporation of a conductive carbon nanotube network. Through simple solution blending and casting, high weight fraction single-walled carbon nanotube-chitosan composite films were fabricated and exhibited electromechanical actuation properties with motion controlled by low alternating voltage stimuli in atmospheric conditions. Of particular interest and importance is that the displacement output imitated perfectly the electrical input signal in terms of frequency (<10 Hz) and waveform. Operational reliability was confirmed by stable vibration testing in air for more than 3000 cycles. Proposed electrothermal mechanism considering the alternating current-induced periodic thermal expansion and contraction of the composite film was discussed. The unique actuation performance of the carbon nanotube-biopolymer composite, coupled with ease of fabrication, low driven voltage, tunable vibration, reliable operation, and good biocompatibility, shows great possibility for implementation of dry actuators in artificial muscle and microsystems for biomimetic applications.

  13. Design and Control of a Ship Motion Simulation Platform from an Energy Efficiency Perspective

    SciTech Connect

    Lind, Randall F; Jansen, John F; Love, Lonnie J; Lloyd, Peter D; Rowe, John C; Pin, Francois G

    2009-01-01

    Most hydraulic servo systems are designed with little consideration for energy efficiency. Pumps are selected based upon required peak power demands, valves are chosen primarily for their rated flow, actuators for the maximum force. However, the design of a hydraulic servo system has great potential in terms of energy efficiency that has, for the most part, been ignored. This paper describes the design and control of a large-scale ship motion simulation platform that was designed and built at Oak Ridge National Laboratory for the Office of Naval Research. The primary reasons to incorporate energy-efficiency features into the design are cost and size reduction. A preliminary survey of proposed designs based on traditional motion simulation platform configurations (Stuart Platforms) required hydraulic power supplies approaching 1.22 MW. This manuscript describes the combined design and control effort that led to a system with the same performance requirements, however requiring a primary power supply that was less than 112 kW. The objective of this paper is to illustrate alternative design and control approaches that can significantly reduce the power requirements of hydraulic systems and improve the overall energy-efficiency of large-scale hydraulically actuated systems.

  14. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George [Reno, NV

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  15. Multicyclic control of a helicopter rotor considering the influence of vibration, loads, and control motion

    NASA Technical Reports Server (NTRS)

    Brown, T. J.; Mccloud, J. L., III

    1980-01-01

    Weighted multiple linear regression is used to establish a transfer function matrix relationship between higher harmonic control inputs and transducer vibration outputs for a controllable twist rotor. Data used in the regression were taken from the test of a KAMAN controllable twist rotor conducted in the Ames Research Center's 40- by 80-Foot Wind Tunnel in June 1977. Optimal controls to minimize fixed system vibrational levels are calculated using linear quadratic regulatory theory with a control deflection penalty included in the performance criteria. Control sensitivity to changes in control travel, forward speed, and lift and propulsive forces is examined. It is found that the linear transfer matrix is a strong function of forward speed and a weak function of lift and propulsive force. An open-loop strategy is proposed for systems with limited control travel.

  16. Leap Motion Gesture Control With Carestream Software in the Operating Room to Control Imaging: Installation Guide and Discussion.

    PubMed

    Pauchot, Julien; Di Tommaso, Laetitia; Lounis, Ahmed; Benassarou, Mourad; Mathieu, Pierre; Bernot, Dominique; Aubry, Sébastien

    2015-12-01

    Nowadays, routine cross-sectional imaging viewing during a surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). Such contact risks exposure to aseptic conditions and causes loss of time. Devices such as the recently introduced Leap Motion (Leap Motion Society, San Francisco, CA), which enables interaction with the computer without any physical contact, are of wide interest in the field of surgery, but configuration and ergonomics are key challenges for the practitioner, imaging software, and surgical environment. This article aims to suggest an easy configuration of Leap Motion on a PC for optimized use with Carestream Vue PACS v11.3.4 (Carestream Health, Inc, Rochester, NY) using a plug-in (to download at https://drive.google.com/open?id=0B_F4eBeBQc3yNENvTXlnY09qS00&authuser=0) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). Videos of surgical procedure and discussion about innovative gesture control technology and its various configurations are provided in this article.

  17. Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion

    PubMed Central

    Masuda, Tsukuru; Akimoto, Aya Mizutani; Nagase, Kenichi; Okano, Teruo; Yoshida, Ryo

    2016-01-01

    A gradient self-oscillating polymer brush surface with ordered, autonomous, and unidirectional ciliary motion has been designed. The self-oscillating polymer is a random copolymer composed of N-isopropylacrylamide and ruthenium tris(2,2′-bipyridine) [Ru(bpy)3], which acts as a catalyst for an oscillating chemical reaction, the Belousov-Zhabotinsky reaction. The target polymer brush surface was designed to have a thickness gradient by using sacrificial-anode atom transfer radical polymerization. The gradient structure of the polymer brush was confirmed by x-ray photoelectron spectroscopy, atomic force microscopy, and ultraviolet-visible spectroscopy. These analyses revealed that the thickness of the polymer brush was in the range of several tens of nanometers, and the amount of Ru(bpy)3 increased as the thickness increased. The gradient polymer brush induced a unidirectional propagation of the chemical wave from the region with small Ru(bpy)3 amounts to the region with large Ru(bpy)3 amounts. This spatiotemporal control of the ciliary motion would be useful in potential applications to functional surface such as autonomous mass transport systems. PMID:27602405

  18. Preparation of surface coatings on a conductive substrate by controlled motion of graphene nanoflakes in a liquid medium

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Qin, R. S.

    2015-02-01

    Controlled motion of graphene and graphene oxide nanoflakes in a thin liquid film on metal surfaces was studied to unravel the significant variations of the electric field effects on the nanoparticles. It was found that graphene oxide flakes were negatively charged and migrated toward anode while the electrically neutral graphene flakes moved toward cathode. Therefore, thin layers of graphene as a protective coating were produced to inhibit corrosion of underlying metals and reduce friction and wear-related mechanical failures in moving mechanical systems. The method does not require an insulated substrate to confine the high electric field to the fluidic layer. The motion of the nano-particles under pulsed electric current was very efficient. The observed effects were interpreted in a possible mechanism associated to the effect of electric field on the mobility of different particles in different conductive media. This significant phenomenon, combined with unique properties of graphene and graphene oxides, represents an exciting platform for enabling diverse applications on the preparation of protective coatings on an arbitrary conductive substrate over large areas.

  19. Manual control theory and applications. [physiological and neurological applications

    NASA Technical Reports Server (NTRS)

    Sadoff, M.; Repa, B.

    1974-01-01

    Control theory, including manual control theory, and a review of some previous physiological and neurological applications of control theory and associated engineering concepts are reported. The discussion includes a specially tailored battery of critical control tasks that are being developed to monitor astronaut performance in long term orbital flight. The application of these concepts and tasks to patients with various neurological disorders is considered.

  20. In vivo quantification of motion in liver parenchyma and its application in shistosomiasis tissue characterization

    NASA Astrophysics Data System (ADS)

    Badawi, Ahmed M.; Hashem, Ahmed M.; Youssef, Abou-Bakr M.; Abdel-Wahab, Mohamed F.

    1995-03-01

    Schistosomiasis is a major problem in Egypt, despite an active control program it is estimated to exist in about 1/3 of the population. Deposition of less functioning fibrous tissues in the liver is the major contributory factor to the hepatic pathology. Fibrous tissues consist of a complex array of connective matrix material and a variety of collagen isotopes. As a result of an increased stromal density (collagen content), the parenchyma became more ectogenic and less elastic (hard). In this study we investigated the effect of cardiac mechanical impulses from the heart and aorta on the kinetics of the liver parenchyma. Under conditions of controlled patient movements and suspended respiration, a 30 frame per second of 588 X 512 ultrasound images (cineloop, 32 pels per cm) are captured from an aTL ultrasound machine then digitized. The image acquisition is triggered by the R wave of the ECG of the patient. The motion that has a forced oscillation form in the liver parenchyma is quantified by tracking of small box (20 - 30 pels) in 16 directions for all the successive 30 frames. The tracking was done using block matching techniques (the max correlation between boxes in time, frequency domains, and the minimum SAD (sum absolute difference) between boxes). The motion is quantified for many regions at different positions within the liver parenchyma for 80 cases of variable degrees of schisto., cirrhotic livers, and for normal livers. The velocity of the tissue is calculated from the displacement (quantified motion), time between frames, and the scan time for the ultrasound scanner. We found that the motion in liver parenchyma is small in the order of very few millimeters, and the attenuation of the mechanical wave for one ECG cycle is higher in the schisto. and cirrhotic livers than in the normal ones. Finally quantification of motion in liver parenchyma due to cardiac impulses under controlled limb movement and respiration may be of value in the characterization of

  1. Organ motion due to respiration: the state of the art and applications in interventional radiology and radiation oncology

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Mulcahy, Maureen; Piyasena, Rohan; Zhou, Tong; Dieterich, Sonja; Xu, Sheng; Banovac, Filip; Wong, Kenneth H.

    2005-04-01

    Tracking organ motion due to respiration is important for precision treatments in interventional radiology and radiation oncology, among other areas. In interventional radiology, the ability to track and compensate for organ motion could lead to more precise biopsies for applications such as lung cancer screening. In radiation oncology, image-guided treatment of tumors is becoming technically possible, and the management of organ motion then becomes a major issue. This paper will review the state-of-the-art in respiratory motion and present two related clinical applications. Respiratory motion is an important topic for future work in image-guided surgery and medical robotics. Issues include how organs move due to respiration, how much they move, how the motion can be compensated for, and what clinical applications can benefit from respiratory motion compensation. Technology that can be applied for this purpose is now becoming available, and as that technology evolves, the subject will become an increasingly interesting and clinically valuable topic of research.

  2. Controlling Molecular Motion, Assembly and Coupling as a Step towards Molecular Actuators

    NASA Astrophysics Data System (ADS)

    Murphy, Colin James

    changes in the supramolecular self-assembly of thioethers. Chapter 9 details how the ordering and length of surface-bound hydrogen-bonded chains of methanol are dictated by the underlying surface and examines an unreported chiral meta-stable methanol hexamer. Single-molecule measurements can answer many of the current questions in the field of molecular machines and lead to control of molecular motion. Development of mechanisms to direct molecular motion and to couple this motion to external systems is crucial for the rational design of new molecular machinery with functionalities such as mass transport, propulsion, separations, sensing, signaling and chemical reactions.

  3. Neural-network-based fuzzy logic control system with applications on compliant robot control

    NASA Astrophysics Data System (ADS)

    Hor, MawKae; Lu, Hui L.

    1994-10-01

    In view of the success of neural network applications in inverted pendulum control, speech recognition, and other problem solving, we believe that one could inject the noise removing concepts and learning spirits into the algorithm in constructing the neural networks and apply it to the various tasks such as compliant coordinated motion using multiple robots. Based on the fuzzy logic, a fuzzy logical control system is a logical system which is much closer to human thinking than any other logical systems. During recent years, fuzzy logic control has emerged as a fruitful area in applications, especially the applications lacking quantitative data regarding the input-output relations. Whereas, the connectionist model injects the learning ability to the fuzzy logic system. This model, proposed by Lin and Lee, is a connected neural network that embedded the fuzzy rules in the architecture. Since this model is general enough and we expect the embedded fuzzy concepts can solve the problems caused by the defective training data, it is chosen as our base structure. Appropriate modifications have been made to this model to reflect the real situations encountered in the robot applications. Our goal is to control two different types of robots for coordinated motion using sensory feedback information.

  4. Non-contact start/stop motion control of HDD suspension using shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Lim, Soo-Cheol; Park, Jong-Sung; Choi, Seung-Bok; Park, Young-Pil

    2001-10-01

    In hard disk drives (HDD), an important issue related to increased storage density is the tribological problem of the head/disk interface. The conventional head gimbal assembly (HGA) of the HDD is used in a contact start/stop mode which results in wear particles and debris. This may cause a serious problem for the read/write function. In this paper, we propose a new type of suspension featuring a shape memory alloy (SMA) actuator in order to prevent friction between the head (slider) and disk. As a first step, a finite element analysis is undertaken to investigate modal characteristics of the proposed HGA. Using the principal modal parameters, such as natural frequency, a control system model is established and a sliding mode control algorithm to achieve a non-contact start/stop (non-CSS) mode is formulated. The key control principle for accomplishing the non-CSS mode is that the control input is to be employed in the SMA actuator before the disk rotates, and is disconnected when the angular velocity of the disk is fully developed to achieve a certain flying height. In order to demonstrate the effectiveness of the proposed control system, a conventional HGA is modified to integrate the SMA actuator. The control algorithm is experimentally realized and controlled motions for the non-CSS mode are presented in the time domain.

  5. Noncontact start/stop motion control of HDD suspension using shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Lim, SooCheol; Park, Jong-Sung; Choi, Seung-Bok; Park, Young-Pil

    2001-08-01

    In hard disk drive (HDD), and important issue related to increased storage density is the tribological problem of the head/disk interface. The conventional head gimbal assembly (HGA) of the HDD is contact start/stop (CSS) mode which results in wear particles and debris. This may cause a serious problem for read/write function. In this work, we propose a new type of suspension featuring shape memory alloy (SMA) actuator in order to prevent the friction between the slider and the dksi. As a first step, a finite element analysis is undertaken to investigate modal characteristics of the proposed SMA-HGA. Using the principal modal parameters such as natural frequency, a control system model is established and sliding mode control algorithm to achieve non-contact start/stop (Non-CSS) mode is formulated. The control principle for accomplishing the Non-CSS mode is briefly discussed as follows. The control input is employed to SMA actuator before the disk rotates, and disconnected when the angular velocity of the disk is fully developed to have a certain flying height. In order to demonstrate the effectiveness of the proposed control system, one of conventional HGA is modified to integrate the SMA actuator. The control algorithm is experimentally realized and controlled motions for Non-CSS mode are presented in time domain.

  6. A control theory approach to the analysis and synthesis of the experimentally observed motion primitives.

    PubMed

    Nori, Francesco; Frezza, Ruggero

    2005-11-01

    Recent experiments on frogs and rats, have led to the hypothesis that sensory-motor systems are organized into a finite number of linearly combinable modules; each module generates a motor command that drives the system to a predefined equilibrium. Surprisingly, in spite of the infiniteness of different movements that can be realized, there seems to be only a handful of these modules. The structure can be thought of as a vocabulary of "elementary control actions". Admissible controls, which in principle belong to an infinite dimensional space, are reduced to the linear vector space spanned by these elementary controls. In the present paper we address some theoretical questions that arise naturally once a similar structure is applied to the control of nonlinear kinematic chains. First of all, we show how to choose the modules so that the system does not loose its capability of generating a "complete" set of movements. Secondly, we realize a "complete" vocabulary with a minimal number of elementary control actions. Subsequently, we show how to modify the control scheme so as to compensate for parametric changes in the system to be controlled. Remarkably, we construct a set of modules with the property of being invariant with respect to the parameters that model the growth of an individual. Robustness against uncertainties is also considered showing how to optimally choose the modules equilibria so as to compensate for errors affecting the system. Finally, the motion primitive paradigm is extended to locomotion and a related formalization of internal (proprioceptive) and external (exteroceptive) variables is given.

