Sample records for motion estimation techniques

  1. A Fourier approach to cloud motion estimation

    NASA Technical Reports Server (NTRS)

    Arking, A.; Lo, R. C.; Rosenfield, A.

    1977-01-01

    A Fourier technique is described for estimating cloud motion from pairs of pictures using the phase of the cross spectral density. The method allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. Results obtained are presented and compared with the results of a Fourier domain cross correlation scheme. Using both artificial and real cloud data show that the technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects.

  2. Efficient low-bit-rate adaptive mesh-based motion compensation technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Hanan A.; Bayoumi, Magdy A.

    2001-08-01

    This paper proposes a two-stage global motion estimation method using a novel quadtree block-based motion estimation technique and an active mesh model. In the first stage, motion parameters are estimated by fitting block-based motion vectors computed using a new efficient quadtree technique, that divides a frame into equilateral triangle blocks using the quad-tree structure. Arbitrary partition shapes are achieved by allowing 4-to-1, 3-to-1 and 2-1 merge/combine of sibling blocks having the same motion vector . In the second stage, the mesh is constructed using an adaptive triangulation procedure that places more triangles over areas with high motion content, these areas are estimated during the first stage. finally the motion compensation is achieved by using a novel algorithm that is carried by both the encoder and the decoder to determine the optimal triangulation of the resultant partitions followed by affine mapping at the encoder. Computer simulation results show that the proposed method gives better performance that the conventional ones in terms of the peak signal-to-noise ration (PSNR) and the compression ratio (CR).

  3. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.

    PubMed

    King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T

    2012-01-01

    Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Parallel implementation and evaluation of motion estimation system algorithms on a distributed memory multiprocessor using knowledge based mappings

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.

  5. Repurposing video recordings for structure motion estimations

    NASA Astrophysics Data System (ADS)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  6. A novel Bayesian respiratory motion model to estimate and resolve uncertainty in image-guided cardiac interventions.

    PubMed

    Peressutti, Devis; Penney, Graeme P; Housden, R James; Kolbitsch, Christoph; Gomez, Alberto; Rijkhorst, Erik-Jan; Barratt, Dean C; Rhode, Kawal S; King, Andrew P

    2013-05-01

    In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Motion immune diffusion imaging using augmented MUSE (AMUSE) for high-resolution multi-shot EPI

    PubMed Central

    Guhaniyogi, Shayan; Chu, Mei-Lan; Chang, Hing-Chiu; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    Purpose To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multi-shot EPI. Theory The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative DTI measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. Methods MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. Results AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. Conclusion The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging. PMID:25762216

  8. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  9. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  10. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Matthies, Larry H.

    1998-01-01

    Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.

  11. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  12. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    PubMed

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Three-dimensional ultrasound strain imaging of skeletal muscles

    NASA Astrophysics Data System (ADS)

    Gijsbertse, K.; Sprengers, A. M. J.; Nillesen, M. M.; Hansen, H. H. G.; Lopata, R. G. P.; Verdonschot, N.; de Korte, C. L.

    2017-01-01

    In this study, a multi-dimensional strain estimation method is presented to assess local relative deformation in three orthogonal directions in 3D space of skeletal muscles during voluntary contractions. A rigid translation and compressive deformation of a block phantom, that mimics muscle contraction, is used as experimental validation of the 3D technique and to compare its performance with respect to a 2D based technique. Axial, lateral and (in case of 3D) elevational displacements are estimated using a cross-correlation based displacement estimation algorithm. After transformation of the displacements to a Cartesian coordinate system, strain is derived using a least-squares strain estimator. The performance of both methods is compared by calculating the root-mean-squared error of the estimated displacements with the calculated theoretical displacements of the phantom experiments. We observe that the 3D technique delivers more accurate displacement estimations compared to the 2D technique, especially in the translation experiment where out-of-plane motion hampers the 2D technique. In vivo application of the 3D technique in the musculus vastus intermedius shows good resemblance between measured strain and the force pattern. Similarity of the strain curves of repetitive measurements indicates the reproducibility of voluntary contractions. These results indicate that 3D ultrasound is a valuable imaging tool to quantify complex tissue motion, especially when there is motion in three directions, which results in out-of-plane errors for 2D techniques.

  14. FPGA-based architecture for motion recovering in real-time

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Maya-Rueda, Selene E.; Torres-Huitzil, Cesar

    2002-03-01

    A key problem in the computer vision field is the measurement of object motion in a scene. The main goal is to compute an approximation of the 3D motion from the analysis of an image sequence. Once computed, this information can be used as a basis to reach higher level goals in different applications. Motion estimation algorithms pose a significant computational load for the sequential processors limiting its use in practical applications. In this work we propose a hardware architecture for motion estimation in real time based on FPGA technology. The technique used for motion estimation is Optical Flow due to its accuracy, and the density of velocity estimation, however other techniques are being explored. The architecture is composed of parallel modules working in a pipeline scheme to reach high throughput rates near gigaflops. The modules are organized in a regular structure to provide a high degree of flexibility to cover different applications. Some results will be presented and the real-time performance will be discussed and analyzed. The architecture is prototyped in an FPGA board with a Virtex device interfaced to a digital imager.

  15. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    NASA Astrophysics Data System (ADS)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  16. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.

    PubMed

    Stegman, Kelly J; Park, Edward J; Dechev, Nikolai

    2012-07-01

    The motivation of this research is to non-invasively monitor the wrist tendon's displacement and velocity, for purposes of controlling a prosthetic device. This feasibility study aims to determine if the proposed technique using Doppler ultrasound is able to accurately estimate the tendon's instantaneous velocity and displacement. This study is conducted with a tendon mimicking experiment consisting of two different materials: a commercial ultrasound scanner, and a reference linear motion stage set-up. Audio-based output signals are acquired from the ultrasound scanner, and are processed with our proposed Fourier technique to obtain the tendon's velocity and displacement estimates. We then compare our estimates to an external reference system, and also to the ultrasound scanner's own estimates based on its proprietary software. The proposed tendon motion estimation method has been shown to be repeatable, effective and accurate in comparison to the external reference system, and is generally more accurate than the scanner's own estimates. After establishing this feasibility study, future testing will include cadaver-based studies to test the technique on the human arm tendon anatomy, and later on live human test subjects in order to further refine the proposed method for the novel purpose of detecting user-intended tendon motion for controlling wearable prosthetic devices.

  17. Poster - Thur Eve - 11: A realistic respiratory trace generator and its application to respiratory management techniques.

    PubMed

    Quirk, S; Becker, N; Smith, W L

    2012-07-01

    Respiratory motion complicates radiotherapy treatment of thoracic and abdominal tumours. Simplified respiratory motions such as sinusoidal and single patient traces are often used to determine the impact of motion on respiratory management techniques in radiotherapy. Such simplifications only accurately model a small portion of patients, as most patients exhibit variability and irregularity beyond these models. We have preformed a comprehensive analysis of respiratory motion and developed a software tool that allows for explicit inclusion of variability. We utilize our realistic respiratory generator to customize respiratory traces to test the robustness of the estimate of internal gross target volumes (IGTV) by 4DCT and CBCT. We confirmed that good agreement is found between 4DCT and CBCT for regular breathing motion. When amplitude variability was introduced the accuracy of the estimate slightly, but the absolute differences were still < 3 mm for both modalities. Poor agreement was shown with the addition of baseline drifts. Both modalities were found to underestimate the IGTV by as much as 30% for 4DCT and 25% for CBCT. Both large and small drifts deteriorated the estimate accuracy. The respiratory trace generator was advantageous for examining the difference between 4DCT and CBCT IGTV estimation under variable motions. It provided useful implementation abilities to test specific attributes of respiratory motion and detected issues that were not seen with the regular motion studies. This is just one example of how the respiratory trace generator can be utilized to test applications of respiratory management techniques. © 2012 American Association of Physicists in Medicine.

  18. An extended stochastic method for seismic hazard estimation

    NASA Astrophysics Data System (ADS)

    Abd el-aal, A. K.; El-Eraki, M. A.; Mostafa, S. I.

    2015-12-01

    In this contribution, we developed an extended stochastic technique for seismic hazard assessment purposes. This technique depends on the hypothesis of stochastic technique of Boore (2003) "Simulation of ground motion using the stochastic method. Appl. Geophy. 160:635-676". The essential characteristics of extended stochastic technique are to obtain and simulate ground motion in order to minimize future earthquake consequences. The first step of this technique is defining the seismic sources which mostly affect the study area. Then, the maximum expected magnitude is defined for each of these seismic sources. It is followed by estimating the ground motion using an empirical attenuation relationship. Finally, the site amplification is implemented in calculating the peak ground acceleration (PGA) at each site of interest. We tested and applied this developed technique at Cairo, Suez, Port Said, Ismailia, Zagazig and Damietta cities to predict the ground motion. Also, it is applied at Cairo, Zagazig and Damietta cities to estimate the maximum peak ground acceleration at actual soil conditions. In addition, 0.5, 1, 5, 10 and 20 % damping median response spectra are estimated using the extended stochastic simulation technique. The calculated highest acceleration values at bedrock conditions are found at Suez city with a value of 44 cm s-2. However, these acceleration values decrease towards the north of the study area to reach 14.1 cm s-2 at Damietta city. This comes in agreement with the results of previous studies of seismic hazards in northern Egypt and is found to be comparable. This work can be used for seismic risk mitigation and earthquake engineering purposes.

  19. Estimating the accuracy of the technique of reconstructing the rotational motion of a satellite based on the measurements of its angular velocity and the magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.

    2017-09-01

    The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.

  20. Hard-rock GMPEs versus Vs30-Kappa Host-to-Target Adjustment Techniques : Why so Large Differences in High Frequency Hard-Rock Motion ?

    NASA Astrophysics Data System (ADS)

    Bard, P. Y.; Laurendeau, A.; Hollender, F.; Perron, V.; Hernandez, B.; Foundotos, L.

    2016-12-01

    Assessment of local seismic hazard on hard rock sites (1000 < VS30 < 3000 m/s) is needed either for installations built on such hard rock, or as a reference motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion, but most of them are poorly constrained for VS30 larger than 1000 m/s. The presently used approach for estimating hard rock hazard consists of "host-to-target" adjustment techniques (HTTA) based on VS30 and κ0 values. Recent studies have investigated alternative methods to estimate reference motions on very hard rock through an original processing of the Japanese KiK-net recordings from stiff sites (500 < VS30 < 1350 m/s). The pairs of recordings at surface and depth, together with the knowledge of the velocity profile, allowed to derive two sets of "virtual" outcropping, hard-rock motion data for sites having velocities in the range [1000 - 3000 m/s]. The corrections are based either on a transformation of deep, within-motion to outcropping motion, or on a deconvolution of surface recordings using the velocity profile and 1D simulation, which has been performed both in the response spectrum and Fourier domains. Each of these virtual "outcropping hard-rock motion" data sets has then been used to derive GMPEs with simple functional forms, using as site condition proxy the S-wave velocity at depth (VSDH), ranging from 1000 to 3000 m/s. Both sets provide very similar predictions, which are much smaller at high frequencies (f > 10 Hz) than those estimated with the traditional HTTA technique - by a factor up to 3-4,. These differences decrease for decreasing frequency, and become negligible at low frequency (f < 1 Hz). The main focus will be to discuss the possible reasons of such differences, in relation with the implicit or explicit assumptions of either approach. Our present interpretation is related to the existence of a significant, high-frequency amplification on stiff soils and standard rocks, due to thin, shallow, moderate velocity layers. Not only this resonant amplification is not correctly accounted for by the quarter-wavelength approach used in the traditional HTTA adjustment techniques, but it may also significantly impact and bias the κ measurements, and the (VS30- κ0) relationships implicitly used in HTTA techniques.

  1. The application of mean field theory to image motion estimation.

    PubMed

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  2. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2018-03-01

    Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder internal rotation, and elbow flexion. However, digital photography was only more precise than goniometry for measurements of elbow flexion. Overall digital photography shows equivalent accuracy to visual estimation and goniometry, but with higher precision than visual estimation. Copyright © 2017. Published by Elsevier B.V.

  3. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2017-09-07

    Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.

  4. Study to determine cloud motion from meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Clark, B. B.

    1972-01-01

    Processing techniques were tested for deducing cloud motion vectors from overlapped portions of pairs of pictures made from meteorological satellites. This was accomplished by programming and testing techniques for estimating pattern motion by means of cross correlation analysis with emphasis placed upon identifying and reducing errors resulting from various factors. Techniques were then selected and incorporated into a cloud motion determination program which included a routine which would select and prepare sample array pairs from the preprocessed test data. The program was then subjected to limited testing with data samples selected from the Nimbus 4 THIR data provided by the 11.5 micron channel.

  5. A Comprehensive Motion Estimation Technique for the Improvement of EIS Methods Based on the SURF Algorithm and Kalman Filter.

    PubMed

    Cheng, Xuemin; Hao, Qun; Xie, Mengdi

    2016-04-07

    Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.

  6. Adaptive cancellation of motion artifact in wearable biosensors.

    PubMed

    Yousefi, Rasoul; Nourani, Mehrdad; Panahi, Issa

    2012-01-01

    The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.

  7. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  8. Ubiquitous human upper-limb motion estimation using wearable sensors.

    PubMed

    Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang

    2011-07-01

    Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.

  9. Relative Motion of the WDS 05110+3203 STF 648 System, With a Protocol for Calculating Relative Motion

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2010-07-01

    Relative motion studies of visual double stars can be investigated using least squares regression techniques and readily accessible programs such as Microsoft Excel and a calculator. Optical pairs differ from physical pairs under most geometries in both their simple scatter plots and their regression models. A step-by-step protocol for estimating the rectilinear elements of an optical pair is presented. The characteristics of physical pairs using these techniques are discussed.

  10. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  11. Improved frame-based estimation of head motion in PET brain imaging.

    PubMed

    Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R

    2016-05-01

    Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  12. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  13. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  14. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    PubMed Central

    Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier

    2017-01-01

    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178

  15. Statistical description of tectonic motions

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    1993-01-01

    This report summarizes investigations regarding tectonic motions. The topics discussed include statistics of crustal deformation, Earth rotation studies, using multitaper spectrum analysis techniques applied to both space-geodetic data and conventional astrometric estimates of the Earth's polar motion, and the development, design, and installation of high-stability geodetic monuments for use with the global positioning system.

  16. Real time estimation of ship motions using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M. S.; Bodson, M.; Athans, M.

    1983-01-01

    The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.

  17. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  18. 37 CFR 351.10 - Evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...” include still photographs, video tapes, and motion pictures. (2) Separation of irrelevant portions... considered in the analysis, the techniques of data collection, the techniques of estimation and testing, and...

  19. 37 CFR 351.10 - Evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...” include still photographs, video tapes, and motion pictures. (2) Separation of irrelevant portions... considered in the analysis, the techniques of data collection, the techniques of estimation and testing, and...

  20. 37 CFR 351.10 - Evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...” include still photographs, video tapes, and motion pictures. (2) Separation of irrelevant portions... considered in the analysis, the techniques of data collection, the techniques of estimation and testing, and...

  1. 37 CFR 351.10 - Evidence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...” include still photographs, video tapes, and motion pictures. (2) Separation of irrelevant portions... considered in the analysis, the techniques of data collection, the techniques of estimation and testing, and...

  2. Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Setty, V. A.; Sharma, A. S.

    2015-02-01

    The Hurst exponent (H) is widely used to quantify long range dependence in time series data and is estimated using several well known techniques. Recognizing its ability to remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly encompasses a set of models of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H. Recently, there has been a growing interest in time dependence of H(t) and sliding window techniques have been used to estimate a local time average of the exponent. This brought to fore the ability of DFA to estimate scaling exponents in systems with time varying H(t) , such as mBm. This paper characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the robustness of estimated time average with respect to data and technique related parameters. Our results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time series data.

  3. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Cannaday, R. L.

    1979-01-01

    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  4. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  5. Improved frame-based estimation of head motion in PET brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition ismore » uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.« less

  6. Improved frame-based estimation of head motion in PET brain imaging

    PubMed Central

    Mukherjee, J. M.; Lindsay, C.; Mukherjee, A.; Olivier, P.; Shao, L.; King, M. A.; Licho, R.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type. PMID:27147355

  7. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.

    PubMed

    Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis

    2017-01-01

    The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z -value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values ( H 2 > 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable ( H 2 > 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed.

  8. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates

    PubMed Central

    Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis

    2017-01-01

    The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z-value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values (H2> 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable (H2> 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed. PMID:29230229

  9. Motion Correction in PROPELLER and Turboprop-MRI

    PubMed Central

    Tamhane, Ashish A.; Arfanakis, Konstantinos

    2009-01-01

    PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858

  10. Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.

    2018-05-01

    In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.

  11. Arterial Mechanical Motion Estimation Based on a Semi-Rigid Body Deformation Approach

    PubMed Central

    Guzman, Pablo; Hamarneh, Ghassan; Ros, Rafael; Ros, Eduardo

    2014-01-01

    Arterial motion estimation in ultrasound (US) sequences is a hard task due to noise and discontinuities in the signal derived from US artifacts. Characterizing the mechanical properties of the artery is a promising novel imaging technique to diagnose various cardiovascular pathologies and a new way of obtaining relevant clinical information, such as determining the absence of dicrotic peak, estimating the Augmentation Index (AIx), the arterial pressure or the arterial stiffness. One of the advantages of using US imaging is the non-invasive nature of the technique unlike Intra Vascular Ultra Sound (IVUS) or angiography invasive techniques, plus the relative low cost of the US units. In this paper, we propose a semi rigid deformable method based on Soft Bodies dynamics realized by a hybrid motion approach based on cross-correlation and optical flow methods to quantify the elasticity of the artery. We evaluate and compare different techniques (for instance optical flow methods) on which our approach is based. The goal of this comparative study is to identify the best model to be used and the impact of the accuracy of these different stages in the proposed method. To this end, an exhaustive assessment has been conducted in order to decide which model is the most appropriate for registering the variation of the arterial diameter over time. Our experiments involved a total of 1620 evaluations within nine simulated sequences of 84 frames each and the estimation of four error metrics. We conclude that our proposed approach obtains approximately 2.5 times higher accuracy than conventional state-of-the-art techniques. PMID:24871987

  12. Comparison study on disturbance estimation techniques in precise slow motion control

    NASA Astrophysics Data System (ADS)

    Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.

    2010-08-01

    Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.

  13. Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares.

    PubMed

    Zhou, Zhenyu; Liu, Wei; Cui, Jiali; Wang, Xunheng; Arias, Diana; Wen, Ying; Bansal, Ravi; Hao, Xuejun; Wang, Zhishun; Peterson, Bradley S; Xu, Dongrong

    2011-02-01

    Signal variation in diffusion-weighted images (DWIs) is influenced both by thermal noise and by spatially and temporally varying artifacts, such as rigid-body motion and cardiac pulsation. Motion artifacts are particularly prevalent when scanning difficult patient populations, such as human infants. Although some motion during data acquisition can be corrected using image coregistration procedures, frequently individual DWIs are corrupted beyond repair by sudden, large amplitude motion either within or outside of the imaging plane. We propose a novel approach to identify and reject outlier images automatically using local binary patterns (LBP) and 2D partial least square (2D-PLS) to estimate diffusion tensors robustly. This method uses an enhanced LBP algorithm to extract texture features from a local texture feature of the image matrix from the DWI data. Because the images have been transformed to local texture matrices, we are able to extract discriminating information that identifies outliers in the data set by extending a traditional one-dimensional PLS algorithm to a two-dimension operator. The class-membership matrix in this 2D-PLS algorithm is adapted to process samples that are image matrix, and the membership matrix thus represents varying degrees of importance of local information within the images. We also derive the analytic form of the generalized inverse of the class-membership matrix. We show that this method can effectively extract local features from brain images obtained from a large sample of human infants to identify images that are outliers in their textural features, permitting their exclusion from further processing when estimating tensors using the DWIs. This technique is shown to be superior in performance when compared with visual inspection and other common methods to address motion-related artifacts in DWI data. This technique is applicable to correct motion artifact in other magnetic resonance imaging (MRI) techniques (e.g., the bootstrapping estimation) that use univariate or multivariate regression methods to fit MRI data to a pre-specified model. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Multiple-camera/motion stereoscopy for range estimation in helicopter flight

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.

    1993-01-01

    Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.

  15. Registration Methods for IVUS: Transversal and Longitudinal Transducer Motion Compensation.

    PubMed

    Talou, Gonzalo D Maso; Blanco, Pablo J; Larrabide, Ignacio; Bezerra, Cristiano Guedes; Lemos, Pedro A; Feijoo, Raul A

    2017-04-01

    Intravascular ultrasound (IVUS) is a fundamental imaging technique for atherosclerotic plaque assessment, interventionist guidance, and, ultimately, as a tissue characterization tool. The studies acquired by this technique present the spatial description of the vessel during the cardiac cycle. However, the study frames are not properly sorted. As gating methods deal with the cardiac phase classification of the frames, the gated studies lack motion compensation between vessel and catheter. In this study, we develop registration strategies to arrange the vessel data into its rightful spatial sequence. Registration is performed by compensating longitudinal and transversal relative motion between vessel and catheter. Transversal motion is identified through maximum likelihood estimator optimization, while longitudinal motion is estimated by a neighborhood similarity estimator among the study frames. A strongly coupled implementation is proposed to compensate for both motion components at once. Loosely coupled implementations (DLT and DTL) decouple the registration process, resulting in more computationally efficient algorithms in detriment of the size of the set of candidate solutions. The DTL outperforms DLT and coupled implementations in terms of accuracy by a factor of 1.9 and 1.4, respectively. Sensitivity analysis shows that perivascular tissue must be considered to obtain the best registration outcome. Evidences suggest that the method is able to measure axial strain along the vessel wall. The proposed registration sorts the IVUS frames for spatial location, which is crucial for a correct interpretation of the vessel wall kinematics along the cardiac phases.

  16. Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference, France

    NASA Astrophysics Data System (ADS)

    Memin, A.; Viswanathan, V.; Fienga, A.; Santamaría-Gómez, A.; Boy, J. P.

    2016-12-01

    Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the data. We investigate the discrepancy observed in the seasonal variations of the CERGA station, South of France.We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR and LLR. We compare the station motion observed with GNSS and SLR and we estimate changes in the station-to-the-moon distance using an improved processing strategy. We investigate the consistency between these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models.Using the surface-mass models, we estimate the amplitude of the seasonal vertical motion of the CERGA station ranging between 5 and 10 mm with a maximum reached in August, mostly due to hydrology. The horizontal seasonal motion of the station may reach up to 3 mm. Such a station motion should induce a change in the distance to the moon reaching up to 10 mm, large enough to be detected in LLR time series and compared to GNSS- and SLR-derived motion.

  17. Motion-compensated compressed sensing for dynamic imaging

    NASA Astrophysics Data System (ADS)

    Sundaresan, Rajagopalan; Kim, Yookyung; Nadar, Mariappan S.; Bilgin, Ali

    2010-08-01

    The recently introduced Compressed Sensing (CS) theory explains how sparse or compressible signals can be reconstructed from far fewer samples than what was previously believed possible. The CS theory has attracted significant attention for applications such as Magnetic Resonance Imaging (MRI) where long acquisition times have been problematic. This is especially true for dynamic MRI applications where high spatio-temporal resolution is needed. For example, in cardiac cine MRI, it is desirable to acquire the whole cardiac volume within a single breath-hold in order to avoid artifacts due to respiratory motion. Conventional MRI techniques do not allow reconstruction of high resolution image sequences from such limited amount of data. Vaswani et al. recently proposed an extension of the CS framework to problems with partially known support (i.e. sparsity pattern). In their work, the problem of recursive reconstruction of time sequences of sparse signals was considered. Under the assumption that the support of the signal changes slowly over time, they proposed using the support of the previous frame as the "known" part of the support for the current frame. While this approach works well for image sequences with little or no motion, motion causes significant change in support between adjacent frames. In this paper, we illustrate how motion estimation and compensation techniques can be used to reconstruct more accurate estimates of support for image sequences with substantial motion (such as cardiac MRI). Experimental results using phantoms as well as real MRI data sets illustrate the improved performance of the proposed technique.

  18. Turboprop IDEAL: a motion-resistant fat-water separation technique.

    PubMed

    Huo, Donglai; Li, Zhiqiang; Aboussouan, Eric; Karis, John P; Pipe, James G

    2009-01-01

    Suppression of the fat signal in MRI is very important for many clinical applications. Multi-point water-fat separation methods, such as IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation), can robustly separate water and fat signal, but inevitably increase scan time, making separated images more easily affected by patient motions. PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and Turboprop techniques offer an effective approach to correct for motion artifacts. By combining these techniques together, we demonstrate that the new TP-IDEAL method can provide reliable water-fat separation with robust motion correction. The Turboprop sequence was modified to acquire source images, and motion correction algorithms were adjusted to assure the registration between different echo images. Theoretical calculations were performed to predict the optimal shift and spacing of the gradient echoes. Phantom images were acquired, and results were compared with regular FSE-IDEAL. Both T1- and T2-weighted images of the human brain were used to demonstrate the effectiveness of motion correction. TP-IDEAL images were also acquired for pelvis, knee, and foot, showing great potential of this technique for general clinical applications.

  19. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  20. Vision System Measures Motions of Robot and External Objects

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2008-01-01

    A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem (the subsystem that estimates the motion of the camera pair relative to the stationary background) utilizes the 3D information from stereoscopy and the 2D information from optical flow. It computes the relationship between the 3D and 2D motions and uses a least-mean-squares technique to estimate motion parameters. The least-mean-squares technique is suitable for real-time implementation when the number of external-moving-object pixels is smaller than the number of stationary-background pixels.

  1. Estimation of cardiac motion in cine-MRI sequences by correlation transform optical flow of monogenic features distance

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick

    2016-12-01

    Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.

  2. Assessing the effects of subject motion on T2 relaxation under spin tagging (TRUST) cerebral oxygenation measurements using volume navigators.

    PubMed

    Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar

    2017-12-01

    Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  4. Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding

    NASA Astrophysics Data System (ADS)

    Dung, Lan-Rong; Lin, Meng-Chun

    This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.

  5. Bounded Kalman filter method for motion-robust, non-contact heart rate estimation

    PubMed Central

    Prakash, Sakthi Kumar Arul; Tucker, Conrad S.

    2018-01-01

    The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results. PMID:29552419

  6. Long-term mass variations from SLR, VLBI and GPS data

    NASA Astrophysics Data System (ADS)

    Luceri, Vincenza; Sciarretta, Cecilia; Bianco, Giuseppe

    2013-04-01

    The second-degree geopotential coefficients reflect the behaviour of the Earth's inertia tensor of order 2 which describes the main mass variations of our planet impacting polar motion and length of day (EOP). SLR, VLBI and GPS allow the estimation of those variations, either directly in the case of SLR through its dynamics, and indirectly, for all the three geodetic techniques, by deriving excitation functions from the EOP estimations. The geodetic estimates include the influence of the Earth's atmosphere and oceans, both from their mass and motion components, which can be modelled using the atmospheric and oceanic angular momenta variations. The different C21, S21 and C20 geodetic time series are compared in order to evaluate their coherence and their response to the mass variations after the removal of the motion terms. Moreover, the residual signal contents of the geodetic values, deprived by the atmospheric and oceanic mass and motion components, will be investigated.

  7. Motion correction in periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and turboprop MRI.

    PubMed

    Tamhane, Ashish A; Arfanakis, Konstantinos

    2009-07-01

    Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.

  8. Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.

  9. 90Y Liver Radioembolization Imaging Using Amplitude-Based Gated PET/CT.

    PubMed

    Osborne, Dustin R; Acuff, Shelley; Neveu, Melissa; Kaman, Austin; Syed, Mumtaz; Fu, Yitong

    2017-05-01

    The usage of PET/CT to monitor patients with hepatocellular carcinoma following Y radioembolization has increased; however, image quality is often poor because of low count efficiency and respiratory motion. Motion can be corrected using gating techniques but at the expense of additional image noise. Amplitude-based gating has been shown to improve quantification in FDG PET, but few have used this technique in Y liver imaging. The patients shown in this work indicate that amplitude-based gating can be used in Y PET/CT liver imaging to provide motion-corrected images with higher estimates of activity concentration that may improve posttherapy dosimetry.

  10. Influence of the noise sources motion on the estimated Green's functions from ambient noise cross-correlations.

    PubMed

    Sabra, Karim G

    2010-06-01

    It has been demonstrated theoretically and experimentally that an estimate of the Green's function between two receivers can be obtained by cross-correlating acoustic (or elastic) ambient noise recorded at these two receivers. Coherent wavefronts emerge from the noise cross-correlation time function due to the accumulated contributions over time from noise sources whose propagation path pass through both receivers. Previous theoretical studies of the performance of this passive imaging technique have assumed that no relative motion between noise sources and receivers occurs. In this article, the influence of noise sources motion (e.g., aircraft or ship) on this passive imaging technique was investigated theoretically in free space, using a stationary phase approximation, for stationary receivers. The theoretical results were extended to more complex environments, in the high-frequency regime, using first-order expansions of the Green's function. Although sources motion typically degrades the performance of wideband coherent processing schemes, such as time-delay beamforming, it was found that the Green's function estimated from ambient noise cross-correlations are not expected to be significantly affected by the Doppler effect, even for supersonic sources. Numerical Monte-Carlo simulations were conducted to confirm these theoretical predictions for both cases of subsonic and supersonic moving sources.

  11. Visual Target Tracking in the Presence of Unknown Observer Motion

    NASA Technical Reports Server (NTRS)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  12. Mode extraction on wind turbine blades via phase-based video motion estimation

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu

    2017-04-01

    In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.

  13. 3D pose estimation and motion analysis of the articulated human hand-forearm limb in an industrial production environment

    NASA Astrophysics Data System (ADS)

    Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz

    2010-09-01

    This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.

  14. Estimating 4D CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy

    PubMed Central

    Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei

    2017-01-01

    Purpose To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume to evaluate the method. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and “ground-truth” on board 4D-CBCT. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against 3 lung patients. Results The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely small scan angles or projections. Using orthogonal 15° scanning angles, the VPD/COMS were 3.47±2.94% and 0.23±0.22mm for SMM-WFD and 25.23±19.01% and 2.58±2.54mm for GMM-FD among all 8 XCAT scenarios. Compared to GMM-FD, SMM-WFD was more robust against reduction of the scanning angles down to orthogonal 10° with VPD/COMS of 6.21±5.61% and 0.39±0.49mm, and more robust against reduction of projection numbers down to only 8 projections in total for both orthogonal-view 30° and orthogonal-view 15° scan angles. SMM-WFD method was also more robust than the GMM-FD method against increasing levels of noise in the projection images. Additionally, the SMM-WFD technique provided better tumor estimation for all three lung patients compared to the GMM-FD technique. Conclusion Compared to the GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles and low number of projections to provide fast low dose 4D target verification. PMID:28079267

  15. Scalable Motion Estimation Processor Core for Multimedia System-on-Chip Applications

    NASA Astrophysics Data System (ADS)

    Lai, Yeong-Kang; Hsieh, Tian-En; Chen, Lien-Fei

    2007-04-01

    In this paper, we describe a high-throughput and scalable motion estimation processor architecture for multimedia system-on-chip applications. The number of processing elements (PEs) is scalable according to the variable algorithm parameters and the performance required for different applications. Using the PE rings efficiently and an intelligent memory-interleaving organization, the efficiency of the architecture can be increased. Moreover, using efficient on-chip memories and a data management technique can effectively decrease the power consumption and memory bandwidth. Techniques for reducing the number of interconnections and external memory accesses are also presented. Our results demonstrate that the proposed scalable PE-ringed architecture is a flexible and high-performance processor core in multimedia system-on-chip applications.

  16. Development of a Single Station 6C-Approach for Array Analysis and Microzonation: Using Vertical Rotation Rate to Estimate Love-Wave Disperion Curves and Direction Finding

    NASA Astrophysics Data System (ADS)

    Wassermann, J. M.; Wietek, A.; Hadziioannou, C.; Igel, H.

    2014-12-01

    Microzonation, i.e. the estimation of (shear) wave velocity profiles of the upper few 100m in dense 2D surface grids is one of the key methods to understand the variation in seismic hazard caused by ground shaking events. In this presentation we introduce a novel method for estimating the Love-wave phase velocity dispersion by using ambient noise recordings. We use the vertical component of rotational motions inherently present in ambient noise and the well established relation to simultaneous recordings of transverse acceleration. In this relation the frequency dependent phase velocity of a plane SH (or Love)-type wave acts as a proportionality factor between the anti-correlated amplitudes of both measures. In a first step we used synthetic data sets with increasing complexity to evaluate the proposed technique and the developed algorithm to extract the direction and amplitude of the incoming ambient noise wavefield measured at a single site. Since reliable weak rotational motion sensors are not yet readily available, we apply array derived rotation measurements in order to test our method. We next use the technique to analyze different real data sets of ambient noise measurements as well as seismic recordings at active volcanoes and compare these results with findings of the Spatial AutoCorrelation technique which was applied to the same data set. We demonstrate that the newly developed technique shows comparable results to more classical, strictly array based methods. Furthermore, we show that as soon as portable weak motion rotational motion sensors are available, a single 6C-station approach will be feasible, not only for microzonation but also for general array applications, with performance comparable to more classical techniques. An important advantage, especially in urban environments, is that with this approach, the number of seismic stations needed is drastically reduced.

  17. A robust vision-based sensor fusion approach for real-time pose estimation.

    PubMed

    Assa, Akbar; Janabi-Sharifi, Farrokh

    2014-02-01

    Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.

  18. Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.

    2004-05-01

    We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.