  7. MOCAD: A Tool for Graphical and Interactive Calculation and Optimization of Cam Mechanisms and Motion Control Systems

    NASA Astrophysics Data System (ADS)

    Heine, A.; Berger, M.

    The classical meaning of motion design is the usage of laws of motion with convenient characteristic values. Whereas the software MOCAD supports a graphical and interactive mode of operation, among others by using an automatic polynomial interpolation. Besides a direct coupling for motion control systems, different file formats for data export are offered. The calculation of plane and spatial cam mechanisms is also based on the data, generated in the motion design module. Drawing on an example of an intermittent cam mechanism with an inside cam profile used as a new drive concept for indexing tables, the influence of motion design on the transmission properties is shown. Another example gives an insight into the calculation and export of envelope curves for cylindrical cam mechanisms. The gained geometry data can be used for generating realistic 3D-models in the CAD-system Pro/ENGINEER, using a special data exchange format.

  8. Controlled and uncontrolled motion in the circular, restricted three-body problem: Dynamically natural spacecraft formations

    NASA Astrophysics Data System (ADS)

    Basilio, Ralph Ramos

    Spacecraft formation flying involves operating multiple spacecraft in a pre-determined geometrical shape such that the configuration yields both individual and system benefits. One example is an over-flight of the same spatial position by spacecraft in geocentric orbit with the intent to create a complementary data set of remotely sensed observables. Another example is controlling to a high degree of accuracy the distance between spacecraft in heliocentric orbit to create a virtual, large-diameter interferometer telescope. Although Keplerian orbits provide the basic framework for general and precision spacecraft formation flying they also present limitations. Spacecraft are generally constrained to operate only in circular and elliptical orbits, parabolic paths, or hyperbolic trajectories around celestial bodies. Applying continuation methods and bifurcation theory techniques to the circular, restricted three-body problem - where stable and unstable periodic orbits exist around equilibrium points - creates an environment that is more orbit rich. After surmounting a similar challenge with test particles in the circular, restricted three-vortex problem in fluid mechanics as a proof-of-concept, it was shown that spacecraft traveling in uncontrolled motion along separate and distinct planar or three-dimensional periodic orbits could be placed in controlled motion, i.e. a controller is enabled and later disabled at precisely the proper positions, to have them phase-locked on a single periodic orbit. Although it was possible to use this controller in a resonant frequency/orbit approach to establish a formation, it was clearly shown that a separate controller could be used in conjunction with the first to expedite the formation establishment process. Creation of these dynamically natural spacecraft formations or multi-spacecraft platforms will enable the 'loiter, synchronize/coordinate, and observe' approach for future engineering and scientific missions where flexibility

  9. Application of model based control to robotic manipulators

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1988-01-01

    A robot that can duplicate humam motion capabilities in such activities as balancing, reaching, lifting, and moving has been built and tested. These capabilities are achieved through the use of real time Model-Based Control (MBC) techniques which have recently been demonstrated. MBC accounts for all manipulator inertial forces and provides stable manipulator motion control even at high speeds. To effectively demonstrate the unique capabilities of MBC, an experimental robotic manipulator was constructed, which stands upright, balancing on a two wheel base. The mathematical modeling of dynamics inherent in MBC permit the control system to perform functions that are impossible with conventional non-model based methods. These capabilities include: (1) Stable control at all speeds of operation; (2) Operations requiring dynamic stability such as balancing; (3) Detection and monitoring of applied forces without the use of load sensors; (4) Manipulator safing via detection of abnormal loads. The full potential of MBC has yet to be realized. The experiments performed for this research are only an indication of the potential applications. MBC has no inherent stability limitations and its range of applicability is limited only by the attainable sampling rate, modeling accuracy, and sensor resolution. Manipulators could be designed to operate at the highest speed mechanically attainable without being limited by control inadequacies. Manipulators capable of operating many times faster than current machines would certainly increase productivity for many tasks.

  10. Manual control of yaw motion with combined visual and vestibular cues

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.; Young, L. R.

    1977-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation was modelled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A correction to the frequency responses is provided by a separate measurement of manual control performance in an analogous visual pursuit nulling task. The resulting dual-input describing function for motion perception dependence on combined cue presentation supports the complementary model, in which vestibular cues dominate sensation at frequencies above 0.05 Hz. The describing function model is extended by the proposal of a non-linear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  11. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    NASA Astrophysics Data System (ADS)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  12. Research on the modeling of the missile's disturbance motion and the initial control point optimization

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhu, Dalin; Tang, Shengjing

    2012-11-01

    The initial trajectory design of the missile is an important part of the overall design, but often a tedious calculation and analysis process due to the large dimension nonlinear differential equations and the traditional statistical analysis methods. To improve the traditional design methods, a robust optimization concept and method are introduced in this paper to deal with the determination of the initial control point. First, the Gaussian Radial Basis Network is adopted to establish the approximate model of the missile's disturbance motion based on the disturbance motion and disturbance factors analysis. Then, a direct analytical relationship between the disturbance input and statistical results is deduced on the basis of Gaussian Radial Basis Network model. Subsequently, a robust optimization model is established aiming at the initial control point design problem and the niche Pareto genetic algorithm for multi-objective optimization is adopted to solve this optimization model. An integral design example is give at last and the simulation results have verified the validity of this method.

  13. Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

    ERIC Educational Resources Information Center

    Milne, Elizabeth; White, Sarah; Campbell, Ruth; Swettenham, John; Hansen, Peter; Ramus, Franck

    2006-01-01

    Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control,…

  14. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    SciTech Connect

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V.; Sykes, Jenna; Wong, Rebecca K.S.; Dinniwell, Rob E.; Kim, John; Ringash, Jolie; Brierley, James D.; Cummings, Bernard J.; Brade, Anthony; Dawson, Laura A.

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed by lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ≤5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ≤5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ≤10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ≥60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.

  15. Active Flow Control of the Near Wake of an Axisymmetric Body in Prescribed Motion

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2014-11-01

    Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric moving wind tunnel bluff body model are exploited for modification of its near wake and thereby its global unsteady aerodynamic loads. The model is supported by eight servo-controlled wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The body moves along a prescribed trajectory controllable in six degrees of freedom using closed loop feedback from an external camera system. Actuation is effected by an integrated azimuthally-segmented array of four aft-facing synthetic jet modules around the perimeter of the tail end. In the present investigations, the aerodynamic loads are controlled during time-periodic axial and rotational motions with varying reduced frequencies of up to 0.259. It is shown that this flow control approach modifies the near wake and induces aerodynamic loads that are comparable to the baseline model dynamic loads. Control of the model's unsteady aerodynamic characteristics may be adopted for in flight stabilization.

  16. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  17. Emulating a robotic manipulator arm with an hybrid motion-control system

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; León-Galicia, A.; Noriega-Hernández, M.; Salazar-Hueta, A.

    2015-01-01

    A motion control system with four and 1/2 degrees of freedom, designed to move small objects within a 0.25 m3 space, parallel to a horizontal table, with high speed and performance similar to a robotic manipulator arm was built. The machine employs several actuators and control devices. Its main characteristic is to incorporate a servomotor, steeper motors, electromechanical and fluid power actuators and diverse control resources. A group of actuators arranged on a spherical coordinates system is attached to the servomotor platform. A linear pneumatic actuator with an angular grip provides the radial extension and load clamping capacity. Seven inductive proximity sensors and one encoder provide feedback, for operating the actuators under closed loop conditions. Communication between the sensors and control devices is organized by a PLC. A touch screen allows governing the system remotely, easily and interactively, without knowing the specific programming language of each control component. The graphic environment on the touch screen guides the user to design and store control programs, establishing coordinated automatic routines for moving objects in space, simulation and implementation of industrial positioning or machining processes.

  18. Application of a spring-dashpot system to clinical lung tumor motion data

    SciTech Connect

    Ackerley, E. J.; Wilson, P. L.; Cavan, A. E.; Berbeco, R. I.; Meyer, J.

    2013-02-15

    Purpose: The treatment efficacy of radiation therapy for lung tumors can be increased by compensating for breath-induced tumor motion. In this study, we quantitatively examine a mathematical model of pseudomechanical linkages between an external surrogate signal and lung tumor motion. Methods: A spring-dashpot system based on the Voigt model was developed to model the correlation between abdominal respiratory motion and tumor motion during lung radiotherapy. The model was applied to clinical data obtained from 52 treatments ('beams') from 10 patients, treated on the Mitsubishi Real-Time Radiation Therapy system, Sapporo, Japan. In Stage 1, model parameters were optimized for individual patients and beams to determine reference values and to investigate how well the model can describe the data. In Stage 2, for each patient the optimal parameters determined for a single beam were applied to data from other beams to investigate whether a beam-specific set of model parameters is sufficient to model tumor motion over a course of treatment. Results: In Stage 1, the baseline root mean square (RMS) residual error for all individually optimized beam data was 0.90 {+-} 0.40 mm (mean {+-} 1 standard deviation). In Stage 2, patient-specific model parameters based on a single beam were found to model the tumor position closely, even for irregular beam data, with a mean increase with respect to Stage 1 values in RMS error of 0.37 mm. On average, the obtained model output for the tumor position was 95% of the time within an absolute bound of 2.0 and 2.6 mm in Stages 1 and 2, respectively. The model was capable of dealing with baseline, amplitude and frequency variations of the input data, as well as phase shifts between the input abdominal and output tumor signals. Conclusions: These results indicate that it may be feasible to collect patient-specific model parameters during or prior to the first treatment, and then retain these for the rest of the treatment period. The model has

  19. Analysis of Timing Control Mechanism of Utterance and Body Motion Using Dialogue between Human and Communication Robot

    NASA Astrophysics Data System (ADS)

    Takasugi, Shoji; Yamamoto, Tomohito; Muto, Yumiko; Abe, Hiroyuki; Miyake, Yoshihiro

    The purpose of this study is to clarify the effects of timing control of utterance and body motion in human-robot interaction. Our previous study has already revealed the correlation of timing of utterance and body motion in human-human communication. Here we proposed a timing control model based on our previous research and estimated its influence to realize human-like communication using a questionnaire method. The results showed that the difference of effectiveness between the communication with the timing control model and that without it was observed. In addition, elderly people evaluated the communication with timing control much higher than younger people. These results show not only the importance of timing control of utterance and body motion in human communication but also its effectiveness for realizing human-like human-robot interaction.

  20. Materials Control for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael

    2005-01-01

    The distant future of mankind and the ultimate survivability of the human race, as it is known today, will depend on mans' ability to break earthly bonds and establish new territorial positions throughout the universe. Man must therefore be positioned to not only travel to, but also, to readily adapt to numerous and varying environments. For this mass migration across the galaxies nothing is as import to the human race as is NASA's future missions into Low Earth Orbit (LEO), to the moon, and/or Mars. These missions will form the building blocks to eternity for mankind. From these missions, NASA will develop the foundations for these building blocks based on sound engineering and scientific principles, both known and yet to be discovered. The integrity of the program will lead to development, tracking and control of the most basic elements of hardware production: That being development and control of applications of space flight materials. Choosing the right material for design purposes involves many considerations, such as governmental regulations associated with manufacturing operations, both safety of usage and of manufacturing, general material usage requirements, material longevity and performance requirements, material interfacing compatibility and material usage environments. Material performance is subject to environmental considerations in as much as a given material may perform exceptionally well at standard temperatures and pressures while performing poorly under non-standard conditions. These concerns may be found true for materials relative to the extreme temperatures and vacuum gradients of high altitude usage. The only way to assure that flight worthy materials are used in design is through testing. However, as with all testing, it requires both time on schedule and cost to the operation. One alternative to this high cost testing approach is to rely on a materials control system established by NASA. The NASA community relies on the MAPTIS materials

  1. Investigation of the dynamics of angular motion and construction of algorithms for controlling the angular momentum of spacecraft using a magnetic attitude control system

    NASA Astrophysics Data System (ADS)

    Egorov, Yu. G.; Kulkov, V. M.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2016-11-01

    The problem of controlling the angular momentum of spacecraft using magnetic attitude control systems interacting with the Earth's magnetic field is considered. A mathematical model for the angular motion dynamics of a spacecraft has been constructed. An approach to determining the parameters of the control law for a spacecraft attitude control and stabilization system that ensures angular momentum dissipation is proposed.

  2. Altered sensory-motor control of the head as an etiological factor in space-motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1989-01-01

    Mechanical unloading during head movements in weightlessness may be an etiological factor in space-motion sickness. We simulated altered head loading on Earth without affecting vestibular stimulation by having subjects wear a weighted helmet. Eight subjects were exposed to constant velocity rotation about a vertical axis with direction reversals every 60 sec. for eight reversals with the head loaded and eight with the head unloaded. The severity of motion sickness elicited was significantly higher when the head was loaded. This suggests that altered sensory-motor control of the head is also an etiological factor in space-motion sickness.

  3. A Study of Longitudinal Control Problems at Low and Negative Damping and Stability with Emphasis on Effects of Motion Cues

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.

    1961-01-01

    As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human

  4. Biologically inspired devices for easily controlling the motion of magnetic flux quanta

    NASA Astrophysics Data System (ADS)

    Zhu, B. Y.; Marchesoni, F.; Nori, Franco

    2003-05-01

    Motor proteins employ non-equilibrium fluctuations in anisotropic media to transport cargo at the cellular level. Here we consider anisotropic pinning to transport magnetic flux quanta inside superconductor. In particular, we consider: (1) composite pins by superimposing two interpenetrating arrays of weak and strong pinning centers; (2) triangular blind antidots; (3) V-shaped pinning sites. Specifically, we study stochastic transport of fluxons by alternating current (AC) rectification. Our simulated systems provide fluxon pumps, or fluxon “rectifiers”, because the applied electrical AC force is transformed into a net DC motion of fluxons. The asymmetry of the ratchet-shaped pinning landscape induce this “diode” effect, which can have important applications in devices, like SQUID magnetometers, and for fluxon optics, including convex and concave fluxon lenses.

  5. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  6. Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility

    NASA Technical Reports Server (NTRS)

    Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

    2014-01-01

    The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

  7. Characterizing and controlling the motion of ssDNA in a solid-state nanopore.

    PubMed

    Luan, Binquan; Martyna, Glenn; Stolovitzky, Gustavo

    2011-11-02

    Sequencing DNA in a synthetic solid-state nanopore is potentially a low-cost and high-throughput method. Essential to the nanopore-based DNA sequencing method is the ability to control the motion of a single-stranded DNA (ssDNA) molecule at single-base resolution. Experimental studies showed that the average translocation speed of DNA driven by a biasing electric field can be affected by ionic concentration, solvent viscosity, or temperature. Even though it is possible to slow down the average translocation speed, instantaneous motion of DNA is too diffusive to allow each DNA base to stay in front of a sensor site for its measurement. Using extensive all-atom molecular dynamics simulations, we study the diffusion constant, friction coefficient, electrophoretic mobility, and effective charge of ssDNA in a solid-state nanopore. Simulation results show that the spatial fluctuation of ssDNA in 1 ns is comparable to the spacing between neighboring nucleotides in ssDNA, which makes the sensing of a DNA base very difficult. We demonstrate that the recently proposed DNA transistor could potentially solve this problem by electrically trapping ssDNA inside the DNA transistor and ratcheting ssDNA base-by-base in a biasing electric field. When increasing the biasing electric field, we observed that the translocation of ssDNA changes from ratcheting to steady-sliding. The simulated translocation of ssDNA in the DNA transistor was theoretically characterized using Fokker-Planck analysis.

  8. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals.

    PubMed

    Naggar, Isaac; Nakase, Ko; Lazar, Jason; Salciccioli, Louis; Selesnick, Ivan; Stewart, Mark

    2014-07-01

    Vagal inputs control pacemaking and conduction systems in the heart. Anatomical evidence suggests a direct ventricular action, but functional evidence that separates direct and indirect (via the conduction system) vagal actions is less well established. We studied vagus nerve stimulation (VNS) during sinus rhythm and ventricular fibrillation (VF) in pigs and sheep to determine: 1) the range of unilateral and bilateral actions (inotropic and chronotropic) and 2) whether VNS alters left ventricular motion and/or electrical activity during VF, a model of abnormal electrical conduction of the left ventricle that excludes sinus and atrioventricular nodal function. Adult pigs (N=8) and sheep (N=10) were anesthetized with urethane and mechanically ventilated. VNS was performed in animals at 1, 2, 5, 10, 20, 50, and 100Hz for 20s. VF was induced with direct current to the ventricles or occlusion of the left anterior descending coronary artery. In 4 pigs and 3 sheep, left ventricular wall motion was assessed from endocardial excursion in epicardial echocardiography. In sheep and pigs, the best frequency among those tested for VNS during sinus rhythm to produce sustained electrical and mechanical ventricular standstill was 50Hz for unilateral or bilateral stimulation. When applied during VF, bilateral VNS increased the variability of the dominant VF frequency, indicating a direct impact on the excitability of ventricular myocytes, and decreased endocardial excursion by more than 50% during VF. We conclude that the vagus nerve directly modulates left ventricular function independently from its effects on the conduction system.

  9. Influence of vortex structures on the controlled motion of an above-water screwless robot

    NASA Astrophysics Data System (ADS)

    Klenov, Anatolii I.; Kilin, Alexander A.

    2016-12-01

    This paper is devoted to an experimental investigation of the motion of a rigid body set in motion by rotating two unbalanced internal masses. The results of experiments confirming the possibility of motion by this method are presented. The dependence of the parameters of motion on the rotational velocity of internal masses is analyzed. The velocity field of the fluid around the moving body is examined.

  10. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  11. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    ERIC Educational Resources Information Center

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  12. Modeling and boundary control of translational and rotational motions of nonlinear slender beams in three-dimensional space

    NASA Astrophysics Data System (ADS)

    Do, K. D.

    2017-02-01

    Equations of motion of extensible and shearable slender beams with large translational and rotational motions under external loads in three-dimensional space are first derived in a vector form. Boundary feedback controllers are then designed to ensure that the beams are practically K∞-exponentially stable at the equilibrium. The control design, well-posedness, and stability analysis are based on two Lyapunov-type theorems developed for a class of evolution systems in Hilbert space. Numerical simulations on a slender beam immersed in sea water are included to illustrate the effectiveness of the proposed control design.

  13. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  14. Chaos control of Hastings-Powell model by combining chaotic motions

    NASA Astrophysics Data System (ADS)

    Danca, Marius-F.; Chattopadhyay, Joydev

    2016-04-01

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.

  15. Chaos control of Hastings-Powell model by combining chaotic motions.

    PubMed

    Danca, Marius-F; Chattopadhyay, Joydev

    2016-04-01

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.

  16. Image registration via level-set motion: applications to atlas-based segmentation.

    PubMed

    Vemuri, B C; Ye, J; Chen, Y; Leonard, C M

    2003-03-01

    Image registration is an often encountered problem in various fields including medical imaging, computer vision and image processing. Numerous algorithms for registering image data have been reported in these areas. In this paper, we present a novel curve evolution approach expressed in a level-set framework to achieve image intensity morphing and a simple non-linear PDE for the corresponding coordinate registration. The key features of the intensity morphing model are that (a) it is very fast and (b) existence and uniqueness of the solution for the evolution model are established in a Sobolev space as opposed to using viscosity methods. The salient features of the coordinate registration model are its simplicity and computational efficiency. The intensity morph is easily achieved via evolving level-sets of one image into the level-sets of the other. To explicitly estimate the coordinate transformation between the images, we derive a non-linear PDE-based motion model which can be solved very efficiently. We demonstrate the performance of our algorithm on a variety of images including synthetic and real data. As an application of the PDE-based motion model, atlas based segmentation of hippocampal shape from several MR brain scans is depicted. In each of these experiments, automated hippocampal shape recovery results are validated via manual "expert" segmentations.

  17. Applications of fuzzy logic to control and decision making

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

  18. Through-wafer interrogation of microstructure motion for MEMS feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    1999-09-01

    Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.

  19. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.

    PubMed

    Miura, Shingo; Banno, Taisuke; Tonooka, Taishi; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2014-07-15

    Self-propelled motion of micrometer-sized substances has drawn much attention as an autonomous transportation system. One candidate vehicle is a chemically driven micrometer-sized oil droplet. However, to the best of our knowledge, there has been no report of a chemical reaction system controlling the three-dimensional motion of oil droplets underwater. In this study, we developed a molecular system that controlled the self-propelled motion of 4-heptyloxybenzaldehyde oil droplets by using novel gemini cationic surfactants containing carbonate linkages (2G12C). We found that, in emulsions containing sodium hydroxide, the motion time of the self-propelled oil droplets was longer in the presence of 2G12C than in the presence of gemini cationic surfactants without carbonate linkages. Moreover, in 2G12C solution, oil droplets at rest underwent unidirectional, self-propelled motion in a gradient field toward a higher concentration of sodium hydroxide. Even though they stopped within several seconds, they restarted in the same direction. 2G12C was gradually hydrolyzed under basic conditions to produce a pair of the corresponding monomeric surfactants, which exhibit different interfacial properties from 2G12C. The prolonged and restart motion of the oil droplets were explained by the increase in the heterogeneity of the interfacial tension of the oil droplets.

  20. Applications of robust control theory - Educational implications

    NASA Technical Reports Server (NTRS)

    Dorato, P.; Yedavalli, R. K.

    1992-01-01

    A survey is made of applications of robust control theory to problems of flight control, control of flexible space structures, and engine control which have appeared in recent conferences and journals. An analysis is made of which theoretical techniques are most commonly used and what implications this has for graduate and undergraduate education in aerospace engineering.

  1. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  2. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    PubMed

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  3. Telepresence system development for application to the control of remote robotic systems

    NASA Technical Reports Server (NTRS)

    Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien

    1989-01-01

    The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.

  4. Bio-inspired motion planning algorithms for autonomous robots facilitating greater plasticity for security applications

    NASA Astrophysics Data System (ADS)

    Guo, Yi; Hohil, Myron; Desai, Sachi V.

    2007-10-01

    Proposed are techniques toward using collaborative robots for infrastructure security applications by utilizing them for mobile sensor suites. A vast number of critical facilities/technologies must be protected against unauthorized intruders. Employing a team of mobile robots working cooperatively can alleviate valuable human resources. Addressed are the technical challenges for multi-robot teams in security applications and the implementation of multi-robot motion planning algorithm based on the patrolling and threat response scenario. A neural network based methodology is exploited to plan a patrolling path with complete coverage. Also described is a proof-of-principle experimental setup with a group of Pioneer 3-AT and Centibot robots. A block diagram of the system integration of sensing and planning will illustrate the robot to robot interaction to operate as a collaborative unit. The proposed approach singular goal is to overcome the limits of previous approaches of robots in security applications and enabling systems to be deployed for autonomous operation in an unaltered environment providing access to an all encompassing sensor suite.

  5. Controlled Release Applications of Organometals.

    ERIC Educational Resources Information Center

    Thayer, John S.

    1981-01-01

    Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)

  6. Coherent Control of Population Transfer via Linear Chirp in Liquid Solution: The Role of Motional Narrowing.

    PubMed

    McRobbie, Porscha L; Geva, Eitan

    2016-05-19

    The conditions under which linear chirp can be used to control population transfer between the electronic states of a chromophore dissolved in liquid solution are investigated. To this end, we model the chromophore as a two-state system with shifted electronic potential energy surfaces and a fluctuating electronic transition frequency. The fluctuations are described as an exponentially correlated Gaussian stochastic process, which can be characterized by the average fluctuation amplitude, σ, and correlation time, τc. The time-dependent Schrödinger equation is solved numerically for an ensemble of stochastic histories, at different values of σ and τc, and under a wide range of pulse intensities and linear chirp coefficients. In the limit τc → ∞, we find that control diminishes rapidly as soon as σ exceeds the bandwidth of the pulse. However, we also find that control can be regained by reducing τc. We attribute this trend to motional narrowing, whereby decreasing τc narrows down the effective bandwidth of the solvent-induced fluctuations. The results suggest that the choice of methanol as a solvent in the actual experimental demonstration of chirp control by Cerullo et al. [ Chem. Phys. Lett. 1996 , 262 , 362 - 368 ] may have contributed to its success, due to the particularly short τc (∼20 fs) that the rapid librations of this hydrogen bonded liquid give rise to. The results also give rise to the rather surprising prediction that coherent control in liquid solution can be strongly dependent on the choice of solvent and be improved upon by choosing solvents that correspond to lower values of στc.

  7. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    The main objective is to determine the feasibility of utilizing controllable mechanical seals for aerospace applications. A potential application was selected as a demonstration case: the buffer gas seal in a LOX (liquid oxygen) turbopump. Currently, floating ring seals are used in this application. Their replacement with controllable mechanical seals would result in substantially reduced leakage rates. This would reduce the required amount of stored buffer gas, and therefore increase the vehicle payload. For such an application, a suitable controllable mechanical seal was designed and analyzed.

  8. Anticipatory Control of Motion-to-Force Transitions With the Fingertips Adapts Optimally to Task Difficulty

    PubMed Central

    Cianchetti, Flor A.

    2010-01-01

    Moving our fingertips toward objects to produce well-directed forces immediately upon contact is fundamental to dexterous manipulation. This apparently simple motion-to-force transition in fact involves a time-critical, predictive switch in control strategy. Given that dexterous manipulation must accommodate multiple mechanical conditions, we investigated whether and how this transition adapts to task difficulty. Eight adults (19–39 yr) produced ramps of isometric vertical fingertip force against a rigid surface immediately following a tapping motion. By changing target surface friction and size, we defined an easier (sandpaper, 11 mm diam) versus a more difficult (polished steel, 5 mm diam) task. As in prior work, we assembled fine-wire electromyograms from all seven muscles of the index finger into a seven-dimensional vector defining the full muscle coordination pattern—and quantified its temporal evolution as its alignment with a reference coordination pattern vector for steady-state force production. As predicted by numerical optimizations to neuromuscular delays, our empirical and sigmoidal nonlinear regression analyses show that the coordination pattern transitions begin sooner for the more difficult tasks than for the easier tasks (∼120 ms, P < 0.02, and ∼115 ms, P < 0.015, respectively) and that the coordination pattern transition in alignment is well represented by a sigmoidal trend (R^2 > 0.7 in most cases). Importantly, the force vector following contact had smaller directional error (P < 0.02) for the more difficult task even though the transition in coordination pattern was less stereotypical and uniform than for the easier task. These adaptations of transition strategy to task difficulty are compatible with an optimization to counteract neuromuscular delays and noise to enable this fundamental element of dexterous manipulation. PMID:19889857

  9. Anticipatory control of motion-to-force transitions with the fingertips adapts optimally to task difficulty.

    PubMed

    Cianchetti, Flor A; Valero-Cuevas, Francisco J

    2010-01-01

    Moving our fingertips toward objects to produce well-directed forces immediately upon contact is fundamental to dexterous manipulation. This apparently simple motion-to-force transition in fact involves a time-critical, predictive switch in control strategy. Given that dexterous manipulation must accommodate multiple mechanical conditions, we investigated whether and how this transition adapts to task difficulty. Eight adults (19-39 yr) produced ramps of isometric vertical fingertip force against a rigid surface immediately following a tapping motion. By changing target surface friction and size, we defined an easier (sandpaper, 11 mm diam) versus a more difficult (polished steel, 5 mm diam) task. As in prior work, we assembled fine-wire electromyograms from all seven muscles of the index finger into a seven-dimensional vector defining the full muscle coordination pattern-and quantified its temporal evolution as its alignment with a reference coordination pattern vector for steady-state force production. As predicted by numerical optimizations to neuromuscular delays, our empirical and sigmoidal nonlinear regression analyses show that the coordination pattern transitions begin sooner for the more difficult tasks than for the easier tasks ( approximately 120 ms, P < 0.02, and approximately 115 ms, P < 0.015, respectively) and that the coordination pattern transition in alignment is well represented by a sigmoidal trend (R;2 > 0.7 in most cases). Importantly, the force vector following contact had smaller directional error (P < 0.02) for the more difficult task even though the transition in coordination pattern was less stereotypical and uniform than for the easier task. These adaptations of transition strategy to task difficulty are compatible with an optimization to counteract neuromuscular delays and noise to enable this fundamental element of dexterous manipulation.

  10. Hand interception of occluded motion in humans: a test of model-based vs. on-line control

    PubMed Central

    Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. PMID:26133803

  11. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    PubMed

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience.