  19. A switched systems approach to image-based estimation

    NASA Astrophysics Data System (ADS)

    Parikh, Anup

    With the advent of technological improvements in imaging systems and computational resources, as well as the development of image-based reconstruction techniques, it is necessary to understand algorithm performance when subject to real world conditions. Specifically, this dissertation focuses on the stability and performance of a class of image-based observers in the presence of intermittent measurements, caused by e.g., occlusions, limited FOV, feature tracking losses, communication losses, or finite frame rates. Observers or filters that are exponentially stable under persistent observability may have unbounded error growth during intermittent sensing, even while providing seemingly accurate state estimates. In Chapter 3, dwell time conditions are developed to guarantee state estimation error convergence to an ultimate bound for a class of observers while undergoing measurement loss. Bounds are developed on the unstable growth of the estimation errors during the periods when the object being tracked is not visible. A Lyapunov-based analysis for the switched system is performed to develop an inequality in terms of the duration of time the observer can view the moving object and the duration of time the object is out of the field of view. In Chapter 4, a motion model is used to predict the evolution of the states of the system while the object is not visible. This reduces the growth rate of the bounding function to an exponential and enables the use of traditional switched systems Lyapunov analysis techniques. The stability analysis results in an average dwell time condition to guarantee state error convergence with a known decay rate. In comparison with the results in Chapter 3, the estimation errors converge to zero rather than a ball, with relaxed switching conditions, at the cost of requiring additional information about the motion of the feature. In some applications, a motion model of the object may not be available. Numerous adaptive techniques have been developed to compensate for unknown parameters or functions in system dynamics; however, persistent excitation (PE) conditions are typically required to ensure parameter convergence, i.e., learning. Since the motion model is needed in the predictor, model learning is desired; however, PE is difficult to insure a priori and infeasible to check online for nonlinear systems. Concurrent learning (CL) techniques have been developed to use recorded data and a relaxed excitation condition to ensure convergence. In CL, excitation is only required for a finite period of time, and the recorded data can be checked to determine if it is sufficiently rich. However, traditional CL requires knowledge of state derivatives, which are typically not measured and require extensive filter design and tuning to develop satisfactory estimates. In Chapter 5 of this dissertation, a novel formulation of CL is developed in terms of an integral (ICL), removing the need to estimate state derivatives while preserving parameter convergence properties. Using ICL, an estimator is developed in Chapter 6 for simultaneously estimating the pose of an object as well as learning a model of its motion for use in a predictor when the object is not visible. A switched systems analysis is provided to demonstrate the stability of the estimation and prediction with learning scheme. Dwell time conditions as well as excitation conditions are developed to ensure estimation errors converge to an arbitrarily small bound. Experimental results are provided to illustrate the performance of each of the developed estimation schemes. The dissertation concludes with a discussion of the contributions and limitations of the developed techniques, as well as avenues for future extensions.

  20. Spatial and spectral interpolation of ground-motion intensity measure observations

    USGS Publications Warehouse

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  1. Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.

    2007-12-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.

  2. A hybrid spatiotemporal and Hough-based motion estimation approach applied to magnetic resonance cardiac images

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.

    2006-08-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.

  3. Correction of 3D rigid body motion in fMRI time series by independent estimation of rotational and translational effects in k-space.

    PubMed

    Costagli, Mauro; Waggoner, R Allen; Ueno, Kenichi; Tanaka, Keiji; Cheng, Kang

    2009-04-15

    In functional magnetic resonance imaging (fMRI), even subvoxel motion dramatically corrupts the blood oxygenation level-dependent (BOLD) signal, invalidating the assumption that intensity variation in time is primarily due to neuronal activity. Thus, correction of the subject's head movements is a fundamental step to be performed prior to data analysis. Most motion correction techniques register a series of volumes assuming that rigid body motion, characterized by rotational and translational parameters, occurs. Unlike the most widely used applications for fMRI data processing, which correct motion in the image domain by numerically estimating rotational and translational components simultaneously, the algorithm presented here operates in a three-dimensional k-space, to decouple and correct rotations and translations independently, offering new ways and more flexible procedures to estimate the parameters of interest. We developed an implementation of this method in MATLAB, and tested it on both simulated and experimental data. Its performance was quantified in terms of square differences and center of mass stability across time. Our data show that the algorithm proposed here successfully corrects for rigid-body motion, and its employment in future fMRI studies is feasible and promising.

  4. Influence of ultrasound speckle tracking strategies for motion and strain estimation.

    PubMed

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago

    2016-08-01

    Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.

    PubMed

    Kiat Teu, Koon; Kim, Wangdo

    2006-01-01

    The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107-116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix (DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the eigenvector and the singular value decomposition.

  6. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Interferometric estimation of ice sheet motion and topography

    NASA Technical Reports Server (NTRS)

    Joughlin, Ian; Kwok, Ron; Fahnestock, Mark; Winebrenner, Dale; Tulaczyk, Slawek; Gogenini, Prasad

    1997-01-01

    With ERS-1/2 satellite radar interferometry, it is possible to make measurements of glacier motion with high accuracy and fine spatial resolution. Interferometric techniques were applied to map velocity and topography for several outlet glaciers in Greenland. For the Humboldt and Petermann glaciers, data from several adjacent tracks were combined to make a wide-area map that includes the enhanced flow regions of both glaciers. The discharge flux of the Petermann glacier upstream of the grounding line was estimated, thereby establishing the potential use of ERS-1/2 interferometric data for monitoring ice-sheet discharge. Interferograms collected along a single track are sensitive to only one component of motion. By utilizing data from ascending and descending passes and by making a surface-parallel flow assumption, it is possible to measure the full three-dimensional vector flow field. The application of this technique for an area on the Ryder glacier is demonstrated. Finally, ERS-1/2 interferograms were used to observe a mini-surge on the Ryder glacier that occurred in autumn of 1995.

  8. Parameter Estimation in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark; Colarco, Peter

    2004-01-01

    In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .

  9. Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas.

    PubMed

    Schires, Elliott; Georgiou, Pantelis; Lande, Tor Sverre

    2018-04-01

    Radar devices can be used in nonintrusive situations to monitor vital sign, through clothes or behind walls. By detecting and extracting body motion linked to physiological activity, accurate simultaneous estimations of both heart rate (HR) and respiration rate (RR) is possible. However, most research to date has focused on front monitoring of superficial motion of the chest. In this paper, body penetration of electromagnetic (EM) wave is investigated to perform back monitoring of human subjects. Using body-coupled antennas and an ultra-wideband (UWB) pulsed radar, in-body monitoring of lungs and heart motion was achieved. An optimised location of measurement in the back of a subject is presented, to enhance signal-to-noise ratio and limit attenuation of reflected radar signals. Phase-based detection techniques are then investigated for back measurements of vital sign, in conjunction with frequency estimation methods that reduce the impact of parasite signals. Finally, an algorithm combining these techniques is presented to allow robust and real-time estimation of both HR and RR. Static and dynamic tests were conducted, and demonstrated the possibility of using this sensor in future health monitoring systems, especially in the form of a smart car seat for driver monitoring.

  10. An Efficient VLSI Architecture of the Enhanced Three Step Search Algorithm

    NASA Astrophysics Data System (ADS)

    Biswas, Baishik; Mukherjee, Rohan; Saha, Priyabrata; Chakrabarti, Indrajit

    2016-09-01

    The intense computational complexity of any video codec is largely due to the motion estimation unit. The Enhanced Three Step Search is a popular technique that can be adopted for fast motion estimation. This paper proposes a novel VLSI architecture for the implementation of the Enhanced Three Step Search Technique. A new addressing mechanism has been introduced which enhances the speed of operation and reduces the area requirements. The proposed architecture when implemented in Verilog HDL on Virtex-5 Technology and synthesized using Xilinx ISE Design Suite 14.1 achieves a critical path delay of 4.8 ns while the area comes out to be 2.9K gate equivalent. It can be incorporated in commercial devices like smart-phones, camcorders, video conferencing systems etc.

  11. Estimating 4D-CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy.

    PubMed

    Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei

    2017-03-01

    To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion model extracted by a global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural PCA method was developed to build a structural motion model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respiratory changes from planning 4D-CT to on-board volume to evaluate the method. The estimation accuracy was evaluated by the volume percent difference (VPD)/center-of-mass-shift (COMS) between lesions in the estimated and "ground-truth" on-board 4D-CBCT. Different on-board projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against three lung patients. The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely small scan angles or projections. Using orthogonal 15° scanning angles, the VPD/COMS were 3.47 ± 2.94% and 0.23 ± 0.22 mm for SMM-WFD and 25.23 ± 19.01% and 2.58 ± 2.54 mm for GMM-FD among all eight XCAT scenarios. Compared to GMM-FD, SMM-WFD was more robust against reduction of the scanning angles down to orthogonal 10° with VPD/COMS of 6.21 ± 5.61% and 0.39 ± 0.49 mm, and more robust against reduction of projection numbers down to only 8 projections in total for both orthogonal-view 30° and orthogonal-view 15° scan angles. SMM-WFD method was also more robust than the GMM-FD method against increasing levels of noise in the projection images. Additionally, the SMM-WFD technique provided better tumor estimation for all three lung patients compared to the GMM-FD technique. Compared to the GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles and low number of projections to provide fast low dose 4D target verification. © 2017 American Association of Physicists in Medicine.

  12. SU-G-JeP3-04: Estimating 4D CBCT from Prior Information and Extremely Limited Angle Projections Using Structural PCA and Weighted Free-Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Zhang, Y

    Purpose: To investigate the feasibility of using structure-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and a free-form deformation (GMM-FD) technique, using data fidelity constraint and the deformation energy minimization. In thismore » study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and “ground-truth” on board 4D-CBCT. Results: Among 6 different XCAT scenarios corresponding to respirational and anatomical changes from planning CT to on-board using single 30° on-board projections, the VPD/COMS for SMM-WFD was reduced to 10.64±3.04%/1.20±0.45mm from 21.72±9.24%/1.80±0.53mm for GMM-FD. Using 15° orthogonal projections, the VPD/COMS was further reduced to 1.91±0.86%/0.31±0.42mm based on SMM-WFD. Conclusion: Compared to GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles to provide ultra-fast 4D verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  13. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  14. A Cost Analysis of Colonoscopy using Microcosting and Time-and-motion Techniques

    PubMed Central

    Ness, Reid M.; Stiles, Renée A.; Shintani, Ayumi K.; Dittus, Robert S.

    2007-01-01

    Background The cost of an individual colonoscopy is an important determinant of the overall cost and cost-effectiveness of colorectal cancer screening. Published cost estimates vary widely and typically report institutional costs derived from gross-costing methods. Objective Perform a cost analysis of colonoscopy using micro-costing and time-and-motion techniques to determine the total societal cost of colonoscopy, which includes direct health care costs as well as direct non-health care costs and costs related to patients’ time. The design is prospective cohort. The participants were 276 contacted, eligible patients who underwent colonoscopy between July 2001 and June 2002, at either a Veterans’ Affairs Medical Center or a University Hospital in the Southeastern United States. Major results The median direct health care cost for colonoscopy was $379 (25%, 75%; $343, $433). The median direct non-health care and patient time costs were $226 (25%, 75%; $187, $323) and $274 (25%, 75%; $186, $368), respectively. The median total societal cost of colonoscopy was $923 (25%, 75%; $805, $1047). The median direct health care, direct non-health care, patient time costs, and total costs at the VA were $391, $288, $274, and $958, respectively; analogous costs at the University Hospital were $376, $189, $368, and $905, respectively. Conclusion Microcosting techniques and time-and-motion studies can produce accurate, detailed cost estimates for complex medical interventions. Cost estimates that inform health policy decisions or cost-effectiveness analyses should use total costs from the societal perspective. Societal cost estimates, which include patient and caregiver time costs, may affect colonoscopy screening rates. PMID:17665271

  15. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    PubMed

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.

  16. Adaptive recovery of motion blur point spread function from differently exposed images

    NASA Astrophysics Data System (ADS)

    Albu, Felix; Florea, Corneliu; Drîmbarean, Alexandru; Zamfir, Adrian

    2010-01-01

    Motion due to digital camera movement during the image capture process is a major factor that degrades the quality of images and many methods for camera motion removal have been developed. Central to all techniques is the correct recovery of what is known as the Point Spread Function (PSF). A very popular technique to estimate the PSF relies on using a pair of gyroscopic sensors to measure the hand motion. However, the errors caused either by the loss of the translational component of the movement or due to the lack of precision in gyro-sensors measurements impede the achievement of a good quality restored image. In order to compensate for this, we propose a method that begins with an estimation of the PSF obtained from 2 gyro sensors and uses a pair of under-exposed image together with the blurred image to adaptively improve it. The luminance of the under-exposed image is equalized with that of the blurred image. An initial estimation of the PSF is generated from the output signal of 2 gyro sensors. The PSF coefficients are updated using 2D-Least Mean Square (LMS) algorithms with a coarse-to-fine approach on a grid of points selected from both images. This refined PSF is used to process the blurred image using known deblurring methods. Our results show that the proposed method leads to superior PSF support and coefficient estimation. Also the quality of the restored image is improved compared to 2 gyro only approach or to blind image de-convolution results.

  17. Dynamic estimation of three-dimensional cerebrovascular deformation from rotational angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Chong; Villa-Uriol, Maria-Cruz; De Craene, Mathieu

    2011-03-15

    Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D+t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D+t measured projection sequence and the corresponding forward projections of themore » deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.« less

  18. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    NASA Astrophysics Data System (ADS)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  19. ARMA models for earthquake ground motions. Seismic safety margins research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulatingmore » earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.« less

  20. Estimation of Dynamical Parameters in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark O.

    2004-01-01

    In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.

  1. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less

  2. A hybrid approach to estimate the complex motions of clouds in sky images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong

    Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this article, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approachmore » with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Furthermore, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images.« less

  3. A hybrid approach to estimate the complex motions of clouds in sky images

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2016-09-14

    Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this article, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approachmore » with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Furthermore, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images.« less

  4. PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking

    PubMed Central

    White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders

    2010-01-01

    Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635

  5. Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bodson, M.

    1982-01-01

    The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.

  6. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  7. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    PubMed

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  8. The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator.

    PubMed

    Chui, Chen-Shou; Yorke, Ellen; Hong, Linda

    2003-07-01

    Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study,with the amplitude of the organ motion varying from +/- 3.5 mm to +/- 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques.

  9. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of cloud motion vectors from the GEO/LEO IR based precipitation estimates and the CFS Reanalysis (CFSR) precipitation fields. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the CFSR precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. Error function is experimented to best reflect the performance of the satellite IR based estimates and the CFSR in capturing the movements of precipitating cloud systems over different regions and for different seasons. Quantitative experiments are conducted to optimize the LEO IR based precipitation estimation technique and the 2D-VAR based motion vector analysis system. Detailed results will be reported at the EGU.

  10. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations

    NASA Astrophysics Data System (ADS)

    Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.

  11. Dense depth maps from correspondences derived from perceived motion

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2017-01-01

    Many computer vision applications require finding corresponding points between images and using the corresponding points to estimate disparity. Today's correspondence finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3-D computer vision applications, however, do not produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. We present an image correspondence finding technique that aligns pairs of image sequences using optical flow fields. The optical flow fields provide information about the structure and motion of the scene, which are not available in still images but can be used in image alignment. We apply the technique to a dual focal length stereo camera rig consisting of a visible light-infrared camera pair and to a coaxial camera rig. We test our method on real image sequences and compare our results with the state-of-the-art multimodal and structure from motion (SfM) algorithms. Our method produces more accurate depth and scene velocity reconstruction estimates than the state-of-the-art multimodal and SfM algorithms.

  12. Application Of Three-Dimensional Videography To Human Motion Studies: Constraints, Assumptions, And Mathematics

    NASA Astrophysics Data System (ADS)

    Rab, George T.

    1988-02-01

    Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.

  13. Depth-estimation-enabled compound eyes

    NASA Astrophysics Data System (ADS)

    Lee, Woong-Bi; Lee, Heung-No

    2018-04-01

    Most animals that have compound eyes determine object distances by using monocular cues, especially motion parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation technique can estimate the distances of multiple objects.

  14. Demons versus Level-Set motion registration for coronary 18F-sodium fluoride PET.

    PubMed

    Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R; Fletcher, Alison; Motwani, Manish; Thomson, Louise E; Germano, Guido; Dey, Damini; Berman, Daniel S; Newby, David E; Slomka, Piotr J

    2016-02-27

    Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18 F-sodium fluoride ( 18 F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18 F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18 F-NaF PET. To this end, fifteen patients underwent 18 F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18 F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.

  15. Demons versus level-set motion registration for coronary 18F-sodium fluoride PET

    NASA Astrophysics Data System (ADS)

    Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.

    2016-03-01

    Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.

  16. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  17. Comparison of regional hydrological excitation of polar motion derived from hydrological models and the GRACE gravity field data

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2009-09-01

    Global geophysical excitation functions of polar motion do not explain fully the observed polar motion as determined by geodetic techniques. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation HAM (Hydrological Angular Momentum), is still inadequately estimated and not known so well as atmospheric and oceanic ones. Recently the GRACE (Gravity Recovery and Climate Experiment) satellite mission monitoring Earth's time variable gravity field has allowed us to determine global mass term of the polar motion excitation functions, which inherently includes the atmospheric, oceanic and hydrological portions. We use these terms to make comparisons with the mass term of the geodetic and geophysical excitation functions of polar motion on seasonal scales. Global GRACE excitation function of polar motion and hydrological excitation function of polar motion have been determined and were studied earlier

  18. Parametric system identification of catamaran for improving controller design

    NASA Astrophysics Data System (ADS)

    Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai

    2018-01-01

    This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.

  19. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies

    PubMed Central

    Badachhape, Andrew A.; Okamoto, Ruth J.; Durham, Ramona S.; Efron, Brent D.; Nadell, Sam J.; Johnson, Curtis L.; Bayly, Philip V.

    2017-01-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI. PMID:28267188

  20. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V

    2017-05-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom," displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.

  1. Estimation of object motion parameters from noisy images.

    PubMed

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  2. An analytical approach to test and design upper limb prosthesis.

    PubMed

    Veer, Karan

    2015-01-01

    In this work the signal acquiring technique, the analysis models and the design protocols of the prosthesis are discussed. The different methods to estimate the motion intended by the amputee from surface electromyogram (SEMG) signals based on time and frequency domain parameters are presented. The experiment proposed that the used techniques can help significantly in discriminating the amputee's motions among four independent activities using dual channel set-up. Further, based on experimental results, the design and working of an artificial arm have been covered under two constituents--the electronics design and the mechanical assembly. Finally, the developed hand prosthesis allows the amputated persons to perform daily routine activities easily.

  3. SU-F-J-80: Deformable Image Registration for Residual Organ Motion Estimation in Respiratory Gated Treatments with Scanned Carbon Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meschini, G; Seregni, M; Pella, A

    Purpose: At the Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy) C-ions respiratory gated treatments of patients with abdominal tumours started in 2014. In these cases, the therapeutic dose is delivered around end-exhale. We propose the use of a respiratory motion model to evaluate residual tumour motion. Such a model requires motion fields obtained from deformable image registration (DIR) between 4DCT phases, estimating anatomical motion through interpolation. The aim of this work is to identify the optimal DIR technique to be integrated in the modeling pipeline. Methods: We used 4DCT datasets from 4 patients to test 4 DIR algorithms: Bspline,more » demons, log-domain and symmetric log domain diffeomorphic demons. We evaluate DIR performance in terms of registration accuracy (RMSE between registered images) and anatomical consistency of the motion field (Jacobian) when registering end-inhale to end-exhale. We subsequently employed the model to estimate the tumour trajectory within the ideal gating window. Results: Within the liver contour, the RMSE is in the range 31–46 HU for the best performing algorithm (Bspline) and 43–145 HU for the worst one (demons). The Jacobians featured zero negative voxels (which indicate singularities in the motion field) for the Bspline fields in 3 of 4 patients, whereas diffeomorphic demons fields showed a non-null number of negative voxels in every case. GTV motion in the gating window measured less than 7 mm for every patient, displaying a predominant superior-inferior (SI) component. Conclusion: The Bspline algorithm allows for acceptable DIR results in the abdominal region, exhibiting the property of anatomical consistency of the computed field. Computed trajectories are in agreement with clinical expectations (small and prevalent SI displacements), since patients lie wearing semi-rigid immobilizing masks. In future, the model could be used for retrospective estimation of organ motion during treatment, as guided by the breathing surrogate signal.« less

  4. Numerical Simulation of Strong Ground Motion at Mexico City:A Hybrid Approach for Efficient Evaluation of Site Amplification and Path Effects for Different Types of Earthquakes

    NASA Astrophysics Data System (ADS)

    Cruz, H.; Furumura, T.; Chavez-Garcia, F. J.

    2002-12-01

    The estimation of scenarios of the strong ground motions caused by future great earthquakes is an important problem in strong motion seismology. This was pointed out by the great 1985 Michoacan earthquake, which caused a great damage in Mexico City, 300 km away from the epicenter. Since the seismic wavefield is characterized by the source, path and site effects, the pattern of strong motion damage from different types of earthquakes should differ significantly. In this study, the scenarios for intermediate-depth normal-faulting, shallow-interplate thrust faulting, and crustal earthquakes have been estimated using a hybrid simulation technique. The character of the seismic wavefield propagating from the source to Mexico City for each earthquake was first calculated using the pseudospectral method for 2D SH waves. The site amplifications in the shallow structure of Mexico City are then calculated using the multiple SH wave reverberation theory. The scenarios of maximum ground motion for both inslab and interplate earthquakes obtained by the simulation show a good agreement with the observations. This indicates the effectiveness of the hybrid simulation approach to investigate the strong motion damage for future earthquakes.

  5. Motion adaptive Kalman filter for super-resolution

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Nasse, Fabian; Schröder, Hartmut

    2011-01-01

    Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.

  6. Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.

  7. Stock price prediction using geometric Brownian motion

    NASA Astrophysics Data System (ADS)

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  8. Motion estimation using point cluster method and Kalman filter.

    PubMed

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal instantaneous frequencies.

  9. Satellite-motion Compensation for Monitoring Travelling Ionospheric Disturbances (TIDs) Using GPS

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Penney, R.

    2016-12-01

    The ionosphere exerts a strong influence over a wide range of modern communications and navigtion systems, but is subject to complex influences from both terrestrial and solar sources. Ionospheric disturbances can be triggered by lower-atmosphere phenomena such as hurricanes as well as geophysical events such as earthquakes, as well as being strongly influenced by cyclical and unpredictable solar behaviour. Dual-band GPS receivers provide a popular and convenient means of obtaining information about the ionosphere, and ionospheric disturbances. While GPS measurements can provide clues about the state of the ionosphere, there are many challenges in obtaining reliable information from them. For example, drop-outs and carrier-phase cycle slips may have little influence on using GPS for (medium-precision) navigation, but can lead to signal-processing artefacts that would cause false alarms in detecting ionospheric disturbances. If one is interested in measuring the motion of travelling ionospheric disturbances (TIDs) one must also be able to disentangle the effects of satellite motion from the TID motion. We discuss a novel approach to robustly separating TID waveforms from background trends within GPS time-series of total electron content (TEC), as well as innovative techniques for estimating TID velocities using ideas from Synthetic Aperture Radar (SAR). Underpinning these, we consider how to robustly pre-process GPS time-series to reduce the influence of drop-outs while also reducing data volumes. We present comparisons of our TID velocity estimates with more standard "cross-correlation" techniques, including cases where these standard techniques produce pathological results. We also show results from simulated GPS time-series derived from modelled ionospheric disturbances.

  10. A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2017-03-01

    Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.

  11. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  12. Documenting Western Burrowing Owl Reproduction and Activity Patterns Using Motion-Activated Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Derek B.; Greger, Paul D.

    We used motion-activated cameras to monitor the reproduction and patterns of activity of the Burrowing Owl (Athene cunicularia) above ground at 45 burrows in south-central Nevada during the breeding seasons of 1999, 2000, 2001, and 2005. The 37 broods, encompassing 180 young, raised over the four years represented an average of 4.9 young per successful breeding pair. Young and adult owls were detected at the burrow entrance at all times of the day and night, but adults were detected more frequently during afternoon/early evening than were young. Motion-activated cameras require less effort to implement than other techniques. Limitations include photographingmore » only a small percentage of owl activity at the burrow; not detecting the actual number of eggs, young, or number fledged; and not being able to track individual owls over time. Further work is also necessary to compare the accuracy of productivity estimates generated from motion-activated cameras with other techniques.« less

  13. Fast 3D shape measurements with reduced motion artifacts

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Chen, Qian; Gu, Guohua

    2017-10-01

    Fringe projection is an extensively used technique for high speed three-dimensional (3D) measurements of dynamic objects. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  14. Productivity and cost estimators for conventional ground-based skidding on steep terrain using preplanned skid roads

    Treesearch

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...

  15. Speed Biases With Real-Life Video Clips

    PubMed Central

    Rossi, Federica; Montanaro, Elisa; de’Sperati, Claudio

    2018-01-01

    We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate “natural” video compression techniques based on sub-threshold temporal squeezing. PMID:29615875

  16. Speed Biases With Real-Life Video Clips.

    PubMed

    Rossi, Federica; Montanaro, Elisa; de'Sperati, Claudio

    2018-01-01

    We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate "natural" video compression techniques based on sub-threshold temporal squeezing.

  17. Motion Tracker: Camera-Based Monitoring of Bodily Movements Using Motion Silhouettes

    PubMed Central

    Westlund, Jacqueline Kory; D’Mello, Sidney K.; Olney, Andrew M.

    2015-01-01

    Researchers in the cognitive and affective sciences investigate how thoughts and feelings are reflected in the bodily response systems including peripheral physiology, facial features, and body movements. One specific question along this line of research is how cognition and affect are manifested in the dynamics of general body movements. Progress in this area can be accelerated by inexpensive, non-intrusive, portable, scalable, and easy to calibrate movement tracking systems. Towards this end, this paper presents and validates Motion Tracker, a simple yet effective software program that uses established computer vision techniques to estimate the amount a person moves from a video of the person engaged in a task (available for download from http://jakory.com/motion-tracker/). The system works with any commercially available camera and with existing videos, thereby affording inexpensive, non-intrusive, and potentially portable and scalable estimation of body movement. Strong between-subject correlations were obtained between Motion Tracker’s estimates of movement and body movements recorded from the seat (r =.720) and back (r = .695 for participants with higher back movement) of a chair affixed with pressure-sensors while completing a 32-minute computerized task (Study 1). Within-subject cross-correlations were also strong for both the seat (r =.606) and back (r = .507). In Study 2, between-subject correlations between Motion Tracker’s movement estimates and movements recorded from an accelerometer worn on the wrist were also strong (rs = .801, .679, and .681) while people performed three brief actions (e.g., waving). Finally, in Study 3 the within-subject cross-correlation was high (r = .855) when Motion Tracker’s estimates were correlated with the movement of a person’s head as tracked with a Kinect while the person was seated at a desk (Study 3). Best-practice recommendations, limitations, and planned extensions of the system are discussed. PMID:26086771

  18. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    PubMed Central

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415

  19. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.

  20. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    PubMed

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.

  1. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections.

    PubMed

    Zhang, You; Yin, Fang-Fang; Segars, W Paul; Ren, Lei

    2013-12-01

    To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy. Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and "ground-truth" onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)∕COMS (±S.D.) between lesions in prior images and "ground-truth" onboard images were 136.11% (±42.76%)∕15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD∕COMS between the lesion in estimated and "ground-truth" onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)∕4.9 mm (±3.0 mm), 96.07% (±31.48%)∕12.1 mm (±3.9 mm) and 11.45% (±9.37%)∕1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)∕4.9 mm (±3.0 mm), 75.98% (±27.21%)∕9.9 mm (±4.0 mm), and 5.22% (±2.12%)∕0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)∕3.2 mm (±2.2 mm), 24.57% (±18.18%)∕2.9 mm (±2.0 mm), and 10.48% (±9.50%)∕1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD∕COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased. The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.

  2. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, You; Yin, Fang-Fang; Ren, Lei

    2013-12-15

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes tomore » the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion in estimated and “ground-truth” onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)/4.9 mm (±3.0 mm), 96.07% (±31.48%)/12.1 mm (±3.9 mm) and 11.45% (±9.37%)/1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)/4.9 mm (±3.0 mm), 75.98% (±27.21%)/9.9 mm (±4.0 mm), and 5.22% (±2.12%)/0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)/3.2 mm (±2.2 mm), 24.57% (±18.18%)/2.9 mm (±2.0 mm), and 10.48% (±9.50%)/1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD/COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased.Conclusions: The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.« less

  3. Localized Harmonic Motion Imaging for Focused Ultrasound Surgery Targeting

    PubMed Central

    Curiel, Laura; Hynynen, Kullervo

    2011-01-01

    Recently, an in vivo real-time ultrasound-based monitoring technique that uses localized harmonic motion (LHM) to detect changes in tissues during focused ultrasound surgery (FUS) has been proposed to control the exposure. This technique can potentially be used as well for targeting imaging. In the present study we evaluated the potential of using LHM to detect changes in stiffness and the feasibility of using it for imaging purposes in phantoms and in vivo tumor detection. A single-element FUS transducer (80 mm focal length, 100 mm diameter, 1.485 MHz) was used for inducing a localized harmonic motion and a separate ultrasound diagnostic transducer excited by a pulser/receiver (5 kHz PRF, 5 MHz) was used to track motion. The motion was estimated using cross-correlation techniques on the acquired RF signal. Silicon phantom studies were performed in order to determine the size of inclusion that was possible to detect using this technique. Inclusions were discerned from the surroundings as a reduction on LHM amplitude and it was possible to depict inclusions as small as 4 mm. The amplitude of the induced LHM was always lower at the inclusions as compared with the one obtained at the surroundings. Ten New Zealand rabbits had VX2 tumors implanted on their thighs and LHM was induced and measured at the tumor region. Tumors (as small as 10 mm in length and 4 mm in width) were discerned from the surroundings as a reduction on LHM amplitude. PMID:21683514

  4. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H; Liu, W; Ruan, D

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition.more » During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human subjects. Research supported by National Institutes of Health National Cancer Institute Grant R01 CA159471-01.« less

  5. SU-E-T-622: Planning Technique for Passively-Scattered Involved-Node Proton Therapy of Mediastinal Lymphoma with Consideration of Cardiac Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flampouri, S; Li, Z; Hoppe, B

    2015-06-15

    Purpose: To develop a treatment planning method for passively-scattered involved-node proton therapy of mediastinal lymphoma robust to breathing and cardiac motions. Methods: Beam-specific planning treatment volumes (bsPTV) are calculated for each proton field to incorporate pertinent uncertainties. Geometric margins are added laterally to each beam while margins for range uncertainty due to setup errors, breathing, and calibration curve uncertainties are added along each beam. The calculation of breathing motion and deformation effects on proton range includes all 4DCT phases. The anisotropic water equivalent margins are translated to distances on average 4DCT. Treatment plans are designed so each beam adequately coversmore » the corresponding bsPTV. For targets close to the heart, cardiac motion effects on dosemaps are estimated by using a library of anonymous ECG-gated cardiac CTs (cCT). The cCT, originally contrast-enhanced, are partially overridden to allow meaningful proton dose calculations. Targets similar to the treatment targets are drawn on one or more cCT sets matching the anatomy of the patient. Plans based on the average cCT are calculated on individual phases, then deformed to the average and accumulated. When clinically significant dose discrepancies occur between planned and accumulated doses, the patient plan is modified to reduce the cardiac motion effects. Results: We found that bsPTVs as planning targets create dose distributions similar to the conventional proton planning distributions, while they are a valuable tool for visualization of the uncertainties. For large targets with variability in motion and depth, integral dose was reduced because of the anisotropic margins. In most cases, heart motion has a clinically insignificant effect on target coverage. Conclusion: A treatment planning method was developed and used for proton therapy of mediastinal lymphoma. The technique incorporates bsPTVs compensating for all common sources of uncertainties and estimation of the effects of cardiac motion not commonly performed.« less

  6. Tidal Flexure, Ice Velocities, and Ablation Rates of Peterman Gletscher, Greenland

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1996-01-01

    Over the floating section of a tide-water glacier, single radar intererograms are difficult to use because the long-term steady motion of the ice is intermixed with the tidal vertical motion of the glacier. With multiple interferograms, it is however possible to isolate the tidal signal and remove it from the single interferograms to estimate the ice velocities. The technique is applied to ERS-1 synthetic aperture radar (SAR) images of Petermann Gletscher, north Greenland.

  7. Direct Estimation of Structure and Motion from Multiple Frames

    DTIC Science & Technology

    1990-03-01

    sequential frames in an image sequence. As a consequence, the information that can be extracted from a single optical flow field is limited to a snapshot of...researchers have developed techniques that extract motion and structure inform.4tion without computation of the optical flow. Best known are the "direct...operated iteratively on a sequence of images to recover structure. It required feature extraction and matching. Broida and Chellappa [9] suggested the use of

  8. Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution

    PubMed Central

    Yan, Yong-sheng; Poon, Carmen CY; Zhang, Yuan-ting

    2005-01-01

    Background The pulse oximeter, a medical device capable of measuring blood oxygen saturation (SpO2), has been shown to be a valuable device for monitoring patients in critical conditions. In order to incorporate the technique into a wearable device which can be used in ambulatory settings, the influence of motion artifacts on the estimated SpO2 must be reduced. This study investigates the use of the smoothed psuedo Wigner-Ville distribution (SPWVD) for the reduction of motion artifacts affecting pulse oximetry. Methods The SPWVD approach is compared with two techniques currently used in this field, i.e. the weighted moving average (WMA) and the fast Fourier transform (FFT) approaches. SpO2 and pulse rate were estimated from a photoplethysmographic (PPG) signal recorded when subject is in a resting position as well as in the act of performing four types of motions: horizontal and vertical movements of the hand, and bending and pressing motions of the finger. For each condition, 24 sets of PPG signals collected from 6 subjects, each of 30 seconds, were studied with reference to the PPG signal recorded simultaneously from the subject's other hand, which was stationary at all times. Results and Discussion The SPWVD approach shows significant improvement (p < 0.05), as compared to traditional approaches, when subjects bend their finger or press their finger against the sensor. In addition, the SPWVD approach also reduces the mean absolute pulse rate error significantly (p < 0.05) from 16.4 bpm and 11.2 bpm for the WMA and FFT approaches, respectively, to 5.62 bpm. Conclusion The results suggested that the SPWVD approach could potentially be used to reduce motion artifact on wearable pulse oximeters. PMID:15737241

  9. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI

    PubMed Central

    Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.

    2017-01-01

    Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574

  10. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    PubMed Central

    Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722

  11. Nonrigid motion compensation in B-mode and contrast enhanced ultrasound image sequences of the carotid artery

    NASA Astrophysics Data System (ADS)

    Carvalho, Diego D. B.; Akkus, Zeynettin; Bosch, Johan G.; van den Oord, Stijn C. H.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In this work, we investigate nonrigid motion compensation in simultaneously acquired (side-by-side) B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS) image sequences of the carotid artery. These images are acquired to study the presence of intraplaque neovascularization (IPN), which is a marker of plaque vulnerability. IPN quantification is visualized by performing the maximum intensity projection (MIP) on the CEUS image sequence over time. As carotid images contain considerable motion, accurate global nonrigid motion compensation (GNMC) is required prior to the MIP. Moreover, we demonstrate that an improved lumen and plaque differentiation can be obtained by averaging the motion compensated BMUS images over time. We propose to use a previously published 2D+t nonrigid registration method, which is based on minimization of pixel intensity variance over time, using a spatially and temporally smooth B-spline deformation model. The validation compares displacements of plaque points with manual trackings by 3 experts in 11 carotids. The average (+/- standard deviation) root mean square error (RMSE) was 99+/-74μm for longitudinal and 47+/-18μm for radial displacements. These results were comparable with the interobserver variability, and with results of a local rigid registration technique based on speckle tracking, which estimates motion in a single point, whereas our approach applies motion compensation to the entire image. In conclusion, we evaluated that the GNMC technique produces reliable results. Since this technique tracks global deformations, it can aid in the quantification of IPN and the delineation of lumen and plaque contours.

  12. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    PubMed

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  13. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    PubMed Central

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  14. An ice-motion tracking system at the Alaska SAR facility

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  15. Vestibular signals in primate cortex for self-motion perception.

    PubMed

    Gu, Yong

    2018-04-21

    The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.

  16. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  17. Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics.

    PubMed

    LaPrè, A K; Price, M A; Wedge, R D; Umberger, B R; Sup, Frank C

    2018-04-01

    Musculoskeletal modeling and marker-based motion capture techniques are commonly used to quantify the motions of body segments, and the forces acting on them during human gait. However, when these techniques are applied to analyze the gait of people with lower limb loss, the clinically relevant interaction between the residual limb and prosthesis socket is typically overlooked. It is known that there is considerable motion and loading at the residuum-socket interface, yet traditional gait analysis techniques do not account for these factors due to the inability to place tracking markers on the residual limb inside of the socket. In the present work, we used a global optimization technique and anatomical constraints to estimate the motion and loading at the residuum-socket interface as part of standard gait analysis procedures. We systematically evaluated a range of parameters related to the residuum-socket interface, such as the number of degrees of freedom, and determined the configuration that yields the best compromise between faithfully tracking experimental marker positions while yielding anatomically realistic residuum-socket kinematics and loads that agree with data from the literature. Application of the present model to gait analysis for people with lower limb loss will deepen our understanding of the biomechanics of walking with a prosthesis, which should facilitate the development of enhanced rehabilitation protocols and improved assistive devices. Copyright © 2017 John Wiley & Sons, Ltd.

  18. 2-D Myocardial Deformation Imaging Based on RF-Based Nonrigid Image Registration.

    PubMed

    Chakraborty, Bidisha; Liu, Zhi; Heyde, Brecht; Luo, Jianwen; D'hooge, Jan

    2018-06-01

    Myocardial deformation imaging is a well-established echocardiographic technique for the assessment of myocardial function. Although some solutions make use of speckle tracking of the reconstructed B-mode images, others apply block matching (BM) on the underlying radio frequency (RF) data in order to increase sensitivity to small interframe motion and deformation. However, for both approaches, lateral motion estimation remains a challenge due to the relatively poor lateral resolution of the ultrasound image in combination with the lack of phase information in this direction. Hereto, nonrigid image registration (NRIR) of B-mode images has previously been proposed as an attractive solution. However, hereby, the advantages of RF-based tracking were lost. The aim of this paper was, therefore, to develop an NRIR motion estimator adapted to RF data sets. The accuracy of this estimator was quantified using synthetic data and was contrasted against a state-of-the-art BM solution. The results show that RF-based NRIR outperforms BM in terms of tracking accuracy, particularly, as hypothesized, in the lateral direction. Finally, this RF-based NRIR algorithm was applied clinically, illustrating its ability to estimate both in-plane velocity components in vivo.

  19. Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference station, France

    NASA Astrophysics Data System (ADS)

    Mémin, Anthony; Viswanathan, Vishnu; Fienga, Agnes; Santamarìa-Gómez, Alvaro; Boy, Jean-Paul; Cavalié, Olivier; Deleflie, Florent; Exertier, Pierre; Bernard, Jean-Daniel; Hinderer, Jacques

    2017-04-01

    Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the observations. We investigate the discrepancy observed in the seasonal variations of the position at the CERGA station, South of France. We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR, LLR and InSAR. We investigate the consistency between the station motions deduced from these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models. Using the surface-mass models, we estimate that the seasonal signal due to loading deformation at the CERGA station is about 8-9, 1-2 and 1-2 mm peak-to-peak in Up, North and East component, respectively. There is a very good correlation between GPS observations and non-tidal loading predicted deformation due to atmosphere, ocean and hydrology which is the main driver of seasonal signal at CERGA. Despite large error bars, LLR observations agree reasonably well with GPS and non-tidal loading predictions in Up component. Local deformation as observed by InSAR is very well correlated with GPS observations corrected for non-tidal loading. Finally, we estimate local mass changes using the absolute gravity measurement campaigns available at the station and the global models of surface-mass change. We compute the induced station motion that we compare with the local deformation observed by InSAR and GPS.

  20. Needle detection in ultrasound using the spectral properties of the displacement field: a feasibility study

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.

    2015-03-01

    This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.

  1. Estimation of regression laws for ground motion parameters using as case of study the Amatrice earthquake

    NASA Astrophysics Data System (ADS)

    Tiberi, Lara; Costa, Giovanni

    2017-04-01

    The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.

  2. Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion

    PubMed Central

    Pinsard, Basile; Boutin, Arnaud; Doyon, Julien; Benali, Habib

    2018-01-01

    Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data. PMID:29755312

  3. Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion.

    PubMed

    Pinsard, Basile; Boutin, Arnaud; Doyon, Julien; Benali, Habib

    2018-01-01

    Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data.

  4. Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Garcin, Matthieu

    2017-10-01

    Hurst exponents depict the long memory of a time series. For human-dependent phenomena, as in finance, this feature may vary in the time. It justifies modelling dynamics by multifractional Brownian motions, which are consistent with time-dependent Hurst exponents. We improve the existing literature on estimating time-dependent Hurst exponents by proposing a smooth estimate obtained by variational calculus. This method is very general and not restricted to the sole Hurst framework. It is globally more accurate and easier than other existing non-parametric estimation techniques. Besides, in the field of Hurst exponents, it makes it possible to make forecasts based on the estimated multifractional Brownian motion. The application to high-frequency foreign exchange markets (GBP, CHF, SEK, USD, CAD, AUD, JPY, CNY and SGD, all against EUR) shows significantly good forecasts. When the Hurst exponent is higher than 0.5, what depicts a long-memory feature, the accuracy is higher.

  5. Single-station 6C beamforming

    NASA Astrophysics Data System (ADS)

    Nakata, N.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.

  6. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    PubMed

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-08-20

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  7. Relative effects of posture and activity on human height estimation from surveillance footage.

    PubMed

    Ramstrand, Nerrolyn; Ramstrand, Simon; Brolund, Per; Norell, Kristin; Bergström, Peter

    2011-10-10

    Height estimations based on security camera footage are often requested by law enforcement authorities. While valid and reliable techniques have been established to determine vertical distances from video frames, there is a discrepancy between a person's true static height and their height as measured when assuming different postures or when in motion (e.g., walking). The aim of the research presented in this report was to accurately record the height of subjects as they performed a variety of activities typically observed in security camera footage and compare results to height recorded using a standard height measuring device. Forty-six able bodied adults participated in this study and were recorded using a 3D motion analysis system while performing eight different tasks. Height measurements captured using the 3D motion analysis system were compared to static height measurements in order to determine relative differences. It is anticipated that results presented in this report can be used by forensic image analysis experts as a basis for correcting height estimations of people captured on surveillance footage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    PubMed

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A head motion estimation algorithm for motion artifact correction in dental CT imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol

    2018-03-01

    A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.

  10. Ground Motion Prediction Model Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dhanya, J.; Raghukanth, S. T. G.

    2018-03-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  11. Spacelab experiments on space motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1987-01-01

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurements of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  12. Spacelab experiments on space motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1985-01-01

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurement of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which 4 observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  13. Spacelab experiments on space motion sickness.

    PubMed

    Oman, C M

    1987-01-01

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurements of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  14. Feasibility assessment of yttrium-90 liver radioembolization imaging using amplitude-based gated PET/CT

    PubMed Central

    Acuff, Shelley N.; Neveu, Melissa L.; Syed, Mumtaz; Kaman, Austin D.; Fu, Yitong

    2018-01-01

    Purpose The usage of PET/computed tomography (CT) to monitor hepatocellular carcinoma patients following yttrium-90 (90Y) radioembolization has increased. Respiratory motion causes liver movement, which can be corrected using gating techniques at the expense of added noise. This work examines the use of amplitude-based gating on 90Y-PET/CT and its potential impact on diagnostic integrity. Patients and methods Patients were imaged using PET/CT following 90Y radioembolization. A respiratory band was used to collect respiratory cycle data. Patient data were processed as both standard and motion-corrected images. Regions of interest were drawn and compared using three methods. Activity concentrations were calculated and converted into dose estimates using previously determined and published scaling factors. Diagnostic assessments were performed using a binary scale created from published 90Y-PET/CT image interpretation guidelines. Results Estimates of radiation dose were increased (P<0.05) when using amplitude-gating methods with 90Y PET/CT imaging. Motion-corrected images show increased noise, but the diagnostic determination of success, using the Kao criteria, did not change between static and motion-corrected data. Conclusion Amplitude-gated PET/CT following 90Y radioembolization is feasible and may improve 90Y dose estimates while maintaining diagnostic assessment integrity. PMID:29351124

  15. A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lindqwister, U. J.; Freedman, A. P.; Blewitt, G.

    1992-01-01

    Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years.

  16. Towards Unmanned Systems for Dismounted Operations in the Canadian Forces

    DTIC Science & Technology

    2011-01-01

    LIDAR , and RADAR) and lower power/mass, passive imaging techniques such as structure from motion and simultaneous localisation and mapping ( SLAM ...sensors and learning algorithms. 5.1.2 Simultaneous localisation and mapping SLAM algorithms concurrently estimate a robot pose and a map of unique...locations and vehicle pose are part of the SLAM state vector and are estimated in each update step. AISS developed a monocular camera-based SLAM

  17. Optimal full motion video registration with rigorous error propagation

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn

    2014-06-01

    Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.

  18. Insensitivity of GNSS to geocenter motion through the network shift approach (Invited)

    NASA Astrophysics Data System (ADS)

    Rebischung, P.; Altamimi, Z.; Springer, T.

    2013-12-01

    As a satellite-based technique, GNSS should be sensitive to motions of the Earth's center of mass (CM) with respect to the Earth's crust. In theory, the weekly solutions of the Analysis Centers of the International GNSS Service (IGS ACs) should indeed have the "instantaneous" CM as their origin, and the net translations between the weekly AC frames and a secular frame such as ITRF2008 should thus approximate the non-linear motion of CM with respect to the Earth's center of figure. However, the comparison of the AC translation time series with each other, with SLR geocenter estimates or with geophysical models reveals that this way of observing geocenter motion with GNSS currently gives unreliable results. We addressed the problem of observing geocenter motion with GNSS through this network shift approach from the perspective of collinearity (or multicollinearity) among the parameters of a least-squares regression. A collinearity diagnosis, based on the notion of variance inflation factor, was therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. Its application reveals that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues, with a comparable level as in the problem of determining the terrestrial scale simultaneously with the GNSS satellite phase center offsets. We show that the inability of current GNSS, as opposed to Satellite Laser Ranging (SLR), to properly sense geocenter motion is mostly explained by the estimation, in the GNSS case, of epoch-wise station and satellite clock offsets simultaneously with tropospheric parameters. The empirical satellite accelerations, as estimated by most IGS ACs, slightly amplify the collinearity of the Z geocenter coordinate, but their role remains secondary.

  19. Unsupervised motion-based object segmentation refined by color

    NASA Astrophysics Data System (ADS)

    Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris

    2003-06-01

    For various applications, such as data compression, structure from motion, medical imaging and video enhancement, there is a need for an algorithm that divides video sequences into independently moving objects. Because our focus is on video enhancement and structure from motion for consumer electronics, we strive for a low complexity solution. For still images, several approaches exist based on colour, but these lack in both speed and segmentation quality. For instance, colour-based watershed algorithms produce a so-called oversegmentation with many segments covering each single physical object. Other colour segmentation approaches exist which somehow limit the number of segments to reduce this oversegmentation problem. However, this often results in inaccurate edges or even missed objects. Most likely, colour is an inherently insufficient cue for real world object segmentation, because real world objects can display complex combinations of colours. For video sequences, however, an additional cue is available, namely the motion of objects. When different objects in a scene have different motion, the motion cue alone is often enough to reliably distinguish objects from one another and the background. However, because of the lack of sufficient resolution of efficient motion estimators, like the 3DRS block matcher, the resulting segmentation is not at pixel resolution, but at block resolution. Existing pixel resolution motion estimators are more sensitive to noise, suffer more from aperture problems or have less correspondence to the true motion of objects when compared to block-based approaches or are too computationally expensive. From its tendency to oversegmentation it is apparent that colour segmentation is particularly effective near edges of homogeneously coloured areas. On the other hand, block-based true motion estimation is particularly effective in heterogeneous areas, because heterogeneous areas improve the chance a block is unique and thus decrease the chance of the wrong position producing a good match. Consequently, a number of methods exist which combine motion and colour segmentation. These methods use colour segmentation as a base for the motion segmentation and estimation or perform an independent colour segmentation in parallel which is in some way combined with the motion segmentation. The presented method uses both techniques to complement each other by first segmenting on motion cues and then refining the segmentation with colour. To our knowledge few methods exist which adopt this approach. One example is te{meshrefine}. This method uses an irregular mesh, which hinders its efficient implementation in consumer electronics devices. Furthermore, the method produces a foreground/background segmentation, while our applications call for the segmentation of multiple objects. NEW METHOD As mentioned above we start with motion segmentation and refine the edges of this segmentation with a pixel resolution colour segmentation method afterwards. There are several reasons for this approach: + Motion segmentation does not produce the oversegmentation which colour segmentation methods normally produce, because objects are more likely to have colour discontinuities than motion discontinuities. In this way, the colour segmentation only has to be done at the edges of segments, confining the colour segmentation to a smaller part of the image. In such a part, it is more likely that the colour of an object is homogeneous. + This approach restricts the computationally expensive pixel resolution colour segmentation to a subset of the image. Together with the very efficient 3DRS motion estimation algorithm, this helps to reduce the computational complexity. + The motion cue alone is often enough to reliably distinguish objects from one another and the background. To obtain the motion vector fields, a variant of the 3DRS block-based motion estimator which analyses three frames of input was used. The 3DRS motion estimator is known for its ability to estimate motion vectors which closely resemble the true motion. BLOCK-BASED MOTION SEGMENTATION As mentioned above we start with a block-resolution segmentation based on motion vectors. The presented method is inspired by the well-known K-means segmentation method te{K-means}. Several other methods (e.g. te{kmeansc}) adapt K-means for connectedness by adding a weighted shape-error. This adds the additional difficulty of finding the correct weights for the shape-parameters. Also, these methods often bias one particular pre-defined shape. The presented method, which we call K-regions, encourages connectedness because only blocks at the edges of segments may be assigned to another segment. This constrains the segmentation method to such a degree that it allows the method to use least squares for the robust fitting of affine motion models for each segment. Contrary to te{parmkm}, the segmentation step still operates on vectors instead of model parameters. To make sure the segmentation is temporally consistent, the segmentation of the previous frame will be used as initialisation for every new frame. We also present a scheme which makes the algorithm independent of the initially chosen amount of segments. COLOUR-BASED INTRA-BLOCK SEGMENTATION The block resolution motion-based segmentation forms the starting point for the pixel resolution segmentation. The pixel resolution segmentation is obtained from the block resolution segmentation by reclassifying pixels only at the edges of clusters. We assume that an edge between two objects can be found in either one of two neighbouring blocks that belong to different clusters. This assumption allows us to do the pixel resolution segmentation on each pair of such neighbouring blocks separately. Because of the local nature of the segmentation, it largely avoids problems with heterogeneously coloured areas. Because no new segments are introduced in this step, it also does not suffer from oversegmentation problems. The presented method has no problems with bifurcations. For the pixel resolution segmentation itself we reclassify pixels such that we optimize an error norm which favour similarly coloured regions and straight edges. SEGMENTATION MEASURE To assist in the evaluation of the proposed algorithm we developed a quality metric. Because the problem does not have an exact specification, we decided to define a ground truth output which we find desirable for a given input. We define the measure for the segmentation quality as being how different the segmentation is from the ground truth. Our measure enables us to evaluate oversegmentation and undersegmentation seperately. Also, it allows us to evaluate which parts of a frame suffer from oversegmentation or undersegmentation. The proposed algorithm has been tested on several typical sequences. CONCLUSIONS In this abstract we presented a new video segmentation method which performs well in the segmentation of multiple independently moving foreground objects from each other and the background. It combines the strong points of both colour and motion segmentation in the way we expected. One of the weak points is that the segmentation method suffers from undersegmentation when adjacent objects display similar motion. In sequences with detailed backgrounds the segmentation will sometimes display noisy edges. Apart from these results, we think that some of the techniques, and in particular the K-regions technique, may be useful for other two-dimensional data segmentation problems.

  20. Basic research for the Earth dynamics program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The technique of range differencing with Lageos ranges to obtain more accurate estimates of baseline lengths and polar motion variation was studied. Differencing quasi simultaneous range observations eliminate a great deal of orbital biases. Progress is reported on the definition and maintenance of a conventional terrestrial reference system.

  1. Real time estimation of the heaving and pitching motions of a ship, using a Kalman filter

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M.; Athans, M.

    1981-01-01

    In the present study the estimation of the heave and pitch motion of a ship is considered, using Kalman filtering techniques. A significant part of the study is devoted to constructing appropriate models for the sea and the ship. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A numerical application is considered for a DD-963 destroyer.

  2. Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment

    PubMed Central

    Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael

    2015-01-01

    Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460

  3. Models for extracting vertical crustal movements from leveling data

    NASA Technical Reports Server (NTRS)

    Holdahl, S. H.

    1978-01-01

    Various adjustment strategies are being used in North America to obtain vertical crustal movements from repeated leveling. The more successful models utilize polynomials or multiquadric analysis to describe elevation change with a velocity surface. Other features permit determination of nonlinear motions, motions associated with earthquakes or episodes, and vertical motions of blocks where boundaries are prespecified. The preferred models for estimating crustal motions permit the use of detached segments of releveling to govern the shape of a velocity surface and allow for input from nonleveling sources such as tide gages and paired lake gages. Some models for extracting vertical crustal movements from releveling data are also excellent for adjusting leveling networks, and permit mixing old and new data in areas exhibiting vertical motion. The new adjustment techniques are more general than older static models and will undoubtedly be used routinely in the future as the constitution of level networks becomes mainly relevelings.

  4. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  5. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  6. Bottom boundary layer spectral dissipation estimates in the presence of wave motions

    NASA Astrophysics Data System (ADS)

    Gross, T. F.; Williams, A. J.; Terray, E. A.

    1994-08-01

    Turbulence measurements are an essential element of the Sediment TRansport Events on Shelves and Slopes experiment (STRESS). Sediment transport under waves is initiated within the wave boundary layer at the seabed, at most a few tens of centimeters deep. The suspended load is carried by turbulent diffusion above the wave boundary layer. Quantification of the turbulent diffusion active above the wave boundary layer requires estimates of shear stress or energy dissipation in the presence of oscillating flows. Measurements by Benthic Acoustic Stress Sensors of velocity fluctuations were used to derive the dissipation rate from the energy level of the spectral inertial range (the -5/3 spectrum). When the wave orbital velocity is of similar magnitude to the mean flow, kinematic effects on the estimation techniques of stress and dissipation must be included. Throughout the STRESS experiment there was always significant wave energy affecting the turbulent bottom boundary layer. LUMLEY and TERRAY [(1983) Journal of Physical Oceanography, 13, 2000-2007] presented a theory describing the effect of orbital motions on kinetic energy spectra. Their model is used here with observations of spectra taken within a turbulent boundary layer which is affected by wave motion. While their method was an explicit solution for circular wave orbits aligned with mean current we extrapolated it to the case of near bed horizontal motions, not aligned with the current. The necessity of accounting for wave orbital motion is demonstrated, but variability within the field setting limited our certainty of the improvement in accuracy the corrections afforded.

  7. Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Shen, W.; Zhong, Q.; Shi, B.

    2012-12-01

    Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the ground shaking intensity, and the results of the comparisons between the simulated and observed MMI for the 2004 Mw 6.0 Parkfield earthquake, the 2008 Mw 7.9Wenchuan earthquake and the 1976 Mw 7.6Tangshan earthquake is fairly well. Take Parkfield earthquake as example, the simulative result reflect the directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulative data is in good agreement with the network data and NGA (Next Generation Attenuation). The consumed time depends on the number of the subfaults and the number of the grid point. For the 2004 Mw 6.0 Parkfield earthquake, the grid size we calculated is 2.5° × 2.5°, the grid space is 0.025°, and the total time consumed is about 1.3hours. For the 2008 Mw 7.9 Wenchuan earthquake, the grid size calculated is 10° × 10°, the grid space is 0.05°, the total number of grid point is more than 40,000, and the total time consumed is about 7.5 hours. For t the 1976 Mw 7.6 Tangshan earthquake, the grid size we calculated is 4° × 6°, the grid space is 0.05°, and the total time consumed is about 2.1 hours. The CPU we used is 3.40GHz, and such computational time could further reduce by using GPU computing technique and other parallel computing technique. This is also our next focus.

  8. Estimation of Errors in Force Platform Data

    ERIC Educational Resources Information Center

    Psycharakis, Stelios G.; Miller, Stuart

    2006-01-01

    Force platforms (FPs) are regularly used in the biomechanical analysis of sport and exercise techniques, often in combination with image-based motion analysis. Force time data, particularly when combined with joint positions and segmental inertia parameters, can be used to evaluate the effectiveness of a wide range of movement patterns in sport…

  9. Center of pressure based segment inertial parameters validation

    PubMed Central

    Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice; Venture, Gentiane

    2017-01-01

    By proposing efficient methods for estimating Body Segment Inertial Parameters’ (BSIP) estimation and validating them with a force plate, it is possible to improve the inverse dynamic computations that are necessary in multiple research areas. Until today a variety of studies have been conducted to improve BSIP estimation but to our knowledge a real validation has never been completely successful. In this paper, we propose a validation method using both kinematic and kinetic parameters (contact forces) gathered from optical motion capture system and a force plate respectively. To compare BSIPs, we used the measured contact forces (Force plate) as the ground truth, and reconstructed the displacements of the Center of Pressure (COP) using inverse dynamics from two different estimation techniques. Only minor differences were seen when comparing the estimated segment masses. Their influence on the COP computation however is large and the results show very distinguishable patterns of the COP movements. Improving BSIP techniques is crucial and deviation from the estimations can actually result in large errors. This method could be used as a tool to validate BSIP estimation techniques. An advantage of this approach is that it facilitates the comparison between BSIP estimation methods and more specifically it shows the accuracy of those parameters. PMID:28662090

  10. Direct determination of geocenter motion by combining SLR, VLBI, GNSS, and DORIS time series

    NASA Astrophysics Data System (ADS)

    Wu, X.; Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Gross, R. S.; Heflin, M. B.; Jiang, Y.; Parker, J. W.

    2013-12-01

    The longest-wavelength surface mass transport includes three degree-one spherical harmonic components involving hemispherical mass exchanges. The mass load causes geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and deforms the solid Earth. Estimation of the degree-1 surface mass changes through CM-CF and degree-1 deformation signatures from space geodetic techniques can thus complement GRACE's time-variable gravity data to form a complete change spectrum up to a high resolution. Currently, SLR is considered the most accurate technique for direct geocenter motion determination. By tracking satellite motion from ground stations, SLR determines the motion between CM and the geometric center of its ground network (CN). This motion is then used to approximate CM-CF and subsequently for deriving degree-1 mass changes. However, the SLR network is very sparse and uneven in global distribution. The average number of operational tracking stations is about 20 in recent years. The poor network geometry can have a large CN-CF motion and is not ideal for the determination of CM-CF motion and degree-1 mass changes. We recently realized an experimental Terrestrial Reference Frame (TRF) through station time series using the Kalman filter and the RTS smoother. The TRF has its origin defined at nearly instantaneous CM using weekly SLR measurement time series. VLBI, GNSS and DORIS time series are combined weekly with those of SLR and tied to the geocentric (CM) reference frame through local tie measurements and co-motion constraints on co-located geodetic stations. The unified geocentric time series of the four geodetic techniques provide a much better network geometry for direct geodetic determination of geocenter motion. Results from this direct approach using a 90-station network compares favorably with those obtained from joint inversions of GPS/GRACE data and ocean bottom pressure models. We will also show that a previously identified discrepancy in X-component between direct SLR orbit-tracking and inverse determined geocenter motions is largely reconciled with the new unified network.

  11. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.

    PubMed

    Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi

    2015-01-01

    We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.

  12. Foot-mounted inertial measurement unit for activity classification.

    PubMed

    Ghobadi, Mostafa; Esfahani, Ehsan T

    2014-01-01

    This paper proposes a classification technique for daily base activity recognition for human monitoring during physical therapy in home. The proposed method estimates the foot motion using single inertial measurement unit, then segments the motion into steps classify them by template-matching as walking, stairs up or stairs down steps. The results show a high accuracy of activity recognition. Unlike previous works which are limited to activity recognition, the proposed approach is more qualitative by providing similarity index of any activity to its desired template which can be used to assess subjects improvement.

  13. Colour flow and motion imaging.

    PubMed

    Evans, D H

    2010-01-01

    Colour flow imaging (CFI) is an ultrasound imaging technique whereby colour-coded maps of tissue velocity are superimposed on grey-scale pulse-echo images of tissue anatomy. The most widespread use of the method is to image the movement of blood through arteries and veins, but it may also be used to image the motion of solid tissue. The production of velocity information is technically more demanding than the production of the anatomical information, partly because the target of interest is often blood, which backscatters significantly less power than solid tissues, and partly because several transmit-receive cycles are necessary for each velocity estimate. This review first describes the various components of basic CFI systems necessary to generate the velocity information and to combine it with anatomical information. It then describes a number of variations on the basic autocorrelation technique, including cross-correlation-based techniques, power Doppler, Doppler tissue imaging, and three-dimensional (3D) Doppler imaging. Finally, a number of limitations of current techniques and some potential solutions are reviewed.

  14. Estimation of accuracy of earth-rotation parameters in different frequency bands

    NASA Astrophysics Data System (ADS)

    Vondrak, J.

    1986-11-01

    The accuracies of earth-rotation parameters as determined by five different observational techniques now available (i.e., optical astrometry /OA/, Doppler tracking of satellites /DTS/, satellite laser ranging /SLR/, very long-base interferometry /VLBI/ and lunar laser ranging /LLR/) are estimated. The differences between the individual techniques in all possible combinations, separated by appropriate filters into three frequency bands, were used to estimate the accuracies of the techniques for periods from 0 to 200 days, from 200 to 1000 days and longer than 1000 days. It is shown that for polar motion the most accurate results are obtained with VLBI anad SLR, especially in the short-period region; OA and DTS are less accurate, but with longer periods the differences in accuracy are less pronounced. The accuracies of UTI-UTC as determined by OA, VLBI and LLR are practically equivalent, the differences being less than 40 percent.

  15. Modifying high-order aeroelastic math model of a jet transport using maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Anissipour, Amir A.; Benson, Russell A.

    1989-01-01

    The design of control laws to damp flexible structural modes requires accurate math models. Unlike the design of control laws for rigid body motion (e.g., where robust control is used to compensate for modeling inaccuracies), structural mode damping usually employs narrow band notch filters. In order to obtain the required accuracy in the math model, maximum likelihood estimation technique is employed to improve the accuracy of the math model using flight data. Presented here are all phases of this methodology: (1) pre-flight analysis (i.e., optimal input signal design for flight test, sensor location determination, model reduction technique, etc.), (2) data collection and preprocessing, and (3) post-flight analysis (i.e., estimation technique and model verification). In addition, a discussion is presented of the software tools used and the need for future study in this field.

  16. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  17. Evaluation of Rigid-Body Motion Compensation in Cardiac Perfusion SPECT Employing Polar-Map Quantification

    PubMed Central

    Pretorius, P. Hendrik; Johnson, Karen L.; King, Michael A.

    2016-01-01

    We have recently been successful in the development and testing of rigid-body motion tracking, estimation and compensation for cardiac perfusion SPECT based on a visual tracking system (VTS). The goal of this study was to evaluate in patients the effectiveness of our rigid-body motion compensation strategy. Sixty-four patient volunteers were asked to remain motionless or execute some predefined body motion during an additional second stress perfusion acquisition. Acquisitions were performed using the standard clinical protocol with 64 projections acquired through 180 degrees. All data were reconstructed with an ordered-subsets expectation-maximization (OSEM) algorithm using 4 projections per subset and 5 iterations. All physical degradation factors were addressed (attenuation, scatter, and distance dependent resolution), while a 3-dimensional Gaussian rotator was used during reconstruction to correct for six-degree-of-freedom (6-DOF) rigid-body motion estimated by the VTS. Polar map quantification was employed to evaluate compensation techniques. In 54.7% of the uncorrected second stress studies there was a statistically significant difference in the polar maps, and in 45.3% this made a difference in the interpretation of segmental perfusion. Motion correction reduced the impact of motion such that with it 32.8 % of the polar maps were statistically significantly different, and in 14.1% this difference changed the interpretation of segmental perfusion. The improvement shown in polar map quantitation translated to visually improved uniformity of the SPECT slices. PMID:28042170

  18. VLBI2020: From Reality to Vision

    NASA Technical Reports Server (NTRS)

    Titov, Oleg

    2010-01-01

    The individual apparent motions of distant radio sources are believed to be caused by the effect of intrinsic structure variations of the active galactic nuclei (AGN). However, some cosmological models of the expanded Universe predict that systematic astrometric proper motions of distant quasars do not vanish as the radial distance from the observer to the quasar grows. These systematic effects can even increase with the distance, making it possible to measure them with high-precision astrometric techniques like VLBI. The Galactocentric acceleration of the Solar System barycenter may cause a secular aberration drift with a magnitude of 4 uas/yr. The Solar System motion relative to the cosmic microwave background produces an additional dipole effect, proportional to red shift. We analyzed geodetic VLBI data spanning from 1979 until 2009 to estimate the vector spherical harmonics in the expansion of the vector field of the proper motion of 687 radio sources. The dipole and quadrupole vector spherical harmonics were estimated with an accuracy of 1-5 as/yr. We have shown that over the next decade the geodetic VLBI may approach the level of accuracy on which the cosmological models of the Universe could be tested. Hence, it is important to organize a dedicated observational program to increase the number of measured proper motions to 3000.

  19. The reliability and accuracy of estimating heart-rates from RGB video recorded on a consumer grade camera

    NASA Astrophysics Data System (ADS)

    Eaton, Adam; Vincely, Vinoin; Lloyd, Paige; Hugenberg, Kurt; Vishwanath, Karthik

    2017-03-01

    Video Photoplethysmography (VPPG) is a numerical technique to process standard RGB video data of exposed human skin and extracting the heart-rate (HR) from the skin areas. Being a non-contact technique, VPPG has the potential to provide estimates of subject's heart-rate, respiratory rate, and even the heart rate variability of human subjects with potential applications ranging from infant monitors, remote healthcare and psychological experiments, particularly given the non-contact and sensor-free nature of the technique. Though several previous studies have reported successful correlations in HR obtained using VPPG algorithms to HR measured using the gold-standard electrocardiograph, others have reported that these correlations are dependent on controlling for duration of the video-data analyzed, subject motion, and ambient lighting. Here, we investigate the ability of two commonly used VPPG-algorithms in extraction of human heart-rates under three different laboratory conditions. We compare the VPPG HR values extracted across these three sets of experiments to the gold-standard values acquired by using an electrocardiogram or a commercially available pulseoximeter. The two VPPG-algorithms were applied with and without KLT-facial feature tracking and detection algorithms from the Computer Vision MATLAB® toolbox. Results indicate that VPPG based numerical approaches have the ability to provide robust estimates of subject HR values and are relatively insensitive to the devices used to record the video data. However, they are highly sensitive to conditions of video acquisition including subject motion, the location, size and averaging techniques applied to regions-of-interest as well as to the number of video frames used for data processing.

  20. Improvement of cardiac CT reconstruction using local motion vector fields.

    PubMed

    Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael

    2009-03-01

    The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.

  1. Linearized motion estimation for articulated planes.

    PubMed

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  2. Kinematic Measurement of Knee Prosthesis from Single-Plane Projection Images

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Ariyoshi, Shogo; Takahashi, Kenji; Maruyama, Koichi

    In this paper, the measurement of 3D motion from 2D perspective projections of knee prosthesis is described. The technique reported by Banks and Hodge was further developed in this study. The estimation was performed in two steps. The first-step estimation was performed on the assumption of orthogonal projection. Then, the second-step estimation was subsequently carried out based upon the perspective projection to accomplish more accurate estimation. The simulation results have demonstrated that the technique archived sufficient accuracies of position/orientation estimation for prosthetic kinematics. Then we applied our algorithm to the CCD images, thereby examining the influences of various artifacts, possibly incorporated through an imaging process, on the estimation accuracies. We found that accuracies in the experiment were influenced mainly by the geometric discrepancies between the prosthesis component and computer generated model and by the spacial inconsistencies between the coordinate axes of the positioner and that of the computer model. However, we verified that our algorithm could achieve proper and consistent estimation even for the CCD images.

  3. Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging.

    PubMed

    Tokuda, Junichi; Mamata, Hatsuho; Gill, Ritu R; Hata, Nobuhiko; Kikinis, Ron; Padera, Robert F; Lenkinski, Robert E; Sugarbaker, David J; Hatabu, Hiroto

    2011-04-01

    To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared. The percentage of reliable pixels in the motion-corrected DCE-MRI was significantly larger than the original DCE-MRI (P = 4 × 10(-7) ). Both K(trans) and k(ep) derived from the motion-corrected DCE-MRI showed significant differences between benign and malignant SPNs (P = 0.024, 0.015). The study demonstrated the impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in SPNs. Copyright © 2011 Wiley-Liss, Inc.

  4. On the Retrieval of Geocenter Motion from Gravity Data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Mémin, A.; Boy, J. P.; Rogister, Y. J. G.