  12. Quantification of vocal fold motion using echography: application to recurrent nerve paralysis detection

    NASA Astrophysics Data System (ADS)

    Cohen, Mike-Ely; Lefort, Muriel; Bergeret-Cassagne, Héloïse; Hachi, Siham; Li, Ang; Russ, Gilles; Lazard, Diane; Menegaux, Fabrice; Leenhardt, Laurence; Trésallet, Christophe; Frouin, Frédérique

    2015-03-01

    Recurrent nerve paralysis (RP) is one of the most frequent complications of thyroid surgery. It reduces vocal fold mobility. Nasal endoscopy, a mini-invasive procedure, is the conventional way to detect RP. We suggest a new approach based on laryngeal ultrasound and a specific data analysis was designed to help with the automated detection of RP. Ten subjects were enrolled for this feasibility study: four controls, three patients with RP and three patients without RP according to nasal endoscopy. The ultrasound protocol was based on a ten seconds B-mode acquisition in a coronal plane during normal breathing. Image processing included three steps: 1) automated detection of two consecutive closing and opening images, corresponding to extreme positions of vocal folds in the sequence of B-mode images, using principal component analysis of the image sequence; 2) positioning of three landmarks and robust tracking of these points using a multi-pyramidal refined optical flow approach; 3) estimation of quantitative parameters indicating left and right fractions of mobility, and motion symmetry. Results provided by automated image processing were compared to those obtained by an expert. Detection of extreme images was accurate; tracking of landmarks was reliable in 80% of cases. Motion symmetry indices showed similar values for controls and patients without RP. Fraction of mobility was reduced in cases of RP. Thus, our CAD system helped in the detection of RP. Laryngeal ultrasound combined with appropriate image processing helped in the diagnosis of recurrent nerve paralysis and could be proposed as a first-line method.

  13. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  14. Complexity control of fast motion estimation in H.264/MPEG-4 AVC with rate-distortion-complexity optimization

    NASA Astrophysics Data System (ADS)

    Wu, Mo; Forchhammer, Søren; Aghito, Shankar M.

    2007-01-01

    A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the past statistics and a control scheme. The algorithm also works well for scene change condition. Test results for coding interlaced video (720 x576 PAL) are reported.

  15. Gain-compensated sinusoidal scanning of a galvanometer mirror in proportional-integral-differential control using the pre-emphasis technique for motion-blur compensation.

    PubMed

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Senoo, Taku; Ishikawa, Masatoshi

    2016-07-20

    We propose a method to achieve precise sine-wave path tracking for real-time motion-blur compensation to extend the corresponding frequency spectrum in proportional-integral-differential (PID) control by using a pre-emphasis technique. We calculate pre-emphasis coefficients in advance to follow a sine wave with a gain of 0 dB and multiply the input signal by these pre-emphasis coefficients. In experiments, we were thus able to extend the greatest frequency from 100 to 500 Hz and achieve gain improvement of approximately 3 dB at 400 and 500 Hz. For the application of inspection, we confirmed that motion blur is significantly reduced when the system operates at high frequency, and we achieved a responsiveness 3.3 times higher than that of our previous system.

  16. pH-dependent control of particle motion through surface interactions with patterned polymer brush surfaces.

    PubMed

    Dunderdale, Gary; Howse, Jonathan; Fairclough, Patrick

    2012-09-11

    In this Article, we show that inclined silicon surfaces patterned with poly(methacrylic acid) brushes are able to control the position and movement of 20 μm silica particles, which are propelled across the patterned surface by sedimentation forces. Three different types of behavior were observed depending on the angle between the direction in which a particle sedimented and the orientation of the polymer-brush silicon interface. At small angles, particles were found to sediment to the brush interface and then sediment following the direction of the brush interface. At larger angles, particles sedimented to the interface and then followed the direction of the brush interface, but then after a certain distance changed direction to pass over the interface. At the largest angles where the brush interface was approximately perpendicular to the motion of the particle, particles were found to travel over the interface unperturbed. This behavior was also found to be pH dependent, allowing the formation of pH responsive "gates", which allow particles to pass at low pH but not at high pH. It was also found that if patterned polymer brush surfaces were oriented in the correct way, they were able to control the number of particles present at specific locations.

  17. Immunomagnetic Nanoscreening of Circulating Tumor Cells with a Motion Controlled Microfluidic System

    PubMed Central

    Huang, Yu-Yen; Hoshino, Kazunori; Chen, Peng; Wu, Chung-Hsien; Lane, Nancy; Huebschman, Michael; Liu, Huaying; Sokolov, Konstantin; Uhr, Jonathan W.; Frenkel, Eugene P.

    2012-01-01

    Combining the power of immunomagnetic assay and microfluidic microchip operations, we successfully detected rare CTCs from clinical blood samples. The microfluidic system is operated in a flip-flop mode, where a computer-controlled rotational holder with an array of microfluidic chips inverts the microchannels. We have demonstrated both theoretically and experimentally that the direction of red blood cell (RBC) sedimentation with regards to the magnetic force required for cell separation is important for capture efficiency, throughput, and purity. The flip-flop operation reduces the stagnation of RBCs and non-specific binding on the capture surface by alternating the direction of the magnetic field with respect to gravity. The developed immunomagnetic microchip-based screening system exhibits high capture rates (more than 90%) for SkBr3, PC3, and Colo205 cell lines in spiked screening experiments and successfully isolates CTCs from patient blood samples. The proposed motion controlled microchip-based immunomagnetic system shows great promise as a clinical tool for cancer diagnosis and prognosis. PMID:23109037

  18. A recursive approach to the equations of motion for the maneuvering and control of flexible multi-body systems

    NASA Technical Reports Server (NTRS)

    Kwak, Moon K.; Meirovitch, Leonard

    1991-01-01

    Interest lies in a mathematical formulation capable of accommodating the problem of maneuvering a space structure consisting of a chain of articulated flexible substructures. Simultaneously, any perturbations from the 'rigid body' maneuvering and any elastic vibration must be suppressed. The equations of motion for flexible bodies undergoing rigid body motions and elastic vibrations can be obtained conveniently by means of Lagrange's equations in terms of quasi-coordinates. The advantage of this approach is that it yields equations in terms of body axes, which are the same axes that are used to express the control forces and torques. The equations of motion are nonlinear hybrid differential quations. The partial differential equations can be discretized (in space) by means of the finite element method or the classical Rayleigh-Ritz method. The result is a set of nonlinear ordinary differential equations of high order. The nonlinearity can be traced to the rigid body motions and the high order to the elastic vibration. Elastic motions tend to be small when compared with rigid body motions.

  19. Stochastic MPC with applications to process control

    NASA Astrophysics Data System (ADS)

    Jurado, I.; Millán, P.; Quevedo, D.; Rubio, F. R.

    2015-04-01

    This paper presents a model predictive control formulation for Networked Control Systems subject to independent and identically distributed delays and packet dropouts. The design takes into account the presence of a communication network in the control loop, resorting to a buffer at the actuator side to store and consistently apply delayed control sequences when fresh control inputs are not available. The proposed approach uses a statistical description of transmissions to optimise the expected future control performance conditioned upon the current system state, previously calculated control packets and transmission acknowledgements. Experimental studies using a quadruple tank process illustrate the applicability of the method to process control.

  20. Future applications of simulators in process control

    SciTech Connect

    Ruppel, F.; Wysor, W.

    1997-03-21

    Future applications of simulators in process control will see activities with high return on investment in areas such as concurrent engineering, hardware-in-the-loop controller testing, process fault detection, and Internet-retrievable simulation models and tools. These applications are based on advancing technology in the field of simulation technology. In this paper, the advancing technology will be reviewed, and projections to future uses of simulators in process control will be made.

  1. Introduction to structure from motion and its applications in remote sensing

    SciTech Connect

    Fair, Matt B

    2011-01-11

    This talk discusses my experience at Los Alamos National Laboratories developing the Wide Area Persistent Surveillance (WAPS) system AngelFire and the problems with working with low resolution surface models. This experience provided a motivation to seek solutions to utilize the redundant WAPS imagery to build surface models of the urban environment. Structure from Motion (SfM) is a process that takes multiple view imagery and compute the 3D structure of a scene. We will walk through the basic algorithm and discuss areas for optimization. Military services and intelligence agencies face long-standing challenges with processing, exploiting, and disseminating ISR data. The problem is that too much data is being produced and not enough people to look at it and the problem is not going away. As a result of this data overload, we need to shift the way we think about data and find creative ways to use and present it so it can be easily digested by decision makers. SfM also provides a means for developing a data processing and organization architecture. Applications for various remote sensing applications will be discussed for motivation for why SfM and Multi-View Stereo rendering is an important area that needs to be continued to be developed.

  2. Nonlinear dynamics and chaotic motions in feedback-controlled two- and three-degree-of-freedom robots

    SciTech Connect

    Ravishankar, A.S. Ghosal, A.

    1999-01-01

    The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper, the authors analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. The authors first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. The authors show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, they analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator, respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, the authors resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and the authors show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.

  3. 76 FR 51017 - PPL Montana, LLC; Notice of Application for Amendment of License and Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... nine developments is located on the Madison and Missouri Rivers in Gallatin, Madison, Lewis and Clark and Cascade Counties in Montana. g. Pursuant to: Federal Power Act, 16 U.S.C. 791a-825r. h. Applicant... writing to the Secretary of the Commission. n. Comments, Protests, or Motions to Intervene: Anyone...

  4. Multi-step motion planning: Application to free-climbing robots

    NASA Astrophysics Data System (ADS)

    Bretl, Timothy Wolfe

    This dissertation addresses the problem of planning the motion of a multi-limbed robot to "free-climb" vertical rock surfaces. Free-climbing relies on natural features and friction (such as holes or protrusions) rather than special fixtures or tools. It requires strength, but more importantly it requires deliberate reasoning: not only must the robot decide how to adjust its posture to reach the next feature without falling, it must plan an entire sequence of steps, where each one might have future consequences. This process of reasoning is called multi-step planning. A multi-step planning framework is presented for computing non-gaited, free-climbing motions. This framework derives from an analysis of a free-climbing robot's configuration space, which can be decomposed into constraint manifolds associated with each state of contact between the robot and its environment. An understanding of the adjacency between manifolds motivates a two-stage strategy that uses a candidate sequence of steps to direct the subsequent search for motions. Three algorithms are developed to support the framework. The first algorithm reduces the amount of time required to plan each potential step, a large number of which must be considered over an entire multi-step search. It extends the probabilistic roadmap (PRM) approach based on an analysis of the interaction between balance and the topology of closed kinematic chains. The second algorithm addresses a problem with the PRM approach, that it is unable to distinguish challenging steps (which may be critical) from impossible ones. This algorithm detects impossible steps explicitly, using automated algebraic inference and machine learning. The third algorithm provides a fast constraint checker (on which the PRM approach depends), in particular a test of balance at the initially unknown number of sampled configurations associated with each step. It is a method of incremental precomputation, fast because it takes advantage of the sample

  5. Transdermal scopolamine for prevention of motion sickness : clinical pharmacokinetics and therapeutic applications.

    PubMed

    Nachum, Zohar; Shupak, Avi; Gordon, Carlos R

    2006-01-01

    A transdermal therapeutic system for scopolamine (TTS-S) was developed to counter the adverse effects and short duration of action that has restricted the usefulness of scopolamine when administered orally or parenterally. The plaster contains a reservoir of 1.5 mg of scopolamine programmed to deliver 0.5 mg over a 3-day period. A priming dose (140 microg) is incorporated into the adhesive layer to saturate certain binding sites within the skin and to accelerate the achievement of steady-state blood levels. The remainder is released at a constant rate of approximately 5 microg/hour. The protective plasma concentration of scopolamine is estimated to be 50 pg/mL. TTS-S attains that concentration after 6 hours; a steady state of about 100 pg/mL is achieved 8-12 hours after application. Yet 20-30% of subjects failed to attain the estimated protective concentration, and plasma concentrations measured in subjects who failed to respond to TTS-S were lower than in responders. These findings may explain some of the treatment failures. Overall, the product appears to be the approximate functional equivalent of a 72-hour slow intravenous infusion. A combination of transdermal and oral scopolamine (0.3 or 0.6 mg) was effective and well tolerated in producing desired plasma concentrations 1-hour post-treatment. TTS-S has proved to be significantly superior to placebo in reducing the incidence and severity of motion sickness by 60-80%. It was more effective than oral meclizine or cinnarizine, similar to oral scopolamine 0.6 mg or promethazine plus ephedrine, and the same as or superior to dimenhydrinate. The addition of ephedrine or the use of two patches did not improve its efficacy, but rather increased the rate of adverse effects. TTS-S was most effective against motion sickness 8-12 hours after application. Despite previous evidence to the contrary, a recent bioavailability study demonstrated similar intraindividual absorption and sustained clinical efficacy with long

  6. Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography.

    PubMed

    Pauchard, Yves; Liphardt, Anna-Maria; Macdonald, Heather M; Hanley, David A; Boyd, Steven K

    2012-06-01

    Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (ε(T)) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount.

  7. Green's function approach to the dynamics-controlled truncation formalism: Derivation of the χ(3) equations of motion

    NASA Astrophysics Data System (ADS)

    Kwong, N. H.; Binder, R.

    2000-03-01

    The dynamics-controlled truncation (DCT) formalism is a successful microscopic approach that describes coherent correlations in optically excited semiconductors. For practical reasons (including numerical evaluations), its application is limited to lowest-order nonlinearities, such as the χ(3) regime. Therefore, it is not convenient to use this formalism to examine the role played by incoherent many-body effects, such as carrier-carrier scattering and screening. Traditionally, the most powerful approach to study incoherent effects and correlations in highly excited semiconductors is that of nonequilibrium Green's functions (NGF). A combination of the insights and technical advantages provided by the two (NGF and DCT) approaches will lead to a comprehensive microscopic theory for nonlinear optical phenomena in semiconductors. In this paper, we take a first step in this direction by presenting detailed one-to-one relations between the two formalisms within the χ(3) approximation. Starting from the standard perturbation theory of nonequilibrium Green's functions, we derive the essential minimal order factorization theorems, to arbitrary order, of DCT and the equations of motions for the interband polarization and the ``biexcitonic'' correlation function. This lays the foundation for future diagrammatic high-intensity generalizations of the DCT formalism.

  8. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.

    PubMed

    Liang, Jiajie; Huang, Lu; Li, Na; Huang, Yi; Wu, Yingpeng; Fang, Shaoli; Oh, Jiyoung; Kozlov, Mikhail; Ma, Yanfeng; Li, Feifei; Baughman, Ray; Chen, Yongsheng

    2012-05-22

    Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational isomerization of polydiacetylene (PDA) and the outstanding intrinsic features of graphene together for the first time, we design and fabricate an electromechanical bimorph actuator composed of a layer of PDA crystal and a layer of flexible graphene paper through a simple yet versatile solution approach. Under low applied direct current (dc), the graphene-PDA bimorph actuator with strong mechanical strength can generate large actuation motion (curvature is about 0.37 cm(-1) under a current density of 0.74 A/mm(2)) and produce high actuation stress (more than 160 MPa/g under an applied dc of only 0.29 A/mm(2)). When applying alternating current (ac), this actuator can display reversible swing behavior with long cycle life under high frequencies even up to 200 Hz; significantly, while the frequency and the value of applied ac and the state of the actuators reach an appropriate value, the graphene-PDA actuator can produce a strong resonance and the swing amplitude will jump to a peak value. Moreover, this stable graphene-PDA actuator also demonstrates rapidly and partially reversible electrochromatic phenomenon when applying an ac. Two mechanisms-the dominant one, electric-induced deformation, and a secondary one, thermal-induced expansion of PDA-are proposed to contribute to these interesting actuation performances of the graphene-PDA actuators. On the basis of these results, a mini-robot with controllable direction of motion based on the graphene-PDA actuator is designed to illustrate the great potential of our discoveries for practical use. Combining the unique actuation mechanism and many outstanding properties of

  9. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  10. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  11. Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Tobita, Kazuhiro

    2012-10-01

    We study the dynamical behavior of counter traffic flow through a sequence of signals (traffic lights) controlled by a phase shift. There are two lanes for the counter traffic flow: the first lane is for east-bound vehicles and the second lane is for west-bound vehicles. The green-wave strategy is studied in the counter traffic flow where the phase shift of signals in the second lane has opposite sign to that in the first lane. A nonlinear dynamic model of the vehicular motion is presented by nonlinear maps at a low density. There is a distinct difference between the traffic flow in the first lane and that in the second lane. The counter traffic flow exhibits very complex behavior on varying the cycle time, the phase difference, and the split. Also, the fundamental diagram is derived by the use of the cellular automaton (CA) model. The dependence of east-bound and west-bound vehicles on cycle time, phase difference, and density is clarified.

  12. Input relegation control for gross motion of a kinematically redundant manipulator

    SciTech Connect

    Unseren, M.A.

    1992-10-01

    This report proposes a method for resolving the kinematic redundancy of a serial link manipulator moving in a three-dimensional workspace. The underspecified problem of solving for the joint velocities based on the classical kinematic velocity model is transformed into a well-specified problem. This is accomplished by augmenting the original model with additional equations which relate a new vector variable quantifying the redundant degrees of freedom (DOF) to the joint velocities. The resulting augmented system yields a well specified solution for the joint velocities. Methods for selecting the redundant DOF quantifying variable and the transformation matrix relating it to the joint velocities are presented so as to obtain a minimum Euclidean norm solution for the joint velocities. The approach is also applied to the problem of resolving the kinematic redundancy at the acceleration level. Upon resolving the kinematic redundancy, a rigid body dynamical model governing the gross motion of the manipulator is derived. A control architecture is suggested which according to the model, decouples the Cartesian space DOF and the redundant DOF.

  13. MRI-Compatible Manipulator With Remote-Center-of-Motion Control

    PubMed Central

    Hata, Nobuhiko; Tokuda, Junichi; Hurwitz, Shelley; Morikawa, Shigehiro

    2010-01-01

    Purpose To develop and assess a needle-guiding manipulator for MRI-guided therapy that allows a physician to freely select the needle insertion path while maintaining remote center of motion (RCM) at the tumor site. Materials and Methods The manipulator consists of a three-degrees-of-freedom (DOF) base stage and passive needle holder with unconstrained two-DOF rotation. The synergistic control keeps the Virtual RCM at the preplanned target using encoder outputs from the needle holder as input to motorize the base stage. Results The manipulator assists in searching for an optimal needle insertion path which is a complex and time-consuming task in MRI-guided ablation therapy for liver tumors. The assessment study showed that accuracy of keeping the virtual RCM to predefined position is 3.0 mm. In a phantom test, the physicians found the needle insertion path faster with than without the manipulator (number of physicians = 3, P = 0.001). However, the alignment time with the virtual RCM was not shorter when imaging time for planning were considered. Conclusion The study indicated that the robot holds promise as a tool for accurately and interactively selecting the optimal needle insertion path in liver ablation therapy guided by open-configuration MRI. PMID:18407542

  14. An application of oscillation-damped motion for suspended payloads to the advanced integrated maintenance system

    SciTech Connect

    Noakes, M.W. ); Petterson, B.J.; Werner, J.C. )

    1990-06-01

    The transportation of objects using overhead cranes can induce pendular motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories has shown that oscillation-damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. Initial studies have been completed using a CIMCORP XR6100 gantry robot. The Advanced Integrated Maintenance System (AIMS) is an engineering and operations test bed developed for remote maintenance and handling studies within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory. The goal of CFRP has been to advanced the technology of in-cell systems planned for future nuclear fuel cycle facilities. The AIMS provides the capabilities to examine the needs and constraints necessary for hot-cell remote maintenance and includes a force-reflecting master/slave teleoperator and overhead transporter system. The associated control system provides a flexible programming environment conducive to controls experimentation. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific implementation of the oscillation damping methods for the AIMS transporter. Hardware and software requirements and constraints for proper operation are discussed.

  15. Heterobimetallic porphyrin complexes displaying triple dynamics: coupled metal motions controlled by constitutional evolution.

    PubMed

    Le Gac, Stéphane; Fusaro, Luca; Roisnel, Thierry; Boitrel, Bernard

    2014-05-07

    A bis-strap porphyrin ligand (1), with an overhanging carboxylic acid group on each side of the macrocycle, has been investigated toward the formation of dynamic libraries of bimetallic complexes with Hg(II), Cd(II), and Pb(II). Highly heteroselective metalation processes occurred in the presence of Pb(II), with Hg(II) or Cd(II) bound out-of-plane to the N-core and "PbOAc" bound to a carboxylate group of a strap on the opposite side. The resulting complexes, 1(Hg)·PbOAc and 1(Cd)·PbOAc, display three levels of dynamics. The first is strap-level (interactional dynamics), where the PbOAc moiety swings between the left and right side of the strap owing to a second sphere of coordination with lateral amide functions. The second is ligand-level (motional dynamics), where 1(Hg)·PbOAc and 1(Cd)·PbOAc exist as two degenerate states in equilibrium controlled by a chemical effector (AcO(-)). The process corresponds to a double translocation of the metal ions according to an intramolecular migration of Hg(II) or Cd(II) through the N-core, oscillating between the two equivalent overhanging carbonyl groups, coupled to an intermolecular pathway for PbOAc exchanging between the two equivalent overhanging carboxylate groups (N-core(up) ⇆ N-core(down) coupled to strap(down) ⇆ strap(up), i.e., coupled motion #1 in the abstract graphic). The third is library-level (constitutional dynamics), where a dynamic constitutional evolution of the system was achieved by the successive addition of two chemical effectors (DMAP and then AcO(-)). It allowed shifting equilibrium forward and backward between 1(Hg)·PbOAc and the corresponding homobimetallic complexes 1(Hg2)·DMAP and 1(Pb)·PbOAc. The latter displays a different ligand-level dynamics, in the form of an intraligand coupled migration of the Pb(II) ions (N-core(up) ⇆ strap(up) coupled to strap(down) ⇆ N-core(down), i.e., coupled motion #2 in the abstract graphic). In addition, the neutral "bridged" complexes 1HgPb and 1Cd

  16. Relative Motion Integrated Coupled Control for Spacecraft Formation Using Gauss Pseudospectral Method

    NASA Astrophysics Data System (ADS)

    Wu, Yunhua; Cao, Xibin; Xing, Yanjun; Zheng, Pengfei; Zhang, Shijie

    This paper addresses the problem of how to control spacecraft formation with coupled translational and rotational dynamics with optimized fuel usage using a single body fixed thruster and reaction wheels. The orientation of the thrust vector is constrained by the attitude and angular velocity. In particular, the star camera cannot point at the sun during formation maneuvering. The formation coupled control, which is a difficult problem with nonlinear and nonconvex attitude dynamics, is posed as a nonlinear optimal control problem and solved via direct transcription using the Gauss pseudospectral method. Examples demonstrate application of the proposed approach with simulated trajectory optimization of a dual-spacecraft formation initialization and a three-spacecraft reconfiguration problem.

  17. Excitation of Intra-bunch Vertical Motion in the SPS - Implications for Feedback Control of Ecloud and TMCI Instabilities

    SciTech Connect

    Cesaratto, J.M.; Fox, J.D.; Pivi, M.T.; Rivetta, C.H.; Turgut, O.; Uemura, S.; Hofle, W.; Wehrle, U.; /CERN

    2012-06-01

    Electron cloud (ecloud) and transverse mode coupled-bunch instabilities (TMCI) limit the bunch intensity in the CERN SPS. This paper presents experimental measurements in the SPS of single-bunch motion driven by a GHz bandwidth vertical excitation system. The final goal is to quantify the change in internal bunch dynamics as instability thresholds are approached, and quantify the frequencies of internal modes as ecloud effects become significant. Initially, we have been able to drive the beam and view its motion. We show the excitation of barycentric, head-tail and higher vertical modes at different bunch intensities. The beam motion is analyzed in the time domain, via animated presentations of the sampled vertical signals, and in the frequency domain, via spectrograms showing the modal frequencies vs. time. The demonstration of the excitation of selected internal modes is a significant step in the development of the feedback control techniques.

  18. Application of Hyperelastic-based Active Mesh Model in Cardiac Motion Recovery

    PubMed Central

    Yousefi-Banaem, Hossein; Kermani, Saeed; Daneshmehr, Alireza; Saneie, Hamid

    2016-01-01

    Considering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium. By displacement estimation of some points in the four-dimensional cardiac magnetic resonance imaging series, using a similarity criterion, the elementary deformations are estimated, then using the Moore–Penrose inverse matrix approach, all point deformations are obtained. Using this process, the cardiac wall motion is quantized to mechanically determine local parameters to investigate the cardiac wall functionality. This process was implemented and tested over 10 healthy and 20 patients with myocardial infarction. In all patients, the process was able to precisely determine the affected region. The proposed approach was also compared with linear one and the results demonstrated its superiority respect to the linear model. PMID:27563570

  19. Reactionless camera inspection with a free-flying space robot under reaction null-space motion control

    NASA Astrophysics Data System (ADS)

    Sone, Hiroki; Nenchev, Dragomir

    2016-11-01

    The possibility of implementing reactionless motion control w.r.t. base orientation of a free-flying space robot in practical tasks is addressed. It is shown that such possibility depends strongly on the kinematic/dynamic design parameters as well as on the mission task. A successful implementation of a camera inspection task is reported. The presence of kinematic redundancy and the manipulator attachment position are shown to play important roles. More specifically, for a manipulator arm with a typical seven degree-of-freedom (DoF) kinematic structure, it is shown that two motion patterns, wrist reorientation and folding/unfolding of the arm, result in almost reactionless motion. The orientation pattern is adopted as the main task for camera inspection, while the remaining four DoFs are used to ensure complete reactionless motion and to minimize the position errors. Since the composition of these tasks introduces the so-called algorithmic singularities, two methods are suggested to alleviate the problem. Furthermore, it is shown that other types of singularities may also be introduced in case of an inappropriate choice of the manipulator attachment position. At the end, numerical analysis is performed to show that reactionless motion provides an advantage in terms of kinetic energy as well.

  20. 75 FR 21286 - Bowersock Mills and Power Company; Notice of Application Accepted for Filing, Soliciting Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ..., Soliciting Motions To Intervene and Protests, Ready for Environmental Analysis, and Soliciting Comments..., or via e-mail at monte.terhaar@ferc.gov . j. Deadline for filing motions to intervene and protests... 33 gigawatt-hours annually. The electricity produced by the project would be sold to a local...

  1. The effect of object motion in Fraunhofer holography with application to velocity measurements

    NASA Technical Reports Server (NTRS)

    Dotson, W. P., Jr.

    1970-01-01

    Experimental results extend the Fraunhofer holography theory to include moving objects. Conclusions indicate objects may move up to ten times their mean diameter during observation time. Their motion produces fringe patterns descriptive of that motion from which it is possible to reconstruct the hologram and measure the velocity.

  2. Applications in Robotics and Controls

    NASA Astrophysics Data System (ADS)

    Youcef-Toumi, Kamal

    2008-06-01

    Recent industry trends have set new standards in business dealings and trades. Issues such as time to market, shoter market wondows, product performance, rapid increase of product complexity, costly mistakes, costly late introductions, and customer expectations have changed significantly. These trends have also influenced to a great extend the academic world. Some of these trends will be illustrated through examples which include automated systems, robotics, biotechnollogy, and nanotechnology. The examples will include concepts and prototypes of engineering systems in the macro, micro and nanodomains. The presentation also amphasizes the merging of the traditionally segregated disciplines into one multidisciplinary modeling, design, optimization and control approach.

  3. Application of orthogonal eigenstructure control to flight control design

    NASA Astrophysics Data System (ADS)

    Rastgaar Aagaah, M. A.; Ahmadian, M.; Southward, S. C.

    2008-03-01

    Orthogonal eigenstructure control is used for designing a control law that decouples the dynamic modes of a flying vehicle. Orthogonal eigenstructure control is a feedback control method for linear time invariant multi-input multi-output systems. This method has been recently developed by authors. The advantage of this control method over eigenstructure assignment methods is that there is no need for defining the closed-loop poles or shaping the closed-loop eigenvectors. This method eliminates the error due to the difference between achievable and desirable eigenvectors, by finding vectors orthogonal to the open-loop eigenvectors within the achievable eigenvectors set and replacing the open-loop eigenvectors with them. This method is also applicable to the systems with non-collocated actuators and sensors. Application of this method for designing a flight control law for the lateral directional dynamics of an F-18 HARV is presented, and compared to the results of an eigenstructure assignment method. In this case study, the actuators and sensors are not collocated. It is shown that the application of the orthogonal eigenstructure control results in a more significant dynamic modes decoupling in comparison to the application of the eigenstructure assignment technique.

  4. Vehicle dynamics applications of optimal control theory

    NASA Astrophysics Data System (ADS)

    Sharp, R. S.; Peng, Huei

    2011-07-01

    The aim of the paper is to survey the various forms of optimal-control theory which have been applied to automotive problems and to present illustrative examples of applications studies, with assessments of the state of the art and of the contributions made through the use of optimal-control ideas. After a short introduction to the topic mentioning several questions to which optimal-control theory has been addressed, brief reviews of automotive-applicable optimal-control theory are given. There are outlines of the Linear Quadratic Regulator, without and with state reconstruction and then with the addition of disturbance preview, the nonlinear regulator or state-dependent-Riccati equation method, general numerical optimal-control theory including indirect and direct methods, model predictive control and robust control. Applications of the theory to active and semi-active suspension design and performance, worst-case manoeuvring, minimum-time manoeuvring and high-quality driving are then discussed in detail. Application sections describe the problem, the theory that has been used, what has been discovered and what remains to be found. The record of optimal-control theory in aiding the understanding of the various issues, in helping with system designs and knowledge of what is possible, and in guiding future research is assessed. Some ideas about future work are included.