    2017-12-01

    The center of mass of the whole Earth, the so-called geocenter, is moving with respect to the Center of Mass of the solid Earth because of the loading exerted by the Earth's fluid layers on the solid crust. Space geodetic techniques tying satellites and ground stations (e.g. GNSS, SLR and DORIS) have been widely employed to estimate the geocenter motion. Harmonic degree-1 variations of the gravity field are associated to the geocenter displacement. We show that ground records of time-varying gravity from Superconducting Gravimeters (SGs) can be used to constrain the geocenter motion. Two major difficulties have to be tackled: (1) the sensitivity of surface gravimetric measurements to local mass changes, and in particular hydrological and atmospheric variabilities; (2) the spatial aliasing (spectral leakage) of spherical harmonic degrees higher than 1 induced by the under-sampling of station distribution. The largest gravity variations can be removed from the SG data by subtracting solid and oceanic tides as well as atmospheric and hydrologic effects using global models. However some hydrological signal may still remain. Since surface water content is well-modelled using GRACE observations, we investigate how the spatial aliasing in SG data can be reduced by employing GRACE solutions when retrieving geocenter motion. We show synthetic simulations using complete surface loading models together with GRACE solutions computed at SG stations. In order to retrieve the degree-one gravity variations that are associated with the geocenter motion, we use a multi-station stacking method that performs better than a classical spherical harmonic stacking when the station distribution is inhomogeneous. We also test the influence of the network configuration on the estimate of the geocenter motion. An inversion using SG and GRACE observations is finally presented and the results are compared with previous geocenter estimates.

  5. A Mw 6.3 earthquake scenario in the city of Nice (southeast France): ground motion simulations

    NASA Astrophysics Data System (ADS)

    Salichon, Jérome; Kohrs-Sansorny, Carine; Bertrand, Etienne; Courboulex, Françoise

    2010-07-01

    The southern Alps-Ligurian basin junction is one of the most seismically active zone of the western Europe. A constant microseismicity and moderate size events (3.5 < M < 5) are regularly recorded. The last reported historical event took place in February 1887 and reached an estimated magnitude between 6 and 6.5, causing human losses and extensive damages (intensity X, Medvedev-Sponheuer-Karnik). Such an event, occurring nowadays, could have critical consequences given the high density of population living on the French and Italian Riviera. We study the case of an offshore Mw 6.3 earthquake located at the place where two moderate size events (Mw 4.5) occurred recently and where a morphotectonic feature has been detected by a bathymetric survey. We used a stochastic empirical Green’s functions (EGFs) summation method to produce a population of realistic accelerograms on rock and soil sites in the city of Nice. The ground motion simulations are calibrated on a rock site with a set of ground motion prediction equations (GMPEs) in order to estimate a reasonable stress-drop ratio between the February 25th, 2001, Mw 4.5, event taken as an EGF and the target earthquake. Our results show that the combination of the GMPEs and EGF techniques is an interesting tool for site-specific strong ground motion estimation.

  6. Equations for determining aircraft motions for accident data

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.; Wingrove, R. C.

    1980-01-01

    Procedures for determining a comprehensive accident scenario from a limited data set are reported. The analysis techniques accept and process data from either an Air Traffic Control radar tracking system or a foil flight data recorder. Local meteorological information at the time of the accident and aircraft performance data are also utilized. Equations for the desired aircraft motions and forces are given in terms of elements of the measurement set and certain of their time derivatives. The principal assumption made is that aircraft side force and side-slip angle are negligible. An estimation procedure is outlined for use with each data source. For the foil case, a discussion of exploiting measurement redundancy is given. Since either formulation requires estimates of measurement time derivatives, an algorithm for least squares smoothing is provided.

  7. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  9. Infrastructure stability surveillance with high resolution InSAR

    NASA Astrophysics Data System (ADS)

    Balz, Timo; Düring, Ralf

    2017-02-01

    The construction of new infrastructure in largely unknown and difficult environments, as it is necessary for the construction of the New Silk Road, can lead to a decreased stability along the construction site, leading to an increase in landslide risk and deformation caused by surface motion. This generally requires a thorough pre-analysis and consecutive surveillance of the deformation patterns to ensure the stability and safety of the infrastructure projects. Interferometric SAR (InSAR) and the derived techniques of multi-baseline InSAR are very powerful tools for a large area observation of surface deformation patterns. With InSAR and deriver techniques, the topographic height and the surface motion can be estimated for large areas, making it an ideal tool for supporting the planning, construction, and safety surveillance of new infrastructure elements in remote areas.

  10. Non-Invasive In Vivo Ultrasound Temperature Estimation

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which could result in significant artifacts. The first part of this thesis addresses the first limitation by introducing the Recursive Echo Strain Filter (RESF) as a new temperature reconstruction model which largely corrects for the spatial inconsistencies resulting from the infinitesimal model. The performance of this model is validated using the data collected during sub therapeutic temperature changes in the tissue mimicking phantom as well as ex vivo tissue blocks. The second part of this thesis deals with in vivo ultrasound thermography. Tissue deformations caused by natural motions (e.g. respiration, gasping, blood pulsation etc) can create non-thermal changes to the ultrasound echoes which are not accounted for in the derivation of physical model for temperature estimation. These fluctuations can create severe artifacts in the estimated temperature field. Using statistical signal processing techniques an adaptive method is presented which takes advantage of the localized and global availability of these interference patterns and use this data to enhance the estimated temperature in the region of interest. We then propose a model based technique for continuous tracking of temperature in the presence of natural motion and deformation. The method uses the direct discretization of the transient bioheat equation to derive a state space model of temperature change. This model is then used to build a linear estimator based on the Kalman filtering capable of robust estimation of temperature change in the presence of tissue motion and deformation. The robustness of the adaptive and model-based models in removing motion and deformation artifacts is demonstrated using data from in vivo experiments. Both methods are shown to provide effective cancellation of the artifacts with minimal effect on the expected temperature dynamics.

  11. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  12. Fusion-based multi-target tracking and localization for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.

  13. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    PubMed

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Inversion of ground-motion data from a seismometer array for rotation using a modification of Jaeger's method

    USGS Publications Warehouse

    Chi, Wu-Cheng; Lee, W.H.K.; Aston, J.A.D.; Lin, C.J.; Liu, C.-C.

    2011-01-01

    We develop a new way to invert 2D translational waveforms using Jaeger's (1969) formula to derive rotational ground motions about one axis and estimate the errors in them using techniques from statistical multivariate analysis. This procedure can be used to derive rotational ground motions and strains using arrayed translational data, thus providing an efficient way to calibrate the performance of rotational sensors. This approach does not require a priori information about the noise level of the translational data and elastic properties of the media. This new procedure also provides estimates of the standard deviations of the derived rotations and strains. In this study, we validated this code using synthetic translational waveforms from a seismic array. The results after the inversion of the synthetics for rotations were almost identical with the results derived using a well-tested inversion procedure by Spudich and Fletcher (2009). This new 2D procedure can be applied three times to obtain the full, three-component rotations. Additional modifications can be implemented to the code in the future to study different features of the rotational ground motions and strains induced by the passage of seismic waves.

  15. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no; Klein, Stefan; Hofstad, Erlend Fagertun

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequencemore » in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe that the method has potential in interventions on moving abdominal organs such as MR or ultrasound guided focused ultrasound therapy and radiotherapy, pending the method is enabled to run in real-time. The data and the annotations used for this study are made publicly available for those who would like to test other methods on 4D liver ultrasound data.« less

  16. Nonlinear circuits for naturalistic visual motion estimation

    PubMed Central

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494

  17. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  18. A variational technique for smoothing flight-test and accident data

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.

    1980-01-01

    The problem of determining aircraft motions along a trajectory is solved using a variational algorithm that generates unmeasured states and forcing functions, and estimates instrument bias and scale-factor errors. The problem is formulated as a nonlinear fixed-interval smoothing problem, and is solved as a sequence of linear two-point boundary value problems, using a sweep method. The algorithm has been implemented for use in flight-test and accident analysis. Aircraft motions are assumed to be governed by a six-degree-of-freedom kinematic model; forcing functions consist of body accelerations and winds, and the measurement model includes aerodynamic and radar data. Examples of the determination of aircraft motions from typical flight-test and accident data are presented.

  19. Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.

    2000-01-01

    A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.

  20. Simulation study of amplitude-modulated (AM) harmonic motion imaging (HMI) for stiffness contrast quantification with experimental validation.

    PubMed

    Maleke, Caroline; Luo, Jianwen; Gamarnik, Viktor; Lu, Xin L; Konofagou, Elisa E

    2010-07-01

    The objective of this study is to show that Harmonic Motion Imaging (HMI) can be used as a reliable tumor-mapping technique based on the tumor's distinct stiffness at the early onset of disease. HMI is a radiation-force-based imaging method that generates a localized vibration deep inside the tissue to estimate the relative tissue stiffness based on the resulting displacement amplitude. In this paper, a finite-element model (FEM) study is presented, followed by an experimental validation in tissue-mimicking polyacrylamide gels and excised human breast tumors ex vivo. This study compares the resulting tissue motion in simulations and experiments at four different gel stiffnesses and three distinct spherical inclusion diameters. The elastic moduli of the gels were separately measured using mechanical testing. Identical transducer parameters were used in both the FEM and experimental studies, i.e., a 4.5-MHz single-element focused ultrasound (FUS) and a 7.5-MHz diagnostic (pulse-echo) transducer. In the simulation, an acoustic pressure field was used as the input stimulus to generate a localized vibration inside the target. Radiofrequency (rf) signals were then simulated using a 2D convolution model. A one-dimensional cross-correlation technique was performed on the simulated and experimental rf signals to estimate the axial displacement resulting from the harmonic radiation force. In order to measure the reliability of the displacement profiles in estimating the tissue stiffness distribution, the contrast-transfer efficiency (CTE) was calculated. For tumor mapping ex vivo, a harmonic radiation force was applied using a 2D raster-scan technique. The 2D HMI images of the breast tumor ex vivo could detect a malignant tumor (20 x 10 mm2) surrounded by glandular and fat tissues. The FEM and experimental results from both gels and breast tumors ex vivo demonstrated that HMI was capable of detecting and mapping the tumor or stiff inclusion with various diameters or stiffnesses. HMI may thus constitute a promising technique in tumor detection (>3 mm in diameter) and mapping based on its distinct stiffness.

  1. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  2. Spatiotemporal motion boundary detection and motion boundary velocity estimation for tracking moving objects with a moving camera: a level sets PDEs approach with concurrent camera motion compensation.

    PubMed

    Feghali, Rosario; Mitiche, Amar

    2004-11-01

    The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.

  3. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  4. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection.

    PubMed

    Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex

    2017-01-01

    Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).

  5. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection

    PubMed Central

    Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex

    2017-01-01

    Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888

  6. Actuation for simultaneous motions and constraining efforts: an open chain example

    NASA Astrophysics Data System (ADS)

    Perreira, N. Duke

    1997-06-01

    A brief discussion on systems where simultaneous control of forces and velocities are desirable is given and an example linkage with revolute and prismatic joint is selected for further analysis. The Newton-Euler approach for dynamic system analysis is applied to the example to provide a basis of comparison. Gauge invariant transformations are used to convert the dynamic equations into invariant form suitable for use in a new dynamic system analysis method known as the motion-effort approach. This approach uses constraint elimination techniques based on singular value decompositions to recast the invariant form of dynamic system equations into orthogonal sets of motion and effort equations. Desired motions and constraining efforts are partitioned into ideally obtainable and unobtainable portions which are then used to determine the required actuation. The method is applied to the example system and an analytic estimate to its success is made.

  7. Variance change point detection for fractional Brownian motion based on the likelihood ratio test

    NASA Astrophysics Data System (ADS)

    Kucharczyk, Daniel; Wyłomańska, Agnieszka; Sikora, Grzegorz

    2018-01-01

    Fractional Brownian motion is one of the main stochastic processes used for describing the long-range dependence phenomenon for self-similar processes. It appears that for many real time series, characteristics of the data change significantly over time. Such behaviour one can observe in many applications, including physical and biological experiments. In this paper, we present a new technique for the critical change point detection for cases where the data under consideration are driven by fractional Brownian motion with a time-changed diffusion coefficient. The proposed methodology is based on the likelihood ratio approach and represents an extension of a similar methodology used for Brownian motion, the process with independent increments. Here, we also propose a statistical test for testing the significance of the estimated critical point. In addition to that, an extensive simulation study is provided to test the performance of the proposed method.

  8. Space Shuttle propulsion parameter estimation using optimal estimation techniques, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mathematical developments and their computer program implementation for the Space Shuttle propulsion parameter estimation project are summarized. The estimation approach chosen is the extended Kalman filtering with a modified Bryson-Frazier smoother. Its use here is motivated by the objective of obtaining better estimates than those available from filtering and to eliminate the lag associated with filtering. The estimation technique uses as the dynamical process the six degree equations-of-motion resulting in twelve state vector elements. In addition to these are mass and solid propellant burn depth as the ""system'' state elements. The ""parameter'' state elements can include aerodynamic coefficient, inertia, center-of-gravity, atmospheric wind, etc. deviations from referenced values. Propulsion parameter state elements have been included not as options just discussed but as the main parameter states to be estimated. The mathematical developments were completed for all these parameters. Since the systems dynamics and measurement processes are non-linear functions of the states, the mathematical developments are taken up almost entirely by the linearization of these equations as required by the estimation algorithms.

  9. (In)sensitivity of GNSS techniques to geocenter motion

    NASA Astrophysics Data System (ADS)

    Rebischung, Paul; Altamimi, Zuheir; Springer, Tim

    2013-04-01

    As a satellite-based technique, GNSS should be sensitive to motions of the Earth's center of mass (CM) with respect to the Earth's crust. In theory, the weekly solutions of the IGS Analysis Centers (ACs) should indeed have the "instantaneous" CM as their origin, and the net translations between the weekly AC frames and a secular frame such as ITRF2008 should thus approximate the non-linear motion of CM with respect to the Earth's center of figure. However, the comparison of the AC translation time series with each other, with SLR geocenter estimates or with geophysical models reveals that this way of observing geocenter motion with GNSS currently gives unreliable results. The fact that the origin of the weekly AC solutions shoud be CM stems from the satellite equations of motion, in which no degree-1 Stokes coefficients are included. It is therefore reasonable to think that any mis-modeling or uncertainty about the forces acting on GNSS satellites can potentially offset the network origin from CM. That is why defects in radiation pressure modeling have long been assumed to be the main origin of the GNSS geocenter errors. In particular, Meindl et al. (2012) incriminate the correlation between the Z component of the origin and the direct radiation pressure parameters D0. We review here the sensitivity of GNSS techniques to geocenter motion from a different perspective. Our approach consists in determining the signature of a geocenter error on GNSS observations, and seeing how and how well such an error can be compensated by all other usual GNSS parameters. (In other words, we look for the linear combinations of parameters which have the maximal partial correlations with each of the 3 components of the origin, and evaluate these maximal partial correlations.) Without setting up any empirical radiation pressure parameter, we obtain maximal partial correlations of 99.98 % for all 3 components of the origin: a geocenter error can almost perfectly be absorbed by the other GNSS parameters. Satellite clock offsets, if estimated epoch-wise, especially devastate the sensitivity of GNSS to geocenter motion. The numerous station-related parameters (station positions, station clock offsets, ZWDs and horizontal tropospheric gradients) do the rest of the job. The maximal partial correlations increase a bit more when the classic "ECOM" set of 5 radiation pressure parameters is set up for each satellite. But this increase is almost fully attributable to the once-per-revolution parameters BC & BS. In particular, we do not find the direct radiation pressure parameters D0 to play a predominant role in the GNSS geocenter determination problem.

  10. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V

    2018-05-17

    The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. New inverse synthetic aperture radar algorithm for translational motion compensation

    NASA Astrophysics Data System (ADS)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  12. Nutation determination using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Yao, Kunliang; Capitaine, Nicole; Umnig, Elke; Weber, Robert

    2012-08-01

    VLBI observation of extragalactic radio sources is the only technique that allows high accuracy determination of nutation on a regular basis. However, this is limited to periods of nutation greater than about 30 days due to the current resolution of VL BI estimation. It is there fore important to use another technique to improve nutation at shorter periods. It has been shown by Rothacher et al. (1999) and Weber & Rothacher (2001) that GPS is a potential technique for the determination of the short period terms of nutation. The met hod, which is based on the estimation of nutation rates with respect to an a priori model, is limited to nutation terms in the higher frequency range (with periods up to about 21 days) due to deficiencies in the modeling of the satellite orbits. The high accuracy and high time resolution of the GPS observations that are now achieved give us the possibility to estimate the nutation variations with respect to the IAU2000A nutation, with an expected precision of 10 microarcseconds (μas ). The purpose of our study is to use recent GPS observations obtained by 140 IGS stations (IGS08 Core Reference Frame sites included) to estimate the short period nutations. Two methods are applied: one is to investigate the retrograde diurnal term of polar motion with nutation fixed to the IAU 2006/2000 precession - nutation, using CNES/GRGS software GINS/DYNAMO at Observatoire de Paris; another one is to investigate the nutation time derivative, with polar motion fixed, using Bernese GPS software at University of Technology in Vienna. In this poster, we report on our preliminary results with data set covering a period of 3 years (2009 - 2011), with appropriate time resolutions and on the comparison between the two approaches.

  13. On the use of INS to improve Feature Matching

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Guarnieri, A.; Vettore, A.; Pirotti, F.

    2014-11-01

    The continuous technological improvement of mobile devices opens the frontiers of Mobile Mapping systems to very compact systems, i.e. a smartphone or a tablet. This motivates the development of efficient 3D reconstruction techniques based on the sensors typically embedded in such devices, i.e. imaging sensors, GPS and Inertial Navigation System (INS). Such methods usually exploits photogrammetry techniques (structure from motion) to provide an estimation of the geometry of the scene. Actually, 3D reconstruction techniques (e.g. structure from motion) rely on use of features properly matched in different images to compute the 3D positions of objects by means of triangulation. Hence, correct feature matching is of fundamental importance to ensure good quality 3D reconstructions. Matching methods are based on the appearance of features, that can change as a consequence of variations of camera position and orientation, and environment illumination. For this reason, several methods have been developed in recent years in order to provide feature descriptors robust (ideally invariant) to such variations, e.g. Scale-Invariant Feature Transform (SIFT), Affine SIFT, Hessian affine and Harris affine detectors, Maximally Stable Extremal Regions (MSER). This work deals with the integration of information provided by the INS in the feature matching procedure: a previously developed navigation algorithm is used to constantly estimate the device position and orientation. Then, such information is exploited to estimate the transformation of feature regions between two camera views. This allows to compare regions from different images but associated to the same feature as seen by the same point of view, hence significantly easing the comparison of feature characteristics and, consequently, improving matching. SIFT-like descriptors are used in order to ensure good matching results in presence of illumination variations and to compensate the approximations related to the estimation process.

  14. A distributed automatic target recognition system using multiple low resolution sensors

    NASA Astrophysics Data System (ADS)

    Yue, Zhanfeng; Lakshmi Narasimha, Pramod; Topiwala, Pankaj

    2008-04-01

    In this paper, we propose a multi-agent system which uses swarming techniques to perform high accuracy Automatic Target Recognition (ATR) in a distributed manner. The proposed system can co-operatively share the information from low-resolution images of different looks and use this information to perform high accuracy ATR. An advanced, multiple-agent Unmanned Aerial Vehicle (UAV) systems-based approach is proposed which integrates the processing capabilities, combines detection reporting with live video exchange, and swarm behavior modalities that dramatically surpass individual sensor system performance levels. We employ real-time block-based motion analysis and compensation scheme for efficient estimation and correction of camera jitter, global motion of the camera/scene and the effects of atmospheric turbulence. Our optimized Partition Weighted Sum (PWS) approach requires only bitshifts and additions, yet achieves a stunning 16X pixel resolution enhancement, which is moreover parallizable. We develop advanced, adaptive particle-filtering based algorithms to robustly track multiple mobile targets by adaptively changing the appearance model of the selected targets. The collaborative ATR system utilizes the homographies between the sensors induced by the ground plane to overlap the local observation with the received images from other UAVs. The motion of the UAVs distorts estimated homography frame to frame. A robust dynamic homography estimation algorithm is proposed to address this, by using the homography decomposition and the ground plane surface estimation.

  15. Finite-time output feedback control of uncertain switched systems via sliding mode design

    NASA Astrophysics Data System (ADS)

    Zhao, Haijuan; Niu, Yugang; Song, Jun

    2018-04-01

    The problem of sliding mode control (SMC) is investigated for a class of uncertain switched systems subject to unmeasurable state and assigned finite (possible short) time constraint. A key issue is how to ensure the finite-time boundedness (FTB) of system state during reaching phase and sliding motion phase. To this end, a state observer is constructed to estimate the unmeasured states. And then, a state estimate-based SMC law is designed such that the state trajectories can be driven onto the specified integral sliding surface during the assigned finite time interval. By means of partitioning strategy, the corresponding FTB over reaching phase and sliding motion phase are guaranteed and the sufficient conditions are derived via average dwell time technique. Finally, an illustrative example is given to illustrate the proposed method.

  16. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion

    PubMed Central

    Power, Jonathan D; Barnes, Kelly A; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2011-01-01

    Here, we demonstrate that subject motion produces substantial changes in the timecourses of resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of motion estimates from the data. These changes cause systematic but spurious correlation structures throughout the brain. Specifically, many long-distance correlations are decreased by subject motion, whereas many short-distance correlations are increased. These changes in rs-fcMRI correlations do not arise from, nor are they adequately countered by, some common functional connectivity processing steps. Two indices of data quality are proposed, and a simple method to reduce motion-related effects in rs-fcMRI analyses is demonstrated that should be flexibly implementable across a variety of software platforms. We demonstrate how application of this technique impacts our own data, modifying previous conclusions about brain development. These results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements. PMID:22019881

  17. Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns.

    PubMed

    Feng, Shijie; Chen, Qian; Zuo, Chao; Tao, Tianyang; Hu, Yan; Asundi, Anand

    2017-01-23

    Fringe projection is an extensively used technique for high speed three-dimensional (3-D) measurements of dynamic objects. To precisely retrieve a moving object at pixel level, researchers prefer to project a sequence of fringe images onto its surface. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3-D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel and lastly a three-step framework of refinement follows not only to eliminate outliers caused by the motion but also to obtain sub-pixel disparity results for 3-D reconstructions. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  18. Further SEASAT SAR coastal ocean wave analysis

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.

    1981-01-01

    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.

  19. Estimating satellite pose and motion parameters using a novelty filter and neural net tracker

    NASA Technical Reports Server (NTRS)

    Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne

    1989-01-01

    A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.

  20. A novel CT acquisition and analysis technique for breathing motion modeling

    NASA Astrophysics Data System (ADS)

    Low, Daniel A.; White, Benjamin M.; Lee, Percy P.; Thomas, David H.; Gaudio, Sergio; Jani, Shyam S.; Wu, Xiao; Lamb, James M.

    2013-06-01

    To report on a novel technique for providing artifact-free quantitative four-dimensional computed tomography (4DCT) image datasets for breathing motion modeling. Commercial clinical 4DCT methods have difficulty managing irregular breathing. The resulting images contain motion-induced artifacts that can distort structures and inaccurately characterize breathing motion. We have developed a novel scanning and analysis method for motion-correlated CT that utilizes standard repeated fast helical acquisitions, a simultaneous breathing surrogate measurement, deformable image registration, and a published breathing motion model. The motion model differs from the CT-measured motion by an average of 0.65 mm, indicating the precision of the motion model. The integral of the divergence of one of the motion model parameters is predicted to be a constant 1.11 and is found in this case to be 1.09, indicating the accuracy of the motion model. The proposed technique shows promise for providing motion-artifact free images at user-selected breathing phases, accurate Hounsfield units, and noise characteristics similar to non-4D CT techniques, at a patient dose similar to or less than current 4DCT techniques.

  1. Joint correction of respiratory motion artifact and partial volume effect in lung/thoracic PET/CT imaging.

    PubMed

    Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2010-12-01

    Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.

  2. Unsteady force estimation using a Lagrangian drift-volume approach

    NASA Astrophysics Data System (ADS)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  3. Myocardial motion estimation of tagged cardiac magnetic resonance images using tag motion constraints and multi-level b-splines interpolation.

    PubMed

    Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng

    2016-05-01

    Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  5. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  6. A Preliminary Examination of the Second Generation CMORPH Real-time Production

    NASA Astrophysics Data System (ADS)

    Joyce, R.; Xie, P.; Wu, S.

    2017-12-01

    The second generation CMORPH (CMORPH2) has started test real-time production of 30-minute precipitation estimates on a 0.05olat/lon grid over the entire globe, from pole-to-pole. The CMORPH2 is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) and LEO platforms, and precipitation simulations from the NCEP operational global forecast system (GFS). Inputs from the various sources are first inter-calibrated to ensure quantitative consistencies in representing precipitation events of different intensities through PDF calibration against a common reference standard. The inter-calibrated PMW retrievals and IR-based precipitation estimates are then propagated from their respective observation times to the target analysis time along the motion vectors of the precipitating clouds. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the GFS precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. The propagated PMW and IR based precipitation estimates are finally integrated into a single field of global precipitation through the Kalman Filter framework. A set of procedures have been established to examine the performance of the CMORPH2 real-time production. CMORPH2 satellite precipitation estimates are compared against the CPC daily gauge analysis, Stage IV radar precipitation over the CONUS, and numerical model forecasts to discover potential shortcomings and quantify improvements against the first generation CMORPH. Special attention has been focused on the CMORPH behavior over high-latitude areas beyond the coverage of the first generation CMORPH. Detailed results will be reported at the AGU.

  7. Comparative assessment of techniques for initial pose estimation using monocular vision

    NASA Astrophysics Data System (ADS)

    Sharma, Sumant; D`Amico, Simone

    2016-06-01

    This work addresses the comparative assessment of initial pose estimation techniques for monocular navigation to enable formation-flying and on-orbit servicing missions. Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude and position of the space resident object with respect to the camera, based on a minimum number of features from a three dimensional computer model and a single two dimensional image. The initial pose is estimated without the use of fiducial markers, without any range measurements or any apriori relative motion information. Prior work has been done to compare different pose estimators for terrestrial applications, but there is a lack of functional and performance characterization of such algorithms in the context of missions involving rendezvous operations in the space environment. Use of state-of-the-art pose estimation algorithms designed for terrestrial applications is challenging in space due to factors such as limited on-board processing power, low carrier to noise ratio, and high image contrasts. This paper focuses on performance characterization of three initial pose estimation algorithms in the context of such missions and suggests improvements.

  8. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.

    PubMed

    Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2004-01-01

    This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate estimates of muscular forces during motion, indicating that this prototype modelling and analysis technique will aid in study, analysis and therapy of the mechanics and underlying pathomechanics involved in various musculoskeletal overuse syndromes.

  9. Characteristics of DC electric fields in transient plasma sheet events

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2015-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  10. Multi-point Measurements of Relativistic Electrons in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.

    2014-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  11. Motion compensation for cone-beam CT using Fourier consistency conditions

    NASA Astrophysics Data System (ADS)

    Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.

    2017-09-01

    In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.

  12. High Frequency Variations in Earth Orientation Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Snajdrova, K.; Boehm, J.

    2006-12-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Orientation Parameters (EOPs - polar motion, UT1/LOD, nutation offsets) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the EOP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the period from begin of 2005 till March 2006. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 79 fairly stable stations out of the IGb00 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed. Finally, satellite techniques are also able to provide nutation offset rates with respect to the most recent nutation model. Based on GPS observations from 2005 we established nutation rate time series and subsequently derived the amplitudes of several nutation waves with periods less than 30 days. The results are compared to VLBI estimates processed by means of the OCCAM 6.1 software.

  13. Stochastic ground-motion simulation of two Himalayan earthquakes: seismic hazard assessment perspective

    NASA Astrophysics Data System (ADS)

    Harbindu, Ashish; Sharma, Mukat Lal; Kamal

    2012-04-01

    The earthquakes in Uttarkashi (October 20, 1991, M w 6.8) and Chamoli (March 8, 1999, M w 6.4) are among the recent well-documented earthquakes that occurred in the Garhwal region of India and that caused extensive damage as well as loss of life. Using strong-motion data of these two earthquakes, we estimate their source, path, and site parameters. The quality factor ( Q β ) as a function of frequency is derived as Q β ( f) = 140 f 1.018. The site amplification functions are evaluated using the horizontal-to-vertical spectral ratio technique. The ground motions of the Uttarkashi and Chamoli earthquakes are simulated using the stochastic method of Boore (Bull Seismol Soc Am 73:1865-1894, 1983). The estimated source, path, and site parameters are used as input for the simulation. The simulated time histories are generated for a few stations and compared with the observed data. The simulated response spectra at 5% damping are in fair agreement with the observed response spectra for most of the stations over a wide range of frequencies. Residual trends closely match the observed and simulated response spectra. The synthetic data are in rough agreement with the ground-motion attenuation equation available for the Himalayas (Sharma, Bull Seismol Soc Am 98:1063-1069, 1998).

  14. Vision-based control for flight relative to dynamic environments

    NASA Astrophysics Data System (ADS)

    Causey, Ryan Scott

    The concept of autonomous systems has been considered an enabling technology for a diverse group of military and civilian applications. The current direction for autonomous systems is increased capabilities through more advanced systems that are useful for missions that require autonomous avoidance, navigation, tracking, and docking. To facilitate this level of mission capability, passive sensors, such as cameras, and complex software are added to the vehicle. By incorporating an on-board camera, visual information can be processed to interpret the surroundings. This information allows decision making with increased situational awareness without the cost of a sensor signature, which is critical in military applications. The concepts presented in this dissertation facilitate the issues inherent to vision-based state estimation of moving objects for a monocular camera configuration. The process consists of several stages involving image processing such as detection, estimation, and modeling. The detection algorithm segments the motion field through a least-squares approach and classifies motions not obeying the dominant trend as independently moving objects. An approach to state estimation of moving targets is derived using a homography approach. The algorithm requires knowledge of the camera motion, a reference motion, and additional feature point geometry for both the target and reference objects. The target state estimates are then observed over time to model the dynamics using a probabilistic technique. The effects of uncertainty on state estimation due to camera calibration are considered through a bounded deterministic approach. The system framework focuses on an aircraft platform of which the system dynamics are derived to relate vehicle states to image plane quantities. Control designs using standard guidance and navigation schemes are then applied to the tracking and homing problems using the derived state estimation. Four simulations are implemented in MATLAB that build on the image concepts present in this dissertation. The first two simulations deal with feature point computations and the effects of uncertainty. The third simulation demonstrates the open-loop estimation of a target ground vehicle in pursuit whereas the four implements a homing control design for the Autonomous Aerial Refueling (AAR) using target estimates as feedback.

  15. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  16. SU-F-J-158: Respiratory Motion Resolved, Self-Gated 4D-MRI Using Rotating Cartesian K-Space Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, F; Zhou, Z; Yang, Y

    Purpose: Dynamic MRI has been used to quantify respiratory motion of abdominal organs in radiation treatment planning. Many existing 4D-MRI methods based on 2D acquisitions suffer from limited slice resolution and additional stitching artifacts when evaluated in 3D{sup 1}. To address these issues, we developed a 4D-MRI (3D dynamic) technique with true 3D k-space encoding and respiratory motion self-gating. Methods: The 3D k-space was acquired using a Rotating Cartesian K-space (ROCK) pattern, where the Cartesian grid was reordered in a quasi-spiral fashion with each spiral arm rotated using golden angle{sup 2}. Each quasi-spiral arm started with the k-space center-line, whichmore » were used as self-gating{sup 3} signal for respiratory motion estimation. The acquired k-space data was then binned into 8 respiratory phases and the golden angle ensures a near-uniform k-space sampling in each phase. Finally, dynamic 3D images were reconstructed using the ESPIRiT technique{sup 4}. 4D-MRI was performed on 6 healthy volunteers, using the following parameters (bSSFP, Fat-Sat, TE/TR=2ms/4ms, matrix size=500×350×120, resolution=1×1×1.2mm, TA=5min, 8 respiratory phases). Supplemental 2D real-time images were acquired in 9 different planes. Dynamic locations of the diaphragm dome and left kidney were measured from both 4D and 2D images. The same protocol was also performed on a MRI-compatible motion phantom where the motion was programmed with different amplitude (10–30mm) and frequency (3–10/min). Results: High resolution 4D-MRI were obtained successfully in 5 minutes. Quantitative motion measurements from 4D-MRI agree with the ones from 2D CINE (<5% error). The 4D images are free of the stitching artifacts and their near-isotropic resolution facilitates 3D visualization and segmentation of abdominal organs such as the liver, kidney and pancreas. Conclusion: Our preliminary studies demonstrated a novel ROCK 4D-MRI technique with true 3D k-space encoding and respiratory motion self-gating. The technique leads to high-resolution and artifacts-free 4D images for improved abdominal organ motion studies. K.S acknowledges funding support from NIH R01CA188300.« less

  17. Estimation of two-dimensional motion velocity using ultrasonic signals beamformed in Cartesian coordinate for measurement of cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki

    2018-07-01

    Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.

  18. WE-AB-303-11: Verification of a Deformable 4DCT Motion Model for Lung Tumor Tracking Using Different Driving Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woelfelschneider, J; Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE; Seregni, M

    2015-06-15

    Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the modelmore » considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases, however uncertainties decrease for three-dimensional approaches. This work was funded in parts by the German Research Council (DFG) - KFO 214/2.« less

  19. A comparative study of ground motion hybrid simulations and the modified NGA ground motion predictive equations for directivity and its application to the the Marmara Sea region (Turkey)

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Akinci, A.; Spagnuolo, E.; Taroni, M.; Herrero, A.; Aochi, H.

    2016-12-01

    We have simulated strong ground motions for two Mw>7.0 rupture scenarios on the North Anatolian Fault, in the Marmara Sea within 10-20 km from Istanbul. This city is characterized by one of the highest levels of seismic risk in Europe and the Mediterranean region. The increased risk in Istanbul is due to eight destructive earthquakes that ruptured the fault system and left a seismic gap at the western portion of the 1000km-long North Anatolian Fault Zone. To estimate the ground motion characteristics and its variability in the region we have simulated physics-based rupture scenarios, producing hybrid broadband time histories. We have merged two simulation techniques: a full 3D wave propagation method to generate low-frequency seismograms (Aochi and Ulrich, 2015) and the stochastic finite-fault model approach based on a dynamic corner frequency (Motazedian and Atkinson, 2005) to simulate high-frequency seismograms (Akinci et al., 2016, submitted to BSSA, 2016). They are merged to compute realistic broadband hybrid time histories. The comparison of ground motion intensity measures (PGA, PGV, SA) resulting from our simulations with those predicted by the recent Ground Motion Prediction Equations (GMPEs) in the region (Boore & Atkinson, 2008; Chiou & Young, 2008; Akkar & Bommer, 2010; Akkar & Cagnan, 2010) seems to indicate that rupture directivity and super-shear rupture effects affect the ground motion in the Marmara Sea region. In order to account for the rupture directivity we improve the comparison using the directivity predictor proposed by Spudich & Chiu (2008). This study highlights the importance of the rupture directivity for the hazard estimation in the Marmara Sea region, especially for the city of Istanbul.