  5. Development and Application of a Rubric for Evaluating Students' Performance on Newton's Laws of Motion

    NASA Astrophysics Data System (ADS)

    Kocakülah, Mustafa Sabri

    2010-04-01

    This study aims to develop and apply a rubric to evaluate the solutions of pre-service primary science teachers to questions about Newton's Laws of Motion. Two groups were taught the topic using the same teaching methods and administered four questions before and after teaching. Furthermore, 76 students in the experiment group were instructed about the features and use of the rubric and asked to construct a rubric, while 77 students in the control group were not. Students' solutions were evaluated with the agreed rubric by the instructor, an independent coder and the peers in the experiment class. The effectiveness of the rubric on students' achievement was examined by applying descriptive statistics and linear regression to scores obtained from both tests. T-test statistics and analysis of variance procedures were also used to analyze the reliability and validity of the assessments made. The results revealed that the developed rubric was used consistently by the instructor and peers and significant correlations ( p < 0.001) were found among the scores. The inter-coder reliabilities were 0.98 and 0.93 in the pre- and post-tests with 76 peer coders. A generalizability study showed that the estimates of 16 peer coders on average matched the reliability of single-instructor assessments. It was concluded that the developed rubric was able to highlight the aspects of the problem solutions and helped increase students' achievement.

  6. Energy intake and expenditure during sedentary screen time and motion-controlled video gaming123

    PubMed Central

    Tate, Deborah F; Ward, Dianne S; Wang, Xiaoshan

    2012-01-01

    Background: Television watching and playing of video games (VGs) are associated with higher energy intakes. Motion-controlled video games (MC) may be a healthier alternative to sedentary screen-based activities because of higher energy expenditures, but little is known about the effects of these games on energy intakes. Objective: Energy intake, expenditure, and surplus (intake − expenditure) were compared during sedentary (television and VG) and active (MC) screen-time use. Design: Young adults (n = 120; 60 women) were randomly assigned to the following 3 groups: television watching, playing traditional VGs, or playing MCs for 1 h while snacks and beverages were provided. Energy intakes, energy expenditures, and appetites were measured. Results: Intakes across these 3 groups showed a trend toward a significant difference (P = 0.065). The energy expenditure (P < 0.001) was higher, and the energy surplus (P = 0.038) was lower, in MC than in television or VG groups. All conditions produced a mean (±SD) energy surplus as follows: 638 ± 408 kcal in television, 655 ± 533 kcal in VG, and 376 ± 487 kcal in MC groups. The OR for consuming ≥500 kcal in the television compared with the MC group was 3.2 (95% CI: 1.2, 8.4). Secondary analyses, in which the 2 sedentary conditions were collapsed, showed an intake that was 178 kcal (95% CI: 8, 349 kcal) lower in the MC condition than in the sedentary groups (television and VG). Conclusion: MCs may be a healthier alternative to sedentary screen time because of a lower energy surplus, but the playing of these games still resulted in a positive energy balance. This trial was registered at clinicaltrials.gov as NCT01523795. PMID:22760571

  7. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  8. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management.

    PubMed

    Nakajima, Yujiro; Kadoya, Noriyuki; Kanai, Takayuki; Ito, Kengo; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Ishikawa, Yojiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2016-07-01

    Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities.

  9. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  10. A new analysis methodology for the motion of self-propelled particles and its application

    NASA Astrophysics Data System (ADS)

    Byun, Young-Moo; Lammert, Paul; Crespi, Vincent

    2011-03-01

    The self-propelled particle (SPP) on the microscale in the solution is a growing field of study, which has a potential to be used for nanomedicine and nanorobots. However, little detailed quantitative analysis on the motion of the SPP has been performed so far because its self-propelled motion is strongly coupled to Brownian motion, which makes the extraction of intrinsic propulsion mechanisms problematic, leading to inconsistent conclusions. Here, we present a novel way to decompose the motion of the SPP into self-propelled and Brownian components; accurate values for self-propulsion speed and diffusion coefficients of the SPP are obtained for the first time. Then, we apply our analysis methodology to ostensible chemotaxis of SPP, and reveal the actual (non-chemotactic) mechanism of the phenomenon, demonstrating that our analysis methodology is a powerful and reliable tool.

  11. The Relationship Between Engagement and Neurophysiological Measures of Attention in Motion-Controlled Video Games: A Randomized Controlled Trial

    PubMed Central

    Brewer, Lauren; Nelson, Monica; Siow, Maria

    2016-01-01

    Background Video games and virtual environments continue to be the subject of research in health sciences for their capacity to augment practice through user engagement. Creating game mechanics that increase user engagement may have indirect benefits on learning (ie, engaged learners are likely to practice more) and may also have direct benefits on learning (ie, for a fixed amount of practice, engaged learners show superior retention of information or skills). Objective To manipulate engagement through the aesthetic features of a motion-controlled video game and measure engagement’s influence on learning. Methods A group of 40 right-handed participants played the game under two different conditions (game condition or sterile condition). The mechanics of the game and the amount of practice were constant. During practice, event-related potentials (ERPs) to task-irrelevant probe tones were recorded during practice as an index of participants’ attentional reserve. Participants returned for retention and transfer testing one week later. Results Although both groups improved in the task, there was no difference in the amount of learning between the game and sterile groups, countering previous research. A new finding was a statistically significant relationship between self-reported engagement and the amplitude of the early-P3a (eP3a) component of the ERP waveform, such that participants who reported higher levels of engagement showed a smaller eP3a (beta=−.08, P=.02). Conclusions This finding provides physiological data showing that engagement elicits increased information processing (reducing attentional reserve), which yields new insight into engagement and its underlying neurophysiological properties. Future studies may objectively index engagement by quantifying ERPs (specifically the eP3a) to task-irrelevant probes. PMID:27103052

  12. Application and assessment of a robust elastic motion correction algorithm to dynamic MRI.

    PubMed

    Herrmann, K-H; Wurdinger, S; Fischer, D R; Krumbein, I; Schmitt, M; Hermosillo, G; Chaudhuri, K; Krishnan, A; Salganicoff, M; Kaiser, W A; Reichenbach, J R

    2007-01-01

    The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).

  13. Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children.

    PubMed

    Crisco, Joseph J; Schwartz, Joel B; Wilcox, Bethany; Brideau, Holly; Basseches, Benjamin; Kerman, Karen

    2015-08-20

    Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP.

  14. Application of parametric equations of motion to study the laser induced multiphoton dissociation of H2+ in intense laser field.

    PubMed

    Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K

    2011-06-14

    We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.

  15. EPICS and VxWorks for real-time motion control of the Altair adaptive optics instrument for Gemini

    NASA Astrophysics Data System (ADS)

    Ebbers, Angelic W.; Dunn, Jennifer

    2002-12-01

    The Instrument Group in the National Research Council of Canada's Herzberg Institute of Astrophysics develops instrumentation for large Astronomical telescopes including Altair (Gemini's ALTitude conjugate Adaptive optics for the InfraRed). This paper discusses how we responded to a need for adaptive intelligence and complex choreography and sequencing of mechanisms in the design of Altair's motion control systems. Our primary goal has been to maximize code reusability without sacrificing performance or flexibility.

  16. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  17. EPICS application source/release control

    SciTech Connect

    Zieman, B.; Anderson, J.; Kraimer, M

    1995-12-31

    This manual describes a set of Application Source/Release Control tools (appSR) that can be used to develop software for EPICS based control systems. The Application Source/Release Control System (appSR) has been unbundled from base EPICS and is now available as an EPICS extension. Due to this unbundling, two new directories must be added to a user`s path (see section ``Environment`` on page 3 for more information) and a new command getapp must be issued after the getrel command to get a specific version of appSR (see section ``Creating The Initial Application System Area`` on page 7 for more information). It is now required that GNU make version 3.71 or later be used for makes instead of SUN make. Users should now type gmake instead of make.

  18. Fibonacci lattices application for furnace processes control

    SciTech Connect

    Khavkin, Y.; Maktin, G.M.

    1995-12-31

    Universal structures formed during the fuel oxidizer and combustion mixing process are characterized by the Fibonacci gold ratio. This paper will demonstrate how the gold ratio can be used for control action in combustion. The combustion character in furnace apparatuses is in large part dependent on a reagent motion regime. In general, there are three such regimes: lamina (L), lamina-preturbulent or quasi-periodic (LPT) and turbulent-mixing (TM). Compound structures are absent from the L-regime and are characterized by a low Reynolds number Re. As Re increases the periodic regime remains consistent but one frequency process appears. The LPT and TM regimes are independent of material physical carriers and are characterized by the universal relationship of the oscillate frequencies, the so-called ``golden sections`` F*{sup n}, where F* is the gold ratio (F* = 1.618...) and n is the integer such that the degree of mixing is in proportion to n.

  19. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  20. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  1. Bilharziasis control by application of molluscicides

    PubMed Central

    Paulini, Ernest

    1958-01-01

    The author discusses various aspects of the control of bilharziasis by the application of molluscicides, including the chemicals to be used, the preparation of molluscicidal suspensions or emulsions, the rate, season, frequency and methods of application, tests for evaluating the results of treatment, factors affecting the efficacy of molluscicides and the repopulation of snails after treatment, and the cost of molluscicidal operations. In addition, he reviews briefly some of the encouraging results obtained in the field with three of the most effective molluscicides—sodium pentachlorophenate, dinitro-cyclohexylphenol and copper sulfate—and puts forward a number of suggestions as to future research on this method of snail control. PMID:13573121

  2. Advanced thermal control technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1991-01-01

    A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.

  3. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Irikura, Kojiro; Miyakoshi, Ken; Kamae, Katsuhiro; Yoshida, Kunikazu; Somei, Kazuhiro; Kurahashi, Susumu; Miyake, Hiroe

    2017-01-01

    A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M w 7.4. The effectiveness of these scaling relationships was then examined based on the results of waveform inversion of 18 recent crustal earthquakes ( M w 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake. The 2016 Kumamoto earthquake, with M w 7.0, was one of the largest earthquakes to occur since dense and accurate strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earthquakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the second-stage scaling within one standard deviation ( σ = 0.14). The ratio of the asperity area to the rupture area for the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore, we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion generation areas (SMGAs) based on the empirical Green's function (EGF) method. The locations and areas of the SMGAs were determined through comparison between the synthetic ground motions and observed motions. The sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic

  4. Surface Description and Motion Control for Animated Three Dimensional Computer Generated Characters.

    ERIC Educational Resources Information Center

    Hutchinson, Thomas Lloyd

    This study of the relationship of computer technology to character animation focuses on the advantages and constraints of developing three-dimensional characters for computer animation. Three different levels of the complexity involved in animating characters are examined: (1) a three-dimensional computer environment and simple motion within this…

  5. Continuous Passive Motion Provides Good Pain Control in Patients with Adhesive Capsulitis

    ERIC Educational Resources Information Center

    Dundar, Umit; Toktas, Hasan; Cakir, Tuncay; Evcik, Deniz; Kavuncu, Vural

    2009-01-01

    Painful stiffening of the shoulder, "frozen shoulder" is a common cause of shoulder pain and disability. Continuous passive motion (CPM) is an established method of preventing joint stiffness and of overcoming it. A randomized, comparative prospective clinical trial was planned to compare the early response with different rehabilitation…

  6. Application of neural models as controllers in mobile robot velocity control loop

    NASA Astrophysics Data System (ADS)

    Cerkala, Jakub; Jadlovska, Anna

    2017-01-01

    This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.

  7. Application-Defined Decentralized Access Control

    PubMed Central

    Xu, Yuanzhong; Dunn, Alan M.; Hofmann, Owen S.; Lee, Michael Z.; Mehdi, Syed Akbar; Witchel, Emmett

    2014-01-01

    DCAC is a practical OS-level access control system that supports application-defined principals. It allows normal users to perform administrative operations within their privilege, enabling isolation and privilege separation for applications. It does not require centralized policy specification or management, giving applications freedom to manage their principals while the policies are still enforced by the OS. DCAC uses hierarchically-named attributes as a generic framework for user-defined policies such as groups defined by normal users. For both local and networked file systems, its execution time overhead is between 0%–9% on file system microbenchmarks, and under 1% on applications. This paper shows the design and implementation of DCAC, as well as several real-world use cases, including sandboxing applications, enforcing server applications’ security policies, supporting NFS, and authenticating user-defined sub-principals in SSH, all with minimal code changes. PMID:25426493

  8. Tracking controlled chaos: Theoretical foundations and applications.

    PubMed

    Schwartz, Ira B.; Carr, Thomas W.; Triandaf, Ioana

    1997-12-01

    Tracking controlled states over a large range of accessible parameters is a process which allows for the experimental continuation of unstable states in both chaotic and non-chaotic parameter regions of interest. In algorithmic form, tracking allows experimentalists to examine many of the unstable states responsible for much of the observed nonlinear dynamic phenomena. Here we present a theoretical foundation for tracking controlled states from both dynamical systems as well as control theoretic viewpoints. The theory is constructive and shows explicitly how to track a curve of unstable states as a parameter is changed. Applications of the theory to various forms of control currently used in dynamical system experiments are discussed. Examples from both numerical and physical experiments are given to illustrate the wide range of tracking applications. (c) 1997 American Institute of Physics.

  9. Space infrared telescope pointing control system. Infrared telescope tracking in the presence of target motion

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schneider, J. B.

    1986-01-01

    The use of charge-coupled-devices, or CCD's, has been documented by a number of sources as an effective means of providing a measurement of spacecraft attitude with respect to the stars. A method exists of defocussing and interpolation of the resulting shape of a star image over a small subsection of a large CCD array. This yields an increase in the accuracy of the device by better than an order of magnitude over the case when the star image is focussed upon a single CCD pixel. This research examines the effect that image motion has upon the overall precision of this star sensor when applied to an orbiting infrared observatory. While CCD's collect energy within the visible spectrum of light, the targets of scientific interest may well have no appreciable visible emissions. Image motion has the effect of smearing the image of the star in the direction of motion during a particular sampling interval. The presence of image motion is incorporated into a Kalman filter for the system, and it is shown that the addition of a gyro command term is adequate to compensate for the effect of image motion in the measurement. The updated gyro model is included in this analysis, but has natural frequencies faster than the projected star tracker sample rate for dim stars. The system state equations are reduced by modelling gyro drift as a white noise process. There exists a tradeoff in selected star tracker sample time between the CCD, which has improved noise characteristics as sample time increases, and the gyro, which will potentially drift further between long attitude updates. A sample time which minimizes pointing estimation error exists for the random drift gyro model as well as for a random walk gyro model.

  10. The application of the sinusoidal model to lung cancer patient respiratory motion

    SciTech Connect

    George, R.; Vedam, S.S.; Chung, T.D.; Ramakrishnan, V.; Keall, P.J.