  20. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  1. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    PubMed Central

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the Neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  2. Direction-dependent regularization for improved estimation of liver and lung motion in 4D image data

    NASA Astrophysics Data System (ADS)

    Schmidt-Richberg, Alexander; Ehrhardt, Jan; Werner, René; Handels, Heinz

    2010-03-01

    The estimation of respiratory motion is a fundamental requisite for many applications in the field of 4D medical imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done using non-linear registration of time frames of the sequence without further modelling of physiological motion properties. In this context, the accurate calculation of liver und lung motion is especially challenging because the organs are slipping along the surrounding tissue (i.e. the rib cage) during the respiratory cycle, which leads to discontinuities in the motion field. Without incorporating this specific physiological characteristic, common smoothing mechanisms cause an incorrect estimation along the object borders. In this paper, we present an extended diffusion-based model for incorporating physiological knowledge in image registration. By decoupling normal- and tangential-directed smoothing, we are able to estimate slipping motion at the organ borders while preventing gaps and ensuring smooth motion fields inside. We evaluate our model for the estimation of lung and liver motion on the basis of publicly accessible 4D CT and 4D MRI data. The results show a considerable increase of registration accuracy with respect to the target registration error and a more plausible motion estimation.

  3. Algorithms and architectures for robot vision

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.

    1990-01-01

    The scope of the current work is to develop practical sensing implementations for robots operating in complex, partially unstructured environments. A focus in this work is to develop object models and estimation techniques which are specific to requirements of robot locomotion, approach and avoidance, and grasp and manipulation. Such problems have to date received limited attention in either computer or human vision - in essence, asking not only how perception is in general modeled, but also what is the functional purpose of its underlying representations. As in the past, researchers are drawing on ideas from both the psychological and machine vision literature. Of particular interest is the development 3-D shape and motion estimates for complex objects when given only partial and uncertain information and when such information is incrementally accrued over time. Current studies consider the use of surface motion, contour, and texture information, with the longer range goal of developing a fused sensing strategy based on these sources and others.

  4. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  5. Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Maleke, Caroline; Konofagou, Elisa E.

    2009-04-01

    Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (Ispta) was equal to 1050 W/cm2. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.

  6. Surface and downhole shear wave seismic methods for thick soil site investigations

    USGS Publications Warehouse

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  7. Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleke, Caroline; Konofagou, Elisa E.; Department of Radiology, Columbia University, New York, NY

    2009-04-14

    Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (I{sub spta}) wasmore » equal to 1050 W/cm{sup 2}. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.« less

  8. Correcting for deformation in skin-based marker systems.

    PubMed

    Alexander, E J; Andriacchi, T P

    2001-03-01

    A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.

  9. Decorrelation correction for nanoparticle tracking analysis of dilute polydisperse suspensions in bulk flow

    NASA Astrophysics Data System (ADS)

    Hartman, John; Kirby, Brian

    2017-03-01

    Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.

  10. Estimation of slipping organ motion by registration with direction-dependent regularization.

    PubMed

    Schmidt-Richberg, Alexander; Werner, René; Handels, Heinz; Ehrhardt, Jan

    2012-01-01

    Accurate estimation of respiratory motion is essential for many applications in medical 4D imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done by non-linear registration of image scans at different states of the breathing cycle but without further modeling of specific physiological motion properties. In this context, the accurate computation of respiration-driven lung motion is especially challenging because this organ is sliding along the surrounding tissue during the breathing cycle, leading to discontinuities in the motion field. Without considering this property in the registration model, common intensity-based algorithms cause incorrect estimation along the object boundaries. In this paper, we present a model for incorporating slipping motion in image registration. Extending the common diffusion registration by distinguishing between normal- and tangential-directed motion, we are able to estimate slipping motion at the organ boundaries while preventing gaps and ensuring smooth motion fields inside and outside. We further present an algorithm for a fully automatic detection of discontinuities in the motion field, which does not rely on a prior segmentation of the organ. We evaluate the approach for the estimation of lung motion based on 23 inspiration/expiration pairs of thoracic CT images. The results show a visually more plausible motion estimation. Moreover, the target registration error is quantified using manually defined landmarks and a significant improvement over the standard diffusion regularization is shown. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Proceedings of the Meeting of the Coordinating Group on Modern Control Theory (4th) Held at Rochester, Michigan on 27-28 October 1982. Part 1

    DTIC Science & Technology

    1982-10-01

    and time-to-go (T60) are provided from the Estimation Algorithm. The gimbal angle commands used in the first two phases are applied to the gimbal...lighting techniques are also used to simplify image understanding or to extract additional information about position, range, or shape of objects in the...motion or firing dis- turbances. Since useful muzzle position and rate information is difficult to obtain, conventional feedback techniques 447 cannot

  12. Losses to single-family housing from ground motions in the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.; Leyendecker, E.V.; Roth, R.J.; Petersen, M.D.

    2004-01-01

    The distributions of insured losses to single-family housing following the 1994 Northridge, California, earthquake for 234 ZIP codes can be satisfactorily modeled with gamma distributions. Regressions of the parameters in the gamma distribution on estimates of ground motion, derived from ShakeMap estimates or from interpolated observations, provide a basis for developing curves of conditional probability of loss given a ground motion. Comparison of the resulting estimates of aggregate loss with the actual aggregate loss gives satisfactory agreement for several different ground-motion parameters. Estimates of loss based on a deterministic spatial model of the earthquake ground motion, using standard attenuation relationships and NEHRP soil factors, give satisfactory results for some ground-motion parameters if the input ground motions are increased about one and one-half standard deviations above the median, reflecting the fact that the ground motions for the Northridge earthquake tended to be higher than the median ground motion for other earthquakes with similar magnitude. The results give promise for making estimates of insured losses to a similar building stock under future earthquake loading. ?? 2004, Earthquake Engineering Research Institute.

  13. Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6

    NASA Technical Reports Server (NTRS)

    Vickers, Dean; Mahrt, L.

    2005-01-01

    Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.

  14. System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.

    2011-01-01

    Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed

  15. Bayesian estimation of self-similarity exponent

    NASA Astrophysics Data System (ADS)

    Makarava, Natallia; Benmehdi, Sabah; Holschneider, Matthias

    2011-08-01

    In this study we propose a Bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional Brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Rosenblatt process is shown as an example of an H-self-similar process with non-Gaussian dimensional distribution. Additionally, we perform an analysis with real data, the Dow-Jones Industrial Average closing values, and analyze its temporal variation of the Hurst exponent.

  16. Measurements of reduced corkscrew motion on the ETA-II linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S.L.; Brand, H.R.; Chambers, F.W.

    1991-05-01

    The ETA-II linear induction accelerator is used to drive a microwave free electron laser (FEL). Corkscrew motion, which previously limited performance, has been reduced by: (1) an improved pulse distribution system which reduces energy sweep, (2) improved magnetic alignment achieved with a stretched wire alignment technique (SWAT) and (3) a unique magnetic tuning algorithm. Experiments have been carried out on a 20-cell version of ETA-II operating at 1500 A and 2.7 MeV. The measured transverse beam motion is less than 0.5 mm for 40 ns of the pulse, an improvement of a factor of 2 to 3 over previous results.more » Details of the computerized tuning procedure, estimates of the corkscrew phase, and relevance of these results to future FEL experiments are presented. 11 refs.« less

  17. A nowcasting technique based on application of the particle filter blending algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhao; Lan, Hongping; Chen, Xunlai; Zhang, Wenhai

    2017-10-01

    To improve the accuracy of nowcasting, a new extrapolation technique called particle filter blending was configured in this study and applied to experimental nowcasting. Radar echo extrapolation was performed by using the radar mosaic at an altitude of 2.5 km obtained from the radar images of 12 S-band radars in Guangdong Province, China. The first bilateral filter was applied in the quality control of the radar data; an optical flow method based on the Lucas-Kanade algorithm and the Harris corner detection algorithm were used to track radar echoes and retrieve the echo motion vectors; then, the motion vectors were blended with the particle filter blending algorithm to estimate the optimal motion vector of the true echo motions; finally, semi-Lagrangian extrapolation was used for radar echo extrapolation based on the obtained motion vector field. A comparative study of the extrapolated forecasts of four precipitation events in 2016 in Guangdong was conducted. The results indicate that the particle filter blending algorithm could realistically reproduce the spatial pattern, echo intensity, and echo location at 30- and 60-min forecast lead times. The forecasts agreed well with observations, and the results were of operational significance. Quantitative evaluation of the forecasts indicates that the particle filter blending algorithm performed better than the cross-correlation method and the optical flow method. Therefore, the particle filter blending method is proved to be superior to the traditional forecasting methods and it can be used to enhance the ability of nowcasting in operational weather forecasts.

  18. Annual Geocenter Motion from Space Geodesy and Models

    NASA Astrophysics Data System (ADS)

    Ries, J. C.

    2013-12-01

    Ideally, the origin of the terrestrial reference frame and the center of mass of the Earth are always coincident. By construction, the origin of the reference frame is coincident with the mean Earth center of mass, averaged over the time span of the satellite laser ranging (SLR) observations used in the reference frame solution, within some level of uncertainty. At shorter time scales, tidal and non-tidal mass variations result in an offset between the origin and geocenter, called geocenter motion. Currently, there is a conventional model for the tidally-coherent diurnal and semi-diurnal geocenter motion, but there is no model for the non-tidal annual variation. This annual motion reflects the largest-scale mass redistribution in the Earth system, so it essential to observe it for a complete description of the total mass transport. Failing to model it can also cause false signals in geodetic products such as sea height observations from satellite altimeters. In this paper, a variety of estimates for the annual geocenter motion are presented based on several different geodetic techniques and models, and a ';consensus' model from SLR is suggested.

  19. Adaptive mesh optimization and nonrigid motion recovery based image registration for wide-field-of-view ultrasound imaging.

    PubMed

    Tan, Chaowei; Wang, Bo; Liu, Paul; Liu, Dong

    2008-01-01

    Wide field of view (WFOV) imaging mode obtains an ultrasound image over an area much larger than the real time window normally available. As the probe is moved over the region of interest, new image frames are combined with prior frames to form a panorama image. Image registration techniques are used to recover the probe motion, eliminating the need for a position sensor. Speckle patterns, which are inherent in ultrasound imaging, change, or become decorrelated, as the scan plane moves, so we pre-smooth the image to reduce the effects of speckle in registration, as well as reducing effects from thermal noise. Because we wish to track the movement of features such as structural boundaries, we use an adaptive mesh over the entire smoothed image to home in on areas with feature. Motion estimation using blocks centered at the individual mesh nodes generates a field of motion vectors. After angular correction of motion vectors, we model the overall movement between frames as a nonrigid deformation. The polygon filling algorithm for precise, persistence-based spatial compounding constructs the final speckle reduced WFOV image.

  20. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Sisniega, A; Zbijewski, W

    Purpose: Visualization and quantification of coronary artery calcification and atherosclerotic plaque benefits from coronary artery motion (CAM) artifact elimination. This work applies a rigid linear motion model to a Volume of Interest (VoI) for estimating motion estimation and compensation of image degradation in Coronary Computed Tomography Angiography (CCTA). Methods: In both simulation and testbench experiments, translational CAM was generated by displacement of the imaging object (i.e. simulated coronary artery and explanted human heart) by ∼8 mm, approximating the motion of a main coronary branch. Rotation was assumed to be negligible. A motion degraded region containing a calcification was selected asmore » the VoI. Local residual motion was assumed to be rigid and linear over the acquisition window, simulating motion observed during diastasis. The (negative) magnitude of the image gradient of the reconstructed VoI was chosen as the motion estimation objective and was minimized with Covariance Matrix Adaptation Evolution Strategy (CMAES). Results: Reconstruction incorporated the estimated CAM yielded signification recovery of fine calcification structures as well as reduced motion artifacts within the selected local region. The compensated reconstruction was further evaluated using two image similarity metrics, the structural similarity index (SSIM) and Root Mean Square Error (RMSE). At the calcification site, the compensated data achieved a 3% increase in SSIM and a 91.2% decrease in RMSE in comparison with the uncompensated reconstruction. Conclusion: Results demonstrate the feasibility of our image-based motion estimation method exploiting a local rigid linear model for CAM compensation. The method shows promising preliminary results for the application of such estimation in CCTA. Further work will involve motion estimation of complex motion corrupted patient data acquired from clinical CT scanner.« less

  2. Identification of Piecewise Linear Uniform Motion Blur

    NASA Astrophysics Data System (ADS)

    Patanukhom, Karn; Nishihara, Akinori

    A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.

  3. Accelerometer-based on-body sensor localization for health and medical monitoring applications

    PubMed Central

    Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid

    2011-01-01

    In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840

  4. The statistics of local motion signals in naturalistic movies

    PubMed Central

    Nitzany, Eyal I.; Victor, Jonathan D.

    2014-01-01

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics. PMID:24732243

  5. The statistics of local motion signals in naturalistic movies.

    PubMed

    Nitzany, Eyal I; Victor, Jonathan D

    2014-04-14

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics.

  6. Investigation of optimal method for inducing harmonic motion in tissue using a linear ultrasound phased array--a simulation study.

    PubMed

    Heikkilä, Janne; Hynynen, Kullervo

    2006-04-01

    Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.

  7. An Efficient Method for Studying the Stability and Dynamics of the Rotational Motions of Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Pavlov, A. I.; Maciejewski, A. J.

    2003-08-01

    We use the alternative MEGNO (Mean Exponential Growth of Nearby Orbits) technique developed by Cincotta and Simo to study the stability of orbital-rotational motions for plane oscillations and three-dimensional rotations. We present a detailed numerical-analytical study of a rigid body in the case where the proper rotation of the body is synchronized with its orbital motion as 3: 2 (Mercurian-type synchronism). For plane rotations, the loss of stability of the periodic solution that corresponds to a 3: 2 resonance is shown to be soft, which should be taken into account to estimate the upper limit for the ellipticity of Mercury. In studying stable and chaotic translational-rotational motions, we point out that the MEGNO criterion can be effectively used. This criterion gives a clear picture of the resonant structures and allows the calculations to be conveniently presented in the form of the corresponding MEGNO stability maps for multidimensional systems. We developed an appropriate software package.

  8. Video stereolization: combining motion analysis with user interaction.

    PubMed

    Liao, Miao; Gao, Jizhou; Yang, Ruigang; Gong, Minglun

    2012-07-01

    We present a semiautomatic system that converts conventional videos into stereoscopic videos by combining motion analysis with user interaction, aiming to transfer as much as possible labeling work from the user to the computer. In addition to the widely used structure from motion (SFM) techniques, we develop two new methods that analyze the optical flow to provide additional qualitative depth constraints. They remove the camera movement restriction imposed by SFM so that general motions can be used in scene depth estimation-the central problem in mono-to-stereo conversion. With these algorithms, the user's labeling task is significantly simplified. We further developed a quadratic programming approach to incorporate both quantitative depth and qualitative depth (such as these from user scribbling) to recover dense depth maps for all frames, from which stereoscopic view can be synthesized. In addition to visual results, we present user study results showing that our approach is more intuitive and less labor intensive, while producing 3D effect comparable to that from current state-of-the-art interactive algorithms.

  9. Static and dynamic body image in bulimia nervosa: mental representation of body dimensions and biological motion patterns.

    PubMed

    Vocks, Silja; Legenbauer, Tanja; Rüddel, Heinz; Troje, Nikolaus F

    2007-01-01

    The aim of the present study was to find out whether in bulimia nervosa the perceptual component of a disturbed body image is restricted to the overestimation of one's own body dimensions (static body image) or can be extended to a misperception of one's own motion patterns (dynamic body image). Participants with bulimia nervosa (n = 30) and normal controls (n = 55) estimated their body dimensions by means of a photo distortion technique and their walking patterns using a biological motion distortion device. Not only did participants with bulimia nervosa overestimate their own body dimensions, but also they perceived their own motion patterns corresponding to a higher BMI than did controls. Static body image was correlated with shape/weight concerns and drive for thinness, whereas dynamic body image was associated with social insecurity and body image avoidance. In bulimia nervosa, body image disturbances can be extended to a dynamic component. (c) 2006 by Wiley Periodicals, Inc.

  10. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  11. Simulation of Human-induced Vibrations Based on the Characterized In-field Pedestrian Behavior

    PubMed Central

    Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-01-01

    For slender and lightweight structures, vibration serviceability is a matter of growing concern, often constituting the critical design requirement. With designs governed by the dynamic performance under human-induced loads, a strong demand exists for the verification and refinement of currently available load models. The present contribution uses a 3D inertial motion tracking technique for the characterization of the in-field pedestrian behavior. The technique is first tested in laboratory experiments with simultaneous registration of the corresponding ground reaction forces. The experiments include walking persons as well as rhythmical human activities such as jumping and bobbing. It is shown that the registered motion allows for the identification of the time variant pacing rate of the activity. Together with the weight of the person and the application of generalized force models available in literature, the identified time-variant pacing rate allows to characterize the human-induced loads. In addition, time synchronization among the wireless motion trackers allows identifying the synchronization rate among the participants. Subsequently, the technique is used on a real footbridge where both the motion of the persons and the induced structural vibrations are registered. It is shown how the characterized in-field pedestrian behavior can be applied to simulate the induced structural response. It is demonstrated that the in situ identified pacing rate and synchronization rate constitute an essential input for the simulation and verification of the human-induced loads. The main potential applications of the proposed methodology are the estimation of human-structure interaction phenomena and the development of suitable models for the correlation among pedestrians in real traffic conditions. PMID:27167309

  12. A novel unscented predictive filter for relative position and attitude estimation of satellite formation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Xiaoqian; Misra, Arun K.

    2015-07-01

    This paper presents a novel sigma-point unscented predictive filter (UPF) for relative position and attitude estimation of satellite formation taking into account the influence of J2. A coupled relative translational dynamics model is formulated to represent orbital motion of arbitrary feature points on the deputy spacecraft, and the relative attitude motion is formulated by considering a rotational dynamics for a satellite without gyros. Based on the proposed coupled dynamic model, the UPF is developed based on unscented transformation technique, extending the capability of a traditional predictive filter (PF). The algorithm flow of the UPF is described first. Then it is demonstrated that the estimation accuracy of the model error and system state for UPF is higher than that of the traditional PF. In addition, the unscented Kalman filter (UKF) is also employed in order to compare the performance of the proposed UPF with that of the UKF. Several different scenarios are simulated to validate the effectiveness of the coupled dynamics model and the performance of the proposed UPF. Through comparisons, the proposed UPF is shown to yield highly accurate estimation of relative position and attitude during satellite formation flying.

  13. Time series analysis of particle tracking data for molecular motion on the cell membrane.

    PubMed

    Ying, Wenxia; Huerta, Gabriel; Steinberg, Stanly; Zúñiga, Martha

    2009-11-01

    Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing conclusions about membrane organization, including features like lipid rafts, protein islands, and confinement zones defined by cytoskeletal barriers. Here, we implement time series analysis as a new analytic tool to analyze further the motion of membrane proteins. The experimental data track the motion of 40 nm gold particles bound to Class I major histocompatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells. Our first novel result is that the tracks are significantly autocorrelated. Because of this, we developed linear autoregressive models to elucidate the autocorrelations. Estimates of the signal to noise ratio for the models show that the autocorrelated part of the motion is significant. Next, we fit the probability distributions of jump sizes with four different models. The first model is a general Weibull distribution that shows that the motion is characterized by an excess of short jumps as compared to a normal random walk. We also fit the data with a chi distribution which provides a natural estimate of the dimension d of the space in which a random walk is occurring. For the biological data, the estimates satisfy 1 < d < 2, implying that particle motion is not confined to a line, but also does not occur freely in the plane. The dimension gives a quantitative estimate of the amount of nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution and use the generalized extreme value distribution to show that the biological data also have an excess of long jumps as compared to normal diffusion. These fits provide novel estimates of the microscopic diffusion constant. Previous MSD analyses of SPT data have provided evidence for nanometer-scale confinement zones that restrict lateral diffusion, supporting the notion that plasma membrane organization is highly structured. Our demonstration that membrane protein motion is autocorrelated and is characterized by an excess of both short and long jumps reinforces the concept that the membrane environment is heterogeneous and dynamic. Autocorrelation analysis and modeling of the jump distributions are powerful new techniques for the analysis of SPT data and the development of more refined models of membrane organization. The time series analysis also provides several methods of estimating the diffusion constant in addition to the constant provided by the mean squared displacement. The mean squared displacement for most of the biological data shows a power law behavior rather the linear behavior of Brownian motion. In this case, we introduce the notion of an instantaneous diffusion constant. All of the diffusion constants show a strong consistency for most of the biological data.

  14. Simultaneous calibrations of Voyager celestial and inertial attitude control systems in flight

    NASA Technical Reports Server (NTRS)

    Jahanshahi, M. H.

    1982-01-01

    A mathematical description of the data reduction technique used to simultaneously calibrate the Voyager celestial and inertial attitude control subsystems is given. It is shown that knowledge of the spacecraft limit cycle motion, as measured by the celestial and the inertial sensors, is adequate to result in the estimates of a selected number of errors which adversely affect the spacecraft attitude knowledge.

  15. Advanced Respiratory Motion Compensation for Coronary MR Angiography

    PubMed Central

    Henningsson, Markus; Botnar, Rene M.

    2013-01-01

    Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271

  16. Novel techniques for a wireless motion capture system for the monitoring and rehabilitation of disabled persons for application in smart buildings.

    PubMed

    Banach, Marzena; Wasilewska, Agnieszka; Dlugosz, Rafal; Pauk, Jolanta

    2018-05-18

    Due to the problem of aging societies, there is a need for smart buildings to monitor and support people with various disabilities, including rheumatoid arthritis. The aim of this paper is to elaborate on novel techniques for wireless motion capture systems for the monitoring and rehabilitation of disabled people for application in smart buildings. The proposed techniques are based on cross-verification of distance measurements between markers and transponders in an environment with highly variable parameters. To their verification, algorithms that enable comprehensive investigation of a system with different numbers of transponders and varying ambient parameters (temperature and noise) were developed. In the estimation of the real positions of markers, various linear and nonlinear filters were used. Several thousand tests were carried out for various system parameters and different marker locations. The results show that localization error may be reduced by as much as 90%. It was observed that repetition of measurement reduces localization error by as much as one order of magnitude. The proposed system, based on wireless techniques, offers a high commercial potential. However, it requires extensive cooperation between teams, including hardware and software design, system modelling, and architectural design.

  17. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    NASA Astrophysics Data System (ADS)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  18. Adaptive temporal compressive sensing for video with motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2018-04-01

    In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.

  19. Prospective treatment plan-specific action limits for real-time intrafractional monitoring in surface image guided radiosurgery.

    PubMed

    Yock, Adam D; Pawlicki, Todd; Kim, Gwe-Ya

    2016-07-01

    In surface image guided radiosurgery, action limits are created to determine at what point intrafractional motion exhibited by the patient is large enough to warrant intervention. Action limit values remain constant across patients despite the fact that patient motion affects the target coverage of brain metastases differently depending on the planning technique and other treatment plan-specific factors. The purpose of this work was twofold. The first purpose was to characterize the sensitivity of single-met per iso and multimet per iso treatment plans to uncorrected patient motion. The second purpose was to describe a method to prospectively determine treatment plan-specific action limits considering this sensitivity. In their surface image guided radiosurgery technique, patient positioning is achieved with a thermoplastic mask that does not cover the patient's face. The patient's exposed face is imaged by a stereoscopic photogrammetry system. It is then compared to a reference surface and monitored throughout treatment. Seventy-two brain metastases (representing 29 patients) were used for this study. Twenty-five mets were treated individually ("single-met per iso plans"), and 47 were treated in a plan simultaneously with at least one other met ("multimet per iso plans"). For each met, the proportion of the gross tumor volume that remained within the 100% prescription isodose line was estimated under the influence of combinations of translations and rotations (0.0-3.0 mm and 0.0°-3.0°, respectively). The target volume and the prescription dose-volume were considered concentric spheres that each encompassed a volume determined from the treatment plan. Plan-specific contour plots and DVHs were created to illustrate the sensitivity of a specific lesion to uncorrected patient motion. Both single-met per iso and multimet per iso plans exhibited compromised target coverage under translations and rotations, though multimet per iso plans were considerably more sensitive to these transformations (2.3% and 39.8%, respectively). Plan-specific contour plots and DVHs were used to illustrate how size, distance from isocenter, and planning technique affect a particular met's sensitivity to motion. Stereotactic radiosurgery treatment plans that treat multiple brain metastases using a common isocenter are particularly susceptible to compromised target coverage as a result of uncorrected patient motion. The use of such a planning technique along with other treatment plan-specific factors should influence patient motion management. A graphical representation of the effect of translations and rotations on any particular plan can be generated to inform clinicians of the appropriate action limit when monitoring intrafractional motion.

  20. Evaluation of Ground-Motion Modeling Techniques for Use in Global ShakeMap - A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.

    2009-01-01

    Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.

  1. Geodetic Imaging and Tsunami Modeling of the 2017 Coupled Landslide-Tsunami Event in Karrat Fjord, West Greenland.

    NASA Astrophysics Data System (ADS)

    Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.

    2017-12-01

    We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.

  2. Test suite for image-based motion estimation of the brain and tongue

    NASA Astrophysics Data System (ADS)

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield "ghost" shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation.

  3. Test Suite for Image-Based Motion Estimation of the Brain and Tongue

    PubMed Central

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-01-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an “image synthesis” test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head-brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield “ghost” shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation. PMID:28781414

  4. Side-information-dependent correlation channel estimation in hash-based distributed video coding.

    PubMed

    Deligiannis, Nikos; Barbarien, Joeri; Jacobs, Marc; Munteanu, Adrian; Skodras, Athanassios; Schelkens, Peter

    2012-04-01

    In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.

  5. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianbing, E-mail: yijianbing8@163.com; Yang, Xuan, E-mail: xyang0520@263.net; Li, Yan-Ran, E-mail: lyran@szu.edu.cn

    2015-10-15

    Purpose: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. Methods: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered atmore » points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. Results: The performances of the authors’ method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors’ method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors’ method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors’ method ranks 24 of 39. According to the index of the maximum shear stretch, the authors’ method is also efficient to describe the discontinuous motion at the lung boundaries. Conclusions: By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors’ method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.« less

  6. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm.

    PubMed

    Yi, Jianbing; Yang, Xuan; Chen, Guoliang; Li, Yan-Ran

    2015-10-01

    Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. The performances of the authors' method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors' method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors' method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors' method ranks 24 of 39. According to the index of the maximum shear stretch, the authors' method is also efficient to describe the discontinuous motion at the lung boundaries. By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors' method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.

  7. Gallium arsenide processing elements for motion estimation full-search algorithm

    NASA Astrophysics Data System (ADS)

    Lopez, Jose F.; Cortes, P.; Lopez, S.; Sarmiento, Roberto

    2001-11-01

    The Block-Matching motion estimation algorithm (BMA) is the most popular method for motion-compensated coding of image sequence. Among the several possible searching methods to compute this algorithm, the full-search BMA (FBMA) has obtained great interest from the scientific community due to its regularity, optimal solution and low control overhead which simplifies its VLSI realization. On the other hand, its main drawback is the demand of an enormous amount of computation. There are different ways of overcoming this factor, being the use of advanced technologies, such as Gallium Arsenide (GaAs), the one adopted in this article together with different techniques to reduce area overhead. By exploiting GaAs properties, improvements can be obtained in the implementation of feasible systems for real time video compression architectures. Different primitives used in the implementation of processing elements (PE) for a FBMA scheme are presented. As a result, Pes running at 270 MHz have been developed in order to study its functionality and performance. From these results, an implementation for MPEG applications is proposed, leading to an architecture running at 145 MHz with a power dissipation of 3.48 W and an area of 11.5 mm2.

  8. Evidence for a slow subsidence of the Tahiti Island from GPS, DORIS, GRACE, and combined satellite altimetry and tide gauge sea level records

    NASA Astrophysics Data System (ADS)

    Fadil, A.; Barriot, J.; Sichoix, L.; Ortega, P.; Willis, P.; Serafini, J.

    2010-12-01

    Monitoring vertical land motion is of crucial interest in observations of long-term sea level change and its reconstruction, but is among of the most, yet highly challenging, tasks of space geodesy. The aim of the paper is to compare the vertical velocity estimates of Tahiti Island obtained from six independent geophysical measurements, namely a decade of GPS, DORIS, and GRACE data, 17 years sea level difference (altimeter minus tide gauge (TG)) time series, ICE-5G (VM2 L90) Post-Glacial Rebound (PGR) model predictions, and coral reef stratigraphy. Except The Glacial Isostatic Adjustment (GIA also known as PGR) model, all the techniques are in a good agreement and reveal a very slow subsidence of the Tahiti Island averaged at -0.3 mm/yr which is barely significant. Neverthless, despite of that vertical motion, Tahiti remains an ideal location for the calibration of satellite altimeter measurements.Estimated vertical crustal motions from GPS, DORIS, GRACE, (altimetry - tide-gauge) sea level records, coral reef stratigraphy, and GIA. GG = GAMIT-GLOBK software packageGOA= GIPSY-OASIS II software package

  9. A revised ground-motion and intensity interpolation scheme for shakemap

    USGS Publications Warehouse

    Worden, C.B.; Wald, D.J.; Allen, T.I.; Lin, K.; Garcia, D.; Cua, G.

    2010-01-01

    We describe a weighted-average approach for incorporating various types of data (observed peak ground motions and intensities and estimates from groundmotion prediction equations) into the ShakeMap ground motion and intensity mapping framework. This approach represents a fundamental revision of our existing ShakeMap methodology. In addition, the increased availability of near-real-time macroseismic intensity data, the development of newrelationships between intensity and peak ground motions, and new relationships to directly predict intensity from earthquake source information have facilitated the inclusion of intensity measurements directly into ShakeMap computations. Our approach allows for the combination of (1) direct observations (ground-motion measurements or reported intensities), (2) observations converted from intensity to ground motion (or vice versa), and (3) estimated ground motions and intensities from prediction equations or numerical models. Critically, each of the aforementioned data types must include an estimate of its uncertainties, including those caused by scaling the influence of observations to surrounding grid points and those associated with estimates given an unknown fault geometry. The ShakeMap ground-motion and intensity estimates are an uncertainty-weighted combination of these various data and estimates. A natural by-product of this interpolation process is an estimate of total uncertainty at each point on the map, which can be vital for comprehensive inventory loss calculations. We perform a number of tests to validate this new methodology and find that it produces a substantial improvement in the accuracy of ground-motion predictions over empirical prediction equations alone.

  10. Improved Estimation of Electron Temperature from Rocket-borne Impedance Probes

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Wolfinger, K.; Stamm, J. D.

    2017-12-01

    The impedance probe technique is a well known method for determining high accuracy measurements of electron number density in the Earth's ionosphere. We present analysis of impedance probe data from several sounding rockets at low, mid-, and auroral latitudes, including high cadence estimates of the electron temperature, derived from analytical fits to the antenna impedance curves. These estimates compare favorably with independent estimates from Langmuir Probes, but at much higher temporal and spatial resolution, providing a capability to resolve small-scale temperature fluctuations. We also present some considerations for the design of impedance probes, including assessment of the effects of resonance damping due to rocket motion, effects of wake and spin modulation, and aspect angle to the magnetic field.

  11. Estimation of conformational entropy in protein-ligand interactions: a computational perspective.

    PubMed

    Polyansky, Anton A; Zubac, Ruben; Zagrovic, Bojan

    2012-01-01

    Conformational entropy is an important component of the change in free energy upon binding of a ligand to its target protein. As a consequence, development of computational techniques for reliable estimation of conformational entropies is currently receiving an increased level of attention in the context of computational drug design. Here, we review the most commonly used techniques for conformational entropy estimation from classical molecular dynamics simulations. Although by-and-large still not directly used in practical drug design, these techniques provide a golden standard for developing other, computationally less-demanding methods for such applications, in addition to furthering our understanding of protein-ligand interactions in general. In particular, we focus on the quasi-harmonic approximation and discuss different approaches that can be used to go beyond it, most notably, when it comes to treating anharmonic and/or correlated motions. In addition to reviewing basic theoretical formalisms, we provide a concrete set of steps required to successfully calculate conformational entropy from molecular dynamics simulations, as well as discuss a number of practical issues that may arise in such calculations.

  12. Velocity navigator for motion compensated thermometry.

    PubMed

    Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael

    2012-02-01

    Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.

  13. Revised motion estimation algorithm for PROPELLER MRI.

    PubMed

    Pipe, James G; Gibbs, Wende N; Li, Zhiqiang; Karis, John P; Schar, Michael; Zwart, Nicholas R

    2014-08-01

    To introduce a new algorithm for estimating data shifts (used for both rotation and translation estimates) for motion-corrected PROPELLER MRI. The method estimates shifts for all blades jointly, emphasizing blade-pair correlations that are both strong and more robust to noise. The heads of three volunteers were scanned using a PROPELLER acquisition while they exhibited various amounts of motion. All data were reconstructed twice, using motion estimates from the original and new algorithm. Two radiologists independently and blindly compared 216 image pairs from these scans, ranking the left image as substantially better or worse than, slightly better or worse than, or equivalent to the right image. In the aggregate of 432 scores, the new method was judged substantially better than the old method 11 times, and was never judged substantially worse. The new algorithm compared favorably with the old in its ability to estimate bulk motion in a limited study of volunteer motion. A larger study of patients is planned for future work. Copyright © 2013 Wiley Periodicals, Inc.

  14. The effect of concurrent hand movement on estimated time to contact in a prediction motion task.

    PubMed

    Zheng, Ran; Maraj, Brian K V

    2018-04-27

    In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.

  15. A new technique for high sensitive detection of rotational motion in optical tweezers by a differential measurement of backscattered intensity

    NASA Astrophysics Data System (ADS)

    Roy, Basudev; Bera, Sudipta K.; Mondal, Argha; Banerjee, Ayan

    2014-09-01

    Asymmetric particles, such as biological cells, often experience torque under optical tweezers due to birefringence or unbalanced scattering forces, which makes precise determination of the torque crucial for calibration and control of the particles. The estimate of torque relies on the accurate measurement of rotational motion, which has been achieved by various techniques such as measuring the intensity fluctuations of the forward scattered light, or the polarization component orthogonal to the trapping light polarization in plasmonic nanoparticles and vaterite crystals. Here we present a simple yet high sensitive technique to measure rotation of such an asymmetric trapped particle by detecting the light backscattered onto a quadrant photodiode, and subtracting the signals along the two diagonals of the quadrants. This automatically suppresses the common mode translational signal obtained by taking the difference signal of the adjacent quadrants, while amplifying the rotational signal. Using this technique, we obtain a S/N of 200 for angular displacement of a trapped micro-rod by 5 degrees, which implies a sensitivity of 50 mdeg with S/N of 2. The technique is thus independent of birefringence and polarization properties of the asymmetric particle and depends only on the scattering cross-section.

  16. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  17. 3D motion picture of transparent gas flow by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu

    2018-03-01

    Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.

  18. Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Chen, Guangqi; Wu, Yanqiang; Jiang, Han

    2016-11-01

    On April 15, 2016, Kumamoto, Japan, was struck by a large earthquake sequence, leading to severe casualty and building damage. The stochastic finite-fault method based on a dynamic corner frequency has been applied to perform ground-motion simulations for the 2016 Kumamoto earthquake. There are 53 high-quality KiK-net stations available in the Kyushu region, and we employed records from all stations to determine region-specific source, path and site parameters. The calculated S-wave attenuation for the Kyushu region beneath the volcanic and non-volcanic areas can be expressed in the form of Q s = (85.5 ± 1.5) f 0.68±0.01 and Q s = (120 ± 5) f 0.64±0.05, respectively. The effects of lateral S-wave velocity and attenuation heterogeneities on the ground-motion simulations were investigated. Site amplifications were estimated using the corrected cross-spectral ratios technique. Zero-distance kappa filter was obtained to be the value of 0.0514 ± 0.0055 s, using the spectral decay method. The stress drop of the mainshock based on the USGS slip model was estimated optimally to have a value of 64 bars. Our finite-fault model with optimized parameters was validated through the good agreement of observations and simulations at all stations. The attenuation characteristics of the simulated peak ground accelerations were also successfully captured by the ground-motion prediction equations. Finally, the ground motions at two destructively damaged regions, Kumamoto Castle and Minami Aso village, were simulated. We conclude that the stochastic finite-fault method with well-determined parameters can reproduce the ground-motion characteristics of the 2016 Kumamoto earthquake in both the time and frequency domains. This work is necessary for seismic hazard assessment and mitigation.[Figure not available: see fulltext.

  19. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    PubMed

    Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M

    2017-04-01

    In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional hardware is mounted onto the OCT scanner to gather information about the eye motion patterns during OCT data acquisition. This information is later processed and applied to the OCT data for creating an anatomically correct representation of the retina, either in an offline or online manner. In software based techniques, the motion patterns are approximated either by comparing the acquired data to a reference image, or by considering some prior assumptions about the nature of the eye motion. Careful investigations done on the most common methods in the field provides invaluable insight regarding future directions of the research in this area. The challenge in hardware-based techniques lies in the implementation aspects of particular devices. However, the results of these techniques are superior to those obtained from software-based techniques because they are capable of capturing secondary data related to eye motion during OCT acquisition. Software-based techniques on the other hand, achieve moderate success and their performance is highly dependent on the quality of the OCT data in terms of the amount of motion artifacts contained in them. However, they are still relevant to the field since they are the sole class of techniques with the ability to be applied to legacy data acquired using systems that do not have extra hardware to track eye motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.

    2015-04-01

    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  1. Motion estimation in the frequency domain using fuzzy c-planes clustering.

    PubMed

    Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E

    2001-01-01

    A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.

  2. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Wang, C

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myronakis, M; Cai, W; Dhou, S

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumormore » motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to acknowledge funding from MRA, VARIAN Medical Systems, Inc.« less

  4. Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects

    NASA Technical Reports Server (NTRS)

    Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David

    1989-01-01

    Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.

  5. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  6. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements.

    PubMed

    Cereatti, Andrea; Bonci, Tecla; Akbarshahi, Massoud; Aminian, Kamiar; Barré, Arnaud; Begon, Mickael; Benoit, Daniel L; Charbonnier, Caecilia; Dal Maso, Fabien; Fantozzi, Silvia; Lin, Cheng-Chung; Lu, Tung-Wu; Pandy, Marcus G; Stagni, Rita; van den Bogert, Antonie J; Camomilla, Valentina

    2017-09-06

    Soft tissue artefact (STA) represents one of the main obstacles for obtaining accurate and reliable skeletal kinematics from motion capture. Many studies have addressed this issue, yet there is no consensus on the best available bone pose estimator and the expected errors associated with relevant results. Furthermore, results obtained by different authors are difficult to compare due to the high variability and specificity of the phenomenon and the different metrics used to represent these data. Therefore, the aim of this study was twofold: firstly, to propose standards for description of STA; and secondly, to provide illustrative STA data samples for body segments in the upper and lower extremities and for a range of motor tasks specifically, level walking, stair ascent, sit-to-stand, hip- and knee-joint functional movements, cutting motion, running, hopping, arm elevation and functional upper-limb movements. The STA dataset includes motion of the skin markers measured in vivo and ex vivo using stereophotogrammetry as well as motion of the underlying bones measured using invasive or bio-imaging techniques (i.e., X-ray fluoroscopy or MRI). The data are accompanied by a detailed description of the methods used for their acquisition, with information given about their quality as well as characterization of the STA using the proposed standards. The availability of open-access and standard-format STA data will be useful for the evaluation and development of bone pose estimators thus contributing to the advancement of three-dimensional human movement analysis and its translation into the clinical practice and other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Optical Flow Applied to Time-Lapse Image Series to Estimate Glacier Motion in the Southern Patagonia Ice Field

    NASA Astrophysics Data System (ADS)

    Lannutti, E.; Lenzano, M. G.; Toth, C.; Lenzano, L.; Rivera, A.

    2016-06-01

    In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.

  8. Unmanned aerial vehicle-based structure from motion biomass inventory estimates

    NASA Astrophysics Data System (ADS)

    Bedell, Emily; Leslie, Monique; Fankhauser, Katie; Burnett, Jonathan; Wing, Michael G.; Thomas, Evan A.

    2017-04-01

    Riparian vegetation restoration efforts require cost-effective, accurate, and replicable impact assessments. We present a method to use an unmanned aerial vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 0.8-ha riparian restoration. A three-dimensional point cloud was created from the photos using "structure from motion" techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground-truth data were collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/ha in three height classes. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis and the remaining three sections reserved for method validation. Comparing the ground-truth data to the UAV generated data produced an overall error of 21.6% and indicated an R2 value of 0.98. A Bland-Altman analysis indicated a 95% probability that the UAV stems/section result will be within 61 stems/section of the ground-truth data. The ground-truth data are reported with an 80% confidence interval of ±1032 stems/ha thus, the UAV was able to estimate stems well within this confidence interval.

  9. Strain map of the tongue in normal and ALS speech patterns from tagged and diffusion MRI

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Reese, Timothy G.; Atassi, Nazem; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye

    2018-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  10. Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.

    PubMed

    Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Reese, Timothy G; Atassi, Nazem; Wedeen, Van J; El Fakhri, Georges; Woo, Jonghye

    2018-02-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  11. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.

  12. Three-dimensional kinematic estimation of mobile-bearing total knee arthroplasty from x-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi

    2011-03-01

    To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration technique. In order to validate the accuracy of the present technique, experiments including computer simulation test were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant design and optimizing TKA surgical techniques.

  13. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  14. An error-based micro-sensor capture system for real-time motion estimation

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li

    2017-10-01

    A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).

  15. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    PubMed

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  16. Providing long-term trend and gravimetric factor at Chandler period from superconducting gravimeter records by using Singular Spectrum Analysis along with its multivariate extension

    NASA Astrophysics Data System (ADS)

    Gruszczynska, M.; Rosat, S.; Klos, A.; Bogusz, J.

    2017-12-01

    In this study, Singular Spectrum Analysis (SSA) along with its multivariate extension MSSA (Multichannel SSA) were used to estimate long-term trend and gravimetric factor at the Chandler wobble frequency from superconducting gravimeter (SG) records. We have used data from seven stations located worldwide and contributing to the International Geodynamics and Earth Tides Service (IGETS). The timespan ranged from 15 to 19 years. Before applying SSA and MSSA, we had removed local tides, atmospheric (ECMWF data), hydrological (MERRA2 products) loadings and non-tidal ocean loading (ECCO2 products) effects. In the first part of analysis, we used the SSA approach in order to estimate the long-term trends from SG observations. We use the technique based on the classical Karhunen-Loève spectral decomposition of time series into long-term trend, oscillations and noise. In the second part, we present the determination of common time-varying pole tide (annual and Chandler wobble) to estimate gravimetric factor from SG time series using the MSSA approach. The presented method takes advantage over traditional methods like Least Squares Estimation by determining common modes of variability which reflect common geophysical field. We adopted a 6-year lag-window as the optimal length to extract common seasonal signals and the Chandler components of the Earth polar motion. The signals characterized by annual and Chandler wobble account for approximately 62% of the total variance of residual SG data. Then, we estimated the amplitude factors and phase lags of Chandler wobble with respect to the IERS (International Earth Rotation and Reference Systems Service) polar motion observations. The resulting gravimetric factors at the Chandler Wobble period are finally compared with previously estimates. A robust estimate of the gravimetric Earth response to the Chandlerian component of the polar motion is required to better constrain the mantle anelasticity at this frequency and hence the attenuation models of the Earth interior.

  17. A New Unified Approach to Determine Geocenter Motion Using Space Geodesy and GRACE Gravity Data

    NASA Astrophysics Data System (ADS)

    Wu, X.; Kusche, J.; Landerer, F. W.

    2016-12-01

    Spherical harmonic expansions of Earth's surface mass variations start from three degree-1 terms. These longest-wavelength terms induce geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and a degree-1 surface deformation field. For complete spectral coverage and robust assessment of geographic mass budget using GRACE data, very accurate knowledge of geocenter motion between CM and CF is required with precision goals of 0.2 mm in annual amplitude and 0.2 mm/yr leading to equivalent degree-1 coefficients. However, GRACE's K-band ranging data system is not sensitive to these variation modes. Although satellite laser ranging (SLR) system is thought to have the most reliable sensitivity to CM, its surface network is very sparse and can only deliver motion between CM and the center of a changing network (CN) of roughly 20 unevenly distributed stations. Recently, the network has been extended to include 82 stations with their geocentric displacements derived by transferring SLR's CM sensitivity to other technique networks through local tie and co-motion constraints. The CM-CN motion of this network has a better agreement with the geocenter motion result from a global inversion of relative GPS, GRACE, and the ECCO ocean bottom pressure (OBP) model. Still, there is no guarantee that such a CM-CN motion is the same as the CM-CF motion. Also, the global inversion result is subject to the impact of unknown errors in the OBP model. To improve reliability of geocenter motion determination, we use a new unified approach to geocenter motion determination by combining geocentric displacements of ground stations with GRACE gravity data. Both translational and deformational signatures will be exploited for retrieval of the degree-1 surface mass variation coefficients. Higher degree terms are estimated simultaneously using GRACE gravity data, which further improves CF knowledge and reduces aliasing effects. Such a data combination also uses full covariance matrices of all data types to facilitate a reliable variance component estimation. High-precision results for non-linear geocenter motion have been achieved and will be reported. We will also discuss challenges and strategies for improving geocenter velocity determination.

  18. Estimation of bio-signal based on human motion for integrated visualization of daily-life.

    PubMed

    Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko

    2007-01-01

    This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.

  19. Terrain Measurement with SAR/InSAR

    NASA Astrophysics Data System (ADS)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  20. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.

    PubMed

    Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin

    2018-04-25

    Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  1. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    PubMed Central

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  2. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    PubMed

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    USGS Publications Warehouse

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  4. Bias Field Inconsistency Correction of Motion-Scattered Multislice MRI for Improved 3D Image Reconstruction

    PubMed Central

    Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Corbett-Detig, James M.; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2012-01-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types. PMID:21511561

  5. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction.

    PubMed

    Kim, Kio; Habas, Piotr A; Rajagopalan, Vidya; Scott, Julia A; Corbett-Detig, James M; Rousseau, Francois; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-09-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.

  6. Motion mechanics of non-adherent giant liposomes with a combined optical and atomic force microscope

    NASA Astrophysics Data System (ADS)

    Moreno-Flores, Susana; Ortíz, Rocío

    2017-11-01

    Herein we present an investigation of the motional dynamics of single mesoscopic bodies of biological relevance with an AFM-based macromanipulation tool and an optical microscope. Giant liposomes are prominent case examples as minimal cell models; studying their mechanics provides a means to address the influence of structural components in the mechanical behaviour of living cells. However, they also pose an experimental challenge due to their lightness, fragility, and high mobility. Their entrapment in wells in a fluid of lower density allows their study under conditions of constrained motion, which enables the synchronous measurement of nanoforces with motion tracking. The procedure enables to estimate sliding friction coefficients and masses of vesicles, and sheds light upon the region between the vesicle and the underlying substrate. The present study paves the way for the investigation of motion and deformation mechanics with one combined technique and a single type of experiment traditionally vetoed to objects that can move as well as deform. Such an approach can be directly applied to cells in suspension, adherent cells or cellular 3D-assemblies so as to assess substrate biocompatibility, monitor adhesion, detachment, motility as well as deformability.

  7. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    PubMed

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  8. Projection-based motion estimation for cardiac functional analysis with high temporal resolution: a proof-of-concept study with digital phantom experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki

    2017-03-01

    Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.

  9. Bayesian parameter estimation for stochastic models of biological cell migration

    NASA Astrophysics Data System (ADS)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  10. Experimental measurement of dolphin thrust generated during a tail stand using DPIV

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Fish, Frank; Williams, Terrie; Wu, Vicki; Sherman, Erica; Misfeldt, Mitchel; Ringenberg, Hunter; Rogers, Dylan

    2016-11-01

    The thrust generated by dolphins doing tail stands was measured using DPIV. The technique entailed measuring vortex strength associated with the tail motion and correlating it to above water video sequences showing the amount of the dolphin's body that was being lifted out of the water. The underlying drivers for this research included: i) understanding the physiology, hydrodynamics and efficiency of dolphin locomotion, ii) developing non-invasive measurement techniques for studying marine swimming and iii) quantifying the actual propulsive capabilities of these animals. Two different bottlenose dolphins at the Long Marine Lab at UC-Santa Cruz were used as test subjects. Application of the Kutta-Joukowski Theorem on measured vortex circulations yielded thrust values that were well correlated with estimates of dolphin body weight being supported above water. This demonstrates that the tail motion can be interpreted as a flapping hydrofoil that can generate a sustained thrust roughly equal to the dolphin's weight. Videos of DPIV measurements overlaid with the dolphins will be presented along with thrust/weight data.

  11. The operational processing of wind estimates from cloud motions: Past, present and future

    NASA Technical Reports Server (NTRS)

    Novak, C.; Young, M.

    1977-01-01

    Current NESS winds operations provide approximately 1800 high quality wind estimates per day to about twenty domestic and foreign users. This marked improvement in NESS winds operations was the result of computer techniques development which began in 1969 to streamline and improve operational procedures. In addition, the launch of the SMS-1 satellite in 1974, the first in the second generation of geostationary spacecraft, provided an improved source of visible and infrared scanner data for the extraction of wind estimates. Currently, operational winds processing at NESS is accomplished by the automated and manual analyses of infrared data from two geostationary spacecraft. This system uses data from SMS-2 and GOES-1 to produce wind estimates valid for 00Z, 12Z and 18Z synoptic times.

  12. Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.

    2011-12-01

    The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed technique to a training dataset of induced earthquakes recorded by Berkeley-Geysers network, which is installed in The Geysers geothermal area in Northern California. The reliability of the techniques is then tested by using a different dataset performing seismic hazard analysis in a time-evolving approach, which provides with ground-motion values having fixed probabilities of exceedence. Those values can be finally compared with the observations by using appropriate statistical tests.

  13. Fast adaptive diamond search algorithm for block-matching motion estimation using spatial correlation

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gon; Jeong, Dong-Seok

    2000-12-01

    In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.

  14. Crustal motion studies in the southwest Pacific: Geodetic measurements of plate convergence in Tonga, Vanuatu and the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Phillips, David A.

    The southwest Pacific is one of the most tectonically dynamic regions on Earth. This research focused on crustal motion studies in three regions of active Pacific-Australia plate convergence in the southwest Pacific: Tonga, the New Hebrides (Vanuatu) and the Solomons Islands. In Tonga, new and refined velocity estimates based on more than a decade of Global Positioning System (GPS) measurements and advanced analysis techniques are much more accurate than previously reported values. Convergence rates of 80 to 165 mm/yr at the Tonga trench represent the fastest plate motions observed on Earth. For the first time, rotation of the Fiji platform relative to the Australian plate is observed, and anomalous deformation of the Tonga ridge was also detected. In the New Hebrides, a combined GPS dataset with a total time series of more than ten years led to new and refined velocity estimates throughout the island arc. Impingement of large bathymetric features has led to arc fragmentation, and four distinct tectonic segments are identified. The central New Hebrides arc segment is being shoved eastward relative to the rest of the arc as convergence is partitioned between the forearc (Australian plate) and the backarc (North Fiji Basin) boundaries due to impingement of the d'Entrecasteaux Ridge and associated Bougainville seamount. The southern New Hebrides arc converges with the Australian plate more rapidly than predicted due to backarc extension. The first measurements of convergence in the northern and southernmost arc segments were also made. In the Solomon Islands, a four-year GPS time series was used to generate the first geodetic estimates of crustal velocity in the New Georgia Group, with 57--84 mm/yr of Australia-Solomon motion and 19--39 mm/yr of Pacific-Solomon motion being observed. These velocities are 20--40% lower than predicted Australia-Pacific velocities. Two-dimensional dislocation models suggest that most of this discrepancy can be attributed to locking of the San Cristobal trench and elastic strain accumulation in the forearc. Anomalous motion at Simbo island is also observed.

  15. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, Y; Liu, Y

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE.more » Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different DIR methods was also observed.« less

  16. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.

    2016-12-01

    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a set of system (range bandwidth, temporal and spatial baseline) and processing parameters (e.g., filtering strength and sub-band configuration). A case study in Greenland is attached below.

  17. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, J; Chao, M

    2016-06-15

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associatedmore » algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately improving tumor motion management for radiation therapy of cancer patients.« less

  18. 3D shape measurement of moving object with FFT-based spatial matching

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun

    2018-03-01

    This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.

  19. Dual respiratory and cardiac motion estimation in PET imaging: Methods design and quantitative evaluation.

    PubMed

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W

    2018-04-01

    The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be the best option for accurate estimation of dual R&C motion in clinical situation. © 2018 American Association of Physicists in Medicine.

  20. Watching Grass - a Pilot Study on the Suitability of Photogrammetric Techniques for Quantifying Change in Aboveground Biomass in Grassland Experiments

    NASA Astrophysics Data System (ADS)

    Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W. S.; Maas, H.-G.

    2018-05-01

    Grassland ecology experiments in remote locations requiring quantitative analysis of the biomass in defined plots are becoming increasingly widespread, but are still limited by manual sampling methodologies. To provide a cost-effective automated solution for biomass determination, several photogrammetric techniques are examined to generate 3D point cloud representations of plots as a basis, to estimate aboveground biomass on grassland plots, which is a key ecosystem variable used in many experiments. Methods investigated include Structure from Motion (SfM) techniques for camera pose estimation with posterior dense matching as well as the usage of a Time of Flight (TOF) 3D camera, a laser light sheet triangulation system and a coded light projection system. In this context, plants of small scales (herbage) and medium scales are observed. In the first pilot study presented here, the best results are obtained by applying dense matching after SfM, ideal for integration into distributed experiment networks.

  1. Flies and humans share a motion estimation strategy that exploits natural scene statistics

    PubMed Central

    Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.

    2014-01-01

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225

  2. The Estimation of a Rigid Body Motion in the Presence of Noise.

    DTIC Science & Technology

    1987-07-31

    Rigid Body Motion in the Presence of Noise 12. PERSONAL AUTHOR(S) 1S. AYOFDREPRTy 13b.e ad COVRE C4. 10AOUTE OF FUNPING NUBERSlAE...8217, .,_, .,,.. .\\ ..: ., : ’ *-: ,:,.,,. .’ 4 /. .’.’ ’, ’ ,. 9) 7 TRACT The problem of estimating a rigid body motion from two noisy images of an...SI ... ... Cs . I ,-’ ’".’ 1 -, ED 1, D:;.;i,1q L HARVARD UNIVERSITY DzPAILTMNT OP STATIMCS THE ESTIMATION OF A RIGID BODY MOTION IN THE

  3. Turbulent and directed plasma motions in solar flares

    NASA Technical Reports Server (NTRS)

    Fludra, A.; Bentley, R. D.; Lemen, J. R.; Jakimiec, J.; Sylwester, J.

    1989-01-01

    An improved method for fitting asymmetric soft X-ray line profiles from solar flares is presented. A two-component model is used where one component represents the total emission from directed upflow plasma and the other the emission from the plasma at rest. Unlike previous methods, the width of the moving component is independent from that of the stationary component. Time variations of flare plasma characteristics (i.e., temperature, emission measure of moving and stationary plasma, upflow and turbulent velocities) are derived from the Ca XIX and Fe XXV spectra recorded by the Bent Crystal Spectrometer on the Solar Maximum Mission. The fitting technique provides a statistical estimation for the uncertainties in the fitting parameters. The relationship between the directed and turbulent motions has been studied, and a correlation of the random and directed motions has been found in some flares with intensive plasma upflows. Mean temperatures of the upflowing and stationary plasmas are compared for the first time from ratios of calcium to iron X-ray line intensities. Finally, evidence for turbulent motions and the possibility of plasma upflow late into the decay phase is presented and discussed.

  4. Total Motion Across the East African Rift Viewed From the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Royer, J.; Gordon, R. G.

    2005-05-01

    The Nubian plate is known to have been separating from the Somalian plate along the East African Rift since Oligocene time. Recent works have shown that the spreading rates and spreading directions since 11 Ma along the Southwest Indian Ridge (SWIR) record Nubia-Antarctica motion west of the Andrew Bain Fracture Zone complex (ABFZ; between 25E and 35E) and Somalia-Antarctica motion east of it. Nubia-Somalia motion can be determined by differencing Nubia-Antarctica and Somalia-Antarctica motion. To estimate the total motion across the East African Rift, we estimated and differenced Nubia-Antarctica motion and Somalia-Antarctica motion for times that preceded the initiation of Nubia-Somalia motion. We analyze anomalies 24n.3o (53 Ma), 21o (48 Ma), 18o (40 Ma) and 13o (34 Ma). Preliminary results show that the poles of the finite rotations that describe the Nubia-Somalia motions cluster near 30E, 42S. Angles of rotation range from 2.7 to 4.0 degrees. The uncertainty regions are large. The lower estimate predicts a total extension of 245 km at the latitude of the Ethiopian rift (41E, 9N) in a direction N104, perpendicular to the mean trend of the rift. Assuming an age of 34 Ma for the initiation of rifting, the average rate of motion would be 7 mm/a, near the 9 mm/a deduced from present-day geodetic measurements [e.g. synthesis of Fernandes et al., 2004]. Although these results require further analysis, particularly on the causes of the large uncertainties, they represent the first independent estimate of the total extension across the rift. Among other remaining questions are the following: How significant are the differences between these estimates and those for younger chrons (5 or 6 ; respectively 11 and 20 Ma), i.e. is the start of extension datable? Is the region east of the ABFZ part of the Somalian plate or does it form a distinct component plate of Somalia, as postulated by Hartnady (2004)? How has motion between two or more component plates within the African composite plate affected estimates of India-Eurasia motion and of Pacific-North America motion?

  5. Feature-based respiratory motion tracking in native fluoroscopic sequences for dynamic roadmaps during minimally invasive procedures in the thorax and abdomen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin G.; Laeseke, Paul F.; Schubert, Tilman; Slagowski, Jordan M.; Speidel, Michael A.; Mistretta, Charles A.

    2017-03-01

    Fluoroscopic image guidance for minimally invasive procedures in the thorax and abdomen suffers from respiratory and cardiac motion, which can cause severe subtraction artifacts and inaccurate image guidance. This work proposes novel techniques for respiratory motion tracking in native fluoroscopic images as well as a model based estimation of vessel deformation. This would allow compensation for respiratory motion during the procedure and therefore simplify the workflow for minimally invasive procedures such as liver embolization. The method first establishes dynamic motion models for both the contrast-enhanced vasculature and curvilinear background features based on a native (non-contrast) and a contrast-enhanced image sequence acquired prior to device manipulation, under free breathing conditions. The model of vascular motion is generated by applying the diffeomorphic demons algorithm to an automatic segmentation of the subtraction sequence. The model of curvilinear background features is based on feature tracking in the native sequence. The two models establish the relationship between the respiratory state, which is inferred from curvilinear background features, and the vascular morphology during that same respiratory state. During subsequent fluoroscopy, curvilinear feature detection is applied to determine the appropriate vessel mask to display. The result is a dynamic motioncompensated vessel mask superimposed on the fluoroscopic image. Quantitative evaluation of the proposed methods was performed using a digital 4D CT-phantom (XCAT), which provides realistic human anatomy including sophisticated respiratory and cardiac motion models. Four groups of datasets were generated, where different parameters (cycle length, maximum diaphragm motion and maximum chest expansion) were modified within each image sequence. Each group contains 4 datasets consisting of the initial native and contrast enhanced sequences as well as a sequence, where the respiratory motion is tracked. The respiratory motion tracking error was between 1.00 % and 1.09 %. The estimated dynamic vessel masks yielded a Sørensen-Dice coefficient between 0.94 and 0.96. Finally, the accuracy of the vessel contours was measured in terms of the 99th percentile of the error, which ranged between 0.64 and 0.96 mm. The presented results show that the approach is feasible for respiratory motion tracking and compensation and could therefore considerably improve the workflow of minimally invasive procedures in the thorax and abdomen

  6. Human Age Estimation Method Robust to Camera Sensor and/or Face Movement

    PubMed Central

    Nguyen, Dat Tien; Cho, So Ra; Pham, Tuyen Danh; Park, Kang Ryoung

    2015-01-01

    Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method. PMID:26334282

  7. ERP-Variations on Time Scales Between Hours and Months Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Mendes Cerveira, P.

    2007-05-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Rotation Parameters (ERPs - polar motion, UT1/LOD) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the ERP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the year 2005. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 113 fairly stable stations out of the IGS05 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed.

  8. Real time estimation and prediction of ship motions using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M. A.; Bodson, M.; Athans, M.

    1982-01-01

    A landing scheme for landing V/STOL aircraft on rolling ships was sought using computerized simulations. The equations of motion as derived from hydrodynamics, their form and the physical mechanisms involved and the general form of the approximation are discussed. The modeling of the sea is discussed. The derivation of the state-space equations for the DD-963 destroyer is described. Kalman filter studies are presented and the influence of the various parameters is assessed. The effect of various modeling parameters on the rms error is assessed and simplifying conclusions are drawn. An upper bound for prediction time of about five seconds is established, with the exception of roll, which can be predicted up to ten seconds ahead.

  9. Experimental validation of the van Herk margin formula for lung radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecclestone, Gillian; Heath, Emily; Bissonnette, Jean-Pierre

    2013-11-15

    Purpose: To validate the van Herk margin formula for lung radiation therapy using realistic dose calculation algorithms and respiratory motion modeling. The robustness of the margin formula against variations in lesion size, peak-to-peak motion amplitude, tissue density, treatment technique, and plan conformity was assessed, along with the margin formula assumption of a homogeneous dose distribution with perfect plan conformity.Methods: 3DCRT and IMRT lung treatment plans were generated within the ORBIT treatment planning platform (RaySearch Laboratories, Sweden) on 4DCT datasets of virtual phantoms. Random and systematic respiratory motion induced errors were simulated using deformable registration and dose accumulation tools available withinmore » ORBIT for simulated cases of varying lesion sizes, peak-to-peak motion amplitudes, tissue densities, and plan conformities. A detailed comparison between the margin formula dose profile model, the planned dose profiles, and penumbra widths was also conducted to test the assumptions of the margin formula. Finally, a correction to account for imperfect plan conformity was tested as well as a novel application of the margin formula that accounts for the patient-specific motion trajectory.Results: The van Herk margin formula ensured full clinical target volume coverage for all 3DCRT and IMRT plans of all conformities with the exception of small lesions in soft tissue. No dosimetric trends with respect to plan technique or lesion size were observed for the systematic and random error simulations. However, accumulated plans showed that plan conformity decreased with increasing tumor motion amplitude. When comparing dose profiles assumed in the margin formula model to the treatment plans, discrepancies in the low dose regions were observed for the random and systematic error simulations. However, the margin formula respected, in all experiments, the 95% dose coverage required for planning target volume (PTV) margin derivation, as defined by the ICRU; thus, suitable PTV margins were estimated. The penumbra widths calculated in lung tissue for each plan were found to be very similar to the 6.4 mm value assumed by the margin formula model. The plan conformity correction yielded inconsistent results which were largely affected by image and dose grid resolution while the trajectory modified PTV plans yielded a dosimetric benefit over the standard internal target volumes approach with up to a 5% decrease in the V20 value.Conclusions: The margin formula showed to be robust against variations in tumor size and motion, treatment technique, plan conformity, as well as low tissue density. This was validated by maintaining coverage of all of the derived PTVs by 95% dose level, as required by the formal definition of the PTV. However, the assumption of perfect plan conformity in the margin formula derivation yields conservative margin estimation. Future modifications to the margin formula will require a correction for plan conformity. Plan conformity can also be improved by using the proposed trajectory modified PTV planning approach. This proves especially beneficial for tumors with a large anterior–posterior component of respiratory motion.« less

  10. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  11. Key science issues in the central and eastern United States for the next version of the USGS National Seismic Hazard Maps

    USGS Publications Warehouse

    Peterson, M.D.; Mueller, C.S.

    2011-01-01

    The USGS National Seismic Hazard Maps are updated about every six years by incorporating newly vetted science on earthquakes and ground motions. The 2008 hazard maps for the central and eastern United States region (CEUS) were updated by using revised New Madrid and Charleston source models, an updated seismicity catalog and an estimate of magnitude uncertainties, a distribution of maximum magnitudes, and several new ground-motion prediction equations. The new models resulted in significant ground-motion changes at 5 Hz and 1 Hz spectral acceleration with 5% damping compared to the 2002 version of the hazard maps. The 2008 maps have now been incorporated into the 2009 NEHRP Recommended Provisions, the 2010 ASCE-7 Standard, and the 2012 International Building Code. The USGS is now planning the next update of the seismic hazard maps, which will be provided to the code committees in December 2013. Science issues that will be considered for introduction into the CEUS maps include: 1) updated recurrence models for New Madrid sources, including new geodetic models and magnitude estimates; 2) new earthquake sources and techniques considered in the 2010 model developed by the nuclear industry; 3) new NGA-East ground-motion models (currently under development); and 4) updated earthquake catalogs. We will hold a regional workshop in late 2011 or early 2012 to discuss these and other issues that will affect the seismic hazard evaluation in the CEUS.

  12. System and Method for Measuring Skin Movement and Strain and Related Techniques

    NASA Technical Reports Server (NTRS)

    Newman, Dava J. (Inventor); Wessendorf, Ashley M. (Inventor)

    2015-01-01

    Described herein are systems and techniques for a motion capture system and a three-dimensional (3D) tracking system used to record body position and/or movements/motions and using the data to measure skin strain (a strain field) all along the body while a joint is in motion (dynamic) as well as in a fixed position (static). The data and technique can be used to quantify strains, calculate 3D contours, and derive patterns believed to reveal skin's properties during natural motions.

  13. Blind retrospective motion correction of MR images.

    PubMed

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  14. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    NASA Astrophysics Data System (ADS)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  15. High-Frame-Rate Speckle-Tracking Echocardiography.

    PubMed

    Joos, Philippe; Poree, Jonathan; Liebgott, Herve; Vray, Didier; Baudet, Mathilde; Faurie, Julia; Tournoux, Francois; Cloutier, Guy; Nicolas, Barbara; Garcia, Damien; Baudet, Mathilde; Tournoux, Francois; Joos, Philippe; Poree, Jonathan; Cloutier, Guy; Liebgott, Herve; Faurie, Julia; Vray, Didier; Nicolas, Barbara; Garcia, Damien

    2018-05-01

    Conventional echocardiography is the leading modality for noninvasive cardiac imaging. It has been recently illustrated that high-frame-rate echocardiography using diverging waves could improve cardiac assessment. The spatial resolution and contrast associated with this method are commonly improved by coherent compounding of steered beams. However, owing to fast tissue velocities in the myocardium, the summation process of successive diverging waves can lead to destructive interferences if motion compensation (MoCo) is not considered. Coherent compounding methods based on MoCo have demonstrated their potential to provide high-contrast B-mode cardiac images. Ultrafast speckle-tracking echocardiography (STE) based on common speckle-tracking algorithms could substantially benefit from this original approach. In this paper, we applied STE on high-frame-rate B-mode images obtained with a specific MoCo technique to quantify the 2-D motion and tissue velocities of the left ventricle. The method was first validated in vitro and then evaluated in vivo in the four-chamber view of 10 volunteers. High-contrast high-resolution B-mode images were constructed at 500 frames/s. The sequences were generated with a Verasonics scanner and a 2.5-MHz phased array. The 2-D motion was estimated with standard cross correlation combined with three different subpixel adjustment techniques. The estimated in vitro velocity vectors derived from STE were consistent with the expected values, with normalized errors ranging from 4% to 12% in the radial direction and from 10% to 20% in the cross-range direction. Global longitudinal strain of the left ventricle was also obtained from STE in 10 subjects and compared to the results provided by a clinical scanner: group means were not statistically different ( value = 0.33). The in vitro and in vivo results showed that MoCo enables preservation of the myocardial speckles and in turn allows high-frame-rate STE.

  16. Optimal Scaling of Aftershock Zones using Ground Motion Forecasts

    NASA Astrophysics Data System (ADS)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.

    2018-02-01

    The spatial distribution of aftershocks following major earthquakes has received significant attention due to the shaking hazard these events pose for structures and populations in the affected region. Forecasting the spatial distribution of aftershock events is an important part of the estimation of future seismic hazard. A simple spatial shape for the zone of activity has often been assumed in the form of an ellipse having semimajor axis to semiminor axis ratio of 2.0. However, since an important application of these calculations is the estimation of ground shaking hazard, an effective criterion for forecasting future aftershock impacts is to use ground motion prediction equations (GMPEs) in addition to the more usual approach of using epicentral or hypocentral locations. Based on these ideas, we present an aftershock model that uses self-similarity and scaling relations to constrain parameters as an option for such hazard assessment. We fit the spatial aspect ratio to previous earthquake sequences in the studied regions, and demonstrate the effect of the fitting on the likelihood of post-disaster ground motion forecasts for eighteen recent large earthquakes. We find that the forecasts in most geographic regions studied benefit from this optimization technique, while some are better suited to the use of the a priori aspect ratio.