    2005-09-15

    Accurate modeling of the respiratory cycle is important to account for the effect of organ motion on dose calculation for lung cancer patients. The aim of this study is to evaluate the accuracy of a respiratory model for lung cancer patients. Lujan et al. [Med. Phys. 26(5), 715-720 (1999)] proposed a model, which became widely used, to describe organ motion due to respiration. This model assumes that the parameters do not vary between and within breathing cycles. In this study, first, the correlation of respiratory motion traces with the model f(t) as a function of the parameter n(n=1,2,3) was undertaken for each breathing cycle from 331 four-minute respiratory traces acquired from 24 lung cancer patients using three breathing types: free breathing, audio instruction, and audio-visual biofeedback. Because cos{sup 2} and cos{sup 4} had similar correlation coefficients, and cos{sup 2} and cos{sup 1} have a trigonometric relationship, for simplicity, the cos{sup 1} value was consequently used for further analysis in which the variations in mean position (z{sub 0}), amplitude of motion (b) and period ({tau}) with and without biofeedback or instructions were investigated. For all breathing types, the parameter values, mean position (z{sub 0}), amplitude of motion (b), and period ({tau}) exhibited significant cycle-to-cycle variations. Audio-visual biofeedback showed the least variations for all three parameters (z{sub 0}, b, and {tau}). It was found that mean position (z{sub 0}) could be approximated with a normal distribution, and the amplitude of motion (b) and period ({tau}) could be approximated with log normal distributions. The overall probability density function (pdf) of f(t) for each of the three breathing types was fitted with three models: normal, bimodal, and the pdf of a simple harmonic oscillator. It was found that the normal and the bimodal models represented the overall respiratory motion pdfs with correlation values from 0.95 to 0.99, whereas the range

  11. Virtual power based algorithm for decoupling large motions from infinitesimal strains: application to shoulder joint biomechanics.

    PubMed

    Büchler, P; Rakotomanana, L; Farron, A

    2002-12-01

    New trends of numerical models of human joints require more and more computation of both large amplitude joint motions and fine bone stress distribution. Together, these problems are difficult to solve and very CPU time consuming. The goal of this study is to develop a new method to diminish the calculation time for this kind of problems which include calculation of large amplitude motions and infinitesimal strains. Based on the Principle of Virtual Power, the present method decouples the problem into two parts. First, rigid body motion is calculated. The bone micro-deformations are then calculated in a second part by using the results of rigid body motions as boundary conditions. A finite element model of the shoulder was used to test this decoupling technique. The model was designed to determine the influence of humeral head shape on stress distribution in the scapula for different physiological motions of the joint. Two versions of the model were developed: a first version completely deformable and a second version based on the developed decoupling method. It was shown that biomechanical variables, as mean pressure and von Mises stress, calculated with the two versions were sensibly the same. On the other hand, CPU time needed for calculating with the new decoupled technique was more than 6 times less than with the completely deformable model.

  12. Validation of attenuation models for ground motion applications in central and eastern North America

    DOE PAGES

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for themore » rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.« less

  13. Validation of attenuation models for ground motion applications in central and eastern North America

    SciTech Connect

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for the rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.

  14. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  15. Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Computer program description

    NASA Technical Reports Server (NTRS)

    Petrarca, J. R.; Harrison, B. A.; Redman, M. C.; Rowe, W. S.

    1979-01-01

    A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated.

  16. Contrast-Independent Biologically Inspired Motion Detection

    PubMed Central

    Babies, Birthe; Lindemann, Jens Peter; Egelhaaf, Martin; Möller, Ralf

    2011-01-01

    Optic flow, i.e., retinal image movement resulting from ego-motion, is a crucial source of information used for obstacle avoidance and course control in flying insects. Optic flow analysis may prove promising for mobile robotics although it is currently not among the standard techniques. Insects have developed a computationally cheap analysis mechanism for image motion. Detailed computational models, the so-called elementary motion detectors (EMDs), describe motion detection in insects. However, the technical application of EMDs is complicated by the strong effect of local pattern contrast on their motion response. Here we present augmented versions of an EMD, the (s)cc-EMDs, which normalise their responses for contrast and thereby reduce the sensitivity to contrast changes. Thus, velocity changes of moving natural images are reflected more reliably in the detector response. The (s)cc-EMDs can easily be implemented in hardware and software and can be a valuable novel visual motion sensor for mobile robots. PMID:22163800

  17. Quadratic optimal cooperative control synthesis with flight control application

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.; Innocenti, M.

    1984-01-01

    An optimal control-law synthesis approach is presented that involves simultaneous solution for two cooperating controllers operating in parallel. One controller's structure includes stochastic state estimation and linear feedback of the state estimates, while the other controller involves direct linear feedback of selected system output measurements. This structure is shown to be optimal under the constraint of linear feedback of system outputs in one controller. Furthermore, it is appropriate for flight control synthesis where the full-state optimal stochastic controller can be adjusted to be representative of an optimal control model of the human pilot in a stochastic regulation task. The method is experimentally verified in the case of the selection of pitch-damper gain for optimum pitch tracking, where optimum implies the best subjective pilot rating in the task. Finally, results from application of the method to synthesize a controller for a multivariable fighter aircraft are presented, and implications of the results of this method regarding the optimal plant dynamics for tracking are discussed.

  18. Earthquake ground motion prediction for real sedimentary basins: which numerical schemes are applicable?

    NASA Astrophysics Data System (ADS)

    Moczo, P.; Kristek, J.; Galis, M.; Pazak, P.

    2009-12-01

    Numerical prediction of earthquake ground motion in sedimentary basins and valleys often has to account for P-wave to S-wave speed ratios (Vp/Vs) as large as 5 and even larger, mainly in sediments below groundwater level. The ratio can attain values larger than 10 in unconsolidated sediments (e.g. in Ciudad de México). In a process of developing 3D optimally-accurate finite-difference schemes we encountered a serious problem with accuracy in media with large Vp/Vs ratio. This led us to investigate the very fundamental reasons for the inaccuracy. In order to identify the very basic inherent aspects of the numerical schemes responsible for their behavior with varying Vp/Vs ratio, we restricted to the most basic 2nd-order 2D numerical schemes on a uniform grid in a homogeneous medium. Although basic in the specified sense, the schemes comprise the decisive features for accuracy of wide class of numerical schemes. We investigated 6 numerical schemes: finite-difference_displacement_conventional grid (FD_D_CG) finite-element_Lobatto integration (FE_L) finite-element_Gauss integration (FE_G) finite-difference_displacement-stress_partly-staggered grid (FD_DS_PSG) finite-difference_displacement-stress_staggered grid (FD_DS_SG) finite-difference_velocity-stress_staggered grid (FD_VS_SG) We defined and calculated local errors of the schemes in amplitude and polarization. Because different schemes use different time steps, they need different numbers of time levels to calculate solution for a desired time window. Therefore, we normalized errors for a unit time. The normalization allowed for a direct comparison of errors of different schemes. Extensive numerical calculations for wide ranges of values of the Vp/Vs ratio, spatial sampling ratio, stability ratio, and entire range of directions of propagation with respect to the spatial grid led to interesting and surprising findings. Accuracy of FD_D_CG, FE_L and FE_G strongly depends on Vp/Vs ratio. The schemes are not

  19. Quantitative Robust Control Engineering: Theory and Applications

    DTIC Science & Technology

    2006-09-01

    1992). Discrete quantitative feedback technique, Capítulo 16 en el libro : Digital Control Systems: theory, hardware, software, 2ª edicion. McGraw...Rasmussen S.J., Garcia-Sanz, M. (2001, 2005), Software de diseño del libro Quantitative Feedback Theory: Fundamentals and Applications. Edición 2ª. CRCPress

  20. Motion Entropy Feature and Its Applications to Event-Based Segmentation of Sports Video

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Wang, Jia-Ching; Wang, Jhing-Fa; Hu, Yu-Hen

    2008-12-01

    An entropy-based criterion is proposed to characterize the pattern and intensity of object motion in a video sequence as a function of time. By applying a homoscedastic error model-based time series change point detection algorithm to this motion entropy curve, one is able to segment the corresponding video sequence into individual sections, each consisting of a semantically relevant event. The proposed method is tested on six hours of sports videos including basketball, soccer, and tennis. Excellent experimental results are observed.

  1. ELIMINATING CONSERVATISM IN THE PIPING SYSTEM ANALYSIS PROCESS THROUGH APPLICATION OF A SUITE OF LOCALLY APPROPRIATE SEISMIC INPUT MOTIONS

    SciTech Connect

    Anthony L. Crawford; Robert E. Spears, Ph.D.; Mark J. Russell

    2009-07-01

    Seismic analysis is of great importance in the evaluation of nuclear systems due to the heavy influence such loading has on their designs. Current Department of Energy seismic analysis techniques for a nuclear safety-related piping system typically involve application of a single conservative seismic input applied to the entire system [1]. A significant portion of this conservatism comes from the need to address the overlapping uncertainties in the seismic input and in the building response that transmits that input motion to the piping system. The approach presented in this paper addresses these two sources of uncertainty through the application of a suite of 32 input motions whose collective performance addresses the total uncertainty while each individual motion represents a single variation of it. It represents an extension of the soil-structure interaction analysis methodology of SEI/ASCE 43-05 [2] from the structure to individual piping components. Because this approach is computationally intensive, automation and other measures have been developed to make such an analysis efficient. These measures are detailed in this paper.

  2. Mathematical crew motion disturbance models for spacecraft control system design. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1974-01-01

    Several techniques for modeling the disturbances to a spacecraft's attitude caused by moving crew members are presented. These disturbances can be the largest moments acting on a manned spacecraft, and knowledge of their effect is important in the sizing, design, and analysis/simulation of spacecraft attitude control systems. The modeling techniques are identified as two principal types: deterministic and stochastic. Three techniques of each type are presented. The deterministic models include point-mass motion derivatives and a discussion on dynamic models of moving crew members. The stochastic techniques are highlighted by a Fourier transform method and the representation of long-term crew disturbance activities as outputs from appropriately designed filters. A z-transform technique is developed to obtain a difference-equation form of stochastic models for use on digital computers. An appendix derives spacecraft equations of motion which can be used with many of the models discussed.

  3. Compound Velocity Synchronizing Control Strategy for Electro-Hydraulic Load Simulator and Its Engineering Application.

    PubMed

    Han, Songshan; Jiao, Zongxia; Yao, Jianyong; Shang, Yaoxing

    2014-09-01

    An electro-hydraulic load simulator (EHLS) is a typical case of torque systems with strong external disturbances from hydraulic motion systems. A new velocity synchronizing compensation strategy is proposed in this paper to eliminate motion disturbances, based on theoretical and experimental analysis of a structure invariance method and traditional velocity synchronizing compensation controller (TVSM). This strategy only uses the servo-valve's control signal of motion system and torque feedback of torque system, which could avoid the requirement on the velocity and acceleration signal in the structure invariance method, and effectively achieve a more accurate velocity synchronizing compensation in large loading conditions than a TVSM. In order to facilitate the implementation of this strategy in engineering cases, the selection rules for compensation parameters are proposed. It does not rely on any accurate information of structure parameters. This paper presents the comparison data of an EHLS with various typical operating conditions using three controllers, i.e., closed loop proportional integral derivative (PID) controller, TVSM, and the proposed improved velocity synchronizing controller. Experiments are conducted to confirm that the new strategy performs well against motion disturbances. It is more effective to improve the tracking accuracy and is a more appropriate choice for engineering applications.

  4. The application of the reduced order model Kalman filter to motion estimation of degraded image sequences. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Simpson, Elizabeth C.

    1989-01-01

    Motion estimation is a field of great interest because of its many applications in areas such as robotics and image coding. The optic flow method is one such scheme which, although fairly accurate, is prone to error in the presence of noise. This thesis describes the use of the reduced order model Kalman filter (ROMKF) in reducing errors in displacement estimation due to degradation of the sequence. The implementation of filtering and motion estimation algorithms on the SUN workstation is also discussed. Results from preliminary testing were used to determine the degrees of freedom available for the ROMKF in the SUN software. The tests indicated that increasing the state to the left leads to slight improvement over the minimum state case. Therefore, the software uses the minimum model, with the option of adding states to the left only. The ROMKF was then used in conjunction with a hierarchical pel recursive motion estimation algorithm. Applying the ROMKF to the degraded displacements themselves generally yielded slight improvements in cases with noise degradation and noise plus blur. Filtering the images of the degraded sequence prior to motion estimation was less effective in these cases. Both methods performed badly in the case of blur alone, resulting in increased displacement errors. This is thought to be due in part to filter artifacts. Some improvements were obtained by varying the filter parameters when filtering the displacements directly. This result suggests that further study in varying filter parameters may lead to better results. The results of this thesis indicate that the ROMKF can play a part in reducing motion estimation errors from degraded sequences. However, more work needs to be done before the use of the ROMKF can be a practical solution.

  5. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment

    PubMed Central

    Kenyon, Robert V.; Keshner, Emily A.

    2009-01-01

    Reaching toward a visual target involves the transformation of visual information into appropriate motor commands. Complex movements often occur either while we are moving or when objects in the world move around us, thus changing the spatial relationship between our hand and the space in which we plan to reach. This study investigated whether rotation of a wide field-of-view immersive scene produced by a virtual environment affected online visuomotor control during a double-step reaching task. A total of 20 seated healthy subjects reached for a visual target that remained stationary in space or unpredictably shifted to a second position (either to the right or left of its initial position) with different inter-stimulus intervals. Eleven subjects completed two experiments which were similar except for the duration of the target's appearance. The final target was either visible throughout the entire trial or only for a period of 200 ms. Movements were performed under two visual field conditions: the virtual scene was matched to the subject's head motion or rolled about the line of sight counterclockwise at 130°/s. Nine additional subjects completed a third experiment in which the direction of the rolling scene was manipulated (i.e., clockwise and counterclockwise). Our results showed that while all subjects were able to modify their hand trajectory in response to the target shift with both visual scenes, some of the double-step movements contained a pause prior to modifying trajectory direction. Furthermore, our findings indicated that both the timing and kinematic adjustments of the reach were affected by roll motion of the scene. Both planning and execution of the reach were affected by roll motion. Changes in proportion of trajectory types, and significantly longer pauses that occurred during the reach in the presence of roll motion suggest that background roll motion mainly interfered with the ability to update the visuomotor response to the target displacement

  6. Microwave control of atomic motional states in a spin-dependent optical lattice

    NASA Astrophysics Data System (ADS)

    Belmechri, Noomen; Förster, Leonid; Alt, Wolfgang; Widera, Artur; Meschede, Dieter; Alberti, Andrea

    2013-05-01

    Spin-dependent optical potentials allow us to use microwave radiation to manipulate the motional state of trapped neutral atoms (Förster et al 2009 Phys. Rev. Lett. 103 233001). Here, we discuss this method in greater detail, comparing it to the widely employed Raman sideband coupling method. We provide a simplified model for sideband cooling in a spin-dependent potential, and we discuss it in terms of the generalized Lamb-Dicke parameter. Using a master equation formalism, we present a quantitative analysis of the cooling performance for our experiment, which can be generalized to other experimental settings. We additionally use microwave sideband transitions to engineer motional Fock states and coherent states, and we devise a technique for measuring the population distribution of the prepared states.