  17. Smartphone assessment of knee flexion compared to radiographic standards.

    PubMed

    Dietz, Matthew J; Sprando, Daniel; Hanselman, Andrew E; Regier, Michael D; Frye, Benjamin M

    2017-03-01

    Measuring knee range of motion (ROM) is an important assessment for the outcomes of total knee arthroplasty. Recent technological advances have led to the development and use of accelerometer-based smartphone applications to measure knee ROM. The purpose of this study was to develop, standardize, and validate methods of utilizing smartphone accelerometer technology compared to radiographic standards, visual estimation, and goniometric evaluation. Participants used visual estimation, a long-arm goniometer, and a smartphone accelerometer to determine range of motion of a cadaveric lower extremity; these results were compared to radiographs taken at the same angles. The optimal smartphone position was determined to be on top of the leg at the distal femur and proximal tibia location. Between methods, it was found that the smartphone and goniometer were comparably reliable in measuring knee flexion (ICC=0.94; 95% CI: 0.91-0.96). Visual estimation was found to be the least reliable method of measurement. The results suggested that the smartphone accelerometer was non-inferior when compared to the other measurement techniques, demonstrated similar deviations from radiographic standards, and did not appear to be influenced by the person performing the measurements or the girth of the extremity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Smartphone Assessment of Knee Flexion Compared to Radiographic Standards

    PubMed Central

    Dietz, Matthew J.; Sprando, Daniel; Hanselman, Andrew E.; Regier, Michael D.; Frye, Benjamin M.

    2017-01-01

    Purpose Measuring knee range of motion (ROM) is an important assessment for the outcomes of total knee arthroplasty. Recent technological advances have led to the development and use of accelerometer-based smartphone applications to measure knee ROM. The purpose of this study was to develop, standardize, and validate methods of utilizing smartphone accelerometer technology compared to radiographic standards, visual estimation, and goniometric evaluation. Methods Participants used visual estimation, a long-arm goniometer, and a smartphone accelerometer to determine range of motion of a cadaveric lower extremity; these results were compared to radiographs taken at the same angles. Results The optimal smartphone position was determined to be on top of the leg at the distal femur and proximal tibia location. Between methods, it was found that the smartphone and goniometer were comparably reliable in measuring knee flexion (ICC = 0.94; 95% CI: 0.91–0.96). Visual estimation was found to be the least reliable method of measurement. Conclusions The results suggested that the smartphone accelerometer was non-inferior when compared to the other measurement techniques, demonstrated similar deviations from radiographic standards, and did not appear to be influenced by the person performing the measurements or the girth of the extremity. PMID:28179062

  19. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Physics-Based Broadband Ground Motion Simulations in Near Fault Conditions: the L'Aquila (Italy) and the Upper Rhine Graben (France-Germany) Case of Studies

    NASA Astrophysics Data System (ADS)

    Del Gaudio, S.; Lancieri, M.; Hok, S.; Satriano, C.; Chartier, T.; Scotti, O.; Bernard, P.

    2016-12-01

    Predictions of realistic ground motion for potential future earthquakes are always an interesting task for seismologists and are also the main objective of seismic hazard assessment. While, on one hand, numerical simulations have become more and more accurate and several different techniques have been developed, on the other hand ground motion prediction equations (GMPEs) have become a powerful instrument (due to great improvement of seismic strong motion networks providing a large amount of data). Nevertheless GMPEs do not represent the whole variety of source processes and this can lead to incorrect estimates especially in the near fault conditions because of the lack of records of large earthquakes at short distances. In such cases, physics-based ground motion simulations can be a valid tool to complement prediction equations for scenario studies, provided that both source and propagation are accurately described. We present here a comparison between numerical simulations performed in near fault conditions using two different kinematic source models, which are based on different assumptions and parameterizations: the "k-2 model" and the "fractal model". Wave propagation is taken into account using hybrid Green's function (HGF), which consists in coupling numerical Green's function with an empirical Green's function (EGF) approach. The advantage of this technique is that it does not require a very detailed knowledge of the propagation medium, but requires availability of high quality records of small earthquakes in the target area. The first application we show is on L'Aquila 2009 M 6.3 earthquake, where the main event records provide a benchmark for the synthetic waveforms. Here we can clearly observe which are the limitations of these techniques and investigate which are the physical parameters that are effectively controlling the ground motion level. The second application is a blind test on Upper Rhine Graben (URG) where active faults producing micro seismic activity are very close to sites of interest needing a careful investigation of seismic hazard. Finally we will perform a probabilistic seismic hazard analysis (PSHA) for the URG using numerical simulations to define input ground motion for different scenarios and compare them with a classical probabilistic study based on GMPEs.

  1. Accelerometer-Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging

    PubMed Central

    Pänkäälä, Mikko; Paasio, Ari

    2014-01-01

    Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563

  2. Gear Shifting of Quadriceps during Isometric Knee Extension Disclosed Using Ultrasonography.

    PubMed

    Zhang, Shu; Huang, Weijian; Zeng, Yu; Shi, Wenxiu; Diao, Xianfen; Wei, Xiguang; Ling, Shan

    2018-01-01

    Ultrasonography has been widely employed to estimate the morphological changes of muscle during contraction. To further investigate the motion pattern of quadriceps during isometric knee extensions, we studied the relative motion pattern between femur and quadriceps under ultrasonography. An interesting observation is that although the force of isometric knee extension can be controlled to change almost linearly, femur in the simultaneously captured ultrasound video sequences has several different piecewise moving patterns. This phenomenon is like quadriceps having several forward gear ratios like a car starting from rest towards maximal voluntary contraction (MVC) and then returning to rest. Therefore, to verify this assumption, we captured several ultrasound video sequences of isometric knee extension and collected the torque/force signal simultaneously. Then we extract the shapes of femur from these ultrasound video sequences using video processing techniques and study the motion pattern both qualitatively and quantitatively. The phenomenon can be seen easier via a comparison between the torque signal and relative spatial distance between femur and quadriceps. Furthermore, we use cluster analysis techniques to study the process and the clustering results also provided preliminary support to the conclusion that, during both ramp increasing and decreasing phases, quadriceps contraction may have several forward gear ratios relative to femur.

  3. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogrammore » with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.« less

  4. Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory

    PubMed Central

    Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.

    2014-01-01

    Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292

  5. Hybrid Systems Diagnosis

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila; Biswas, Gautam; Clancy, Dan; Gupta, Vineet

    2005-01-01

    This paper reports on an on-going Project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. We cast the diagnosis problem as a model selection problem. To reduce the space of potential models under consideration, we exploit techniques from qualitative reasoning to conjecture an initial set of qualitative candidate diagnoses, which induce a smaller set of models. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  6. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, T; Bamber, J; Harris, E

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation templatemore » matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion would also be prudent. This work is support by Cancer Research UK Programme Grant C33589/A19727.« less

  7. Combination of Insar and GPS to Measure Ground Motions and Atmospheric Signals

    NASA Astrophysics Data System (ADS)

    Zerbini, S.; Prati, C.; Errico, M.; Ferri, S.; Novali, F.; Scirpoli, S.; Tiberi, L.

    2010-12-01

    The combination of different techniques such as InSAR and GPS is characterized by the added value of taking advantage of their complementary strengths and of minimizing their respective weaknesses, thus allowing for the full exploitation of the complementary aspects by overcoming the limitations inherent in the use of each technique alone. Another important aspect of the GPS/InSAR integration regards the fact that today’s application of interferometric SAR techniques is limited by the knowledge of the wet tropospheric path delay in microwave observations. GPS-based estimates of tropospheric delays may help in obtaining better corrections which will enhance the coherence and will allow the application of InSAR in a wider range of applications. The area selected for the InSAR/GPS comparison/integration is in northeastern Italy and includes the town of Bologna, and two nearby sites Medicina (agricultural area) and Loiano (a small city on the Apennines) where a small network of permanent GPS stations is operated by the University of Bologna. The InSAR data used are the COSMO-SkyMed (CSK) images made available by the Italian Space Agency (ASI) in the framework of the research contract AO-1140. The Permanent Scatterers (PS) technique will be applied to a number of repeated CSK strip map SAR images acquired over a 40x40 square km area encompassing the towns mentioned above. Ultimately this work will contribute demonstrating the CSK capabilities to operate in a repeated interferometric survey mode for measuring ground deformation with millimeter accuracy in different environments. A PS is a target whose radar signature is stable with time. Such targets can be identified by means of multiple SAR observations and they can be exploited for jointly estimating their relative motion and the atmospheric artifacts on a grid that can be quite dense in space but not in time (depending on the SAR revisiting time interval). On the contrary the GPS can provide very frequent time measurements in correspondence of a few measuring points. Elevation, ground deformation and atmospheric artifacts estimated in correspondence of the identified PS will be compared with independent measurements carried out at the same acquisition time by permanent GPS stations in the area of Bologna, Medicina and Loiano. The comparison of these independent measurements is itself a cross-validation of the obtained results. The value of cross-validation of different and compatible techniques is to provide reliable vertical crustal motion determinations in space and time. Urban areas such as that of Bologna will be examined to evaluate CSK capabilities to measure extended subsidence (or up-swelling) and single building deformation.

  8. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map.

    PubMed

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S

    2008-04-11

    A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.

  9. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  10. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  11. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-07

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  12. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    PubMed Central

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-01-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp–Davis–Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  13. Three-Dimensional Motion Estimation Using Shading Information in Multiple Frames

    DTIC Science & Technology

    1989-09-01

    j. Threle-D.imensionai GO Motion Estimation U sing, Shadin g Ilnformation in Multiple Frames- IJean-Pierre Schotf MIT Artifi -cial intelligence...vision 3-D structure 3-D vision- shape from shading multiple frames 20. ABSTRACT (Cofrn11,00 an reysrf* OWd Of Rssss00n7 Ad 4111111& F~ block f)nseq See...motion and shading have been treated as two disjoint problems. On the one hand, researchers studying motion or structure from motion often assume

  14. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  15. Glacier and Ice Shelves Studies Using Satellite SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    Satellite radar interferometry is a powerful technique to measure the surface velocity and topography of glacier ice. On ice shelves, a quadruple difference technique separates tidal motion from the steady creep flow deformation of ice. The results provide a wealth of information about glacier grounding lines , mass fluxes, stability, elastic properties of ice, and tidal regime. The grounding line, which is where the glacier detaches from its bed and becomes afloat, is detected with a precision of a few tens of meters. Combining this information with satellite radar altimetry makes it possible to measure glacier discharge into the ocean and state of mass balance with greater precision than ever before, and in turn provide a significant revision of past estimates of mass balance of the Greenland and Antarctic Ice Sheets. Analysis of creep rates on floating ice permits an estimation of basal melting at the ice shelf underside. The results reveal that the action of ocean water in sub-ice-shelf cavities has been largely underestimated by oceanographic models and is the dominant mode of mass release to the ocean from an ice shelf. Precise mapping of grounding line positions also permits the detection of grounding line migration, which is a fine indicator of glacier change, independent of our knowledge of snow accumulation and ice melting. This technique has been successfully used to detect the rapid retreat of Pine Island Glacier, the largest ice stream in West Antarctica. Finally, tidal motion of ice shelves measured interferometrically provides a modern, synoptic view of the physical processes which govern the formation of tabular icebergs in the Antarctic.

  16. Evaluation of potential internal target volume of liver tumors using cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp; Oh, Ryoong-Jin; Masai, Norihisa

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquiredmore » for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results: The distance between blood vessel positions determined with motion tracking and manual detection was analyzed. The mean and SD of the distance were less than 0.80 and 0.52 mm, respectively. The maximum ranges of tumor motion on cine-MRI were 2.4 ± 1.4 mm (range, 1.0–5.0 mm), 4.4 ± 3.3 mm (range, 0.8–9.4 mm), and 14.7 ± 5.9 mm (range, 7.4–23.4 mm) in lateral, anterior–posterior, and superior–inferior directions, respectively. The ranges in the superior–inferior direction were larger than those estimated with 4DCT images for all patients. The volume of ITV {sub Potential} was 160.3% ± 13.5% (range, 142.0%–179.2%) of the ITV {sub 4DCT}. The maximum DSC values were observed when the cutoff value of 24.7% ± 4.0% (range, 20%–29%) was applied. Conclusions: The authors demonstrated a novel method of calculating 3D motion and ITV {sub Potential} of liver cancer using orthogonal cine-MRI. Their method achieved accurate calculation of the respiratory motion of moving structures. Individual evaluation of the ITV {sub Potential} will aid in improving respiration management and treatment planning.« less

  17. Dense motion estimation using regularization constraints on local parametric models.

    PubMed

    Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein

    2004-11-01

    This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.

  18. A dynamic model-based approach to motion and deformation tracking of prosthetic valves from biplane x-ray images.

    PubMed

    Wagner, Martin G; Hatt, Charles R; Dunkerley, David A P; Bodart, Lindsay E; Raval, Amish N; Speidel, Michael A

    2018-04-16

    Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we propose a novel technique to track the motion and deformation of the prosthetic valve in three dimensions based on biplane fluoroscopic image sequences. The tracking approach uses a parameterized point cloud model of the valve stent which can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid elements of the model are individually rotated and translated in three dimensions to approximate the motions of the stent. Tracking is performed using an iterative 2D-3D registration procedure which estimates the model parameters by minimizing the mean-squared image values at the positions of the forward-projected model points. Additionally, an initialization technique is proposed, which locates clusters of salient features to determine the initial position and orientation of the model. The proposed algorithms were evaluated based on simulations using a digital 4D CT phantom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with anatomical background features. The target registration error was 0.12 ± 0.04 mm in the simulations and 0.64 ± 0.09 mm in the experimental data. The proposed algorithm could be used to generate 3D visualization of the prosthetic valve from two projections. In combination with soft-tissue sensitive-imaging techniques like transesophageal echocardiography, this technique could enable 3D image guidance during TAVR procedures. © 2018 American Association of Physicists in Medicine.

  19. Analytical study of the effects of soft tissue artefacts on functional techniques to define axes of rotation.

    PubMed

    De Rosario, Helios; Page, Álvaro; Besa, Antonio

    2017-09-06

    The accurate location of the main axes of rotation (AoR) is a crucial step in many applications of human movement analysis. There are different formal methods to determine the direction and position of the AoR, whose performance varies across studies, depending on the pose and the source of errors. Most methods are based on minimizing squared differences between observed and modelled marker positions or rigid motion parameters, implicitly assuming independent and uncorrelated errors, but the largest error usually results from soft tissue artefacts (STA), which do not have such statistical properties and are not effectively cancelled out by such methods. However, with adequate methods it is possible to assume that STA only account for a small fraction of the observed motion and to obtain explicit formulas through differential analysis that relate STA components to the resulting errors in AoR parameters. In this paper such formulas are derived for three different functional calibration techniques (Geometric Fitting, mean Finite Helical Axis, and SARA), to explain why each technique behaves differently from the others, and to propose strategies to compensate for those errors. These techniques were tested with published data from a sit-to-stand activity, where the true axis was defined using bi-planar fluoroscopy. All the methods were able to estimate the direction of the AoR with an error of less than 5°, whereas there were errors in the location of the axis of 30-40mm. Such location errors could be reduced to less than 17mm by the methods based on equations that use rigid motion parameters (mean Finite Helical Axis, SARA) when the translation component was calculated using the three markers nearest to the axis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetics and Tribological Characterization of Pack-Borided AISI 1025 Steel

    NASA Astrophysics Data System (ADS)

    Gómez-Vargas, O. A.; Keddam, M.; Ortiz-Domínguez, M.

    2017-03-01

    In this present study, the AISI 1025 steel was pack-borided in the temperature range of 1,123-1,273 K for different treatment times ranging from 2 to 8 h. A diffusion model was suggested to estimate the boron diffusion coefficients in the Fe2B layers. As a result, the boron activation energy for the AISI 1025 steel was estimated as 174.36 kJ/mol. This value of energy was compared with the literature data. To extend the validity of the present model, other additional boriding conditions were considered. The boride layers formed on the AISI 1025 steel were characterized by the following experimental techniques: scanning electron microscopy, X-ray diffraction analysis and the Daimler-Benz Rockwell-C indentation technique. Finally, the scratch and pin-on-disc tests for wear resistance were achieved using an LG Motion Ltd and a CSM tribometer, respectively, under dry sliding conditions.

  1. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  2. Schlieren technique in soap film flows

    NASA Astrophysics Data System (ADS)

    Auliel, M. I.; Hebrero, F. Castro; Sosa, R.; Artana, G.

    2017-05-01

    We propose the use of the Schlieren technique as a tool to analyse the flows in soap film tunnels. The technique enables to visualize perturbations of the film produced by the interposition of an object in the flow. The variations of intensity of the image are produced as a consequence of the deviations of the light beam traversing the deformed surfaces of the film. The quality of the Schlieren image is compared to images produced by the conventional interferometric technique. The analysis of Schlieren images of a cylinder wake flow indicates that this technique enables an easy visualization of vortex centers. Post-processing of series of two successive images of a grid turbulent flow with a dense motion estimator is used to derive the velocity fields. The results obtained with this self-seeded flow show good agreement with the statistical properties of the 2D turbulent flows reported on the literature.

  3. Lagrangian speckle model and tissue-motion estimation--theory.

    PubMed

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  4. Improved method of step length estimation based on inverted pendulum model.

    PubMed

    Zhao, Qi; Zhang, Boxue; Wang, Jingjing; Feng, Wenquan; Jia, Wenyan; Sun, Mingui

    2017-04-01

    Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.

  5. The effect of heart motion on parameter bias in dynamic cardiac SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, S.G.; Gullberg, G.T.; Huesman, R.H.

    1996-12-31

    Dynamic cardiac SPECT can be used to estimate kinetic rate parameters which describe the wash-in and wash-out of tracer activity between the blood and the myocardial tissue. These kinetic parameters can in turn be correlated to myocardial perfusion. There are, however, many physical aspects associated with dynamic SPECT which can introduce errors into the estimates. This paper describes a study which investigates the effect of heart motion on kinetic parameter estimates. Dynamic SPECT simulations are performed using a beating version of the MCAT phantom. The results demonstrate that cardiac motion has a significant effect on the blood, tissue, and backgroundmore » content of regions of interest. This in turn affects estimates of wash-in, while it has very little effect on estimates of wash-out. The effect of cardiac motion on parameter estimates appears not to be as great as effects introduced by photon noise and geometric collimator response. It is also shown that cardiac motion results in little extravascular contamination of the left ventricle blood region of interest.« less

  6. Inertial sensor-based smoother for gait analysis.

    PubMed

    Suh, Young Soo

    2014-12-17

    An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother).

  7. Velocity and Structure Estimation of a Moving Object Using a Moving Monocular Camera

    DTIC Science & Technology

    2006-01-01

    map the Euclidean position of static landmarks or visual features in the environment . Recent applications of this technique include aerial...From Motion in a Piecewise Planar Environment ,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, No. 3, pp. 485-508...1988. [9] J. M. Ferryman, S. J. Maybank , and A. D. Worrall, “Visual Surveil- lance for Moving Vehicles,” Intl. Journal of Computer Vision, Vol. 37, No

  8. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  9. Radiometrically accurate scene-based nonuniformity correction for array sensors.

    PubMed

    Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott

    2003-10-01

    A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.

  10. Estimation of contour motion and deformation for nonrigid object tracking

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Porikli, Fatih; Chellappa, Rama

    2007-08-01

    We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.

  11. Simple to complex modeling of breathing volume using a motion sensor.

    PubMed

    John, Dinesh; Staudenmayer, John; Freedson, Patty

    2013-06-01

    To compare simple and complex modeling techniques to estimate categories of low, medium, and high ventilation (VE) from ActiGraph™ activity counts. Vertical axis ActiGraph™ GT1M activity counts, oxygen consumption and VE were measured during treadmill walking and running, sports, household chores and labor-intensive employment activities. Categories of low (<19.3 l/min), medium (19.3 to 35.4 l/min) and high (>35.4 l/min) VEs were derived from activity intensity classifications (light <2.9 METs, moderate 3.0 to 5.9 METs and vigorous >6.0 METs). We examined the accuracy of two simple techniques (multiple regression and activity count cut-point analyses) and one complex (random forest technique) modeling technique in predicting VE from activity counts. Prediction accuracy of the complex random forest technique was marginally better than the simple multiple regression method. Both techniques accurately predicted VE categories almost 80% of the time. The multiple regression and random forest techniques were more accurate (85 to 88%) in predicting medium VE. Both techniques predicted the high VE (70 to 73%) with greater accuracy than low VE (57 to 60%). Actigraph™ cut-points for light, medium and high VEs were <1381, 1381 to 3660 and >3660 cpm. There were minor differences in prediction accuracy between the multiple regression and the random forest technique. This study provides methods to objectively estimate VE categories using activity monitors that can easily be deployed in the field. Objective estimates of VE should provide a better understanding of the dose-response relationship between internal exposure to pollutants and disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.

  13. A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S

    2013-09-01

    A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.

  14. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.

    PubMed

    Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Vandewiele, Stijn; Neyts, Kristiaan; Beunis, Filip

    2015-09-01

    Electric fields offer a variety of functionalities to Lab-on-a-Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Variable disparity-motion estimation based fast three-view video coding

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  16. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  17. Regional cardiac wall motion from gated myocardial perfusion SPECT studies

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.

    1999-06-01

    A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.

  18. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    PubMed

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  19. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    PubMed Central

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-01-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: 1) the reconstruction algorithms do not make full use of projection statistics; and 2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10 to 40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378

  20. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  1. Wave motion on the surface of the human tympanic membrane: Holographic measurement and modeling analysis

    PubMed Central

    Cheng, Jeffrey Tao; Hamade, Mohamad; Merchant, Saumil N.; Rosowski, John J.; Harrington, Ellery; Furlong, Cosme

    2013-01-01

    Sound-induced motions of the surface of the tympanic membrane (TM) were measured using stroboscopic holography in cadaveric human temporal bones at frequencies between 0.2 and 18 kHz. The results are consistent with the combination of standing-wave-like modal motions and traveling-wave-like motions on the TM surface. The holographic techniques also quantified sound-induced displacements of the umbo of the malleus, as well as volume velocity of the TM. These measurements were combined with sound-pressure measurements near the TM to compute middle-ear input impedance and power reflectance at the TM. The results are generally consistent with other published data. A phenomenological model that behaved qualitatively like the data was used to quantify the relative magnitude and spatial frequencies of the modal and traveling-wave-like displacement components on the TM surface. This model suggests the modal magnitudes are generally larger than those of the putative traveling waves, and the computed wave speeds are much slower than wave speeds predicted by estimates of middle-ear delay. While the data are inconsistent with simple modal displacements of the TM, an alternate model based on the combination of modal motions in a lossy membrane can also explain these measurements without invoking traveling waves. PMID:23363110

  2. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987

  3. Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.

    PubMed

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  4. Motion Evaluation for Rehabilitation Training of the Disabled

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Young; Park, Jun; Lim, Cheol-Su

    In this paper, a motion evaluation technique for rehabilitation training is introduced. Motion recognition technologies have been developed for determining matching motions in the training set. However, we need to measure how well and how much of the motion has been followed for training motion evaluation. We employed a Finite State Machine as a framework of motion evaluation. For similarity analysis, we used weighted angular value differences although any template matching algorithm may be used. For robustness under illumination changes, IR LED's and cameras with IR-pass filter were used. Developed technique was successfully used for rehabilitation training of the disabled. Therapists appraised the system as practically useful.

  5. A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

    PubMed

    Shi, Cong; Luo, Gang

    2018-04-01

    This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

  6. Developing the Second Generation CMORPH: A Prototype

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert

    2014-05-01

    A prototype system of the second generation CMORPH is being developed at NOAA Climate Prediction Center (CPC) to produce global analyses of 30-min precipitation on a 0.05deg lat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. First, precipitation estimation / retrievals from various sources are mapped onto a global grid of 0.05deg lat/lon and calibrated against a common reference field to ensure consistency in their precipitation rate PDF structures. The motion vectors for the precipitating cloud systems are then defined using information from both satellite IR observations and precipitation fields generated by the NCEP Climate Forecast System Reanalysis (CFSR). To this end, motion vectors are first computed from CFSR hourly precipitation fields through cross-correlation analysis of consecutive hourly precipitation fields on the global T382 (~35 km) grid. In a similar manner, separate processing is also performed on satellite IR-based precipitation estimates to derive motion vectors from observations. A blended analysis of precipitating cloud motion vectors is then constructed through the combination of CFSR and satellite-derived vectors with an objective analysis technique. Fine resolution mapped PMW precipitation retrievals are then separately propagated along the motion vectors from their respective observation times to the target analysis time from both forward and backward directions. The CMORPH high resolution precipitation analyses are finally constructed through the combination of propagated PMW retrievals with the IR based estimates for the target analysis time. This Kalman Filter based CMORPH processing is performed for rainfall and snowfall fields separately with the same motion vectors. Experiments have been conducted for two periods of two months each, July - August 2009, and January - February 2010, to explore the development of an optimal algorithm that generates global precipitation for summer and winter situations. Preliminary results demonstrated technical feasibility to construct global rainfall and snowfall analyses through the integration of information from multiple sources. More work is underway to refine various technical components of the system for operational applications of the system. Detailed results will be reported at the EGU meeting.

  7. Four dimensional material movies: High speed phase-contrast tomography by backprojection along dynamically curved paths.

    PubMed

    Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T

    2017-07-26

    We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.

  8. Reverse Kinematic Analysis and Uncertainty Analysis of the Space Shuttle AFT Propulsion System (APS) POD Lifting Fixture

    NASA Technical Reports Server (NTRS)

    Brink, Jeffrey S.

    2005-01-01

    The space shuttle Aft Propulsion System (APS) pod requires precision alignment to be installed onto the orbiter deck. The Ground Support Equipment (GSE) used to perform this task cannot be manipulated along a single Cartesian axis without causing motion along the other Cartesian axes. As a result, manipulations required to achieve a desired motion are not intuitive. My study calculated the joint angles required to align the APS pod, using reverse kinematic analysis techniques. Knowledge of these joint angles will allow the ground support team to align the APS pod more safely and efficiently. An uncertainty analysis was also performed to estimate the accuracy associated with this approach and to determine whether any inexpensive modifications can be made to further improve accuracy.

  9. Numerical considerations on control of motion of nanoparticles using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2017-05-01

    Most of optical manipulation techniques proposed so far depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories; however, it is still challenging to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates a speckle pattern which consists of random interference speckle grains with well-defined statistical properties. In the present study, we numerically investigate the motion of a Brownian particle suspended in water under the illumination of a speckle pattern. Particle-captured time and size of particle-captured area are quantitatively estimated in relation to an optical force and a speckle diameter to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.

  10. Evaluating motion processing algorithms for use with functional near-infrared spectroscopy data from young children.

    PubMed

    Delgado Reyes, Lourdes M; Bohache, Kevin; Wijeakumar, Sobanawartiny; Spencer, John P

    2018-04-01

    Motion artifacts are often a significant component of the measured signal in functional near-infrared spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address this issue, including principal components analysis (PCA), correlation-based signal improvement (CBSI), wavelet filtering, and spline interpolation. The efficacy of these techniques has been compared using simulated data; however, our understanding of how these techniques fare when dealing with task-based cognitive data is limited. Brigadoi et al. compared motion correction techniques in a sample of adult data measured during a simple cognitive task. Wavelet filtering showed the most promise as an optimal technique for motion correction. Given that fNIRS is often used with infants and young children, it is critical to evaluate the effectiveness of motion correction techniques directly with data from these age groups. This study addresses that problem by evaluating motion correction algorithms implemented in HomER2. The efficacy of each technique was compared quantitatively using objective metrics related to the physiological properties of the hemodynamic response. Results showed that targeted PCA (tPCA), spline, and CBSI retained a higher number of trials. These techniques also performed well in direct head-to-head comparisons with the other approaches using quantitative metrics. The CBSI method corrected many of the artifacts present in our data; however, this approach produced sometimes unstable HRFs. The targeted PCA and spline methods proved to be the most robust, performing well across all comparison metrics. When compared head to head, tPCA consistently outperformed spline. We conclude, therefore, that tPCA is an effective technique for correcting motion artifacts in fNIRS data from young children.

  11. The Influence of Head Motion on Intrinsic Functional Connectivity MRI

    PubMed Central

    Van Dijk, Koene R.A.; Sabuncu, Mert R.; Buckner, Randy L.

    2011-01-01

    Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A confounding factor is head motion. Children move more than adults, older adults more than younger adults, and patients more than controls. Head motion varies considerably among individuals within the same population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation across subjects was not linked to estimated head motion. However, head motion had significant, systematic effects on fcMRI network measures. Head motion was associated with decreased functional coupling in the default and frontoparietal control networks – two networks characterized by coupling among distributed regions of association cortex. Other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions – a region pair sometimes used as a control in studies to establish specificity. Comparisons between groups of individuals with subtly different levels of head motion yielded difference maps that could be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting variation between groups and across individuals. PMID:21810475

  12. Analysis of free breathing motion using artifact reduced 4D CT image data

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Werner, Rene; Frenzel, Thorsten; Lu, Wei; Low, Daniel; Handels, Heinz

    2007-03-01

    The mobility of lung tumors during the respiratory cycle is a source of error in radiotherapy treatment planning. Spatiotemporal CT data sets can be used for studying the motion of lung tumors and inner organs during the breathing cycle. We present methods for the analysis of respiratory motion using 4D CT data in high temporal resolution. An optical flow based reconstruction method was used to generate artifact-reduced 4D CT data sets of lung cancer patients. The reconstructed 4D CT data sets were segmented and the respiratory motion of tumors and inner organs was analyzed. A non-linear registration algorithm is used to calculate the velocity field between consecutive time frames of the 4D data. The resulting velocity field is used to analyze trajectories of landmarks and surface points. By this technique, the maximum displacement of any surface point is calculated, and regions with large respiratory motion are marked. To describe the tumor mobility the motion of the lung tumor center in three orthogonal directions is displayed. Estimated 3D appearance probabilities visualize the movement of the tumor during the respiratory cycle in one static image. Furthermore, correlations between trajectories of the skin surface and the trajectory of the tumor center are determined and skin regions are identified which are suitable for prediction of the internal tumor motion. The results of the motion analysis indicate that the described methods are suitable to gain insight into the spatiotemporal behavior of anatomical and pathological structures during the respiratory cycle.

  13. Using Satellite Galaxies to Weigh the Milky Way

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    Weighing galaxies is a tricky business especially when that galaxy is our own! In a recent study, scientists have tackled this problem by harnessing incredibly precise measurements of the motions of Milky-Way satellites.A Challenging MeasurementLocations of some of the 50 satellite galaxies known around the Milky Way. [AndrewRT]Our spot in the middle of our galaxys disk makes it difficult for us to assess the total mass of gas, dust, stars, and dark matter surrounding us; estimates for the Milky Ways mass span from 700 billion to 2 trillion solar masses! Pinning down this number is critical for better understanding the structure and dynamics of our local universe.So whats the key to precisely weighing the Milky Way? A new study led by Ekta Patel (University of Arizona) presented at the American Astronomical Society meeting two weeks ago suggests it may be the barely preceptible motions of the small satellite galaxies that orbit around the Milky Way. Around 50 Milky-Way satellites are currently known, and simulations suggest that there may be up to 100200 in total. By watching the motions of these satellites, we can trace the potential of their host the Milky Way and estimate its mass.The Illustris-Dark simulation evolves our universe to the present day, providing a view of how dark matter organizes itself into galaxy halos over time. [Illustris Collaboration]Tiny Motions of Tiny GalaxiesIn this era of precision astronomy, remarkable measurements are becoming possible. In their study, Patel and collaborators use years of proper-motion observations from the Hubble Space Telescope for nine satellite galaxies of the Milky Way. The precision needed for measurements like these is insane: watching these satellites move is roughly like watching a human hair grow at the distance of the Moon.Rather than using the instantaneous position and velocity measured for a satellite which changes over time during the satellites orbit Patel and collaborators demonstrate that the satellites specific angular momentum is a more useful parameter when attempting to estimate its host galaxys mass.For each of the nine individual satellite galaxies, the authors compare its measured momentum to that of 90,000 simulated satellite galaxies from the Illustris-Dark cosmological simulation. This matching is used to build a probability distribution for the mass of the host galaxy most likely to be orbited by such a satellite. The probability distributions for the nine satellite galaxies are then combined to find the best overall estimate for the Milky Ways mass.Tipping the ScaleTop: summary of the most likely Milky-Way mass estimated from each of the 9 satellite galaxies, using the instantaneous positions and velocities (left) and the momentum (right) of the satellites. The momentum method shows less scatter in the host masses. Bottom: probability distributions for the most likely Milky-Way mass for each of the satellites (colored curves) and combined (grey curve). Click for a better look. [Patel et al. 2018]Using this technique, Patel and collaborators find a mass of 0.96 trillion solar masses for the Milky Way. The error bars for their measurement are around 30% and while this is more confined than the broad range of past estimates, its not yet extremely precise. The beauty of Patel and collaborators method, however, is that it is both extendable and generalizable.The authors only had access to precise proper motions for nine satellite galaxies when they conducted their study but since then, the Gaia mission has provided measurements for 30 satellites, with more expected in the future. Including these additional satellites and using improved, higher-resolution cosmological simulations for comparison will continue to increase the precision of Patel and collaborators estimate in the future.In addition, this approach can also be used to weigh our neighboring Andromeda galaxy, or any other galaxy for which were able to get precise proper-motion measurements for its satellites. Keep an eye out in the future, as techniques like this continue to reveal more properties of our local universe.CitationEkta Patel et al 2018 ApJ 857 78. doi:10.3847/1538-4357/aab78f

  14. Increasing accuracy in the assessment of motion sickness: A construct methodology

    NASA Technical Reports Server (NTRS)

    Stout, Cynthia S.; Cowings, Patricia S.

    1993-01-01

    The purpose is to introduce a new methodology that should improve the accuracy of the assessment of motion sickness. This construct methodology utilizes both subjective reports of motion sickness and objective measures of physiological correlates to assess motion sickness. Current techniques and methods used in the framework of a construct methodology are inadequate. Current assessment techniques for diagnosing motion sickness and space motion sickness are reviewed, and attention is called to the problems with the current methods. Further, principles of psychophysiology that when applied will probably resolve some of these problems are described in detail.

  15. Limited transfer of long-term motion perceptual learning with double training.

    PubMed

    Liang, Ju; Zhou, Yifeng; Fahle, Manfred; Liu, Zili

    2015-01-01

    A significant recent development in visual perceptual learning research is the double training technique. With this technique, Xiao, Zhang, Wang, Klein, Levi, and Yu (2008) have found complete transfer in tasks that had previously been shown to be stimulus specific. The significance of this finding is that this technique has since been successful in all tasks tested, including motion direction discrimination. Here, we investigated whether or not this technique could generalize to longer-term learning, using the method of constant stimuli. Our task was learning to discriminate motion directions of random dots. The second leg of training was contrast discrimination along a new average direction of the same moving dots. We found that, although exposure of moving dots along a new direction facilitated motion direction discrimination, this partial transfer was far from complete. We conclude that, although perceptual learning is transferrable under certain conditions, stimulus specificity also remains an inherent characteristic of motion perceptual learning.

  16. Automatic motion correction of clinical shoulder MR images

    NASA Astrophysics Data System (ADS)

    Manduca, Armando; McGee, Kiaran P.; Welch, Edward B.; Felmlee, Joel P.; Ehman, Richard L.

    1999-05-01

    A technique for the automatic correction of motion artifacts in MR images was developed. The algorithm uses only the raw (complex) data from the MR scanner, and requires no knowledge of the patient motion during the acquisition. It operates by searching over the space of possible patient motions and determining the motion which, when used to correct the image, optimizes the image quality. The performance of this algorithm was tested in coronal images of the rotator cuff in a series of 144 patients. A four observer comparison of the autocorrelated images with the uncorrected images demonstrated that motion artifacts were significantly reduced in 48% of the cases. The improvements in image quality were similar to those achieved with a previously reported navigator echo-based adaptive motion correction. The results demonstrate that autocorrelation is a practical technique for retrospectively reducing motion artifacts in a demanding clinical MRI application. It achieves performance comparable to a navigator based correction technique, which is significant because autocorrection does not require an imaging sequence that has been modified to explicitly track motion during acquisition. The approach is flexible and should be readily extensible to other types of MR acquisitions that are corrupted by global motion.

  17. Richardson-Lucy deblurring for the star scene under a thinning motion path

    NASA Astrophysics Data System (ADS)

    Su, Laili; Shao, Xiaopeng; Wang, Lin; Wang, Haixin; Huang, Yining

    2015-05-01

    This paper puts emphasis on how to model and correct image blur that arises from a camera's ego motion while observing a distant star scene. Concerning the significance of accurate estimation of point spread function (PSF), a new method is employed to obtain blur kernel by thinning star motion path. In particular, how the blurred star image can be corrected to reconstruct the clear scene with a thinning motion blur model which describes the camera's path is presented. This thinning motion path to build blur kernel model is more effective at modeling the spatially motion blur introduced by camera's ego motion than conventional blind estimation of kernel-based PSF parameterization. To gain the reconstructed image, firstly, an improved thinning algorithm is used to obtain the star point trajectory, so as to extract the blur kernel of the motion-blurred star image. Then how motion blur model can be incorporated into the Richardson-Lucy (RL) deblurring algorithm, which reveals its overall effectiveness, is detailed. In addition, compared with the conventional estimated blur kernel, experimental results show that the proposed method of using thinning algorithm to get the motion blur kernel is of less complexity, higher efficiency and better accuracy, which contributes to better restoration of the motion-blurred star images.

  18. Respiratory motion estimation in x-ray angiography for improved guidance during coronary interventions

    NASA Astrophysics Data System (ADS)

    Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.

    2015-05-01

    During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).

  19. An analytical technique for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.

  20. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phasemore » (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.« less

  1. Seismic displacements monitoring for 2015 Mw 7.8 Nepal earthquake with GNSS data

    NASA Astrophysics Data System (ADS)

    Geng, T.; Su, X.; Xie, X.

    2017-12-01

    The high-rate Global Positioning Satellite System (GNSS) has been recognized as one of the powerful tools for monitoring ground motions generated by seismic events. The high-rate GPS and BDS data collected during the 2015 Mw 7.8 Nepal earthquake have been analyzed using two methods, that are the variometric approach and Precise point positioning (PPP). The variometric approach is based on time differenced technique using only GNSS broadcast products to estimate velocity time series from tracking observations in real time, followed by an integration procedure on the velocities to derive the seismic event induced displacements. PPP is a positioning method to calculate precise positions at centimeter- or even millimeter-level accuracy with a single GNSS receiver using precise satellite orbit and clock products. The displacement motions with accuracy of 2 cm at far-field stations and 5 cm at near-field stations with great ground motions and static offsets up to 1-2 m could be achieved. The multi-GNSS, GPS + BDS, could provide higher accuracy displacements with the increasing of satellite numbers and the improvement of the Position Dilution of Precision (PDOP) values. Considering the time consumption of clock estimates and the precision of PPP solutions, 5 s GNSS satellite clock interval is suggested. In addition, the GNSS-derived displacements are in good agreement with those from strong motion data. These studies demonstrate the feasibility of real-time capturing seismic waves with multi-GNSS observations, which is of great promise for the purpose of earthquake early warning and rapid hazard assessment.

  2. Power strain imaging based on vibro-elastography techniques

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Salcudean, S. E.

    2007-03-01

    This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.

  3. Learning Inverse Rig Mappings by Nonlinear Regression.

    PubMed

    Holden, Daniel; Saito, Jun; Komura, Taku

    2017-03-01

    We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.

  4. GPS Measurements of Crustal Deformation in San Diego, CA: Results from fixed-height monument network and implications for the Inner Continental Borderlands

    NASA Astrophysics Data System (ADS)

    Singleton, D. M.; Agnew, D. C.; Maloney, J. M.; Rockwell, T. K.

    2017-12-01

    The Newport-Inglewood-Rose Canyon fault zone is the easternmost fault in a system of strike-slip faults that together make up the Inner Continental Borderlands (ICB), a region offshore of Southern California that is thought to accommodate 10-15% of the total plate boundary slip. However, slip on individual faults is difficult to measure because of the offshore location and limited availability of geologic indicators. With a 30-km onshore segment, the southern Rose Canyon fault zone (RCF) provides an opportunity to employ geodetic techniques to quantify the slip rate for a fault within the ICB. Space geodetic techniques have significantly enhanced our ability to quantify tectonic motion. With a best-estimated geologic slip rate of 1.5 ± 0.5 mm/yr, the RCF, as with other low slip-rate faults, is a challenge to traditional survey GPS techniques. Here we present the results from surveys of a GPS network first constructed in 1998 to determine motion across the RCF. This network has four sites, each site consisting of three to five closely spaced benchmarks that employ novel fixed-height centering with submillimeter repeatability so as to reduce noise associated with monument stability. Data collected from 1998 to 2017 shows millimeter-level monument stability and repeatability of the network. We present the results of velocity inversion for slip using data spanning 19 years across the Rose Canyon fault zone and discuss the implications for broader motion across the Inner Continental Borderlands.

  5. Robust intravascular optical coherence elastography driven by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.

    2007-07-01

    High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.

  6. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, R.H.; Chai, J.; Lang, J.H.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signalmore » and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.« less

  7. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  8. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.

    1997-01-01

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.

  9. Restoration of non-uniform exposure motion blurred image

    NASA Astrophysics Data System (ADS)

    Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng

    2014-11-01

    Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.

  10. Opposite effects of high- and low-frequency transcranial random noise stimulation probed with visual motion adaptation

    PubMed Central

    Campana, Gianluca; Camilleri, Rebecca; Moret, Beatrice; Ghin, Filippo; Pavan, Andrea

    2016-01-01

    Transcranial random noise stimulation (tRNS) is a recent neuro-modulation technique whose effects at both behavioural and neural level are still debated. Here we employed the well-known phenomenon of motion after-effect (MAE) in order to investigate the effects of high- vs. low-frequency tRNS on motion adaptation and recovery. Participants were asked to estimate the MAE duration following prolonged adaptation (20 s) to a complex moving pattern, while being stimulated with either sham or tRNS across different blocks. Different groups were administered with either high- or low-frequency tRNS. Stimulation sites were either bilateral human MT complex (hMT+) or frontal areas. The results showed that, whereas no effects on MAE duration were induced by stimulating frontal areas, when applied to the bilateral hMT+, high-frequency tRNS caused a significant decrease in MAE duration whereas low-frequency tRNS caused a significant corresponding increase in MAE duration. These findings indicate that high- and low-frequency tRNS have opposed effects on the adaptation-dependent unbalance between neurons tuned to opposite motion directions, and thus on neuronal excitability. PMID:27934947

  11. Vertical Crustal Motion Derived from Satellite Altimetry and Tide Gauges, and Comparisons with DORIS Measurements

    NASA Technical Reports Server (NTRS)

    Ray, R. D.; Beckley, B. D.; Lemoine, F. G.

    2010-01-01

    A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry, To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm/yr and a weighted root-mean-square difference of2.7 mm/yr. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(l) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive, One of our stations, Male, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. Published by Elsevier Ltd. on behalf of COSPAR.

  12. Shared sensory estimates for human motion perception and pursuit eye movements.

    PubMed

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  13. Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements

    PubMed Central

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio

    2015-01-01

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919

  14. Swirling flow in a model of the carotid artery: Numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Kotmakova, Anna A.; Gataulin, Yakov A.; Yukhnev, Andrey D.

    2018-05-01

    The present contribution is aimed at numerical and experimental study of inlet swirling flow in a model of the carotid artery. Flow visualization is performed both with the ultrasound color Doppler imaging mode and with CFD data postprocessing of swirling flows in a carotid artery model. Special attention is paid to obtaining data for the secondary motion in the internal carotid artery. Principal errors of the measurement technique developed are estimated using the results of flow calculations.

  15. Recent advances in the development and transfer of machine vision technologies for space

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P.; Pendleton, Thomas

    1991-01-01

    Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.

  16. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  17. Comparison of method using phase-sensitive motion estimator with speckle tracking method and application to measurement of arterial wall motion

    NASA Astrophysics Data System (ADS)

    Miyajo, Akira; Hasegawa, Hideyuki

    2018-07-01

    At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.

  18. Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman

    2018-05-01

    Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition, having proper lighting while working with high-speed cameras can be an issue, therefore image enhancement and contrast manipulation has also been performed to enhance the raw images. Ultimately, the extracted resonant frequencies and operational deflection shapes are used to detect the presence of damage, demonstrating the feasibility of implementing non-contact video measurements to perform realistic structural damage detection.

  19. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    PubMed

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  20. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  1. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    PubMed Central

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  2. Right ventricular strain analysis from three-dimensional echocardiography by using temporally diffeomorphic motion estimation.

    PubMed

    Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo

    2014-12-01

    Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.

  3. Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning.

    PubMed

    Li, Guang; Wei, Jie; Huang, Hailiang; Gaebler, Carl Philipp; Yuan, Amy; Deasy, Joseph O

    2015-12-01

    To automatically estimate average diaphragm motion trajectory (ADMT) based on four-dimensional computed tomography (4DCT), facilitating clinical assessment of respiratory motion and motion variation and retrospective motion study. We have developed an effective motion extraction approach and a machine-learning-based algorithm to estimate the ADMT. Eleven patients with 22 sets of 4DCT images (4DCT1 at simulation and 4DCT2 at treatment) were studied. After automatically segmenting the lungs, the differential volume-per-slice (dVPS) curves of the left and right lungs were calculated as a function of slice number for each phase with respective to the full-exhalation. After 5-slice moving average was performed, the discrete cosine transform (DCT) was applied to analyze the dVPS curves in frequency domain. The dimensionality of the spectrum data was reduced by using several lowest frequency coefficients ( f v ) to account for most of the spectrum energy (Σ f v 2 ). Multiple linear regression (MLR) method was then applied to determine the weights of these frequencies by fitting the ground truth-the measured ADMT, which are represented by three pivot points of the diaphragm on each side. The 'leave-one-out' cross validation method was employed to analyze the statistical performance of the prediction results in three image sets: 4DCT1, 4DCT2, and 4DCT1 + 4DCT2. Seven lowest frequencies in DCT domain were found to be sufficient to approximate the patient dVPS curves ( R = 91%-96% in MLR fitting). The mean error in the predicted ADMT using leave-one-out method was 0.3 ± 1.9 mm for the left-side diaphragm and 0.0 ± 1.4 mm for the right-side diaphragm. The prediction error is lower in 4DCT2 than 4DCT1, and is the lowest in 4DCT1 and 4DCT2 combined. This frequency-analysis-based machine learning technique was employed to predict the ADMT automatically with an acceptable error (0.2 ± 1.6 mm). This volumetric approach is not affected by the presence of the lung tumors, providing an automatic robust tool to evaluate diaphragm motion.

  4. Image Motion Detection And Estimation: The Modified Spatio-Temporal Gradient Scheme

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Ho; Inigo, Rafael M.

    1990-03-01

    The detection and estimation of motion are generally involved in computing a velocity field of time-varying images. A completely new modified spatio-temporal gradient scheme to determine motion is proposed. This is derived by using gradient methods and properties of biological vision. A set of general constraints is proposed to derive motion constraint equations. The constraints are that the second directional derivatives of image intensity at an edge point in the smoothed image will be constant at times t and t+L . This scheme basically has two stages: spatio-temporal filtering, and velocity estimation. Initially, image sequences are processed by a set of oriented spatio-temporal filters which are designed using a Gaussian derivative model. The velocity is then estimated for these filtered image sequences based on the gradient approach. From a computational stand point, this scheme offers at least three advantages over current methods. The greatest advantage of the modified spatio-temporal gradient scheme over the traditional ones is that an infinite number of motion constraint equations are derived instead of only one. Therefore, it solves the aperture problem without requiring any additional assumptions and is simply a local process. The second advantage is that because of the spatio-temporal filtering, the direct computation of image gradients (discrete derivatives) is avoided. Therefore the error in gradients measurement is reduced significantly. The third advantage is that during the processing of motion detection and estimation algorithm, image features (edges) are produced concurrently with motion information. The reliable range of detected velocity is determined by parameters of the oriented spatio-temporal filters. Knowing the velocity sensitivity of a single motion detection channel, a multiple-channel mechanism for estimating image velocity, seldom addressed by other motion schemes in machine vision, can be constructed by appropriately choosing and combining different sets of parameters. By applying this mechanism, a great range of velocity can be detected. The scheme has been tested for both synthetic and real images. The results of simulations are very satisfactory.

  5. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less

  6. Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration

    PubMed Central

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2014-01-01

    Stereovision is an important intraoperative imaging technique that captures the exposed parenchymal surface noninvasively during open cranial surgery. Estimating cortical surface shift efficiently and accurately is critical to compensate for brain deformation in the operating room (OR). In this study, we present an automatic and robust registration technique based on optical flow (OF) motion tracking to compensate for cortical surface displacement throughout surgery. Stereo images of the cortical surface were acquired at multiple time points after dural opening to reconstruct three-dimensional (3D) texture intensity-encoded cortical surfaces. A local coordinate system was established with its z-axis parallel to the average surface normal direction of the reconstructed cortical surface immediately after dural opening in order to produce two-dimensional (2D) projection images. A dense displacement field between the two projection images was determined directly from OF motion tracking without the need for feature identification or tracking. The starting and end points of the displacement vectors on the two cortical surfaces were then obtained following spatial mapping inversion to produce the full 3D displacement of the exposed cortical surface. We evaluated the technique with images obtained from digital phantoms and 18 surgical cases – 10 of which involved independent measurements of feature locations acquired with a tracked stylus for accuracy comparisons, and 8 others of which 4 involved stereo image acquisitions at three or more time points during surgery to illustrate utility throughout a procedure. Results from the digital phantom images were very accurate (0.05 pixels). In the 10 surgical cases with independently digitized point locations, the average agreement between feature coordinates derived from the cortical surface reconstructions was 1.7–2.1 mm relative to those determined with the tracked stylus probe. The agreement in feature displacement tracking was also comparable to tracked probe data (difference in displacement magnitude was <1 mm on average). The average magnitude of cortical surface displacement was 7.9 ± 5.7 mm (range 0.3–24.4 mm) in all patient cases with the displacement components along gravity being 5.2 ± 6.0 mm relative to the lateral movement of 2.4 ± 1.6 mm. Thus, our technique appears to be sufficiently accurate and computationally efficiency (typically ~15 s), for applications in the OR. PMID:25077845

  7. Estimation of end point foot clearance points from inertial sensor data.

    PubMed

    Santhiranayagam, Braveena K; Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2011-01-01

    Foot clearance parameters provide useful insight into tripping risks during walking. This paper proposes a technique for the estimate of key foot clearance parameters using inertial sensor (accelerometers and gyroscopes) data. Fifteen features were extracted from raw inertial sensor measurements, and a regression model was used to estimate two key foot clearance parameters: First maximum vertical clearance (m x 1) after toe-off and the Minimum Toe Clearance (MTC) of the swing foot. Comparisons are made against measurements obtained using an optoelectronic motion capture system (Optotrak), at 4 different walking speeds. General Regression Neural Networks (GRNN) were used to estimate the desired parameters from the sensor features. Eight subjects foot clearance data were examined and a Leave-one-subject-out (LOSO) method was used to select the best model. The best average Root Mean Square Errors (RMSE) across all subjects obtained using all sensor features at the maximum speed for m x 1 was 5.32 mm and for MTC was 4.04 mm. Further application of a hill-climbing feature selection technique resulted in 0.54-21.93% improvement in RMSE and required fewer input features. The results demonstrated that using raw inertial sensor data with regression models and feature selection could accurately estimate key foot clearance parameters.

  8. Near-Fault Broadband Ground Motion Simulations Using Empirical Green's Functions: Application to the Upper Rhine Graben (France-Germany) Case Study

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Sergio; Hok, Sebastien; Festa, Gaetano; Causse, Mathieu; Lancieri, Maria

    2017-09-01

    Seismic hazard estimation relies classically on data-based ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French-German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green's function technique (multi-EGFt) with a k -2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi-EGF is detailed and discussed in our specific situation where less number of events are available. We then showed the impact that each source parameter characterizing the k-2 model has on ground motion amplitude. Finally we performed ground motion simulations showing results for different probable earthquake scenarios in the URG. Dependency of ground motions and of their variability are analyzed at different frequencies in respect of rupture velocity, roughness degree of slip distribution (stress drop), and hypocenter location. In near-source conditions, ground motion variability is shown to be mostly governed by the uncertainty on source parameters. In our specific configuration (magnitude, distance), the directivity effect is only observed in a limited frequency range. Rather, broadband ground motions are shown to be sensitive to both average rupture velocity and its possible variability, and to slip roughness. Ending up with a comparison of simulation results and GMPEs, we conclude that source parameters and their variability should be set up carefully to obtain reliable broadband ground motion estimations. In particular, our study shows that slip roughness should be set up in respect of the target stress drop. This entails the need for a better understanding of the physics of earthquake source and its incorporation in the ground motion modeling.

  9. Planning and executing motions for multibody systems in free-fall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.

    1991-01-01

    The purpose of this research is to develop an end-to-end system that can be applied to a multibody system in free-fall to analyze its possible motions, save those motions in a database, and design a controller that can execute those motions. A goal is for the process to be highly automated and involve little human intervention. Ideally, the output of the system would be data and algorithms that could be put in ROM to control the multibody system in free-fall. The research applies to more than just robots in space. It applies to any multibody system in free-fall. Mathematical techniques from nonlinear control theory were used to study the nature of the system dynamics and its possible motions. Optimization techniques were applied to plan motions. Image compression techniques were proposed to compress the precomputed motion data for storage. A linearized controller was derived to control the system while it executes preplanned trajectories.

  10. A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0

    NASA Astrophysics Data System (ADS)

    Schmalzle, G.; Wdowinski, S.

    2014-12-01

    Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields become available. A database and scripts to access the database will be available through the University of Miami (http://www.geodesy.miami.edu) website. Figure 1. Vertical velocity comparisons between processing groups (blue dots). Red line indicates equal velocities. Weighted Root Mean Square (WRMS) is shown.

  11. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    NASA Astrophysics Data System (ADS)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of the global rotational state of the target. The results of the computer simulations showed a good robustness of the method and its potential applicability for general motion conditions of the target.

  12. Database for earthquake strong motion studies in Italy

    USGS Publications Warehouse

    Scasserra, G.; Stewart, J.P.; Kayen, R.E.; Lanzo, G.

    2009-01-01

    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M< ??? 5.5) and finite source parameters for larger events. ?? 2009 A.S. Elnashai & N.N. Ambraseys.

  13. Robust cardiac motion estimation using ultrafast ultrasound data: a low-rank topology-preserving approach

    NASA Astrophysics Data System (ADS)

    Aviles, Angelica I.; Widlak, Thomas; Casals, Alicia; Nillesen, Maartje M.; Ammari, Habib

    2017-06-01

    Cardiac motion estimation is an important diagnostic tool for detecting heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate cardiac motion using ultrafast ultrasound data. Our solution is based on a variational formulation characterized by the L 2-regularized class. Displacement is represented by a lattice of b-splines and we ensure robustness, in the sense of eliminating outliers, by applying a maximum likelihood type estimator. While this is an important part of our solution, the main object of this work is to combine low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows one to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. The low-rank constraint speeds up the convergence of the optimization problem while topology preservation ensures a more accurate displacement. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that exhibit motion.

  14. Global velocity constrained cloud motion prediction for short-term solar forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping

    2016-09-01

    Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.

  15. Influence of Spatial Variation in Ground Motion Peak Acceleration on Local Site Effects Estimation at Bucovina Seismic Array (BURAR) Romania

    NASA Astrophysics Data System (ADS)

    Ghica, D. V.; Radulian, M.; Popa, M.; Grecu, B.

    2006-05-01

    Basically, array processing techniques require a high signal coherency across the seismic site; therefore the local crustal velocities below the station, signal amplitude differences between array elements and local noise conditions, resulting in local site effects will affect calculation of phase arrival times, propagation velocities and ground motion amplitudes. In general, array techniques assume a homogenous structure for all sites, and a simple relief correction is taking in account for the data analysis. To increase the results accuracy, individual element corrections must be applied, based on the biases factors systematically observed. This study aims at identifying the anomalous amplitude variations recorded at the Bucovina Seismic Array (BURAR) and at explaining their influence on site effects estimation. Maximum amplitudes for the teleseismic and regional phases in four narrow frequency bands (0.25-0.5Hz; 0.5-1Hz; 1-2Hz; 1.5-3Hz) are measured. Spatial distribution of ground motion peak acceleration in BURAR site, for each band, is plotted; a different behavior was observed at frequencies below 2Hz. The most important aspect observed is the largest amplitude exhibited by BUR07 across the whole array at high frequencies (an amplification factor of about two). This can be explained by the different geology at BUR07 site (mica schist outcrops), comparing with the rest of elements (green schist outcrops). At the lowest frequencies (0.25-0.5Hz), BUR09 peak amplitudes dominate the other sites. Considering BUR07 as reference site, peak acceleration ratios were investigated. The largest scattering of these ratios appears at the highest frequencies (1.5-3Hz), when the weight of over unit values is about 90 %. No azimuth and distance dependence was found for these effects, suggesting the absence of the dipping layer structures. Although an increase of the ratio values is noticed for epicentral distance between 8000 and 10000 km, for frequencies over 1 Hz. The results of this study are essential to further develop the calibration technique for seismic monitoring with BURAR array, in order to improve the detection and single-array location capabilities of the system.

  16. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4 to 25 kHz

    PubMed Central

    Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-01-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. PMID:19328841

  17. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz.

    PubMed

    Rosowski, John J; Cheng, Jeffrey Tao; Ravicz, Michael E; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme

    2009-07-01

    Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f>4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined.

  18. Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke

    2018-03-01

    This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.

  19. Design, Implementation and Validation of the Three-Wheel Holonomic Motion System of the Assistant Personal Robot (APR).

    PubMed

    Moreno, Javier; Clotet, Eduard; Lupiañez, Ruben; Tresanchez, Marcel; Martínez, Dani; Pallejà, Tomàs; Casanovas, Jordi; Palacín, Jordi

    2016-10-10

    This paper presents the design, implementation and validation of the three-wheel holonomic motion system of a mobile robot designed to operate in homes. The holonomic motion system is described in terms of mechanical design and electronic control. The paper analyzes the kinematics of the motion system and validates the estimation of the trajectory comparing the displacement estimated with the internal odometry of the motors and the displacement estimated with a SLAM procedure based on LIDAR information. Results obtained in different experiments have shown a difference on less than 30 mm between the position estimated with the SLAM and odometry, and a difference in the angular orientation of the mobile robot lower than 5° in absolute displacements up to 1000 mm.

  20. Using Passive Sensing to Estimate Relative Energy Expenditure for Eldercare Monitoring

    PubMed Central

    2012-01-01

    This paper describes ongoing work in analyzing sensor data logged in the homes of seniors. An estimation of relative energy expenditure is computed using motion density from passive infrared motion sensors mounted in the environment. We introduce a new algorithm for detecting visitors in the home using motion sensor data and a set of fuzzy rules. The visitor algorithm, as well as a previous algorithm for identifying time-away-from-home (TAFH), are used to filter the logged motion sensor data. Thus, the energy expenditure estimate uses data collected only when the resident is home alone. Case studies are included from TigerPlace, an Aging in Place community, to illustrate how the relative energy expenditure estimate can be used to track health conditions over time. PMID:25266777

  1. Design, Implementation and Validation of the Three-Wheel Holonomic Motion System of the Assistant Personal Robot (APR)

    PubMed Central

    Moreno, Javier; Clotet, Eduard; Lupiañez, Ruben; Tresanchez, Marcel; Martínez, Dani; Pallejà, Tomàs; Casanovas, Jordi; Palacín, Jordi

    2016-01-01

    This paper presents the design, implementation and validation of the three-wheel holonomic motion system of a mobile robot designed to operate in homes. The holonomic motion system is described in terms of mechanical design and electronic control. The paper analyzes the kinematics of the motion system and validates the estimation of the trajectory comparing the displacement estimated with the internal odometry of the motors and the displacement estimated with a SLAM procedure based on LIDAR information. Results obtained in different experiments have shown a difference on less than 30 mm between the position estimated with the SLAM and odometry, and a difference in the angular orientation of the mobile robot lower than 5° in absolute displacements up to 1000 mm. PMID:27735857

  2. Motion direction estimation based on active RFID with changing environment

    NASA Astrophysics Data System (ADS)

    Jie, Wu; Minghua, Zhu; Wei, He

    2018-05-01

    The gate system is used to estimate the direction of RFID tags carriers when they are going through the gate. Normally, it is difficult to achieve and keep a high accuracy in estimating motion direction of RFID tags because the received signal strength of tag changes sharply according to the changing electromagnetic environment. In this paper, a method of motion direction estimation for RFID tags is presented. To improve estimation accuracy, the machine leaning algorithm is used to get the fitting function of the received data by readers which are deployed inside and outside gate respectively. Then the fitted data are sampled to get the standard vector. We compare the stand vector with template vectors to get the motion direction estimation result. Then the corresponding template vector is updated according to the surrounding environment. We conducted the simulation and implement of the proposed method and the result shows that the proposed method in this work can improve and keep a high accuracy under the condition of the constantly changing environment.

  3. Gated-SPECT myocardial perfusion imaging as a complementary technique to magnetic resonance imaging in chronic myocardial infarction patients.

    PubMed

    Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume

    2013-09-01

    The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  4. Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.

    PubMed

    Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan

    2016-12-01

    The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.

  5. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.

    PubMed

    Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A

    2011-11-01

    Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.

  6. Motion prediction of a non-cooperative space target

    NASA Astrophysics Data System (ADS)

    Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan

    2018-01-01

    Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.

  7. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.

  8. Blur kernel estimation with algebraic tomography technique and intensity profiles of object boundaries

    NASA Astrophysics Data System (ADS)

    Ingacheva, Anastasia; Chukalina, Marina; Khanipov, Timur; Nikolaev, Dmitry

    2018-04-01

    Motion blur caused by camera vibration is a common source of degradation in photographs. In this paper we study the problem of finding the point spread function (PSF) of a blurred image using the tomography technique. The PSF reconstruction result strongly depends on the particular tomography technique used. We present a tomography algorithm with regularization adapted specifically for this task. We use the algebraic reconstruction technique (ART algorithm) as the starting algorithm and introduce regularization. We use the conjugate gradient method for numerical implementation of the proposed approach. The algorithm is tested using a dataset which contains 9 kernels extracted from real photographs by the Adobe corporation where the point spread function is known. We also investigate influence of noise on the quality of image reconstruction and investigate how the number of projections influence the magnitude change of the reconstruction error.

  9. Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures. Revised

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Lapenta, William M.; Robertson, Franklin R.

    1994-01-01

    Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.

  10. A refined Frequency Domain Decomposition tool for structural modal monitoring in earthquake engineering

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2017-07-01

    Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.

  11. High-resolution estimates of Nubia-Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.

    2016-10-01

    Large gaps and inconsistencies remain in published estimates of Nubia-Somalia plate motion based on reconstructions of seafloor spreading data around Africa. Herein, we use newly available reconstructions of the Southwest Indian Ridge at ˜1-Myr intervals since 20 Ma to estimate Nubia-Somalia plate motion farther back in time than previously achieved and with an unprecedented degree of temporal resolution. At the northern end of the East African rift, our new estimates of Nubia-Somalia motion for six times from 0.78 Ma to 5.2 Ma differ by only 2 per cent from the rift-normal component of motion that is extrapolated from a recently estimated GPS angular velocity. The rate of rift-normal extension thus appears to have remained steady since at least 5.2 Ma. Our new rotations indicate that the two plates have moved relative to each other since at least 16 Ma and possibly longer. Motion has either been steady since at least 16 Ma or accelerated modestly between 6 and 5.2 Ma. Our Nubia-Somalia rotations predict 42.5 ± 3.8 km of rift-normal extension since 10.6 Ma across the well-studied, northern segment of the Main Ethiopian Rift, consistent with 40-50 km estimates for extension since 10.6 Myr based on seismological surveys of this narrow part of the plate boundary. Nubia-Somalia rotations are also derived by combining newly estimated Somalia-Arabia rotations that reconstruct the post-20-Ma opening of the Gulf of Aden with Nubia-Arabia rotations estimated via a probabilistic analysis of plausible opening scenarios for the Red Sea. These rotations predict Nubia-Somalia motion since 5.2 Myr that is consistent with that determined from Southwest Indian Ridge data and also predict 40 ± 3 km of rift-normal extension since 10.6 Ma across the Main Ethiopian Rift, consistent with our 42.5 ± 3.8 km Southwest Indian Ridge estimate. Our new rotations exclude at high confidence level previous estimates of 12 ± 13 and 123 ± 14 km for rift-normal extensions across the Main Ethiopian Rift since 10.6 Ma based on reconstructions of Chron 5n.2 along the Southwest Indian Ridge. Sparse coverage of magnetic reversals older than 16 Ma along the western third of the Southwest Indian Ridge precludes reliable determinations of Nubia-Somalia plate motion before 16 Ma, leaving unanswered the key question of when the motion between the two plates began.

  12. Normalized GNSS Interference Pattern Technique for Altimetry

    PubMed Central

    Ribot, Miguel Angel; Kucwaj, Jean-Christophe; Botteron, Cyril; Reboul, Serge; Stienne, Georges; Leclère, Jérôme; Choquel, Jean-Bernard; Farine, Pierre-André; Benjelloun, Mohammed

    2014-01-01

    It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér–Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals. PMID:24922453

  13. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco

    2013-09-01

    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.

  14. A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces.

    PubMed

    Shojaei, Iman; Arjmand, Navid; Meakin, Judith R; Bazrgari, Babak

    2018-03-21

    The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 0° to 0.7° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 2.4° to 7.6° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two sets of TMFs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Therefore, it might be possible to use image-based kinematics of lumbar segments along with computational modeling for personalized assessment of TMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers

    PubMed Central

    Luu, Loc; Dinh, Anh

    2018-01-01

    The aim of this study is on the investigation of motion noise removal techniques using two-accelerometer sensor system and various placements of the sensors on gentle movement and walking of the patients. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design filters in the motion noise removal techniques and peak signal detection. There are two main techniques of combining signals from the two sensors to mitigate the motion artifact: analog processing and digital processing. The analog processing comprises analog circuits performing adding or subtracting functions and bandpass filter to remove artifact noises before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The two techniques are tested on three placements of accelerometer sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are the best techniques to deal with gentle motion on all sensor placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to traditional methods using only one accelerometer. With walking motion, ADDER and z-axis acceleration are the best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer method. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. PMID:29614821

  16. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    USGS Publications Warehouse

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  17. Digital Signal Processing For Low Bit Rate TV Image Codecs

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Nguyen, D; O’Brien, R

    Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) usingmore » a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.« less

  19. Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images

    PubMed Central

    Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.

    2013-01-01

    Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342

  20. New Intensity Attenuation in Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.; Tibaldi, A.; Bonali, F.; Gogoladze, Z.; Kvavadze, N.; Kvedelidze, I.

    2016-12-01

    In seismic-prone zones, increase of urbanization and infrastructures in turn produces increase of seismic risk that is mainly related to: the level of seismic hazard itself, the seismic resistance of dwelling houses, and many other factors. The relevant objectives of the present work is to improve the regional seismic hazard maps of Georgia, by implementing state-of-the art probabilistic seismic hazard assessment techniques and outputs from recent national and international collaborations. Seismic zoning is the identification of zones of similar levels of earthquake hazard. With reference to seismic zoning by ground motion assessment, the shaking intensity essentially depends on i) regional seismicity, ii) attenuation of ground motion with distance, iii) local site effects on ground motion. In the last decade, seismic hazard assessment is presented in terms of Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), or other recorded parameters. But there are very limited strong motion dataset in Georgia. Furthermore, vulnerability of buildings still is estimated for intensity, and there are no information about correlation between the distribution of ground motion recorded parameters and damage. So, macroseimic Intensity is still a very important parameter for strong ground motion evaluation. In the present work, we calibrated intensity prediction equations (IPE) for the Georgian dataset based on about 78 reviewed earthquakes. Metadata for Intensity (MSK 64 scale) were constrained and predictionequations for various types of distance (epicentral and hypocentral distance, Joyner-Boore distance, closest distance to the fault rupture plane) were calibrated. Relations between intensity and PGA values were derived. For this we used hybrid-empirical ground motion equation derived for Georgia and run scenario earthquakes for events with macroseismic data.

Top