  7. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  8. Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits

    DTIC Science & Technology

    2015-05-30

    decades, photoreceptor-sized displacements of a luminous edge have revealed elementary mechanisms of motion vision in insects and vertebrates. By...The ability to use vision to perform a broad set of ethologically important behaviors is critical for flying insects . Importantly, the visual system...visual neurons in the insect visual pathway. This concept shows promise in ongoing simulations. Finally, we are examining the possibility that the

  9. Plate motion controls on back-arc spreading. [Cenozoic movement in Western Pacific

    NASA Technical Reports Server (NTRS)

    Fein, J. B.; Jurdy, D. M.

    1986-01-01

    The motions of the subducting and the overriding plates influence the spatial and temporal distribution of back-arc spreading. Cenozoic plate motions in hot spot-fixed and no-net-rotation reference frames were studied with attention to correlations between changes in motion and episodes of back-arc spreading in the western Pacific. The results suggest that major back-arc opening occurs when both the overriding plate retreats from the trench in an absolute sense and the subducting plate undergoes a significant speed-up. Neither phenomenon alone is sufficient to initiate spreading. Three major plate velocity increases can be identified in the Cenozoic: (1) the Pacific plate 5-9 Ma; (2) the Indian plate at 27 Ma; and (3) the Pacific plate at 43 Ma, due to its shift from northerly to more westerly motion. At the present time, the Indian and Philippine are the only overriding plates that are retreating from their Pacific trenches and back-arc spreading occurs only on these two retreating plates. Although the Indian plate has been retreating for at least 25 Ma, back-arc spreading began only following the Pacific plate speed-up 5-9 Ma. Earlier, during the Indian plate speed-up, no overriding plates were retreating strongly and no back-arc spreading epsiodes are preserved from this time. For the earliest Pacific plate shift at 43 Ma, the Eurasian plate was not advancing, thus creating the only favorable plate kinematic conditions in the Cenozoic for back-arc basin formation in this region. It is unclear whether extension in the Japan Sea is a result of these conditions.

  10. Wireless video monitoring and robot control in security applications

    NASA Astrophysics Data System (ADS)

    Nurkkala, Eero A.; Pyssysalo, Tino; Roning, Juha

    1998-10-01

    This research focuses on applications based on wireless monitoring and robot control, utilizing motion image and augmented reality. These applications include remote services and surveillance-related functions such as remote monitoring. A remote service can be, for example, a way to deliver products at a hospital or old people's home. Due to the mobile nature of the system, monitoring at places with privacy concerns is possible. On the other hand, mobility demands wireless communications. Suitable and present technologies for wireless video transfer are weighted. Identification of objects with the help of Radio Frequency Identifying (RFID) technology and facial recognition results in intelligent actions, for example, where the control of a robot does not require extensive workload from the user. In other words, tasks can be partially autonomous, RFID can be also used in augmentation of the video view with virtual objects. As a real-life experiment, a prototype environment is being constructed that consists of a robot equipped with a video camera and wireless links to the network and multimedia computer.

  11. Affine transform to reform pixel coordinates of EOG signals for controlling robot manipulators using gaze motions.

    PubMed

    Rusydi, Muhammad Ilhamdi; Sasaki, Minoru; Ito, Satoshi

    2014-06-10

    Biosignals will play an important role in building communication between machines and humans. One of the types of biosignals that is widely used in neuroscience are electrooculography (EOG) signals. An EOG has a linear relationship with eye movement displacement. Experiments were performed to construct a gaze motion tracking method indicated by robot manipulator movements. Three operators looked at 24 target points displayed on a monitor that was 40 cm in front of them. Two channels (Ch1 and Ch2) produced EOG signals for every single eye movement. These signals were converted to pixel units by using the linear relationship between EOG signals and gaze motion distances. The conversion outcomes were actual pixel locations. An affine transform method is proposed to determine the shift of actual pixels to target pixels. This method consisted of sequences of five geometry processes, which are translation-1, rotation, translation-2, shear and dilatation. The accuracy was approximately 0.86° ± 0.67° in the horizontal direction and 0.54° ± 0.34° in the vertical. This system successfully tracked the gaze motions not only in direction, but also in distance. Using this system, three operators could operate a robot manipulator to point at some targets. This result shows that the method is reliable in building communication between humans and machines using EOGs.

  12. Regional adjustment factors for three NGA-West2 ground-motion prediction equations to be applicable in northern Iran

    NASA Astrophysics Data System (ADS)

    Zafarani, H.; Rahpeyma, S.; Mousavi, M.

    2016-10-01

    Ground-motion prediction equations (GMPEs) are essential tools in seismic hazard studies to estimate ground motions generated by potential seismic sources. Global GMPEs which are based on well-compiled global strong-motion databanks, have certain advantages over local GMPEs, including more sophisticated parameters in terms of distance, faulting style, and site classification but cannot guarantee the local/region-specific propagation characteristics of shear wave (e.g., geometric spreading behavior, quality factor) for different seismic regions at larger distances (beyond about 80 km). Here, strong-motion records of northern Iran have been used to estimate the propagation characteristics of shear wave and determine the region-specific adjustment parameters for three of the NGA-West2 GMPEs to be applicable in northern Iran. The dataset consists of 260 three-component records from 28 earthquakes, recorded at 139 stations, with moment magnitudes between 4.9 and 7.4, horizontal distance to the surface projection of the rupture (R JB) less than 200 km, and average shear-wave velocity over the top 30 m of the subsurface (V S30) between 155 and 1500 m/s. The paper also presents the ranking results for three of the NGA-West2 GMPEs against strong motions recorded in northern Iran, before and after adjustment for region-dependent attenuation characteristics. The ranking is based on the likelihood and log-likelihood methods (LH and LLH) proposed by Scherbaum et al. (Bull Seismol Soc Am 94: 2164-2185, 2004, Bull Seismol Soc Am 99, 3234-3247, 2009, respectively), the Nash-Sutcliffe model efficiency coefficient (Nash and Sutcliffe, J Hydrol 10:282-290, 1970), and the EDR method of Kale and Akkar (Bull Seismol Soc Am 103:1069-1084, 2012). The best-fitting models over the whole frequency range are the ASK14 and BSSA14 models. Taking into account that the models' performances were boosted after applying the adjustment factors, at least moderate regional variation of ground motions

  13. Development and Application of a Rubric for Evaluating Students' Performance on Newton's Laws of Motion

    ERIC Educational Resources Information Center

    Kocakulah, Mustafa Sabri

    2010-01-01

    This study aims to develop and apply a rubric to evaluate the solutions of pre-service primary science teachers to questions about Newton's Laws of Motion. Two groups were taught the topic using the same teaching methods and administered four questions before and after teaching. Furthermore, 76 students in the experiment group were instructed…

  14. 76 FR 19765 - Toutant Hydropower Inc.; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... Hydropower Inc. e. Name of Project: M.S.C. (Toutant) Hydroelectric Project. f. Location: The project is... Road, Woodstock, CT 06281, (860) 974-2099. i. FERC Contact: Mr. Jeremy Jessup, (202) 502-6779, Jeremy.Jessup@ferc.gov . j. Deadline for filing comments, motions to intervene, and protests, is 30 days...

  15. Industrial application of fuzzy control in bioprocesses.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    In a bioprocess, for example a fermentation process, many biological reactions are always working in intracellular space and the control of such a process is very complicated. Bioprocesses have therefore been controlled by the judgment of the experts who are the skilled operators and have much experience in the control of such processes. Such experience is normally described in terms of linguistic IF-THEN rules. Fuzzy inference is a powerful tool for incorporating linguistic rules into computer control of such processes. Fuzzy control is divided into two types--direct fuzzy control of process variables, for example sugar feed rate and fermentation temperature, and indirect control via phase recognition. In bioprocess control the experts decide the value of controllable process variables such as sugar feed rate or temperature as output data from several state variables as input data. Fuzzy control is regarded as a computational algorithm in which the causal relationship between input and output data are incorporated. In Japan fuzzy control has already been applied to practical industrial processes such as production of pravastatin precursor and vitamin B2 and to the Japanese sake mashing process; these examples are reviewed. In addition, an advanced control tool developed from a study on fuzzy control, fuzzy neural networks (FNN), are introduced. FNN can involve complicated causality between input and output data in a network model. FNN have been proven to be applicable to a research in biomedicine, for example modeling of the complicated causality between electroencephalogram or gene expression profiling data and prognostic prediction. Successful results on this research will be also explained.

  16. Ground motion prediction and earthquake scenarios in Italy: a methodological comparison and perspectives of applicability

    NASA Astrophysics Data System (ADS)

    GNDT Group,; Cocco, M.

    2001-12-01

    In this study we report the results of a research project aimed at the development and the comparison of different methodologies for the seismic hazard evaluation in central and southern Apennines (Italy) earthquake prone areas. The project, supported by GNDT-INGV, will concern the design of ground shaking scenarios, based on the identification of the position, geometry and rupture mechanism of active faults and of the crustal velocity structure. Different numerical approaches have been applied to simulate the ground velocity and acceleration observed at the earth surface during moderate and strong earthquakes including complex source and/or path effects. We compare the simulated records obtained using pure stochastic methods and hybrid methods, in which a stochastic component is added to the deterministic, low frequency one. We also adopt pure deterministic methods (such as pseudo-spectral approaches) to evaluate the Green function in complex media with simple sources. This approach is relevant for the Apenninic seismic belt, for which no strong motion data are available and it is struck by large magnitude historical events. In these areas the prediction of ground shaking during large earthquakes by means of synthetic seismograms can represent a useful tool to assess seismic hazard. The proposed methodologies will be tested and calibrated in "training areas", where an adequate knowledge of seismic sources and crustal structure as well as instrumental strong and weak motions data are available. The selected training area is the Colfiorito region (Umbria-Marche), where the 1997-98 seismic sequence (Mw <= 6) took place and an extended seismic data base is available. A systematic and accurate comparison between the ground motion time histories simulated by the different approaches, the fit to the observed waveforms (including weak motions), and the comparison between characteristic ground motion values (peak values, durations, frequency bandwidth, spectral values

  17. Control of motion of tibial fractures with use of a functional brace or an external fixator. A study of cadavera with use of a magnetic motion sensor.

    PubMed

    McKellop, H; Hoffmann, R; Sarmiento, A; Ebramzadeh, E

    1993-07-01

    A computer-linked magnetic motion transducer was used to monitor and record the six components of motion of the bone fragments in eight cadaveric tibiae in which a simulated, oblique fracture of the middle of the shaft had been stabilized with a functional brace. The limbs were mounted in a servo-hydraulic testing frame, and a cyclic load of 150 newtons was applied along the axis of the tibia. Motion sensors, attached to each side of the fracture, measured and displayed the values of the three translations (axial, anterior-posterior, and medial-lateral), the axial rotation, and the two angulations (anterior-posterior and varus-valgus) as they occurred. Although only an axial load was applied, the off-axis motions were comparable in magnitude with the motion along the axis. The elastic (recoverable) translations of the fragments ranged from 0.5 to 1.9 millimeters, about four to ten times larger than the corresponding motions that were recorded in an earlier study of such fractures that had been stabilized with two types of external fixators. The recoverable rotation and angulations of the fragments of the limbs in the functional brace ranged from 0.7 to 1.2 degrees, about ten times those recorded when the external fixators were used.

  18. Reinventing User Applications for Mission Control

    NASA Technical Reports Server (NTRS)

    Trimble, Jay Phillip; Crocker, Alan R.

    2010-01-01

    In 2006, NASA Ames Research Center's (ARC) Intelligent Systems Division, and NASA Johnson Space Centers (JSC) Mission Operations Directorate (MOD) began a collaboration to move user applications for JSC's mission control center to a new software architecture, intended to replace the existing user applications being used for the Space Shuttle and the International Space Station. It must also carry NASA/JSC mission operations forward to the future, meeting the needs for NASA's exploration programs beyond low Earth orbit. Key requirements for the new architecture, called Mission Control Technologies (MCT) are that end users must be able to compose and build their own software displays without the need for programming, or direct support and approval from a platform services organization. Developers must be able to build MCT components using industry standard languages and tools. Each component of MCT must be interoperable with other components, regardless of what organization develops them. For platform service providers and MOD management, MCT must be cost effective, maintainable and evolvable. MCT software is built from components that are presented to users as composable user objects. A user object is an entity that represents a domain object such as a telemetry point, a command, a timeline, an activity, or a step in a procedure. User objects may be composed and reused, for example a telemetry point may be used in a traditional monitoring display, and that same telemetry user object may be composed into a procedure step. In either display, that same telemetry point may be shown in different views, such as a plot, an alpha numeric, or a meta-data view and those views may be changed live and in place. MCT presents users with a single unified user environment that contains all the objects required to perform applicable flight controller tasks, thus users do not have to use multiple applications, the traditional boundaries that exist between multiple heterogeneous

  19. Contactless Magnetic Gear for Robot Control Application

    NASA Astrophysics Data System (ADS)

    Komiyama, Hiroki; Uchimura, Yutaka

    This paper describes the application of a magnetic gear to a robot by fulfilling the essential requirements for a robot control, which are velocity control, position control, and force control. A magnetic gear is a transmission device that realizes contactless torque transmission by applying a magnetic force. When using a magnetic gear, cogging torque and spring characteristics need to be considered. In this paper, we introduce an approximate model of cogging torque. This model is used for velocity control to attenuate the disturbance due to cogging torque. In the case of position control, the oscillations due to the spring effect of the magnetic attractive force become a problem. To reduce the adverse effect due to these oscillations, resonance ratio control is applied. We also propose to use a magnetic gear for realizing the force sensorless bilateral control of teleoperation. Thanks to the frictionless transmission of a magnetic gear, the force sensorless estimation of a reaction force can be realized using a reaction force observer.

  20. A Procedure for Performance Assessment of Drugs Hypothesized to be Effective in Controlling Motion Sickness

    DTIC Science & Technology

    1990-12-01

    Performance combinations Conditions Checklist Stott and Induced Motion Powdered Saccade Subjective Hubble Sickness Ginger Root, Measurement, estimation (72...YES 1 2 3 4 5 6 7 32. Stomach discomfort NO YES 1 2 3 4 5 6 7 (awareness) 33. Loss of appetite NO YES 1 2 3 4 5 6 7 34. Increased appetite NO YES 1 2 3...School of Aerospace Medicine, USAFSAMNNB Brooks AFB TX, 19 September 1990. 72. Stott, J.R.R. et al. A Doubla Blind Comparative Trial of Powdered Ginger